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Abstract

Boundary effects are central to the dynamics of the dilute particles governed
by the Boltzmann equation. In this paper, we study both the diffuse reflection and
the specular reflection boundary value problems for the Boltzmann equation with
a soft potential, in which the collision kernel is ruled by the inverse power law.
For the diffuse reflection boundary condition, based on an L? argument and its
interplay with intricate L analysis for the linearized Boltzmann equation, we first
establish the global existence and then obtain the exponential decay in L™ space
for the nonlinear Boltzmann equation in general classes of bounded domain. It turns
out that the zero lower bound of the collision frequency and the singularity of the
collision kernel lead to some new difficulties for achieving the a priori L°° estimates
and time decay rates of the solution. In the course of the proof, we capture some
new properties of the probability integrals along the stochastic cycles and improve
the L? — L™ theory to give a more direct approach to overcome those difficulties.
As to the specular reflection condition, our key contribution is to develop a new
time-velocity weighted L°° theory so that we could deal with the greater difficulties
stemming from the complicated velocity relations among the specular cycles and the
zero lower bound of the collision frequency. From this new point, we are also able
to prove that the solutions of the linearized Boltzmann equation tend to equilibrium
exponentially in L> space with the aid of the L? theory and a bootstrap argument.
These methods, in the latter case, can be applied to the Boltzmann equation with
soft potential for all other types of boundary condition.
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1. Introduction

1.1. The Problem and Background

Boundary effects should been taken into account when we study the dynamics
of rarefied gas governed by the Boltzmann equation in a bounded domain. There
are several standard classes of boundary conditions for the Boltzmann equation, cf.
[27, pp. 716]. In this paper, we consider the the Boltzmann equation

WF+v-VoF=Q(F,F), (x,2v) e 2xR3 t>0, (1.1)

with initial data
F@,x,v) = Fop(x,v), (x,v) € QX ]R3, (1.2)
and either of the following boundary conditions:
e The diffuse reflection boundary condition
F(t, X, 0)|n(x)v<0 = n(v) F(t, x,v)(n(x)-v)dv', x € 9Q, t > 0;
n(x)-v'>0
(1.3)
e The specular reflection boundary condition
F(t, x, V)|nx)v<o = F(t,x, Ryv), Ryv = v=2(v-n(x))n(x), x € 02, t > 0.
(1.4)

Here, F(t, x, v) > 0 denotes the density distribution function of the gas particles
at time ¢ > 0, position x € €2, and velocity v € R3, © is a bounded domain in R3,
n(x) is the outward pointing unit norm vector at boundary x € <2 and u(v) stands
for the global Maxwellian which is normalized as

1
n() = 7€ ,

so that
/ n)(n(x) -v)dv = 1. (1.5)
n(x)v>0
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Let (u, v) and (', v’) be the velocities of the particles before and after the collision,
which satisfy

[v’=v+[(u—v)~w]a), W =u—[(u-v)- oo, (1.6)

lu? + vf* = |u']> + V'],

The Boltzmann collision operator Q(-, -) is given as the following non-symmetric
form:

Q(F1, F2) =/

R3xS

= QEIN(F, Fy) — Q'(Fy, Fy),

L= v[bo(O)[F1 (") F2(v") — Fi(u) F2(v)]dudw

where the exponentis o = l—f—: withinverse power 1 < s < 4andcosf = w- IZ:;.
Through the paper, we assume
—3<p0<0,0<bp@) <Ccosb, (1.7)

which are so-called soft potentials with Grad’s angular cutoff. Traditionally, one
labels things as hard potentials for the case when ¢ € (0, 1], Maxwellian molecules
for the case when o = 0, and the soft potentials for the case when o € (-3, 0).

The boundary condition (1.3) says the incoming particles are a probability
average of the outgoing particles, while boundary condition (1.4) reveals that the
gas particles elastically collide against the wall like billiard balls.

The boundary effects in kinetic equations are fundamental to the dynamics of
gas; for instance, the phenomena of slip boundary layer, thermal creep, curvature
effects, and singularity of propagation due to the boundary [40] can be under-
stood only with knowledge of the interaction mechanism of the particles with the
boundary. Owing to the importance of the boundary effects, there have been many
achievements in the mathematical study of different aspects of Boltzmann bound-
ary value problems, see [4-6,12,19,20,32,33,37,38] and references therein. In
what follows, we mention some works related to the current study of this paper.
HaMpACHE [30] constructed the global renormalization solution to the Boltzmann
equation in the case of a hard potential with an isothermal Maxwell boundary con-
dition which in fact extends the pioneering work [9] for the Cauchy problem to the
initial boundary value problem. Later on, ARKERYD and CERCINAGANI [1] gener-
alized the results in [30] to more extensive situations including the case when the
boundaries are not isothermal and the velocity is bounded. ARKERYD and MASLOVA
[2] then removed the restriction on the bounded velocity introduced in [1] to study
the similar issue for the Boltzmann equation and the BGK model. Except for the
topic concerning the existence of the weak solution to the Botlzmann equation with
initial boundary value problem mentioned above, another interesting problem is to
prove the existence and uniqueness of the solution, as well as their time decay
toward an absolute Maxwllian, at the appearance of compatible physical boundary
conditions in a general domain, cf. [22,23]. Compared with the study for the Cauchy
problem in the whole space, to our best knowledge, there are much less rigorous
mathematical results of uniqueness, regularity or time-decay for the Boltzmann
solutions toward a Maxwellian in a bounded domain. Although it was announced
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in [39] that the solutions to the Boltzmann equation near a Maxwellian would tend
exponentially to the same equilibrium in a smooth bounded convex domain with
specular reflection boundary condition, there is no complete rigorous proof. UKAI
[44] made arough outline for proving the existence and time convergence to a global
Maxwellian for the initial boundary value problem with a hard potential. GOLSE ET
AL. [21] investigated the boundary layer of stationary Boltzmann equations in one
spatial dimension with a specular reflection boundary condition in the case of the
hard spheres model (o0 = 1). Liu and Yu [35,36] studied the stationary boundary
layers and the propagating fluid waves of the initial boundary value problem for
the Botlzmann equation in half space by means of Green’s function, introduced
in [34]. Based on an elementary energy method, YANG and ZHAO [48] proved the
stability of the rarefaction waves for the one dimensional Boltzmann equation in
half space with a specular reflection boundary condition. Under the assumption
that a priori strong Sobolev estimates can be verified, DESVILLETTES and VILLANI
[7,8,47] recently established an almost exponential decay rate for Boltzmann so-
lutions with large amplitude for general collision kernels and general boundary
conditions. It should be pointed out that many of the natural physical boundary
conditions create singularities in general domains [31], for which the Sobolev esti-
mates break down in the crucial elliptic estimates for the macroscopic part [25,26].
A new L? — L theory was developed in [27] to obtain the global existence and
the exponential decay rates of the solution around a global Maxwellian in the case
of hard potentials for four basic types of boundary conditions: in flow, bounce back
reflection, specular reflection and diffuse reflection; we refer to [3,16,17] for the
latest advancement on this topic. Different L? — L methods have also been used
in [16,45]. Thanks to the work of [27], the regularity [28,29] and hydrodynamic
limits [18] for the Boltzmann equation in general classes of a bounded domain were
further pondered. All of these works are focused on the case of the hard potential.
A natural challenge is to extend the L? — L analysis developed in [27] to the
case of the soft potential. This is the goal of the present paper. Namely, we will
investigate the global existence and the large time behaviors of the initial boundary
value problem of (1.1), (1.2), (1.3) or (1.4) with the condition (1.7).

1.2. Domain, Characteristics and Perturbation

Throughout this paper, 2 is a connected and bounded domain in R? and defined
by the open set {x | £(x) < 0} with £(x) being a smooth function. Let V&(x) # 0
at boundary £(x) = 0. The outward pointing unit normal vector at every point
x € 0S2 is given by

V&)

") = SEor

We say 2 is strictly convex if there exists ¢z > 0, forany ¢ = (¢!, ¢2,¢3) € R?,
that satisfies

Y > celt (1.8)
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We say that €2 has a rotational symmetry if there are vectors xg and @ such that,
forall x € 0€2,
{(x —x0) x @} -nkx)=0. (1.9)
For convenience, the phase boundary in the phase space Q x R is denoted by
y = 09 x R3, and we further split it into the following three kinds:

outgoing boundary : y4 = {(x, v) € 9Q X R} : n(x)-v >0},

incoming boundary : y_ = {(x, v) € 92 X R’ : n(x)-v < 0},

grazing boundary : Yy = {(x, v) € 9Q X R3 . n(x)-v=0}.
Asisshown in [27, pp. 715], the backward exit time which plays a crucial role in the
study of the boundary value problem of the Botlzmann equation can be well-defined

via the backward characteristic trajectory. Given (z, x, v), we let [X (s), V (s)] sat-
isfy

dX(s) dVis)
ds Vi), ds

with the initial data [ X (¢; ¢, x, v), V(¢; ¢, x, v)] = [x, v]. Then

0, (1.10)

[X(s;t,x,v), V(s;t,x,v)] =[x — ( —s)v,v] = [X(s), V(s)],

which is called the backward characteristic trajectory for the Boltzmann equation
(1.1).

For (x,v) € © x R3, the backward exit time t(x,v) > 0 is defined as the
first moment at which the backward characteristic line [ X (s; 0, x, v), V(s; 0, x, v)]
emerges from 92:

tp(x,v) =inf{t > 0:x —tv ¢ 9Q},

and we also define xp(x, v) = x — tp(x, v)v € 9. Note that for any (x, v), we
use f,(x, v) whenever it is well-defined.

Set the perturbation in a standard way ' = u + /i f; the initial boundary
value problem (1.1), (1.2), (1.3) and (1.4) can be reformulated as

of+v-Vof+Lf =T(f f), (1.11)
f@O,x,v) = fo(x,v), (1.12)

with the boundary conditions

f,x, v, = \/ﬁ/( - Of(t,x, V)V (@)n(x) - v'dv, (1.13)

and
f@, x,v),_ = f(t,x, Ryv), (1.14)

respectively. The nonlinear operator I'(-, -) and linear operator L in (1.11) are
defined as

1

L'(f1, f2) = N

O f1. It f2),
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and

1
Lf = ——{0u, ik 1.15
f ﬂ{Q(u Vi) + o/uf, m} (L.15)

respectively. L can be further splitinto L = v — K with K a suitable integral kernel
defined by (2.1) in Section 2, and the collision frequency v(v) = flR3xSZ bo(0)|u —
v|?u(u)dudw for =3 < ¢ < 0, moreover there exists a constant C, > 0 such that

1
o 2 < v) = Goll + o)/, (1.16)
e
Under the conditions (1.13) or (1.14), it is straightforward to check that

/f(t,x,v)\/u(v)ln(x)-vIdedv= f@, x,v)/ pn)n(x) - v|dSydv,
Y+

V-

where dS, is the surface element.
Hence, in terms of perturbation f (¢, x, v), the mass conservation

/Q . f(t, x, v)y/ p(v)dxdv =0 (1.17)

holds true for either of the boundary conditions (1.13) or (1.14) by further assuming
that, initially, (1.1) has the same mass as the Maxwellian .

For the specular reflection condition (1.14), in addition to the mass conservation
(1.17), the energy conservation law also holds for ¢ > 0, that is

/ |v|2f(t,x,v)\/,u,(v)dxdv =0. (1.18)
QxR3

Moreover, if the domain €2 has any axis of rotation symmetry (1.9), then we further
assume that the corresponding conservation of angular momentum is valid for all
t>0:

/ {(x — x0) X @} - vf (£, x, v)/dxdv = 0. (1.19)
QxR3

1.3. Main Results
We introduce a weight function

g’ = qhl’ 0
Wq.0,0 = exp{ 3 + 8(] —}—t)ﬁ s (q,e) € Aq,g, 0<? < —E, (120)

where
Az =1{(q,0))q >0,if0 <6 <2, and 0<gqg <1, if0 =2}.

0
For the sake of simplicity, we denote wy 9,0 = wgy,0 = exp (‘”Z' ) throughout the

paper.
We now state our main results as follows.
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Theorem 1.1. Let —3 < ¢ < O and (q, 6) € Ay 9. Assume the mass conservation
(1.17) holds for fo(x,v). Then there exists a small constant ¢y > 0 such that if
Fo(x,v) = n+ /mwfox,v) = 0and |lwgefolloo < €0, there exists a unique
solution F(t, x,v) = u+ /uf(t, x,v) > 0 for the Boltzmann equation (1.1) and
(1.2) with the diffuse reflection boundary condition (1.3). Moreover; there is some
C > 0 such that

sup  [lwg.of (Dllco < Cllwg.o folloo- (1.21)

0<t<+o0

Furthermore, we assume S is strictly convex and fy(x, v) is continuous away from
the set yy and

fox,v)l,. =1 Jolx, V)V ()n(x) - v'dv’.
n(x)v'>0
Then, f(t, x,v) is continuous in [0, +00) x {2 x R3\y0}. Moreover, let pg = ﬁ,
then there exist C > 0 and Lo > 0 independent of t such that
1 Dlloo < €™ lwg0 follos. (1.22)

Theorem 1.2. Let 0 < ¥ < —g with =3 < ¢ < 0and (q,0) € Ay 9. Assume that
& is both strictly convex (1.8) and analytic, and the mass (1.17) and energy (1.18) are
conserved for fy. In the case that Q2 has any rotational symmetry (1.9), we further
require the corresponding angular momentum (1.19) is conserved for fy. Then there
exists g9 > 0 such that if Fo(x, v) = u+ /i fo(x,v) > 0and [lwg,6,9 follo < €0,
there exists a unique solution F (t, x,v) = u+./uf(t, x,v) > 0to the Boltzmann
equation (1.1) and (1.2) with the specular reflection boundary condition (1.4).
Moreover, let p| = OQJFT&QQ, then there exist Ay > 0 and C > 0 such that

lwg.0.0 fO)lloo < Ce™" wg 6.9 folloo.
Furthermore, if fo(x, v) is continuous except on the set yy and
fo(x,v) = fo(x, Rxv) on 02,
then f(t, x, v) is continuous in [0, 00) X (§ x R3\yo}.

Remark 1.1. It should be pointed out that the method developed in Theorem 1.2
can be applied to verify Theorem 1.1, and it can also be used to handle the other two
kinds of boundary conditions: in flow and bounce back reflection. Moreover, one
can see that the approach developed in the proof of Theorem 1.1 is more direct and
constructive while the method used in the proof of Theorem 1.2 is simpler, though
both of them have their merits. In addition, it is straightforward to know that the
decay exponents satisfy pg = ﬁlin(; p1. It is quite interesting to improve p; to pp,
—

which coincides with the decay rate for the periodic boundary condition [43].
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Letus now give some comments on the difficulties associated with Theorems 1.1
and 1.2. Compared with previous works such as [3,17,27,49], a remarkable feature
of our problems is that the collision frequency v has no positive lower bound, so
that the Boltzmann solution could not be expected to decay exponentially in L™
immediately. However, the decay rate plays a key role in establishing the global
existence of the Boltzmann equation in the bounded domain, see Lemma 19 in
[27, pp. 761] and also [44, pp. 81]. This time decay rate is essentially applied to
eliminate the possible growth created by the k-times bounce-back reflection (k is
large). Our strategy for overcoming this difficulty starts with consideration of the
diffuse reflection boundary condition, where one needs some careful estimates on
the integrals along the stochastic cycles so as to obtain the global existence by using
only the L? decay. One of the key points in this paper is to develop a direct and
unified approach to establishing the global existence of the linearized Boltzmann
equation with the diffuse reflection boundary condition. More specifically, instead
of applying the time decay in L°° to obtain the global existence cf. [3,17,27], we first
construct a local solution via an iteration method, then directly deduce the a priori
estimate, which is uniform in time by means of a refined estimates on the integrals
defined on the stochastic cycles and the L? time decay for linearized equation.
Finally, the global solution is obtained with the aid of the standard continuity
argument. Among these steps, the main one is to establish the following type of
uniform estimates:

k—1 1 —v()(s—1])
e 1
l{t §0<t}/ // dv/dvﬁ/ —
/ﬂﬁ_i V. Z 1+1 1 0 l_l,;;]l V} wq,G(U/)

J =1

k=1 Il/_ﬁ t[/
s / / 4
x Zl{z;/ﬂx)} / L R § SACRERL G
I'=1 ll’-H tl/7 k2 (s)

x B (s1,x], + (s1 — tp)v),, v/)IAE} (s1)ds d S (s)ds
hi (s)
wq,&(v)

20 ¢

1 1 ;
<C —=+—=] s h’ Cn s 2
= 4,0(T5/4+N) up |27 (s)lloc+Cn sup [e

0<s<n 0<s<n

J

(1.23)

where k(s) = k = C| [a(s)PP/* > CiT(;S/4 and C] > 0 is a constant. To derive
(1.23), the following key observation is used:

k—1 f f
z/ G ) s 5/ G Vs < .
fi41

=1 I

where vy, is defined to satisfy |v,, | = max{|vy], |v2], ..., |vk—1]|} for max{|vi], |va],
e o1} S k.

Inaddition, a delicate Banach space X (7) is designed to capture the properties of
the solution in L% N L? space so that the global existence and the exponential decay
0 ¢pp

W) s

in the L2 —norm can be simultaneously obtained. The rapid time decay e~ in
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L% —norm is adopted to control the Jacobian determinate when we convert the
L —norm to the L?—norm.

It is also interesting to note that estimate (1.22) is a consequence of the inter-
polation technique based on the L? energy estimate and the weighted L™ estimate
for the global solution as well as Young’s inequality

e_V(v)twq_/12,9(v) < e_)\otﬂo’ po = QO%Q’ (1.24)
which means that one has to trade between the exponential decay rates and the
additional exponential momentum weight on the solution itself in order to obtain
the rapid time decay rates. This also reveals that the additional velocity weight
imposed on the initial data in (1.22) is seen as a compensation for the exponential
decay rates.

As to the specular reflection boundary condition, we cannot expect to obtain an
estimate similar to (1.23). There are two mathematical difficulties: one concerns
the times of the bounce back reflections k and k’; in this situation both grow ex-
ponentially in time according to Velocity Lemma 2.5, hence the summation of the
integral is out of control. The other is that it is impractical to compute the Jacobian
determinate

det x4 (s1 —1;,)v,,} 7
ov’

which depends on #, x, v, k and k’. In this sense, the method developed in the case
of the diffuse reflection boundary condition cannot be applied to the case of the
specular reflection boundary condition. Precisely speaking, one cannot first obtain
the global existence of (1.11), (1.12) and (1.14) in some higher weighted L>° space
and therefore one is not able to deduce the time decay rates in the lower weighted
L space. As a consequence, we are forced to resort to the same bootstrap argument
as that of [27, Lemma 19, pp. 761]. As mentioned before, to apply the bootstrap
argument, the key point is to obtain the rapid time decay rates without any growth.
Nevertheless, it seems impossible to achieve this due to the zero lower bound of
the collision frequency. To deal with this difficulty, we introduce a time-velocity
weight

B gll” = g/’
Wa.0.0 = XP) e g T |

which has been used in [11,13-15], to handle the non-hard sphere Boltzmann
equations with self-consistent forces; by using this weight, we are able to deduce a
time-dependent lower bound for a revised collision frequency, say,

dqlvl’ (g
81+ n)PH1 = Cogo(1+1) 70 .

v(v,t) =v+

Thus, the desired time decay rates will be naturally obtained. This is another key
contribution of the present paper.
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Due to the singularity of the collision kernel, the integral operator K raises
another difficulty when we carry out L* estimates for the linearized equation.
Similar to the study of the Cauchy problem of the Boltzmann equation on a torus
[24,41,43], we introduce a cutoff function x to split K = KX + K 1=x . With
this decomposition, we only need to iterate KX twice [46] to obtain the desired
estimates, since K !~X is small and can be controlled directly.

The estimates of the nonlinear operator I'(-, -), in terms of the exponential
weighted norm [[wg ¢,9 - |0, are subtle. To avoid additional weight, we estimate
Wgq/2,6,9 (V) as

1 /
Wq/2,0,0 (V) < E(wqﬁ,ﬁ(v/) + wq 0,0 U)),

instead of wg/2,6,9 (V) < wg/2,6,9 (V)wg/2,6,9 ).

The organization of the paper is as follows. In Section 2, we collect some
significant estimates for later use. Section 3 is devoted to the study of the Boltz-
mann equation with a diffuse reflection boundary condition. The global existence
and exponential time decay for the Boltzmann equation with a specular reflection
boundary condition are presented in Section 4.

1.4. Notations and Norms

We now list some notations and norms used in the paper:

e Throughout this paper, C denotes some generic positive (generally large) con-
stant, and A, A1, X2, as well as Ao, denote some generic positive (generally
small) constants, where C, A, A1, A> and A9 may take different values in dif-
ferent places. D < E means that there is a generic constant C > 0 such that
D<CE.D~Emeans D < Eand E < D.

e Letting 1 < p < oo, we denote || - ||, as the LP(Q2 x R?*)—norm or the
L?(2)—norm or L?(2 U y)—norm, while | - | is either the L0 x
R*)—norm or the L>°(3$2)—norm at the boundary. Moreover, we denote that
|- Il, = [[v!/? - ||2, and (-, -) denotes the L? inner product in  x R> with the
L? norm || - ||».

e As to the phase boundary integration, we denote that dy = |n(x) - v|dS(x)dv,
where dS(x) is the surface element, and for 1 < p < +o00, we define | f |Z =
fy | f(x,v)|Pdy = fy | f(x,v)|” and the corresponding space as L? (92 x
R3;dy) = LP(3Q x R?). Furthermore, | f|,+ = |f1,,|, and | floo+ =
| f1,, |oo. For simplicity, we use | f|) = [, [f()IPdSx) = [6]f(x)[P.
We also denote fi = f,, = f1,,.

e Finally, we define

Py f(x,v) =/ iu(v) f, )V @) nx) - v)dy',  x € dQ.
n(x)-v'>0
Thanks to (1.5), P, f defined on 92 x R3 is an L%-projection with respect to

the measure |n(x) - v| for any boundary function f defined on y,. We also
denote {I — P} f =f — P, f.
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2. Preliminary

In this section, we collect some basic definitions and estimates for the later proof.
We start with the analysis of K, from (1.15), and state that a standard decomposition
for K is the following:

Kf = = v|%o(cos O)v/u@) { £ ()W) + ()il | dudes

R3xS?
— v/ u(v) /R3 o lu — v|%bg(cos 0)/u(u) f (u)dudw = K, — Kj.
2.1)

To treat the singularity in K, we introduce a smooth cutoff function 0 < y <1
such that

1, s> 2,
X(S)_{O s < e.

)

we use y to split Kp = K% + Kzl_x, where

K§f=/RS Szx(lu—vl)lu—vlgbo(cow)\/u(u)
x| @OV + £ @)V | dude.

With this, it follows from [43, pp. 294] that

Kif= / K (v, u) f (w)du,
R3

where

1 2 1 (uP—u®?
exp (—§|u I e e

v — ul

)

k% (v, u)| < Ce?™!

or
2 s1 (2 =lu»?
8

lv—u|?

exp (—‘%zlu —v
[v —ul(1 4 v] + [u])!—e

forany 0 < s1 < 52 < 1. As to K1, it is obvious to see that

k5 (v, u)| < C

; (2.2)

K1f=/ ki (v, w) f (u)du,
R3

with k; (v, u) = fgz |u — v|8bo(cos )/ (1) /u(v)dw. Analogously, we also de-
note K¥ = K — K{ and K'"* = K, ¥ — K|~ *.

Prior to the study of the property of the operators K and I', we present the
following elementary inequality:
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Lemma 2.1. I[f0 < p < 1, for any x, y > 0, it holds that
(x +y)P <xP +yP. (2.3)
If p > 1, forany x, y > 0, it holds that
(x + )P <277 (xP 4 yP). (2.4)

Proof. If y = 0, (2.3) is obviously true. If y > 0, (2.3) is then equivalent to

(o2) - oo

It is easy to check that the function g(¢) = (1 + #)? — t” — 1 is monotonically
decreasing for 0 < p < 1, and moreover that g(0) = 0, therefore (2.3) is also valid
fory > 0.If p > 1, (2.4) directly follows from the convexity of #”. This completes
the proof of Lemma 2.1. O

We now summarize the properties of K as follows:
Lemma 2.2. Assume —3 < o0 < 0, (¢,0) € A(g,0) and ¢ > 0. It holds that for
n > 0:

(Kf1, w,?,@,gfz) < {nllwg.o.9 filly + CODIpi=cap f1ll} lwg.o.9 f2llv, (2.5

especially,

(Kf1, w,?,g,gfz) < Cllwg,0,9 fillvllwg,6,9 f21lv, (Kf1, f2) < Cllfillvll f21lv.
(2.6)
In addition, for any l > 0, one has

. Ih] in{1/8g, Lzt
() wg .0 K" X((v)’w—m) < )™ e, @)
q.Y,
and

1 =P | w)| .
(o) w09 /R w0 S )du = G ) P, (28)

<u)lwq,9,0(u)

where ¢ > 0 and is sufficiently small and (v) = /1 + |v|%.

Proof. We only detail the proof for (2.7) and (2.8), since the strategy to prove (2.5)
is basically the same as for Lemma 2 of [43, pp. 296], and (2.6) directly follows

from (2.5). Notice that K'~% = K21 XK 11 X We first consider the estimates for
K 11 X Recall

ghvl? g/’

_ q —Op,. 10
3 8(1+t)’9] —exp{8(1+(1+t) vl } (q.0)eAgp.

wqﬁﬁ = eXp [

Letg = %(1 + (1 4+1)7?), then ¢g/2 < g < q. Direct calculation yields

(v)lwq,g,g\/;Tv) < Cq,e(u(v))mi“{l/gq’“%"}’
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then it is easy to obtain

_ h
(o) w00 K" (L)

()wg 0,9

= () wg.0.9v/ () /R3 Sz(1 = x(Ju = vI)|u — v|°bo(cos )/ p(u)

X (M) dwdu
(u)lwg g9 ()

. I1—q|
scq,e,»ww))“““{” w5 / lu — v[2du |
lv—u|<2e

: =gl
< Cluioy™™ Ve 5  or

For the contribution of kf in (2.8), it follows that

slvful2
1 x e T Ih@)l
(V) 'wg 6,9 /R3 ki (v, u)((u)lwq,e,ﬁ(u))du

= <v)lwq,0,z9\/ﬂ(v)/Rz o x (Ju — v)|u — v[°bo(cos 6)/ 1 (u)

g\v—ul2
X g [l dowdu

<u>lwq,9,z9(u)

<Cpo / e — 01 () ()

R3

min{l/leq,%}

: I1—q|
mm{l/gq’Tq}eslv_”‘zdullhﬂoo

< C(v)?(u(v)) 17100,

where the last inequality is due to [ps |u — v|Q(M(u))min“/16‘7v%}du < C(v)e.

We now turn to derive the contributions of K217X in (2.7). In light of (2.1), on
the one hand, we have

_ h
() wg0.0Ky * (L)

(V)wg 0,9

= (v)'wg.0.9 /11&3 sz(l — ) (Ju — v |u — v|°bo(cos 0) v/ p(u) (2.9)

O] S+ o L | o

() wg 6,9 ') Wgy.0,9 (V')

On the other hand, (1.6) and |[v — u| < 2¢ imply

{|v/| = v+ [(u —v) - wlo| > |v] — v —u| > |v] — 2,
(2.10)

W|=lw4+u—v—[u—v)- oo > v —2v—ul=>|v]—4e.
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mm{l/Sq,%} .
Using (v wq 0,90V 1(W) < Cyo(u(v)) again, we get, from (2.9) and
(2.10), that

- h min gl
() wg,0.0K, " (WL) = Cq.o(u(v)) {1780, 57

Wq.0,9
/ lu —v|®dullhlleo
lv—u|<2e

< Cluiy™™ 17805 sy

It remains now to deduce the contribution of ké( in (2.8). Recall (2.2) and take
so = min{sy, s} to obtain

elv—ul?
(V) wg 0.9 /]R3 ka (v, u) ( (u)lwq,e,ﬁ(u))du

. N 2_ 232
L exp (—%"Iu —vf? - = )
< Cllhlloo ()2 (0) wy.00 /R

[v—ul
£|v—u|2
X f— du Z K.
(u)wg g9 1)

Next, from (1.20), we notice that for some C; > 0 and 6 = 2,

‘wqeﬂ( v) < O + [ — w2 e~ @l =P
Wg.0,9 (U)

Let v —u = nand u = v — 7 in the integral of Ky. We then compute the total

exponent in k5 (v, u) 54;:8;
q,=,

2 2 ~
50, o sollnl—2v-n| q 2 2
—— = —==A{lv—n|"— v
8|77| A e 4{I nl~ —vl°}

S 50|U'77|2 q, n
4Inl tovn—3 e 4{Inl v-n}

1 _ , 1 - so {v - n)?
= 4(q+so)|n| +2(so+q)v Ty TR

Let ¢ < g < so, and the discriminant of the above quadratic form of |n| and %1 i n\

1 1
A= G0+’ - (5+S0)%0 = 1@ —sp) <0,

Notice that /2 < g < ¢, and we thus have, for ¢ > 0 sufficiently small and

q < so, that there is C; > 0 independent of ¥ such that the following perturbed
quadratic form is still negative definite:
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so—8 5 so—8elln—2v-n* g,
_ _ _1 —2v.-
g In] A e 4{Inl v}
v-nl? nl* (I lv-nl?
<—Cy{inf*+ =—Ci{m+ |5 +—5
"[ In|? 12 2 P
In|?
<-C,{— . .
= q[ ) +|v-nl
(2.11)
If0 <6 < 2, Lemma 2.1 yields
oI” — Jul” < Colnl”.
Therefore, one also has
_So—88|n|2_S_o||17|2—20'77|2 9C0 o
8 8 [n|2 4
so—9¢ 5 s0—9€||77|2—2v~7]|2
< - - + C
lv-n|? In|?
S _CS() [|77|2 + |’7|2 +Cq,9 S _CS() T + |U . n' + Cq,6~
(2.12)
Plugging (2.11) or (2.12) into Ky, we obtain
_ (n)! In|?
Ko = o) hlle [ T exp | =Cy {12- 410 | an
R3 |7 2
Next, we make another change of variable n; = (1 - ﬁ)l—ﬁ‘ and n; =n—mn)so

that v - n = |v||n)|, which leads us to

_ 1 C C
Ko < Cqo(v)? 1||h||oo/ —eXp[——qlmlz]/GXP[——qIUIImI]dnudm
R2 1L 4 R 4
< Cg0(0)2 2Rl oo-
This finishes the proof of Lemma 2.2. O

The following lemma is concerned with the estimates on the nonlinear operator
r.

Lemma 2.3. It holds that

™ wg0.9T (1, M)l < Cllwg,0.5 filloollwg 6.5 f2lloo, (2.13)
lwg/2.6,0T (f1, f2)lleo < C {ll filloollwg.e.5 f2lloo
+llwg0,0 fillsoll f2lloc} (2.14)

W 2wy 000 T(f1, 23 < Cllwg 0.0 fill2llwg 20,0 f2I2
+ Cllwg 0.5 o2 llwg 2,00 fillZ,  (2.15)
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and

IvT2T(f1, 213 < Cliwg 0.0 Fil2 I 2112 + Cllwg 0.0 F2 15N ALl (2.16)

Proof. The proof of (2.13) is the same as that of Lemma 5 in [27, pp. 730], for
brevity we omit the details. To prove (2.14), we rewrite

1
F ) = —= )
(f1. f2) ﬁQ(ﬁfl Vief2)

- /R} 2 v — u|%bo(cos )/ (u) f1(u') f2(v')dudw
B /Rz 2 [v — u[®bo(cos 6’)\/Mfl (u) f>(v)dudw
= rgain(fl, ) — Floss(f]’ ). .17

For the loss term, a simple calculation directly gives

lwg2.0,0 T (f1, f2)lloe < Cllwg2.6.0 oV llooll fillso < Cllwg 20,9 folloo Il filloo-

Next, since [v|*> < [v|? + |u/|?, by virtue of (2.3), one has

Wy /2,00 (V) < Wyy2.0,0 U)Wy 2,0.9W) < %(wqﬁ,ﬂ(u/) + wq.0,9 (V).
With this, we present the corresponding computation for the gain term as follows:
lwg/2,0,0 TE(f1, f2)]
< %(wq,e,ﬂ(u/) + wq,@,z?(v/))/R3X82 v — u[%bo(cos 0)/u(u)

A1) f(0")|dudw
= C{Ifillocllwg.0.0 f2lloo + 1wg.0.0 fillooll f2lloo} -

This ends the proof for (2.14). In what follows, we only prove (2.15), since (2.16)
can be obtained in a similar fashion. Recalling (2.17), for the loss term, one has

=2 wg2.0.5 T (f1, f)II3

-1 2
- v (v)w 2.0.9
/R3><Q /29,

2
[/3 ) v — u|%bp(cos 0)+/ () f (u)fz(v)dudw] dvdx
R3xS
< Ifill% /]R LV sl O

2
[/ lv — u|9bo(cos0)w/,u(u)da)] dvdx
R3xS?

2 2
< Cllfillsllwg2.6,9 211
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As for the gain term, let us denote

Zo = Iv""Pwy 0.0 s TEN(f1, £)I13

N /IRSXQ \Fl(v)ws/wﬁ
2
H/ [v — u|%bg(cos )/ (1) f1 (u/)fz(v/)dua)] dvdx.
R3x§?

The calculation for Zj is a little more delicate; we divide it into the following three
cases:

Case I, |u| > |v|/2. Inthis case, /2 (u) < u'/*(u)p'/19(v). By Holder’s inequal-
ity and a change of variable (u, v) — (1, v’), we have

Ip<C / v W] 5 ) / v — |2/ ) 7 @) 5 (") du
R3xQ R3
x/ v — u|®/ u(u)dudvdx
R3

< c/ W25 0 W3 5.9 (W0 — w26 (u)
Ry RIg | 4/200 q/2,0,0
X Ml/lé(v)flz(u)fzz(v)dudvdx
< Cllwg 20,0 fill s lwg 2,09 L2112,

where we also used the fact that max{|v|, |u|} < |u'| + |V/|.

Case 2, lu| < |v|/2 and |v| < 1. In this situation, |u — v| > |v| — |u] > |v|/2
and |u| < 1/2, moreover, |u'| + [v'| < 2(|u| + |v]) < 3|v| < 3, consequently,
when (u, v) € {(u, v)||u| > |v|/2, |[v| < 1}, we have, by Holder’s inequality and a
change of variable (u, v) — (u’, V'), that

B[ ol [l 0 £ )dududs
{lv]=1}xQ {lul<1/2}

IA

C / min{|u’|, |v'|2} f2(u) £7(v')dudvdx
[l <1,]ul<1/2)xQ

< c/ min{|u|?, [v|2} £ () £ (v)dudvdx < C|| fill% 1 f2112.
{lv]<3,]u|<3}xQ

Case 3, |u| < |v|/2 and |v| > 1. One has max{|u’|, |v'|} < 5|v|/2 on this occasion,
hence v(v) < v(v') + v(u), moreover, it follows that [u — v| > |v| — |u| >
|vl/2 = 1/2. Notice that w;, ,, 4 () < wg 1 g 5 (WIWS 5 4 5 (V). Apply Holder’s
inequality and a change of variable (u, v) — («’, v) again to obtain

Ty < / v w5 g o (1+ D> F7 W) £7 (v))dudvdax
R3IxR3xQ

< C/R3 g Wy 15 9.9 OWS 15 55 W) VW) + (W) 7 (w) f5 (v)dudvdx

2 2 2 2
< Cllwg,0,9 fillsolwg 2.6.9 2115 + Cllwg.e,9 f2llso lwg 2.0, fill}

where the fact that ng W_g/2,6,9dv < +00 was used.
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Combining all of the estimates above, we see that (2.15) holds true, and this

ends the proof of Lemma 2.3.

Next, we address the following Ukai’s trace theorem whose proof can be found
in Lemma 2.1 of [17, pp. 187]: O

Lemma 2.4. Let ¢ > 0, and define the near-grazing set of y4 or y_ as
R 1
Yy = (x,v)eyi:|n(x)~v|§80r|v|zg or |v|<eg.

There exists a constant C, q > 0 that depends only on ¢ and Q2 such that

t
/ |f1y+\yj (T)1dz
s

= Ceg {||f(s)||1+/ 17 @1 +||{a[+v~vx}f<r>||1]dr]

forany0 <s <t. O

The following lemma quoted from [27, pp. 723] is concerned with property of
the kinetic distance function:

Lemma 2.5. Let Q2 be strictly convex defined in (1.8). Define the functional along

the trajectories d)é‘gs) = V(s), d‘g_g) =01in (1.10) as:

a(s) = E2(X(5)) + [V (s) - VEX ()]I* = 2{V(s) - VPE(X(5)) - V()}E(X (5)).
(2.18)
Let X(5) € S_Zfor t1 < s < tp. Then there exists constant Cg > 0 such that

CeIVDIFD g (1) < oCUVIDI DG 1)y

e—C;:(IV(tl)I-i-l)lla(tl) > e—Cs(\V(11)|+1)l2a(t2)_
Finally, we state the following significant lemma which gives a lower bound of

the backward exit time #, (x, v):

Lemma 2.6. [27, pp. 724] Let x; € 02, for i = 1,2, and let (t1, x1,v) and
(2, x2, v) be connected with the trajectory % = V(s), d‘gfjv) = 0 which lies

inside Q2. Then there exists a constant Cg > 0 such that

(2.19)
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3. Diffuse Reflection Boundary Value Problem

3.1. L? Existence and Decay for the Linearized Equation

As mentioned in Section 1, we mainly employ the L> N L argument to solve
the initial boundary value problem of (1.11), (1.12) and (1.13). To obtain the time
decay rates in L space, an L”>— time decay theory must first be established, cf.
[27]. However, one cannot directly obtain the time decay of (1.11), (1.12) and
(1.13) by an L?— energy method, since the positive operator L is degenerated in
the sense that the inner product (Lf, f) has no positive lower bound in the large
velocity domain. To overcome this difficulty, we first construct the global existence
in some weighted L? space, then tend to deduce the time decay rates in a lower order
weighed energy space via an interpolation technique. We remark that the main idea
used here is similar to treating the Cauchy problem of the Boltzmann equation with
soft potential [42,43]. It should be also pointed out that it is necessary to derive
the L? time decay rates even only considering the global existence of the initial
boundary value problem of (1.11), (1.12) and (1.13) in the case of soft potential.

Notice that the null space of the linear operator L is generated by {1, v, %(|v2| —
3)}./1, so we define

Pf:[a+b~v+%(|v2|—3)c]\/_, (t,x,v)e[O,+oo)xQXR3,

which is called the macroscopic part of f. The microscopic part of f is further
denoted by {I — P} f = f — P f. Itis well-known that there exists o > O such that

(Lf, ) = Soll{1 = P} 2.

We consider the following initial boundary value problem of the linearized Boltz-
mann equation with soft potential:

Sf+v-Vif+Lf=g, fO) =fo, in(0,+00)x QxR  (3.1)

with
f-=P,f, onRy xy_, (3.2)

and g is given.
In what follows in this subsection we will prove the following:

Proposition 3.1. Let =3 < ¢ < 0 and (¢, 0) € Ay 9. Assume that for all t > 0,

/Q - g(t, x,v)/udvdx =0, Pg=0. (3.3)
<R’

There exists €g > such that if

! 2
lgafold + 1By + [ o w080 a5 <
0
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then there exists a unique solution to the problems (3.1) and (3.2) such that for all
t> 0,

/ F@, x,v)/udxdv =0, (3.4)
QxR3

2 ! 2 2 ! 1/2 2
sup 173+ [ 1O = Ll +C [ v as

0<s<t

and

t
sup 1wy /20 £)112 + / w20 £ (5)I2ds
0<s<t 0

(3.5)
ds.

2 ! 1/2 2
< Cllugpofol + € [ [P0, 080)]
0

Moreover, let py = eo%g. There exists A1 > O that depends on q and pgy such that

t
1F I3+ e M /O 15 £ (5)]3ds
t
e M [qu/z,efon% + /0 A2 (s5)|13ds (3.6)

t
+ / ||v“/2wq/z,9g<s>||%ds}-
0

In order to construct the global existence of (3.1) and (3.2), we first deduce
the global solvability of equation (3.1) with an approximation boundary condition
and then we show that such an approximate solution sequence converges in L2 for
any ¢ > 0. Once the global existence is obtained, the time-decay estimate (3.6)
follows from an L? energy estimate and an interpolation technique. Along this line,
Proposition 3.1 is an easy consequence of the following two lemmas (the first of
which is concerned with a priori estimates for the macroscopic part of the solution
of (3.1) and (3.2)):

Lemma 3.1. Assume that g satisfies (3.3) and f satisfies (3.1), (3.2) and (3.4).
Then there exists a function G (t) such that, forallt > 0, G(t) < || f(¢) ||% and

d
IPfIZ < 300+ Igh3 + I =P} fI2+1{1 =P} f3,. (BT

Proof. The proof of Lemma 3.1 is similar to that of Lemma 6.1 in [17, pp. 221],
and we omit the details for brevity. O

Lemma 3.2. Assume that g satisfies (3.3). There is a constant &9 > 0 such that for
anyt >0, if

t 2
3+ 150+ [ [P as < 43
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then (3.1) and (3.2) admit a strong solution f(t,x,v) in [0, +00) X Q X R3
satisfying

t t
llf(t)||%+/o IIf(S)llfder/0 (I = P,) f(9)]5 4 ds

t
<c /0 Iv=12g(s)13ds + Cll /ol (3.8)

Proof. We establish a solution of (3.1) and (3.2) via the following approximate
boundary value problem:

Of+v-Vof +Lf =g, f(0,x,v)= fo, (3.9)
with |
f_:(l——_)ny,j:2,3,.... (3.10)
J
The proof is then divided into two steps.

Step 1. Global existence of (3.9) and (3.10). We start with constructing the local ex-
istence of (3.9) and (3.10) through the following sequence of iterating approximate
solutions:

o f T o Ve fH ot K =g O = fo. €200 G

with |
ff“=(1—7) P fl j=23, ..., (3.12)

and 0 = fy. Let us now define

t
MO = FOI3 + /0 | £($)]5, 4 ds.

We claim that there exists a small T, > 0 such thatif > M(f 6H(t) < M, for

0<t<T=x

M; > O0then > M(f*)(t) < M. Take an inner product of (3.11) with f¢+!
0<t<Tx
and use Green’s identity as well as Lemma 2.2 to deduce

t t
IF @115 + (1 —e) /O £ )2 + /0 | fEN ()13, ds

1 2 t t
5(1—7) / |ny‘|%,_ds+cg/ 1) lds
0 0

t
+/0 Iv=12g(s)l13ds + Il foll3- (3.13)

Since

t
I foll3 + 1 fol3. +/ Iv='2g()I3ds < eo. 1P, f 5 <If 3,
0
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and
v) ~ L+ P2 3 <0 <0,
we see that
M (@) < max{l, CoJeMy + e,
Taking T, > 0 suitably small and letting &9 < M, one obtains > M (f (1)

0<t<T=x
< M. This completes the proof of the claim.

Next we get from the difference of the equation (3.11) for £ + 1 and ¢ that
AL = f4 0 Vel = F T - =K - e
with [f! = £10) = 0and f£7! — £ = (1 = 5P, [f* — f'~"]. Performing
similar calculations as to those for obtaining (3.13), one has

t t
LA @ = L@l + /0 1) = A5 + /O IFHS) = fE)3 1 ds

2 t t
< (1 - 5) /0 - fR L G /O 17¢s) — £ ) )12ds,

from which we obtain

Ty
sup (750 — FL) + /0 7 s) — )R ds

0<t<Ty

1 2
< max (1 — —_) , T.C,
J

T*
x[ sup ||f‘f<t>—f€—1<r)||%+/O |fz—f“|%,+}

0<t<Ti

for £ > 1. Thus, if T.C, < 1, we also show'that f{(t) is a Cauchy sequence in L2
fort € [0, Ty] and j > 2. Thatis, f* — f/ and f/ is a strong solution of

1
Wf+v-Vof +Lf =g, f(O)=fo. f—=(1—7) Py f. (3.14)
Furthermore, for any given j > 2, assume that f/ is a strong solution of (3.11)

and (3.12). By using Green’s identity and Pg = 0, one then obtains the following
a priori estimate:

. 4 . 1 .
IIfJ(t)I|§+)»/O ||(I—P)f/(s)||§ds+/0 (1= P) f/(9)]5 4. ds

2 1 t . t _
+(—.—.—2)/ [Py f7(s)[3  ds s/ Iv=12g(s)l13ds + Il foll3-
J J 0 0
(3.15)
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Then the global existence of (3.9) and (3.10) follow from the standard continuation
argument.

Step 2. For any t > 0, {fJ}+ 5 Is convergent in L?. Notice that f/ enjoys the
bound (3.15), and by taking a Weak limit, we obtain a weak solution f to (3.1) and
(3.2). Taking the difference, we further have that

: . . . : 1 :
Wlf! = flrv-Vulf/ = fI+LIfT = f1=0, [f/=fl-= Py[f’—f]+7ny’,
(3.16)

with [ £/ — £1(0) = 0. Utilizing standard L? energy estimates as for deriving (3.15),
we obtain, for n > 0,

L) — FOR + /O = PYLFi(s) — F(s)]12ds
t .
+ /O = PALF () — F()]B 4 ds
13 . C t .
S n/o |Py[f’<s)—f(s)]l%,+ds+j—;’/O |Py f75 ds.  (3.17)

Since (% — ]1—2) fot | Py, fj (s)|%’+ds is bounded by (3.15), one can see that

Cy [ 2 .
- I[Py f/]5,ds — 0, as j— oo.
0

To handle the small term n fé |Py[fj (s) — f(s)]|§q+ds, we resort to Ukai’s trace
theorem. We recall the boundary norm

t .
/ 1Py L7 = F1)13 o

2
// [/ — f1Gs, x, u)/pfn - u}du} w(v)dyds.
Y+ {unu>0

Now we split the domain of inner integration as follows:
{u e R3 : nx)-u > 0}={u€R3 :0<n(x)-u<e or |ul>1/e or |u|<e}

U {u eRY:e<n() - u and lu| < 1/¢ and |u| > ¢}.

The first set’s contribution (the grazing part) of fé |P, f J (s)I%g _ds is bounded by
the Holder inequality:

t
C(/ u(u){n-u}du)/ / / L7 = F1©)Pn - u)dSyduds
O<n-u<e 0 JIoQ J{un-u>0}

orlu|>1/e
orlu|<e

/ ILf7 = £1(s)|*dyds. (3.18)
e+
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For the second term, we use Lemma 2.4 and ‘(3.16) to bound the second set’s
contribution (the non-grazing part) of fé [P, f] — f ](S)|§, L ds by

t .
c /0 LF7 = F16)1y,y s
t . t . .
< C/o ILf7 — £F16s)13ds + c/ 18:Lf7 — f1* +v - Vol f/ — f1%hds
t
50/0 I f](s)llzdS+C/ (LLFT = F1LLF — FDlds

t
SC/O s f](S)IlzdS-i-C/ HT=PYLf7 = f1()lI3ds.
(3.19)

From (3.18) and (3.19), we have, on the one hand,
/O t 1Py [f7 = f1(s)]3 2ds
<e / t [ = risrayas
+C [/ (1177 = F113 + A= Ps7 - f](s)n%]ds} . (3.20)
On the other hand, we get, by integrating (3.17) from 0 to 7,

[ .
/0 IPLF7 — £1s)]3ds

t . cC ! ;
<0G /0 [Py Lf7(s) = f()]54ds + ;2” /0 |P, f715 4 ds. (3.21)

Letting ¢ > 0 and n > 0O be suitably small and taking an appropriate linear combi-
nation of (3.17), (3.20) and (3.21), we improve (3.17) as follows:

. t . t .
||ff<z>—f<r)||%+/0 ||ff(s)—f<s>||3ds+/0 |f7(s) — f(s)13ds

<G j2

Nj_z/o [P, f/|7ds — 0,

which implies f/ — f strongly in L? for any given ¢ > 0. Moreover, we can also
show that such a solution is unique by L? energy estimates similar to these used
above. As a consequence, we construct f (¢, x, v) as an L? strong solution to (3.1)
and (3.2) for any ¢ > 0. Finally, by taking the inner product of (3.1) with f over
Q x R? and applying Green’s identity again, one has

d _
allfll% AL =PYfIZ + (L = P fI3 4 < v 2g|%. (3.22)
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Letting 0 < k1 < 1, taking the summation of (3.22) and k1 x (3.7), we obtain

d _
IFB =GO} + 2171+ 210 = PFE L <07 g2 (23)
Then (3.8) follows from (3.23). This completes the proof of Lemma 3.2. O

With Lemmas 3.2 and 3.1 in hand, we now turn to complete

The proof of Proposition 3.1. Let 7 = w20 f, then having (3.1) and (3.2) is
equivalent to

h
Wgq /2,0

8,h+v-Vh+vh—wq/2,9K( ) = wy,2,08, 10, x,v)

= ho(x,v) = wg/2,6 folx,v), (3.24)

and
1 def
do & pvp, (3.25)
wg/2,60 (V) /(v) v

h* qu/z,e\/ﬁ/ h(ta'xa 'U/)
V(x)
where
Vix)={v e R v nx) >0}, do=p@)nx)-v|dv.

Proceeding similarly to obtain the global existence of (3.1) and (3.2), one can show
that (3.24) and (3.25) possess a unique solution /A (t, x, v). We now turn to prove
(3.5) and (3.6). Taking the inner product of (3.24) with i over € x R3 and applying
Lemma 2.2, one has

d _
3 BT =PV AR < nllRIE+Coll FIS+CIVT 2wy 20813, (3.26)

where we have also used the fact that |P)§”h|i L= |P;”h|%’7. Integrating (3.26)
with respect to the time variable over [0, 7] and combining it with (3.8), we obtain

t t
||h(r)||%+/0 |{1—P;’}h|§,+dt+/o VAI2ds + 1L £ 12
t t
+ /O £ (s)lI5ds + /0 (I — P f(s)]5 ,ds

t
< Cllwg/a0 fol3 +C /0 v~ w, 2,08 () II3ds,

which implies (3.5). It remains now to prove the time decay (3.6). Take constants
A1 > 0and 0 < pp < 1, whose specific values will be determined later on,
multiply ¢ to (3.23) and integrate the resulting inequality with respect to the
time variable over [0, ¢] to obtain

t t
P P P
M ||f||§+/0 M ||f||3ds+/0 M\~ P f13 ds

t t
< Clfoll5 + meo/ s~ 1P| £113ds + C/ M w12 g 13ds.
0 0
(3.27)
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To take care of the delicate term s?0—1e415™ || f ||%, we decompose the v integration
domain into two parts:

E:fols”™! < ko1 + v}, EC: fuls™ ! = k(1 + [0,
where ko > 0 and is small enough. On E, it is straightforward to see that
s F1E N5 < Coroe I £, (3.28)

where

1, — 1, veE,
E=10, v¢E,

and C, is determined by (1.16). While on E¢, notice that 0 < pp < 1, one obtains

P0

po—1 2 S
201870 < 2h1ky0 (1 + o)) 20D,

0

With this, we further have, by letting A1 = %KO] " and py = 90%9,

13 t
o s s = [t e s
0 0
! 1 _—ApsP0 2
< Cg/o s TS ||wq/2,9f||2ds

t
< Cllwge foll3+C /O lwg 2,002 g(s)II3ds.
(3.29)

Here we have used (3.5) to derive the last inequality. Plugging (3.28) and (3.29)
into (3.27) and dividing the resulting inequality by e*!’ " we then show that (3.6)
holds true. This concludes the proof of Proposition 3.1. 0O

3.2. L*° Existence for the Linearized Equation

In this subsection, we still consider the following initial boundary value prob-
lem:

Wf+v-Vif+Lf=g, f(0)=fy, in (0,+00) x QxR  (3.30)

with
f-=P,f, on Ryxy_, (3.31)

where g is given. Our purpose is to establish the global existence for (3.30) and
(3.31) in a weighted L°° space. A key point is that we develop some new iterated
integral estimates so that one can construct the L existence without using the
time-decay of the solution in the L°°—norm. We stress that it is very difficult to
obtain the global existence and the time-decay of the solution in L space at the
same time due to the fact that the collision frequency v has zero lower bound. The
main result of this subsection is the following:
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Proposition 3.2. Let (q,0) € Ay, and assume that (3.3) holds true. Then the
initial boundary value problem (3.1) and (3.2) admits a unique solution satisfying

—1
lwg.6 flloo + [wg.6 floo < llwg,o folloo + sup V7 wg,08(s) oo

0<s<t

t
*/ | g iias
0

t
+\// Iv=12w, 2 6g(s)I3ds. (3.32)
0

Our proof for Proposition 3.2 relies heavily upon the estimates for the iterated
integral defined on stochastic cycles. The stochastic cycles are defined as follows:

Definition 3.1 (Stochastic Cycles). Fixing any point (¢, x, v) with (x, v) € yp, let
(to, x0, vo) = (¢, x, v). For vgyisuch that vgy1 - n(xr4+1) > 0, define the (k + 1)-
component of the back-time cycle as

(k15 Xk 15 V1) = (B — Xk, V), Xp (X, Vi)s Vir1)- (3.33)

Set

Xa(s:t,x,0) = D Mgy O + (s — ),
k

Vals: 1,2, 0) = D 1y 0 (k.
k

Define Vi1 = {v € R3 | v -n(xg+1) > 0}, and let the iterated integral for k > 2
be defined as

/k 1 H];;{daj E/ {/ dok_lldal,
m2,V; Vi Vi1

where do; = pu(v)(n(x;) - v)dv is a probability measure.

Lemma 3.3. Let Ty > 0 and be large enough, denote a(t) = max{t, Ty}, then there
exist constants Cy, Cy > 0 independent of a(t), such that for k = C1[a ()14, and
(t,x,v) € [0, 00) x Q2 x R3,

. 11 Cale®P

/ l{tk(t,x,v,vl,vz ..... vk_1)>0}nj;%d(7j R (3.34)
mtZiy; 2

We also have, for (q, 0) € Ay o, that there exist constants C3, C4 > 0 independent

of k such that

k—1

1y
/k 1 Zlmﬂso«l}/o Az} (s)ds < Cs, (3.35)
I _
Jj=1

—Vi=1
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and

1

k—1
/k_l Zl{,l+l>0}/ Az (s)ds < Cy, (3.36)
MisVi =1 41

where

lew(s) _ {1—[1;—1 ddj} « {ev(vl)(s_t[)d)q,e(vl)ddl} ~ Hlj—zll{eU(Uj)(tj+l_fj)de}’

=I+1
(3.37)

~ 1
and Wgq.6 = W

Proof. If 0 < ¢ < Ty, then a(¢) = Ty. The proof of (3.34) has already been given
by Lemma 23 in [27, pp. 781]. For the case that Ty < ¢t < 400, setting Tp = ¢ in
Lemma 23 of [27, pp. 781] and performing the same computations as its proof, one
sees that (3.34) is also true for @ (t) = ¢. In what follows, we mainly prove (3.36);
the proof for (3.35) will only be briefly sketched. For any & > 0, we first split the
the left hand side of (3.36) as

7 1=1 +1

X Hlj.;ll{e”(”f)(tf“_tf')doj}ds

k-1 0
[ 2t [ v G0 do e 0 u(upden)
j=1 !

1

k—1
[ w, Ztweo [ dgev el de)

_ 1141
max{[v | [vp]...log_1 <k =1 +

% {ev(vl)(s_t’)V(vl)d(fl}nlj_:ll {e‘)(vj)(fjﬂ—fj)daj }ds

7]

k-1
- -1 k-1
+/ nly, Zl{’l+l>0}/ w0 (v (u){IT; ;| do}

I — 1+1
max{|vy [,|va|,....Jvg_1 [}>k =1 +

X {e”(”’)(“”)v(vl)dal}Hf/;ll{e"(U.i)(t_/H*t.i)dcrj}ds =K+ K.
(3.38)

For Ky, denote max{|vi|, |va], ..., |[vk—1|} = |vm]| , one has

k—1 0
K1 =Cyp /Hk“v Zl{mpo}/t e”(”"’)(s_”)v(v,,,)dszbq,g(vm)v_1
=1 !

J =1 +1

(vn) M52 do;

n
s— ~ - —1
SCq,e/ / =y (v, )ds g o (V)™ (v) T do;
H];:%Vj t

C 0 _1 2_4q 0 _

< = (n(tm) - vp)e a3y " ) du,
21 n(xm) vy >0
Cy0 12

< £ Upre 3 qy,, < Cy.6-

2 U1 >0
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Here we have used the key observation

k—1 i I
Z/ e"@mG= ),y ds 5/ e’ OmG= s < 2.
I=1 7+ 73

As to ICp, without loss of generality, we may assume that |v;| > k for some
ie{l,2,...,k— 1}, then

k—1
KL<cS / gy )Tl do;
1=1 /=Y

j— — L2 dpf —
sc/l_ 1 H‘,zlldojﬁ(x_)v_>o<n<xi)-v,->e A=y ) doy
ni_ty, -
j=17J

|vj |>k

i—1
1
e Z/ Hlj;lld"f'/ (n(xp) - v)e~ T P=Eul” =1y dy,
=1 Hi';l] Vj n(x;)-v;>0

. \u-l2

—1 L 1
X T do; e 2 (n(x;) - v)dy;
/ifl . e . - ( ( l) l) L

Jj=l+177 [vj |>k
k—1
i1 _ly?
+C Z , ' _,do; | e 2 (n(x;) - vi)dv;
l_[,_| Vv, J n(x;)-v; >0
I=i+1 Jj=17J |vi >k

_ Ly 2 g —
x / M} do / (n(xp) - wpe™ HP=4y=T ydy
ml oy, n(x;)v >0

j=i+171J]
2

< Cpolk—)e™ 5 < Cyy.
Substituting the above estimates for ; and & into (3.38), we see that (3.36) is

true.

The proof for (3.35) is very similar to that of (3.36), the only difference being
the following:

k—1 0
U -1 k—1
ey, 2 Mo /0 g6 (v~ ATAZ), doj)
max{|vy|,|vg]....[vg 1 1<k 1=1
X {e\)(vl)(s—tl)V(vl)dgl}l‘[lj—zll{ev(vj)(tj+l_tj)daj}ds

k—1
= //‘ 1 Zl{tl+1§0<tl}a)4»9(vm)vil(Um)nl;;%do‘/

2V 1o

~ -1 k—1 .
= /]{71 .wq,e(vm)‘) (Um)njzldoj = Cq,Gv
j=1Yi

here the second inequality follows due to Zf:ll 1¢,,<0<ny = 1z, <0y- This fin-
ishes the proof of Lemma 3.3. O

Remark 3.1. Since «(t) < Ty, the upper bound on the right hand side of (3.34)

5/4
CoT,
can be relaxed to {%} I
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Prior to proving Proposition 3.2, we first show the following global solvability
of (3.1) and (3.2) in the L*° space without weight:

Lemma 3.4. There exists ey > 0 such that if Pg = 0 and

I foll Lo @uys) + llwg 2.0 foll2 + sup v g(5)llso

0<s<t

t t
+ \// er1sP0 ”])—I/Zg(s)”%ds + \// ||p—1/2wq/2,9g(s)||2 < &,
0 0

then (3.1) and (3.2) admit a unique solution f(t, x, v) for which it holds that

sup || flloo + 1floo S I follze@uys) + lwg/20 folla + sup v g(s) oo

0<s<t O<s<t

t
+\/ | e
0

t
+\//O [v=12wg /2 68(s)lI3ds. (3.39)

Proof. As in the proof of Lemma 3.2, we use the approximate form

[ hf+tv-Vif+Lf=g, fO,x,v)= fo,
(3.40)

f_=(1—§)ny, j=2.3. ...

to construct the global existence of (3.1) and (3.2), while the global solution (de-
noted by f/) of (3.40) is further established by the following iteration scheme:

o f v Vi fH A uft - K =g fNO) = fo, €20, £ = o,
L =(1—})nyf, j=2.3,....

To do this, performing a similar calculation as for deriving (199) in Lemma 24 of
[27, pp. 783], we find

t t
|f€+l(l, x,v)| < [11150/ +1t1>0/ ] efv(v)(tfs)”(fe(s, x —( —s)v,v)|ds
0 n

I
t t
+ [11150/ +1t|>0/ ]e_”(”)”_”lg(s,x — (t = s)v, v)|ds
0 1

I3
+ 1, <0e "D 10, x — 10, )|

1
+ 1,20 (1 - —.) e‘”(“)(’_")/ | £¢1dor,
J Vi
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where the last line follows from the boundary condition. A direct calculation leads
us to

£+1 <tC 4 l—l 4 -1
I/ Lo @uyy) StCILf oo+ 7 | loo,++ 1 folloot sup [V g(s)loo

OSSSI
1
<tCll fYloo + (1 - ;) | oo+ + €0

With this, one can show that there exists 7** > 0 (CT** < 1) such that if

sup |1 fYl oo uy,) < 2¢0, then
0<t<T**

41
sup I f T L uys) < 2¢0,
0<r<T**

thus {|| £¢| oo (Quy) )} is uniformly bounded with respect to £ in a short time interval
[0, T**]. In fact, we can further prove that {f*} is also a Cauchy sequence in
L>®(Q U y,), provided that CT** < 1, thus we obtain a local solution f/ for
(3.14). To construct the global existence, it suffices to obtain the following a priori
estimates:

sup {I1 7 lloo 4 1 f7loo.+}

0<s<t

S ollz=@uy.) + Sup =" g()lloo + llwg 2,60 foll2

<s<t

1
+\/ / ekw"°||v1/2g(s>||2ds+/ =1 2wgppg(s)3ds,  (3.41)
0

for all j > 2. In fact, (3.41) follows from a tedious calculation for the following
inequality:

Ifj(r,x,v)|<|1T.<o/+lf.>o/] VO I £ (s, x — (1 — 5)v, v)|ds
{IM / Hiy-0 / ] TYWEEDIRA I (5, x = (1 = $)v, v)|ds

llngo/ +1z1>0/] PO o (s, x — (1 — $)v, v)|ds
0 11

+> I, (3.42)

with

I1 = 1;<0e " £(0, x — 10, v)|
k—1

_l_e—u(v)(tfﬂ)/ . Z Ly <0<y £ O, xp — tyvg, vp) [dE;(0),
=1 Vj =1
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b —v(v)(l tl)“/_[/k | 1{f1+1<0<tl}2/

Jj= 1

XK fI1(s, x1 — (4 — )vy, vp)|dZ (s)ds

1 .
/k 'y 21{04,“}/ K" f71(s, 1 — (1 —s)vl,v1)|d21(s)ds],
f41

/ll

L= R OIC t1)\/—[/k 1 1{,,+1<0<11}Z/

/1]

XI[KXf’](S Xl — (= $)vg, v)|dE (s)ds

/ Z Lo<n1) /

\Z =1 1141

Iy = e VW= [1)«/_[/ Zl{t1+150<t/}

11111

1

KX fI1(s, x1 — (7 — )y, vz>|dzz<s)ds],

1
/ lg(s, x1 — (11 — s)v, v)[dZ; (s)ds
0

1
/ 21{0<t,+.} / g (s, x1 — (1 — s)vp, v)|dZi(s)ds {.
H/ 1 /1 1 141

Is = e”(”)(””\/ﬁ/nklv Lio<r | f7 (tiey xie, k)11 (1), k > 2,
=1 Vi

and

dx(s) = {AZ) doj} x (e @6 71/2(v1)d01}><l'Ilj_:l]{e”(”f)(lf“*’f)daj}.

(3.43)

Jj= l+1

We point out that (3.42) is deduced from (3.14) by means of a similar argument
as for obtaining (199) in [27, pp. 783]. The estimates for the corresponding terms
on the right hand side of (3.42) are very similar to that of Z, (1 < n < 8) in
(3.54). To avoid needless repetition, we are not going to detail the computations
here. When (3.41) is derived, the global existence of (3.11) and (3.12) follow from a
standard continuation argument. Notice that (3.41) is unform in j, and that { f/ }?":1
possesses (up to a subsequence) a weak—: limit f which satisfies (3.1) and (3.2)
in the weak sense. Again, by taking a difference, one has

[ W7 — fl+v-Volf/ — f1+LIfI — f1=0, [f/ — f10) =0,
Lf = flo = PyLfT = f1+ 5Py f1,
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from which we have by an argument similar to that for obtaining (3.42)

ILf7 — f1a, x,v)
t t
< [lt.go / +1,,-0 / ]e—”@“’—wK“X[ff — f1Gs,x — (t — s)v, v)|ds
0 1

t t
+[1n<o/ +1t1>o/] YOI RXLFT — f1(s, x — (¢ — 5)v, v)|ds
0 1

9
+Zlns
n=6
(3.44)
with
1 .
Ie = ~1y=0e "W (P, £ (11, x1, V)]
J
1 k—1
e O G [ S Py ) s o)),
Jj=1 /l 1
17 —eiv(v)(t ll)\/_[/kl 21t1+1<0<n}
Jj=1 /l 1

i .
[R5 = = sy w0l B (5)ds
1 X
/ S toea [ kg g
j= 1 jl 1 141
(s, x1 — (&1 — s)vr, v1)|d21(s)ds],
e VW) (t—11)
Ty o \/_[/k IV, lzl:ltl+|<0<t1}
x /0 KA = £ 30 = (1 = s)ur, v)|dTi(5)ds
/ oy S 100 s = g

/ll 1+1

(s, x; — (1 — )y, vl)IdEI(S)dS],

Iy ='W /n - Lo<i L7 — f1G, X DI 1 (1), k> 2.
j=1"%i

Comparing (3.44) with (3.42), one obtains
sup {ILf7 = fllloo(s) +11f7 = Fllso+()} S C sup |Ie|. (3.45)

0<s<t 0<s<t
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On the other hand, from Lemma 3.3, it follows that
C . c .
1] < 7|nyj|oo,— < —1f oo+ (3.46)
Then, (3.45) and (3.46) lead us to

. . C .
sup {ILf7 = f1)oo + ILfY = f1®)]oo,+} S — sup [ f7 oo+,

0<s<t O=<s<t

from which, along with the bound (3.41), we see that f/ converges to f strongly
in L* and that f satisfies (3.39), and this completes the proof of Lemma 3.4. O

With Lemma 3.4 in hand, we are now ready to tackle
The proof of Proposition 3.2. Similar to the analysis in Section 3.1, denote
h' =wgeff, €20, and Ky()=wgeK (—) :
Wg.0

where £ is determined by (3.11) and (3.12). The solution 4/ (¢, x, v) = Wg.6 fi
of the problem

Oh +v-Vih+vh — Kyh =wg0g, h(0,x,v) =ho(x,v) =wye folx, v),

(3.47)
and
1-1
he = — ’/ h(t, x,v)ibg0(0")do (3.48)
Wq,60 JV(x)

will be constructed with the help of an abstract iteration scheme defined in the
following way:

8th5+1 +v- Vxhi+l + vhE+! — Kwhﬁ = w,08
ol (3.49)
R0, x,v) = hgT (x, v) = wg.0 fo(x, v), £ > 0,
with 70 = hg = wy ¢ fo(x, v) and
1-1
Rl = T / he(t, x, 0,6 (v')do. (3.50)
Wq.0 JV(x)

From (3.49) and (3.50), it is straightforward to check that

t t
e, x, v)] < [ltlso/ +1y >0/ ]e_v(v)(’_s)ll(whe(s,x —(t —s)v,v)|ds
0 31

t t
+ {1,14)/ +1,1>0/ } e_”(”)(’_s)|wq,9g(s, x — (t —s)v,v)|ds
0 1

+ 1y <0e "R 0, x = tv, V)|
1) eV )E—11)

+ 140 (1 - = =
"= wa0(v) Sy,

; |hE (21, x1, v1)Wg,0 (v1)dor.

(3.51)
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Since m < C4,0,and fn~v>0 Ji@m-v)dv < oo, we getfrom (3.51) and Lemma

2.2 that

IR (@) oo < CHlIR (2, X, V)llos + Cllholloc + C sup v wg08() oo

0<s<t

4
+ Cg,omax sup |f" [0+
0<s<t

(3.52)

Recalling Lemma 3.4, we have shown that f¢ — f/ and f/ bears the bound (3.41),

therefore max sup |f*|eo.+ < 0. From this and (3.52), for any given j > 2, the
0<s<t

existence of a local solution 4/ to (3.47) and (3.48) is guaranteed by an argument
similar to the proof of Lemma 3.4.

To obtain the global existence of (3.47) and (3.48), a central part of the deduction
is the following a priori estimate:

sup |17 ()lloo < Cllhollos + C sup v " wy 08(s)lloo + Clliwg 2.6 foll2

0<s<t 0<s<t

t
' C/ [ eriiag as
0

t
+C\//o =12 /2,08 (s)|13ds.

(3.53)

Once again using (3.47) and (3.48), we proceed as for deducing (199) in [27, pp.
783] to obtain

Wi (t, x,v)| < Hl,lfo/ +1t1>0/ }e_”(”)(’_s)|KlL_XhJ(s,x—(t—s)v, v)|ds
0 11

A

t t
+ iltlfo/ +1t.>o/ }e‘”@)(’—”mghf(s,x —(t — s)v, v)|ds
0 1

I

t t
+ [11150/ +1zl>0/ ]e”(“)(”)lwq,ag(s,x — (t — s)v, v)|ds
0 11

I3

(3.54)
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with

Ty =1, <0e " VNR(0, x — 1v, V)]
e~V —1) k=1

/ 1y, Mz, = 1, O,

Vii=1

Wg,0 (V)
Z 1{t1+1<0<fl}/

e~V (W(—=11)
YA I /
wq,@(v) Vii=

x |[K1*th](s x; — (1 — $)v, v) AT (s)ds

1
/ 21{0<n+1} /

,1111 I41

e~V W(t—11) 7
7 1y, <0<
°T B0 {/w Z {1 =0 ”/

Vii=1
X|[KXhI1(s, x; — (11 — s)vy, v)|dE (s)ds

/k " 21{0«”1}/ LK Xh!1(s, x1 — (4 —s)vl,vl)|dElw(s)ds],
f41

J=1 /l 1
Zl{t1+1<0<tl}/

e~ v (—=11)
I7; = ~—H/
Wg,o (V) V5

X|wg08(s, x1 — (tz — )z, ) |dX) (s)ds

+ iy S 10 / 05,31 = (1= 01, B ) .

Vi1
e—v(v)(z ) ,
Ig= ——— Lio<iy 1A (e, xi, vi— )| (1), k> 2,
Wq,6(v) v

KL% 09 1(s, x1 — (47 — s)vp, vp)|d DY (s)ds]

where dX}” (s) is given by (3.37). The main difference between this proof and that
of Lemma 3.4 is that we now have an additional velocity weight wgy g. We now turn
to compute Z, (1 < n < 8) in (3.54) term by term. Estimates for Z1 and Is. Notice
that

t
/ eV W9, () ds < +o00, (3.55)
0

From Lemma 2.2, it follows that

71 < Ce23 sup (1A (5)]|co-

0<s<t



Boundary Value Problem for Boltzmann Equation with Soft Potential 499

Since ﬁ);; (v) < Cy4,9, Lemma 2.2 and (3.35) imply that the first term in Z5 can be
bounded by

Cq,969+3/k ' Zl{t,+1<0<zl}/

< Cy0€%™ sup Hh/(s)”
[o/0]

0<s<t

d¥;(s)ds
o0

As for the second term in 75, by Lemma 2.2 and (3.36), we get the upper bound

Cpoeet3 / Zl{o<n+]} / ! th(s)HoodZZ(s)ds
f+1

1V71

< Cq,969+3 sup
0<s<t

h (s)
o0
Estimates for I3 and 7. From (3.55), it is straightforward to check that

I3 < C sup

0<s<t

v @8 ()|

o
In view of (3.35), one sees that the first term in Z7 can be dominated by

1
/ Z Liy,, <0<) / |wg.08(s)] ., dZi(s)ds
=1 Vi =T 0
<Cyo sup |wgeg(s)| - (3.56)
O<s<t

Thanks to (3.55) and (3.35), we bound the second term in Z7 by

1
Con fy 0wt | 00 a0 = Cuo sup ool

1
=1"J

Estimates for Z4. In a manner similar to that for obtaining (3.56), we have

Iy = [h(O0)]loo + Cq,ellh(O)lloo/Zl{zmgo«,}dzz(()) = Cq0l17(0) | co-
1=1

Estimates for Ig. Since

/ Wg,6 (Vk—1)dog—1
Vi-1
1
S_
V2T n(xg—1)-vg—1>0

_1 2_4q 0
(n(xg—1) - vg—p)e #U=T=T =gy, <, g,
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by applying (3.34) in Lemma 3.3, we have

0<s<t

Ig = Cq,e/k L=y 15 22do; sup (117 (5)lloo
=V

2
17
ot
<Cyp [2] sup [|h(s)]lco-

0<s<t

We cannot obtain the desired estimates for 7, and Z¢ for the time being, and they
will be treated by using iteration (3.54) for 4/ again. To illustrate this more clearly,
we first combine the above estimates for 7, 73, Z4, Zs, Z7 and Zg to conclude that

t t
|/ (2, x, v)| < [1t| <0/ +1z1>0/ ] e VWU KX P (5, x — (1 — s)v, v)|ds

e~V W)(—t1) / [/n o
1 0 |[KXh! (s, Xei(s), v)]
Wg, G(U) Hk IVI p 0 {141=<0<y} 1 85 ¢

1 .
+/ Lo<y ) IKGh! (s, Xa(s), Ul)|}dzl(5)ds + A1(0)
!

1+1

=1 +Ze + A1(2), (3.57)
where A(t) denotes

A1(t) = Cyp sup | wg0g(s)

0<s<t

+ Cq.011h(0)|lo
oo

1
214 .
+Cq0 (5) sup |7 (5)lloo + Cq.0€* @ sup

O<s=<t 0<s<t

o

Recall the back-time cycles: Xei(s) = > 1y, ;.0 () {x1 — (5 —s)vi}. Let (1)), x{), vg)
]

= (s, Xa(s), v"), forv, ,, €V, =
time cycle as

{vl/,Jrl ~n(xl’,+]) > 0}; we define a new back-
(tl//-‘rl’ xl//-‘rl’ vl//+l) = (tl// - tb(.xl//, vl//), xb(xl//, vl//), v;/_,’_l).
We now iterate (3.57) to get the representation for K Xhi(s, Xa(s), v;) as

KR (s, Xa(s), vi)

< / KX (ur. o)) [ (s, Xa(s), v)|dv’
R3

s s
=< //[lt{<0/0 +1tf>0/, ]ev(v)(ssl)k,)f)(vl,v/)kff)(v/, v
h

x | (s1, Xa(s) — (s — s, v")|ds dv'dv”
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e—v(v’)(s—t{)
—i—// dv’dv”/ —_
Ky Wee (V)

k—1 [1//
/
x Z/ dsilyy, <oy ki (v v)
I'=1 0 "

x KX (v),, v") R (s1,x), + (s1 — 1))}, v")IAZY (s1)
e~ VW (s—1))
+// dv/dv”/ —_
v Wgq,6(V)
k—1

t/
[/
/ X /
x Z/t dsily, ok (v, v)
I'=1""1r+1
x kX (v],, V)R (s1, x, + (s1 — £))v),, v")IAZY (1)
w\Vrs LAy L= )by, 11

4
+ /R3 KX (v, v)dv' Aj (s) = nz_; I, (3.58)

where k(1) = wq,gkx(m) and J, (1 < n < 4) denote the corresponding four
terms on the right hand side of the last inequality.

In what follows, we only give an explicit computation for the delicate term Z;
the appropriate estimates for Z, are similar and much easier and will be omitted for
the sake of brevity.

Estimates for L. Substituting (3.58) into Zg, one has

k=1 0 0 4
Is < C‘]ve/kfl Z [1{f1+1<0<t1}/ +1{0<fl+1}/ }Z In dElw(s)ds.
T2 Vi= 0 RS
(3.59)

Continuing, we first consider the simpler terms involving A (s) in Zg, that is, the
terms containing J4. Since f kX (v7, v')dv’ < oo, the summation of all contributions
from A lead to the bound

k—1 f Y
/ > Ly <0<n) / A1(8) + Ljo<y) / Ai(s) pdBf’ds < CAL(0),
-V Lo 0 U

+1

according to Lemma 3.3.

Next, we only compute the terms containing J, and J3, because the estimates
for the terms involving J; are similar and easier. Let us first show that there exists
a constant N > 0 such that

k=1 .y
/ 2 / Ly <0<ny J3 dZ[°(s)ds
=1V 0

j=1 Vi 1=1

k—1 4
- / k-1 Zl{ll+1§0<n}/ // dv'dv”
j=1 Vj 0

=1
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VW=t K21 e
x - 1,
A T M AR

I'=1""1+1
x k% (v, VKX (v),, v") R (s1,x] + (s1 — 1))v), v/)IAZ} (s1)ds1d S} (s)ds
1 1 . togeo || Y (s)
<Cqo| —=7+ =] sup W)l +Cn sup [e 27— t-
4 (TOS/4 N)0<s<t > 0<s<t; vaG(v) 2

(3.60)

To prove (3.60), we decompose the velocity-time integration into several regions
and treat them independently. Recalling that {(z},, x;,, vl’/)}f/:1 startfrom (s, Xa, V'),
in order to avoid confusion, let us denote

k(s) =k = Cyla(s)/*. (3.61)
For any 1 <1’ < k — 1, we consider the following splitting:
[0
14 14 1 k—()’
and treat the second integral first, specifically, we intend to obtain

k-1 i —v()(s—t)) k=1 oy
e 1 14
Ly 150<t1}/ // dv/dv”/ — /
/nﬁ"lng‘ ' 0 Moy, Wee() 2 -

U'=1""1"" 2%
x Ly oy (v VIR 0 v R (51,37, + (51 = 11)v), 0"

x dX)7 (s1)ds1dX)” (s)ds

(3.62)

Cyo
<T/4 sup [[h7 ().
O<s<t

Indeed, since #/, — 51 < 1/k*(s), and k(s) > CiT05/4, it follows from Lemma 2.2
and (3.36) that the right hand side of (3.62) is bounded by

49/
H

X sup / . WZl S0 (s1)ds sup 177 (1)

0<s1<s =1 0=<s1=t

Zl tl+|<0<t1}/ dEl (S) k2( )

Vii=1

< Cy / - S 120 / AT ) psds sup ()l

j =1 0<s1<11

Cq0 ;
5# sup |47 (5) oo

0 0<s<t
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where we also used the following significant estimate:

k—1
dX)/ (s1) < Cqok(s).
, . .>0
0<A|<A/k 1V;Z,Z {t, } 1 ‘B
As for the first integral,

e~ VW (s—1)) k—1
1, <o,///dvdv”/ C S, o,
/l_[ JZZI: {t141=0<1} l_[k ‘V’ Wy.0(V') Z {t). >0}

I'=1

1, —
X /[ ki(v;, VKX (v),, v R (s1,x] + (51— 1))}, 0]
tl,’+l
x dX;/ (s1)ds1dX)” (s)ds,
(3.63)

we divide our computations into the following three cases:

Case 1. |v;| = N or |vl’/| > N with N suitably large. From Lemma 2.2, it follows

that
C C
/kf},(v,, Vydv' < ———— < ==,
(I+lvh=e ™ N

C. C.
— =
(+lyhe - N

v_l(vl/,)/kff,(vl’,,v”)dv” <

Using this, for |v;| > N or |vl’,| > N, we know thanks to (3.35) and (3.36) that

k—1

CC
(3.63) < —< qe/k (o zl{t1+1<0<’l}/ dx/(s)

Jll

l .
/ . IV/Z (t),,>0) / dZ}(sndsids sup 1A ()l 30

=1 ] O=s=h

Ce q.0 i
< —" 5 h! .
=—y S A7 (s)lloo

0<s<t

Case 2. [v/| < N and [v'| = 2N, or [v;,| < N and [v”| > 2N. Notice that we have
either [v; — v'| = N or |[v;, — v”| = N, and that either of the following holds:

X ' _ﬁ X ’ slv—v/lz
ki (v, v) < Ce™ 10Ky (v, v)e 1
s\v//—v”\z

ork¥ (v, v") < Ce™ 5 kY (v, v")e 16
By virtue of Lemma 2.2, one sees that both

e\u, L//|2

£|vl—v/\2
/kfj}(vl,v’)e 76 and /k@(vl’,,v”)e 6
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are still bounded. In this situation, we have, by an argument similar to that for
obtaining (3.64), that

sNz .
(3.63) < Cype” 16 sup [|A!(s)]lco- (3.65)

0<s<t

To obtain the final bound for (3.63), we are now in a position to handle the last
case:

Case 3. |v/| < N, |v'| < 2N, |v,| < N and [v”| < 2N. Recall that there is a lower
bound #/, — 51 > 1/ k2, so that one can convert the bound in L°—norm to the one
in the L2—norm, which has been well-established in Section 3.1. To do this, for
any large N > 0, we choose a number m (N) to define

KA (V) =1, et K (), (3.66)
such that sup,, [gs (k7 (p, v') — ki (p, v)|dv’ < . We split
K (g, VK (v, v") = {KE (v, v") — K, (v, 0K (v, 0")
+ {kﬁ; (v[/’a UH) - kr)ﬁl,w(v[/’f U//)}k’):l’w(vl, U/)
+ K% o (v, VK, (v, 07,

and from Lemma 3.3, the first two differences lead to a small contribution in (3.63)

Cyo .
% sup |17 (5) lloo- (3.67)

0<s<t

For the remaining main contribution of kj, ,, (v, v’)k,)f,,w(vl’,, v”), by a change of
variable, y = x;, 4 (s1 — #,)vy. Noticing that x), is independent of v;, we see that

% > (k(s))~°. Consequently, as in Case 4 in the proof of Theorem 6 in [27, pp.
1

754], we obtain

C .
(3.63) < %’ sup [1h7 () lloo

0<s<t

k—1 iy
v [ Stz [ a0 ®*O)
[Tj=1Vii= 0

k—1 ¢ .
v h'(s1)
X/l’*l Tk /Zl{’/f+1>0}// / (v) dydv”
= Vil Vins 1y J@x{V|<2N) | Wq.0 (U
—xo(t),—s1)P0 (rrk—1 U—1 . v ), 1)
xe g {H./’=I’+ldaj/} x Hj/zl{e v dojr}dsids.

(3.68)
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In light of Lemma 3.5 in Section 3.4, we see that (3.68) can be further dominated
by

C .
(3.63) < % sup 177 (5)lloo

0<s<t
_*
Zl{’/+l<0<fl}/ dzlw(s)(k(s))7e 757 4s

/k
2 Vi=
2}
AO;PO

) j
X sup [ezospo ()
Cq0 ;

= =y Sup A/ ()l + Cn sup je?

wq,O(v)

hi(s)

wg.0(v) 2

0<s<n
] . (3.69)
0<s<t 0<s<ty
Putting the estimates (3.62), (3.64), (3.65), (3.67) and (3.69) together, one sees that
(3.60) is valid. Furthermore, by an argument similar to that for proving (3.60), we

can also show that the remaining terms in (3.59) and 7, share the same bound as
(3.60), and we thus arrive at

1 1 .
D, Ig < qu( szt N) sup |27 (s) oo
Ty

0<s<t
Py hj
+ Cy sup HeZOSpO ) ]+CA1(Z‘).
0<s<t wqﬁ(v) 2

Now choose Ty, N > 0 large, and plug the estimates for Z,, Z¢ and Aj(¢) into
(3.57) to obtain

sup 17 () loo < Cllholloo + C sup v wy 08(s) oo
0<s<t 0<s<t

oo (3.70)
+ C sup [ETS ff(s)H2].

0<s<t

On the other hand, from (3.6) in Proposition (3.1), one has, by taking 19 < A1, that

an 65| 7]

0<s<t

t
< Cllwg 2,6 foll2 + C\// 15" |[v=1/2g(s)[13ds 3.71)
0

t
+c\/ v=12wg /2,68 (s)l13ds.
0

We then have that (3.53) follpws from (3.70), (3.71) and (3.15). This allows us to
construct a global solution 4/ (¢, x, v) to (3.47) and (3.48). Since (3.53) is uniform
in j, one can further show that {h/}°° , converges to & strongly in L* via an
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argument similar to that used in the end of the proof for Lemma 3.4. Finally, by
(3.53), we also have

sup {I111(5)lloo + 17()|oc} Slwg.0 folloo + sup v wy 68(s) oo

O=s=t 0<s<t

t
+ llwg 2.0 foll2 + \// 15" |[v=1/2g(s)[13ds
0

t
+/ / Iv=12w, 2 6g(s)lI3ds.
0

Then, (3.72) and the inequality |wg/2.0 foll2 S llwg.e folleo imply (3.32). This
completes the proof of Proposition 3.2. O

(3.72)

3.3. Nonlinear Existence

Our aim in this subsection is to prove

The global existence of (1.11), (1.12) and (1.13). Recalling the initial boundary
value problem for the linearized equation (3.1) and (3.2), we design the following
iteration sequence:

Wf T o Ve L L =T Y, N0, 3, v) = folx,v), (373)

with f57 = P, € and O = fo(x, v). Clearly, P{T(f*, )} = 0.

Note that the iteration scheme (3.73) does not provide us with the positivity of
the solution of the original equation (1.1), however it coincides with the linearized
equation (3.1) so that Propositions 3.1 and 3.2 can be used directly. Our strategy to
proving the global existence (1.11), (1.12) and (1.13) can be outlined as follows:
we first show that the sequence { f l}?’zo determined by (3.73) is well-defined in
a suitable Banach space via Propositions 3.1 and 3.2, then we prove that such a
sequence is in fact a Cauchy sequence and that the limit is a desired global solution.
Let us now define the following energy functional:

EIO) = lwgo 126 + lwgo f 12 i+ NFIZ + llwge f113,

and dissipation rate

D)) = lwgpo fIIZ+ N FII2.

For later use, we also define a Banach space

0<s<t

t
X; = ‘fl sup 5(f)(s)+/ D(f)(s)ds <. 8 >o],
0
associated with the norm

t
Xs(f)(1) = sup 5(f)(S)+/0 D(f)(s)ds.

0<s<t
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‘We now show that f e Xy if f ¢ ¢ X;. For this, on the one hand, we know from
(3.32), (3.5) and (3.6), with f = f*land g = ['(f¢, fY), that (3.73) admits a
unique solution £+ satisfying

t
sup ECFH(s) + / D) (s)ds
0

0<s<t

< CEFO0)+C sup v wg oT(fE FOHGIZ

0<s<t

¢ 2
e /0 o™ 2wy s PO ds

t
+C /0 S T2 £ () 13ds, (3.74)

provided that the right hand side is finite. On the another hand, thanks to Lemma
2.3, it follows that

/ o ugnarct, 9 as

<C sup flwgofs)I2 / g2 £ (5)I2ds

0<s<t

< C sup E(fO)(s) D(f )(s)ds, (3.75)

0<s<t

t
/0 s ||v*‘/2r(f5,f‘)(s>||%ds

t
< C sup llwgp,0f )% /O | £ ()2 ds

0<s<t
< C sup E(fH(s) D(f )(s)ds, (3.76)
0<s<t
and
sup u*‘wq,gr(f‘,f‘)H <C s (Y ). (3.77)
<s<t 00 <s<t

As a consequence, one has from (3.74), (3.75), (3.76) and (3.77) that
X5 (£ < CEO0) + CXG(fOH@), (3.78)

which further yields that Xs(ft1) () < 8, supposing f¢ € X; with 8 and £(f)(0)
small enough.

We now prove the strong convergence of the iteration sequence { f z}2‘;0 con-
structed above. To do this, by taking the difference of the equations that f¢*! and
£ satisfy, we deduce that

LF T = fAH v Vel f = f 4 LU - 1
=TI(f* —f’z_l FO+TUL o=,
[f@—i-l _ fﬁ]_ _ fﬁ-‘rl f[
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with 1 — £t = 0 initially. Repeating the same argument as that for obtaining
(3.78), we obtain

X = 190 = ¢ X (PO + X (PR = FD o),

This implies that { /¢ }72 o is a Cauchy sequence in X for § suitably small. Moreover,
take f as the limit of the sequence {fe}j?io in X, then f satisfies

t
sup E(f)(s) +/0 D(f)(s)ds < CE(f)(0) < Cllwg. foll- (3.79)

O<s<t

Since we have L°° convergence at each step, as [27, pp. 788], we deduce that
wq,¢ f is continuous away from yy when €2 is strictly convex. The uniqueness is
standard. We now turn to prove the positivity of u 4 /i f. As mentioned at the
beginning of this subsection, we need to design a different iterative sequence. We
use the following one:

{0, +v- Vi) FEFL 4 L) (FY .
= [raxs v — ulbo(@) F (') F (V') dudew = TEIN(FE FY,

FtHl = B Jnyv=0 Ftn(x) - vdv,

FL0, x, v) = Fo(x, v),

starting with FO(t, x, v) = Fy(x, v),where v(F) = [ps, o [v—ul®bo(0) F* (w)dudo.
By a procedure similar to the proof of Theorem 4 in [27, pp. 806-807], one can
easily verify that such an iteration preserves the non-negativity. We now need to
prove that F¢ is convergent in order to conclude the non-negativity of the limit
F(r) > 0. Noticing that F*1 = p 4 /2 f¢+1 equivalently, we need to solve
£+ such that

{0 +v- Ve +v) fO - k=Tl G — F (i,

3.80
FEU =Pt P00 ) = folx, v). o

In fact, since |v(\/ﬁfz)| < Ceggv for ||wq,9fl||OO < g0, one can rewrite (3.80) as

[0 + vV, +7) fO = Kftpreain et b
T =p N0, x,0) = folx,v),

withy =v+v(/uf ). As with the proof of Lemma 3.2, it follows from a routine
procedure to show that {#‘+! = wyof ”1};’10 is indeed convergent in L°° local
in time [0, T,]. This ends the proof of the first part of Theorem 1.1. We leave the
second part to the next subsection. O
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3.4. Nonlinear L™ Exponential Decay

In this subsection, we are going to deduce the L° exponential time decay
rates for the initial boundary value problems (1.11), (1.12) and (1.13) based on the
global existence constructed in Section 3.3. For this, let us first present the following
refined estimates for integrals on the stochastic cycles given by Definition 3.1:

Lemma 3.5. Denote || - [y = | - |2 0r I - lloo- Assume (q, 6) € Ag.9. There exists
constant Ly > 0 such that for pg = 6 >

| / L1202 £ (5. ) IS (5)ds
Vi

(3.81)
A A
< Ce_Toflpo sup 670500 If )y,
0§s§t1
and
k=1
[ 3 taaeall 6 mlvazicss
H V/] 1 7+
A A
<Ce 1 sup e £(9)]ly, (3.82)
0<s<t

where C > 0 and is independent of k.
Moreover, for any €y > 0, it holds that

/k / ||f(S, s vl)”YdEl(S)dS
I _ 11—e€o

< Ceoe™ 1 sup 3| £ (s )y (3.83)

0<s<rn
)
— )
/ 1{n+1>0}/ 1f Gs, - vp)llye 040" A7) doy)
1_[ ]_[, =11 Vi u
Xnljzll{eV(vJ)(tJJrrtj)daj}dsl

+1

A A
<Ce 1 sup e £ (s, vy, (3.84)

0=<s=<t

and

—204P0 20
/Hkl Lo<n | f (. ve—DIdZi—1 (1) < Cege™ 21 sup e 2™ || £(5) oo

i V; 0<s<1

(3.85)
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Proof. We first prove (3.82). Recall the decomposition (3.38), and also rewrite

k=1
[ 2] ol 76 Iye 0 2 wdords
HI;:{V =1 141

% Hlj_:ll{eU(Uj)(tj-%—l*tj)do-j}

k=1
[, X[ twealfols
! f1+1

Jj=1
max{[vy ][0z ], lop—_ <k [=1

x M_l/z(vl)e”(v’)(s_”)daldsHlj;ll {eV(vj)(tj+l_tj)de}

k=1 g
w2 twealrol
j=17J 141

max{vg [J0g].. g 1>k =171
% /L_l/z(vl)ev(vl)(s_[’)daldsl_[lj_:ll {eV(Uj)(fjH—lj)daj}

dé/C3 + Ky4.

To estimate K3, as in the proof for (3.36), we denote max{|vy|, |v2], ..., |vk—1]} =
|vn | again, then it follows that

k=1 .y
IC} S/ mk—1y. Z/ 1{l1+1>0}||f(s)”Y
j=L7 141

max{[vy [ ] lvg_1 <k [=1

% ev(vm)(S*I])M*1/2(vm)do_ldsl—llj—:11do,j'

Meanwhile, by Young’s inequality, we find

0
b 4 0) £ e gy = o, (3.86)
' —-Q

where A is given by

q I—po
0 < Ao < (Cppp)~ o (—) > 0.
0=l 81 = o)

0

Using (3.86), we obtain, for po = 5=,

k=1 .

20 ¢ a0t —s)P0  —

K3 < ¢z, Z/ Ly, >0e 2" 1 f(9)lve 0=
n 41

max{|vg |,1v2],.... lug_ 1 1<k =1

)»0 0
=70

X Wq /2,0 (vm)/L_l/z(v,,,)daldsl'llj_:l1 do;

Ao PO q 0 lvml
< /277,'6_2[1 1 eg‘vm‘ e 4
1'I.=1Vj
max{|vy [,[va],..., lvg—1 13k

k—1
X [Z 1{z1+1>0}/
=1 u

2

1 A M
e;’(ns)ﬂods] sup {67‘)5”0 ||f(s)||Y} '~ do;

+1 0<s=<n
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_*04P0 20
<e 0 sup {7 f 0y

0<s<n

7=
X —— (n(xp) - vy)e—
27.[ n(xpm) vy >0 " "
A A
<Ce 1" sup {e70“p°||f(s)||y}. (3.87)

0<s<n

1‘ 2,9 4
Floml"+g vml
7 1Vm g 1Um dvm

A A
B (01=s)0 =50

. _ _*0
Here Lemma 2.1 is also used to guarantee e 2 < e 24 for

0<po < 1.
As to K4, assume with no loss of generality that |v;| > k; following the calcu-
lations for K, in the proof of Lemma 3.3, one has

k=1 L
o (t1—5)P
K4 S/k Z/ e MU sy, mop sup If(9)]ly
2y 1o i f41=s<t)
—1/2 k—1
XWgq/2,0 (V)1 /(vl)njzldffj
k—1
—1/2 k—1
<Cc>y wg/20Dn” P2 1do; sup [ ()l
k—1 J
= Y0V 0=<s=<t
i-1 =P+ g 1°
<C - I, do; n(x_)_wo(n(xi)'vi)e s dy; sup ()Y
m_,V; oy 12k 0<s<n
it 1 2 0
_ _1 q
by [ [ e me Iy G
-1 J
=1 Hj:lj n(xy)-v>0
- d -l d
<y Wiadey [ €T @) vdv sup Gl
j=l+17J vi 1>k <5<
k—1 2
i—1 ERLIA
. i 2 ) s .
+C > /Hv.l'ljzldo] Amwoe (n(x;) - v;)dv;
I=i+1 j=17J |vi |>k
-1
x// | Hj:i+1d‘7j/ n(xy) - v
Hj_:iHVj n(x;)-v;>0
L2 4 1
e #MHEdy, sup |1 £(s)lly
0<s<t
_E _i
< Cgotk—1De™ 8 sup [[f(s)lly < Cgpe 1 sup [ f(s)ly.
0<s<t 0<s<n

Notice that k = C [a(t)]5/4; (3.82) then follows from (3.87) and (3.88). Just like
the proof for Lemma 3.3, (3.81) can be handled in a similar way as to (3.82), and
the proofs for (3.83) and (3.84), being similar and easier, we omit for the sake of
brevity. It remains now to prove (3.85). To do that, we have, using a decomposition
as in (3.38) again,
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/ o Bo<a L f (s s i) A e DA ()
Hj:lvf
= Lo<y | £ (2 ) (o)
= iy, o<ty 1S (ks - v [ Vk—1

max{|vy[,|va|,....Jvg 1 [}<k

X l'[l;;{ {e”(v./')(’_i+l _t'i)de}

+/ sy Lo<n | f (s =D ™2 ()
=17J
max{lvy[,|vp],....Jvg_1 [}>k
X Hf;}{e”(v.f)(f_wl*f.i)dgj}
dZEf]CS + Ks.
To compute Ks, let us denote max{|vi], [va|, ..., [vk=1]} = |vm| again. We first

prove that there exists a constant C > 0 independent of ¢ such that forall 1 <m <
k — 1 and small ¢p > O,

/k7
-V

Iy,
=17

1{0<tk}wq/2,9(Um)ﬂil/z(vm)nll;;idodj < Ce. (3.89)

For this, we define non-grazing sets for 1 < j < k — 1 as V;’» = {v; € V;:

vi-n(x;) =3N{v; €V vl < %} with 3 > 0 and sufficiently small. Notice
that (¢, ) € Ay 0; we obtain, by a direct calculation,

/ wg /2,02 (v))do;
VAV

PN
S/ wq/z,e(v.,')ufl/z(vj)daj
O<v;-n(x;)<3
+/ w26 (v))do; (3.90)
vjl=1

/4,0 N\, . ) )

< Cq,e/ w/' (v - n(xj)dv;

O<vj-n(x;)<3

+Cy0 / w* ) v;j - n(xj)dv; < Cs,
lvjl=1
and

/ wy2.6 W) (v))do; < C, (3.91)

Vi

where C is independent of j. On the other hand, if v; € V;’. , we know from the
definition of the diffusive back-time cycle (3.33) that x; — x; 411 = (¢; — tj+1)v;.
Since |v;| < %, and vj - n(x;) > 3, thanks to Lemma 2.6, it follows that (¢; —
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3
tjit1) = é}_s Hence, when # (¢, x, v, vi, v2, ..., vk—1) > 0, there can be, at most,

[%] + 1 number of v; € V? for 1 < j <k — 1. We therefore compute

/Hk Iy 1{()<tk}wq/2,9(vm)/iil/z(vm)nl]{';ido'j

j=17J

C
[

-y /V T g5 () o
=1 1

[L‘zm]+l
3

+ 2 /V.}.Hl;;llwq/Z,@(Um)/Jv_l/z(vm)dO'j
=1 2

[Cga(r)]_i_l
sup/ do;
v

” ("”)
<
; l
k—I1—1
sup j
V\V3 !

I=
k-1 :
+ ( ; ) sup/ do;
=1 iV
k—1-2
X sup/ do; )
i vy

where VIT is the set where there are exactly / of v i € Vj?i, including v,, € Vf’n,
andk —1—1lofvj ¢ V;, while V; is the set where there are exactly / of vj;, €
Vj?l_, andk—1—lof v, ¢ Vfi and also vy, ¢ V3. Since do is a probability measure,
fvg doj < 1,and

J

-1

[, w2 o,

m

/V  Wa.o (vm)n ! (v )doy
))1/ m

Cealr)
—[= ]

k—I—1 k=2 = o[G0
do; < do; < (C3) )
Vi\V; ViV

Ceg-ot(t)
With this, from (3.90), (3.91) and (*7") < {k — 1}/ g{k—l}[ )
that

, we deduce

/ 101 wg 2.6 (vt~ 2 () T~ N doy

< C([Cé;(t)] + l)(k— Hl 5 ey 5],
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For ¢y > 0, (3.89) follows for C3 < 1, and k >>
to ICs, and from (3.89) and (3.86), it follows that

CE;(I)] + 2. We now go back

tH—t —1/2 k—
Ks < ety Lio<r | f (te, -, ve—) eV om0 =12y )T _1do;
max{lvyl,|vpl.....lvp—1 )=k
—20t’0  —ao(t1—t;)P0 -1/2
< iy, Ljo<g e 0% e P00 0y s o ()i ™2 ()
max{|vy [,[va],..., lvg—1 13k
k—1 20420
x M Zido; sup {41 £ 0)loo )
0=<n =<ty
_*0,P0 Ao ¢
< Cepe 21 sup {e2300||f(s)||oo}.
0<s<n

As for g, assume, with no loss of generality, that |v;| > k, and apply (3.86) to
obtain

K < Vo< f (1, -, ve- 1) {TT5Zf e @00ty

k—1
l-[j=le
max{lvy[.[va],....Jvg—1 [} =k

x w2 ()T do;

—xot0 —ro(t1—)P0 [ k-1 —-1/2
< oty Ljgey e 0% e 0l—ik) {H,=1wq/2,9(vl)}u 2 (ve)
max{lvy[.[va],.... |vg—11}=k
AQ P
k—1 20,20
x MZido; sup {471 £ (001}
0<n =t

k=2
_ 20,0 ) _
<Ce 2h sup {e 2 s/’0||f(s)||oo} (/ wq/z’g(vl)u 1/2(v1)d01)
\Z

0<s<t

X/qu/z,e(vi)u_l/z(vi)ddi

A A
<ce 3 sup LB £} Chgle (5-52)

O=s=n

Choosing k suitably large so that Ck le=k?/16 €0, one sees that (3.92) also enjoys
the bound (3.85). This completes the proof of Lemma3.5. O

We now turn to prove exponential decay using Lemma 3.5 and the uniform
bound (1.21). The main difficulty with proving rapid decay (1.22) is created by the
fact that the collision frequency has no positive lower bound in the case of the soft
potential. However, as is shown in (3.86), one can trade between exponential decay
rates and the additional exponential momentum weight on the initial data and the
solution itself.

The proof of (1.22). Recall that f (¢, x, v) satisfies

f+v-Vif+vf=Kf+T(f ), fO,x,v)=fo
f— =ny~
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With this, by a same kind of computation as for obtaining (3.42), one has

t t
|f(t, x,v)| < Hlnso/ +1t1>o/ }e_”(”)(t_s)ll(l_xf(s,x —(t — 5)v, v)|ds
0 1

T

t t
+I1t150 / IR / ]e”‘“)<”>|KXf<s,x—<r—s>v, v)lds
0 11

NG
t t
+I1t1<o / 1,20 / }e—“<“)<‘—”|gf(s,x—(r—s>v, v)|ds
0 151
T3
8
+ DT, (3.93)

with
Ja = Ly <0e "' £(0, x — tv, v>|

eV / Zl{z1+1<0<z,}|f(0 x; = tyor, v)|d % (0),

/ 1 /I 1
k-1 Z/ 1{f1+1<0<11}
2 Vi1 5
x|[[K'7% f] <s X1 — (1 — s)vp, v)|dZ (s)ds

Ts = e VW= tl)\/_{

/k 'y Z 1{0<z,+1}|[K1_Xf](S, xp — (1 = s)vi, vl)ldEI(S)dS],

Vi=1

Je=e —v(v)(t— tl)\/_{/k 1 Z/ 1{[1+1<0<tl}

Vii=1
XI[KXf](S XI - (lz — )y, vp)|dX;(s)ds

/k 'y Z 1{0<zl+1}|[KX f1s,x — (4 = s)vr, vz)IdZZ(S)dS],

Vii=1 /i

Ty = e~ W— tl)f{/k 1 Z/ {t141<0<01)

!l 1
x|gr(s, x; — (tz — )y, v)|dX(s)ds

/k N Z 1{0<tl+1}|gf(S,Xl -t —s)v, vz)ldEI(S)dS},

Vi1=1 /i

Ty = e O /n o Mo 0 e DB 0, k=2,
j=1Yi
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where gy =T'(f, f)and Z;(s) (I = 1,2, ...,)is given by (3.43). We now turn to
compute J, (n = 1,2, ..., 8), term by term. As the way to deal with (3.54), let us
first compute 71, J3, J4, J5, J7 and Jg; the estimates for the delicate terms 7, and
Je will be postponed to a later step when estimations such as (3.57) are derived.
Estimates on [Ji and [Js. It follows from Lemma 2.2 and (3.86) that

r,
Ji < C sup {e%%”‘) 176l / e H UM R
0<s<t 0
A
X e_TOSpOdswq/zyg/ K'"Xdv
R3
A A
< Ce@T3e= 71 gup {eTOSpO ||f(s)||oo} .
0<s<t
Likewise, Lemmas 2.2 and 3.5 and inequality (3.86) imply

)

M Py A
Js = CeoPem 22wy ) W) {7176 oo

_20 20
< Ceot3em 3 sup LB f(5)loc)

0<s<t

Estimates on [J3 and J7. We have, using (3.86), that

A L, A A
J3 < C sup {ﬁ"s"“ ||wq/2,9gf(s)||oo}/ e~ U= =P (=90 = F 500 4 ¢
0

0<s<t
_ 20400 20 ¢0p
<Ce ™ sup e fwg gl -
0<s<t

Similarly, applying Lemma 3.5 and inequality (3.86) again leads to

M A0 L P M
3 20 (—g)P0 2040 *0 ¢p
Jr < Ce@T3e 2 Um0 =20 0 g /I sup {e2Y ”wq/z,(-?gf(s)”oo}
0<s<t
_ 0400 20 (0o
= Ce™ 3 sup {3 Jug 2087 ()l |

0<s<t

Estimates on J4. For the first term in J4, one directly has from (3.86) that

_ _ 2040
Ly <oe "0, x — 1v, v)] < ™ 2wy 2.0 folloo-
As to the second term, applying calculations similar to the proof of Lemma 3.5, we
obtain

k—1
2 M=o O, 31 = v, w) AR 0)

i=1Yi=1

e—v(v)(z—tl)ﬂ/r[

_LOtpo

_20 400 20 ,P0
< Ce 2 e w1 o /1t folloo < Ce™ 2 || folloo-

Gathering the above two kinds of estimates, we have

_*04mp
Js < Ce o ||wq/2,0f0||oo'
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Estimates on Jg. (3.85) in Lemma 3.5 directly yields

)
L1

Ao, _*0,P0 *0
Ty = Ceoe™ 27wy () /u@e 31 sup {3 £(5)lloc )

0<s<t

_*0 20
< Ceoe™ 3™ sup {3 £5)lloc}

0<s<t

Substituting all of the above estimates into (3.93), we arrive at
[ f(t, x,0)| < T+ Ts + A2(t), (3.94)
with

] 20 ¢
A2y = Ce™ 3 Jlwg 20 follow + (60 +€2%) sup e f()]loo

0<s<t

A0
+ sup e wg2.087(8) oo |

0<s<t

Next, plug (3.94) into K* f and perform a calculation similar to (3.58) to obtain

Kxf(sv XC](S)v U[)
< / KX (ur, 01 f (5. Xa(s), v)]dv/
R3

N N
5//’1t{<0/ +1t{>o/ ]6’"(“)(SS‘)kx(vz,v/)kx(v’, v")
0 1

x| f(s1, Xa(s) — (s = s)v', v")dsidv'dv”

+//dv/dv///kilv/ e—u(u/)(s—t{)ﬂ(v/)

J=17j

k=1 .y
l/
X N X (/) "
xZ/O dsilyy, <oy K (1, VK (1], v
I'=1
x| f(s1.xp + (51— )y, v") Ay (s1)

+//dv/dv///k e—v(v’)(s—ti)\/ﬁ(v/)
=1 V;

2
[/
X / X / 4
X Z/ﬂ dsll{zl’/+]>0}k (v, vVOHK* (vpr, v7)
U'=1""1+1
x| f(s1, xp 4 (51— 1,)v), v")dZp (s1)

4
+ / KX (v, v')dv As(s) & Zﬁn. (3.95)
R3 n=lI

We now estimate J with the aid of (3.95). Substituting (3.95) into Js and applying
(3.86) leads us to
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k 1 " f
Jo = Cqpe” Fo- ”)po/k i [/ L1 <o<n) +/ 1{0<n+1}}
V;] 1 0 141
X ZﬁndEl(s)ds = ZJM, (3.96)

where J6, (1 < n < 4) denote four terms on the right hand side of (3.96)
containing £, (1 < n < 4), respectively. We now estimate Js , (1 <n < 4) term
by term. We first consider the simple term Js 4, since ng kX (v, v)dv' < o0o. In
light of Lemma 3.5, it is straightforward to check that

_ M r_syp0 20 ,P0 0 op
Joa < Cgpe” 2070207 qup {e s OAz(S)}

0<s<t

X o
< Cgpe 2" {llwq/z,efolloo + (0 + €913y sup €25 £ (9)llow

O<s<t

)
+ sup e 2,087 (5) oo |

0<s<t

For Js.2, we first show that there exists a sufficiently large N > 0 such that

j62 - Cq 06_7(1‘ t|)’70/k 1 Z/ {t1+1 <0<y} //dv’dv”

!ll

X/k . —V(U)(S l)f(v)Z/ dS]l{[ §0<[[//}

Jj=17j I'=1

xKX (v, vKX (v, ) £ (51, ) + (51— 1)vp, v)AZp (s1) T (s)ds

1 A x
= Coo (14 5) 2 s A0

0<s<t

A A
+Cype” 3" sup e £(5)]la- (3.97)

O<s<t

As the proof for (3.60), our computation for J(l2 is divided into the following
several cases:

CaseI: 51 > tl/, — k(s) is given by (3.61). From Lemma 2.2, we see that

// K (v, v")k* (v}, v") < o0,

Then, (3.86) implies that

kz( )’

e—v(v’)(s—ti)\/ﬁ(v/) < ngee—)\o(s—ti)PO’
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and we get from (3.83) in Lemma 3.5 that

k—
/k IV’ Z 1 dsll{[]/ 1§0<[ }|f(S1 xl’ + (Sl tl/’)vl/” v”)|d21/(s1)
U K2(s5)

C _» X0 PO
<—e 2" sup 25 | f(s1)]loc-
k(s) 0<s1=t]

Substituting the above estimates into *761,2 and applying (3.81), one has

C 9
1 _ S0 " Z -A 20 o (1)
\76,2— 5/4 (t w /k ty / {t141<0<n}€ At o)
0 /l 1

xsup €1 | £(s1)lloo Bi(s)ds

0=<s1=<1{

C 0
< / (t— tl)ﬂo/ / 1{t1+1<0<t/}
T H V,l 1

A A
x {ez“‘”" sup e ||f(s1>||oo] i(s)ds

0<s1<s

C 9 % Py _20.P0 20 (p _*0p 0 (PO
< Z28 BB qup BT up o £(s1) o
5/4
T0 0<s<n 0<si<s
C ; M
q9 ,A,po 20 ¢po
5/4 2 sup e ? IIf ($)loo-
T, 0<s<t

Casell: s; < tl’, - k2 o) by an argument similar to Case 1 and Case 2 in the proof
of (3.60), one can show that if |v;| > N or |v1,| > Nor|y| < N and [v| > 2N,
or [v,| < N and [v”| > 2N with N large enough, \76{ , bears the bound

C 9 A 20
Cq.0 20400 20 ¢po
217 sup 27 () oo
N 0<s<t
Therefore, we need only to treat the cases |v;| < N, |v/| < 2N, Ivl’,l < N and

[v”| < 2N. As with Case 3 in the proof of (3.60), in this situation, one may also
use the similar approximation (3.66) to obtain

Coo _X A0
q.0 _ 20400 20 oo
j62<Te 2 sup e f(9)lloo

0<s<t

+ Cye” Z(t tl)po/ / 1, 150<f1}//dv,dv”/
) ”Z;, : =,

p—hals— z)poz / dsilyy, <oyl £ GDIATp (5D Ti(s)ds

I'=1
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Cio _n X
< =20 sup A ()

0<s<t
Z / L1 <0<n)

4 Cppe B
]—[kl
71 1

x ie‘kzlsp0 (k(s))" sup eFs ||f(51)||2} 2 (s)ds
Cy, 0,
N

0<s1<s
A0

_ 20 1pg 0 po _ 20 1pg 1 ¢po
277 sup €27 | f()lloo + Cqoe” 2" sup €2 V|| f(s) 2.

0<s<t 0<s<t

=<

Here Mg is chosen to be smaller than A; so that o= 30 (k(s)) < Ce 357,

Gathering the above estimates for Jﬁl’z, we see that (3.97) is true. Once (3.97) is
obtained, the other terms in 75 and 7, can be treated in a similar fashion and after
tedious calculations it turns out that they share the same bound as (3.97). Namely,
we obtain

1 1) _x *0
To. T < Cq,e(Tm * _)e 2 sup e £(5) oo
T 0<s<t
0 (3.98)
_ 20400 A1 400
+ Cqpoe 27 sup e27 [l f(s)]2.

0<s<t

Now, substituting (3.98) into (3.94) and choosing €, g > 0 suitably small and
N, Ty > 0 sufficiently large, we have

20 40 20 ¢
eI f (Do = Cllwg/2,6 folloo +C sup €2 "[lwg2,68 ()00
0<s<t

+C sup e £ (5)lla. (3.99)

0<s<t

Next, from (2.14) and (3.79), it follows that

lwg 2,685 lloo = llwg/2,6T(f, () lloo = Cllwg.o.f () llooll f () lleo
< Ceoll f($)lloo- (3.100)

To control the last term in (3.99), we appeal to deduce the exponential decay of f in
L?. Notice that f(t, x,v),as aglobal solution to (1.11), (1.12) and (1.13), satisfies
(3.79). We know, thanks to (3.6) in Proposition 3.1, that f (¢, x, v) also satisfies

A t
IF @)l S e T [Ilwq/z,efollz + \//0 M V=20 (f, f)(s)Il3ds

t
+\/ /0 v=12wg 26T (f, f)(s)n%ds]. (3.101)
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On the other hand, from Lemma 2.3 and the bound (3.79), it follows that

t
0 0

t
/ A TR (S, £)(s)I3ds < € / A wy .0 FO I (5)12ds

t
< C sup llwgy0f)lI% / A £(9))12ds
0

0<s<t

2 2
< Cgj sup |lwgy2,0.f ()5
0<s<t

(3.102)

and similarly
t t
/O 2wy 20T (f, £)(s)l13ds < C /0 llwg.0 f ()12 llwg 2.0 £ (s)]13ds

t
< Cel /0 g0 f(5)I2ds < Cllwg.o follZo.
(3.103)

Consequently, (3.101), (3.102) and (3.103) give rise to

s
N0 < Cllwg,6 folloo + Ceo sup || f(s)lloo- (3.104)

0<s<t

Now, plugging (3.104) and (3.100) into (3.99) leads us to

20 40
eZ" 1 f(Dlloe = Cllwg,o folloo-

This completes the proof of the second part of Theorem 1.1. Therefore we conclude
the proof of Theorem 1.1. O

4. Specular Reflection Boundary Value Problem

4.1. L?* Theory for the Linearized Equation

Let us look at the boundary value problem for the linearized homogeneous
equation

Wf+v-Vif+LF=0, FfO)=fy, in (0,00) x QxR 4.1)
f@ x,v),_ = f(t,x, Ryv), on [0,00) x y_. 4.2)

We first show that the macroscopic part of the solution of (4.1) and (4.2) can be
dominated by the microscopic part on the time interval [0, 1].

Proposition 4.1. Ler f(t, x,v) € L*([0, 1], L2(Q x R?)) be a solution to (4.1)
and (4.2), and f, € L2([0, 1], L2(3$2 x R3)), then there exists 8y > O such that

1 1
/O (Lf. f)ds = 8 /O £ (5) s, @3)
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Proof. The proof is based on contradiction and is divided into four steps.

Step 1. Proof of contradiction. If Proposition 4.1 is false, then no §y exists as
in Proposition 4.1. Hence, for any n > 1, there exists a sequence of non-zero
fn € L*(]0, 1], L?(2 x R?)) relevant to the linearized Boltzmann equation (4.1)
such that

= Lo firds < - / s (4.4
since f; satisfies
O fn+v-Vefa+Lf=0, in(0,1]x Q2 xR,
and
fut, x, )|, = fut,x, Ryv), on0, 1] x y_.
With this, and by an argument similar to that for obtaining Lemma 8 in [24, pp.

340], one has

1
sup [[v'2£,(0113 < CIv'2 £,00)13, /0 I fu(s)lI2ds = ClIv'2 £,(0))13. (4.5)

0<r<l

Assume that f;,(0) is not identical to zero and set

t? 9
Zn - —]:n( * v) P
Vo Ifa(s))12ds
then X
/0 1Za()l7ds = 1, (4.6)
and (4.4) is equivalent to
1 1
0 5/ (LZ,, Z,)ds < —. 4.7
0 n

Then (4.6) and (4.7) imply that there exists Z(t, x, v) such that
1
Z, — Z weakly in / I - ||%ds,
0
and . .
/ (LZ,, Z,)ds =/ LraI-p»z, d-prPz,ds - 0. 4.8)
0 0
Notice that it is straightforward to verify
1
Pz, - PZ, A1-P)Z, > 1—-P)Z, weakly in / [l - ||‘2)ds.
0

It follows from (4.8) that (I — P)Z = 0, therefore,

Z(t, x,v) = {a(t,x) + v -b(t, x) + [v]c(t, )} /1.
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Moreover, we have from o; f;, + v - V, f, + Lf, = 0 that
0/ Z,+v-VyZ,+LZ, =0, 4.9)

which yields
Z+v- -V, Z=0. (4.10)

In what follows, we will show, on the one hand, that Z = 0 from (4.10) and the
inherited boundary condition (4.2). On the other hand, Z,, will be proven to converge

strongly to Z in fol | - 2ds, and fol | Z||2ds # 0. This leads to a contradiction.
Step 2. The limit function Z(t, x, v).
Lemma 4.1. There exist constants ag, co, c1, ¢2, and constant vectors by, b1 and

@ such that Z(t, x, v) takes the form:

({%O|x|2—b0~x+ao}—i—{—cotx—clx—i—w X x4+ bot +b1}-v

2
cot
+ [OT + it + cz] Ivlz)ﬂ.
Moreover, these constants are finite:
laol + |col + le1] + [ea| + |bol + |b1] + & | < +o00.
Proof. See Lemma 6 in [27, pp. 736]. O

Step 3. Compactness. To show the strong convergence lim fol {Z,—Z}(s) ||‘2,ds =
n—o0

0, we resort to the Averaging Lemma.

Lemma 4.2. Up to a subsequence, it holds that klim fol Z, — Z}(s)||12)ds =0.
—00

Proof. Define
Qu={xeQ:&x) <—c.

Choose any 19 > 0 and a smooth cutoff function xi (¢, x, v) in (0, 1) x Q X R3,
such that x1 (¢, x,v) = lin [no, 1 — nol x Q\Q4 x {Jv| < %}. Next, multiplying
the equation (4.9) by x1, we obtain

[0, +v - Villx1Zu} = {10, +v - Vilx1}Zy — xailZ,.

Since f,, € L®([0, 1], L?(2 x R3)), one sees that x1Z, € L*([0, 1], L*(2 x R3))
and {[3; + v - Vilx1}Zn — x1LZ, € L2([0, 1], L?(£2 x R?)), then we know from
the Averaging Lemma cf. [9,10], that f X1Zne(v)dv are compact in L2([0, 1] x Q)
for any exponential decay function e(v). On the other hand, as with (4.5), from
(4.9), it follows that

1
sup [v'2Z, ()13 < CIv'/?Z, (013, / 1Za(s)|2ds = C|[v'/2Z,(0)13.
0

0<r<1
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Using this, one deduces

1 2 1 2
/ / (/(1 — Xl)Zne(v)dv) dxds +/ / (/(l — xl)Ze(v)dv) dxds
0 Ja 0 Ja

1
= C/ / {(1 - Xl)zzrzle(v) + (1 — Xl)zzze(v)} dvdxds
0 JQxR3

1
L AL S A
0<s<no J QxR3 l—no<s<1l JQxR3 0 Jg \vlz%

<o 3 [ Az + 2 < O,
o

0<s<l1

Therefore, up to a subsequence, the macroscopic parts of Zj satisfy PZ; — PZ =
Z strongly in L>([0, 1] x 2x R3). Therefore, in light of fol [|T—=P)Zi(s)||2ds — 0
in (4.8), we conclude our lemma. 0O

Step 4. Boundary condition leads to Z = 0. Performing the same calculations
as that of Section 3.6 in [27, pp. 747], we see that Z = 0, and this leads to a
contradiction, so finishes up the proof of Proposition 4.1. O

Once the coercivity estimate (4.3) is obtained, like Proposition 3.1, one can
now deduce the basic energy estimates and time decay rates as follows:

Lemma 4.3. Assume that f(t, x, v) satisfies (4.1) and (4.2), then it holds that

t
||f(r)||%+/o I£1% < Cll foll3, (4.11)
and .
lwg a0 f (O3 + /0 lwg a0 f1I2 < Cllwgae foll3- (4.12)

Moreover, there exists A > 0 such that

t
£ (O3 + e " / MNFIZ < Ce™™ wy a0 foll3, (4.13)
0

here pg is given as in Proposition 3.1.

Proof. We prove (4.13) only, the proof for (4.11) and (4.12) being similar and
easier. Taking the inner product of (4.1) with e*” f over  x R3, one has

d 2 o _ o
AN OB} 2L ) = 2T PN F OB @4

For any ¢ > 0, there exists a nonnegative integer N such that ¢ € [N, N + 1). For
the time interval [0, N] (we may assume without lose of generality that N > 1), it
follows that

N N
SN FNIB 42 /0 @ Lf, f)ds = |l foll3 + Ao /0 sP7LeM™ ) £ (s)|13ds.
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Split the time interval into ij—ol [j,j+1) and define f;(s,x,v) = f(j +s,x,v)

for j =0,1,2,..., N — 1, to deduce
N-—1 1
euvpo ||f(N)||% +2 Z/ (e)»(j+s)ﬂoLfi’ fj)ds
j=170
N-—1 1
< 1foll3 + oo D /0 (490~ U £5(5) I3ds,
j=1

which further implies that

N—-1 .1
HNNFNIE+2 D /0 (" Lf;. £j)ds
j=1

N—1 1
< lfoll3 + Chpo D, / JP7 M £ () 15ds (4.15)
j=17"
for0 < pp < 1.
On the other hand, we get from (4.3) that

N—-1 1 N—1 1

> / @ Lfj, f)ds =80 D / 7| £113ds. (4.16)

; 0 ; 0

j=l1 j=1

Substituting (4.16) into (4.15) leads us to
N—-1 .1
o 0
NI+ D] /O | £113ds
j=1

N—-1 1
<ClIAB+Chn . [ eI, @
=1

To handle the integral on the right hand side of the above inequality, we decompose
the velocity integration domain as

Ej={v|j" " =i}, E§={v]j™" > i),

P
where «(, > 0 and small enough. Therefore, for 1 = 1‘1—6(/((’)) =ro _ it follows that

N-—1 1

. — 7 Py
Z/O JP e | £i(9)l13ds
Jj=1

N—1 1

/ AjPO 2
SKOZ/ M £ ()1I2ds

j=170
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L c Z/ P01 ,—1j0 ZA(KO)ﬂO T, ||1ch](s)||2ds

= N-1
_K(/)Z/ P | fj(S)” ds +C Z ||wq/49f(s)|| Z]po_le_)‘/po,
Jj=1 =

0<s<N
(4.18)

Putting (4.18) back into (4.17), and noticing that >_ j Po=1o=4j" — 5o we arrive
j=1
at

N—-1 1
P 0
NN FNIE + Z/O N fi12ds < Cllfoll3 + Cllwgyan foll3.
j=1

where we used (4.12). Changing back to f;(s) = f(s+j) and using el 90 =570 <
el , one further has

N
SN N3 +/0 ONFS)I2ds < Cllfoll3 + Cllwgjan foll3- (4.19)

Now integrate (4.14) over [N, ] to obtain
MO + / MOLE, fds

t
< Ao /N sP= LM £ (5)[13ds + NN F(N) 113 (4.20)

Thanks to Lemma 2.2, one has

t
/N (LS, f)ds = 6 / ) £5)]12ds - € /,vem‘)lll‘mscf(s)ll%d&

4.21)
From (4.20) and (4.21), it follows that

MU FOIB + 8 / M £ (9)|I2ds

t
< Ao / sP=Le™ £ (s)[13ds + Cll foll3 + NI F (N3,
N

where the fact that [y ™" [1y<c f()|2ds < C > IIf&)I3 < Clfoll3 was
0<s<t
used. We then have, by performing calculations similar to those as for obtaining

(4.19),

MpOIIf(t)Iler/ BN F@I3ds < Cllfol3+Cllwgja fol 3+HCN £ (N3

(4.22)
Thereby, (4.13) follows from (4.19) and (4.22). This finishes the proof of Lemma
43. O
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4.2. L Theory for the Linearized Equation
Recall

B gll’ g/’
W00 = EXP) e g o

0
]7 (q’e)eAq,93 0519 < -
Q

Leth = wy ,9(t, v) f(2, x, v). The problem, (4.1) and (4.2) are now equivalent to

9q|v|’ .
8,h+v-Vxh+(v + W) h = Kgh, h(0)=hy, in (0,00)xQxR3,
(4.23)
with
h(t,x,v)|,_ = h(t,x, Ryv), on [0,00) x y_. 4.24)

Here Kih = wq 0,9 K (wq o
We express solution a(¢, x, v) to (4.23) and (4.24) through semigroup U (¢) as

) as in Section 3.1.

h(t, x,v) = {U()ho}(x, v),
with initial boundary data given by
{UO)ho}(x,v) = ho(x,v), and U(0)ho(x,v)l,_ = ho(x, Ryv).
For the sake of simplicity, we denote

Bqlvl?

’ﬁ(v,l):\}-Fw.

It is obvious to see V' < v~!, which plays a significant role in the later proof.

Applying Young’s inequality, one can see that there exists Cy 4.9 > 0 indepen-

dent of v such that
(4+9)e

V(, 1) = Coqo(l+1) 72, (4.25)
and for ¢t > 0, one sees that
(400 (+0)e
Coqo(1+1) 72 ~Coqgot 72 . (4.26)
From (4.25) and (4.26), it follows that
e~ f T o exp (—Az [IQ‘;H?@Q - s% ]) e R 1}

(4.27)

Here, p1 = % with 6 + 9o > 0, moreover A, > 0 is independent of v.

Our goal in this subsection will be to prove the following:
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Proposition 4.2. Let 0 < ¥ < —% with =3 < 0 < 0and(q,0) € Ay p. Assume
that & is both strictly convex (1.8) and analytic, and the mass (1.17) and energy
(1.18) are conserved. In the case that Q has rotational symmetry (1.9), we also
assume the conservation of corresponding angular momentum (1.19). Let hg € L°.
Then there exist Ao > 0 and C > 0 such that (4.23) and (4.24) admit a unique
solution U (t)hg satisfying

20 .p
_71 1

[U(0hollee = Ce 70lloc » (4.28)

0+v0

where p; = =0 -

The Duhamel Principle will be applied to prove Proposition 4.2 and the first step
is an appropriate decomposition. Initially, we look for solutions to the linearized
equation (4.23) with the almost compact operator K3 removed. Namely, we first
consider

dh+v-Veh+0(v,0)h =0, h(0)=hy, in (0,00) x Q xR, (4.29)
with
h(t,x,v)|,_ = h(t,x, Ryv), on [0,00) x y_. (4.30)

Let us denote the solution to (4.29) and (4.30) as semigroup G (¢)hy.
Prior to investigating the properties of the solution operators U(¢) and G(t),
we give the following definition:

Definition 4.1. Let 2 be convex (1.8). Fix any point (¢, x, v) ¢ yoNy—, and define
(to, x0, vg) = (t, x,v), and for k > 1

(k15 Xkt 1, Vi) = (e — o (ths Xk, V), Xb (o, V), Ry Vi), (4.31)

where Ry, vk = vk — 2(vg - n(xg41))n(xp41). We define the specular back-time
cycle as

Xg(9) =D M@ b+ vels — 10}, Vig(®) = D gy (ke
k=1 k=1
Lemma 4.4. Let hg € L°°(Q2 x R3). There exists a unique solution G (t)hg to
{0: +v- Vi + Vv, HHG()ho} =0, {G(0)ho} = ho,
with the specular reﬂectign {G(0)ho}(t, x,v) = {G(0)ho}(t, x, Ryv) for x € 0L2.

For almost any (x, v) € 2 x R3\yp,

{G(Oho}(t, x, v) = e I 7T o (X4(0), Var(0)

o0
- 4.32)
= > Ly @ BT R (o — v, v
k

Here, we define t,y =0 ifty < O.
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Moreover, it holds that
IGOhollo = e B7CD9hg| (4.33)
o0

and there exists Ly > 0 such that

IG)holloo < Ce ™ |Iholla, >0, (4.34)

and

IG(t = $)h($)loo < Ce™2H" ()]l 0g, 125> 0. (4.35)
Proof. The proof for (4.32) and (4.33) is the same as that of Lemma 15 in [27, pp.
757]. As such, (4.34) and (4.35) directly follow from (4.27) and (4.33), and this
completes the proof of Lemma 4.4. O

The following lemma shows that the solution operator G (t)h is indeed con-
tinuous away from the grazing set:

Lemma 4.5. [27, Lemma 21, pp. 768] Let & be convex as in (1.8). Let hg be contin-
uous in Q@ x R3\yy and g(t, x, v) be continuous in the interior of [0, 00) x § x R3
and SUpP[o_ ) x QxR3 |g£t(’ux’[l)))| < 00. Assume that on y_, ho(x, v) = ho(x, R(x)v).

Then the specular solution h(t, x, v) to

dh+v-Veh +V(v, )h = g(t, x,v), h(0) =hg, in (0,00) x Q x R,
with
h(t,x,v)|,_ = h(t,x, Ryv), on [0,00) X y_,

is continuous on [0, 00) x {Q x R3\yp}.

We now go back to (4.23) and (4.24). From the Duhamel formula, it follows
that

{U@)ho}(x,v) = G(t)ho(x, v) + /Ot ds G(t — s)Kw{U (s)ho}(x, v).
Employing the decomposition Ky = K% + K%fx again, we then expand out:
{U@)ho}(x,v) = G(t)ho(x,v) + /Ot ds G(t — s)K%_X{U(s)ho}(x, v)
+ /Ot ds G(t — s)KZX{U (s)ho}(x, v).
‘We further iterate the Duhamel formula of the last term, as was done in [46]:

{U$)ho}(x,v) = G(s)ho(x, v) +/0 ds1 G(s — s) Kw{U (s1)ho}(x, v).
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Substituting this into the previous expression and using Ky = K% + K%_X again
yields a more elaborate formula:

t
{U@®)ho}(x, v) =G(t)h0(x,v)+/ ds G(z—s)K‘w*X{U(s)ho}(x,v)
0
t
+/ ds G(t — s)KZ{G(s)ho}(x, v)
0
t s
+/ ds/ ds; G(t—s)K%G(s—sl)K{X{U(sl)ho}(x,u)
0 0

t s
+/ ds/ ds; G(t — s)K%G(s — sl)K%{U(sl)ho}(x, v)
0 0

5
= H(t.x.v).
=1
(4.36)

For any fixed point (¢, x, v) with (x, v) ¢ yp, let the back-time specular cycle of
(t, x, v) be [xa(s), ver (s)], then the most delicate term Hs in (4.36) can be rewritten
as

Hs(t, x, v) z/t ds /S ds; /dv’dv”e_ N '\7(v,r)dr—ﬁl v(v',7)dt
0 0
x KX (Ver(s), v)KE (Vg (s1), vk (X (s, v")

where k%() = wgq,0,0KX( wq:(-),ﬂ ) and the back-time specular cycle from (s, X ,(s),

v’) is denoted by
Xaq(s1) = Xalsis s, Xa(s), v),  Vils1) = Vg(siss, Xgq(s),v).  (4.37)

More explicitly, let #; and 7, be the corresponding times for both specular cycles,
asin (4.31). Forty11 < s < I, t,i/ﬂ <sp <ty

Xa(s1) = Xalsts s, Xa(s), v') = xp + (51 — )0, (4.38)

where x;, = Xa(t); s, X + (s — t)ve, V), v, = Va(ty; s, X + (s — t)vg, v').
Recall « in (2.18) and define, naturally,

a(x,v) = a(t) = £2(x) + [v- VE@)]? —2[v - VZE(x) - v]E ().

‘We define the main set
- 1 1
Aaz[(x,v):xGQ, NSMSN’ and oc(x,v)zﬁl. 4.39)

Lemma 4.6. [27, Lemma?22, pp.775] Fixk andk'. Define fortry 1 < s < t,s1 € R
and

afx,, + (s — t.)v),
]EJk,k/(l,X,U,S,SlsU/)Edet( 78 (31’ 2 k}).
v



Boundary Value Problem for Boltzmann Equation with Soft Potential 531

For any ¢ > O sufficiently small, there is S(N, e, To, k, k') > 0 and an open
covering U B(t;, x;, v;; r;) of [0, To] X Ay and corresponding open sets Oy, x; v,
for[tis1 +6e,tr —e] x R x R3 with |Os; x;,v;| < &, such that
|k o (X, 0, 8,51, 0)] =8 > 0
for0 <t <Tpy, (x,v) € Ay and (s, s1, V') in
Of oo Ntk1 + &, 1 — €] x [0, To] x {|v'| < 2N}

In order to prove Proposition 4.2, we first show the following crucial estimates
with the aid of Lemmas 4.5 and 4.6:

Lemma 4.7. There exist constants Ty > 0 and Ct, > 0 such that

Pl To
IU (To)holloo < e %0 (g loo + C /O Il £ (s)ll2ds. (4.40)

Proof. Our proof is divided into two steps.

Step 1. Estimate of h14,. Letus splith = hl,, +h(1 —14,). We first express and
estimate the main part, 21,4, through (4.36). By utilizing (4.27) and Lemmas 2.2
and 4.4, we see that

—antPl
[Hi (2, x,v)| < Ce™™" |lhollog »

)

t :
1 pt~ A A
|Hy(t, x,v)| < C/ e~z ); "(”)dfi(v)e—%(ﬂ)l =) o= Fs o

sP1

x[Kf XU $)h(s)v" (v)ds

t
SCe”QeJTZ’pl sup HeTZSPIU(S)h(S)H /e_ﬂo "W
% Jo

0<s<t

_ 22
< Ce3tee™ 3" sup
O<s<t

¢ U (s)h(s) Hoo

Here we have used the fact that fo 1k 1’(”)‘h"(v)ds < 00, as well as the signifi-
cant observation 71 < v~ Continuing, one has

! ~ X X
|Hy(t,x, )| = € ||h0||00/R3/ e 2 BT ()em T e Ty )
0
x kX (Va(s), v')dsdv’

_ 22
<Ce 2" |lholloo »

and

Hy(t, x,v)| < Ce3T su
| p
0<s<t

/R%/ / e LT )y

(tpl—vpl) —22 (sP1 s —*‘1 v l(v)kx (Var(s), v')dsds dv’

¢ U () (s) H

_ 22 p
< Cettee= 3" sup
0<s<t

o7 ‘U(s)h(s)Hoo
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For the main contribution Hs, notice that along the back-time specular cycles
[X (), V()] and [X(s1), Vg(sn]in (4.37), [Vy(s)| = [v] and |Vg(sD)| = [v'].
Therefore, the integration over |v| > N or [v'| > 2N or [v/| < 2N and |[v”| > 3N
are bounded by
eN?2 1 A A
C ie_{vﬁ + ﬁ] e~ 1M sup eTzsplh(s)

0<s<t

oo

As in Case 3 in Section 3.2, by using the same approximation, we only need to
concentrate on the bounded set {|v] < N, |[v/| < 2N and |[v”| < 3N} of

t s ot~ "S o~y
/ / / ¢~ I POTL TOMAT (6 XD, v”)| dv/dv”dsyds
0 JO JP|<2N,v"|<3N

= | axa@n<e T [ ata@awnze = A5+ H52e

[V'|<2N,[v"|<3N [V'|<2N,|v"|<3N

In the case a(Xa(s), V) < &, E2(Xa(s)) + [v' - VE(Xa(s))]? < &, notice that
IVE(Xa(s))| = ¢ > 0, hence for ¢ small and X¢(s) « 0€2, Hs 1 is dominated by

TS s L Sadr~ o~
Hs ) < CN/ / e~ [T =3 [ TS s
0 Jo

22 Pl _oP A2 cepp Pl A PL A PL
X 3_70 T—s 1)6_7(3 1=s) )6_7“1 e2 51

’v—lh(sl)Hoodsdsl

a(Xa(s),v)<e
[v'|<2N,[v"|<3N

_*2.p
<Cne 2" sup

22 ooy
e?’ h(s)” /
0=s<t 00 Jiv. FEXASD | < |v/|<2N,[0"| <3N

IVEX 1 ()]

_ M op 22 py
<Cyee 2" sup |e?* h(s)” )
o0

0<s<t

As for case a (X (s), v') > ¢ from (4.38), we bound Hs » as

r, s
—22 (4r1 5P ’ " 7 3.0
3 1 h X
CN/O e ] etz | (51, Xg(s1), v") |dv'dy
[v'|<2N,]v"|<3N

ko (ly Ly) o1
SO A AN P
ti1 1 a(Xa(s).v')=e

kK 12’+1 [V'|<2N,|v"|<3N
x [ (s1, x5 + (s1 — t7,) v, V7) [dv'dv”,
where [z, x,, v},] is the back-time cycle of (s, xx + (s — fr) vk, vr), for fry1 <
s < ftg.
We now study x;, + (s1 —t;,)v},. By repeatedly using Velocity Lemma 2.5, we
deduce for (f, x,v) € Ay and 0 < t < Ty and a(Xa(s), v') > ¢ that
a() ~ {v - ny)? = e V" a(t) > Cpy ey > 0;

a(t)) ~ {v), ~n,(]//}2 > ¢ {CeN=1Toy (X (5), V) > Cryene > 0.
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Therefore, applying (2.19) in Lemma 2.6 yields #; — 7741 > O N and 1, — tl/’+1

CTy,E,NE
4vz— so that

ToN? ToN?
k < =CrenN, K <———=Crene.
CTQ,S,N CT(),%',N‘9

W lth thiS, one can further Spht the s—integral as
tli/ A2 Pl
/ 1 e~ 2 #P1—s 1 )

173
eyt J V| S2N W |<3N k=Cry N K =Cryy.e” s

x |h (s1,x,’(/ + (s1 = i)V, V") |
/ / /tk+1+8
fky1t+e t tet

.. t,/ X . .
Noticing that Zk, ft o= foy, the last two terms make a small contribution as
k' +1

A To
eCy sup = F = (s) oo / /
0<s<t 0 Jj|<2N, <3N

_ 22 401 _gP1
=eCnzy sup e 2 Rl o -
O0<s<t

For the main contribution ft e+ Dy Lemma 4.6, on the set O . . N [fx41 +
e, —¢e] x [0, To] x {]V/] < N}, we can define a change of variable

y = x]/(/ + (s1 — t,i,)v,/(,,
so that det (52 & %) > & on the same set. By the Implicit Function Theorem, there is a

finite open coverlng U’” Vi of O, i N[frr1 + &, 1 — el x [0, To]l x {|V| < N},
and a smooth functlon F such that v/ = = Fj(t,x,v,y,s1,s) in V;. We therefore

have
1
/ / / / / / lori",(i.vi
tir1+e J | <2N 0" | <3N Tet1+e J V| <2N 0| <3N

k’+l k/+1
f ¥
ik, k/ tr+1+e J V| <2N, V| <3N k’+l
T .
Since >/ f = fo < Jo' and |0y x, 4| < e, the first part is bounded by

k’+l

_2a4p0 20
Crnee™ 3" sup {2 () o}

0<s<t
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For the second part, we can make a change of variable v — y = x;, + (51 —
t,,)v;, on each V; to get

_ M o) Pl
Cetpn D / / e” 2SI R (1, xp + (51— 1) v, V")
U

ok "I=3N

i 1
= CSvTO’N Z/ / e_Tz(tpl_Slpl)lh (s17 y5 d}’dv deSl
— Jv; Jwri<an ‘det {&]]

C t s A r P 1/2
< =&l / / e T / e 751 [/ h? (s1,y,0") dy] dv”dsds;
s o Jo [v/|<3N Q

t
< Compn /0 1 () ]12ds.

where [ = h
terms

N t
_*
it x o) 1a, | < Ce 3 ol + Cotyn / 1/ llads
0

C e A
+[ N +CN,T(,5]€_22'” sup ¢ (sl (441)

0<s<t

Step 2: Estimate of h. We first get, from h(z, x, v) = G(t)ho—i—fot G(t, s)Kwh(s)ds,
that

t ~
Ih(0)ll < e~ 1ol / e 2 I T ()= F =)
0
X HU_I(U)KIL—_Xh” (s)ds
o0
t
+/ o3 [ TWrg (g~ R0 sﬂl)H —l(v)KXhH (s)ds
0

P2 %2, 757
< e lgllog + CE2 ™ sup T JIh(s)
O=s=t

1 ~ i
n / e~ S TWTg ) = F 1 =571 Hv”(v)K%h H (s)ds. (4.42)
0 o0
Next, since {KXh}(s, x, v) = [k&(v, v')h(s, x, v')dv’, we then rewrite
t
/ e—%fslg(v)d’i(v)e_%z(tp'_‘Ypl) Hv_l(v)K%hH (s)ds
0 o0
Z/t ey v(v)dr~(v)€——(ﬂ’1 —sP1)
0

_l/k%(v, VR(s, x, V)1 — Ta,)dv’| ds

o0

X

t
+/ e*%L’U(v)dr"}'(v)ef%z(tplfspl)
0
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ds

]

- /k%(v, VA(s, x, V)14, o0 dV

def

= He + H7.

From the definition of A, in (4.39), it follows that

Ho < C / vk, v’)|dv’+/ Ik (v, o)
[v'|=N, or [v'|<+ a(x,v)<4

N

2 p
—Z£tP1
xe 2!

A
sup €7 |7(s) oo -

0<s<t

By approximation, if necessary, one sees fu =N, or < VT 1kX (v, V) |dv =

o(1) as N — oo. From a(x,v') < «, &2(x) + [v'- vs(x)]2 < 5. For N large,
x «~ 90 and |V&(x)| > ¢ so that

—1q, X / / —1y, X / ’_
R e kg = o
a(x,v)=< =

N IVE)|

as N — o0o. As a consequence, it follows that

A A
Hs < o(D)e™ 2" sup ¢ h(s)ls -

0<s<t
As to H7, in view of (4.41), one has

A C i »
H; < Ce— 31" ol + [ﬁ + CN,TOS] e 21" sup e TS 12(5) 0o

0<s<t
t
+C5,To,N/ £ (s)ll2ds.
0

Hence, substituting the estimates for Hg and H7 into (4.42), we arrive at

_i[ﬂl

[h®)loo < Ce 170lloo

C X 2
+ [ﬁ + Cn,1pe + 0(1)I e sup ¢ T h(5) oo

0<s<t

t
+ Ce.touN /0 £ (5)lads.

We choose Ty large such that 2Ce_A72T0p1 = e‘koTopl, for some Ay > 0. We then
further choose N large, and then ¢ sufficiently small such that C{o(1) + % +

Cn. 16} < % Therefore, one has
N t
Ay
sup {F 0o} = 2C Tholl + € [ 170l
<s<t

Choosing s = t = T, we deduce the finite-time estimate (4.40), and the proof of
Lemma 4.7 is completed. O
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We are ready to present

The proof of Proposition 4.2. It suffices to only prove (4.28) for t > 1. For any
m > 1, we employ the finite-time estimate (4.40) repeatedly to functions 2 (I Ty +s)
forl=m—1,m —2,...0to deduce

2 To
IhmTo) oo < €070 [Ih(tm — Tp)llo + CTO/O ILf({m — 1}To + s)ll2ds

mTy

_ Pl
= I it = DTl +Cry [ lads
{m—1}Ty

{m—1}Ty

< e 20T h((m — 2)To) g + ¢ T Cr / 17 (9)ll2ds
{m—2}To

mTy
+Cr, /{ 1 £(5)l ds

m—1}Ty
{m—k}To

m—1
P1 P1
< e |h(0) oo + Cry D e 00 / 1. (s)]2ds.

=0 {m—k—1)Tp
where h(t) = U(t)hy.
Next, by the L? decay constructed in Lemma 4.3, in the interval {m —k —1}Tp <
s < {m — k}Tj, one has

({m—k—1}Tp)?0

—\sP0 —A
If ()2 < e ™ lwgae foll2 <e lwg /4.6 foll2-

Noticing that pg = 99 > 0;1999 = p1, taking A9 = min{XA, Ao} and applying

(k + l)Topl > ((k + 1)To)*" for 0 < p; < 1, we further obtain

m—1 o [m—KTo
IhnTo) s < e O + € - T8
= (m—k—1)Tp

— —k— P
e MmO g 146 follads

Pl Pl P1
< e 11(0)|loe + Crye™ "0 mToe ™™ 10" 1wy 4.0 foll2

A0171p1 T/)1

= Cryp€ 1700 »

where we also used the fact that
—1
lwaao follz = |wqpmawy b yho| | < C lihols,

and

Pl
Aompl 0

(tm — k — JT0)" + (tk + I Tp)" = (mTp)” . mToe om0 < o=~ 2

Finally, for any 7, we can find m such that mTy <t < {m + 1}Tp, and

Aompl T

)l = CURGT) s = Crpge™ T IOl
< {Crpe ™} 3 0O
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TP

rgmP1 71 0 1
2. This ends the proof of Proposi-

. 207 0 — )‘701‘/71 )LO
according to the fact e 2 <e 2'e

tion42. O B

4.3. Nonlinear Existence and Time Exponential Decay

In this subsection, we make use of Proposition 4.2 to prove the global existence
and time exponential decay of the nonlinear Boltzmann equation with a specular
reflection boundary condition. Namely, we complete

The proof of Theorem 1.2. We start with the following iteration scheme:

+1 041 | ~pe+1 041 nt ht
Rt v Vo TR - Kphtt =y g »T (—ww, wqﬂ_ﬁ),
R0, x, v) = ho(x, V),

(4.43)

with 7 (2, x, v) = K, x, Ryv) and h° = ho(x, v). Here h = flw, 5.
From the Duhamel principle, it follows that

o1 ' h* h*
h =U(t)hy + Ut —s)wg sl , (s)ds.
0 Wgq.0,9 Wq,0,9

We then get from, Proposition 4.2 and Lemma 2.3 that

_LOtm

o] = e ol

t h@ h@
/ Ut —s)wgesl ( , ) (s)ds
0 Wgq,0,9 Wgq,0,9

_ ot b g
<Ce 2 ||ho||oo+/ e 2 U= =205 gg qup
0

0<s<t

"

o8]

X 2
e ht(s) H
o0

_ kil _ 2040 20.¢p 2
< Ce™ oo + e 2" sup [eF M ht)|
0<s<t o0

(4.44)

where the fact that v(v) < C was used. This implies that

s
sp sup {e " |n' )]} = Cllnolle

L 0<t<o0
for || ho|lo sufficiently small. Moreover, subtracting e — pt yields

{0 +v- Ve +7 — Kg} (! — 1%}

h( hﬁ hﬁ—l hZ—l
=wq,9,ﬂ’1“( ) )—F( . )}
Wgq,0,90 Wq,0.0 Wq.0,9 Wq,0,0
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with {21 — A0, x, v) = 0 and (AT — R8¢, x, v)|— = (KT —hY)(1, x, Ryv)
by the decomposition

h@ h@ hZ—l hf—l
i Cormborn) Bl Corioen)
Wgq.0,9 Wgq.0,9 Wq.0,9 Wq,0,9
h@ _ h[—l hZ h[—l hZ—l _ /’ZZ
() G )
Wq.,0,0 Wq.,0,0 Wq.0,9 Wq.0,9
Performing a calculation similar to (4.44), we then obtain

t h@ _ h@—l h[
/ Ut —s)wgesT ( , ) (s)ds
0

Wq,0,0 Wq,0,0 00

t hl—l hl—l _ hl
/ U@t —s)wg sl ( ) (s)ds
0

Wq,0,9 Wgq,0,9

[ =] <

+

oo

_ 20
<Ce 2" sup {

0<s<t

eATOS/’l he(S) H 4 ”e%)s/’l h[—l (S) ” }
oo oo

X sup
0<s<t

e ht(s) — h“(s)}Hoo .

Hence ! is a Cauchy sequence and the limit / is a desired unique solution satisfing

A
sp [ ()| = Cllollce.

0<t<oo

. In addition, if €2 is strictly convex, we claim that Kt s continuous in [0, 00) x
{Q x R3\yp} inductively. To prove this claim, for any given fixed £, we can use
another iteration to solve the linear problem for Rt in (4.43) as the limit of
¢ — oo:

_ ) , nt ht
{3 + v Ve + DT = KT g g pT ( : ) :
Wq.0,0 Wq.,0,0

with the initial boundary condition:
’ ’ /
RENE ) = RO @ Rev), ROTHEEN0) = ho(x, )

and 1710 = hg(x, v). By induction over ¢/, h“+1-¢' is continuous in [0, 00) x {€2 x
R3\yo}, and by Lemma 2.2, it is standard to show that Kmh”l’z/ is continuous in
the interior of [0, 00) x € x R3. From the induction hypothesis on the continuity
of ¢ in [0, 0o0) x {Q x R3\yo}, it is also straightforward and routine to verify that
Wg,0,9 F(L s

Wq,0,9° Wq,0,9
Lemma 4.5, we thus deduce that 2¢T1-¢+1 is continuous in [0, 00) x {2 x R3\yo}.
Furthermore, it follows that

) is continuous in the interior of [0, 00) x € x R3. In view of

[0 4+ v Vi 4+ DHASTLOH Z Ly o gLl =1y
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with {h(Z+l,l'+l _ hHl’e/}(t,x,v)L — {hl+1,€’+l _ h”l*‘,}(t,x,va) and
{RtHLEFT _ pt+ L8 () = 0. With this, one deduces that

/ /
sup thﬂ,e (1) — B (1) ”
0<t<T 0

T ) / CoTV
SCK/ Hhe+1,e (s)_hZJrl,Zfl(s)H dss---sc{ kT} .
0 o0 I

Therefore, {he+1,z/}2/o:1 is a Cauchy sequence in L>, and its limit 2°*! is contin-
uous in [0, 00) x {E_Z X R3\yo}. We conclude our claim. Once At is continuous, its
limit % is continuous as well.

Finally, the uniqueness and positivity of F follows the same argument as the
proof of Theorem 3 in [27, pp. 804]; we omit the details for brevity. This finishes
the proof of Theorem 1.2. O
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