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Abstract

We prove the uniqueness of positive ground state solutions of the problem
d2u
dr2

+ n−1
r

du
dr + u ln(|u|) = 0, u(r) > 0 ∀r ≥ 0, and (u(r), u′(r)) → (0, 0) as

r → ∞. This equation is derived from the logarithmic Schrödinger equation iψt =
Δψ + u ln

(|u|2) , and also from the classical equation ∂u
∂t = Δu + u

(|u|p−1
)− u.

For each n ≥ 1, a positive ground state solution is u0(r) = exp
(
− r2

4 + n
2

)
, 0 ≤

r < ∞. We combine u0(r) with energy estimates and associated Ricatti equation
estimates to prove that, for each n ∈ [1, 9] , u0(r) is the only positive ground state.
We also investigate the stability of u0(r). Several open problems are stated.

1. Introduction

We investigate the uniqueness of solutions of the ground state problem

u′′ + n − 1

r
u′ + u ln(|u|) = 0, (1)

u′(r) = 0,
(
u(r), u′(r)

) → (0, 0) as r → ∞, (2)

u(r) > 0 ∀r ≥ 0. (3)

Equation (1) is derived (see the Appendix for details) from a rescaling of the di-
mensionless logarithmic Schrödinger equation

iψt = Δψ + ψ ln
(
|ψ |2

)
, (4)

where ψ denotes the dimensionless wave function. The Appendix also shows how
to derive (1), through a limiting process, as p → 1+, from the classical equation

∂u

∂t
= Δu + u|u|p−1 − u, (5)
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and also from the non-linear Klein–Gordon equation

∂2u

∂t2
= Δu + u|u|p−1 − u. (6)

A positive ground state solution of (1), (2) and (3) is given by

u0(r) = exp

(
−r2

4
+ n

2

)
, 0 ≤ r < ∞, n ≥ 1. (7)

This solution plays a central role in applications of the logarithmic Schrödinger
equation to quantum mechanics [4,5], quantum optics [8], transport and diffusion
phenomena [18], information theory [7,30], quantum gravity [31], and the theory
of Bose–Einstein condensation [1]. In these applications, a physically important
property of u0(r) is that it is the only positive ground state solution. Thus, our goal
is to prove

Theorem 1. (Uniqueness) Let 1 ≤ n ≤ 9. Then u0(r) given in (7) is the only
solution of (1), (2) and (3).

Our proof of Theorem 1 employs a new comparison method which combines u0(r)

with energy estimates and associated Ricatti equation estimates. To understand
why our approach is new we need to describe analytical techniques in previous
studies. In 1987 McLeod and Serrin [22] investigated the existence and uniqueness
of smooth solutions of the general equation

u′′ + n − 1

r
u′ + f (u) = 0, (8)

where n ≥ 1, u satisfies (2), (3), and f satisfies assumptions

(A1) f ∈ C1[0,∞), f (0) = 0, f ′(0) < 0;
(A2) There is an α > 0 such that f (u) < 0 for u ∈ (0, α), f (u) > 0, u > α;
(A3) f ′(α) > 0.

Problem (8), (2) and (3) arises in the study of solutions of the classical problem

Δu + f (u) = 0, (9)

u(x) > 0 ∀x ∈ Rn, u(x) → 0 as |x | → ∞. (10)

Under suitable differentiability conditions on f, Gidas, Ni and Nirenberg [15]
proved that solutions of (9) and (10) must be radial and satisfy (1), (2) and (3).
General conditions on f have led to proofs of the existence of positive ground
states in other important studies [2,6,27]. In 1951 Finkelstein et. al. [16] analyzed
Δu+u3−u = 0 in the context of spinor fields. In a 1973 classical paper,Coffman [9]
proved the uniqueness of a positive ground state solution of the initial value problem

u′′ + 2

r
u′ + u3 − u = 0, u(0) = β, u′(0) = 0. (11)
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Let u(r, β) denote the solution of (11), and let β0 > 0 such that u0(r) = u(r, β0)

satisfies (2) and (3). To prove the uniqueness of u0(r), Coffman analyzed the
behavior of w = ∂

∂β
u(r, β), which solves the equation of first variation

w′′ + n − 1

r
w + (3u2 + 1)w = 0, w(0) = 1, w(′0) = 0. (12)

Coffman developed several functionals and inequalities involving w which help
determine the behavior of u(r, β) as β varies. He used this information to prove that
u(r, β0) is the only positive ground state solutionof (11).McLeodandSerrin [22,23]
extended Coffman’s study and investigated the general, classical equation

u′′ + n − 1

r
u′ + |u|p−1u − u = 0. (13)

McLeod and Serrin made use of functionals in terms of r, u and u′, and technical
comparison methods, to prove the uniqueness of a positive ground state of (13) in
the following parameter regimes:

(i) 1 < p < ∞ when 1 ≤ n < 2,
(ii) 1 < p ≤ n

n−2 when 2 < n < 4,

(iii) 1 < p ≤ 8
n when 4 ≤ n ≤ 8.71.

Kwong [20] proved the uniqueness of positive ground state solutions of (13) when
n > 1 and 1 < p < n+1

n−1 . He followed Coffman’s approach and analyzed (13) by
developing technical lemmas associated with the equation of first variation for (13),
namely

d2w

dr
+ n − 1

r

dw

dr
+ (p|u|p−1 − 1)w = 0, w(0) = 1, w′(0) = 0. (14)

The uniqueness of positive solutions in annular domains has been proved by Coff-
man [11] and Kwong and Zhang [21].
In 2000 Serrin and Tang [26] extended the results described above, and proved the
uniqueness of positive ground state solutions of the quasilinear equation

(
|u′|m−2u′)′ + n − 1

r
|u′|m=2u′ + f (u) = 0, r > 0, n > m > 1, (15)

where n > m > 1 and f (u) satisfies assumptions:

(H1) There is a b > 0 such that f is continuous on (0,∞), with f (u) ≤ 0 on
(0, b] and f (u) > 0 for u > b;

(H2) f ∈ C1(b,∞), with g(u) = u f ′(u)/ f (u) non-increasing on (b,∞).

Gazzola, Serrin and Tang [17] proved the existence of positive ground state solu-
tions.

Remark 1. The Case m=2. Equation (15) reduces to (8) when m = 2. Because of
the constraint n > m > 1 in (15), it follows that, ifm = 2 then the Serrin–Tang [26]
theorem does not apply to (1) when 1 ≤ n ≤ 2.
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To prove Theorem 1 we determine the behavior of solutions of

u′′ + n − 1

r
u′ + u ln(|u|) = 0, u(0) = β > 0, u′(0) = 0. (16)

Equation (16) is fundamentally different from the investigations described above
in two important ways:

(I) The nonlinearity f (u) = u ln(|u|) is continuous on (−∞,∞), with zeros at
u = 0 and u = ±1, and satisfies (A2)–(A3) stated above. However,

lim|u|→0
f ′(u) = lim|u|→0

ln(|u|) + 1 = −∞. (17)

A key step in the McLeod–Serrin analysis (Lemma 3, p. 124 in [22]) makes
use of the requirement f ′(0) = −m < 0. However, when f (u) = u ln(|u|),
property (17) shows that f ′(u) becomes unbounded as u → 0. Thus, assump-
tion (A1) is not satisfied and it is challenging to prove the uniqueness of a
ground state solution using the methods in [22]. The function f (u) = u ln(|u|)
does satisfy assumptions (H1)–(H2) in [26]. However, Remark 1 shows that the
uniqueness result in [26] does not apply to (1), (2) and (3) when 1 ≤ n ≤ 2.
Thus, the uniqueness of the positive ground state solution u0(r) has not previ-
ously been proved when 1 ≤ n ≤ 2.

(II) The uniqueness proofs in [9,11,20,21,29] make extensive use of the equation
of first variation for the function w = ∂

∂β
u(r, β). For (16) this equation is

d2w

dr2
+ n − 1

r

dw

dr
+ (ln(|u|) + 1)w = 0, w(0) = 1, w′(0) = 0. (18)

As Coffman [9] originally showed, a crucial step in proving the uniqueness of
ground states is to determine the behavior of points R1 = R1(β) > 0 where
u(R1, β) = 0. The behavior of R1(β) is determined from the equation

dR1

dβ
= −w (R1)

u′ (R1)
. (19)

However, it is challenging to accurately determine the behavior of u′ (R1) and
w (R1) in (19) since the term ln(|u|) in (16) and (18) becomes unbounded as
|u| → 0.

The analytical difficulties described above have led us to develop a new approach to
prove the uniqueness of the positive ground state u0(r) given in (7). Our approach
is to combine u0(r) with energy based estimates and associated Ricatti equation
estimates to determine the behavior of solutions of the initial value problem (16)
for each β > 0. Thus, to prove Theorem 1 we only need to prove the equivalent
result.

Theorem 2. (Uniqueness) Let 1 ≤ n ≤ 9 and β > 0.

(i) If β = en/2 then the solution of (16) is the positive ground state solution (7).
(ii) If β 	= en/2 then the solution of (16) is not a positive ground state.
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Remark 2. We prove uniqueness when 1 ≤ n ≤ 9, approximately the same range
where the McLeod–Serrin [22] theorem holds. Also, Theorem 2 applies to the
previously unresolved parameter regime 1 ≤ n ≤ 2 (see Remark 1), in particular
to the physically important value n = 2.

Proof of Theorem 2. The first step is to consider the case n = 1 and observe
that (16) has the first integral

(u′)2

2
+ u2

2

(
ln(u) − 1

2

)
= E, (20)

where E is constant. Substituting
(
u(r), u′(r)

) → (0, 0) as r → ∞ into (20)

gives E = 0, and it easily follows from (u′)2
2 + u2

2

(
ln(u) − 1

2

) = 0 that the only

positive ground state is u0(r) = exp
(
− r2

4 + 1
2

)
. 
�

Outline of proof when n > 1. In Section 2 we prove Theorem 2 when 1 < n ≤ 9.
There, we determine the behavior of solutions in the distinct parameter regimes
0 < β < en/2 and β > en/2.

(i)When 0 < β < en/2 we show that u(r) > 0 on its maximal interval of existence,
and that u(r) cannot satisfy both the positivity condition u(r) > 0 ∀r ≥ 0, and the
limiting condition

lim
r→∞(u(r), u′(r)) = (0, 0). (21)

(ii) When β > en/2 we prove that there is a first R1 = R1(β) > 0 such that

u (R1) = 0 and u′ (R1) < 0. (22)

Thus, the positivity condition u(r) > 0 ∀r ≥ 0 is violated and the solution cannot
be a positive ground state.
Uniqueness proofs in the previous studies described above are necessarily very
technical. In Section 2 our proof, which is also somewhat technical, is completed
with the help of auxiliary lemmas. The role of each lemma is explained as we
proceed. Section 3 contains conclusions and a statement of openproblems. Section 4
is the Appendix.

Future study: sign changing solutions. The existence of multi-zero ground state
solutions of (13) was proved by McLeod, Troy and Weissler [24], and Jones and
Kupper [19]. Troy [28] proved the existence of multi-zero ground states for (1)–(2)
when f (u) = |u|p−1u − uq . Troy [29] also proved the uniqueness of the ground
state solution of (8)–(2) with exactly one positive zero when f (u) is piecewise
linear. For more general general f (u), the existence and uniqueness of multi-zero
ground state solutionswas proved byCortazar,Garcia-Huidboro andYarur [12–14].
Their results prove the uniqueness of multi-zero ground states of (16) when n = 3
or n = 4. Uniqueness remains an open problem when n /∈ {3, 4}. The proof of the
uniqueness of multi-zero ground states of the classical cubic equation (11) is also
unresolved. It is hoped that a combination of techniques in [12–14] and the energy
and Ricatti based estimates developed in this paper may give new insights into
proving the uniqueness of sign-changing ground state solutions of (16) and (11).
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2. Uniqueness

In this section we keep 1 < n ≤ 9 fixed and prove that the solution of initial
value problem (16) is not a positive ground state when β > 0 and β 	= en/2. We
consider two separate cases: 0 < β < en/2 and β > en/2.

Case I. 0 < β < en/2. Let u denote the solution of (16). The energy functional

Q = (u′)2

2
+ u2

2

(
ln(u) − 1

2

)
(23)

satisfies

Q′ = −n − 1

r

(
u′)2 , Q′(0) = 0 and Q(0) = β2

2

(
ln(β) − 1

2

)
. (24)

The following result gives conditions that a positive ground state solution must
satisfy.

Lemma 1. Let β ∈ (0, en/2). A positive ground state solution of (16) satisfies

u(0) = β ≥ e1/2 and Q(0) = β2
(
ln(β) − 1

2

)
≥ 0, (25)

u′(r) < 0, Q(r) > 0 and Q′(r) < 0 ∀r > 0, and lim
r→∞ Q(r) = 0. (26)

Proof. A positive ground state solution satisfies conditions (2)–(3). Thus,

Q′(r) ≤ 0 ∀r > 0 and lim
r→∞ Q(r) = 0. (27)

These properties imply that

Q(r) ≥ 0 ∀r > 0. (28)

We conclude from (16), (23) and (28) that Q(0) = β2
(
ln(β) − 1

2

) ≥ 0, hence
β ≥ e1/2. Next, it follows from (16) that u′′(0) = −β ln(β) < 0 since β ≥ e1/2.
This implies that u(r) > 0 and u′(r) < 0 on an interval (0, ε). If there is a first
r̄ > 0 such that u(r̄) > 0 and u′(r̄) = 0 then u′′(r̄) = −u(r̄) ln(u(r̄)) ≥ 0.
Thus, ln(u(r̄)) ≤ 0 and Q(r̄) = u(r̄)2

(
ln(u(r̄)) − 1

2

)
< 0, contradicting (28). We

conclude that u′(r) < 0 ∀r > 0, hence Q′(r) = − (n−1)u′(r)2

r < 0 ∀r > 0. This
property and (27) imply that Q(r) > 0 ∀r ≥ 0. This completes the proof. We use
the results of Lemma 1 to prove 
�
Theorem 3. Let 1 < n ≤ 9 and β ∈ (0, en/2). Then the solution of (16) is not a
positive ground state solution.

Proof. We assume that there is a β ∈ (0, en/2) such that the solution of (16) is a
positive ground state, and obtain a contradiction. By Lemma 1, the solution must
satisfy conditions (25)–(26). Thus, if we prove that one of these conditions does not
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hold, then we have a contradiction of the assumption that the solution is a positive
ground state. First, when 0 < β < e1/2, it is easily verified that

Q(0) = β2
(
ln(β) − 1

2

)
< 0,

hence (25) does not hold. Next, when e1/2 ≤ β < en/2, we claim that (26) does
not hold. To prove this claim we make use of the Ricatti function ρ = u′

u , which
satisfies

ρ′ + ρ2 + (n − 1)

r
ρ + ln(u) = 0, ρ(0) = 0 and ρ′(0) = − ln(β)

n
<0. (29)

Below we show that ρ(r) decreases until it reaches a negative minimum, then

increases until ρ(r̂) ∈
(
− 1√

2
, 0

)
and 0 < u(r̂) < 1 at some r̂ > 0, hence

Q(r̂) = u2(r̂)

2

((
u′(r̂)

u(r̂)

)2

+ ln
(
u(r̂)

) − 1

2

)

< 0. (30)

Thus, (26) does not hold and Lemma 1 implies that u(r) is not a ground state.
A differentiation of (29) gives

ρ′′ + (n − 1)

r
ρ′ − (n − 1)

r2
ρ + 2ρρ′ + ρ = 0, ρ′′(0) = 0. (31)

We also use the function ρ0 = u′
0

u0
, where u0(r) = exp

(
− r2

4 + n
2

)
is the positive

ground state given in (7). Then ρ0 satsifies

ρ0(r) = − r

2
and ρ′

0(r) = −1

2
∀r ≥ 0. (32)

Important properties are

ρ′(0) = − ln(β)

n
< 0 ∀β ∈

[
e1/2, en/2

)
(33)

and

ρ′(0) − ρ′
0(0) = − ln(β)

n
+ 1

2
> 0 ∀β ∈

[
e1/2, en/2

)
. (34)

Next, let (0, rmax) denote the largest interval where −∞ < ρ(r) < 0. That is,

rmax = sup
{
r̂ > 0 | if 0 < r < r̂ then − ∞ < ρ(r) < 0

}
. (35)

To prove that condition (26) does not hold we need two auxiliary results (Lemma 2
and Lemma 3 below) which determine the behavior of ρ′

0, ρ
′ and ρ′′.

Lemma 2 gives practical lower bounds for ρ′′(r) and ρ′(r)−ρ′
0(r) over the largest

interval (0, r̄) ⊂ (0, rmax) where ρ′
0(r) < ρ′(r) < 0. Thus, define

r̄ = sup
{
r̂ ∈ (0, rmax) | if 0 < r < r̂ then ρ′

0(r) < ρ′(r) < 0
}
. (36)

It follows from (33)–(34) and continuity that r̄ > 0 ∀β ∈ [
e1/2, er/2

)
.
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Lemma 2. Let e1/2 ≤ β < en/2. Then

ρ′′(r) > 0 and ρ′(r) − ρ′
0(r) ≥ − ln(β)

n
+ 1

2
> 0 ∀r ∈ (0, r̄ ]. (37)

Proof. It follows from (31) and (32) that

(
r2ρ′′)′ +

(
n − 1

r
+ 2ρ

)
r2ρ′′ = −2

(
ρ′ − ρ′

0

) (
2rρ + r2ρ′) . (38)

We conclude from (38) that
(

rn+1e2
∫ r
0 ρ(x)dxρ′′(r)

)′ = −2 rn−1e2
∫ r
0 ρ(x)dx (

ρ′ − ρ′
0

) (
2rρ + r2ρ′) . (39)

The definitions of r̄ and rmax imply that the right side of (39) is positive for all
r ∈ (0, r̄). Also, recall from (31) that ρ′′(0) = 0. Thus, an integration of (39) gives

ρ′′(r) > 0 ∀r ∈ (0, r̄ ]. (40)

It follows from (32) and (40) that d
dr

(
ρ′(r) − ρ′

0(r)
) = ρ′′(r) > 0 ∀r ∈ (0, r̄ ].

An integration gives

ρ′(r) − ρ′
0(r) ≥ − ln(β)

n
+ 1

2
> 0 ∀r ∈ (0, r̄ ]. (41)

This completes the proof of Lemma 2. 
�
Our second auxiliary result (Lemma 3) shows that ρ′ has at most one zero on
(0, rmax), and that the second inequality in (37) extends to the entire interval
(0, rmax).

Lemma 3. Let e1/2 ≤ β < en/2. Suppose that ρ′(r̄) = 0 at some r̄ ∈ (0, rmax).
Then

ρ′(r) < 0 ∀r ∈ (0, r̄), ρ′(r̄) = 0, and ρ′(r) > 0 ∀r ∈ (r̄ , rmax), (42)

and

ρ′(r) − ρ′
0(r) ≥ − ln(β)

n
+ 1

2
> 0 ∀r ∈ [r̄ , rmax). (43)

Proof. Write equation (31) as

ρ′′ +
(

n − 1

r
+ 2ρ

)
ρ′ =

(
n − 1

r2
− 1

)
ρ. (44)

Let r̄ ∈ (0, rmax) denote the first positive zero of ρ′. Then ρ′′(r̄) ≥ 0, and (44)
gives

ρ′′(r̄) =
(

n − 1

r̄2
− 1

)
ρ(r̄) ≥ 0. (45)

Lemma 2 and the definitions of r̄ and rmax imply that ρ′′(r̄) > 0. Also, ρ(r̄) < 0
since 0 < r̄ < rmax. Combining these properties with (45), we conclude that
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r̄ >
√

n − 1, and that ρ′(r) > 0 on an interval (r̄ , r̄ + ε). If there is a next zero of
ρ′ at some r̃ ∈ (r̄ , rmax) then

ρ′′(r̃) ≤ 0. (46)

However, ρ(r̃) < 0 and r̃ > r̄ >
√

n − 1, and therefore (44) gives ρ′′(r̃) > 0,
contradicting (46). This proves property (42). Finally, (42) shows that ρ′(r) ≥
0 ∀r ∈ [r̄ , rmax). Thus, we conclude that

ρ′(r) − ρ′
0(r) ≥ 0 + 1

2
≥ − ln(β)

n
+ 1

2
> 0 ∀r ∈ [r̄ , rmax). (47)

This completes the proof of the Lemma 3. 
�
We now complete the proof of Theorem 3. The assumption that u is a positive
ground state implies that u(r) > 0 and u′(r) < 0 for all r > 0, and u(r) → 0 as
r → ∞. Thus,

rmax = ∞ and ρ(r) = u′(r)

u(r)
< 0 ∀r > 0, (48)

and there is an r∗ > 0 such that

0 < u(r) ≤ 1 and ln (u(r)) ≤ 0 ∀r ≥ r∗. (49)

Also, it follows from (23) and Lemma 1 that

Q(r) = u2(r)

2

((
u′(r)

u(r)

)2

+ ln (u(r)) − 1

2

)

> 0 ∀r ≥ 0. (50)

Combining (48), (49) and (50), we conclude that ρ2(r) > 1
2 ∀r ≥ r∗. Thus,

ρ(r) < − 1√
2

∀r ≥ r∗. (51)

Our goal is to prove that ρ(r) > − 1√
2
when r � r∗, contradicting (51). It follows

from (31) and identities ρ′
0(r) = − 1

2 and rρ′′ = (
rρ′ − ρ

)′ that

(
rρ′ − ρ

)′ + n − 1

r

(
rρ′ − ρ

) = −2rρ
(
ρ′ − ρ′

0

) ∀r > 0. (52)

Combining (37), (43), (51) and (52) gives

(
rρ′ − ρ

)′ + n − 1

r

(
rρ′ − ρ

) ≥ Ar ∀r ≥ r∗, (53)

where A = √
2

(
− ln(β)

n + 1
2

)
> 0 since β ∈ (e1/2, en/2). Integrating (53) gives

rn−1 (
rρ′ − ρ

) ≥ Arn+1

n + 1
+ B ∀r ≥ r∗, (54)
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where B = −A(r∗)n+1

n+1 +(r∗)n−1
(
r∗ρ′(r∗) − ρ(r∗)

)
. Next, divide (54) by rn+1 and

get

(ρ

r

)′ ≥ A

n + 1
+ B

rn+1 ∀r ≥ r∗. (55)

An integration of (55) gives

ρ(r)

r
≥ ρ(r∗)

r∗ + A

n + 1

(
r − r∗) + B

n

(
1

(r∗)n
− 1

rn

)
∀r ≥ r∗. (56)

Because A > 0, the right side of (56) is positive when r � 1. Thus, ρ(r) > − 1√
2

when r � 1, contradicting (51). This completes the proof of Theorem 3.
Case (II) β > en/2. In this regime we prove that the solution of (16) is not a ground
state solution by showing that there is an r1 > 0 such that

u(r) > 0 and u′(r) < 0 ∀r ∈ (0, r1), u(r1) = 0 and u′(r1) < 0. (57)

To prove (57) we make use of the transformation

f (r) = u(r) exp

(
r2

4
− n

2

)
. (58)

Define α = βe−n/2. Then β > en/2 ⇐⇒ α > 1, and f satisfies

f ′′ +
(

n − 1

r
− r

)
f ′ + f ln( f ) = 0, f (0) = α > 1, f ′(0) = 0. (59)

It follows from (59) that

f ′′(0) = −α ln(α)

n
< 0 ∀α > 1. (60)

Weneed to determine the behavior of f (r) for eachα ≥ 1.Whenα = 1, uniqueness
of the constant solution f = 1 implies that f (r) = 1 ∀r ≥ 0. The corresponding
solution of (16) is ground state solution (7) since

u(r) = f (r) exp

(
−r2

4
+ n

2

)
= exp

(
−r2

4
+ n

2

)
∀r ≥ 0. (61)

Goal. When α > 1 we show that f (r) reaches f = 0 at a finite r value. Define

r1 = sup{r̂ > 0 | if 0 < r < r̂ then f (r) > 0}. (62)

Theorem 4. Let α > 1 and 1 < n ≤ 9. The solution of (59) satisfies r1 < ∞,

f (r) > 0 and f ′(r) < 0 ∀r ∈ (0, r1), f (r1) = 0 and f ′(r1) < 0. (63)
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Implications ofTheorem4.Letβ > en/2 so thatα = βe−n/2 > 1, and let f denote
the solution of (59). It follows from (58) and Theorem 4 that the corresponding
solution of (16) satisfies u(0) = β > en/2 and u′(0) = 0,

u(r) = f (r) exp

(
−r2

4
+ n

2

)
> 0 ∀r ∈ (0, r1), (64)

u′(r) =
(

f ′(r) − r

2
f (r)

)
exp

(
−r2

4
+ n

2

)
< 0 ∀r ∈ (0, r1), (65)

u(r1) = f (r1)e

(
− r21

4 + n
2

)

= 0 and u′(r1) = f ′(r1)e
(
− r2

4 + n
2

)

< 0. (66)

Thus, property (57) is verified and the proof of Theorem 2 is complete 
�
Proof of Theorem 4. The first step is to show that f (r) decreases until f (r0) = 1
at a finite r0 > 0. Thus, define

r0 = sup{r̂ ∈ (0, r1) | if 0 < r < r̂ then f (r) > 1}. (67)

Lemma 4. Let α > 1. Then r0 < ∞,

f (r) > 1 and f ′(r) < 0 ∀r ∈ (0, r0), f (r0) = 1 and f ′(r0) < 0. (68)

Proof. It follows from (59) and definition (67) that

(
rn−1e

(
− r2

2

)

f ′(r)

)′
= −rn−1e

(
− r2

2

)

f ln( f ) < 0 ∀r ∈ (0, r0). (69)

Combining (59) with(69) gives f (r) > 1 and f ′(r) < 0 ∀r ∈ (0, r0). This proves
the first part of (68). It remains to show that r0 is finite, and that

f (r0) = 1 and f ′(r0) < 0. (70)

Suppose, however, that r0 = ∞ for some α > 1. Then (59) implies that f ′(r) <

0, f (r) > 1 and f ′′(r) = (
r − n−1

r

)
f ′ − f ln( f ) < 0 ∀r >

√
n − 1. These

properties imply that f (r) = 1 at a finite r >
√

n − 1, contradicting the supposition
r0 = ∞. Thus, r0 < ∞, f (r0) = 1 and f ′(r0) ≤ 0. The uniqueness of the constant
solution f ≡ 1 implies that f ′(r0) < 0. This proves (70). 
�
Remark. It follows from Lemma 4 that f (r) > 0 and f ′(r) < 0 on an interval
(r0, r0+ε). This fact and the definitions of r0 and r1 imply that 0 < r0 < r1 ∀α > 1.

The next step in the proof of Theorem 4 is to develop a criterion which guarantees
that r1 < ∞, f (r1) = 0 and f ′(r1) < 0. We do this in

Lemma 5. Let n > 1 and α > 1. If r0 ≥ √
n − 1 then r1 < ∞,

0 < f (r) ≤ 1, f ′(r) < 0 ∀r ∈ [r0, r1), f (r1) = 0 and f ′(r1) < 0. (71)
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Proof. It follows from (59) and (70) that

f ′(r0) < 0 and f ′′(r0) ≤ 0. (72)

A differentiation of (59) gives

f ′′′ +
(

n − 1

r
− r

)
f ′′ +

(
ln( f ) − n − 1

r2

)
f ′ = 0. (73)

We conclude from (70), (72) and (73) that
(

rn−1 exp

(
−r2

2

)
f ′′(r)

)′
= rn−1 exp

(
−r2

2

) (
n − 1

r2
− ln( f )

)
f ′(r) < 0

(74)

for all r in an interval (r0, r0 + ε). It follows from (72) and (74) that 0 < f (r) <

1, f ′(r) < 0 and f ′′(r) < 0 ∀r ∈ (r0, r1). In turn this implies that f ′(r) <

f ′(r0) < 0 ∀r ∈ (r0, r1), and we conclude that r1 < ∞, f (r1) = 0 and f ′(r1) ≤
f ′(r0) < 0. This completes the proof of Lemma 5. 
�
We now use Lemmas 4 and 5 to determine the behavior of f and f ′ for each α > 1.

Lemma 6. Let 1 < α ≤ e. Then
√

n − 1 < r0 < r1 < ∞,

f ′(r) < 0 ∀r ∈ (0, r1] and f (r1) = 0. (75)

Proof. First, Lemma 4 and the fact that f ′(0) = 0 imply that

f ′(r) < 0 and 1 ≤ f (r) ≤ e ∀r ∈ (0, r0). (76)

Next, we show that r0 >
√

n − 1 ∀α ∈ (1, e]. Suppose, for contradiction, that there
is an α ∈ (1, e] for which 0 < r0 ≤ √

n − 1. This and property (76) imply that

n − 1

r2
− ln( f (r)) ≥ n − 1

r2
− 1 > 0 ∀r ∈ (0, r0). (77)

Recall from (60) that f ′′(0) < 0. Then Lemma 4, (74) and (77) imply that

f ′′(r) < 0 ∀r ∈ (0, r0]. (78)

Since we assume that 0 < r0 ≤ √
n − 1, we conclude from (76) and (59) that

f ′′(r0) ≥ 0, contradicting (78). Therefore, it must be the case that r0 >
√

n − 1.
Thus, since r0 >

√
n − 1, Lemma 5 implies that r1 < ∞, f (r1) = 0 and f ′(r1) <

0. This completes the proof of Lemma 6. 
�
To complete the proof of Theorem 4 we need to show that property (63) holds when
α > e. First, if r0 ≥ √

n − 1, then Lemma 5 guarantees that (63) holds. It remains
to prove that (63) also holds when 0 < r0 <

√
n − 1. This is done in

Lemma 7. Let 1 < n ≤ 9 and α > e. If 0 < r0 <
√

n − 1 then r0 < r1 < ∞,

f (r) > 0 and f ′(r) < 0 ∀r ∈ [r0, r1), f (r1) = 0 and f ′(r1) < 0. (79)
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Proof. It follows from (59), the assumption 0 < r0 <
√

n − 1, and Lemma 4 that

f (r0) = 1, f ′(r0) < 0 and f ′′(r0) =
(

r0 − n − 1

r0

)
f ′(r0) > 0. (80)

We claim that (80) implies that there is an rA ∈ (0, r0) such that

f (rA) = exp

(
n − 1

r2A

)

and f ′(rA) ≤ −2(n − 1)

r3A
exp

(
n − 1

r2A

)

. (81)

Suppose, however, that there is an α > e such that

1 < f (r) < exp

(
n − 1

r2

)
∀r ∈ (0, r0). (82)

Then ln( f (r)) < n−1
r2

∀r ∈ (0, r0), and it follows from (59), (60) and (73) that

(
rn−1e

(
− r2

2

)

f ′′(r)

)′
= rn−1e

(
− r2

2

) (
n − 1

r2
− ln( f )

)
f ′(r) < 0 (83)

when r ∈ (0, r0). An integration gives f ′′(r) < 0 ∀r ∈ (0, r0], hence f ′′(r0) < 0,
contradicting (80). We conclude that there is an rA ∈ (0, r0) such that f (rA) =
exp

(
n−1
r2A

)
. This property, and the fact that f (r0) = 1 < exp

(
n−1
r20

)
, imply that

we can choose rA such that

f (rA) = exp

(
n − 1

r2A

)

and 1 < f (r) < exp

(
n − 1

r2

)
∀r ∈ (rA, r0). (84)

It follows from (84) that f ′(rA) ≤ − 2(n−1)
r3A

exp

(
n−1
r2A

)
, and (81) is proved. 
�

To complete the proof of Lemma 7, we make use of (81) and energy functional

S =
(

f ′)2

2
+ f 2

2

(
ln( f ) − 1

2

)
, (85)

which satisfies

S′ =
(

r − n − 1

r

) (
f ′)2 . (86)

It follows from (85) and (86) that S′(0) = 0 and S(0) = α2

2

(
ln(α) − 1

2

)
> 0, and

that S also satisfies

S′ +
(
2(n − 1)

r
− 2r

)
S =

(
r − n − 1

r

)
f 2

(
1

2
− ln( f )

)
. (87)

Observe that f 2
( 1
2 − ln( f )

) ≤ 1
2 ∀ f > 0. Then (87) reduces to

S′ +
(
2(n − 1)

r
− 2r

)
S ≥ 1

2

(
r − n − 1

r

)
(88)
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when r ∈ (
0,min{√n − 1, r1}

)
. It follows from (88) that

(
r2n−2e−r2 S

)′ ≥ 1

2

(
r2n−1 − (n − 1)r2n−3

)
e−r2 (89)

when r ∈ (
rA,min{√n − 1, r1}

)
. Integration of both sides of (89) from rA to r

gives

r2n−2e−r2 S(r) ≥ r2n−2
A e−r2A S(rA) + 1

4

(
r2n−2

A e−r2A − r2n−2e−r2
)

, (90)

where r ∈ (
rA,min{√n − 1, r1}

)
. It follows from (81), (85), and the fact that

0 < r2A ≤ n − 1, that a practical lower bound on S(rA) is

S(rA) ≥ 2(n − 1)2

r6A
e
2(n−1)

r2A + e
2(n−1)

r2A

2

(
n − 1

r2A
− 1

2

)

≥ 2(n − 1)2

r6A
e
2(n−1)

r2A . (91)

To complete the proof of Lemma 7 we also need practical lower bounds on the
product r2n−2S(r). We consider two cases: Case A: 1 < n ≤ 6 and Case B:
6 < n ≤ 9.

Case A: 1 < n ≤ 6. Combine (90) and (91), multiply by er2 , and get

r2n−2S(r) ≥ 2(n − 1)2r2n−8
A e

2(n−1)
r2A − r2n−2

4
(92)

when rA ≤ r ≤ min{√n − 1, r1}. The term r2n−8
A e

2(n−1)
r2A is decreasing in rA when

1 < rA ≤ √
n − 1 and 1 < n ≤ 6. Thus, we substitute rA = √

n − 1 and the upper
bound r = √

n − 1 into (92) and conclude that, if 1 < n ≤ 6, then

r2n−2S(r) ≥ (n − 1)n−1

4

[
8

n − 1
e2 − 1

]
> 0 (93)

when rA ≤ r ≤ min{√n − 1, r1}.

Case B: 6 < n ≤ 9. The term r2n−8
A e

2(n−1)
r2A attains its positive relative minimum

at rA =
√

2(n−1)
n−4 <

√
n − 1 when n > 6. Substitute rA =

√
2(n−1)

n−4 and the upper

bound r = √
n − 1 into (92) and conclude that, if 6 < n ≤ 9, then

r2n−2S(r) ≥ (n − 1)n−1

4

(
8

n − 1

(
2e

n − 4

)n−4

− 1

)

> 0 (94)

when rA ≤ r ≤ min{√n − 1, r1}. We now complete the proof of Lemma 7. First,
define

Kn = (n − 1)n−1

4

[
8e2

n − 1
− 1

]
> 0 if 1 < n ≤ 6, (95)

Kn = (n − 1)n−1

4

[
8

n − 1

(
2e

n − 4

)n−4

− 1

]

> 0 if 6 < n ≤ 9. (96)



Logarithmic Schrödinger Equation 1595

Next, let n ∈ (1, 9] be fixed. It follows from (93), (94), (95), and (96) that

r2n−2S(r) ≥ Kn, rA ≤ r ≤ min{√n − 1, r1}. (97)

We combine (85) with (97) and conclude that
(

f ′(r)
)2

2
+ ( f (r))2

2

(
ln( f (r) − 1

2

)
≥ Kn

(n − 1)n−1 , (98)

when rA ≤ r ≤ min{√n − 1, r1}. Suppose that r0 < r1 ≤ √
n − 1. It follows

from (98) and initial conditions f (r0) = 1 and f ′(r0) < 0 that

f ′(r) < −
√

2Kn

(n − 1)n−1 , 0 < f (r) < 1 and ln( f (r)) < 0 ∀r ∈ (r0, r1).

(99)

We conclude from (99), the assumption that r1 <
√

n − 1, and continuity, that

f (r1) = 0 and f ′(r1) ≤ −
√

2Kn

(n − 1)n−1 . (100)

Finally, suppose that r1 >
√

n − 1.Again, it follows from (98) and initial conditions
f (r0) = 1 and f ′(r0) < 0 that

f ′(r) < −
√

2Kn

(n − 1)n−1 and 0 < f (r) < 1 ∀r ∈ (r0,
√

n − 1). (101)

At r = √
n − 1, we conclude from (85), (98), (101) and continuity that

S
(√

n − 1
)

≥ Kn

(n − 1)n−1 , (102)

f ′ (√
n − 1

)
< −

√
2Kn

(n − 1)n−1 and 0 < f (
√

n − 1) < 1. (103)

It follows from (86) and (102) that S′(r) > 0 and S(r) ≥ Kn
(n−1)n−1 when r >√

n − 1. Combining these properties with (85), we conclude that inequality (98)
extends to

(
f ′(r)

)2

2
+ ( f (r))2

2

(
ln( f (r) − 1

2

)
≥ Kn

(n − 1)n−1 ∀r ∈
[√

n − 1, r1
)

.

(104)

It easily follows from (103) and (104) that(101) holds on
[√

n − 1, r1
)
. That is,

f ′(r) < −
√

2Kn

(n − 1)n−1 and 0 < f (r) < 1 ∀r ∈
[√

n − 1, r1
)

. (105)

An integration of f ′(r) < −
√

2Kn
(n−1)n−1 implies that r1 < ∞, f (r1) = 0 and

f ′(r1) ≤ −
√

2Kn
(n−1)n−1 . This completes the proof of Lemma 7. 
�
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3. Conclusions

In this paper we prove the uniqueness of the positive ground state u0(r) =
exp

(
− r2

4 + n
2

)
,which satisfies (1), (2) and (3). Our main theoretical advance is to

develop an approach to proving the uniqueness which is different from traditional
methods. Our method combines u0(r) with estimates derived from associated en-
ergy functionals and Ricatti equations. It is hoped that future extensions of our
techniques can be combined with methods in previous studies to resolve open
problems such as the following:

Problem 1. When 1 < n < 9 determine whether u0(r) is the only positive solution
of

Δu + u ln(|u|)) = 0, (106)

such that

u (x1, x2, .., xN ) → 0 as |(x1, x2, .., xN )| → ∞. (107)

Problem 2. When n > 1 are sign changing solutions of (1) and (2) with prescribed
numbers of zeros unique? What is the physical role of these solutions for the
logarithmic Schrödinger equation (4)? Do they represent higher energy states? Are
they stable?

Problem 3. Real variable models. Determine the stability of the positive ground
state solution u0(r) of the real variable partial differential equations

∂u

∂t
= Δu + u ln(|u|)), (108)

and

∂2u

∂t2
= Δu + u ln(|u|)). (109)

The Appendix shows how (108) and (109) arise from classical models through a
limiting process as p → 1+. A first step in proving stability is to linearize (108)
around u0(r) and set u = u0 + εeλtv, where ε � 1. To first order in ε, v satisfies

Δv + (ln(|u0(r)|)) + 1 − λ) v = 0. (110)

The bounded, positive function v = u0(r) satisfies (110)whenλ = 1. This suggests
that u0(r) is linearly unstable. It remains to resolve the following:

(i) Is u0(r) also unstable as a solution of the nonlinear equation (108)?
(ii) Are there solutions of of (108) which blow up in finite time, or as t → ∞?
(iii) Investigates the same issues for equation (109).
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4. Appendix

Here we have three goals. In part I below we give a standard derivation of

u′′ + n − 1

r
u′ + u ln(|u|) = 0 (111)

from the dimensionless logarithmic Schrödinger equation

iψt = Δψ + ψ ln
(
|ψ |2

)
. (112)

In parts II and III we apply a limiting process (as p → 1+) to derive (111) from
the classical equation

∂u

∂t
= Δu + u|u|p−1 − u, (113)

and the non-linear Klein–Gordon equation

∂2u

∂t2
= Δu + u|u|p−1 − u. (114)

I. Recall that Δu = ∑N
i=1

∂2u
∂x2i

and set the wavefunction

ψ = exp
(
−iωt + ω

2

)
u(x1, .., xN ).

Then (112) reduces to

N∑

i=1

∂2u

∂x2i
+ 2u ln (|u|) = 0. (115)

Define x̃i = √
2xi , i = 1, .., N and transform (115) into

N∑

i=1

∂2u

∂ x̃2i
+ u ln (|u|) = 0. (116)

Substitute r =
√∑N

i=1 x̃2i into (116) and get (111).

II. Next, we derive (111) from (113). Set t̃ = (p − 1)t and x̃i = √
p − 1xi , i =

1, .., N , and recast (113) in terms of these new coordinates. Divide the resulting
equation by p − 1 and get

∂u

∂ t̃
=

N∑

i=1

∂2u

∂ x̃2i
+

(
u

(|u|p−1
) − u

)

p − 1
. (117)
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A formal application of L’Hôpital’s rule gives limp→1+
(
u
(|u|p−1

)−u
)

p−1 = u ln(|u|).
Combining this result with (117) gives

∂u

∂ t̃
=

N∑

i=1

∂2u

∂ x̃2i
+ u ln(|u|). (118)

Time independent, radially symmetric solutions of (118) satisfy (111).
III. Finally, consider the nonlinear Klein–Gordon equation (114). The same process
described above in part II (with t̃ = (p − 1)t replaced by t̃ = √

p − 1t) reduces
(114) to

∂2u

∂ t̃2
=

N∑

i=1

∂2u

∂ x̃2i
+ u ln(|u|). (119)

Time-independent, radially symmetric solutions of (119) satisfy (111).

Problem 4. Berestycki and Lions [2] proved that (114) has positive ground state
solutions when N ≥ 1. Berestycki and Cazenave [3] (see also [25]) proved strong
instability of the ground state when n ≥ 3 and 1 < p < 1 + 4

n−2 , and that
perturbations from the ground state blow up in finite time.

(a) Determine stability properties of the positive ground state solutionu0(r̃)of (111)
as a solution of the time dependent equation (119).

(b) For equation (119), determine whether perturbations from the ground state can
blow up in finite time, or as t → ∞.
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