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Abstract

Boundary effects are central to the dynamics of the dilute particles governed
by the Boltzmann equation. In this paper, we study both the diffuse reflection and
the specular reflection boundary value problems for the Boltzmann equation with
a soft potential, in which the collision kernel is ruled by the inverse power law.
For the diffuse reflection boundary condition, based on an L2 argument and its
interplay with intricate L∞ analysis for the linearized Boltzmann equation, we first
establish the global existence and then obtain the exponential decay in L∞ space
for the nonlinear Boltzmann equation in general classes of bounded domain. It turns
out that the zero lower bound of the collision frequency and the singularity of the
collision kernel lead to some new difficulties for achieving the a priori L∞ estimates
and time decay rates of the solution. In the course of the proof, we capture some
new properties of the probability integrals along the stochastic cycles and improve
the L2 − L∞ theory to give a more direct approach to overcome those difficulties.
As to the specular reflection condition, our key contribution is to develop a new
time-velocity weighted L∞ theory so that we could deal with the greater difficulties
stemming from the complicated velocity relations among the specular cycles and the
zero lower bound of the collision frequency. From this new point, we are also able
to prove that the solutions of the linearized Boltzmann equation tend to equilibrium
exponentially in L∞ space with the aid of the L2 theory and a bootstrap argument.
These methods, in the latter case, can be applied to the Boltzmann equation with
soft potential for all other types of boundary condition.
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1. Introduction

1.1. The Problem and Background

Boundary effects should been taken into account when we study the dynamics
of rarefied gas governed by the Boltzmann equation in a bounded domain. There
are several standard classes of boundary conditions for the Boltzmann equation, cf.
[27, pp. 716]. In this paper, we consider the the Boltzmann equation

∂t F + v · ∇x F = Q(F, F), (x, v) ∈ � × R
3, t > 0, (1.1)

with initial data
F(0, x, v) = F0(x, v), (x, v) ∈ � × R

3, (1.2)

and either of the following boundary conditions:

• The diffuse reflection boundary condition

F(t, x, v)|n(x)·v<0 = μ(v)

∫
n(x)·v′>0

F(t, x, v′)(n(x)·v′)dv′, x ∈ ∂�, t ≥ 0;
(1.3)

• The specular reflection boundary condition

F(t, x, v)|n(x)·v<0 = F(t, x, Rxv), Rxv = v−2(v·n(x))n(x), x ∈ ∂�, t ≥ 0.
(1.4)

Here, F(t, x, v) ≥ 0 denotes the density distribution function of the gas particles
at time t ≥ 0, position x ∈ �, and velocity v ∈ R

3, � is a bounded domain in R
3,

n(x) is the outward pointing unit norm vector at boundary x ∈ ∂� and μ(v) stands
for the global Maxwellian which is normalized as

μ(v) = 1

2π
e− |v|2

2 ,

so that ∫
n(x)·v>0

μ(v)(n(x) · v)dv = 1. (1.5)
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Let (u, v) and (u′, v′) be the velocities of the particles before and after the collision,
which satisfy

{
v′ = v + [(u − v) · ω]ω, u′ = u − [(u − v) · ω]ω,

|u|2 + |v|2 = |u′|2 + |v′|2. (1.6)

The Boltzmann collision operator Q(·, ·) is given as the following non-symmetric
form:

Q(F1, F2) =
∫
R3×S2

|u − v|�b0(θ)[F1(u′)F2(v′) − F1(u)F2(v)]dudω
= Qgain(F1, F2) − Qloss(F1, F2),

where the exponent is� = 1− 4
s with inverse power 1 < s < 4 and cos θ = ω· u−v

|u−v| .
Through the paper, we assume

−3 < � < 0, 0 < b0(θ) ≤ C cos θ, (1.7)

which are so-called soft potentials with Grad’s angular cutoff. Traditionally, one
labels things as hard potentials for the case when � ∈ (0, 1], Maxwellian molecules
for the case when � = 0, and the soft potentials for the case when � ∈ (−3, 0).

The boundary condition (1.3) says the incoming particles are a probability
average of the outgoing particles, while boundary condition (1.4) reveals that the
gas particles elastically collide against the wall like billiard balls.

The boundary effects in kinetic equations are fundamental to the dynamics of
gas; for instance, the phenomena of slip boundary layer, thermal creep, curvature
effects, and singularity of propagation due to the boundary [40] can be under-
stood only with knowledge of the interaction mechanism of the particles with the
boundary. Owing to the importance of the boundary effects, there have been many
achievements in the mathematical study of different aspects of Boltzmann bound-
ary value problems, see [4–6,12,19,20,32,33,37,38] and references therein. In
what follows, we mention some works related to the current study of this paper.
Hamdache [30] constructed the global renormalization solution to the Boltzmann
equation in the case of a hard potential with an isothermal Maxwell boundary con-
dition which in fact extends the pioneering work [9] for the Cauchy problem to the
initial boundary value problem. Later on, Arkeryd and Cercinagani [1] gener-
alized the results in [30] to more extensive situations including the case when the
boundaries are not isothermal and the velocity is bounded.Arkeryd andMaslova
[2] then removed the restriction on the bounded velocity introduced in [1] to study
the similar issue for the Boltzmann equation and the BGK model. Except for the
topic concerning the existence of the weak solution to the Botlzmann equation with
initial boundary value problem mentioned above, another interesting problem is to
prove the existence and uniqueness of the solution, as well as their time decay
toward an absolute Maxwllian, at the appearance of compatible physical boundary
conditions in a general domain, cf. [22,23]. Comparedwith the study for theCauchy
problem in the whole space, to our best knowledge, there are much less rigorous
mathematical results of uniqueness, regularity or time-decay for the Boltzmann
solutions toward a Maxwellian in a bounded domain. Although it was announced
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in [39] that the solutions to the Boltzmann equation near a Maxwellian would tend
exponentially to the same equilibrium in a smooth bounded convex domain with
specular reflection boundary condition, there is no complete rigorous proof. Ukai
[44]made a rough outline for proving the existence and time convergence to a global
Maxwellian for the initial boundary value problem with a hard potential.Golse et
al. [21] investigated the boundary layer of stationary Boltzmann equations in one
spatial dimension with a specular reflection boundary condition in the case of the
hard spheres model (� = 1). Liu and Yu [35,36] studied the stationary boundary
layers and the propagating fluid waves of the initial boundary value problem for
the Botlzmann equation in half space by means of Green’s function, introduced
in [34]. Based on an elementary energy method, Yang and Zhao [48] proved the
stability of the rarefaction waves for the one dimensional Boltzmann equation in
half space with a specular reflection boundary condition. Under the assumption
that a priori strong Sobolev estimates can be verified, Desvillettes and Villani
[7,8,47] recently established an almost exponential decay rate for Boltzmann so-
lutions with large amplitude for general collision kernels and general boundary
conditions. It should be pointed out that many of the natural physical boundary
conditions create singularities in general domains [31], for which the Sobolev esti-
mates break down in the crucial elliptic estimates for the macroscopic part [25,26].
A new L2 − L∞ theory was developed in [27] to obtain the global existence and
the exponential decay rates of the solution around a global Maxwellian in the case
of hard potentials for four basic types of boundary conditions: in flow, bounce back
reflection, specular reflection and diffuse reflection; we refer to [3,16,17] for the
latest advancement on this topic. Different L2 − L∞ methods have also been used
in [16,45]. Thanks to the work of [27], the regularity [28,29] and hydrodynamic
limits [18] for the Boltzmann equation in general classes of a bounded domain were
further pondered. All of these works are focused on the case of the hard potential.
A natural challenge is to extend the L2 − L∞ analysis developed in [27] to the
case of the soft potential. This is the goal of the present paper. Namely, we will
investigate the global existence and the large time behaviors of the initial boundary
value problem of (1.1), (1.2), (1.3) or (1.4) with the condition (1.7).

1.2. Domain, Characteristics and Perturbation

Throughout this paper,� is a connected and bounded domain inR
3 and defined

by the open set {x | ξ(x) < 0} with ξ(x) being a smooth function. Let ∇ξ(x) �= 0
at boundary ξ(x) = 0. The outward pointing unit normal vector at every point
x ∈ ∂� is given by

n(x) = ∇ξ(x)

|∇ξ(x)| .

We say � is strictly convex if there exists cξ > 0, for any ζ = (ζ 1, ζ 2, ζ 3) ∈ R
3,

that satisfies

∂i jξ(x)ζ iζ j ≥ cξ |ζ |2. (1.8)
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We say that � has a rotational symmetry if there are vectors x0 and 
 such that,
for all x ∈ ∂�,

{(x − x0) × 
 } · n(x) ≡ 0. (1.9)

For convenience, the phase boundary in the phase space � × R
3 is denoted by

γ = ∂� × R
3, and we further split it into the following three kinds:

outgoing boundary : γ+ = {(x, v) ∈ ∂� × R
3 : n(x) · v > 0},

incoming boundary : γ− = {(x, v) ∈ ∂� × R
3 : n(x) · v < 0},

grazing boundary : γ0 = {(x, v) ∈ ∂� × R
3 : n(x) · v = 0}.

As is shown in [27, pp. 715], the backward exit timewhich plays a crucial role in the
study of the boundary value problem of the Botlzmann equation can bewell-defined
via the backward characteristic trajectory. Given (t, x, v), we let [X (s), V (s)] sat-
isfy

dX (s)

ds
= V (s),

dV (s)

ds
= 0, (1.10)

with the initial data [X (t; t, x, v), V (t; t, x, v)] = [x, v]. Then
[X (s; t, x, v), V (s; t, x, v)] = [x − (t − s)v, v] = [X (s), V (s)],

which is called the backward characteristic trajectory for the Boltzmann equation
(1.1).

For (x, v) ∈ � × R
3, the backward exit time tb(x, v) > 0 is defined as the

first moment at which the backward characteristic line [X (s; 0, x, v), V (s; 0, x, v)]
emerges from ∂�:

tb(x, v) = inf{ t > 0 : x − tv /∈ ∂�},
and we also define xb(x, v) = x − tb(x, v)v ∈ ∂�. Note that for any (x, v), we
use tb(x, v) whenever it is well-defined.

Set the perturbation in a standard way F = μ + √
μ f ; the initial boundary

value problem (1.1), (1.2), (1.3) and (1.4) can be reformulated as

∂t f + v · ∇x f + L f = �( f, f ), (1.11)

f (0, x, v) = f0(x, v), (1.12)

with the boundary conditions

f (t, x, v)|γ− = √
μ

∫
n(x)·v′>0

f (t, x, v′)
√

μ(v′)n(x) · v′dv′, (1.13)

and
f (t, x, v)|γ− = f (t, x, Rxv), (1.14)

respectively. The nonlinear operator �(·, ·) and linear operator L in (1.11) are
defined as

�( f1, f2) = 1√
μ
Q(

√
μ f1,

√
μ f2),
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and

L f = − 1√
μ

{Q(μ,
√

μ f ) + Q(
√

μ f, μ)}, (1.15)

respectively. L can be further split into L = ν −K with K a suitable integral kernel
defined by (2.1) in Section 2, and the collision frequency ν(v) ≡ ∫

R3×S2
b0(θ)|u−

v|�μ(u)dudω for −3 < � < 0, moreover there exists a constant C� > 0 such that

1

C�

{1 + |v|2}�/2 ≤ ν(v) ≤ C�{1 + |v|2}�/2. (1.16)

Under the conditions (1.13) or (1.14), it is straightforward to check that
∫

γ+
f (t, x, v)

√
μ(v)|n(x) · v|dSxdv =

∫
γ−

f (t, x, v)
√

μ(v)|n(x) · v|dSxdv,

where dSx is the surface element.
Hence, in terms of perturbation f (t, x, v), the mass conservation

∫
�×R3

f (t, x, v)
√

μ(v)dxdv = 0 (1.17)

holds true for either of the boundary conditions (1.13) or (1.14) by further assuming
that, initially, (1.1) has the same mass as the Maxwellian μ.

For the specular reflection condition (1.14), in addition to themass conservation
(1.17), the energy conservation law also holds for t ≥ 0, that is

∫
�×R3

|v|2 f (t, x, v)
√

μ(v)dxdv = 0. (1.18)

Moreover, if the domain� has any axis of rotation symmetry (1.9), then we further
assume that the corresponding conservation of angular momentum is valid for all
t ≥ 0: ∫

�×R3
{(x − x0) × 
 } · v f (t, x, v)

√
μdxdv = 0. (1.19)

1.3. Main Results

We introduce a weight function

wq,θ,ϑ = exp

{
q|v|θ
8

+ q|v|θ
8(1 + t)ϑ

}
, (q, θ) ∈ Aq,θ , 0 ≤ ϑ < − θ

�
, (1.20)

where

Aq,θ = {(q, θ)|q > 0, if 0 < θ < 2, and 0 < q < 1, if θ = 2}.

For the sake of simplicity, we denote wq,θ,0 = wq,θ = exp
(
q|v|θ
4

)
throughout the

paper.
We now state our main results as follows.
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Theorem 1.1. Let −3 < � < 0 and (q, θ) ∈ Aq,θ . Assume the mass conservation
(1.17) holds for f0(x, v). Then there exists a small constant ε0 > 0 such that if
F0(x, v) = μ + √

μ f0(x, v) ≥ 0 and ‖wq,θ f0‖∞ ≤ ε0, there exists a unique
solution F(t, x, v) = μ+√

μ f (t, x, v) ≥ 0 for the Boltzmann equation (1.1) and
(1.2) with the diffuse reflection boundary condition (1.3). Moreover, there is some
C > 0 such that

sup
0≤t≤+∞

‖wq,θ f (t)‖∞ ≤ C‖wq,θ f0‖∞. (1.21)

Furthermore, we assume � is strictly convex and f0(x, v) is continuous away from
the set γ0 and

f0(x, v)|γ− = √
μ

∫
n(x)·v′>0

f0(x, v
′)
√

μ(v′)n(x) · v′dv′.

Then, f (t, x, v) is continuous in [0,+∞)×{�×R
3\γ0}. Moreover, let ρ0 = θ

θ−�
,

then there exist C > 0 and λ0 > 0 independent of t such that

‖ f (t)‖∞ ≤ Ce−λ0tρ0 ‖wq,θ f0‖∞. (1.22)

Theorem 1.2. Let 0 < ϑ < − θ
�
with −3 < � < 0 and (q, θ) ∈ Aq,θ . Assume that

ξ is both strictly convex (1.8) andanalytic, and themass (1.17) and energy (1.18) are
conserved for f0. In the case that � has any rotational symmetry (1.9), we further
require the corresponding angularmomentum (1.19) is conserved for f0. Then there
exists ε0 > 0 such that if F0(x, v) = μ+√

μ f0(x, v) ≥ 0 and ‖wq,θ,ϑ f0‖∞ ≤ ε0,

there exists a unique solution F(t, x, v) = μ+√
μ f (t, x, v) ≥ 0 to the Boltzmann

equation (1.1) and (1.2) with the specular reflection boundary condition (1.4).
Moreover, let ρ1 = θ+ϑ�

θ−�
, then there exist λ0 > 0 and C > 0 such that

‖wq,θ,ϑ f (t)‖∞ ≤ Ce−λ0tρ1‖wq,θ,ϑ f0‖∞.

Furthermore, if f0(x, v) is continuous except on the set γ0 and

f0(x, v) = f0(x, Rxv) on ∂�,

then f (t, x, v) is continuous in [0,∞) × {�̄ × R
3\γ0}.

Remark 1.1. It should be pointed out that the method developed in Theorem 1.2
can be applied to verify Theorem 1.1, and it can also be used to handle the other two
kinds of boundary conditions: in flow and bounce back reflection. Moreover, one
can see that the approach developed in the proof of Theorem 1.1 is more direct and
constructive while the method used in the proof of Theorem 1.2 is simpler, though
both of them have their merits. In addition, it is straightforward to know that the
decay exponents satisfy ρ0 = lim

ϑ→0+ ρ1. It is quite interesting to improve ρ1 to ρ0,

which coincides with the decay rate for the periodic boundary condition [43].



470 Shuangqian Liu & Xiongfeng Yang

Let us nowgive some comments on the difficulties associatedwithTheorems1.1
and 1.2. Compared with previous works such as [3,17,27,49], a remarkable feature
of our problems is that the collision frequency ν has no positive lower bound, so
that the Boltzmann solution could not be expected to decay exponentially in L∞
immediately. However, the decay rate plays a key role in establishing the global
existence of the Boltzmann equation in the bounded domain, see Lemma 19 in
[27, pp. 761] and also [44, pp. 81]. This time decay rate is essentially applied to
eliminate the possible growth created by the k-times bounce-back reflection (k is
large). Our strategy for overcoming this difficulty starts with consideration of the
diffuse reflection boundary condition, where one needs some careful estimates on
the integrals along the stochastic cycles so as to obtain the global existence by using
only the L2 decay. One of the key points in this paper is to develop a direct and
unified approach to establishing the global existence of the linearized Boltzmann
equation with the diffuse reflection boundary condition. More specifically, instead
of applying the timedecay in L∞ to obtain the global existence cf. [3,17,27],wefirst
construct a local solution via an iteration method, then directly deduce the a priori
estimate, which is uniform in time by means of a refined estimates on the integrals
defined on the stochastic cycles and the L2 time decay for linearized equation.
Finally, the global solution is obtained with the aid of the standard continuity
argument. Among these steps, the main one is to establish the following type of
uniform estimates:

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

∫∫
dv′dv′′

∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)

w̃q,θ (v′)

×
k−1∑
l ′=1

1{t ′
l′+1

>0}

⎧⎨
⎩
∫ t ′

l′− 1
k2(s)

t ′
l′+1

+
∫ t ′

l′

t ′
l′− 1

k2(s)

⎫⎬
⎭kχ

w(vl , v
′)kχ

w(v′
l ′ , v

′′)

× |h j (s1,x
′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�w
l ′ (s1)ds1d�

w
l (s)ds

≤ Cq,θ

(
1

T 5/4
0

+ 1

N

)
sup

0≤s≤t1
‖h j (s)‖∞+CN sup

0≤s≤t1

{
e

λ0
2 sρ0

∥∥∥∥ h j (s)

wq,θ (v)

∥∥∥∥
2

}
,

(1.23)

where k(s) = k = C ′
1[α(s)]5/4 ≥ C ′

1T
5/4
0 and C ′

1 > 0 is a constant. To derive
(1.23), the following key observation is used:

k−1∑
l=1

∫ tl

tl+1

eν(vm )(s−t1)ν(vm)ds ≤
∫ t1

tk
eν(vm )(s−t1)ν(vm)ds ≤ C,

where vm is defined to satisfy |vm | = max{|v1|, |v2|, . . . , |vk−1|} formax{|v1|, |v2|,
. . . , |vk−1|} ≤ k.

In addition, a delicateBanach spaceXδ(t) is designed to capture theproperties of
the solution in L∞∩L2 space so that the global existence and the exponential decay

in the L2−norm can be simultaneously obtained. The rapid time decay e− λ0
2 sρ0 in
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L2−norm is adopted to control the Jacobian determinate when we convert the
L∞−norm to the L2−norm.

It is also interesting to note that estimate (1.22) is a consequence of the inter-
polation technique based on the L2 energy estimate and the weighted L∞ estimate
for the global solution as well as Young’s inequality

e−ν(v)tw−1
q/2,θ (v) ≤ e−λ0tρ0 , ρ0 = θ

θ − �
, (1.24)

which means that one has to trade between the exponential decay rates and the
additional exponential momentum weight on the solution itself in order to obtain
the rapid time decay rates. This also reveals that the additional velocity weight
imposed on the initial data in (1.22) is seen as a compensation for the exponential
decay rates.

As to the specular reflection boundary condition, we cannot expect to obtain an
estimate similar to (1.23). There are two mathematical difficulties: one concerns
the times of the bounce back reflections k and k′; in this situation both grow ex-
ponentially in time according to Velocity Lemma 2.5, hence the summation of the
integral is out of control. The other is that it is impractical to compute the Jacobian
determinate

det

(
∂{x ′

k′ + (s1 − t ′k′)v′
k′ }

∂v′

)
,

which depends on t, x, v, k and k′. In this sense, the method developed in the case
of the diffuse reflection boundary condition cannot be applied to the case of the
specular reflection boundary condition. Precisely speaking, one cannot first obtain
the global existence of (1.11), (1.12) and (1.14) in some higher weighted L∞ space
and therefore one is not able to deduce the time decay rates in the lower weighted
L∞ space. As a consequence, we are forced to resort to the same bootstrap argument
as that of [27, Lemma 19, pp. 761]. As mentioned before, to apply the bootstrap
argument, the key point is to obtain the rapid time decay rates without any growth.
Nevertheless, it seems impossible to achieve this due to the zero lower bound of
the collision frequency. To deal with this difficulty, we introduce a time-velocity
weight

wq,θ,ϑ = exp

{
q|v|θ
8

+ q|v|θ
8(1 + t)ϑ

}
,

which has been used in [11,13–15], to handle the non-hard sphere Boltzmann
equations with self-consistent forces; by using this weight, we are able to deduce a
time-dependent lower bound for a revised collision frequency, say,

ν̃(v, t) = ν + ϑq|v|θ
8(1 + t)ϑ+1 ≥ C�,q,ϑ (1 + t)

(1+ϑ)�
θ−� .

Thus, the desired time decay rates will be naturally obtained. This is another key
contribution of the present paper.
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Due to the singularity of the collision kernel, the integral operator K raises
another difficulty when we carry out L∞ estimates for the linearized equation.
Similar to the study of the Cauchy problem of the Boltzmann equation on a torus
[24,41,43], we introduce a cutoff function χ to split K = K χ + K 1−χ . With
this decomposition, we only need to iterate K χ twice [46] to obtain the desired
estimates, since K 1−χ is small and can be controlled directly.

The estimates of the nonlinear operator �(·, ·), in terms of the exponential
weighted norm ‖wq,θ,ϑ · ‖∞, are subtle. To avoid additional weight, we estimate
wq/2,θ,ϑ (v) as

wq/2,θ,ϑ (v) ≤ 1

2
(wq,θ,ϑ (v′) + wq,θ,ϑ (u′)),

instead of wq/2,θ,ϑ (v) ≤ wq/2,θ,ϑ (v′)wq/2,θ,ϑ (u′).
The organization of the paper is as follows. In Section 2, we collect some

significant estimates for later use. Section 3 is devoted to the study of the Boltz-
mann equation with a diffuse reflection boundary condition. The global existence
and exponential time decay for the Boltzmann equation with a specular reflection
boundary condition are presented in Section 4.

1.4. Notations and Norms

We now list some notations and norms used in the paper:

• Throughout this paper, C denotes some generic positive (generally large) con-
stant, and λ, λ1, λ2, as well as λ0, denote some generic positive (generally
small) constants, where C , λ, λ1, λ2 and λ0 may take different values in dif-
ferent places. D � E means that there is a generic constant C > 0 such that
D ≤ CE . D ∼ E means D � E and E � D.

• Letting 1 ≤ p ≤ ∞, we denote ‖ · ‖p as the L p(� × R
3)−norm or the

L p(�)−norm or L p(� ∪ γ )−norm, while | · |∞ is either the L∞(∂� ×
R
3)−norm or the L∞(∂�)−norm at the boundary. Moreover, we denote that

‖ · ‖ν ≡ ‖ν1/2 · ‖2, and (·, ·) denotes the L2 inner product in � × R
3 with the

L2 norm ‖ · ‖2.
• As to the phase boundary integration, we denote that dγ = |n(x) · v|dS(x)dv,

where dS(x) is the surface element, and for 1 ≤ p < +∞, we define | f |pp =∫
γ

| f (x, v)|pdγ ≡ ∫
γ

| f (x, v)|p and the corresponding space as L p(∂� ×
R
3; dγ ) = L p(∂� × R

3). Furthermore, | f |p,± = | f 1γ±|p and | f |∞,± =
| f 1γ±|∞. For simplicity, we use | f |pp = ∫

∂�
| f (x)|pdS(x) ≡ ∫

∂�
| f (x)|p.

We also denote f± = fγ± = f 1γ± .
• Finally, we define

Pγ f (x, v) = √
μ(v)

∫
n(x)·v′>0

f (x, v′)
√

μ(v′)(n(x) · v′)dv′, x ∈ ∂�.

Thanks to (1.5), Pγ f defined on ∂� × R
3 is an L2

v-projection with respect to
the measure |n(x) · v| for any boundary function f defined on γ+. We also
denote {I − Pγ } f = f − Pγ f .
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2. Preliminary

In this section,we collect somebasic definitions and estimates for the later proof.
We start with the analysis of K , from (1.15), and state that a standard decomposition
for K is the following:

K f =
∫
R3×S2

|u − v|�b0(cos θ)
√

μ(u)
{
f (u′)

√
μ(v′) + f (v′)

√
μ(u′)

}
dudω

−√
μ(v)

∫
R3×S2

|u − v|�b0(cos θ)
√

μ(u) f (u)dudω
def= K2 − K1.

(2.1)

To treat the singularity in K , we introduce a smooth cutoff function 0 ≤ χ ≤ 1
such that

χ(s) =
{
1, s ≥ 2ε,
0, s ≤ ε.

we use χ to split K2 = K χ
2 + K 1−χ

2 , where

K χ
2 f =

∫
R3×S2

χ(|u − v|)|u − v|�b0(cos θ)
√

μ(u)

×
{
f (u′)

√
μ(v′) + f (v′)

√
μ(u′)

}
dudω.

With this, it follows from [43, pp. 294] that

K χ
2 f =

∫
R3

kχ
2 (v, u) f (u)du,

where

|kχ
2 (v, u)| ≤ Cε�−1

exp
(
− 1

8 |u − v|2 − 1
8

(|v|2−|u|2)2
|v−u|2

)

|v − u| ,

or

|kχ
2 (v, u)| ≤ C

exp
(
− s2

8 |u − v|2 − s1
8

(|v|2−|u|2)2
|v−u|2

)

|v − u|(1 + |v| + |u|)1−�
, (2.2)

for any 0 < s1 < s2 < 1. As to K1, it is obvious to see that

K1 f =
∫
R3

k1(v, u) f (u)du,

with k1(v, u) = ∫
S2

|u − v|�b0(cos θ)
√

μ(u)
√

μ(v)dω. Analogously, we also de-

note K χ = K χ
2 − K χ

1 and K 1−χ = K 1−χ
2 − K 1−χ

1 .

Prior to the study of the property of the operators K and �, we present the
following elementary inequality:
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Lemma 2.1. If 0 < p ≤ 1, for any x, y ≥ 0, it holds that

(x + y)p ≤ x p + y p. (2.3)

If p > 1, for any x, y ≥ 0, it holds that

(x + y)p ≤ 2p−1(x p + y p). (2.4)

Proof. If y = 0, (2.3) is obviously true. If y > 0, (2.3) is then equivalent to
(
1 + x

y

)p

−
(
x

y

)p

− 1 ≤ 0.

It is easy to check that the function g(t) = (1 + t)p − t p − 1 is monotonically
decreasing for 0 < p ≤ 1, and moreover that g(0) = 0, therefore (2.3) is also valid
for y > 0. If p > 1, (2.4) directly follows from the convexity of t p. This completes
the proof of Lemma 2.1. ��

We now summarize the properties of K as follows:

Lemma 2.2. Assume −3 < � < 0, (q, θ) ∈ A(q, θ) and ϑ ≥ 0. It holds that for
η > 0:

(K f1, w
2
q,θ,ϑ f2) ≤ {

η‖wq,θ,ϑ f1‖ν + C(η)‖1|v|≤C(η) f1‖
} ‖wq,θ,ϑ f2‖ν, (2.5)

especially,

(K f1, w
2
q,θ,ϑ f2) ≤ C‖wq,θ,ϑ f1‖ν‖wq,θ,ϑ f2‖ν, (K f1, f2) ≤ C‖ f1‖ν‖ f2‖ν .

(2.6)
In addition, for any l ≥ 0, one has

〈v〉lwq,θ,ϑK
1−χ

( |h|
〈v〉lwq,θ,ϑ

)
≤ C(μ(v))

min
{
1/8q,

|1−q|
8

}
ε�+3‖h‖∞, (2.7)

and

〈v〉lwq,θ,ϑ

∫
R3

kχ (v, u)

(
eε|v−u|2 |h(u)|
〈u〉lwq,θ,ϑ (u)

)
du ≤ Cq,θ 〈v〉�−2‖h‖∞, (2.8)

where ε > 0 and is sufficiently small and 〈v〉 = √
1 + |v|2.

Proof. We only detail the proof for (2.7) and (2.8), since the strategy to prove (2.5)
is basically the same as for Lemma 2 of [43, pp. 296], and (2.6) directly follows
from (2.5). Notice that K 1−χ = K 1−χ

2 − K 1−χ
1 . We first consider the estimates for

K 1−χ
1 . Recall

wq,θ,ϑ = exp

{
q|v|θ
8

+ q|v|θ
8(1 + t)ϑ

}
= exp

{q
8
(1 + (1 + t)−ϑ)|v|θ

}
, (q, θ)∈Aq,θ .

Let q̃ = q
2 (1 + (1 + t)−ϑ), then q/2 < q̃ ≤ q. Direct calculation yields

〈v〉lwq,θ,ϑ

√
μ(v) ≤ Cq,θ (μ(v))

min
{
1/8q,

|1−q|
8

}
,
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then it is easy to obtain

〈v〉lwq,θ,ϑK
1−χ
1

( |h|
〈v〉lwq,θ,ϑ

)

= 〈v〉lwq,θ,ϑ

√
μ(v)

∫
R3×S2

(1 − χ(|u − v|))|u − v|�b0(cos θ)
√

μ(u)

×
( |h(u)|

〈u〉lwq,θ,ϑ (u)

)
dωdu

≤ Cq,θ,ϑ (μ(v))
min

{
1/8q,

|1−q|
8

} ∫
|v−u|≤2ε

|u − v|�du‖h‖∞

≤ C(μ(v))
min

{
1/8q,

|1−q|
8

}
ε�+3‖h‖∞.

For the contribution of kχ
1 in (2.8), it follows that

〈v〉lwq,θ,ϑ

∫
R3

kχ
1 (v, u)

(
eε|v−u|2 |h(u)|
〈u〉lwq,θ,ϑ (u)

)
du

= 〈v〉lwq,θ,ϑ

√
μ(v)

∫
R3×S2

χ(|u − v|)|u − v|�b0(cos θ)
√

μ(u)

×
(
eε|v−u|2 |h(u)|
〈u〉lwq,θ,ϑ (u)

)
dωdu

≤ Cq,θ

∫
R3

|u − v|�(μ(v)μ(u))
min

{
1/8q,

|1−q|
8

}
eε|v−u|2du‖h‖∞

≤ C〈v〉�(μ(v))
min

{
1/16q,

|1−q|
16

}
‖h‖∞,

where the last inequality is due to
∫
R3 |u − v|�(μ(u))min{1/16q,

|1−q|
16 }du ≤ C〈v〉�.

We now turn to derive the contributions of K 1−χ
2 in (2.7). In light of (2.1), on

the one hand, we have

〈v〉lwq,θ,ϑK
1−χ
2

( |h|
〈v〉lwq,θ,ϑ

)

= 〈v〉lwq,θ,ϑ

∫
R3×S2

(1 − χ)(|u − v|)|u − v|�b0(cos θ)
√

μ(u)

×
{ |h(u′)|

〈u′〉lwq,θ,ϑ (u′)
√

μ(v′) + |h(v′)|
〈v′〉lwq,θ,ϑ (v′)

√
μ(u′)

}
dωdu.

(2.9)

On the other hand, (1.6) and |v − u| ≤ 2ε imply

{ |v′| = |v + [(u − v) · ω]ω| ≥ |v| − |v − u| ≥ |v| − 2ε,

|u′| = |v + u − v − [(u − v) · ω]ω| ≥ |v| − 2|v − u| ≥ |v| − 4ε.
(2.10)
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Using 〈v〉lwq,θ,ϑ

√
μ(v) ≤ Cq,θ (μ(v))

min
{
1/8q,

|1−q|
8

}
again, we get, from (2.9) and

(2.10), that

〈v〉lwq,θ,ϑK
1−χ
2

( |h|
〈v〉lwq,θ,ϑ

)
≤ Cq,θ (μ(v))

min
{
1/8q,

|1−q|
8

}

∫
|v−u|≤2ε

|u − v|�du‖h‖∞

≤ C(μ(v))
min

{
1/8q,

|1−q|
8

}
ε�+3‖h‖∞.

It remains now to deduce the contribution of kχ
2 in (2.8). Recall (2.2) and take

s0 = min{s1, s2} to obtain

〈v〉lwq,θ,ϑ

∫
R3

kχ
2 (v, u)

(
eε|v−u|2 |h(u)|
〈u〉lwq,θ,ϑ (u)

)
du

≤ C‖h‖∞〈v〉�−1〈v〉lwq,θ,ϑ

∫
R3

exp
(
− s0

8 |u − v|2 − s0
8

(|v|2−|u|2)2
|v−u|2

)

|v − u|

×
(

eε|v−u|2

〈u〉lwq,θ,ϑ (u)

)
du

def= K0.

Next, from (1.20), we notice that for some Cl > 0 and θ = 2,
∣∣∣∣wq,θ,ϑ (v)

wq,θ,ϑ (u)

∣∣∣∣ ≤ Cl [1 + |v − u|2]l e−q̃{|u|2−|v|2}.

Let v − u = η and u = v − η in the integral of K0. We then compute the total

exponent in kχ
2 (v, u)

wq,2,ϑ (v)

wq,2,ϑ (u)
as:

− s0
8

|η|2 − s0
8

||η|2 − 2v · η|2
|η|2 − q̃

4
{|v − η|2 − |v|2}

= − s0
4

|η|2 + s0
2

v · η − s0
2

|v · η|2
|η|2 − q̃

4
{|η|2 − 2v · η}

= − 1

4
(q̃ + s0)|η|2 + 1

2
(s0 + q̃)v · η − s0

2

{v · η}2
|η|2 .

Let q̃ ≤ q < s0, and the discriminant of the above quadratic form of |η| and v·η
|η| is

� = 1

4
(s0 + q̃)2 − (q̃ + s0)

s0
2

= 1

4
(q̃2 − s20 ) < 0.

Notice that q/2 < q̃ ≤ q, and we thus have, for ε > 0 sufficiently small and
q < s0, that there is Cq > 0 independent of ϑ such that the following perturbed
quadratic form is still negative definite:
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− s0 − 8ε

8
|η|2 − s0 − 8ε

8

||η|2 − 2v · η|2
|η|2 − q̃

4
{|η|2 − 2v · η}

≤ − Cq

{
|η|2 + |v · η|2

|η|2
}

= −Cq

{ |η|2
2

+
( |η|2

2
+ |v · η|2

|η|2
)}

≤ − Cq

{ |η|2
2

+ |v · η|
}

.

(2.11)

If 0 < θ < 2, Lemma 2.1 yields

|v|θ − |u|θ ≤ Cθ |η|θ .
Therefore, one also has

− s0 − 8ε

8
|η|2 − s0

8

||η|2 − 2v · η|2
|η|2 + q̃Cθ

4
ηθ

≤ − s0 − 9ε

8
|η|2 − s0 − 9ε

8

||η|2 − 2v · η|2
|η|2 + Cq,θ

≤ −Cs0

{
|η|2 + |v · η|2

|η|2
}

+Cq,θ ≤ −Cs0

{ |η|2
2

+ |v · η|
}

+ Cq,θ .

(2.12)

Plugging (2.11) or (2.12) into K0, we obtain

K0 ≤ Cq,θ 〈v〉�−1‖h‖∞
∫
R3

〈η〉l
|η| exp

{
−Cq

{ |η|2
2

+ |v · η|
}}

dη.

Next, we make another change of variable η‖ = (η · v
|v| )

v
|v| and η⊥ = η − η‖ so

that v · η = |v||η‖|, which leads us to

K0 ≤ Cq,θ 〈v〉�−1‖h‖∞
∫
R2

1

|η⊥| exp
{
−Cq

4
|η⊥|2

}∫
R

exp

{
−Cq

4
|v||η‖|

}
dη‖dη⊥

≤ Cq,θ 〈v〉�−2‖h‖∞.

This finishes the proof of Lemma 2.2. ��
The following lemma is concerned with the estimates on the nonlinear operator

�.

Lemma 2.3. It holds that

‖ν−1wq,θ,ϑ�( f1, f2)‖∞ ≤ C‖wq,θ,ϑ f1‖∞‖wq,θ,ϑ f2‖∞, (2.13)

‖wq/2,θ,ϑ�( f1, f2)‖∞ ≤ C
{‖ f1‖∞‖wq,θ,ϑ f2‖∞

+‖wq,θ,ϑ f1‖∞‖ f2‖∞
}
, (2.14)

‖ν−1/2wq/2,θ,ϑ�( f1, f2)‖22 ≤ C‖wq,θ,ϑ f1‖2∞‖wq/2,θ,ϑ f2‖2ν
+C‖wq,θ,ϑ f2‖2∞‖wq/2,θ,ϑ f1‖2ν, (2.15)
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and

‖ν−1/2�( f1, f2)‖22 ≤ C‖wq/2,θ,ϑ f1‖2∞‖ f2‖2ν + C‖wq/2,θ,ϑ f2‖2∞‖ f1‖2ν . (2.16)

Proof. The proof of (2.13) is the same as that of Lemma 5 in [27, pp. 730], for
brevity we omit the details. To prove (2.14), we rewrite

�( f1, f2) = 1√
μ
Q(

√
μ f1,

√
μ f2)

=
∫
R3×S2

|v − u|�b0(cos θ)
√

μ(u) f1(u
′) f2(v′)dudω

−
∫
R3×S2

|v − u|�b0(cos θ)
√

μ(u) f1(u) f2(v)dudω

= �gain( f1, f2) − �loss( f1, f2). (2.17)

For the loss term, a simple calculation directly gives

‖wq/2,θ,ϑ�loss( f1, f2)‖∞ ≤C‖wq/2,θ,ϑ f2ν‖∞‖ f1‖∞ ≤C‖wq/2,θ,ϑ f2‖∞‖ f1‖∞.

Next, since |v|2 ≤ |v′|2 + |u′|2, by virtue of (2.3), one has

wq/2,θ,ϑ (v) ≤ wq/2,θ,ϑ (u′)wq/2,θ,ϑ (v′) ≤ 1

2
(wq,θ,ϑ (u′) + wq,θ,ϑ (v′)).

With this, we present the corresponding computation for the gain term as follows:

|wq/2,θ,ϑ�gain( f1, f2)|
≤ 1

2
(wq,θ,ϑ (u′) + wq,θ,ϑ (v′))

∫
R3×S2

|v − u|�b0(cos θ)
√

μ(u)

| f1(u′) f2(v′)|dudω
≤ C

{‖ f1‖∞‖wq,θ,ϑ f2‖∞ + ‖wq,θ,ϑ f1‖∞‖ f2‖∞
}
.

This ends the proof for (2.14). In what follows, we only prove (2.15), since (2.16)
can be obtained in a similar fashion. Recalling (2.17), for the loss term, one has

‖ν−1/2wq/2,θ,ϑ�loss( f1, f2)‖22
=
∫
R3×�

ν−1(v)w2
q/2,θ,ϑ

{∫
R3×S2

|v − u|�b0(cos θ)
√

μ(u) f1(u) f2(v)dudω

}2
dvdx

≤ ‖ f1‖2∞
∫
R3×�

ν−1(v)w2
q/2,θ,ϑ | f2(v)|2

{∫
R3×S2

|v − u|�b0(cos θ)
√

μ(u)dω

}2
dvdx

≤ C‖ f1‖2∞‖wq/2,θ,ϑ f2‖2ν .
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As for the gain term, let us denote

I0 = ‖ν−1/2wq/2,θ,ϑ�gain( f1, f2)‖22
=
∫
R3×�

ν−1(v)w2
q/2,θ,ϑ

{∫
R3×S2

|v − u|�b0(cos θ)
√

μ(u) f1(u
′) f2(v′)duω

}2
dvdx .

The calculation for I0 is a little more delicate; we divide it into the following three
cases:
Case 1, |u| ≥ |v|/2. In this case,μ1/2(u) ≤ μ1/4(u)μ1/16(v). By Hölder’s inequal-
ity and a change of variable (u, v) → (u′, v′), we have

I0 ≤ C
∫
R3×�

ν−1(v)w2
q/2,θ,ϑ (v)

∫
R3

|v − u|�√μ(u) f 21 (u′) f 22 (v′)du

×
∫
R3

|v − u|�√μ(u)dudvdx

≤ C
∫
R3×R3×�

w2
q/2,θ,ϑ (u)w2

q/2,θ,ϑ (v)|v − u|�μ1/16(u)

× μ1/16(v) f 21 (u) f 22 (v)dudvdx

≤ C‖wq/2,θ,ϑ f1‖2∞‖wq/2,θ,ϑ f2‖2ν,
where we also used the fact that max{|v|, |u|} ≤ |u′| + |v′|.
Case 2, |u| ≤ |v|/2 and |v| ≤ 1. In this situation, |u − v| ≥ |v| − |u| ≥ |v|/2
and |u| ≤ 1/2, moreover, |u′| + |v′| ≤ 2(|u| + |v|) ≤ 3|v| ≤ 3, consequently,
when (u, v) ∈ {(u, v)||u| ≥ |v|/2, |v| ≤ 1}, we have, by Hölder’s inequality and a
change of variable (u, v) → (u′, v′), that

I0 ≤ C
∫

{|v|≤1}×�

|v|�
∫

{|u|≤1/2}
|v − u|�μ(u) f 21 (u′) f 22 (v′)dudvdx

≤ C
∫

{|v|≤1,|u|≤1/2}×�

min{|u′|�, |v′|�} f 21 (u′) f 22 (v′)dudvdx

≤ C
∫

{|v|≤3,|u|≤3}×�

min{|u|�, |v|�} f 21 (u) f 22 (v)dudvdx ≤ C‖ f1‖2∞‖ f2‖2ν .

Case 3, |u| ≤ |v|/2 and |v| ≥ 1. One has max{|u′|, |v′|} ≤ 5|v|/2 on this occasion,
hence ν(v) � ν(v′) + ν(u′), moreover, it follows that |u − v| ≥ |v| − |u| ≥
|v|/2 ≥ 1/2. Notice that w2

q/2,θ,ϑ (v) ≤ w2
q/2,θ,ϑ (u′)w2

q/2,θ,ϑ (v′). Apply Hölder’s
inequality and a change of variable (u, v) → (u′, v′) again to obtain

I0 ≤
∫
R3×R3×�

ν−1(v)w2
q/2,θ,ϑ (1 + |v|)2� f 21 (u′) f 22 (v′)dudvdx

≤ C
∫
R3×R3×�

w2
q/2,θ,ϑ (u)w2

q/2,θ,ϑ (v)(ν(v) + ν(u)) f 21 (u) f 22 (v)dudvdx

≤ C‖wq,θ,ϑ f1‖2∞‖wq/2,θ,ϑ f2‖2ν + C‖wq,θ,ϑ f2‖2∞‖wq/2,θ,ϑ f1‖2ν,
where the fact that

∫
R3 w−q/2,θ,ϑdv < +∞ was used.
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Combining all of the estimates above, we see that (2.15) holds true, and this
ends the proof of Lemma 2.3.

Next, we address the following Ukai’s trace theorem whose proof can be found
in Lemma 2.1 of [17, pp. 187]: ��

Lemma 2.4. Let ε > 0, and define the near-grazing set of γ+ or γ− as

γ ε± ≡
{
(x, v) ∈ γ± : |n(x) · v| ≤ ε or |v| ≥ 1

ε
or |v| ≤ ε

}
.

There exists a constant Cε,� > 0 that depends only on ε and � such that

∫ t

s
| f 1γ+\γ ε+(τ )|1dτ

≤ Cε,�

{
|| f (s)||1 +

∫ t

s

[
‖ f (τ )‖1 + ‖{∂t + v · ∇x } f (τ )‖1

]
dτ

}

for any 0 ≤ s ≤ t. ��

The following lemma quoted from [27, pp. 723] is concerned with property of
the kinetic distance function:

Lemma 2.5. Let � be strictly convex defined in (1.8). Define the functional along
the trajectories dX (s)

ds = V (s), dV (s)
ds = 0 in (1.10) as:

α(s) ≡ ξ2(X (s)) + [V (s) · ∇ξ(X (s))]2 − 2{V (s) · ∇2ξ(X (s)) · V (s)}ξ(X (s)).
(2.18)

Let X (s) ∈ �̄ for t1 ≤ s ≤ t2. Then there exists constant Cξ > 0 such that

eCξ (|V (t1)|+1)t1α(t1) ≤ eCξ (|V (t1)|+1)t2α(t2),

e−Cξ (|V (t1)|+1)t1α(t1) ≥ e−Cξ (|V (t1)|+1)t2α(t2).

Finally, we state the following significant lemma which gives a lower bound of
the backward exit time tb(x, v):

Lemma 2.6. [27, pp. 724] Let xi ∈ ∂�, for i = 1, 2, and let (t1, x1, v) and
(t2, x2, v) be connected with the trajectory dX (s)

ds = V (s), dV (s)
ds = 0 which lies

inside �̄. Then there exists a constant Cξ > 0 such that

|t1 − t2| ≥ |n(x1) · v|
Cξ |v|2 . (2.19)
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3. Diffuse Reflection Boundary Value Problem

3.1. L2 Existence and Decay for the Linearized Equation

As mentioned in Section 1, we mainly employ the L2 ∩ L∞ argument to solve
the initial boundary value problem of (1.11), (1.12) and (1.13). To obtain the time
decay rates in L∞ space, an L2− time decay theory must first be established, cf.
[27]. However, one cannot directly obtain the time decay of (1.11), (1.12) and
(1.13) by an L2− energy method, since the positive operator L is degenerated in
the sense that the inner product (L f, f ) has no positive lower bound in the large
velocity domain. To overcome this difficulty, we first construct the global existence
in someweighted L2 space, then tend to deduce the time decay rates in a lower order
weighed energy space via an interpolation technique. We remark that the main idea
used here is similar to treating the Cauchy problem of the Boltzmann equation with
soft potential [42,43]. It should be also pointed out that it is necessary to derive
the L2 time decay rates even only considering the global existence of the initial
boundary value problem of (1.11), (1.12) and (1.13) in the case of soft potential.

Notice that the null space of the linear operator L is generated by {1, v, 1
2 (|v2|−

3)}√μ, so we define

P f =
{
a + b · v + 1

2
(|v2| − 3)c

}√
μ, (t, x, v) ∈ [0,+∞) × � × R

3,

which is called the macroscopic part of f . The microscopic part of f is further
denoted by {I−P} f = f −P f . It is well-known that there exists δ0 > 0 such that

(L f, f ) ≥ δ0‖{I − P} f ‖2ν .
We consider the following initial boundary value problem of the linearized Boltz-
mann equation with soft potential:

∂t f + v · ∇x f + L f = g, f (0) = f0, in (0,+∞) × � × R
3, (3.1)

with

f− = Pγ f, on R+ × γ−, (3.2)

and g is given.
In what follows in this subsection we will prove the following:

Proposition 3.1. Let −3 < � < 0 and (q, θ) ∈ Aq,θ . Assume that for all t > 0,

∫
�×R3

g(t, x, v)
√

μdvdx = 0, Pg = 0. (3.3)

There exists ε0 > such that if

‖wq/2,θ f0‖22 + | f0|22,+ +
∫ t

0

∥∥∥ν−1/2wq/2,θg(s)
∥∥∥2
2
ds ≤ ε20,
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then there exists a unique solution to the problems (3.1) and (3.2) such that for all
t ≥ 0,

∫
�×R3

f (t, x, v)
√

μdxdv = 0, (3.4)

sup
0≤s≤t

‖ f (s)‖22 +
∫ t

0
‖ f (s)‖2νds ≤ C‖ f0‖22 + C

∫ t

0

∥∥∥ν−1/2g(s)
∥∥∥2
2
ds,

and

sup
0≤s≤t

‖wq/2,θ f (s)‖22 +
∫ t

0
‖wq/2,θ f (s)‖2νds

≤ C‖wq/2,θ f0‖22 + C
∫ t

0

∥∥∥ν−1/2wq/2,θg(s)
∥∥∥2
2
ds.

(3.5)

Moreover, let ρ0 = θ
θ−�

. There exists λ1 > 0 that depends on q and ρ0 such that

‖ f (t)‖22 + e−λ1tρ0
∫ t

0
eλ1sρ0 ‖ f (s)‖22ds

� e−λ1tρ0
{
‖wq/2,θ f0‖22 +

∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds

+
∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds

}
.

(3.6)

In order to construct the global existence of (3.1) and (3.2), we first deduce
the global solvability of equation (3.1) with an approximation boundary condition
and then we show that such an approximate solution sequence converges in L2 for
any t ≥ 0. Once the global existence is obtained, the time-decay estimate (3.6)
follows from an L2 energy estimate and an interpolation technique. Along this line,
Proposition 3.1 is an easy consequence of the following two lemmas (the first of
which is concerned with a priori estimates for the macroscopic part of the solution
of (3.1) and (3.2)):

Lemma 3.1. Assume that g satisfies (3.3) and f satisfies (3.1), (3.2) and (3.4).
Then there exists a function G(t) such that, for all t ≥ 0, G(t) � ‖ f (t)‖22 and

‖P f ‖2ν � d

dt
G(t) + ‖g‖22 + ‖{I − P} f ‖2ν + |{1 − Pγ } f |22,+. (3.7)

Proof. The proof of Lemma 3.1 is similar to that of Lemma 6.1 in [17, pp. 221],
and we omit the details for brevity. ��
Lemma 3.2. Assume that g satisfies (3.3). There is a constant ε0 > 0 such that for
any t > 0, if

‖ f0‖22 + | f0|22,+ +
∫ t

0

∥∥∥ν−1/2g(s)
∥∥∥2
2
ds ≤ ε20,



Boundary Value Problem for Boltzmann Equation with Soft Potential 483

then (3.1) and (3.2) admit a strong solution f (t, x, v) in [0,+∞) × � × R
3

satisfying

‖ f (t)‖22 +
∫ t

0
‖ f (s)‖2νds +

∫ t

0
|(I − Pγ ) f (s)|22,+ds

≤ C
∫ t

0
‖ν−1/2g(s)‖22ds + C‖ f0‖22. (3.8)

Proof. We establish a solution of (3.1) and (3.2) via the following approximate
boundary value problem:

∂t f + v · ∇x f + L f = g, f (0, x, v) = f0, (3.9)

with

f− =
(
1 − 1

j

)
Pγ f, j = 2, 3, . . . . (3.10)

The proof is then divided into two steps.

Step 1. Global existence of (3.9) and (3.10).We start with constructing the local ex-
istence of (3.9) and (3.10) through the following sequence of iterating approximate
solutions:

∂t f
�+1 + v · ∇x f

�+1 + ν f �+1 − K f � = g, f �+1(0) = f0, � ≥ 0, (3.11)

with

f �+1− =
(
1 − 1

j

)
Pγ f �, j = 2, 3, . . . , (3.12)

and f 0 ≡ f0. Let us now define

M( f )(t) = ‖ f (t)‖22 +
∫ t

0
| f (s)|22,+ds.

We claim that there exists a small T∗ > 0 such that if
∑

0≤t≤T∗
M( f �)(t) ≤ M1 for

M1 > 0 then
∑

0≤t≤T∗
M( f �+1)(t) ≤ M1. Take an inner product of (3.11) with f �+1

and use Green’s identity as well as Lemma 2.2 to deduce

‖ f �+1(t)‖22 + (1 − ε)

∫ t

0
‖ f �+1(s)‖2ν +

∫ t

0
| f �+1(s)|22,+ds

≤
(
1 − 1

j

)2 ∫ t

0
|Pγ f �|22,−ds + Cε

∫ t

0
‖ f �(s)‖νds

+
∫ t

0
‖ν−1/2g(s)‖22ds + ‖ f0‖22. (3.13)

Since

‖ f0‖22 + | f0|22,+ +
∫ t

0
‖ν−1/2g(s)‖22ds < ε0, |Pγ f �|22,− ≤ | f �|22,+
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and

ν(v) ∼ (1 + |v|2)�/2, −3 < � < 0,

we see that

M( f �+1)(t) ≤ max{1,Cε}tM1 + ε0.

Taking T∗ > 0 suitably small and letting ε0 < M1, one obtains
∑

0≤t≤T∗
M( f �+1)(t)

≤ M1. This completes the proof of the claim.
Next we get from the difference of the equation (3.11) for � + 1 and � that

∂t [ f �+1 − f �] + v · ∇x [ f �+1 − f �] + ν[ f �+1 − f �] = K [ f � − f �−1], � ≥ 1,

with [ f �+1 − f �](0) ≡ 0 and f �+1− − f �− = (1 − 1
j )Pγ [ f � − f �−1]. Performing

similar calculations as to those for obtaining (3.13), one has

‖ f �+1(t) − f �(t)‖2 +
∫ t

0
‖ f �+1(s) − f �(s)‖2ν +

∫ t

0
| f �+1(s) − f �(s)|22,+ds

≤
(
1 − 1

j

)2 ∫ t

0
| f � − f �−1|22,+ + Cε

∫ t

0
‖ f �(s) − f �−1(s)‖2νds,

from which we obtain

sup
0≤t≤T∗

‖ f �+1(t) − f �(t)‖2 +
∫ T∗

0
| f �+1(s) − f �(s)|22,+ds

≤ max

{(
1 − 1

j

)2

, T∗Cε

}

×
{

sup
0≤t≤T∗

‖ f �(t) − f �−1(t)‖22 +
∫ T∗

0
| f � − f �−1|22,+

}

for � ≥ 1. Thus, if T∗Cε < 1, we also show that f �(t) is a Cauchy sequence in L2

for t ∈ [0, T∗] and j ≥ 2. That is, f � → f j and f j is a strong solution of

∂t f + v · ∇x f + L f = g, f (0) = f0, f− =
(
1 − 1

j

)
Pγ f. (3.14)

Furthermore, for any given j ≥ 2, assume that f j is a strong solution of (3.11)
and (3.12). By using Green’s identity and Pg = 0, one then obtains the following
a priori estimate:

‖ f j (t)‖22 + λ

∫ t

0
‖(I − P) f j (s)‖2νds +

∫ t

0
|(1 − Pγ ) f j (s)|22,+ds

+
(
2

j
− 1

j2

)∫ t

0
|Pγ f j (s)|22,+ds ≤

∫ t

0
‖ν−1/2g(s)‖22ds + ‖ f0‖22.

(3.15)
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Then the global existence of (3.9) and (3.10) follow from the standard continuation
argument.

Step 2. For any t > 0, { f j }+∞
j=2 is convergent in L2. Notice that f j enjoys the

bound (3.15), and by taking a weak limit, we obtain a weak solution f to (3.1) and
(3.2). Taking the difference, we further have that

∂t [ f j− f ]+v·∇x [ f j− f ]+L[ f j− f ] = 0, [ f j− f ]− = Pγ [ f j− f ]+ 1

j
Pγ f j ,

(3.16)
with [ f j − f ](0) = 0. Utilizing standard L2 energy estimates as for deriving (3.15),
we obtain, for η > 0,

‖ f j (t) − f (t)‖22 +
∫ t

0
‖{I − P}[ f j (s) − f (s)]‖2νds

+
∫ t

0
|{I − Pγ }[ f j (s) − f (s)]|22,+ds

� η

∫ t

0
|Pγ [ f j (s) − f (s)]|22,+ds + Cη

j2

∫ t

0
|Pγ f j |22,+ds. (3.17)

Since
(
2
j − 1

j2

) ∫ t
0 |Pγ f j (s)|22,+ds is bounded by (3.15), one can see that

Cη

j2

∫ t

0
|Pγ f j |22,+ds → 0, as j → ∞.

To handle the small term η
∫ t
0 |Pγ [ f j (s) − f (s)]|22,+ds, we resort to Ukai’s trace

theorem. We recall the boundary norm
∫ t

0
|Pγ [ f j − f ](s)|22,±

=
∫ t

0

∫
γ±

[∫
{u:n·u>0}

[ f j − f ](s, x, u)
√

μ{n · u}du
]2

μ(v)dγ ds.

Now we split the domain of inner integration as follows:

{u ∈ R
3 : n(x) · u > 0}={u∈R

3 : 0<n(x) · u<ε or |u|>1/ε or |u|<ε}
∪ {u ∈ R

3 : ε ≤ n(x) · u and |u| ≤ 1/ε and |u| ≥ ε}.
The first set’s contribution (the grazing part) of

∫ t
0 |Pγ f j (s)|22,±ds is bounded by

the Hölder inequality:

C

(∫
0<n·u<ε
or|u|>1/ε
or|u|<ε

μ(u){n · u}du
)∫ t

0

∫
∂�

∫
{u:n·u>0}

|[ f j − f ](s)|2{n · u}dSxduds

� ε

∫ t

0

∫
γ+

|[ f j − f ](s)|2dγ ds. (3.18)
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For the second term, we use Lemma 2.4 and (3.16) to bound the second set’s
contribution (the non-grazing part) of

∫ t
0 |Pγ [ f j − f ](s)|22,±ds by

C
∫ t

0
|[ f j − f ](s)1γ+\γ ε+|22ds

� C
∫ t

0
‖[ f j − f ](s)‖22ds + C

∫ t

0
‖∂t [ f j − f ]2 + v · ∇x [ f j − f ]2‖1ds

� C
∫ t

0
‖[ f j − f ](s)‖22ds + C

∫ t

0
|(L[ f j − f ], [ f j − f ])|ds

� C
∫ t

0
‖[ f j − f ](s)‖22ds + C

∫ t

0
‖{I − P}[ f j − f ](s)‖2νds.

(3.19)

From (3.18) and (3.19), we have, on the one hand,

∫ t

0
|Pγ [ f j − f ](s)|22,±ds

≤ ε

∫ t

0

∫
γ+

|[ f j − f ](s)|2dγ ds

+Cε

{∫ t

0

[
‖[ f j − f ](s)‖22 + ‖(I − P)[ f j − f ](s)‖2ν

]
ds

}
. (3.20)

On the other hand, we get, by integrating (3.17) from 0 to t ,

∫ t

0
||P[ f j − f ](s)||22ds

� ηCt

∫ t

0
|Pγ [ f j (s) − f (s)]|22,+ds + CtCη

j2

∫ t

0
|Pγ f j |22,+ds. (3.21)

Letting ε > 0 and η > 0 be suitably small and taking an appropriate linear combi-
nation of (3.17), (3.20) and (3.21), we improve (3.17) as follows:

‖ f j (t) − f (t)‖22 +
∫ t

0
‖ f j (s) − f (s)‖2νds +

∫ t

0
| f j (s) − f (s)|22ds

� Ct

j2

∫ t

0
|Pγ f j |2ds → 0,

which implies f j → f strongly in L2 for any given t ≥ 0. Moreover, we can also
show that such a solution is unique by L2 energy estimates similar to these used
above. As a consequence, we construct f (t, x, v) as an L2 strong solution to (3.1)
and (3.2) for any t ≥ 0. Finally, by taking the inner product of (3.1) with f over
� × R

3 and applying Green’s identity again, one has

d

dt
‖ f ‖22 + λ‖{I − P} f ‖2ν + |(I − Pγ ) f |22,+ ≤ ‖ν−1/2g‖2. (3.22)
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Letting 0 < κ1 � 1, taking the summation of (3.22) and κ1 × (3.7), we obtain

d

dt

{
‖ f ‖22 − κ1G(t)

}
+ λ‖ f ‖2ν + λ|(I − Pγ ) f |22,+ ≤ ‖ν−1/2g‖2. (3.23)

Then (3.8) follows from (3.23). This completes the proof of Lemma 3.2. ��
With Lemmas 3.2 and 3.1 in hand, we now turn to complete

The proof of Proposition 3.1. Let h = wq/2,θ f , then having (3.1) and (3.2) is
equivalent to

∂t h + v · ∇h + νh − wq/2,θK

(
h

wq/2,θ

)
= wq/2,θg, h(0, x, v)

= h0(x, v) = wq/2,θ f0(x, v), (3.24)

and

h− = wq/2,θ
√

μ

∫
V(x)

h(t, x, v′) 1

wq/2,θ (v′)√μ(v′)
dσ

def= Pw
γ h, (3.25)

where

V(x) = {v′ ∈ R
3, v′ · n(x) > 0}, dσ = μ(v′)|n(x) · v′|dv′.

Proceeding similarly to obtain the global existence of (3.1) and (3.2), one can show
that (3.24) and (3.25) possess a unique solution h(t, x, v). We now turn to prove
(3.5) and (3.6). Taking the inner product of (3.24) with h over�×R

3 and applying
Lemma 2.2, one has

d

dt
‖h‖22+|{I−Pw

γ }h|22,++‖h‖2ν ≤ η‖h‖2ν+Cη‖ f ‖2ν+C‖ν−1/2wq/2,θg‖22, (3.26)

where we have also used the fact that |Pw
γ h|22,+ = |Pw

γ h|22,−. Integrating (3.26)
with respect to the time variable over [0, t] and combining it with (3.8), we obtain

‖h(t)‖22 +
∫ t

0
|{I − Pw

γ }h|22,+dt +
∫ t

0
‖h‖2νds + ‖ f (t)‖22

+
∫ t

0
‖ f (s)‖2νds +

∫ t

0
|(I − Pγ ) f (s)|22,+ds

≤ C‖wq/2,θ f0‖22 + C
∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds,

which implies (3.5). It remains now to prove the time decay (3.6). Take constants
λ1 > 0 and 0 < ρ0 < 1, whose specific values will be determined later on,
multiply eλ1tρ0 to (3.23) and integrate the resulting inequality with respect to the
time variable over [0, t] to obtain

eλ1tρ ‖ f ‖22 +
∫ t

0
eλ1sρ ‖ f ‖2νds +

∫ t

0
eλ1sρ0 |(I − Pγ ) f |22,+ds

≤ C‖ f0‖22 + Cλ1ρ0

∫ t

0
sρ−1eλ1sρ0 ‖ f ‖22ds + C

∫ t

0
eλ1sρ0 ‖ν−1/2g‖22ds.

(3.27)
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To take care of the delicate term sρ0−1eλ1sρ0 ‖ f ‖22, we decompose the v integration
domain into two parts:

E : {v|sρ−1 ≤ κ0(1 + |v|2)�/2}, Ec : {v|sρ0−1 ≥ κ0(1 + |v|2)�/2},
where κ0 > 0 and is small enough. On E , it is straightforward to see that

sρ0−1eλ1sρ0 ‖ f 1E‖22 ≤ C�κ0e
λ1sρ0 ‖ f ‖2ν, (3.28)

where

1E =
{
1, v ∈ E,

0, v /∈ E,

and C� is determined by (1.16). While on Ec, notice that 0 < ρ0 < 1, one obtains

2λ1s
ρ0 ≤ 2λ1κ

ρ0
ρ0−1

0 (1 + |v|2)
�ρ0

2(ρ0−1) .

With this, we further have, by letting λ1 = q
8κ

ρ0
1−ρ0
0 and ρ0 = θ

θ−�
,

∫ t

0
sρ0−1eλ1sρ0 ‖ f 1Ec‖22ds =

∫ t

0
sρ0−1e−λ1sρ0 e2λ1s

ρ0 ‖ f 1Ec‖22ds

≤ Cθ

∫ t

0
sρ0−1e−λ1sρ0 ‖wq/2,θ f ‖22ds

≤ C‖wq/2,θ f0‖22 + C
∫ t

0
‖wq/2,θ ν

−1/2g(s)‖22ds.
(3.29)

Here we have used (3.5) to derive the last inequality. Plugging (3.28) and (3.29)
into (3.27) and dividing the resulting inequality by eλ1tρ0 , we then show that (3.6)
holds true. This concludes the proof of Proposition 3.1. ��

3.2. L∞ Existence for the Linearized Equation

In this subsection, we still consider the following initial boundary value prob-
lem:

∂t f + v · ∇x f + L f = g, f (0) = f0, in (0,+∞) × � × R
3, (3.30)

with
f− = Pγ f, on R+ × γ−, (3.31)

where g is given. Our purpose is to establish the global existence for (3.30) and
(3.31) in a weighted L∞ space. A key point is that we develop some new iterated
integral estimates so that one can construct the L∞ existence without using the
time-decay of the solution in the L∞−norm. We stress that it is very difficult to
obtain the global existence and the time-decay of the solution in L∞ space at the
same time due to the fact that the collision frequency ν has zero lower bound. The
main result of this subsection is the following:
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Proposition 3.2. Let (q, θ) ∈ Aq,θ , and assume that (3.3) holds true. Then the
initial boundary value problem (3.1) and (3.2) admits a unique solution satisfying

‖wq,θ f ‖∞ + |wq,θ f |∞ � ‖wq,θ f0‖∞ + sup
0≤s≤t

‖ν−1wq,θg(s)‖∞

+
√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds

+
√∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds. (3.32)

Our proof for Proposition 3.2 relies heavily upon the estimates for the iterated
integral defined on stochastic cycles. The stochastic cycles are defined as follows:

Definition 3.1 (Stochastic Cycles). Fixing any point (t, x, v) with (x, v) /∈ γ0, let
(t0, x0, v0) = (t, x, v). For vk+1such that vk+1 · n(xk+1) > 0, define the (k + 1)-
component of the back-time cycle as

(tk+1, xk+1, vk+1) = (tk − tb(xk, vk), xb(xk, vk), vk+1). (3.33)

Set

Xcl(s; t, x, v) =
∑
k

1[tk+1,tk )(s){xk + (s − tk)vk},

Vcl(s; t, x, v) =
∑
k

1[tk+1,tk )(s)vk .

Define Vk+1 = {v ∈ R
3 | v · n(xk+1) > 0}, and let the iterated integral for k ≥ 2

be defined as
∫

�k−1
j=1V j

�k−1
j=1dσ j ≡

∫
V1

. . .

{∫
Vk−1

dσk−1

}
dσ1,

where dσ j = μ(v)(n(x j ) · v)dv is a probability measure.

Lemma 3.3. Let T0 > 0 and be large enough, denoteα(t) = max{t, T0}; then there
exist constants C1,C2 > 0 independent of α(t), such that for k = C1[α(t)]5/4, and
(t, x, v) ∈ [0,∞) × � × R

3,

∫
�k−1

j=1V j

1{tk (t,x,v,v1,v2,...,vk−1)>0}�k−1
j=1dσ j ≤

{
1

2

}C2[α(t)]5/4
. (3.34)

We also have, for (q, θ) ∈ Aq,θ , that there exist constants C3, C4 > 0 independent
of k such that

∫
�k−1

j=1V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
d�w

l (s)ds ≤ C3, (3.35)
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and

∫
�k−1

j=1V j

k−1∑
l=1

1{tl+1>0}
∫ tl

tl+1

d�w
l (s)ds ≤ C4, (3.36)

where

d�w
l (s) =

{
�k−1

j=l+1dσ j

}
× {eν(vl )(s−tl )w̃q,θ (vl)dσl} × �l−1

j=1{eν(v j )(t j+1−t j )dσ j },
(3.37)

and w̃q,θ = 1
wq,θ

√
μ
.

Proof. If 0 < t ≤ T0, then α(t) = T0. The proof of (3.34) has already been given
by Lemma 23 in [27, pp. 781]. For the case that T0 < t < +∞, setting T0 = t in
Lemma 23 of [27, pp. 781] and performing the same computations as its proof, one
sees that (3.34) is also true for α(t) = t . In what follows, we mainly prove (3.36);
the proof for (3.35) will only be briefly sketched. For any k > 0, we first split the
the left hand side of (3.36) as

∫
�k−1

j=1V j

k−1∑
l=1

1{tl+1>0}
∫ tl

tl+1

w̃q,θ (vl)ν
−1(vl){�k−1

j=l+1dσ j }{eν(vl )(s−tl )ν(vl)dσl}

× �l−1
j=1{eν(v j )(t j+1−t j )dσ j }ds

=
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

k−1∑
l=1

1{tl+1>0}
∫ tl

tl+1

w̃q,θ (vl)ν
−1(vl){�k−1

j=l+1dσ j }

× {eν(vl )(s−tl )ν(vl)dσl}�l−1
j=1{eν(v j )(t j+1−t j )dσ j }ds

+
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}>k

k−1∑
l=1

1{tl+1>0}
∫ tl

tl+1

w̃q,θ (vl)ν
−1(vl){�k−1

j=l+1dσ j }

× {eν(vl )(s−tl )ν(vl)dσl}�l−1
j=1{eν(v j )(t j+1−t j )dσ j }ds = K1 + K2.

(3.38)

For K1, denote max{|v1|, |v2|, . . . , |vk−1|} = |vm | , one has

K1 ≤ Cq,θ

∫
�k−1

j=1V j

k−1∑
l=1

1{tl+1>0}
∫ tl

tl+1

eν(vm )(s−t1)ν(vm)dsw̃q,θ (vm)ν−1

(vm)�k−1
j=1dσ j

≤ Cq,θ

∫
�k−1

j=1V j

∫ t1

tk
eν(vm )(s−t1)ν(vm)dsw̃q,θ (vm)ν−1(vm)�k−1

j=1dσ j

≤ Cq,θ√
2π

∫
n(xm)·vm>0

(n(xm) · vm)e− 1
4 |vm |2− q

4 |vm |θ ν−1(vm)dvm

≤ Cq,θ√
2π

∫
um1>0

um1e
− 1

4 |um |2dum ≤ Cq,θ .
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Here we have used the key observation

k−1∑
l=1

∫ tl

tl+1

eν(vm )(s−t1)ν(vm)ds ≤
∫ t1

tk
eν(vm )(s−t1)ν(vm)ds ≤ 2.

As to K2, without loss of generality, we may assume that |vi | > k for some
i ∈ {1, 2, . . . , k − 1}, then

K2 ≤ C
k−1∑
l=1

∫
�k−1

j=1V j

w̃q,θ (vl)ν
−1(vl)�

k−1
j=1dσ j

≤ C
∫

�i−1
j=1V j

�i−1
j=1dσ j

∫
n(xi )·vi>0

|vi |>k

(n(xi ) · vi )e
− 1

4 |vi |2− q
4 |vi |θ ν−1(vi )dvi

+C
i−1∑
l=1

∫
�l−1

j=1V j

�l−1
j=1dσ j

∫
n(xl )·vl>0

(n(xl) · vl)e
− 1

4 |vl |2− q
4 |vl |θ ν−1(vl)dvl

×
∫

�i−1
j=l+1V j

�i−1
j=l+1dσ j

∫
n(xi )·vi>0

|vi |>k

e− |vi |2
2 (n(xi ) · vi )dvi

+C
k−1∑

l=i+1

∫
�i−1

j=1V j

�i−1
j=1dσ j

∫
n(xi )·vi>0

|vi |>k

e− |vi |2
2 (n(xi ) · vi )dvi

×
∫

�l−1
j=i+1V j

�l−1
j=i+1dσ j

∫
n(xl )·vl>0

(n(xl) · vl)e
− 1

4 |vl |2− q
4 |vl |θ ν−1(vl)dvl

≤ Cq,θ (k − 1)e− k2
8 ≤ Cq,θ .

Substituting the above estimates for K1 and K2 into (3.38), we see that (3.36) is
true.

The proof for (3.35) is very similar to that of (3.36), the only difference being
the following:

∫
�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
w̃q,θ (vl)ν

−1(vl){�k−1
j=l+1dσ j }

× {eν(vl )(s−tl )ν(vl)dσl}�l−1
j=1{eν(v j )(t j+1−t j )dσ j }ds

≤
∫

�k−1
j=1V j

k−1∑
l=1

1{tl+1≤0<tl }w̃q,θ (vm)ν−1(vm)�k−1
j=1dσ j

≤
∫

�k−1
j=1V j

w̃q,θ (vm)ν−1(vm)�k−1
j=1dσ j ≤ Cq,θ ;

here the second inequality follows due to
∑k−1

l=1 1{tl+1≤0<tl } = 1{tl+1≤0}. This fin-
ishes the proof of Lemma 3.3. ��
Remark 3.1. Since α(t) ≤ T0, the upper bound on the right hand side of (3.34)

can be relaxed to
{ 1
2

}C2T
5/4
0 .
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Prior to proving Proposition 3.2, we first show the following global solvability
of (3.1) and (3.2) in the L∞ space without weight:

Lemma 3.4. There exists ε0 > 0 such that if Pg = 0 and

‖ f0‖L∞(�∪γ+) + ‖wq/2,θ f0‖2 + sup
0≤s≤t

‖ν−1g(s)‖∞

+
√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds +

√∫ t

0
‖ν−1/2wq/2,θg(s)‖2 ≤ ε0,

then (3.1) and (3.2) admit a unique solution f (t, x, v) for which it holds that

sup
0≤s≤t

‖ f ‖∞ + | f |∞ � ‖ f0‖L∞(�∪γ+) + ‖wq/2,θ f0‖2 + sup
0≤s≤t

‖ν−1g(s)‖∞

+
√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds

+
√∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds. (3.39)

Proof. As in the proof of Lemma 3.2, we use the approximate form

{
∂t f + v · ∇x f + L f = g, f (0, x, v) = f0,

f− =
(
1 − 1

j

)
Pγ f, j = 2, 3, . . .

(3.40)

to construct the global existence of (3.1) and (3.2), while the global solution (de-
noted by f j ) of (3.40) is further established by the following iteration scheme:

{
∂t f �+1 + v · ∇x f �+1 + ν f �+1 − K f � = g, f �+1(0) = f0, � ≥ 0, f 0 ≡ f0,

f �+1− =
(
1 − 1

j

)
Pγ f �, j = 2, 3, . . . .

To do this, performing a similar calculation as for deriving (199) in Lemma 24 of
[27, pp. 783], we find

| f �+1(t, x, v)| ≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K f �(s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
I1

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|g(s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
I3

+ 1t1≤0e
−ν(v)t | f �+1(0, x − tv, v)|

+ 1t1>0

(
1 − 1

j

)
e−ν(v)(t−t1)

∫
V1

| f �|dσ1,
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where the last line follows from the boundary condition. A direct calculation leads
us to

‖ f �+1‖L∞(�∪γ+) ≤ tC‖ f �‖∞+
(
1 − 1

j

)
| f �|∞,++‖ f0‖∞+ sup

0≤s≤t
‖ν−1g(s)‖∞

≤ tC‖ f �‖∞ +
(
1 − 1

j

)
| f �|∞,+ + ε0.

With this, one can show that there exists T ∗∗ > 0 (CT ∗∗ < 1) such that if
sup

0≤t≤T ∗∗
‖ f �‖L∞(�∪γ+) ≤ 2ε0, then

sup
0≤t≤T ∗∗

‖ f �+1‖L∞(�∪γ+) ≤ 2ε0,

thus {‖ f �‖L∞(�∪γ+)} is uniformly bounded with respect to � in a short time interval
[0, T ∗∗]. In fact, we can further prove that { f �} is also a Cauchy sequence in
L∞(� ∪ γ+), provided that CT ∗∗ < 1, thus we obtain a local solution f j for
(3.14). To construct the global existence, it suffices to obtain the following a priori
estimates:

sup
0≤s≤t

{‖ f j‖∞ + | f j |∞,+}

� ‖ f0‖L∞(�∪γ+) + sup
0≤s≤t

‖ν−1g(s)‖∞ + ‖wq/2,θ f0‖2

+
√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds +

√∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds, (3.41)

for all j ≥ 2. In fact, (3.41) follows from a tedious calculation for the following
inequality:

| f j (t, x, v)|≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K 1−χ f j (s, x − (t − s)v, v)|ds

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K χ f j (s, x − (t − s)v, v)|ds

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|g(s, x − (t − s)v, v)|ds

+
5∑

n=1

In, (3.42)

with

I1 = 1t1≤0e
−ν(v)t | f (0, x − tv, v)|

+e−ν(v)(t−t1)
∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }| f (0, xl − tlvl , vl)|d�l(0),
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I2 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

1{tl+1≤0<tl }
k−1∑
l=1

∫ tl

0

×|[K 1−χ f j ](s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|[K 1−χ f j ](s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

I3 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

1{tl+1≤0<tl }
k−1∑
l=1

∫ tl

0

×|[K χ f j ](s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|[K χ f j ](s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

I4 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
|g(s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|g(s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

I5 = e−ν(v)(t−t1)√μ

∫
∏k−1

j=1 V j

1{0<tk }| f j (tk, xk, vk−1)|d�k−1(tk), k ≥ 2,

and

d�l(s) = {�k−1
j=l+1dσ j } × {eν(vl )(s−tl )μ−1/2(vl)dσl} × �l−1

j=1{eν(v j )(t j+1−t j )dσ j }.
(3.43)

We point out that (3.42) is deduced from (3.14) by means of a similar argument
as for obtaining (199) in [27, pp. 783]. The estimates for the corresponding terms
on the right hand side of (3.42) are very similar to that of In (1 ≤ n ≤ 8) in
(3.54). To avoid needless repetition, we are not going to detail the computations
here.When (3.41) is derived, the global existence of (3.11) and (3.12) follow from a
standard continuation argument. Notice that (3.41) is unform in j , and that { f j }∞j=1
possesses (up to a subsequence) a weak−∗ limit f which satisfies (3.1) and (3.2)
in the weak sense. Again, by taking a difference, one has

{
∂t [ f j − f ] + v · ∇x [ f j − f ] + L[ f j − f ] = 0, [ f j − f ](0) = 0,

[ f j − f ]− = Pγ [ f j − f ] + 1
j Pγ f j ,
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from which we have by an argument similar to that for obtaining (3.42)

|[ f j − f ](t, x, v)|
≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K 1−χ [ f j − f ](s, x − (t − s)v, v)|ds

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K χ [ f j − f ](s, x − (t − s)v, v)|ds

+
9∑

n=6

In,

(3.44)

with

I6 = 1

j
1t1>0e

−ν(v)(t−t1)|(Pγ f j )(t1, x1, v)|

+1

j
e−ν(v)(t−t1)√μ

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1>0}|(Pγ f j )(tl+1, xl+1, vl)|d�l(tl+1),

I7 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }

×
∫ tl

0
|[K 1−χ [ f j − f ]](s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|[K 1−χ [ f j − f ]]

(s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

I8 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }

×
∫ tl

0
|[K χ [ f j − f ]](s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|[K χ [ f j − f ]]

(s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

I9 = e−ν(v)(t−t1)√μ

∫
∏k−1

j=1 V j

1{0<tk }|[ f j − f ](tk, xk, vk−1)|d�k−1(tk), k ≥ 2.

Comparing (3.44) with (3.42), one obtains

sup
0≤s≤t

{‖[ f j − f ]‖∞(s) + |[ f j − f ]|∞,+(s)} � C sup
0≤s≤t

|I6|. (3.45)
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On the other hand, from Lemma 3.3, it follows that

|I6| ≤ C

j
|Pγ f j |∞,− ≤ C

j
| f j |∞,+. (3.46)

Then, (3.45) and (3.46) lead us to

sup
0≤s≤t

{‖[ f j − f ](s)∞ + |[ f j − f ](s)|∞,+} � C

j
sup

0≤s≤t
| f j |∞,+,

from which, along with the bound (3.41), we see that f j converges to f strongly
in L∞ and that f satisfies (3.39), and this completes the proof of Lemma 3.4. ��

With Lemma 3.4 in hand, we are now ready to tackle

The proof of Proposition 3.2. Similar to the analysis in Section 3.1, denote

h� = wq,θ f
�, � ≥ 0, and Kw(·) = wq,θK

( ·
wq,θ

)
,

where f � is determined by (3.11) and (3.12). The solution h j (t, x, v) = wq,θ f j

of the problem

∂t h + v · ∇xh + νh − Kwh = wq,θg, h(0, x, v) = h0(x, v) = wq,θ f0(x, v),

(3.47)

and

h− = 1 − 1
j

w̃q,θ

∫
V(x)

h(t, x, v′)w̃q,θ (v
′)dσ (3.48)

will be constructed with the help of an abstract iteration scheme defined in the
following way:{

∂t h�+1 + v · ∇xh�+1 + νh�+1 − Kwh� = wq,θg,

h�+1(0, x, v) = h�+1
0 (x, v) = wq,θ f0(x, v), � ≥ 0,

(3.49)

with h0 = h0 = wq,θ f0(x, v) and

h�+1− = 1 − 1
j

w̃q,θ

∫
V(x)

h�(t, x, v′)w̃q,θ (v
′)dσ. (3.50)

From (3.49) and (3.50), it is straightforward to check that

|h�+1(t, x, v)| ≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|Kwh

�(s, x − (t − s)v, v)|ds

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|wq,θg(s, x − (t − s)v, v)|ds

+ 1t1≤0e
−ν(v)t |h�+1(0, x − tv, v)|

+ 1t1>0

(
1 − 1

j

)
e−ν(v)(t−t1)

w̃q,θ (v)

∫
V1

|h�(t1, x1, v1)|w̃q,θ (v1)dσ1.

(3.51)
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Since 1
w̃q,θ (v)

≤ Cq,θ , and
∫
n·v>0

√
μ(n ·v)dv < ∞,we get from (3.51) andLemma

2.2 that

‖h�+1(t)‖∞ ≤ Ct‖h�(t, x, v)‖∞ + C‖h0‖∞ + C sup
0≤s≤t

‖ν−1wq,θg(s)‖∞

+ Cq,θ max
�

sup
0≤s≤t

| f �|∞,+.

(3.52)

Recalling Lemma 3.4, we have shown that f � → f j and f j bears the bound (3.41),
therefore max

�
sup

0≤s≤t
| f �|∞,+ < ∞. From this and (3.52), for any given j ≥ 2, the

existence of a local solution h j to (3.47) and (3.48) is guaranteed by an argument
similar to the proof of Lemma 3.4.

Toobtain the global existence of (3.47) and (3.48), a central part of the deduction
is the following a priori estimate:

sup
0≤s≤t

‖h j (s)‖∞ ≤ C‖h0‖∞ + C sup
0≤s≤t

‖ν−1wq,θg(s)‖∞ + C‖wq/2,θ f0‖2

+ C

√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds

+ C

√∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds.

(3.53)

Once again using (3.47) and (3.48), we proceed as for deducing (199) in [27, pp.
783] to obtain

|h j (t, x, v)| ≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K 1−χ

w h j (s, x − (t − s)v, v)|ds
︸ ︷︷ ︸

I1

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K χ

wh
j (s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
I2

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|wq,θg(s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
I3

+
8∑

n=4

In,

(3.54)
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with

I4 = 1t1≤0e
−ν(v)t |h(0, x − tv, v)|

+e−ν(v)(t−t1)

w̃q,θ (v)

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }|h(0, xl − tlvl , vl)|d�w
l (0),

I5 = e−ν(v)(t−t1)

w̃q,θ (v)

{∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

×|[K 1−χ
w h j ](s, xl − (tl − s)vl , vl)|d�w

l (s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|[K 1−χ
w h j ](s, xl − (tl − s)vl , vl)|d�w

l (s)ds

}
,

I6 = e−ν(v)(t−t1)

w̃q,θ (v)

{∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

×|[K χ
wh

j ](s, xl − (tl − s)vl , vl)|d�w
l (s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|[K χ
wh

j ](s, xl − (tl − s)vl , vl)|d�w
l (s)ds

}
,

I7 = e−ν(v)(t−t1)

w̃q,θ (v)

{∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

×|wq,θg(s, xl − (tl − s)vl , vl)|d�w
l (s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

|wq,θg(s, xl − (tl − s)vl , vl)|d�w
l (s)ds

}
,

I8 = e−ν(v)(t−t1)

w̃q,θ (v)

∫
∏k−1

j=1 V j

1{0<tk }|h j (tk, xk, vk−1)|d�w
k−1(tk), k ≥ 2,

where d�w
l (s) is given by (3.37). The main difference between this proof and that

of Lemma 3.4 is that we now have an additional velocity weightwq,θ . We now turn
to compute In (1 ≤ n ≤ 8) in (3.54) term by term. Estimates for I1 and I5.Notice
that

∫ t

0
e−ν(v)(t−s)ν(v)ds < +∞. (3.55)

From Lemma 2.2, it follows that

I1 ≤ Cε�+3 sup
0≤s≤t

‖h j (s)‖∞.
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Since w̃−1
q,θ (v) ≤ Cq,θ , Lemma 2.2 and (3.35) imply that the first term in I5 can be

bounded by

Cq,θ ε
�+3

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

∥∥∥h j (s)
∥∥∥∞ d�l(s)ds

≤ Cq,θ ε
�+3 sup

0≤s≤t

∥∥∥h j (s)
∥∥∥∞ .

As for the second term in I5, by Lemma 2.2 and (3.36), we get the upper bound

Cq,θ ε
�+3

∫
∏k−1

j=1 V j

k−1∑
l=1

1{0<tl+1}
∫ tl

tl+1

∥∥∥h j (s)
∥∥∥∞ d�l(s)ds

≤ Cq,θ ε
�+3 sup

0≤s≤t

∥∥∥h j (s)
∥∥∥∞ .

Estimates for I3 and I7. From (3.55), it is straightforward to check that

I3 ≤ C sup
0≤s≤t

∥∥∥ν−1(v)wq,θg(s)
∥∥∥∞ .

In view of (3.35), one sees that the first term in I7 can be dominated by

Cq,θ

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

∥∥wq,θg(s)
∥∥∞ d�l(s)ds

≤ Cq,θ sup
0≤s≤t

∥∥wq,θg(s)
∥∥∞ . (3.56)

Thanks to (3.55) and (3.35), we bound the second term in I7 by

Cq,θ

∫
∏k−1

j=1 V j

1{0<tl+1}
∫ tl

tl+1

∥∥wq,θg(s)
∥∥∞ d�l(s)ds ≤ Cq,θ sup

0≤s≤t

∥∥wq,θg(s)
∥∥∞ .

Estimates for I4. In a manner similar to that for obtaining (3.56), we have

I4 ≤ ‖h(0)‖∞ + Cq,θ‖h(0)‖∞
∫ k−1∑

l=1

1{tl+1≤0<tl }d�l(0) ≤ Cq,θ‖h(0)‖∞.

Estimates for I8. Since
∫
Vk−1

w̃q,θ (vk−1)dσk−1

≤ 1√
2π

∫
n(xk−1)·vk−1>0

(n(xk−1) · vk−1)e
− 1

4 |vk−1|2− q
4 |vk−1|θ dvk−1 ≤ Cq,θ ,
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by applying (3.34) in Lemma 3.3, we have

I8 ≤ Cq,θ

∫
∏k−2

j=1 V j

1{0<tk−1}�k−2
j=1dσ j sup

0≤s≤t
‖h j (s)‖∞

≤ Cq,θ

{
1

2

}C2T
5/4
0

sup
0≤s≤t

‖h(s)‖∞.

Wecannot obtain the desired estimates for I2 and I6 for the time being, and they
will be treated by using iteration (3.54) for h j again. To illustrate this more clearly,
we first combine the above estimates for I1, I3, I4, I5, I7 and I8 to conclude that

|h j (t, x, v)|≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K χ

wh
j (s, x − (t − s)v, v)|ds

+ e−ν(v)(t−t1)

w̃q,θ (v)
×
∫
∏k−1

j=1 V j

k−1∑
l=1

{∫ tl

0
1{tl+1≤0<tl }|K χ

wh
j (s, Xcl(s), vl)|

+
∫ tl

tl+1

1{0<tl+1}|K χ
wh

j (s, Xcl(s), vl)|
}
d�l(s)ds + A1(t)

= I2 + I6 + A1(t), (3.57)

where A1(t) denotes

A1(t) = Cq,θ sup
0≤s≤t

∥∥∥ν−1wq,θg(s)
∥∥∥∞ + Cq,θ‖h(0)‖∞

+ Cq,θ

(
1

2

)C2T
5/4
0

sup
0≤s≤t

‖h j (s)‖∞ + Cq,θ ε
3+� sup

0≤s≤t

∥∥∥h j (s)
∥∥∥∞ .

Recall the back-time cycles: Xcl(s) = ∑
l
1[tl+1,tl )(s){xl−(tl−s)vl}.Let (t ′0, x ′

0, v
′
0)

= (s, Xcl(s), v′), for v′
l ′+1 ∈ V ′

l ′+1 = {v′
l ′+1 · n(x ′

l ′+1) > 0}; we define a new back-
time cycle as

(t ′l ′+1, x
′
l ′+1, v

′
l ′+1) = (t ′l ′ − tb(x

′
l ′ , v

′
l ′), xb(x

′
l ′ , v

′
l ′), v

′
l ′+1).

We now iterate (3.57) to get the representation for K χ
wh j (s, Xcl(s), vl) as

K χ
wh

j (s, Xcl(s), vl)

≤
∫
R3

kχ
w(vl , v

′)|h j (s, Xcl(s), v
′)|dv′

≤
∫∫ {

1t ′1≤0

∫ s

0
+1t ′1>0

∫ s

t ′1

}
e−ν(v′)(s−s1)kχ

w(vl , v
′)kχ

w(v′, v′′)

× |h j (s1, Xcl(s) − (s − s1)v
′, v′′)|ds1dv′dv′′
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+
∫∫

dv′dv′′
∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)

w̃q,θ (v′)

×
k−1∑
l ′=1

∫ t ′
l′

0
ds11{t ′

l′+1
≤0<t ′

l′ }k
χ
w(vl , v

′)

× kχ
w(v′

l ′ , v
′′)|h j (s1,x

′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�w
l ′ (s1)

+
∫∫

dv′dv′′
∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)

w̃q,θ (v′)

×
k−1∑
l ′=1

∫ t ′
l′

t ′
l′+1

ds11{t ′
l′+1

>0}kχ
w(vl , v

′)

× kχ
w(v′

l ′ , v
′′)|h j (s1, x

′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�w
l ′ (s1)

+
∫
R3

kχ
w(vl , v

′)dv′A1(s) =
4∑

n=1

Jn, (3.58)

where kχ
w(·) = wq,θkχ ( ·

wq,θ
) and Jn (1 ≤ n ≤ 4) denote the corresponding four

terms on the right hand side of the last inequality.
In what follows, we only give an explicit computation for the delicate term I6;

the appropriate estimates for I2 are similar and much easier and will be omitted for
the sake of brevity.
Estimates for I6. Substituting (3.58) into I6, one has

I6 ≤ Cq,θ

∫
∏k−1

j=1 V j

k−1∑
l=1

{
1{tl+1≤0<tl }

∫ tl

0
+1{0<tl+1}

∫ tl

tl+1

} 4∑
n=1

Jn d�
w
l (s)ds.

(3.59)

Continuing, we first consider the simpler terms involving A1(s) in I6, that is, the
terms containing J4. Since

∫
kχ

w(vl , v
′)dv′ < ∞, the summationof all contributions

from A1 lead to the bound

∫
∏k−1

j=1 V j

{
k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
A1(s) + 1{0<tl }

∫ tl

tl+1

A1(s)

}
d�w

l ds ≤ CA1(t),

according to Lemma 3.3.
Next, we only compute the terms containing J2 and J3, because the estimates

for the terms involving J1 are similar and easier. Let us first show that there exists
a constant N > 0 such that

∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl } J3 d�w

l (s)ds

=
∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

∫∫
dv′dv′′
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×
∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)

w̃q,θ (v′)

k−1∑
l ′=1

∫ t ′
l′

t ′
l′+1

1{t ′
l′+1

>0}

× kχ
w(vl , v

′)kχ
w(v′

l ′ , v
′′)|h j (s1,x

′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�w
l ′ (s1)ds1d�

w
l (s)ds

≤ Cq,θ

(
1

T 5/4
0

+ 1

N

)
sup

0≤s≤t
‖h j (s)‖∞ + CN sup

0≤s≤t1

{
e

λ0
2 sρ0

∥∥∥∥ h j (s)

wq,θ (v)

∥∥∥∥
2

}
.

(3.60)

To prove (3.60), we decompose the velocity-time integration into several regions
and treat them independently.Recalling that {(t ′l ′ , x ′

l ′ , v
′
l ′)}kl ′=1 start from (s, Xcl, v

′),
in order to avoid confusion, let us denote

k(s) = k = C ′
1[α(s)]5/4. (3.61)

For any 1 ≤ l ′ ≤ k − 1, we consider the following splitting:

∫ t ′
l′

tl′+1

=
∫ t ′

l′− 1
k2(s)

tl′+1

+
∫ t ′

l′

t ′
l′− 1

k2(s)

,

and treat the second integral first, specifically, we intend to obtain

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

∫∫
dv′dv′′

∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)

w̃q,θ (v′)

k−1∑
l ′=1

∫ t ′
l′

t ′
l′− 1

k2(s)

× 1{t ′
l′+1

>0}kχ
w(vl , v

′)kχ
w(v′

l ′ , v
′′)|h j (s1,x

′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|
× d�w

l ′ (s1)ds1d�
w
l (s)ds

≤Cq,θ

T 5/4
0

sup
0≤s≤t

‖h j (s)‖L∞ .

(3.62)

Indeed, since t ′l ′ − s1 ≤ 1/k2(s), and k(s) ≥ C ′
1T

5/4
0 , it follows from Lemma 2.2

and (3.36) that the right hand side of (3.62) is bounded by

Cq,θ

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
d�w

l (s)
1

k2(s)

× sup
0≤s1≤s

∫
∏k−1

j=1 V ′
j

k−1∑
l ′=1

1{t ′
l′+1

>0}d�w
l ′ (s1)ds sup

0≤s1≤t1
‖h j (s1)‖L∞

≤ Cq,θ

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
d�w

l (s)
1

k(s)
ds sup

0≤s1≤t1
‖h j (s1)‖L∞

≤ Cq,θ

T 5/4
0

sup
0≤s≤t1

‖h j (s)‖∞,
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where we also used the following significant estimate:

sup
0≤s1≤s

∫
∏k−1

j=1 V ′
j

k−1∑
l ′=1

1{t ′
l′+1

>0}d�w
l ′ (s1) ≤ Cq,θk(s).

As for the first integral,

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0

∫∫
dv′dv′′

∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)

w̃q,θ (v′)

k−1∑
l ′=1

1{t ′
l′+1

>0}

×
∫ t ′

l′− 1
k2(s)

t ′
l′+1

kχ
w(vl , v

′)kχ
w(v′

l ′ , v
′′)|h j (s1,x

′
l ′ + (s1 − t ′l ′)v

′
l ′, v

′′)|

× d�w
l ′ (s1)ds1d�

w
l (s)ds,

(3.63)

we divide our computations into the following three cases:

Case 1. |vl | ≥ N or |v′
l ′ | ≥ N with N suitably large. From Lemma 2.2, it follows

that ∫
kχ

w(vl , v
′)dv′ ≤ Cε

(1 + |vl |)−�
≤ Cε

N
,

ν−1(v′
l ′)
∫

kχ
w(v′

l ′ , v
′′)dv′′ ≤ Cε

(1 + |v′
l ′ |)−�

≤ Cε

N
.

Using this, for |vl | ≥ N or |v′
l ′ | ≥ N , we know thanks to (3.35) and (3.36) that

(3.63) ≤ CεCq,θ

N

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
d�w

l (s)

×
∫
∏k−1

j=1 V ′
j

k−1∑
l ′=1

1{t ′
l′+1

>0}
∫ t ′

l′

t ′
l′+1

d�w
l ′ (s1)ds1ds sup

0≤s≤t1
‖h j (s)‖∞

≤ Cε,q,θ

N
sup

0≤s≤t
‖h j (s)‖∞.

(3.64)

Case 2. |vl | ≤ N and |v′| ≥ 2N , or |v′
l ′ | ≤ N and |v′′| ≥ 2N . Notice that we have

either |vl − v′| ≥ N or |v′
l ′ − v′′| ≥ N , and that either of the following holds:

kχ
w(vl , v

′) ≤ Ce− εN2
16 kχ

w(vl , v
′)e

ε|vl−v′ |2
16 ,

or kχ
w(v′

l ′ , v
′′) ≤ Ce− εN2

16 kχ
w(v′

l ′ , v
′′)e

ε|v′
l′ −v′′ |2
16 .

By virtue of Lemma 2.2, one sees that both

∫
kχ

w(vl , v
′)e

ε|vl−v′ |2
16 and

∫
kχ

w(v′
l ′ , v

′′)e
ε|v′

l′ −v′′ |2
16
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are still bounded. In this situation, we have, by an argument similar to that for
obtaining (3.64), that

(3.63) ≤ Cq,θe
− εN2

16 sup
0≤s≤t

‖h j (s)‖∞. (3.65)

To obtain the final bound for (3.63), we are now in a position to handle the last
case:

Case 3. |vl | ≤ N , |v′| ≤ 2N , |v′
l ′ | ≤ N and |v′′| ≤ 2N . Recall that there is a lower

bound t ′l ′ − s1 ≥ 1/k2, so that one can convert the bound in L∞−norm to the one
in the L2−norm, which has been well-established in Section 3.1. To do this, for
any large N > 0, we choose a number m(N ) to define

kχ
m,w(p, v′) ≡ 1|p−v′|≥ 1

m ,|v′|≤mk
χ
w(p, v′), (3.66)

such that supp
∫
R3 |kχ

m(p, v′) − kχ
w(p, v′)|dv′ ≤ 1

N . We split

kχ
w(vl , v

′)kχ
w(v′

l ′ , v
′′) = {kχ

w(vl , v
′) − kχ

m,w(vl , v
′)}kχ

w(v′
l ′ , v

′′)
+ {kχ

w(v′
l ′ , v

′′) − kχ
m,w(v′

l ′ , v
′′)}kχ

m,w(vl , v
′)

+ kχ
m,w(vl , v

′)kχ
m,w(v′

l ′ , v
′′),

and from Lemma 3.3, the first two differences lead to a small contribution in (3.63)

Cq,θ

N
sup

0≤s≤t
‖h j (s)‖∞. (3.67)

For the remaining main contribution of kχ
m,w(vl , v

′)kχ
m,w(v′

l ′ , v
′′), by a change of

variable, y = x ′
l ′ + (s1 − t ′l ′)vl ′ . Noticing that x ′

l ′ is independent of v′
l , we see that∣∣∣ dydv′

l

∣∣∣ ≥ (k(s))−6. Consequently, as in Case 4 in the proof of Theorem 6 in [27, pp.

754], we obtain

(3.63) ≤ Cq,θ

N
sup

0≤s≤t
‖h j (s)‖∞

+ CN

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
d�w

l (s)(k(s))6

×
∫
∏l′−1

j=1 V ′
j

∏k−1
j=l′+1

V ′
j

k−1∑
l ′=1

1{t ′
l′+1

>0}
∫ t ′

l′

t ′
l′+1

∫
�×{|v′′|≤2N }

∣∣∣∣ h
j (s1)

wq,θ (v)

∣∣∣∣ dydv′′

× e−λ0(t ′l′−s1)ρ0 {�k−1
j ′=l ′+1dσ j ′ } × �l ′−1

j ′=1{e
ν(v′

j ′ )(t
′
j ′+1

−t ′
j ′ )dσ j ′ }ds1ds.

(3.68)
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In light of Lemma 3.5 in Section 3.4, we see that (3.68) can be further dominated
by

(3.63) ≤ Cq,θ

N
sup

0≤s≤t
‖h j (s)‖∞

+CN

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }
∫ tl

0
d�w

l (s)(k(s))7e− λ0
2 sρ0 ds

× sup
0≤s≤t1

{
e

λ0
2 sρ0

∥∥∥∥ h j (s)

wq,θ (v)

∥∥∥∥
2

}

≤ Cq,θ

N
sup

0≤s≤t
‖h j (s)‖∞ + CN sup

0≤s≤t1

{
e

λ0
2 sρ0

∥∥∥∥ h j (s)

wq,θ (v)

∥∥∥∥
2

}
. (3.69)

Putting the estimates (3.62), (3.64), (3.65), (3.67) and (3.69) together, one sees that
(3.60) is valid. Furthermore, by an argument similar to that for proving (3.60), we
can also show that the remaining terms in (3.59) and I2 share the same bound as
(3.60), and we thus arrive at

I2, I6 ≤ Cq,θ

(
1

T 5/4
0

+ 1

N

)
sup

0≤s≤t
‖h j (s)‖∞

+ CN sup
0≤s≤t

{
e

λ0
2 sρ0

∥∥∥∥ h j (s)

wq,θ (v)

∥∥∥∥
2

}
+ CA1(t).

Now choose T0, N > 0 large, and plug the estimates for I2, I6 and A1(t) into
(3.57) to obtain

sup
0≤s≤t

‖h j (s)‖∞ ≤ C‖h0‖∞ + C sup
0≤s≤t

‖ν−1wq,θg(s)‖∞

+ C sup
0≤s≤t

{
e

λ0
2 sρ0

∥∥∥ f j (s)
∥∥∥
2

}
.

(3.70)

On the other hand, from (3.6) in Proposition (3.1), one has, by taking λ0 ≤ λ1, that

sup
0≤s≤t

{
e

λ0
2 sρ0

∥∥∥ f j (s)
∥∥∥
2

}

≤ C‖wq/2,θ f0‖2 + C

√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds

+ C

√∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds.

(3.71)

We then have that (3.53) follows from (3.70), (3.71) and (3.15). This allows us to
construct a global solution h j (t, x, v) to (3.47) and (3.48). Since (3.53) is uniform
in j , one can further show that {h j }∞j=2 converges to h strongly in L∞ via an
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argument similar to that used in the end of the proof for Lemma 3.4. Finally, by
(3.53), we also have

sup
0≤s≤t

{‖h(s)‖∞ + |h(s)|∞} �‖wq,θ f0‖∞ + sup
0≤s≤t

‖ν−1wq,θg(s)‖∞

+ ‖wq/2,θ f0‖2 +
√∫ t

0
eλ1sρ0 ‖ν−1/2g(s)‖22ds

+
√∫ t

0
‖ν−1/2wq/2,θg(s)‖22ds.

(3.72)

Then, (3.72) and the inequality ‖wq/2,θ f0‖2 � ‖wq,θ f0‖∞ imply (3.32). This
completes the proof of Proposition 3.2. ��

3.3. Nonlinear Existence

Our aim in this subsection is to prove

The global existence of (1.11), (1.12) and (1.13). Recalling the initial boundary
value problem for the linearized equation (3.1) and (3.2), we design the following
iteration sequence:

∂t f
�+1 + v · ∇x f

�+1 + L f �+1 = �( f �, f �), f �+1(0, x, v) = f0(x, v), (3.73)

with f �+1− = Pγ f � and f 0 = f0(x, v). Clearly, P{�( f �, f �)} = 0.
Note that the iteration scheme (3.73) does not provide us with the positivity of

the solution of the original equation (1.1), however it coincides with the linearized
equation (3.1) so that Propositions 3.1 and 3.2 can be used directly. Our strategy to
proving the global existence (1.11), (1.12) and (1.13) can be outlined as follows:
we first show that the sequence { f �}∞�=0 determined by (3.73) is well-defined in
a suitable Banach space via Propositions 3.1 and 3.2, then we prove that such a
sequence is in fact a Cauchy sequence and that the limit is a desired global solution.
Let us now define the following energy functional:

E( f )(t) = ‖wq,θ f ‖2∞ + |wq,θ f |2∞,+ + eλ1tρ0 ‖ f ‖22 + ‖wq/2,θ f ‖22,
and dissipation rate

D( f )(t) = ‖wq/2,θ f ‖2ν + eλ1tρ0 ‖ f ‖2ν .
For later use, we also define a Banach space

Xδ =
{
f | sup

0≤s≤t
E( f )(s) +

∫ t

0
D( f )(s)ds < δ, δ > 0

}
,

associated with the norm

Xδ( f )(t) = sup
0≤s≤t

E( f )(s) +
∫ t

0
D( f )(s)ds.
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We now show that f �+1 ∈ Xδ if f � ∈ Xδ . For this, on the one hand, we know from
(3.32), (3.5) and (3.6), with f = f �+1 and g = �( f �, f �), that (3.73) admits a
unique solution f �+1 satisfying

sup
0≤s≤t

E( f �+1)(s) +
∫ t

0
D( f �+1)(s)ds

≤ CE( f )(0) + C sup
0≤s≤t

‖ν−1wq,θ�( f �, f �)(s)‖2∞

+C
∫ t

0

∥∥∥ν−1/2wq/2,θ�( f �, f �)(s)
∥∥∥2
2
ds

+C
∫ t

0
eλ1sρ0 ‖ν−1/2�( f �, f �)(s)‖22ds, (3.74)

provided that the right hand side is finite. On the another hand, thanks to Lemma
2.3, it follows that

∫ t

0

∥∥∥ν−1/2wq/2,θ�( f �, f �)

∥∥∥2
2
ds

≤ C sup
0≤s≤t

‖wq,θ f (s)‖2∞
∫ t

0
‖wq/2,θ f (s)‖2νds

≤ C sup
0≤s≤t

E( f �)(s)
∫ t

0
D( f �)(s)ds, (3.75)

∫ t

0
eλ1sρ0 ‖ν−1/2�( f �, f �)(s)‖22ds

≤ C sup
0≤s≤t

‖wq/2,θ f (s)‖2∞
∫ t

0
eλ1sρ0 ‖ f (s)‖2νds

≤ C sup
0≤s≤t

E( f �)(s)
∫ t

0
D( f �)(s)ds, (3.76)

and
sup

0≤s≤t

∥∥∥ν−1wq,θ�( f �, f �)

∥∥∥∞ ≤ C sup
0≤s≤t

E( f �)(s). (3.77)

As a consequence, one has from (3.74), (3.75), (3.76) and (3.77) that

Xδ( f
�+1)(t) ≤ CE( f )(0) + CX2

δ ( f
�)(t), (3.78)

which further yields thatXδ( f �+1)(t) < δ, supposing f � ∈ Xδ with δ and E( f )(0)
small enough.

We now prove the strong convergence of the iteration sequence { f �}∞�=0 con-
structed above. To do this, by taking the difference of the equations that f �+1 and
f � satisfy, we deduce that

⎧⎨
⎩

∂t [ f �+1 − f �] + v · ∇x [ f �+1 − f �] + L[ f �+1 − f �]
= �( f � − f �−1, f �) + �( f �−1, f � − f �−1),

[ f �+1 − f �]− = Pγ [ f �+1 − f �],
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with f �+1 − f � = 0 initially. Repeating the same argument as that for obtaining
(3.78), we obtain

Xδ( f
�+1 − f �)(t) ≤ C

{
Xδ( f

�) + Xδ( f
�−1)

}
Xδ( f

� − f �−1)(t).

This implies that { f �}∞�=0 is aCauchy sequence inXδ for δ suitably small.Moreover,
take f as the limit of the sequence { f �}∞�=0 in Xδ , then f satisfies

sup
0≤s≤t

E( f )(s) +
∫ t

0
D( f )(s)ds ≤ CE( f )(0) ≤ C‖wq,θ f0‖2∞. (3.79)

Since we have L∞ convergence at each step, as [27, pp. 788], we deduce that
wq,θ f is continuous away from γ0 when � is strictly convex. The uniqueness is
standard. We now turn to prove the positivity of μ + √

μ f . As mentioned at the
beginning of this subsection, we need to design a different iterative sequence. We
use the following one:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{∂t + v · ∇x } F�+1 + F�+1(v)ν(F�)

= ∫
R3×S2

|v − u|�b0(θ)F�(u′)F�(v′) dudω = �gain(F�, F�),

F�+1− = μ
∫
n(x)·v>0 F

�(v)n(x) · vdv,

F�+1(0, x, v) = F0(x, v),

startingwith F0(t, x, v) = F0(x, v),whereν(F�) = ∫
R3×S2

|v−u|�b0(θ)F�(u)dudω.
By a procedure similar to the proof of Theorem 4 in [27, pp. 806–807], one can
easily verify that such an iteration preserves the non-negativity. We now need to
prove that F� is convergent in order to conclude the non-negativity of the limit
F(t) ≥ 0. Noticing that F�+1 = μ + μ1/2 f �+1, equivalently, we need to solve
f �+1 such that

{∂t + v · ∇x + ν} f �+1 − K f � = �gain( f �, f �) − f �+1(v)ν(
√

μ f �),

f �+1− = Pγ f �, f �+1(0, x, v) = f0(x, v).
(3.80)

In fact, since |ν(
√

μ f �)| ≤ Cε0ν for ‖wq,θ f �‖∞ ≤ ε0, one can rewrite (3.80) as

{∂t + v · ∇x + ν} f �+1 = K f � + �gain( f �, f �),

f �+1− = Pγ f �, f �+1(0, x, v) = f0(x, v),

with ν = ν + ν(
√

μ f �). As with the proof of Lemma 3.2, it follows from a routine
procedure to show that {h�+1 = wq,θ f �+1}∞�=0 is indeed convergent in L∞ local
in time [0, T∗]. This ends the proof of the first part of Theorem 1.1. We leave the
second part to the next subsection. ��
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3.4. Nonlinear L∞ Exponential Decay

In this subsection, we are going to deduce the L∞ exponential time decay
rates for the initial boundary value problems (1.11), (1.12) and (1.13) based on the
global existence constructed in Section 3.3. For this, let us first present the following
refined estimates for integrals on the stochastic cycles given by Definition 3.1:

Lemma 3.5. Denote ‖ · ‖Y = ‖ · ‖2 or ‖ · ‖∞. Assume (q, θ) ∈ Aq,θ . There exists
constant λ0 > 0 such that for ρ0 = θ

θ−�
,

∫
�k−1

j=1V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }‖ f (s, ·, vl)‖Yd�l(s)ds

≤ Ce− λ0
2 t

ρ0
1 sup

0≤s≤t1
e

λ0
2 sρ0 ‖ f (s)‖Y,

(3.81)

and

∫
�k−1

j=1V j

k−1∑
l=1

∫ tl

tl+1

1{tl+1>0}‖ f (s, ·, vl)‖Yd�l(s)ds

≤ Ce− λ0
2 t

ρ0
1 sup

0≤s≤t1
e

λ0
2 sρ0 ‖ f (s)‖Y, (3.82)

where C > 0 and is independent of k.
Moreover, for any ε0 > 0, it holds that

∫
�k−1

j=1V j

∫ tl

tl−ε0

‖ f (s, ·, vl)‖Yd�l(s)ds

≤ Cε0e
− λ0

2 t
ρ0
1 sup

0≤s≤t1
e

λ0
2 sρ0 ‖ f (s, ·, vl)‖Y, (3.83)

∫
∏l−1

j=1 V j
∏k−1

j=l+1 V j

1{tl+1>0}
∫ tl

tl+1

‖ f (s, ·, vl)‖Ye−λ0(tl−s1)ρ0 {�k−1
j=l+1dσ j }

×�l−1
j=1{eν(v j )(t j+1−t j )dσ j }ds1

≤ Ce− λ0
2 t

ρ0
1 sup

0≤s≤t1
e

λ0
2 sρ0 ‖ f (s, ·, vl)‖Y, (3.84)

and

∫
∏k−1

j=1 V j

1{0<tk }| f (tk, ·, vk−1)|d�k−1(tk) ≤ Cε0e
− λ0

2 t
ρ0
1 sup

0≤s≤t1
e

λ0
2 sρ0 ‖ f (s)‖∞.

(3.85)
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Proof. We first prove (3.82). Recall the decomposition (3.38), and also rewrite

∫
�k−1

j=1V j

k−1∑
l=1

∫ tl

tl+1

1{tl+1>0}‖ f (s)‖Yeν(vl )(s−tl )μ−1/2(vl)dσlds

× �l−1
j=1{eν(v j )(t j+1−t j )dσ j }

=
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

k−1∑
l=1

∫ tl

tl+1

1{tl+1>0}‖ f (s)‖Y

× μ−1/2(vl)e
ν(vl )(s−tl )dσlds�

l−1
j=1{eν(v j )(t j+1−t j )dσ j }

+
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}>k

k−1∑
l=1

∫ tl

tl+1

1{tl+1>0}‖ f (s)‖Y

× μ−1/2(vl)e
ν(vl )(s−tl )dσlds�

l−1
j=1{eν(v j )(t j+1−t j )dσ j }

def=K3 + K4.

To estimateK3, as in the proof for (3.36), we denote max{|v1|, |v2|, . . . , |vk−1|} =
|vm | again, then it follows that

K3 ≤
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

k−1∑
l=1

∫ tl

tl+1

1{tl+1>0}‖ f (s)‖Y

× eν(vm )(s−t1)μ−1/2(vm)dσlds�
l−1
j=1dσ j .

Meanwhile, by Young’s inequality, we find

e−ν(v)tw−1
q/2,θ (v) ≤ e−λ0tρ0 , ρ0 = θ

θ − �
, (3.86)

where λ0 is given by

0 < λ0 ≤ (C�ρ0)
−ρ0

(
q

8(1 − ρ0)

)1−ρ0

> 0.

Using (3.86), we obtain, for ρ0 = θ
θ−�

,

K3 ≤
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

k−1∑
l=1

∫ tl

tl+1

1{tl+1>0}e
λ0
2 sρ0 ‖ f (s)‖Ye−λ0(t1−s)ρ0 e− λ0

2 sρ0

× wq/2,θ (vm)μ−1/2(vm)dσlds�
l−1
j=1dσ j

≤ √
2πe− λ0

2 t
ρ0
1

∫
�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

e
q
8 |vm |θ e

|vm |2
4

×
{
k−1∑
l=1

1{tl+1>0}
∫ tl

tl+1

e− λ0
2 (t1−s)ρ0 ds

}
sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖Y

}
�l−1

j=1dσ j
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≤ e− λ0
2 t

ρ0
1 sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖Y

}

× 1√
2π

∫
n(xm)·vm>0

(n(xm) · vm)e− 1
4 |vm |2+ q

8 |vm |θ dvm

≤ Ce− λ0
2 t

ρ0
1 sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖Y

}
. (3.87)

Here Lemma 2.1 is also used to guarantee e− λ0
2 (t1−s)ρ0 e− λ0

2 sρ0 ≤ e− λ0
2 t

ρ0
1 for

0 < ρ0 < 1.
As to K4, assume with no loss of generality that |vi | ≥ k; following the calcu-

lations for K2 in the proof of Lemma 3.3, one has

K4 ≤
∫

�k−1
j=1V j

k−1∑
l=1

∫ tl

tl+1

e−λ0(tl−s)ρds1{tl+1>0} sup
tl+1≤s≤tl

‖ f (s)‖Y

×wq/2,θ (vl)μ
−1/2(vl)�

k−1
j=1dσ j

≤ C
k−1∑
l=1

∫
�k−1

j=1V j

wq/2,θ (vl)μ
−1/2(vl)�

k−1
j=1dσ j sup

0≤s≤t1
‖ f (s)‖Y

≤ C
∫

�i−1
j=1V j

�i−1
j=1dσ j

∫
n(xi )·vi>0

|vi |>k

(n(xi ) · vi )e
− 1

4 |vi |2+ q
8 |vi |θ dvi sup

0≤s≤t1
‖ f (s)‖Y

+C
i−1∑
l=1

∫
�l−1

j=1V j

�l−1
j=1dσ j

∫
n(xl )·vl>0

(n(xl) · vl)e
− 1

4 |vl |2+ q
8 |vl |θ dvl (3.88)

×
∫

�i−1
j=l+1V j

�i−1
j=l+1dσ j

∫
n(xi )·vi>0

|vi |>k

e− |vi |2
2 (n(xi ) · vi )dvi sup

0≤s≤t1
‖ f (s)‖Y

+C
k−1∑

l=i+1

∫
�i−1

j=1V j

�i−1
j=1dσ j

∫
n(xi )·vi>0

|vi |>k

e− |vi |2
2 (n(xi ) · vi )dvi

×
∫

�l−1
j=i+1V j

�l−1
j=i+1dσ j

∫
n(xl )·vl>0

n(xl) · vl

e− 1
4 |vl |2+ q

8 |vl |θ dvl sup
0≤s≤t1

‖ f (s)‖Y

≤ Cq,θ (k − 1)e− k2
8 sup

0≤s≤t1
‖ f (s)‖Y ≤ Cq,θe

− k2
16 sup

0≤s≤t1
‖ f (s)‖Y.

Notice that k = C1[α(t)]5/4; (3.82) then follows from (3.87) and (3.88). Just like
the proof for Lemma 3.3, (3.81) can be handled in a similar way as to (3.82), and
the proofs for (3.83) and (3.84), being similar and easier, we omit for the sake of
brevity. It remains now to prove (3.85). To do that, we have, using a decomposition
as in (3.38) again,



512 Shuangqian Liu & Xiongfeng Yang

∫
∏k−1

j=1 V j

1{0<tk }| f (tk, ·, vk−1)|μ−1/2(vk−1)d�k−1(tk)

=
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

1{0<tk }| f (tk, ·, vk−1)|μ−1/2(vk−1)

× �k−1
j=1{eν(v j )(t j+1−t j )dσ j }

+
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}>k

1{0<tk }| f (tk, ·, vk−1)|μ−1/2(vk−1)

× �k−1
j=1{eν(v j )(t j+1−t j )dσ j }

def=K5 + K6.

To compute K5, let us denote max{|v1|, |v2|, . . . , |vk−1|} = |vm | again. We first
prove that there exists a constant C > 0 independent of t such that for all 1 ≤ m ≤
k − 1 and small ε0 > 0,

∫
�k−1

j=1V j

1{0<tk }wq/2,θ (vm)μ−1/2(vm)�k−1
j=1dσ j ≤ Cε0. (3.89)

For this, we define non-grazing sets for 1 ≤ j ≤ k − 1 as Vz
j = {v j ∈ V j :

v j · n(x j ) ≥ z} ∩ {v j ∈ V j : |v j | ≤ 1
z} with z > 0 and sufficiently small. Notice

that (q, θ) ∈ Aq,θ ; we obtain, by a direct calculation,

∫
V j\Vz

j

wq/2,θ (v j )μ
−1/2(v j )dσ j

≤
∫
0<v j ·n(x j )≤z

wq/2,θ (v j )μ
−1/2(v j )dσ j

+
∫

|v j |≥ 1
z

wq/2,θ (v j )μ
−1/2(v j )dσ j

≤ Cq,θ

∫
0<v j ·n(x j )≤z

μ1/4(v j )v j · n(x j )dv j

+ Cq,θ

∫
|v j |≥ 1

z

μ1/4(v j )v j · n(x j )dv j ≤ Cz,

(3.90)

and
∫
V j

wq/2,θ (v j )μ
−1/2(v j )dσ j ≤ C, (3.91)

where C is independent of j . On the other hand, if v j ∈ Vz
j , we know from the

definition of the diffusive back-time cycle (3.33) that x j − x j+1 = (t j − t j+1)v j .
Since |v j | ≤ 1

z , and v j · n(x j ) ≥ z, thanks to Lemma 2.6, it follows that (t j −
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t j+1) ≥ z3

Cξ
. Hence, when tk(t, x, v, v1, v2, . . . , vk−1) > 0, there can be, at most,[

Cξ α(t)
z3

]
+ 1 number of v j ∈ Vz

j for 1 ≤ j ≤ k − 1. We therefore compute

∫
�k−1

j=1V j

1{0<tk }wq/2,θ (vm)μ−1/2(vm)�k−1
j=1dσ j

≤

[Cξ α(t)

z3

]
+1∑

l=1

∫
V†
1

�k−1
j=1wq/2,θ (vm)μ−1/2(vm)dσ j

+

[Cξ α(t)

z3

]
+1∑

l=1

∫
V†
2

�k−1
j=1wq/2,θ (vm)μ−1/2(vm)dσ j

≤

[Cξ α(t)

z3

]
+1∑

l=1

(
k − 1

l

) ∣∣∣∣∣supj
∫
Vz

j

dσ j

∣∣∣∣∣
l−1 ∫

Vz
m

wq,θ (vm)μ−1/2(vm)dσm

×
{
sup
j

∫
V j\Vz

j

dσ j

}k−l−1

+

[Cξ α(t)

z3

]
+1∑

l=1

(
k − 1

l

) ∣∣∣∣∣supj
∫
Vz

j

dσ j

∣∣∣∣∣
l ∫

Vm/Vz
m

wq,θ (vm)μ−1/2(vm)dσm

×
{
sup
j

∫
V j\Vz

j

dσ j

}k−l−2

,

where V†
1 is the set where there are exactly l of v ji ∈ Vz

ji
, including vm ∈ Vz

m ,

and k − 1 − l of v ji /∈ Vz
ji
, while V†

2 is the set where there are exactly l of v ji ∈
Vz
ji
, and k−1−l of v ji /∈ Vz

ji
and also vm /∈ Vz

m . Since dσ is a probabilitymeasure,∫
Vz

j
dσ j ≤ 1, and

{∫
V j\Vz

j

dσ j

}k−l−1

≤
{∫

V j\Vz
j

dσ j

}k−2−
[Cξ α(t)

z3

]

≤ {Cz}k−2−
[Cξ α(t)

z3

]
.

With this, from (3.90), (3.91) and
(k−1

l

) ≤ {k − 1}l ≤ {k − 1}
[Cξ α(t)

z3

]
+1

, we deduce
that

∫
1{tk>0}wq/2,θ (vm)μ−1/2(vm))�k−1

l=1 dσl

≤ C

([
Cξ α(t)

z3

]
+ 1

)
(k − 1)

[Cξ α(t)

z3

]
+1

(Cz)
k−2−

[Cξ α(t)

z3

]
.
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For ε0 > 0, (3.89) follows for Cz < 1, and k >>
[
Cξ α(t)
z3

]
+ 2. We now go back

to K5, and from (3.89) and (3.86), it follows that

K5 ≤
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

1{0<tk }| f (tk, ·, vk−1)|e−ν(vm )(t1−tk )μ−1/2(vm)�k−1
j=1dσ j

≤
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≤k

1{0<tk }e−λ0t
ρ0
k e−λ0(t1−tk )ρ0wq/2,θ (vm)μ−1/2(vm)

× �k−1
j=1dσ j sup

0≤tk≤t1

{
e

λ0
2 t

ρ0
k ‖ f (tk)‖∞

}

≤ Cε0e
− λ0

2 t
ρ0
1 sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}
.

As for K6, assume, with no loss of generality, that |vi | ≥ k, and apply (3.86) to
obtain

K6≤
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≥k

1{0<tk }| f (tk, ·, vk−1)|{�k−1
j=l e

−ν(vl )(tl−tl+1)}

× μ−1/2(vk)�
k−1
j=1dσ j

≤
∫

�
k−1
j=1V j

max{|v1|,|v2 |,...,|vk−1|}≥k

1{0<tk }e−λ0t
ρ0
k e−λ0(t1−tk )ρ0

{
�k−1

l=1 wq/2,θ (vl)
}

μ−1/2(vk)

× �k−1
j=1dσ j sup

0≤tk≤t1

{
e

λ0
2 t

ρ0
k ‖ f (tk)‖∞

}

≤Ce− λ0
2 t

ρ0
1 sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}(∫
Vl

wq/2,θ (vl)μ
−1/2(vl)dσl

)k−2

×
∫
Vi

wq/2,θ (vi )μ
−1/2(vi )dσi

≤Ce− λ0
2 t

ρ0
1 sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}
Ck−1
q,θ e−k2/16. (3.92)

Choosing k suitably large so thatCk−1
q,θ e−k2/16 < ε0, one sees that (3.92) also enjoys

the bound (3.85). This completes the proof of Lemma 3.5. ��
We now turn to prove exponential decay using Lemma 3.5 and the uniform

bound (1.21). The main difficulty with proving rapid decay (1.22) is created by the
fact that the collision frequency has no positive lower bound in the case of the soft
potential. However, as is shown in (3.86), one can trade between exponential decay
rates and the additional exponential momentum weight on the initial data and the
solution itself.

The proof of (1.22). Recall that f (t, x, v) satisfies
{

∂t f + v · ∇x f + ν f = K f + �( f, f ), f (0, x, v) = f0
f− = Pγ f.
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With this, by a same kind of computation as for obtaining (3.42), one has

| f (t, x, v)| ≤
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K 1−χ f (s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
J1

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|K χ f (s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
J2

+
{
1t1≤0

∫ t

0
+1t1>0

∫ t

t1

}
e−ν(v)(t−s)|g f (s, x − (t − s)v, v)|ds

︸ ︷︷ ︸
J3

+
8∑

n=4

Jn, (3.93)

with

J4 = 1t1≤0e
−ν(v)t | f (0, x − tv, v)|

+e−ν(v)(t−t1)√μ

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }| f (0, xl − tlvl , vl)|d�l(0),

J5 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

×|[K 1−χ f ](s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

tl+1

1{0<tl+1}|[K 1−χ f ](s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

J6 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

×|[K χ f ](s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

tl+1

1{0<tl+1}|[K χ f ](s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

J7 = e−ν(v)(t−t1)√μ

{∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

×|g f (s, xl − (tl − s)vl , vl)|d�l(s)ds

+
∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

tl+1

1{0<tl+1}|g f (s, xl − (tl − s)vl , vl)|d�l(s)ds

}
,

J8 = e−ν(v)(t−t1)√μ

∫
∏k−1

j=1 V j

1{0<tk }| f (tk, xk, vk−1)|d�k−1(tk), k ≥ 2,
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where g f = �( f, f ) and �l(s) (l = 1, 2, . . . , ) is given by (3.43). We now turn to
compute Jn (n = 1, 2, . . . , 8), term by term. As the way to deal with (3.54), let us
first computeJ1,J3,J4,J5,J7 andJ8; the estimates for the delicate termsJ2 and
J6 will be postponed to a later step when estimations such as (3.57) are derived.
Estimates on J1 and J5. It follows from Lemma 2.2 and (3.86) that

J1 ≤ C sup
0≤s≤t

{
e

λ0
2 sρ0 ‖ f (s)‖∞

} ∫ t

0
e− λ0

2 (t−s)ρ0 e− λ0
2 (t−s)ρ0

× e− λ0
2 sρ0 dswq/2,θ

∫
R3

K 1−χdv

≤ Cε�+3e− λ0
2 tρ0 sup

0≤s≤t

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}
.

Likewise, Lemmas 2.2 and 3.5 and inequality (3.86) imply

J5 ≤ Cε�+3e− λ0
2 (t−t1)ρ0 e− λ0

2 t
ρ0
1 wq/2,θ (v)

√
μ(v)

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}

≤ Cε�+3e− λ0
2 tρ0 sup

0≤s≤t

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}
.

Estimates on J3 and J7. We have, using (3.86), that

J3 ≤ C sup
0≤s≤t

{
e

λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

} ∫ t

0
e− λ0

2 (t−s)ρ0 e− λ0
2 (t−s)ρ0 e− λ0

2 sρ0 ds

≤ Ce− λ0
2 tρ0 sup

0≤s≤t

{
e

λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

}
.

Similarly, applying Lemma 3.5 and inequality (3.86) again leads to

J7 ≤ Cε�+3e− λ0
2 (t−t1)ρ0 e− λ0

2 t
ρ0
1 wq/2,θ

√
μ sup

0≤s≤t

{
e

λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

}

≤ Ce− λ0
2 tρ0 sup

0≤s≤t

{
e

λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

}
.

Estimates on J4. For the first term in J4, one directly has from (3.86) that

1t1≤0e
−ν(v)t | f (0, x − tv, v)| ≤ e− λ0

2 tρ0 ‖wq/2,θ f0‖∞.

As to the second term, applying calculations similar to the proof of Lemma 3.5, we
obtain

e−ν(v)(t−t1)√μ

∫
∏k−1

j=1 V j

k−1∑
l=1

1{tl+1≤0<tl }| f (0, xl − tlvl , vl)|d�l(0)

≤ Ce− λ0
2 (t−t1)ρ0 e− λ0

2 t
ρ0
1 wq/2,θ

√
μ‖ f0‖∞ ≤ Ce− λ0

2 tρ0 ‖ f0‖∞.

Gathering the above two kinds of estimates, we have

J4 ≤ Ce− λ0
2 tρ0 ‖wq/2,θ f0‖∞.
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Estimates on J8. (3.85) in Lemma 3.5 directly yields

J8 ≤ Cε0e
− λ0

2 (t−t1)ρ0wq/2,θ (v)
√

μ(v)e− λ0
2 t

ρ0
1 sup

0≤s≤t1

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}

≤ Cε0e
− λ0

2 tρ0 sup
0≤s≤t

{
e

λ0
2 sρ0 ‖ f (s)‖∞

}
.

Substituting all of the above estimates into (3.93), we arrive at

| f (t, x, v)| ≤ J2 + J6 + A2(t), (3.94)

with

A2(t) =Ce− λ0
2 tρ0

{
‖wq/2,θ f0‖∞ + (ε0 + ε�+3) sup

0≤s≤t
e

λ0
2 sρ0 ‖ f (s)‖∞

+ sup
0≤s≤t

e
λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

}
.

Next, plug (3.94) into K χ f and perform a calculation similar to (3.58) to obtain

K χ f (s, Xcl(s), vl)

≤
∫
R3

kχ (vl , v
′)| f (s, Xcl(s), v

′)|dv′

≤
∫∫ {

1t ′1≤0

∫ s

0
+1t ′1>0

∫ s

t ′1

}
e−ν(v′)(s−s1)kχ (vl , v

′)kχ (v′, v′′)

×| f (s1, Xcl(s) − (s − s1)v
′, v′′)|ds1dv′dv′′

+
∫∫

dv′dv′′
∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)√μ(v′)

×
k−1∑
l ′=1

∫ t ′
l′

0
ds11{t ′

l′+1
≤0<t ′

l′ }k
χ (vl , v

′)kχ (v′
l ′ , v

′′)

×| f (s1,x ′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�l ′(s1)

+
∫∫

dv′dv′′
∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)√μ(v′)

×
k−1∑
l ′=1

∫ t ′
l′

t ′
l′+1

ds11{t ′
l′+1

>0}kχ (vl , v
′)kχ (v′

l ′ , v
′′)

×| f (s1, x ′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�l ′(s1)

+
∫
R3

kχ (vl , v
′)dv′A2(s)

def=
4∑

n=1

Ln . (3.95)

We now estimateJ6 with the aid of (3.95). Substituting (3.95) intoJ6 and applying
(3.86) leads us to
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J6 ≤ Cq,θe
− λ0

2 (t−t1)ρ0
∫
∏k−1

j=1 V j

k−1∑
l=1

{∫ tl

0
1{tl+1≤0<tl } +

∫ tl

tl+1

1{0<tl+1}
}

×
4∑

n=1

Lnd�l(s)ds =
4∑

n=1

J6,n, (3.96)

where J6,n (1 ≤ n ≤ 4) denote four terms on the right hand side of (3.96)
containing Ln (1 ≤ n ≤ 4), respectively. We now estimate J6,n (1 ≤ n ≤ 4) term
by term. We first consider the simple term J6,4, since

∫
R3 kχ (vl , v

′)dv′ < ∞. In
light of Lemma 3.5, it is straightforward to check that

J6,4 ≤ Cq,θe
− λ0

2 (t−t1)ρ0 e− λ0
2 t

ρ0
1 sup

0≤s≤t

{
e

λ0
2 sρ0 A2(s)

}

≤ Cq,θe
− λ0

2 tρ0
{
‖wq/2,θ f0‖∞ + (ε0 + ε�+3) sup

0≤s≤t
e

λ0
2 sρ0 ‖ f (s)‖∞

+ sup
0≤s≤t

e
λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

}
.

For J6,2, we first show that there exists a sufficiently large N > 0 such that

J 1
6,2 = Cq,θe

− λ0
2 (t−t1)ρ0

∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

∫∫
dv′dv′′

×
∫
∏k−1

j=1 V ′
j

e−ν(v′)(s−t ′1)√μ(v′)
k−1∑
l ′=1

∫ t ′
l′

0
ds11{t ′

l′+1
≤0<t ′

l′ }

×kχ (vl , v
′)kχ (v′

l ′ , v
′′)| f (s1, x ′

l ′ + (s1 − t ′l ′)v
′
l ′ , v

′′)|d�l ′(s1)�l(s)ds

≤ Cq,θ

(
T 5/4
0 + 1

N

)
e− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖∞

+Cq,θe
− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖2. (3.97)

As the proof for (3.60), our computation for J 1
6,2 is divided into the following

several cases:

Case I: s1 > t ′l ′ − 1
k2(s)

, k(s) is given by (3.61). From Lemma 2.2, we see that

∫∫
kχ (vl , v

′)kχ (v′
l ′ , v

′′) < ∞.

Then, (3.86) implies that

e−ν(v′)(s−t ′1)√μ(v′) ≤ Cq,θe
−λ0(s−t ′1)ρ0 ,



Boundary Value Problem for Boltzmann Equation with Soft Potential 519

and we get from (3.83) in Lemma 3.5 that

∫
∏k−1

j=1 V ′
j

k−1∑
l ′=1

∫ t ′
l′

t ′
l′− 1

k2(s)

ds11{t ′
l′+1

≤0<t ′
l′ }| f (s1, x

′
l ′ + (s1 − t ′l ′)v

′
l ′ , v

′′)|d�l ′(s1)

≤ C

k(s)
e− λ0

2 (t ′1)ρ0 sup
0≤s1≤t ′1

e
λ0
2 s

ρ0
1 ‖ f (s1)‖∞.

Substituting the above estimates into J 1
6,2 and applying (3.81), one has

J 1
6,2 ≤ Cq,θ

T 5/4
0

e− λ0
2 (t−t1)ρ0

∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }e−λ0(s−t ′1)ρ0 e−λ0(t ′1)ρ0

× sup
0≤s1≤t ′1

eλ0s
ρ0
1 ‖ f (s1)‖∞�l(s)ds

≤ Cq,θ

T 5/4
0

e− λ0
2 (t−t1)ρ0

∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

×
{
e− λ0

2 sρ0 sup
0≤s1≤s

e
λ0
2 s

ρ0
1 ‖ f (s1)‖∞

}
�l(s)ds

≤ Cq,θ

T 5/4
0

e− λ0
2 (t−t1)ρ0 e− λ0

2 t
ρ0
1 sup

0≤s≤t1
e

λ0
2 sρ0

{
e− λ0

2 sρ0 sup
0≤s1≤s

e
λ0
2 s

ρ0
1 ‖ f (s1)‖∞

}

≤ Cq,θ

T 5/4
0

e− λ0
2 tρ0 sup

0≤s≤t
e

λ0
2 sρ0 ‖ f (s)‖∞.

Case II: s1 ≤ t ′l ′ − 1
k2(s)

, by an argument similar to Case 1 and Case 2 in the proof

of (3.60), one can show that if |vl | ≥ N or |v′
l ′ | ≥ N or |vl | ≤ N and |v′| ≥ 2N ,

or |v′
l ′ | ≤ N and |v′′| ≥ 2N with N large enough, J 1

6,2 bears the bound

Cq,θ

N
e− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖∞.

Therefore, we need only to treat the cases |vl | ≤ N , |v′| ≤ 2N , |v′
l ′ | ≤ N and

|v′′| ≤ 2N . As with Case 3 in the proof of (3.60), in this situation, one may also
use the similar approximation (3.66) to obtain

J 1
6,2 ≤ Cq,θ

N
e− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖∞

+ Cq,θe
− λ0

2 (t−t1)ρ0
∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

∫∫
dv′dv′′

∫
∏k−1

j=1 V ′
j

× e−λ0(s−t ′1)ρ0
k−1∑
l ′=1

∫ t ′
l′

0
ds11{t ′

l′+1
≤0<t ′

l′ }| f (s1)|d�l ′(s1)�l(s)ds
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≤ Cq,θ

N
e− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖∞

+ Cq,θe
− λ0

2 (t−t1)ρ0
∫
∏k−1

j=1 V j

k−1∑
l=1

∫ tl

0
1{tl+1≤0<tl }

×
{
e− λ1

2 sρ0 (k(s))7 sup
0≤s1≤s

e
λ1
2 s

ρ0
1 ‖ f (s1)‖2

}
�l(s)ds

≤ Cq,θ

N
e− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖∞ + Cq,θe

− λ0
2 tρ0 sup

0≤s≤t
e

λ1
2 sρ0 ‖ f (s)‖2.

Here λ0 is chosen to be smaller than λ1 so that e− λ1
2 sρ0 (k(s))7 ≤ Ce− λ0

2 sρ0 .

Gathering the above estimates forJ 1
6,2, we see that (3.97) is true. Once (3.97) is

obtained, the other terms in J6 and J2 can be treated in a similar fashion and after
tedious calculations it turns out that they share the same bound as (3.97). Namely,
we obtain

J2, J6 ≤ Cq,θ

(
1

T 5/4
0

+ 1

N

)
e− λ0

2 tρ0 sup
0≤s≤t

e
λ0
2 sρ0 ‖ f (s)‖∞

+ Cq,θe
− λ0

2 tρ0 sup
0≤s≤t

e
λ1
2 sρ0 ‖ f (s)‖2.

(3.98)

Now, substituting (3.98) into (3.94) and choosing ε, ε0 > 0 suitably small and
N , T0 > 0 sufficiently large, we have

e
λ0
2 tρ0 ‖ f (t)‖∞ ≤ C‖wq/2,θ f0‖∞ + C sup

0≤s≤t
e

λ0
2 sρ0 ‖wq/2,θg f (s)‖∞

+C sup
0≤s≤t

e
λ1
2 sρ0 ‖ f (s)‖2. (3.99)

Next, from (2.14) and (3.79), it follows that

‖wq/2,θg f (s)‖∞ = ‖wq/2,θ�( f, f )(s)‖∞ ≤ C‖wq,θ f (s)‖∞‖ f (s)‖∞
≤ Cε0‖ f (s)‖∞. (3.100)

To control the last term in (3.99), we appeal to deduce the exponential decay of f in
L2. Notice that f (t, x, v), as a global solution to (1.11), (1.12) and (1.13), satisfies
(3.79). We know, thanks to (3.6) in Proposition 3.1, that f (t, x, v) also satisfies

‖ f (t)‖2 � e− λ1
2 tρ0

{
‖wq/2,θ f0‖2 +

√∫ t

0
eλ1sρ0 ‖ν−1/2�( f, f )(s)‖22ds

+
√∫ t

0
‖ν−1/2wq/2,θ�( f, f )(s)‖22ds

}
. (3.101)



Boundary Value Problem for Boltzmann Equation with Soft Potential 521

On the other hand, from Lemma 2.3 and the bound (3.79), it follows that
∫ t

0
eλ1sρ0 ‖ν−1/2�( f, f )(s)‖22ds ≤ C

∫ t

0
eλ1sρ0 ‖wq/2,θ f (s)‖2∞‖ f (s)‖2νds

≤ C sup
0≤s≤t

‖wq/2,θ f (s)‖2∞
∫ t

0
eλ1sρ0 ‖ f (s)‖2νds

≤ Cε20 sup
0≤s≤t

‖wq/2,θ f (s)‖2∞,

(3.102)

and similarly
∫ t

0
‖ν−1/2wq/2,θ�( f, f )(s)‖22ds ≤ C

∫ t

0
‖wq,θ f (s)‖2∞‖wq/2,θ f (s)‖2νds

≤ Cε20

∫ t

0
‖wq/2,θ f (s)‖2νds ≤ C‖wq,θ f0‖2∞.

(3.103)

Consequently, (3.101), (3.102) and (3.103) give rise to

e
λ1
2 tρ0 ‖ f (t)‖2 ≤ C‖wq,θ f0‖∞ + Cε0 sup

0≤s≤t
‖ f (s)‖∞. (3.104)

Now, plugging (3.104) and (3.100) into (3.99) leads us to

e
λ0
2 tρ0 ‖ f (t)‖∞ ≤ C‖wq,θ f0‖∞.

This completes the proof of the second part of Theorem 1.1. Therefore we conclude
the proof of Theorem 1.1. ��

4. Specular Reflection Boundary Value Problem

4.1. L2 Theory for the Linearized Equation

Let us look at the boundary value problem for the linearized homogeneous
equation

∂t f + v · ∇x f + L f = 0, f (0) = f0, in (0,∞) × � × R
3, (4.1)

f (t, x, v)|γ− = f (t, x, Rxv), on [0,∞) × γ−. (4.2)

We first show that the macroscopic part of the solution of (4.1) and (4.2) can be
dominated by the microscopic part on the time interval [0, 1].
Proposition 4.1. Let f (t, x, v) ∈ L∞([0, 1], L2(� × R

3)) be a solution to (4.1)
and (4.2), and fγ ∈ L2([0, 1], L2(∂� × R

3)), then there exists δ0 > 0 such that

∫ 1

0
(L f, f )ds ≥ δ0

∫ 1

0
‖ f (s)‖2νds. (4.3)
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Proof. The proof is based on contradiction and is divided into four steps.

Step 1. Proof of contradiction. If Proposition 4.1 is false, then no δ0 exists as
in Proposition 4.1. Hence, for any n ≥ 1, there exists a sequence of non-zero
fn ∈ L∞([0, 1], L2(� × R

3)) relevant to the linearized Boltzmann equation (4.1)
such that

0 ≤
∫ 1

0
(L fn, fn)ds ≤ 1

n

∫ 1

0
‖ fn(s)‖2νds, (4.4)

since fn satisfies

∂t fn + v · ∇x fn + L fn = 0, in (0, 1] × � × R
3,

and

fn(t, x, v)|γ− = fn(t, x, Rxv), on [0, 1] × γ−.

With this, and by an argument similar to that for obtaining Lemma 8 in [24, pp.
340], one has

sup
0≤t≤1

‖ν1/2 fn(t)‖22 ≤ C‖ν1/2 fn(0)‖22,
∫ 1

0
‖ fn(s)‖2νds ≥ C‖ν1/2 fn(0)‖22. (4.5)

Assume that fn(0) is not identical to zero and set

Zn = fn(t, x, v)√∫ 1
0 ‖ fn(s)‖2νds

,

then ∫ 1

0
‖Zn(s)‖2νds = 1, (4.6)

and (4.4) is equivalent to

0 ≤
∫ 1

0
(LZn, Zn)ds ≤ 1

n
. (4.7)

Then (4.6) and (4.7) imply that there exists Z(t, x, v) such that

Zn → Z weakly in
∫ 1

0
‖ · ‖2νds,

and ∫ 1

0
(LZn, Zn)ds =

∫ 1

0
(L(I − P)Zn, (I − P)Zn)ds → 0. (4.8)

Notice that it is straightforward to verify

PZn → PZ , (I − P)Zn → (I − P)Z , weakly in
∫ 1

0
|| · ||2νds.

It follows from (4.8) that (I − P)Z = 0, therefore,

Z(t, x, v) = {a(t, x) + v · b(t, x) + |v|2c(t, x)}√μ.
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Moreover, we have from ∂t fn + v · ∇x fn + L fn = 0 that

∂t Zn + v · ∇x Zn + LZn = 0, (4.9)

which yields
∂t Z + v · ∇x Z = 0. (4.10)

In what follows, we will show, on the one hand, that Z = 0 from (4.10) and the
inherited boundary condition (4.2).On the other hand, Zn will be proven to converge
strongly to Z in

∫ 1
0 ‖ · ‖2νds, and

∫ 1
0 ‖Z‖2νds �= 0. This leads to a contradiction.

Step 2. The limit function Z(t, x, v).

Lemma 4.1. There exist constants a0, c0, c1, c2, and constant vectors b0, b1 and

 such that Z(t, x, v) takes the form:

({c0
2

|x |2 − b0 · x + a0
}

+ {−c0t x − c1x + 
 × x + b0t + b1} · v

+
{
c0t2

2
+ c1t + c2

}
|v|2

)√
μ.

Moreover, these constants are finite:

|a0| + |c0| + |c1| + |c2| + |b0| + |b1| + |
 | < +∞.

Proof. See Lemma 6 in [27, pp. 736]. ��
Step 3. Compactness.To show the strong convergence lim

n→∞
∫ 1
0 ‖{Zn−Z}(s)‖2νds =

0, we resort to the Averaging Lemma.

Lemma 4.2. Up to a subsequence, it holds that lim
k→∞

∫ 1
0 ‖{Zn − Z}(s)‖2νds = 0.

Proof. Define

�ε4 ≡ {x ∈ � : ξ(x) < −ε4}.
Choose any η0 > 0 and a smooth cutoff function χ1(t, x, v) in (0, 1) × � × R

3,
such that χ1(t, x, v) = 1 in [η0, 1− η0] × �\�ε4 × {|v| ≤ 1

η0
}. Next, multiplying

the equation (4.9) by χ1, we obtain

[∂t + v · ∇x ]{χ1Zn} = {[∂t + v · ∇x ]χ1}Zn − χ1LZn .

Since fn ∈ L∞([0, 1], L2(�×R
3)), one sees that χ1Zn ∈ L2([0, 1], L2(�×R

3))

and {[∂t + v · ∇x ]χ1}Zn − χ1LZn ∈ L2([0, 1], L2(� × R
3)), then we know from

the Averaging Lemma cf. [9,10], that
∫

χ1Zne(v)dv are compact in L2([0, 1]×�)

for any exponential decay function e(v). On the other hand, as with (4.5), from
(4.9), it follows that

sup
0≤t≤1

‖ν1/2Zn(t)‖22 ≤ C‖ν1/2Zn(0)‖22,
∫ 1

0
‖Zn(s)‖2νds ≥ C‖ν1/2Zn(0)‖22.
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Using this, one deduces

∫ 1

0

∫
�

(∫
(1 − χ1)Zne(v)dv

)2

dxds +
∫ 1

0

∫
�

(∫
(1 − χ1)Ze(v)dv

)2

dxds

≤ C
∫ 1

0

∫
�×R3

{
(1 − χ1)

2Z2
ne(v) + (1 − χ1)

2Z2e(v)
}
dvdxds

≤ C
∫
0≤s≤η0

∫
�×R3

+C
∫
1−η0≤s≤1

∫
�×R3

+C
∫ 1

0

∫
�

∫
|v|≥ 1

η0

≤ Cη0
∑

0≤s≤1

∫
�×R3

(1 + |v|)�(Z2
n + Z2)dvdx ≤ Cη0.

Therefore, up to a subsequence, the macroscopic parts of Zk satisfy PZk → PZ =
Z strongly in L2([0, 1]×�×R

3).Therefore, in light of
∫ 1
0 ||(I−P)Zk(s)||2νds → 0

in (4.8), we conclude our lemma. ��
Step 4. Boundary condition leads to Z = 0. Performing the same calculations
as that of Section 3.6 in [27, pp. 747], we see that Z = 0, and this leads to a
contradiction, so finishes up the proof of Proposition 4.1. ��

Once the coercivity estimate (4.3) is obtained, like Proposition 3.1, one can
now deduce the basic energy estimates and time decay rates as follows:

Lemma 4.3. Assume that f (t, x, v) satisfies (4.1) and (4.2), then it holds that

‖ f (t)‖22 +
∫ t

0
‖ f ‖2ν ≤ C‖ f0‖22, (4.11)

and

‖wq/4,θ f (t)‖22 +
∫ t

0
‖wq/4,θ f ‖2ν ≤ C‖wq/4,θ f0‖22. (4.12)

Moreover, there exists λ > 0 such that

‖ f (t)‖22 + e−λtρ0
∫ t

0
eλsρ0 ‖ f ‖2ν ≤ Ce−λtρ0 ‖wq/4,θ f0‖22, (4.13)

here ρ0 is given as in Proposition 3.1.

Proof. We prove (4.13) only, the proof for (4.11) and (4.12) being similar and
easier. Taking the inner product of (4.1) with eλtρ0 f over � × R

3, one has

d

dt

{
eλtρ0 ‖ f (t)‖22

}
+ 2(eλtρ0 L f, f ) = λρ0t

ρ0−1eλtρ0 ‖ f (t)‖22. (4.14)

For any t > 0, there exists a nonnegative integer N such that t ∈ [N , N + 1). For
the time interval [0, N ] (we may assume without lose of generality that N ≥ 1), it
follows that

eλNρ0 ‖ f (N )‖22 + 2
∫ N

0
(eλsρ0 L f, f )ds = ‖ f0‖22 + λρ0

∫ N

0
sρ0−1eλsρ0 ‖ f (s)‖22ds.
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Split the time interval into ∪N−1
j=0 [ j, j + 1) and define f j (s, x, v) = f ( j + s, x, v)

for j = 0, 1, 2, . . . , N − 1, to deduce

eλNρ0 ‖ f (N )‖22 + 2
N−1∑
j=1

∫ 1

0
(eλ( j+s)ρ0 L f j , f j )ds

≤ ‖ f0‖22 + λρ0

N−1∑
j=1

∫ 1

0
( j + s)ρ0−1eλ( j+s)ρ0 ‖ f j (s)‖22ds,

which further implies that

eλNρ0 ‖ f (N )‖22 + 2
N−1∑
j=1

∫ 1

0
(eλ jρ0 L f j , f j )ds

≤ ‖ f0‖22 + Cλρ0

N−1∑
j=1

∫ 1

0
jρ0−1eλ jρ0 ‖ f j (s)‖22ds (4.15)

for 0 < ρ0 < 1.
On the other hand, we get from (4.3) that

N−1∑
j=1

∫ 1

0
(eλ jρ0 L f j , f j )ds ≥ δ0

N−1∑
j=1

∫ 1

0
eλ jρ0 ‖ f j‖2νds. (4.16)

Substituting (4.16) into (4.15) leads us to

eλNρ0 ‖ f (N )‖22 +
N−1∑
j=1

∫ 1

0
eλ jρ0 ‖ f j‖2νds

≤ C‖ f0‖22 + Cλρ0

N−1∑
j=1

∫ 1

0
jρ0−1eλ jρ0 ‖ f j (s)‖22ds. (4.17)

To handle the integral on the right hand side of the above inequality, we decompose
the velocity integration domain as

E j = {v | jρ0−1 ≤ κ ′
0ν}, Ec

j = {v | jρ0−1 > κ ′
0ν},

where κ ′
0 > 0 and small enough. Therefore, for λ = q

16 (κ
′
0)

ρ0
1−ρ0 , it follows that

N−1∑
j=1

∫ 1

0
jρ0−1eλ jρ0 ‖ f j (s)‖22ds

≤ κ ′
0

N−1∑
j=1

∫ 1

0
eλ jρ0 ‖ f j (s)‖2νds
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+ C
N−1∑
j=1

∫ 1

0
jρ0−1e−λ jρ0 e2λ(κ ′

0)

ρ0
ρ0−1 ν

ρ0
ρ0−1 ‖1Ec

j
f j (s)‖22ds

≤ κ ′
0

N−1∑
j=1

∫ 1

0
eλ jρ0 ‖ f j (s)‖2νds + C

∑
0≤s≤N

‖wq/4,θ f (s)‖22
N−1∑
j=1

jρ0−1e−λ jρ0 .

(4.18)

Putting (4.18) back into (4.17), and noticing that
N−1∑
j=1

jρ0−1e−λ jρ0 < ∞, we arrive

at

eλNρ0 ‖ f (N )‖22 +
N−1∑
j=1

∫ 1

0
eλ jρ0 ‖ f j‖2νds ≤ C‖ f0‖22 + C‖wq/4,θ f0‖22,

wherewe used (4.12). Changing back to f j (s) = f (s+ j) and using e( j+s)ρ0−sρ0 ≤
e j

ρ0 , one further has

eλNρ0 ‖ f (N )‖22 +
∫ N

0
eλsρ0 ‖ f (s)‖2νds ≤ C‖ f0‖22 + C‖wq/4,θ f0‖22. (4.19)

Now integrate (4.14) over [N , t] to obtain

eλtρ0 ‖ f (t)‖22 +
∫ t

N
eλsρ0 (L f, f )ds

≤ λρ0

∫ t

N
sρ0−1eλsρ0 ‖ f (s)‖22ds + eλNρ0 ‖ f (N )‖22. (4.20)

Thanks to Lemma 2.2, one has∫ t

N
eλsρ0 (L f, f )ds ≥ δ

∫ t

N
eλsρ0 ‖ f (s)‖2νds − C

∫ t

N
eλsρ0 ‖1|v|≤C f (s)‖2νds.

(4.21)
From (4.20) and (4.21), it follows that

eλtρ0 ‖ f (t)‖22 + δ

∫ t

N
eλsρ0 ‖ f (s)‖2νds

≤ λρ0

∫ t

N
sρ0−1eλsρ0 ‖ f (s)‖22ds + C‖ f0‖22 + eλNρ0 ‖ f (N )‖22,

where the fact that
∫ t
N eλsρ0 ‖1|v|≤C f (s)‖2νds ≤ C

∑
0≤s≤t

‖ f (s)‖22 ≤ C‖ f0‖22 was

used. We then have, by performing calculations similar to those as for obtaining
(4.19),

eλtρ0 ‖ f (t)‖22+
∫ t

N
eλsρ0 ‖ f (s)‖2νds ≤ C‖ f0‖22+C‖wq/4,θ f0‖22+CeλNρ0 ‖ f (N )‖22.

(4.22)
Thereby, (4.13) follows from (4.19) and (4.22). This finishes the proof of Lemma
4.3. ��
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4.2. L∞ Theory for the Linearized Equation

Recall

wq,θ,ϑ = exp

{
q|v|θ
8

+ q|v|θ
8(1 + t)ϑ

}
, (q, θ) ∈ Aq,θ , 0 ≤ ϑ < − θ

�
.

Let h = wq,θ,ϑ (t, v) f (t, x, v). The problem, (4.1) and (4.2) are now equivalent to

∂t h+v·∇xh+
(

ν + ϑq|v|θ
8(1 + t)ϑ+1

)
h = Kwh, h(0) = h0, in (0,∞)×�×R

3,

(4.23)
with

h(t, x, v)|γ− = h(t, x, Rxv), on [0,∞) × γ−. (4.24)

Here Kwh = wq,θ,ϑK
(

h
wq,θ,ϑ

)
as in Section 3.1.

We express solution h(t, x, v) to (4.23) and (4.24) through semigroup U (t) as

h(t, x, v) = {U (t)h0}(x, v),

with initial boundary data given by

{U (0)h0}(x, v) = h0(x, v), and U (0)h0(x, v)|γ− = h0(x, Rxv).

For the sake of simplicity, we denote

ν̃(v, t) = ν + ϑq|v|θ
8(1 + t)ϑ+1 .

It is obvious to see ν̃−1 < ν−1, which plays a significant role in the later proof.
Applying Young’s inequality, one can see that there exists C�,q,ϑ > 0 indepen-

dent of v such that

ν̃(v, t) ≥ C�,q,ϑ (1 + t)
(1+ϑ)�

θ−� , (4.25)

and for t > 0, one sees that

C�,q,ϑ (1 + t)
(1+ϑ)�

θ−� ∼ C�,q,ϑ t
(1+ϑ)�

θ−� . (4.26)

From (4.25) and (4.26), it follows that

e− ∫ t
s ν̃(v,τ )dτ ≤ exp

(
−λ2

{
t

θ+ϑ�
θ−� − s

θ+ϑ�
θ−�

})
def= eλ2sρ1−λ2tρ1 , t ≥ s ≥ 0.

(4.27)
Here, ρ1 = θ+ϑ�

θ−�
with θ + ϑ� > 0, moreover λ2 > 0 is independent of v.

Our goal in this subsection will be to prove the following:
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Proposition 4.2. Let 0 < ϑ < − θ
�
with −3 < � < 0 and (q, θ) ∈ Aq,θ . Assume

that ξ is both strictly convex (1.8) and analytic, and the mass (1.17) and energy
(1.18) are conserved. In the case that � has rotational symmetry (1.9), we also
assume the conservation of corresponding angularmomentum (1.19). Let h0 ∈ L∞.

Then there exist λ0 > 0 and C > 0 such that (4.23) and (4.24) admit a unique
solution U (t)h0 satisfying

‖U (t)h0‖∞ ≤ Ce− λ0
2 tρ1 ‖h0‖∞ , (4.28)

where ρ1 = θ+ϑ�
θ−�

.

TheDuhamel Principle will be applied to prove Proposition 4.2 and the first step
is an appropriate decomposition. Initially, we look for solutions to the linearized
equation (4.23) with the almost compact operator Kw removed. Namely, we first
consider

∂t h + v · ∇xh + ν̃(v, t)h = 0, h(0) = h0, in (0,∞) × � × R
3, (4.29)

with
h(t, x, v)|γ− = h(t, x, Rxv), on [0,∞) × γ−. (4.30)

Let us denote the solution to (4.29) and (4.30) as semigroup G(t)h0.
Prior to investigating the properties of the solution operators U (t) and G(t),

we give the following definition:

Definition 4.1. Let� be convex (1.8). Fix any point (t, x, v) /∈ γ0∩γ−, and define
(t0, x0, v0) = (t, x, v), and for k ≥ 1

(tk+1, xk+1, vk+1) = (tk − tb(tk, xk, vk), xb(xk, vk), Rxk+1vk), (4.31)

where Rxk+1vk = vk − 2(vk · n(xk+1))n(xk+1). We define the specular back-time
cycle as

Xcl(s) ≡
∑
k=1

1[tk+1,tk )(s) {xk + vk(s − tk)} , Vcl(s) ≡
∑
k=1

1[tk+1,tk )(s)vk .

Lemma 4.4. Let h0 ∈ L∞(� × R
3). There exists a unique solution G(t)h0 to

{∂t + v · ∇x + ν̃(v, t)} {G(t)h0} = 0, {G(0)h0} = h0,

with the specular reflection {G(0)h0}(t, x, v) = {G(0)h0}(t, x, Rxv) for x ∈ ∂�.

For almost any (x, v) ∈ � × R
3\γ0,

{G(t)h0}(t, x, v) = e− ∫ t
0 ν̃(v,τ )dτh0 (Xcl(0), Vcl(0))

=
∞∑
k

1[tk+1,tk )(0)e
− ∫ t

0 ν̃(v,τ )dτh0(xk − tkvk, vk).
(4.32)

Here, we define tk = 0 if tk < 0.
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Moreover, it holds that

‖G(t)h0‖∞ ≤
∥∥∥e− ∫ t

0 ν̃(v,τ )dτh0
∥∥∥∞ , (4.33)

and there exists λ2 > 0 such that

‖G(t)h0‖∞ ≤ Ce−λ2tρ1 ‖h0‖∞ , t ≥ 0, (4.34)

and

‖G(t − s)h(s)‖∞ ≤ Ce−λ2{tρ1−sρ1 } ‖h(s)‖∞ , t ≥ s ≥ 0. (4.35)

Proof. The proof for (4.32) and (4.33) is the same as that of Lemma 15 in [27, pp.
757]. As such, (4.34) and (4.35) directly follow from (4.27) and (4.33), and this
completes the proof of Lemma 4.4. ��

The following lemma shows that the solution operator G(t)h0 is indeed con-
tinuous away from the grazing set:

Lemma 4.5. [27, Lemma 21, pp. 768] Let ξ be convex as in (1.8). Let h0 be contin-
uous in �̄×R

3\γ0 and g(t, x, v) be continuous in the interior of [0,∞)×�×R
3

and sup[0,∞)×�×R3 | g(t,x,v)
ν̃(v,t) | < ∞. Assume that on γ−, h0(x, v) = h0(x, R(x)v).

Then the specular solution h(t, x, v) to

∂t h + v · ∇xh + ν̃(v, t)h = g(t, x, v), h(0) = h0, in (0,∞) × � × R
3,

with

h(t, x, v)|γ− = h(t, x, Rxv), on [0,∞) × γ−,

is continuous on [0,∞) × {�̄ × R
3\γ0}.

We now go back to (4.23) and (4.24). From the Duhamel formula, it follows
that

{U (t)h0}(x, v) = G(t)h0(x, v) +
∫ t

0
ds G(t − s)Kw{U (s)h0}(x, v).

Employing the decomposition Kw = K χ
w + K 1−χ

w again, we then expand out:

{U (t)h0}(x, v) = G(t)h0(x, v) +
∫ t

0
ds G(t − s)K 1−χ

w {U (s)h0}(x, v)

+
∫ t

0
ds G(t − s)K χ

w{U (s)h0}(x, v).

We further iterate the Duhamel formula of the last term, as was done in [46]:

{U (s)h0}(x, v) = G(s)h0(x, v) +
∫ s

0
ds1 G(s − s1)Kw{U (s1)h0}(x, v).
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Substituting this into the previous expression and using Kw = K χ
w + K 1−χ

w again
yields a more elaborate formula:

{U (t)h0}(x, v) =G(t)h0(x, v) +
∫ t

0
ds G(t − s)K 1−χ

w {U (s)h0}(x, v)

+
∫ t

0
ds G(t − s)K χ

w{G(s)h0}(x, v)

+
∫ t

0
ds
∫ s

0
ds1 G(t − s)K χ

wG(s − s1)K
1−χ
w {U (s1)h0}(x, v)

+
∫ t

0
ds
∫ s

0
ds1 G(t − s)K χ

wG(s − s1)K
χ
w{U (s1)h0}(x, v)

def=
5∑

l=1

Hl(t, x, v).

(4.36)

For any fixed point (t, x, v) with (x, v) /∈ γ0, let the back-time specular cycle of
(t, x, v) be [xcl(s), vcl(s)], then themost delicate term H5 in (4.36) can be rewritten
as

H5(t, x, v) =
∫ t

0
ds
∫ s

0
ds1

∫
dv′dv′′e− ∫ t

s ν̃(v,τ )dτ−∫ ss1 ν̃(v′,τ )dτ

× kχ
w(Vcl(s), v

′)kχ
w(V ′

cl(s1), v
′′)h

(
X ′
cl(s1), v

′′) ,
where kχ

w(·) = wq,θ,ϑkχ ( ·
wq,θ,ϑ

) and the back-time specular cycle from (s, Xcl(s),

v′) is denoted by

X ′
cl(s1) = Xcl(s1; s, Xcl(s), v

′), V ′
cl(s1) = Vcl(s1; s, Xcl(s), v

′). (4.37)

More explicitly, let tk and t ′k′ be the corresponding times for both specular cycles,
as in (4.31). For tk+1 ≤ s < tk, t ′k′+1 ≤ s1 < t ′k′

X ′
cl(s1) = Xcl(s1; s, Xcl(s), v

′) ≡ x ′
k′ + (s1 − t ′k′)v′

k′ , (4.38)

where x ′
k′ = Xcl(t ′k′ ; s, xk + (s − tk)vk, v′), v′

k′ = Vcl(t ′k′ ; s, xk + (s − tk)vk, v′).
Recall α in (2.18) and define, naturally,

α(x, v) ≡ α(t) = ξ2(x) + [v · ∇ξ(x)]2 − 2[v · ∇2ξ(x) · v]ξ(x).

We define the main set

Aα =
{
(x, v) : x ∈ �̄,

1

N
≤ |v| ≤ N , and α(x, v) ≥ 1

N

}
. (4.39)

Lemma 4.6. [27, Lemma22, pp. 775]Fix k and k′.Define for tk+1 ≤ s ≤ tk, s1 ∈ R

and

J ≡ Jk,k′(t, x, v, s, s1, v
′) ≡ det

(
∂{x ′

k′ + (s1 − t ′k′)v′
k′ }

∂v′

)
.
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For any ε > 0 sufficiently small, there is δ̃(N , ε, T0, k, k′) > 0 and an open
covering ∪m

i=1B(ti , xi , vi ; ri ) of [0, T0]× Aα and corresponding open sets Oti ,xi ,vi
for [tk+1 + ε, tk − ε] × R × R

3 with |Oti ,xi ,vi | < ε, such that

|Jk,k′(t, x, v, s, s1, v
′)| ≥ δ̃ > 0

for 0 ≤ t ≤ T0, (x, v) ∈ Aα and (s, s1, v′) in
Oc
ti,xi ,vi ∩ [tk+1 + ε, tk − ε] × [0, T0] × {|v′| ≤ 2N }.

In order to prove Proposition 4.2, we first show the following crucial estimates
with the aid of Lemmas 4.5 and 4.6:

Lemma 4.7. There exist constants T0 > 0 and CT0 > 0 such that

‖U (T0)h0‖∞ ≤ e−λ0T
ρ1
0 ‖h0‖∞ + CT0

∫ T0

0
‖ f (s)‖2ds. (4.40)

Proof. Our proof is divided into two steps.

Step 1. Estimate of h1Aα . Let us split h = h1Aα + h(1− 1Aα ). We first express and
estimate the main part, h1Aα , through (4.36). By utilizing (4.27) and Lemmas 2.2
and 4.4, we see that

|H1(t, x, v)| ≤ Ce−λ2tρ1 ‖h0‖∞ ,

|H2(t, x, v)| ≤ C
∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )e− λ2
2 sρ1 e

λ2
2 sρ1

×[K 1−χ
w U (s)h(s)]̃ν−1(v)ds

≤ Cε3+�e− λ2
2 tρ1 sup

0≤s≤t

∥∥∥e λ2
2 sρ1U (s)h(s)

∥∥∥∞

∫ t

0
e− 1

2

∫ s
0 ν̃(v′)dτ ν̃(v)ds

≤ Cε3+�e− λ2
2 tρ1 sup

0≤s≤t

∥∥∥e λ2
2 sρ1U (s)h(s)

∥∥∥∞ .

Here we have used the fact that
∫ t
0 e

− 1
2

∫ t
s ν̃(v)dτ ν̃(v)ds < ∞, as well as the signifi-

cant observation ν̃−1 ≤ ν−1. Continuing, one has

|H3(t, x, v)| ≤ C ‖h0‖∞
∫
R3

∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )e− λ2
2 sρ1 ν−1(v)

× kχ
w(Vcl(s), v

′)dsdv′

≤ Ce− λ2
2 tρ1 ‖h0‖∞ ,

and

|H4(t, x, v)| ≤ Cε3+� sup
0≤s≤t

∥∥∥e λ2
2 sρ1U (s)h(s)

∥∥∥∞

×
∫
R3

∫ t

0

∫ s

0
e− 1

2

∫ t
s ν̃(v)dτ e

− 1
2

∫ s
s1

ν̃(v′)dτ
ν̃(v)̃ν(v′)

× e− λ2
2 (tρ1−sρ1 )e− λ2

2 (sρ1−s
ρ1
1 )e− λ2

2 s
ρ1
1 ν−1(v)kχ

w(Vcl(s), v
′)dsds1dv′

≤ Cε3+�e− λ2
2 tρ1 sup

0≤s≤t

∥∥∥e λ2
2 sρ1U (s)h(s)

∥∥∥∞ .
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For the main contribution H5, notice that along the back-time specular cycles
[Xcl(s), Vcl(s)] and [X ′

cl(s1), V
′
cl(s1)] in (4.37), |Vcl(s)| ≡ |v| and |V ′

cl(s1)| ≡ |v′|.
Therefore, the integration over |v| > N or |v′| ≥ 2N or |v′| ≤ 2N and |v′′| ≥ 3N
are bounded by

C

{
e− εN2

16 + 1

N

}
e− λ2

2 tρ1 sup
0≤s≤t

∥∥∥e λ2
2 sρ1 h(s)

∥∥∥∞ .

As in Case 3 in Section 3.2, by using the same approximation, we only need to
concentrate on the bounded set {|v| ≤ N , |v′| ≤ 2N and |v′′| ≤ 3N } of
∫ t

0

∫ s

0

∫
|v′|≤2N ,|v′′|≤3N

e
− ∫ t

s ν̃(v)τ−∫ ss1 ν̃(v′)dτ ∣∣h (s1, X ′
cl(s1), v

′′)∣∣ dv′dv′′ds1ds

=
∫

α(Xcl(s),v′)<ε
|v′|≤2N ,|v′′|≤3N

+
∫

α(Xcl(s),v′)≥ε
|v′|≤2N ,|v′′|≤3N

= H5,1 + H5,2.

In the case α(Xcl(s), v′) ≤ ε, ξ2(Xcl(s)) + [v′ · ∇ξ(Xcl(s))]2 ≤ ε, notice that
|∇ξ(Xcl(s))| ≥ c > 0, hence for ε small and Xcl(s) � ∂�, H5,1 is dominated by

H5,1 ≤ CN

∫ t

0

∫ s

0
e− 1

2

∫ t
s ν̃(v)dτ e

− 1
2

∫ s
s1

ν̃(v′)dτ
ν̃(v)̃ν(v′)

× e− λ2
2 (tρ1−sρ1 )e− λ2

2 (sρ1−s
ρ1
1 )e− λ2

2 s
ρ1
1 e

λ2
2 s

ρ1
1

∥∥∥̃ν−1h(s1)
∥∥∥∞ dsds1

×
∫

α(Xcl(s),v′)≤ε
|v′|≤2N ,|v′′|≤3N

≤ CNe
− λ2

2 tρ1 sup
0≤s≤t

∥∥∥e λ2
2 sρ1 h(s)

∥∥∥∞

∫
|v′· ∇ξ(Xcl(s))|∇ξ(Xcl(s))| |≤cε,|v′|≤2N ,|v′′|≤3N

≤ CN εe− λ2
2 tρ1 sup

0≤s≤t

∥∥∥e λ2
2 sρ1 h(s)

∥∥∥∞ .

As for case α(Xcl(s), v′) ≥ ε from (4.38), we bound H5,2 as

CN

∫ t

0
e− λ2

2 (tρ1−s
ρ1
1 )

∫ s

0

∫
α(Xcl(s),v′)≥ε

|v′|≤2N ,|v′′|≤3N

|h (s1, X ′
cl(s1), v

′′) |dv′dv′′

= CN

∑
k,k′

∫ tk

tk+1

∫ t ′
k′

t ′
k′+1

∫
α(Xcl(s),v′)≥ε

|v′|≤2N ,|v′′|≤3N

e− λ2
2 (tρ1−s

ρ1
1 )

× |h (s1, x ′
k′ + (s1 − t ′k′)v′

k′ , v′′) |dv′dv′′,

where [t ′k′ , x ′
k′ , v′

k′ ] is the back-time cycle of (s, xk + (s − tk)vk, vk), for tk+1 ≤
s ≤ tk .

We now study x ′
k′ + (s1 − t ′k′)v′

k′ . By repeatedly using Velocity Lemma 2.5, we
deduce for (t, x, v) ∈ Aα and 0 < t ≤ T0 and α(Xcl(s), v′) ≥ ε that

α(tl) ∼ {vl · nxl }2 ≥ e−{Cξ N−1}T0α(t) ≥ CT0,ξ,N > 0;
α(t ′l ′) ∼ {v′

l ′ · nx ′
l′
}2 ≥ e−{Cξ N−1}T0α(Xcl(s), v

′) ≥ CT0,ξ,N ε > 0.
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Therefore, applying (2.19) in Lemma 2.6 yields tl − tl+1 ≥ cT0,ξ,N

N2 and t ′l ′ − t ′l ′+1 ≥
cT0,ξ,N ε

4N2 so that

k ≤ T0N 2

cT0,ξ,N
= CT0,ξ,N , k′ ≤ T0N 2

cT0,ξ,N ε
= CT0,ξ,N ,ε.

With this, one can further split the s−integral as

CN

∫ tk

tk+1

∫
|v′|≤2N ,|v′′|≤3N

∑
k≤CT0,N ,k′≤CT0,N ,ε

∫ t ′
k′

t ′
k′+1

1Aαe
− λ2

2 (tρ1−s
ρ1
1 )

× |h (s1, x ′
k′ + (s1 − t ′k′)v′

k′ , v′′) |
=
∫ tk−ε

tk+1+ε

+
∫ tk

tk−ε

+
∫ tk+1+ε

tk+1

.

Noticing that
∑

k′
∫ t ′

k′
t ′
k′+1

= ∫ s
0 , the last two terms make a small contribution as

εCN sup
0≤s≤t

e− λ2
2 (tρ1−sρ1 )||h(s)||∞

∫ T0

0

∫
|v′|≤2N ,|v′′|≤3N

= εCN ,T0 sup
0≤s≤t

e− λ2
2 (tρ1−sρ1 ) ‖h(s)‖∞ .

For the main contribution
∫ tk−ε

tk+1+ε
, by Lemma 4.6, on the set Oc

ti ,xi ,vi ∩ [tk+1 +
ε, tk − ε] × [0, T0] × {|v′| ≤ N }, we can define a change of variable

y ≡ x ′
k′ + (s1 − t ′k′)v′

k′ ,

so that det( ∂y
∂v′ ) > δ on the same set. By the Implicit Function Theorem, there is a

finite open covering ∪m
j=1Vj of Oc

ti ,xi ,vi ∩ [tk+1 + ε, tk − ε]× [0, T0]× {|v′| ≤ N },
and a smooth function Fj such that v′ = Fj (t, x, v, y, s1, s) in Vj . We therefore
have

∑
k,k′

∫ tk−ε

tk+1+ε

∫
|v′|≤2N ,|v′′|≤3N

∫ t ′
k′

t ′
k′+1

≤
∑
k,k′

∫ tk−ε

tk+1+ε

∫
|v′|≤2N ,|v′′|≤3N

∫ t ′
k′

t ′
k′+1

1Oti ,xi ,vi

+
∑
j,k,k′

∫ tk−ε

tk+1+ε

∫
|v′|≤2N ,|v′′|≤3N

∫ t ′
k′

t ′
k′+1

1Vj .

Since
∑

k′
∫ t ′

k′
t ′
k′+1

= ∫ s
0 ≤ ∫ T0

0 and |Oti ,xi ,vi | < ε, the first part is bounded by

CN ,T0εe
− λ2

2 tρ1 sup
0≤s≤t

{
e

λ2
2 sρ1 ‖h(s)‖∞

}
.
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For the second part, we can make a change of variable v′ → y = x ′
k′ + (s1 −

t ′k′)v′
k′ on each Vj to get

Cε,T0,N

∑
j,k,k′

∫
Vj

∫
|v′′|≤3N

e− λ2
2 (tρ1−s

ρ1
1 )|h (s1, x ′

k′ + (s1 − t ′k′)v′
k′ , v′′) |

= Cε,T0,N

∑
j

∫
Vj

∫
|v′′|≤3N

e− λ2
2 (tρ1−s

ρ1
1 )|h (s1, y, v′′) | 1∣∣∣det

{
∂y
∂v′
}∣∣∣dydv

′′dsds1

≤ Cε,T0,N

δ

∫ t

0

∫ s

0
e− λ2

2 tρ1
∫

|v′′|≤3N
e

λ2
2 s

ρ1
1

{∫
�

h2
(
s1, y, v

′′) dy
}1/2

dv′′dsds1

≤ Cε,T0,N

∫ t

0
‖ f (s)‖2ds,

where f = h
wq,θ,ϑ

. We therefore conclude, summing over k and k′, and collecting
terms

∥∥h(t, x, v)1Aα

∥∥∞ ≤ Ce− λ2
2 tρ1 ‖h0‖∞ + Cε,T0,N

∫ t

0
‖ f (s)‖2ds

+
{
C

N
+ CN ,T0ε

}
e− λ2

2 tρ1 sup
0≤s≤t

e
λ2
2 sρ1 ‖h(s)‖∞ . (4.41)

Step 2:Estimate of h.Wefirst get, from h(t, x, v) = G(t)h0+
∫ t
0 G(t, s)Kwh(s)ds,

that

‖h(t)‖∞ ≤ e−λ2tρ2 ‖h0‖∞ +
∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )

×
∥∥∥ν−1(v)K 1−χ

w h
∥∥∥∞ (s)ds

+
∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )
∥∥∥ν−1(v)K χ

wh
∥∥∥∞ (s)ds

≤ e−λ2tρ2 ‖h0‖∞ + Cε3+�e− λ2
2 tρ2 sup

0≤s≤t
e

λ2
2 sρ1 ‖h(s)‖∞

+
∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )
∥∥∥ν−1(v)K χ

wh
∥∥∥∞ (s)ds. (4.42)

Next, since {K χ
wh}(s, x, v) = ∫

kχ
w(v, v′)h(s, x, v′)dv′, we then rewrite

∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )
∥∥∥ν−1(v)K χ

wh
∥∥∥∞ (s)ds

=
∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )

×
∥∥∥∥ν−1

∫
kχ

w(v, v′)h(s, x, v′){1 − 1Aα(x,v′)}dv′
∥∥∥∥∞

ds

+
∫ t

0
e− 1

2

∫ t
s ν̃(v)dτ ν̃(v)e− λ2

2 (tρ1−sρ1 )
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∥∥∥∥ν−1
∫

kχ
w(v, v′)h(s, x, v′)1Aα(x,v′)dv

′
∥∥∥∥∞

ds

def= H6 + H7.

From the definition of Aα in (4.39), it follows that

H6 ≤ C

(∫
|v′|≥N , or |v′|≤ 1

N

|ν−1kχ
w(v, v′)|dv′ +

∫
α(x,v′)≤ 1

N

|ν−1kχ
w(v, v′)|

)

× e− λ2
2 tρ1 sup

0≤s≤t
e

λ2
2 sρ1 ‖h(s)‖∞ .

By approximation, if necessary, one sees
∫
|v′|≥N , or |v′|≤ 1

N
|ν−1kχ

w(v, v′)|dv′ =
o(1) as N → ∞. From α(x, v′) ≤ 1

N , ξ2(x) + [v′· ∇ξ(x)]2 ≤ 1
N . For N large,

x � ∂� and |∇ξ(x)| ≥ c so that∫
α(x,v′)≤ 1

N

|ν−1kχ
w(v, v′)|dv′ ≤

∫
|v′· ∇ξ(x)

|∇ξ(x)| |≤ 1
c
√
N

|ν−1kχ
w(v, v′)|dv′ = o(1),

as N → ∞. As a consequence, it follows that

H6 ≤ o(1)e− λ2
2 tρ1 sup

0≤s≤t
e

λ2
2 sρ1 ‖h(s)‖∞ .

As to H7, in view of (4.41), one has

H7 ≤ Ce− λ2
2 tρ1 ‖h0‖∞ +

{
C

N
+ CN ,T0ε

}
e− λ2

2 tρ1 sup
0≤s≤t

e
λ2
2 sρ1 ‖h(s)‖∞

+ Cε,T0,N

∫ t

0
‖ f (s)‖2ds.

Hence, substituting the estimates for H6 and H7 into (4.42), we arrive at

‖h(t)‖∞ ≤ Ce− λ2
2 tρ1 ‖h0‖∞

+
{
C

N
+ CN ,T0ε + o(1)

}
e− λ2

2 tρ1 sup
0≤s≤t

e
λ2
2 sρ1 ‖h(s)‖∞

+ Cε,T0,N

∫ t

0
‖ f (s)‖2ds.

We choose T0 large such that 2Ce− λ2
2 T

ρ1
0 = e−λ0T

ρ1
0 , for some λ0 > 0. We then

further choose N large, and then ε sufficiently small such that C{o(1) + 1
N +

CN ,T0ε} < 1
2 . Therefore, one has

sup
0≤s≤t

{
e

λ2
2 sρ1 ‖h(s)‖∞

}
≤ 2C ‖h0‖∞ + CT0

∫ t

0
‖ f (s)‖2ds.

Choosing s = t = T0, we deduce the finite-time estimate (4.40), and the proof of
Lemma 4.7 is completed. ��
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We are ready to present

The proof of Proposition 4.2. It suffices to only prove (4.28) for t ≥ 1. For any
m ≥ 1,we employ the finite-time estimate (4.40) repeatedly to functions h(lT0+s)
for l = m − 1,m − 2, . . . 0 to deduce

‖h(mT0)‖∞ ≤ e−λ0T
ρ1
0 ‖h({m − 1}T0)‖∞ + CT0

∫ T0

0
‖ f ({m − 1}T0 + s)‖2ds

= e−λ0T
ρ1
0 ‖h({m − 1}T0)‖∞ + CT0

∫ mT0

{m−1}T0
‖ f (s)‖2ds

≤ e−2λ0T
ρ1
0 ‖h({m − 2}T0)‖∞ + e−λ0T

ρ1
0 CT0

∫ {m−1}T0

{m−2}T0
‖ f (s)‖2ds

+CT0

∫ mT0

{m−1}T0
‖ f (s)‖2 ds

≤ e−mλ0T
ρ1
0 ‖h(0)‖∞ + CT0

m−1∑
k=0

e−kλ0T
ρ1
0

∫ {m−k}T0

{m−k−1}T0
‖ f (s)‖2ds,

where h(t) = U (t)h0.
Next, by the L2 decay constructed in Lemma 4.3, in the interval {m−k−1}T0 ≤

s ≤ {m − k}T0, one has
‖ f (s)‖2 ≤ e−λsρ0 ‖wq/4,θ f0‖2 ≤ e−λ({m−k−1}T0)ρ0 ‖wq/4,θ f0‖2.

Noticing that ρ0 = θ
θ−�

>
θ+ϑ�
θ−�

= ρ1, taking λ0 = min{λ, λ0} and applying

(k + 1)T ρ1
0 ≥ ((k + 1)T0)ρ1 for 0 < ρ1 < 1, we further obtain

‖h(mT0)‖∞ ≤ e−mλ0T
ρ1
0 ‖h(0)‖∞ + CT0

m−1∑
k=0

e−kλ0T
ρ1
0

∫ {m−k}T0

{m−k−1}T0
× e−λ({m−k−1}T0)ρ0 ‖wq/4,θ f0‖2ds

≤ e−mλ0T
ρ1
0 ‖h(0)‖∞ + CT0e

λ0T
ρ1
0 mT0e

−λ0mρ1T
ρ1
0 ‖wq/4,θ f0‖2

≤ CT0,λ0e
− λ0m

ρ1 T
ρ1
0

2 ‖h(0)‖∞ ,

where we also used the fact that

‖wq/4,θ f0‖2 =
∥∥∥wq/4,θw

−1
q,θ,ϑh0

∥∥∥
2

≤ C ‖h0‖∞ ,

and

({m − k − 1}T0)ρ1 + ({k + 1}T0)ρ1 ≥ (mT0)
ρ1 , mT0e

−λ0mρ1T
ρ1
0 ≤ e− λ0m

ρ1 T
ρ1
0

2 .

Finally, for any t, we can find m such that mT0 ≤ t ≤ {m + 1}T0, and

‖h(t)‖∞ ≤ C ‖h(mT0)‖∞ ≤ CT0,λ0e
− λ0m

ρ1 T
ρ1
0

2 ‖h(0)‖∞

≤
{
CT0,λ0e

λ0T
ρ1
0

}
e− λ0

2 tρ1 ‖h(0)‖∞ ,
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according to the fact e− λ0m
ρ1 T

ρ1
0

2 ≤ e− λ0
2 tρ1 e

λ0T
ρ1
0
2 . This ends the proof of Proposi-

tion 4.2. ��

4.3. Nonlinear Existence and Time Exponential Decay

In this subsection, we make use of Proposition 4.2 to prove the global existence
and time exponential decay of the nonlinear Boltzmann equation with a specular
reflection boundary condition. Namely, we complete

The proof of Theorem 1.2. We start with the following iteration scheme:

{
∂t h�+1 + v · ∇xh�+1 + ν̃h�+1 − Kwh�+1 = wq,θ,ϑ�

(
h�

wq,θ,ϑ
, h�

wq,θ,ϑ

)
,

h�+1(0, x, v) = h0(x, v),

(4.43)

with h�+1− (t, x, v) = h�+1(t, x, Rxv) and h0 = h0(x, v). Here h� = f �wq,θ,ϑ .

From the Duhamel principle, it follows that

h�+1 = U (t)h0 +
∫ t

0
U (t − s)wq,θ,ϑ�

(
h�

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
(s)ds.

We then get from, Proposition 4.2 and Lemma 2.3 that

∥∥∥h�+1(t)
∥∥∥∞ ≤ Ce− λ0

2 tρ1 ‖h0‖∞

+
∥∥∥∥
∫ t

0
U (t − s)wq,θ,ϑ�

(
h�

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
(s)ds

∥∥∥∥∞

≤ Ce− λ0 t
ρ1
2 ‖h0‖∞ +

∫ t

0
e− λ0

2 (t−s)ρ1−λ0sρ1 ds sup
0≤s≤t

∥∥∥e λ0
2 sρ1 h�(s)

∥∥∥2∞
≤ Ce− λ0 t

ρ1
2 ‖h0‖∞ + e− λ0

2 tρ1 sup
0≤s≤t

∥∥∥e λ0
2 sρ1 h�(s)

∥∥∥2∞ ,

(4.44)

where the fact that ν(v) < C was used. This implies that

sup
�

sup
0≤t≤∞

{
e

λ0
2 tρ1

∥∥∥h�(t)
∥∥∥∞

}
≤ C‖h0‖∞

for ‖h0‖∞ sufficiently small. Moreover, subtracting h�+1 − h� yields

{∂t + v · ∇x + ν̃ − Kw}{h�+1 − h�}

= wq,θ,ϑ

{
�

(
h�

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
− �

(
h�−1

wq,θ,ϑ

,
h�−1

wq,θ,ϑ

)}
,
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with {h�+1−h�}(0, x, v) = 0 and {h�+1−h�}(t, x, v)|− = {h�+1−h�}(t, x, Rxv)

by the decomposition

�

(
h�

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
− �

(
h�−1

wq,θ,ϑ

,
h�−1

wq,θ,ϑ

)

= �

(
h� − h�−1

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
− �

(
h�−1

wq,θ,ϑ

,
h�−1 − h�

wq,θ,ϑ

)
.

Performing a calculation similar to (4.44), we then obtain

∥∥∥{h�+1 − h�}(t)
∥∥∥∞ ≤

∥∥∥∥
∫ t

0
U (t − s)wq,θ,ϑ�

(
h� − h�−1

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
(s)ds

∥∥∥∥∞

+
∥∥∥∥
∫ t

0
U (t − s)wq,θ,ϑ�

(
h�−1

wq,θ,ϑ

,
h�−1 − h�

wq,θ,ϑ

)
(s)ds

∥∥∥∥∞
≤ Ce− λ0

2 tρ1 sup
0≤s≤t

{∥∥∥e λ0
2 sρ1 h�(s)

∥∥∥∞ +
∥∥∥e λ0

2 sρ1 h�−1(s)
∥∥∥∞

}

× sup
0≤s≤t

∥∥∥e λ0
2 sρ1 {h�(s) − h�−1(s)}

∥∥∥∞ .

Hence h� is a Cauchy sequence and the limit h is a desired unique solution satisfing

sup
0≤t≤∞

∥∥∥e λ0
2 tρ1 h(t)

∥∥∥∞ ≤ C ||h0||∞.

In addition, if� is strictly convex, we claim that h�+1 is continuous in [0,∞)×
{�̄ × R

3\γ0} inductively. To prove this claim, for any given fixed �, we can use
another iteration to solve the linear problem for h�+1 in (4.43) as the limit of
�′ → ∞:

{∂t + v · ∇x + ν̃}h�+1,�′+1 = Kwh
�+1,�′ + wq,θ,ϑ�

(
h�

wq,θ,ϑ

,
h�

wq,θ,ϑ

)
,

with the initial boundary condition:

h�+1,�′+1
− (t, x, v) = h�+1,�′+1(t, x, Rxv), h�+1,�′+1(0) = h0(x, v)

and h�+1,0 ≡ h0(x, v). By induction over �′, h�+1,�′
is continuous in [0,∞)×{�̄×

R
3\γ0}, and by Lemma 2.2, it is standard to show that Kwh�+1,�′

is continuous in
the interior of [0,∞) × � × R

3. From the induction hypothesis on the continuity
of h� in [0,∞) × {�̄ × R

3\γ0}, it is also straightforward and routine to verify that
wq,θ,ϑ�( h�

wq,θ,ϑ
, h�

wq,θ,ϑ
) is continuous in the interior of [0,∞)×�×R

3. In view of

Lemma 4.5, we thus deduce that h�+1,�′+1 is continuous in [0,∞)×{�̄×R
3\γ0}.

Furthermore, it follows that

{∂t + v · ∇x + ν̃}{h�+1,�′+1 − h�+1,�′ } = Kw{h�+1,�′ − h�+1,�′−1}
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with {h�+1,�′+1 − h�+1,�′ }(t, x, v)|− = {h�+1,�′+1 − h�+1,�′ }(t, x, Rxv) and
{h�+1,�′+1 − h�+1,�′ }(0) = 0. With this, one deduces that

sup
0≤t≤T

∥∥∥h�+1,�′+1(t) − h�+1,�′
(t)
∥∥∥∞

≤ CK

∫ T

0

∥∥∥h�+1,�′
(s) − h�+1,�′−1(s)

∥∥∥∞ ds ≤ · · · ≤ C
{CK T }�′

�′! .

Therefore, {h�+1,�′ }∞
�′=1 is a Cauchy sequence in L∞, and its limit h�+1 is contin-

uous in [0,∞) × {�̄ × R
3\γ0}. We conclude our claim. Once h� is continuous, its

limit h is continuous as well.
Finally, the uniqueness and positivity of F follows the same argument as the

proof of Theorem 3 in [27, pp. 804]; we omit the details for brevity. This finishes
the proof of Theorem 1.2. ��
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