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Abstract

We consider the initial and boundary value problem for a system of partial
differential equations describing the motion of a fluid–solid mixture under the
assumption of full saturation. The ability of the fluid phase to flow within the
solid skeleton is described by the permeability tensor, which is assumed here to
be a multiple of the identity and to depend nonlinearly on the volumetric solid
strain. In particular, we study the problem of the existence of weak solutions in
bounded domains, accounting for non-zero volumetric and boundary forcing terms.
We investigate the influence of viscoelasticity on the solution functional setting and
on the regularity requirements for the forcing terms. The theoretical analysis shows
that different time regularity requirements are needed for the volumetric source
of linear momentum and the boundary source of traction depending on whether
or not viscoelasticity is present. The theoretical results are further investigated
via numerical simulations based on a novel dual mixed hybridized finite element
discretization. When the data are sufficiently regular, the simulations show that
the solutions satisfy the energy estimates predicted by the theoretical analysis.
Interestingly, the simulations also show that, in the purely elastic case, the Darcy
velocity and the related fluid energy might become unbounded if indeed the data
do not enjoy the time regularity required by the theory.

1. Introduction

In this paper we consider a nonlinear system of partial differential equations
(PDEs) often encountered when modeling fluid flow through deformable porous
media. Historically, petroleum engineering has been the main applied field driving
the theoretical development of porous media flow [3,17]. More recently, similar
approaches have been applied to the modeling of fluid flow through biological
tissues, with applications spanning from bio-engineering [16,32,38] to physiology
[9,11,28].
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Mechanical properties of biological tissues differ significantly from those of
rocks. In particular, since most of biological tissues are composed by both elastin
and collagen, the deformable matrix within the porous medium exhibits both elas-
tic and visco-elastic behaviors [22]. Interestingly, material properties and volume
fractions of elastic and collagen vary in health and disease, thereby motivating a
detailed investigation of their influence on the physical system and, consequently,
on the solution of the PDEs describing this system.

The precise system considered in this paper is described in Section 2. Themath-
ematical model describes the motion of a fluid–solid mixture under the assumption
of full saturation. The ability of the fluid phase to flow within the solid skeleton
is described by the permeability tensor, which is assumed here to be a multiple of
the identity and to depend nonlinearly on the volumetric solid strain. We study the
problem of the existence of weak solutions in bounded domains, accounting for
non-zero volumetric and boundary forcing terms. Specifically, we consider mixed
boundary conditions, including the case where the Dirichlet and Neumann portions
of the boundary may intersect. We investigate the influence of viscoelasticity on the
solution functional setting and on the regularity requirements for the forcing terms.
The results obtained via the theoretical analysis are further explored via numeri-
cal simulations of one-dimensional test cases that serve as simplified benchmark
examples while retaining the main features of the full problem, in particular the
nonlinearity in the permeability constitutive equation.

Several theoretical approaches have been developed to study poroelastic sys-
tems, as briefly reviewed in Section 3.1. However, to the best of our knowledge,
this article presents the first study that simultaneously accounts for non-zero, mixed
boundary data, nonlinear dependence of the permeability on the volumetric solid
strain, and elastic and viscoelastic effects in the solid component. Although it is
true that viscoelasticity provides some additional time regularity of the displace-
ment, it does not necessarily simplify the analysis. Rather, in some instances it
brings up new technical points that must be addressed, as discussed in Section 3.1.
The computational method used to investigate numerically the theoretical findings
is also a novel contribution of this article. The algorithm combines a Backward
Euler method for the discretization in time, a dual mixed hybridized finite element
method for the discretization in space and a fixed-point iteration for the nonlinearity
in the permeability which couples fluid and solid equations. The proposed numer-
ical method avoids direct differentiation in the computation of gradient quantities
which appear in the definition of the energies provided by the theoretical analysis,
thereby allowing for high accuracy in the simulation results.

Themain existence results are provided byTheorems 1 and 2 for the viscoelastic
and purely elastic case, respectively. It is interesting to notice the different require-
ments for the time regularity of the volumetric source of linear momentum and the
boundary source of traction, namely L2 time regularity for the viscoelastic case and
H1 for the elastic case. Interestingly, our numerical investigation shows that the
Darcy velocity and the related fluid energy might become unbounded in the purely
elastic case if the data do not enjoy sufficient time regularity.

The paper is organized as follows. In Section 2 we describe the mathematical
model considered in the article and its interpretation from the engineering view-
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point. The theoretical study on the existence of solutions is presented in Section 3,
whereas the numerical method and the simulation results are discussed in Section 4.
Conclusions are outlined in Section 5.

2. Mathematical Model

2.1. Balance Equations

Let � be an open subset of R3 representing the spatial domain occupied by the
fluid–solid mixture, and let x be the position vector of each point in the body with
respect to a fixed Cartesian reference frame. The symbol n will be used to denote
the unit normal vector to �. Let Vs(x, t) and V f (x, t) be the volumes occupied by
the solid and the fluid components, respectively, in every representative elementary
volume V (x, t) centered at x ∈ � at time t . Then, the volumetric fraction φ of
the fluid component, also called porosity, and its increment ζ with respect to its
baseline value φ0, also called fluid content, are defined as

φ(x, t) = V f (x, t)
V (x, t)

and ζ(x, t) = φ(x, t) − φ0(x). (1)

Under the assumption of fully saturated mixture, the volumetric fraction of the
solid component is given by 1− φ(x, t). Moreover, under the assumptions of neg-
ligible inertia, small deformations and intrinsic incompressibility of each mixture
component [1,21,30,34,43] the motion of the poro-elastic material is governed by
the following equations for the balance of mass (of the fluid component) and linear
momentum (for the fluid–solid mixture):

ζt + ∇ · v = S(x, t) and ∇ · T + F = 0 in � × (0, T ), (2)

where T is the stress tensor of the mixture (also known as total stress), v is the
discharge velocity, F is a body force per unit of volume and S is a net volumetric
fluid production rate. Here the partial derivative with respect to time has been
denoted by the subscript t . This notation will be used throughout the paper.

Remark 1. In continuum mechanics, the source terms S and F should be written
as

S = φS f , F = ρf − ρ f S f v − ρ f φS f ut , (3)

where ρ = ρ f φ+ρs(1−φ) is the density of the mixture, ρ f and ρs are the specific
densities of the fluid and solid components, u is the solid displacement field and S f

and f are given data. Our analysis is performed under the simplifying assumption
that S and F (rather than S f and f) are given functions. This assumption is justified
by the facts that (i) the few existing theoretical studies accounting for non-zero
mass and momentum sources in poro-elastic systems adopt the same assumption,
see [6,51,55] and references therein, and (ii) assuming S and F given is a necessary
preliminary step towards the more realistic case where S f and f are prescribed.
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2.2. Constitutive Equations

The balance equations are completed with the following constitutive equations
for the total stress, the discharge velocity and the fluid content:

1. Total stress
T = Te + δTv − pI, (4)

where Te and Tv are the elastic and viscoelastic stress contributions, respec-
tively, defined as

Te = 2μeε(u) + λe(∇ · u) I and Tv = 2μvε(ut ) + λv(∇ · ut ) I, (5)

where ε(w) is the symmetric part of the gradient of the vector field w, namely
ε(w) = (∇w+∇wT )/2, p is the Darcy fluid pressure, u is the solid displace-
ment, I is the identity tensor, λe and μe are the Lamé elastic parameters, and
λv and μv are the viscoelastic parameters. The parameter δ � 0 indicates the
extent towhich themodel includes viscoelastic effects for the solid component,
with δ = 0 corresponding to the purely elastic case;

2. Discharge velocity

v = −K∇ p, with K = kI and k = kref fk(φ), (6)

whereK is the permeability tensor, and kref is a reference value for the perme-
ability of themixture. Here we assume thatK depends on the porosity and i.e. a
multiple of the identity tensor. The particular form of the relationship between
the permeability k and the porosity φ is represented by the function fk(φ)

and it depends on the geometrical architecture of the pores inside the matrix
and the physical properties of the fluid. Many studies have considered k to be
constant, i.e. fk(φ) = 1 and k = kref , leading to a linear coupling between the
equations for linear momentum and mass balance. However, in many applica-
tions k is definitely not a constant. For e.g. if a Newtonian fluid flows in the
interstitial spaces of a pack of spherical particles, then the Carman–Kozeny
formula states that

kref = Cck

μ f
, fk(φ) = φ3

(1 − φ)2
, (7)

where Cck is a constant depending on the geometric properties of the pack of
particles and μ f is the fluid viscosity [26]. On the other hand, if a Newtonian
fluid flows inside cylindrical pores, then the formula for capillary beds states
that

kref = Ccb

μ f
, fk(φ) = φ2, (8)

where Ccb is a constant depending on the geometric properties of the capillary
bed and μ f is the fluid viscosity [9]. The theoretical analysis in Section 3
is performed without specifying a particular expression for k, but assuming
that k is bounded (see Assumption 3.1). In the numerical study presented in
Section 4, simulations are performed using the Carman–Kozeny permeability
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law, where upper and lower bounds have been artificially imposed to meet the
theoretical Assumption 3.1;

3. Fluid content

ζ = ∇ · u, implying that φ = φ0 + ∇ · u. (9)

We remark that equation (9) is a particular instance of themore general expres-
sion ζ = c0 p+α∇ ·u, where c0 is the constrained specific storage coefficient
and α is the Biot–Willis coefficient. Under the assumption of incompressibility
for the fluid and solid components of the mixture (cf. [17]), the coefficients
reduce to c0 = 0 and α = 1. As a consequence, the permeability k reduces
to be a function of ∇ · u only (rather than a function of both p and ∇ · u).
Thus, k = k(φ) = k(φ(∇ · u)) is abbreviated in the following theoretical and
numerical analysis as k = k(∇ · u).

2.3. Boundary Conditions

Let us denote by ∂� = ΓD ∪ ΓN the boundary of �, with ΓD = ΓD,p ∪ ΓD,v

and Γ D ∩Γ N possibly nonempty. We consider the following boundary conditions:

Tn = g, v · n = 0 on ΓN , (10)

u = 0, p = 0 on ΓD,p, (11)

u = 0, v · n = ψ on ΓD,v. (12)

Here g and ψ are given functions of space and time. The subscripts in the bound-
ary partition reflect the type of associated boundary conditions. More precisely,
the subscripts N and D indicate conditions imposed on stress and displacement,
respectively, whereas the subscripts p and v indicate conditions imposed on Darcy
pressure and velocity, respectively.

2.4. Initial Conditions

In order to specify the initial conditions, it is useful to distinguish between the
viscoelastic case, i.e. δ > 0, and the purely elastic case, i.e. δ = 0.

When δ > 0, time derivatives appear in both the equations for linearmomentum
and mass balance, requiring an initial condition on the whole displacement field,
namely

u = u0 in � at t = 0 (case δ > 0). (13)

When δ = 0, only the fluid content ζ in the mass balance equation undergoes
time differentiation. Since ζ = ∇ · u by equation (9), only a condition on ∇ · u is
required, namely

∇ · u = d0 in � at t = 0 (case δ = 0). (14)

However, in order to obtain a priori estimates for the solutions in the case δ = 0, we
will need to consider only those d0 for which there exist an u0 such that∇ ·u0 = d0,
as explained in Remark 3.
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3. Existence of Solutions

3.1. Main Challenges and Related Literature

The mathematical model described in Section 2 has inspired many theoretical
investigations. The two-dimensional linear problemwith constant permeability and
without viscoelastic effects is addressed in [55]. This fundamental work studies a
weak form of the problem (and associated solutions); a version of Rothe’smethod is
utilized, which involves both temporal and spatial discretization. The work in [55]
provides a general strategy for the linear analysis (especially in the δ = 0 case),
and we follow the conventions presented therein. However, in our case, the well-
posedness analysis is greatly complicated by the presence of nonlinear coupling
via the permeability k = k(∇ · u), here depending on the dilation of the structure.
Additionally, uniqueness comes easily in the linear dynamics and does not depend
on the regularity properties of the solution nor the dimension of the space; this is
certainly not the case for the dynamics considered here.

A linear elastic version of the model in Section 2 is also considered in [40], but
with a different (and stronger) notion of solution than that in [55]. In [40] a Galerkin
method is proposed for purely homogeneous boundary conditions for the pressure
and displacement. This allows for a nice notion of strong solution coming from
the viability of smoother test functions. For this linear result, the (null) Dirichlet
boundary conditionsare critical since the proof of themain theorem therein requires
elliptic regularity [40, p. 44] (an issue with which we must contend below).

Another fundamental work on the linear Biot dynamics is [51]. In this study,
the author develops a functional framework for the dynamics of the system, in the
context of semigroup theory for implicit evolution equations. This approach accom-
modates general boundary conditions, as well as effects due to partial saturation.
Various well-posedness theorems are developed (depending on parameter values)
and notions of “strong” and “weak” solutions are discussed in relation to the vari-
ous notions of differentiability for the fundamental quantities. This paper also deals
with an effect known as secondary consolidation, which is pertinent in geoscience
applications. Although this involves an additional (time-differentiated) term in the
elasticity equation, the work therein does not fully address the effects of viscoelas-
ticity on the solutions as we do here. Two subsequent papers address nonlinear
effects in the Biot model above. Specifically, [54] addresses a (monotone, nonlin-
ear) permeability depending on pressure (rather than dilation, as in our model); the
analysis there seems motivated by geoscience applications, and the techniques do
not generalize to the nonlinear coupling considered in the present paper (where the
monotonicity property is lost). A second nonlinear paper [52] incorporates nonlin-
ear plasticity into themodel (whichmay allow for hysteresis effects). In some sense,
the results there allow for a semigroup generation for a linear model incorporating
viscoelastic effects.

The study presented in [6] is the first contribution (to our knowledge) address-
ing the nonlinear Biot model (without viscoelasticity) illustrated in Section 2, with
permeability depending on dilation. However, the analysis is performed in the
case of null boundary conditions for both pressure and elastic displacement. The
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boundary consists of a single piece upon which zero Dirichlet conditions are pre-
scribed (the approach, as in [51], allows for inhomogeneous terms via a translation
argument). The strategy in [6] relies on Rothe’s method (as in [55]), but uses the
simplified structure of the pressure-to-dilation operator B (see Section 3.3 below)
coming from [51]. The existence of solutions is shown (in a weak sense, simi-
lar, though not identical, to [55]); uniqueness is addressed via strong assumptions
on the a priori regularity of the pressure, and the structure of the permeability.
Some numerical results are also provided. The analysis in [6] is illustrative in its
handling of the nonlinear coupling, but is simplified in comparison to the analy-
sis here by considering homogeneous clamped/Dirichlet boundary conditions. In
our analysis we consider physical boundary conditions coming from applications
(non-homogeneous, mixed Dirichlet–Neumann boundary conditions) and address
the associated technical issues. Moreover, we provide a unified framework for both
the elastic and viscoelastic cases, along with the associated energy estimates and
identities (when available). Our assumptions on the permeability (with respect to
the existence of solutions) mirror those in [6], and are motivated bymany biological
and biomedical applications, see e.g. [9,11,16,28,32,38].

Subsequent papers [7] and [8] address the stationary problem, where meaning-
ful statements can be made about uniqueness of solutions and associated regularity
(the two issues not being unrelated). These papers allow for more general boundary
conditions, and consider other notions of solutions, but the techniques seem to be
restricted to the stationary case (steady flows). The papers in [6–8] do not appear
to have specific applications in mind, and thus provide general analysis and some
corresponding numerical results.

Our work complements, extends, and (in some sense) goes beyond the afore-
mentioned studies, in the sense that:

– We consider a physical problemwith no simplifying assumptions on the domain
boundary, (i.e. we include the case when Γ D ∩ Γ N �= ∅), and the associated
boundary conditions (i.e. Neumann and Dirichlet for both solid and fluid com-
ponents). This leads to an elliptic problem for the Lamé system with mixed
boundary conditions. Other analyses of the nonlinear Biot model above do not
seem to accommodate such conditions, and for many biological and biomedical
applications boundary data are the fundamental drivers of system dynamics.

– We address the critical need of elliptic regularity (corresponding to the station-
ary elasticity problem with mixed boundary conditions) in the construction of
solutions. In previous studies, boundary conditions were not the focus in the
well-posedness analysis.

– We allow for fully general �-distributed forces, as well as Dirichlet/Neumann
data, for both the pressure and displacement dynamics. We track the regularity
properties of the data and note their effect on the solutions. Additionally, we note
that such effects vary between the elastic and viscoelastic cases, as discussed in
Remark 5 and shown in the simulation results in Section 4.6.

– Our approach accounts for viscoelastic effects in the solid, i.e. δ > 0, but also
allows to study the purely elastic case, i.e. δ = 0. Our investigation is motivated
by the fact that the viscoelastic properties of biological tissues often vary with
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age and disease, and, interestingly, our analysis shows that the system dynamics
fundamentally changes as viscoelastic effects vanish.

3.2. Preliminary Notions and Definition of Solutions

For the theoretical analysis, it is useful to rewrite the problem as follows:

∇ · T(u, p) = −F in � × (0, T ) (15)

∇ · ut − ∇ · (k(∇ · u)∇ p) = S in � × (0, T ) (16)

∇ · u = d0 in �, for t = 0 (17)

T(u, p)n = g on ΓN × (0, T ) (18)

u = 0 on ΓD × (0, T ) (19)

∇ p · n = 0 on ΓN × (0, T ) (20)

p = 0 on ΓD,p × (0, T ) (21)

−k(∇ · u)∇ p · n = ψ on ΓD,v × (0, T ) (22)

where

T(u, p) = [2ε(u) + (∇ · u)I] + δ[2ε(ut ) + (∇ · ut )I] − pI

and where the Lamé elastic parameters and the viscoelastic coefficients have been
normalized to unity and where the source terms in the volume, i.e. F and S, and
on the boundary, i.e. g and ψ , are given functions of space and time. We remark
that the normalization of parameters to unity is not essential to the analysis, but it
significantly simplifies the description of the steps in the existence proof. For the
sake of completeness, the theoretical estimates are reported for the non-normalized
physical parameters in Section 3.6.

Notation: Norms ‖ · ‖ are taken to be L2(D) for a domain D. Inner products
in L2(D) are written as (·, ·), whereas 〈·, ·〉 will denote the inner product on the
boundary L2(∂D). A subscript will denote the domain where the context does not
immediately make it clear, e.g. 〈u,w〉ΓN . The Sobolev space of order s defined on a
domain D will be denoted by Hs(D), with Hs

0 (D) denoting the closure of C∞
0 (D)

in the Hs(D) norm (which we denote by ‖ · ‖Hs (D) or ‖ · ‖s,D). When s = 0 we
may further abbreviate the notation to ‖ · ‖ (as described above). We make use of
the standard notation for the trace of functions γ [w] as the map from H1(D) to
H1/2(∂D). We will make use of the spaces L2(0, T ;U ) and Hs(0, T ;U ), where
U is a topological vector space. These norms (and associated inner products) will
be denoted with the appropriate subscript, e.g. || · ||L2(0,T ;U ).

The principal spaces we consider are of the form

H1
Γ∗(�) = { f ∈ H1(�) : γ [ f ]

∣
∣
∣
Γ∗

= 0}.

In this case we have H1
Γ∗(�) ⊃ H1

0 (�) for any Γ∗ ⊂ Γ ≡ ∂�. The primary spaces
in our analysis below are

V ≡ H1
ΓD,p

(�), V ≡ (H1
ΓD

(�))3, V ≡ V × V, (23)
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for the pressure p and displacement u, respectively. The norms in these spaces are
inherited from H1(�) and (H1(�))3, respectively. For simplicity wewill introduce
a bilinear form associated with the elasticity operator:

a(u,w) = (∇ · u,∇ · w) + (∇u,∇w) + (∇u, (∇w)T ). (24)

In this notation, we interpret ∇u as the Jacobian of u, i.e. (∇u)i j = Djui , and we
utilize the Frobenius scalar product:

(A,B) =
∫

�

(Ai j Bi j )d�,

sometimes also denoted by (A : B). Notice that, when A = B, we write (A : A) =
(Ai j , Ai j ) = ||A||2. We topologize the space V via a(·, ·), which is to say that we
take the norm induced by a(·, ·) as the norm on V (see Assumption 3.1 below).

In the case of constant permeability, the model is linear, as in [40], and one has
access to both a “strong” notion of solution (classically differentiable in time) and a
“weak” notion of solutions (only distributionally differentiable in time). Here, our
notion of solution depends critically on the parameter δ.We dispense with the usage
of the words “strong” and “weak” for solutions, owing to the confusion it causes
with the associated weak forms of the solutions. In both cases δ > 0 (viscoelastic
case, or VE) and δ = 0 (elastic case, or E), solutions will satisfy a weak form of
(15)–(22). Our notion of an E-solution (δ = 0) here follows that in [55] (and it
is closely related to the notion in [6]). For a VE-solution (δ > 0), we extend this
notion in a natural way as specified below.

Definition 1. (VE-Solution) A solution to (15)–(22) (with δ > 0) is represented by
the pair of functions u ∈ H1(0, T ;V) and p ∈ L2(0, T ; V ) such that:

(a) The following relations are satisfied for any w ∈ V, q ∈ V , and f ∈
C∞([0, T ]):

δ

∫ T

0
a(ut ,w) f dt +

∫ T

0
a(u,w) f dt −

∫ T

0
(p,∇ · w) f dt

=
∫ T

0
〈g,w〉ΓN f dt +

∫ T

0
(F,w) f dt (25)

∫ T

0
(k(∇ · u)∇ p,∇q) f dt +

∫ T

0
(∇ · ut , q) f dt

= −
∫ T

0
〈ψ, q〉ΓD,v

f dt +
∫ T

0
(S, q) f dt; (26)

(b) The initial conditions u(x, 0) = u0 ∈ V and ∇ · u(x, 0) = d0 ∈ L2(�) are
given, and we require ∇ · u0 = d0 (in the L2(�) sense).

Definition 2. (E-Solution) A solution to (15)–(22) (with δ = 0) is represented by
the pair of functions u ∈ L2(0, T ;V) and p ∈ L2(0, T ; V ) such that:
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(a) The following relations are satisfied for any w ∈ V, q ∈ V , and f ∈
C∞
0 ((0, T )):

∫ T

0
a(u,w) f dt −

∫ T

0
(p,∇ · w) f dt

=
∫ T

0
〈g,w〉ΓN f dt +

∫ T

0
(F,w) f dt (27)

∫ T

0
(k(∇ · u)∇ p,∇q) f dt −

∫ T

0
(∇ · u, q) f ′ dt

= −
∫ T

0
〈ψ, q〉ΓD,v

f dt +
∫ T

0
(S, q) f dt; (28)

(b) For every q ∈ V , the term (∇ · u(t), q) uniquely defines an absolutely con-
tinuous function on [0, T ] and the initial condition (∇ · u(0), q) = (d0, q) is
satisfied.

Definition 3. (Energy and data) Energy functionals for solutions and data are
defined as follows:

E(u(t)) ≡1

2

[

||∇ · u(t)||2 + ||∇u||2 + (∇u,∇uT )
]

(29)

E(p(t)) = Eu(p(t)) ≡ (k(∇ · u)∇ p,∇ p) (30)

DATA0

∣
∣
∣

T

0
≡

∫ T

0

[

||g(t)||2L2(ΓN )
+ ||ψ(t)||2L2(ΓD,v)

+ ||S(t)||2L2(�)
+ ||F(t)||2L2(�)

+ ||gt (t)||2L2(ΓN )
+ ||Ft (t)||2L2(�)

]

dt + sup
[0,T ]

[

||F(t)||2 + ||g(t)||2L2(ΓN )

]

(31)

DATAδ

∣
∣
∣

T

0
≡

∫ T

0

[

||g(t)||2L2(ΓN )
+ ||ψ(t)||2L2(ΓD,v)

+ ||S(t)||2L2(�)
+ ||F(t)||2L2(�)

]

dt.

(32)

Remark 2. The test functions of the form w(x) f (t), with w ∈ V and
f ∈ C∞

0 ((0, T )), are dense in L2(0, T ;V); similarly, test functions of the form
q(x) f (t), with q ∈ V and f ∈ C∞

0 ((0, T )), are dense in L2(0, T ; V ).

Remark 3. (Initial Conditions) When δ > 0, owing to the time dynamics in
the elasticity equation (15), an initial condition on the displacement u0 ∈ V
is prescribed. Since the mass balance equation (16) requires a specification of
d0 = ∇ · u(0) ∈ L2(�) for the fluid content ζ = ∇ · u, we introduce a compati-
bility condition between d0 and u0 requiring that ∇ · u0 = d0. On the other hand,
when δ = 0, the momentum equation does not involve any time derivative on the
displacement and therefore only the initial condition d0 = ∇ ·u(0) ∈ L2(�)would
suffice. However, in obtaining the a priori estimates for the solutions described
below (i.e. in the process of constructing the solutions—see Lemmas 7 and 10)
it will be necessary to consider only those d0 ∈ L2(�) such that there exists an
u0 ∈ V satisfying ∇ · u0 = d0, since terms of the form ||u0||V appear on the right
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hand side of the estimates. This is in line with [55], though for the approach taken
in [51] for weak solutions, it is enough to specify d0 independently of any reference
to a preimage in V.

Remark 4. The notion of data in Definition 3 is fundamentally different depending
on whether the parameter δ is strictly positive or is equal to zero. When δ > 0, the
notion of time differentiability for the solution is stronger than in the case δ = 0, as
shown by the fact that identities (25)–(26) include time derivatives of u, whereas
identities (27)–(28) do not. As a consequence, time regularity requirements on the
data are significantly weaker in the case δ > 0 than in the case δ = 0, as shown by
the comparison between (32) and (31).

Remark 5. Volumetric and boundary forcing terms analogous to our F, S, g, ψ
are also included in [6,51,55]. In [55], the author does not consider viscoelastic
effects and his assumptions on datamirror our DATA0. In [6], (i) no assumptions are
placed directly on the body force F, and (ii) homogeneous boundary conditions are
imposed on pressure and displacement. We note that [6] appeals to [51] in dealing
with F via a simple translation argument (see [51, p. 323–324]) and this argument
is not applicable to the viscoelastic case (δ > 0). Additionally, we emphasize
that the regularity requirements mirror those of our DATA0 when utilizing the
translation described in [51] in order to obtain equivalence for well-posedness of
the homogeneous and inhomogeneous cases of F and g. Indeed, (i) the spatial
and temporal regularity of F(t) must match that of (−E )1/2(u(t)) (where E is
the elasticity operator introduced in Section 3.3 below), and, (ii) either ∇ · ut
must be well defined in L2(�), which does not necessarily follow directly from
the equations, or the boundary data g(t) must be differentiable in the sense of
H1(0, T ; L2(ΓN )).

We now list our baseline assumptions on the domain, as well as the permeability
function k(·):
Assumption 3.1. We assume:

1. ΓD is a set of positive measure, so by Korn’s inequality:

E(u(t)) � c||u(t)||2
(H1(�))3

.

2. ΓD,p is a set of positive measure, so by Poincare’s inequality:

||v||L2(�) � CP ||∇v||L2(�), ∀v ∈ V .

3. The scalar function k(·) : R → R is continuous on R. We assume k(s) � κ > 0
∀s ∈ R, so there is a constant C(κ) so that:

||p||21 � C(κ)E(p(t)).

Additionally, we assume: k(s) � κ̂ < ∞ ∀s ∈ R.
4. We assume the boundary Γ is such that Lemma 2 holds. (See the following

section and discussion.)
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3.3. Elasticity Operator

In the analysis of the momentum equation (15), we consider a given p ∈ L2(�)

(and thus∇ p ∈ V′, withV′ denoting the dual space ofV) and produce a correspond-
ing u ∈ V which satisfies the stationary elasticity equation. Define E : V → V′ to
be the elasticity operator given by

E (u) = −∇ · (2ε(u) + (∇ · u)I) , ∀ u ∈ (C∞
0 (�))3

with domain

D(E ) ≡ {u ∈ V : ∇ · (2ε(u) + (∇ · u)I) ∈ L2(�)}.

Note that the boundary conditions for the operator E are built into the space V; the
operator E is specified by the bilinear form a(·, ·) on V × V as given by (24).

We remark that we can also write

E (u) = −∇ · Te(u), ∀ u ∈ (C∞
0 (�))3,

where the purely elastic stress Te(u) has been defined in (5), here including elastic
constant normalized to unity for the purpose of simplifying the exposition of the
theoretical analysis. It is known that E : V → V′ is an isomorphism [12,51]. This
resulting lemma is classical (see e.g. [12,29] and references therein), but in this
functional setup we directly cite [51]:

Lemma 1. Given p ∈ V (so p|ΓN ∈ L2(ΓN )), g ∈ (L2(ΓN ))3, and F ∈ (L2(�))3,
the elasticity problem

⎧

⎪⎨

⎪⎩

−∇ · (2ε(u) + (∇ · u)I) = −∇ p − F ∈ V′

u = 0 on ΓD

Te(u)n = g + p
∣
∣
ΓN

n on ΓN

(33)

is well-posed with a solution u ∈ V.

Mixed-type boundary conditions for the elasticity operator E are important for
many applications.

Remark 6. In [6] the boundary is composed of a single Dirichlet (clamped) com-
ponent upon which both pressure p and displacement u are zero. In this case, or
whenΓN ∩ΓD = ∅ (see [51]), elliptic theory recovers full

(

H2(�)
)3∩V regularity

of the displacement u when p ∈ V ; from this, ∇ ·u ∈ H1(�), which is used freely
in [6].

Unlike in [6] (and to a certain extent [51]), we will not obtain full (H2(�))3

regularity of the solution u accompanying (33). However, some elliptic regularity
is recovered:
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1. In [39, p. 347], for the Lamé system in polyhedral domains, given p ∈ V , F ∈
(L2(�))3, and g ∈ (H1/2(ΓN ))3 and under certain geometrical assumptions
on the boundary Γ (in particular that ΓN and ΓD do not meet tangentially
and the supremum of their dihedral angles is strictly less than π , one obtains
the regularity u ∈ (H3/2+ε(�))3 for some ε > 0 for the displacement (an
analogous result is obtained for 2-D polygonal domains [39]).

2. Additionally, in the limiting case, when one only assumes that Γ is C1,1, the
results from [49] provide H3/2−ε(�) regularity of solutions for scalar elliptic
problems (with analogous assumptions on the data; in fact, the Neumann data
can be even taken in H−ε(�)).

3. Other regularity theorems for the Lamé system with mixed boundary condi-
tions are available in [37,47] (and references therein), for instance, in weighted
Sobolev spaces.

Remark 7. In [39], geometrical assumptions provide maximal elliptic regularity
(for data analogous to what is considered herein), i.e. a 3/2+ε (Sobolev exponent).
In the more general case of [49] (for scalar elliptic equations with appropriately
regular data) elliptic regularity is recovered up to (not including) 3/2. Such a result
should also hold for the Lamé system. In the construction of solutions below, we
simply utilize elliptic regularity of (H1+ε(�))3 corresponding to solutions of (33).

In the analyses [6,51] the authors utilize a map B which takes as input pressure
information p and gives ∇ · u as output. Clearly the boundary conditions are an
issue here. In [51] this B map is defined on a direct sum space which incorporates
boundary conditions (and allows for lower regularity of p); in [6] homogenous
boundary conditions are considered to drastically simplify the analysis.

Here we analyze the problem in our setup, i.e. with mixed boundary conditions.
We can consider a continuous map B : V → L2(�) such that

Bp = ∇ · u,

where u is the solution to (33). Based on the discussion above, we have:

Lemma 2. Given p ∈ V the corresponding elliptic solver E−1(−∇ p−F) = u lies
in (H1+ε(�))3 ∩ V for some ε > 0 (depending on the domain) with associated
bound. Thus, we have Bp = ∇ · u ∈ H ε(�), which yields that

B : V → H ε(�), continuously.

Remark 8. This fact will be critical to invoke compactness results when passing
to the limit in time on approximate solutions below.

There are additional properties of the B operator (reminiscent of [51]) that we
will take advantage of. The B mapping is injective:

Lemma 3. For p ∈ V , if Bp = 0 (in the sense of L2(�)), then p = 0.

Proof. Suppose that Bp = 0 in L2(�). Then (Bp, q) = 0 for all q ∈ H1
0 (�). But

then (u,∇q) = 0 for all such q. This means that

(E −1(∇ p),∇q) = 0,
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for all q ∈ H1
0 (�). From this we infer that E −1(∇ p) = 0 ∈ L2(�). Since the

elasticity problem is well-posed, we have that ∇ p = 0. However, owing to the fact
that p ∈ V , we must have that p ≡ 0. Thus Ker(B) = {0}. ��

We also have the following additional result, which we state as a lemma (see
[51, pp.325–326]):

Lemma 4. Suppose that pn ∈ V (so the trace p
∣
∣
Γ

is defined) with pn → p in
L2(�) (e.g. if pn ⇀ p in V ). Then Bpn → Bp in L2(�).

Remark 9. In considering limit passage of time-discretized approximate solu-
tions we will not obviously have the analogous result; namely, if p�t → p ∈
L2(0, T ; L2(�)) Bp�t does not necessarily converge strongly to Bp in the same
sense. The presence of viscoelastic terms does not change this fact. Aubin’s com-
pactness criteria must be invoked, which requires Lemma 2.

3.4. Existence of Solutions: Main Theorems

To show existence of solutions to both (25)–(26) and (27)–(28) we follow these
steps:

1. We introduce approximate problems corresponding to spatial and temporal
discretizations in both cases δ = 0 and δ > 0. We again follow the approach
presented in [55].

2. We adapt a technique described in [6] for solving a weak form of the fully
discretized versions of (25)–(26) and (27)–(28).

3. A priori estimates are obtained for the discretized solutions (and later for the
solutions themselves in Section 3.5), i.e. a priori bounds on the approximate
solutions which are uniform with respect to the discretization parameters.

4. We then utilize compactness results to extract limit points which solve the
weak form of the appropriate equations.

Remark 10. Various approximation techniques have been proposed to study the
well-posedeness of PDE systems similar to that in (15)–(22). In [40], a method
based on the Galerkin approximation is utilized. However, the physical boundary
conditions we consider prevent us from easily solving the ODE system associated
with (15)–(22), despite the fact that, at least for δ > 0, we obtain sufficient regular-
ity for ut (i.e. u is differentiable in time into (L2(�))3). A discrete-based approach
is also presented in [6], but it is greatly streamlined and simplified via the homo-
geneous Dirichlet boundary conditions for both pressure and displacement. In our
work, we follow closely the discrete-based approach presented in [55], where the
model in (15)–(22) is considered under the assumption of constant permeability,
and we utilize techniques from [6] to treat the nonlinearity arising from the fact
that k = k(∇ · u).
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3.4.1. The Viscoelastic Case: δ > 0

Theorem 1. [Existence of VE-Solutions] Consider (15)–(22) with δ > 0. Let
Assumption 3.1 hold, and consider data of the form:

F ∈ L2
(

0, T ;
(

L2(�)
)3

)

, S ∈ L2(0, T ; L2(�)), (34)

g ∈ L2
(

0, T ; (H1/2(ΓN ))3
)

, ψ ∈ L2
(

0, T ; L2(ΓD,v)
)

. (35)

Then, there exists a VE-solution (in the sense of (25)–(26)) satisfying

sup
t∈[0,T ]

E(u(t)) +
∫ T

0

[

E(p(t)) + E(u(t)) + δE(ut (t))
]

dt

� C1

[

E(u(0)) +
(

1

1 + δ

)

DATAδ

∣
∣
T
0

]

exp

(
C2T

1 + δ

)

.

Step 1: The discretized problem

Let us partition the time interval [0, T ] into r sub-intervals, yielding�t = T/r and
ti = i�t, i = 0, 1, . . . , r . We will solve the problem iteratively, i.e. by solving an
approximate problem on (ti−1, ti ] we will have data to feed into the problem on
(ti , ti+1]. Define gi by

gi ≡ 1

�t

∫ ti

ti−1

g(x, t)dt,

with Fi , ψ i , Si defined analogously. We now define a (time-scaled) weak form of
the temporal semi-discretized problem when δ > 0 as:

δa(ui − ui−1,w) + [�t]a(ui ,w) − [�t](pi ,∇ · w)

= [�t]〈gi ,w〉ΓN + [�t](Fi ,w) (36)

[�t]2(k(∇ · ui )∇ pi ,∇q) + [�t](∇ · ui − ∇ · ui−1, q)

= − [�t]2〈ψ i , q〉ΓD,v
+ [�t]2(Si , q) (37)

u(0) = u0, ∇ · u0 = d0. (38)

This means that for all (w, q) ∈ V × V , we have

(δ + �t)a(ui ,w) − [�t](pi ,∇ · w)

= δa(ui−1,w) + [�t]〈gi ,w〉ΓN + [�t](Fi ,w) (39)

[�t]2(k(∇ · ui )∇ pi ,∇q) + [�t](∇ · ui , q)

= [�t](∇ · ui−1, q) − [�t]2〈ψ i , q〉ΓD,v
+ [�t]2(Si , q), (40)

along with the initial conditions (38). The problem in (39) and (40) is further
discretized in space. To this end, let us consider a basis B for V and a basis B forV,
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and let Vh and Vh denote finite dimensional subspaces of V and V corresponding
to finite spans in B and B, respectively, each parametrized by a parameter h. We
also set Vh = Vh × Vh .

We will consider (36)–(38) onVh ; i.e. with u
i−1
h (i = 2, ..r ) as given data from

the previous iteration, we can solve (39)–(40) on Vh yielding (uih, p
i
h). The initial

condition u0h is obtained as the projection of u0 ∈ V onto Vh , with its divergence
providing d0,h via the compatibility condition. We note that (u1h, p

1
h) are obtained

by solving (36)–(38) on Vh with u0, g0, F0, ψ0, and S0 given as data—this is to
say p0 is not explicitly solved for in this scheme.

Step 2: Solving the fully discretized problem

In [55], the assumption of constant permeability allows for a straightforward
approach to the algebraic equations arising from the weak form of the dis-
cretized problem. Here, owing to the nonlinearity k = k(∇ · u), the solution
of (36)–(38) is nontrivial. We utilize a fixed point method, as in [6]. Given
(ui−1, pi−1, ψ i , gi ,Fi , Si ), the problem consists in finding (pih,u

i
h) ∈ Vh sat-

isfying (36)–(38). More precisely:

Lemma 5. Consider data of the form (ui−1, pi−1, ψ i , gi ,Fi , Si )—with (pi−1,

ui−1) ∈ Vh (with the understanding that at time t = 0, we take the projection
of u0 ∈ V onto Vh). Then there is a solution (pih,u

i
h) ∈ Vh which satisfies (36)–

(38) for all test functions (w, q) ∈ Vh.

Proof. (of Lemma 5) We define a map Gδ : Vh → Vh corresponding to the weak
form of the discretized problem: for (pi ,ui ) ∈ Vh

(

Gδ

[

pi

ui

]

,

[

q
w

] )

= (δ + �t)a(ui ,w) + [�t](∇ · ui , q)

− [�t](pi ,∇ · w) + [�t]2(k(∇ · ui )∇ pi ,∇q)

− δa(ui−1,w) − [�t](∇ · ui−1, q)

− [�t]〈gi ,w〉ΓN − [�t](Fi ,w) + [�t]2〈ψ i , q〉ΓD,v

− [�t]2(Si , q) (41)

for all (q,w) ∈ Vh . (Note: Gδ defines an operator on the whole Vh , namely on Vh

and Vh simultaneously.) We now note the following:

(

Gδ

[

pi

ui

]

,

[

pi

ui

])

= (δ + �t)2E(ui ) + [�t]2E(pi )

− δa(ui−1,ui ) − [�t](∇ · ui−1, pi )

− [�t]〈gi ,ui 〉ΓN − [�t](Fi ,ui )

+ [�t]2〈ψ i , pi 〉ΓD,v
− [�t]2(Si , pi ), (42)
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from which it follows that:
(

Gδ

[

pi

ui

]

,

[

pi

ui

])

� C1

[

(δ + �t)||ui ||21 + κ[�t]2||pi ||21
]

− C2

[

[�t]||ui−1||1 + [�t]2||ψ i ||L2(ΓD,v) + [�t]2||Si ||L2(�)

]

||pi ||1
− C3

[

δ||ui−1||1 + [�t]||gi ||L2(ΓN ) + [�t]||Fi ||L2(�)

]

||ui ||1. (43)

We have used Korn’s lemma, Poincare’s inequality, the trace theorem, and the
lower bound on k(·) (embodied in the constants Ci and κ). Finally, using Young’s
inequality, taking �t sufficiently small (depending on δ), we have:

(

Gδ

[

pi

ui

]

,

[

pi

ui

])

� C(δ, κ) · [�t]2
∣
∣
∣
∣

∣
∣
∣
∣

[

pi

ui

] ∣
∣
∣
∣

∣
∣
∣
∣

2

V

− c · [�t]
[

||gi ||2L2(ΓN )
+ ||Fi ||20 + ||ui−1||21

]

− c · [�t]2
[

||ψ i ||2L2(ΓD,v)
+ ||Si ||20

]

. (44)

Thus the mapping Gδ : Vh → Vh has the property that
(

Gδ

[

pi

ui

]

,

[

pi

ui

])

� 0

when

∣
∣
∣
∣

∣
∣
∣
∣

[

pi

ui

] ∣
∣
∣
∣

∣
∣
∣
∣

2

V

�
c
[

||gi ||2
L2(ΓN )

+ ||Fi ||20 + ||ui−1||21 + [�t]
(

||ψ i ||2
L2(ΓD,v)

+ ||Si ||20
)]

C(δ, κ)[�t] .

Continuity of Gδ on Vh follows straightforwardly from the Definition (41)
and from the uniform upper bound on the permeability k(s) � κ̂ . With these two
properties of Gδ established on Vh (noting that Vh is finite dimensional), we may
utilize a corollary to Brouwer’s fixed point theorem [53, Corollary A.12.], which
guarantees that there exists a point (pi ,ui ) ∈ Vh satisfying:

(

Gδ

[

pi

ui

]

,

[

q
w

])

= 0

for all (q,w) ∈ Vh . Moreover, (pi ,ui ) has the property that:

∣
∣
∣
∣

∣
∣
∣
∣

[

pi

ui

] ∣
∣
∣
∣

∣
∣
∣
∣

2

V

�
c
[

||gi ||2
L2(ΓN )

+ ||Fi ||20 + ||ui−1||21 + [�t]
(

||ψ i ||2
L2(ΓD,v)

+ ||Si ||20
)]

C(δ, κ)[�t] .

(45)

We have thus produced a weak solution of the discretized problem (36)–(38)
on Vh (for each i , i = 1, . . . , r ) from the data given at the previous iterate i − 1.
Moreover, this solution enjoys an a priori bound via (45). ��
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Remark 11. The estimate in (45) appears singular as �t → 0. However, we
need the fixed point argument only to guarantee the existence of a solution to
the (nonlinear) finite dimensional discretized problem (36)–(38). We will appeal to
other a priori estimates obtainedvia direct “multiplier”methods (seeLemmas7, 10).

Since the above result holds for any h > 0, the estimate (45) provides a uniform
bound in h(> 0);

∣
∣
∣
∣

∣
∣
∣
∣

[

pih
uih

]∣
∣
∣
∣

∣
∣
∣
∣
V×V

� Ci−1(δ, κ,�t),

where the subscript i − 1 denotes dependence on the solution and data from the
previous time step.

Step 3: Limit passage in space

Lemma 6. Consider data of the form (ui−1, pi−1, ψ i , gi ,Fi , Si )—with (pi−1,

ui−1) ∈ V. Then there is a solution (pi ,ui ) ∈ V ×V which satisfies (36)–(38) for
all test functions (w, q) ∈ V.

Proof. (of Lemma 6) From the uniform bound in the previous section we extract
a subsequence (maintaining the same label) and weak limit point (pi ,ui ) ∈ V ×V
such that

(pih,u
i
h) ⇀ (pi ,ui ) in V × V.

Wenowproceed to show that these limit points are solutions to (39)–(40) considered
on the entire space V ×V, i.e. for all test functions q ∈ V and w ∈ V. We proceed
to pass to the limit in (40). First, since uih ⇀ ui in V ≡ (H1

ΓD
(�))3, we have

that ∇ · uih ⇀ ∇ · ui in L2(�). Therefore |(∇ · uih, q) − (∇ · ui , q)| → 0 for
all q ∈ V . Secondly, we deal with the nonlinear term (k(∇ · uih)∇ pih,∇q).
Noting that pih ⇀ pi in V , then, due to the compactness of the Sobolev embedding
V ↪→ L2(�), we have that

pih → pi in L2(�).

We now show that ∇ · uih → ∇ · ui in L2(�). Indeed, recalling that ui−1 ∈ V is
given as data, let ui,∗ ∈ V be the corresponding elasticity solution for pi , i.e. ui,∗
solves (in the weak sense):

⎧

⎪⎨

⎪⎩

−(δ + �t)E (ui,∗) = −[�t]∇ pi − δE (ui−1) − [�t]Fi in �

ui,∗ = 0 on ΓD

Te(ui,∗)n = [�t]gi + [�t](pi )n on ΓN

. (46)

Wealso denoteui,∗h ∈ V as the solution to (46) corresponding to∇ pih , with pih ∈ Vh .

We note that by Lemma 4 we have that ∇ · ui,∗h → ∇ · ui,∗ in L2(�) (since
pih → pi in L2(�)). Moreover, by considering the weak form of (46) (given

pih) on Vh providing the solution ui,∗h , and recalling that uih also satisfies (39)
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with test functions from Vh , we see that ui,∗h = uih (in the same sense) for all

h. Since ∇ · uih ⇀ ∇ · ui , and ∇ · uih = ∇ · ui,∗h → ∇ · ui,∗ in L2(�), then
∇ · ui,∗ = ∇ · ui ∈ L2(�) and ∇ · uih → ∇ · ui , as desired.

By the bounds 0 < κ � k(s) � κ̂ for all s ∈ R, as well as the continuity of
k(·), we may utilize the fact that k(·) : L2(�) → L2(�) is a Nemytskii operator
[50]. Thus k(∇ · uih) → k(∇ · ui ).

We choose a test function q ∈ V ∩ W 1,∞(�) and consider:

∣
∣
(

k(∇ · ui )∇ pi ,∇q
) −

(

k(∇ · uih)∇ pih,∇q
) ∣
∣

=
∣
∣
∣

(

k(∇ · ui )∇[pi − pih],∇q
)

−
(

[k(∇ · uih) − k(∇ · ui )]∇ pih,∇q
)∣
∣
∣

� κ̂|(∇[pi − pih],∇q)| + ||∇q||L∞(�)||∇ pih || · |k(∇ · ui ) − k(∇ · uih)|
→ 0,

since pih ⇀ pi in V and k(∇ · uih) → k(∇ · ui ). By the density of V ∩ W 1,∞(�)

in V , we have shown that the weak limit points (pi ,ui ) satisfy (39)–(40) for all
(q,w) ∈ V × V with given data (pi−1,ui−1) ∈ V and gi ,Fi , ψ i and Si . ��

In this way, we can iteratively define a solution {(pi ,ui )}ri=1 for all discrete time
levels ti = i�t . We must now pass to the limit in time, i.e. considering �t → 0.

Step 4: Limit passage in time

The key step for obtaining solutions is the following set of upper bounds that are
uniform in r .

Lemma 7. For each i = 1, . . . , r solutions to (36)–(38) on V × V enjoy the esti-
mates

[�t]
r

∑

i=1

||pi ||21 � C (47)

||ui ||21 � C (48)

[�t]
r

∑

i=1

||ui ||21 � C (49)

[�t]
r

∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ui − ui−1

�t

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

1

� C (50)

where the constant C above depends on T , E(u0), and DATAδ

∣
∣T
0 (see below (121)).

Proof. (of Lemma 7) The proof of estimates (47)–(50) relies upon the utilization
of the discrete test functions pi and [ui − ui−1] in (39)–(40). We explicitly show
these calculations in Lemma 10 corresponding to the analogous Step 4 for the more
delicate δ = 0 case. ��
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Remark 12. For δ > 0, a priori estimates may also be obtained in the continuous
setting, as shown in Section 3.5. This has the advantage of producing so-called
“energy identities” as intermediate points in the estimation. Note that, in contrast,
for δ = 0 one only obtains energy inequalities by limit passage on discrete estimates
(as below).

Remark 13. The final uniform estimate (50) on the difference quotient is one of
the ways in which the δ > 0 case distinguishes from the δ = 0 case, where no such
estimate holds. Having this bound provides additional regularity for the velocity
ut , even though one must associate the weak limit of the difference quotients with
the time derivative of the displacement.

We extend the solution (as piecewise constant) to the whole time interval (0, T ]
using the more convenient notation

p[r ] =pi in (ti−1, ti ], i = 1, . . . , r (51)

u[r ] =ui in (ti−1, ti ], i = 1, . . . , r. (52)

We also utilize this notation for the data, i.e. we construct F[r ], g[r ], S[r ] and ψ [r ]
as above on [0, T ].

The a priori estimates above yield that the piecewise (in time) constant solution
to (36)–(38) on V × V enjoys the bounds

||p[r ]||L2(0,T ;V ) � C (53)

||u[r ]||L2(0,T ;V) � C (54)

||(u[r ])�t ||L2(0,T ;V) � C (55)

sup
t∈[0,T ]

||u[r ](t)||V � C, (56)

with (ui )�t ≡ [�t]−1[ui − ui−1] being the difference quotient with respect to
a fixed �t . These estimates are uniform in [r ] (i.e. as �t → 0) and therefore
we can extract weak limit points p ∈ L2(0, T ; V ), u ∈ L∞((0, T ];V), and u� ∈
L2(0, T ;V), with u� being the weak limit for the sequence (u[r ])�t ∈ L2(0, T ;V).

We note one additional estimate (not following from energy methods) which is
the result of Lemma 2:

||u[r ]||L2(0,T ;(H1+ε(�))3) � C, (57)

with C being equivalent to those above. Following [55], we provide the following
definition which will be used when testing (25) and (26):

Definition 4. Let f (t) ∈ C∞([0, T ]). Define:
f i ≡ f (ti ), i = 1, . . . , r,

f r+1 ≡ f r = f (T ),

f [r ] ≡ f i+1 in (ti , ti+1], i = 0, . . . , r − 1,

( f [r ])+�t ≡ f i+2 − f i+1

�t
in (ti , ti+1], i = 0, . . . , r − 1,



Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models 1465

satisfying the following properties:

‖ f [r ] − f ‖L2(0,T ) � C · [�t], ‖( f [r ])+�t − f ′‖L2(0,T ) � C · [�t], (58)

where f ′ denotes the derivative of f with respect to its sole scalar argument t .

We know that the sequence {(pi ,ui )} satisfies the system (39)–(40) for any
(q,w) ∈ V. Let q ∈ W 1,∞(�) ∩ V and multiply the aforementioned relations by
f i , simplify, and sum for i = 1, .., r to obtain:

δ

r
∑

i=1

a
(

(ui )�t ,w
)

f i · [�t] +
r

∑

i=1

a(ui ,w) f i · [�t] −
r

∑

i=1

(pi ,∇ · w) f i · [�t]

=
r

∑

i=1

〈gi ,w〉ΓN f i · [�t] +
r

∑

i=1

(Fi ,w) f i · [�t]
r

∑

i=1

(k(∇ · ui )∇ pi ,∇q) f i · [�t] +
r

∑

i=1

(∇ · (ui )�t , q) f i · [�t]

= −
r

∑

i=1

〈ψ i , q〉ΓD,v
f i · [�t] +

r
∑

i=1

(Si , q) f i · [�t]. (59)

We can identify the sums as integrals in time:

δ

∫ T

0
a
(

(u[r ])�t ,w
)

f [r ] dt +
∫ T

0
a(u[r ],w) f [r ] dt −

∫ T

0
(p[r ],∇ · w) f [r ] dt

=
∫ T

0
〈g[r ],w〉ΓN f [r ] dt +

∫ T

0
(F[r ],w) f [r ] dt

∫ T

0
(k(∇ · u[r ])∇ p[r ],∇q) f [r ] dt +

∫ T

0
(∇ · (u[r ])�t , q) f [r ] dt

= −
∫ T

0
〈ψ [r ], q〉ΓD,v

f [r ] dt +
∫ T

0
(S[r ], q) f [r ] dt. (60)

Using the estimates in (58), and adding and subtracting appropriate terms, it is
possible to pass to the limit on the linear terms, thereby identifying weak limit
points. For those terms not involving the quotient (u[r ])�t , this proceeds exactly
as in [55, pp.202–204]. More attention is required when passing to the limit on the
nonlinear term showing that

∫ T

0
(k(∇ · u[r ])∇ p[r ],∇q) f [r ]dt →

∫ T

0
(k(∇ · u)∇ p,∇q) f (t)dt.

Remark 14. This is the step in the proof where the nonlinearity most significantly
affects the limit passage in the construction of weak solutions. In this step, the
elliptic regularity in Lemma 2 is crucial. We require that B : V → H ε(�) in order
to gain compactness via the Aubin–Lions Lemma.
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To do this, we will consider a particular choice of “antiderivative” of (u[r ])�t

(following [6, p. 1260]) which will allow us to use the Aubin–Lions Lemma for a
stronger convergence of ∇ · u[r ] as r → ∞. Given the estimates in (53), we have:

Lemma 8. For the sequence u[r ] ∈ V (as in (53)–(56)) such that u[r ] ⇀ u in
L2(0, T ;V), we also have that ∇ · u[r ] → ∇ · u in L2(0, T ; L2(�)).

Proof. (of Lemma 8) We introduce the piecewise linear function:

L[∇ · u[r ]] = L[∇ · ui ], on (ti−1, ti ], i = 1, . . . , r, (61)

where

L[∇ · ui ] =
[

∇ · ui − ∇ · ui−1

�t

]

(t − ti−1) + ∇ · ui−1

= (∇ · u)�t (t − ti−1) + ∇ · ui−1, on (ti−1, ti ]. (62)

With this notation, we have:

d

dt

(

L[∇ · u[r ]]
)

= (∇ · u[r ])�t . (63)

Owing to Lemma 7, we immediately obtain the uniform bound in r :
∣
∣
∣
∣

∣
∣
∣
∣

d

dt

(

L[∇ · u[r ]]
)
∣
∣
∣
∣

∣
∣
∣
∣
L2(0,T ;L2(�))

= ||(∇ · u[r ])�t ||L2(0,T ;L2(�)) � C. (64)

Now we note that:

||L[∇ · ui ]||H ε(�) � [�t] · ||(∇ · ui )�t ||H ε(�) + ||∇ · ui−1||H ε(�). (65)

Moreover, via the continuous mapping B : L2(�) → H ε(�) (see Section 3.3),
with ∇ p[r ] ∈ L2(0, T ; L2(�)), Lemma 7 implies that

||L[∇ · u[r ]]||L2(0,T ;H ε(�)) � C, (66)

whereC has the same dependencies as in (53)–(56). Thus, we know that there exist
v ∈ L2(0, T ; H ε(�)) and v′ ∈ L2(0, T ; L2(�)) such that

L[∇ · u[r ]] ⇀ v

and

d

dt

(

L[∇ · u[r ]]
)

⇀ v′.

By the Aubin–Lions Lemma, possibly along a subsequence, we have L[∇ ·
u[r ]] → v in the sense of L2(0, T ; L2(�)). From the piecewise structure of L[∇ ·
u[r ]] we have that

L[ f [r ](t)] → f (t) as r → ∞
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for any f (t)piecewise continuous. Thus, due to the uniqueness of the limitv = ∇·u,
the weak convergence u[r ] ⇀ u ∈ V is improved to strong convergence (possibly
along a subsequence):

∇ · u[r ] → ∇ · u in L2(0, T ; L2(�)).

��

We now consider the difference

∫ T

0
(k(∇ · u[r ])∇ p[r ],∇q) f [r ]dt −

∫ T

0
(k(∇ · u)∇ p,∇q) f (t)dt (67)

=
∫ T

0
(k(∇ · u[r ])∇ p[r ],∇q)[ f [r ] − f ]dt (68)

+
∫ T

0
(k(∇ · u[r ])∇[p[r ] − p],∇q) f dt (69)

+
∫ T

0

(

[k(∇ · u[r ]) − k(∇ · u)]∇ p,∇q
)

f dt. (70)

We note that, as r → ∞, from the properties of f [r ] it follows that

∣
∣
∣
∣

∫ T

0
(k(∇ · u[r ])∇ p[r ],∇q)[ f [r ] − f ]dt

∣
∣
∣
∣

� κ̂||p[r ]||L2(0,T ;V )||q||V || f − f [r ]||L2(0,T ) → 0,

from the weak convergence p[r ] ⇀ p in L2(0, T ; V ) it follows that

∣
∣
∣
∣

∫ T

0
(k(∇ · u[r ])∇[p[r ] − p],∇q) f dt

∣
∣
∣
∣
� C (̂κ)

∣
∣
∣
∣

(

[p[r ] − p], q f )
)

L2(0,T ;V )

∣
∣
∣
∣
→0,

and by the Nemytskii property of k(·), since ∇ · u[r ] → ∇ · u strongly in L2(0, T ;
L2(�)), and considering that q ∈ V ∩ W 1,∞(�), f ∈ C∞([0, T ]) it follows that

∣
∣
∣
∣

∫ T

0

(

[k(∇ · u[r ]) − k(∇ · u)]∇ p,∇q
)

f dt

∣
∣
∣
∣

� C(q, f )||k(∇ · u[r ]) − k(∇ · u)||L2(0,T ;L2(�))||∇ p||L2(0,T ;L2(�)) → 0.

Step 5: Limit point identification

Thus, we have the following identity for the weak limits (identified above), which
holds for all test functions of the formw f and q f with w ∈ V, q ∈ V ∩W 1,∞(�),
and f ∈ C∞([0, T ]):
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δ

∫ T

0
a
(

u�,w
)

f dt +
∫ T

0
a(u,w) f dt −

∫ T

0
(p,∇ · w) f dt

=
∫ T

0
〈g,w〉ΓN f dt +

∫ T

0
(F,w) f dt (71)

∫ T

0
(k(∇ · u)∇ p,∇q) f dt +

∫ T

0
(∇ · u�, q) f dt

= −
∫ T

0
〈ψ, q〉ΓD,v

f dt +
∫ T

0
(S, q) f dt.

We must now identify the weak limit for the difference quotient (in time) u� with
the distributional derivative in time of u. Now, consider the test function w f i , as
above. Then

r
∑

i=1

a(ui − ui−1,w) f i = a(ur ,w) f r − a(u0,w) f 1 −
r−1
∑

i=1

a(ui ,w)( f i+1 − f i ).

(72)
Due to the fact that ( f [r ])+�t = 0 on (tr−1, tr ], we have that

r−1
∑

i=1

a(ui ,w)( f i+1 − f i ) = �t
r−1
∑

i=1

a(ui ,w)
f i+1 − f i

�t

=
∫ T

0
a(u[r ],w)

[

( f [r ])+�t

]

dt.

Again, using the linear nature of this term and the boundedness of the sequences
in (53), we see that as r → ∞:

δ

r
∑

i=1

a
(

(ui )�t ,w
)

f i · [�t]

→ δa(u(T ),w) f (T ) − δa(u0,w) f (0) − δ

∫ T

0
a(u,w) f ′ dt. (73)

But, since this holds for all f ∈ C∞
0 ((0, T )), this implies that

δ

r
∑

i=1

a
(

(ui )�t ,w
)

f i · [�t] → δ

∫ T

0
a(ut ,w) f dt,

where ut is the distributional derivative in time. From this we can infer that:

∫ T

0
a(ut ,w) f dt =

∫ T

0
a(u�,w) f dt.
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Step 6: Properties of the solution

Since functions of the form w f with w ∈ V and f ∈ C∞([0, T ]) are dense in
L2([0, T ];V), it follows that ut = u� in the sense of L2(0, T ; (L2(�))3). More-
over, sinceu� is theweak limit of the sequence (u[r ])�t ∈ L2(0, T ;V), we have that
u� ∈ L2(0, T ;V), which, by uniqueness of limits, implies that ut ∈ L2(0, T ;V)

as well.

Remark 15. This identification and additional regularity for ut ∈ L2(0, T ;V) is
possible because δ is strictly positive and, indeed, it cannot be attained in the case
δ = 0 considered below. The original work in [55], as well as the model considered
in [6], only deal with the case δ = 0, and consequently identify∇ ·ut in the weaker
space L2(0, T ; V ′), as in Step 5 of Section 3.4.2 below.

Remark 16. The test function ( f [r ])+�t is used in both viscoelastic and purely
elastic cases, but for different reasons. When δ > 0, it is needed to identify the
weak limit of the sequence in (50). In contrast, when δ = 0, it is used to perform
the summation by parts in the time-discretized pressure equation (40).

Thus, we have constructed a solution u ∈ L2(0, T ;V), ut ∈ L2(0, T ;V) and p ∈
L2(0, T ; V )which satisfies (25)–(26). Additionally, we note that u ∈ H1(0, T ;V)

and so∇·u ∈ H1(0, T ; L2(�)). Thus, by [18], it follows that u ∈ C([0, T ];V) and
∇ · u ∈ C([0, T ]; L2(�)). We note that the property u ∈ L∞([0, T ];V) actually
follows from the a priori bound in (56) in the limit; additionally, this can be seen in
Section 3.5 utilizing specific test functions: as ut ∈ L2(0, T ;V), and test functions
of the form w f (·) (as above) are dense in this space, we may consider both u and
ut as valid test functions in (25)–(26). This provides energy estimates, as well as
energy identities, for solutions (the calculations and formal statements have been
detailed in Section 3.5).

Remark 17. Obtaining a priori estimates ismore subtle in the δ = 0 case aswe can-
not utilize ut as a test function in (27)–(28), since functions in L2(0, T ; (L2(�)

)3
)

are not valid “multipliers” for the elasticity/momentum equation.

Step 7: Recovery of initial condition

To recover the initial condition from the constructed solution we start from the
momentum equation (25). For any w ∈ V, we can define

G(t) ≡ δa(u(t),w) (74)

H(t) ≡ − (a(u(t),w) + (p(t),∇ · w) + 〈g(t),w〉ΓN + (F(t),w) (75)

F(t) ≡ ∫ t
0 H(τ )dτ (76)

and note that F(t) is absolutely continuous on [0, T ] with F ′(t) = H(t) almost
everywhere (0, T ). Utilizing these definitions in (25), we obtain

∫ T

0
(G ′(t) − F ′(t)) f (t) dt = 0 ∀ f ∈ C∞

0 ((0, T )), (77)
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and this implies that G and F differ by a constant, i.e. G − F = c. By considering
f ∈ C∞([0, T ])with f (0) = 1 and f (T ) = 0, recalling (72)–(73), and integrating
by parts in time in (25), we obtain

− δ

∫ T

0
a(u,w) f ′dt − δa(u0,w)

= −
∫ T

0
a(u,w) f dt+

∫ T

0
(p,∇ · w) f dt+

∫ T

0
〈g,w〉ΓN dt +

∫ T

0
(F,w) f dt

for all w ∈ V. This can be rewritten as

−
∫ T

0
G f ′dt +

∫ T

0
H f dt = δa(u0,w).

Integrating by parts in time and using (77) we have:

∫ T

0
H f dt +

∫ T

0
F ′ f dt − [(F(t) + c) f (t)]∣∣T0 = δa(u0,w). (78)

By identifying F ′ = H almost everywhere t , choosing T = 0 and recalling that
f (0) = 1, from (78) it follows that c = δa(u0,w) and, consequently

δa(u(t),w) − δa(u0,w)

=
∫ T

0

[

− (a(u(t),w) + (p(t),∇ · w) + 〈g(t),w〉ΓN + (F(t),w)
]

dt

for all w ∈ V and almost everywhere (0, T ). Choosing T = 0, we see that

a(u(0),w) = a(u0,w), w ∈ V,

which yields that u(0) = u0 in the sense of V. Additionally, this yields that ∇ ·
u(0) = ∇ ·u0, and, since ∇ ·u0 = d0 by the compatibility of initial conditions, we
have satisfied both initial conditions.

This completes the proof of Theorem 1.

3.4.2. The Elastic Case: δ = 0

Theorem 2. (Existence of E-Solutions) Consider (15)–(22) with δ = 0. Let
Assumption 3.1 hold, and consider data of the form:

F ∈ H1
(

0, T ;
(

L2(�)
)3

)

, S ∈ L2(0, T ; L2(�)), (79)

g ∈ H1
(

0, T ; (H1/2(ΓN ))3
)

, ψ ∈ L2
(

0, T ; L2(ΓD,v)
)

. (80)

Then there exists an E-solution (in the sense of (27)–(28)) satisfying

sup
t∈[0,T ]

E(u(t)) +
∫ T

0

[

E(p(t)) + E(u(t))
]

dt � C1

[

E(u(0)) + DATA0
∣
∣T
0

]

eC2T .
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Step 1: The discretized problem

We utilize the same partition of [0, T ] into r sub-intervals, yielding �t = T/r and
ti = i�t, i = 0, 1, . . . , r . As in the case δ > 0, we define

ψ i ≡ [�t]−1
∫ ti

ti−1

ψ(x, t)dt,

with Si defined analogously. However, due to their higher time-regularity, we define

ĝi ≡ g(x, ti ),

with F̂i defined analogously. We now define a weak form of the temporal semi-
discretized problem when δ = 0 as:

a(ui ,w) − (pi ,∇ · w) = 〈̂gi ,w〉ΓN + (̂Fi ,w) (81)

[�t](k(∇ · ui )∇ pi ,∇q) + (∇ · ui , q)

= (∇ · ui−1, q) − [�t]〈ψ i , q〉ΓD,v
+ [�t](Si , q) (82)

∇ · u(0) = d0 (83)

for all (w, q) ∈ V × V .

Remark 18. Depending onwhether δ > 0 or δ = 0, the resulting natural choice for
the time scaling of the temporal semi-discretized weak problem noticeably differs.
This is clear when comparing (36)–(38) with (81)–(83).

Step 2: Solving the fully discretized problem

The solution of the discretized problem in the case δ = 0 mirrors that of δ > 0. In
the δ = 0 case, we again take the projection of u0 onto Vh , resulting in u0h ; since
∇ · u0 = d0, we set d0,h = ∇ · u0h (see Remark 3). In (81)–(83), we observe that
(u1h, p

1
h) are obtained from the data ∇ · u0h = d0,h , ψ0, S0, ĝ0, and F̂0.

We similarly define a map G0 : Vh → Vh by the bilinear form below: for
(pi ,ui ) ∈ Vh

(

G0

[

pi

ui

]

,

[

q
w

])

= a(ui ,w) − (pi ,∇ · w) + [�t](k(∇ · ui )∇ pi ,∇q)

+ (∇ · ui , q) − (∇ · ui−1, q)

+[�t]〈ψ i , q〉ΓD,v
− [�t](Si , q) − 〈̂gi ,w〉ΓN − (̂Fi ,w)

(84)

for all (q,w) ∈ Vh . The analysis of G0 in relation to the corresponding problem
onVh (and associated estimates) proceeds precisely as in Step 2 for the δ > 0 case.
Thus there exists a point (pih,u

i
h) ∈ Vh satisfying:

(

G0

[

pih
uih

]

,

[

q
w

])

= 0
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for all (q,w) ∈ V. Moreover, (pih,u
i
h) has the property that:

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

pih
uih

] ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

V

�
c
[

||̂gi ||2
L2(ΓN )

+ ||̂Fi ||20 + ||ui−1||21 + [�t]
(

||ψ i ||2
L2(ΓD,v)

+ ||Si ||20
)]

C(κ)[�t] .

(85)
We have also, then, produced a weak solution of the approximate problem (81)–
(83) onVh (for each i , i = 1, . . . , r ) from the data given for i −1, and this solution
enjoys a uniform bound in Vh ⊂ V × V with respect to h via (85).

Step 3: Limit passage in space

Since the additional time regularity due to the viscoelastic term does not influence
the passage to the limit in space, we can proceed analogously to what described in
Step 3 for the δ > 0 case, thus obtaining a solution to (81)–(83) on V as stated in
the following Lemma.

Lemma 9. Consider data of the form (ui−1, pi−1, ψ i , ĝi , F̂i , Si )—with (pi−1,

ui−1) ∈ V. Then there is a solution (pi ,ui ) ∈ V × V that satisfies (81)–(83)
for all test functions (w, q) ∈ V.

Step 4: Limit passage in time

The passage to the limit in time is more subtle in the δ = 0 case, owing to the
natural lack of smoothness in time for solutions. Analogously to Lemma 7, the key
step is obtaining the following set of upper bounds that are uniform in r .

Lemma 10. For each i = 1, . . . , r solutions to (81)–(83) on V × V enjoy the
estimates

[�t]
r

∑

i=1

||pi ||21 � C (86)

||ui ||21 � C (87)

[�t]
r

∑

i=1

||ui ||21 � C (88)

where the constant C above depends on T , E(u0), and DATA0
∣
∣T
0 (as in (124)).

Proof. (of Lemma 10) The following identities will be useful for the analysis:

a(wi ,wi −wi−1) = 1

2
a(wi ,wi )− 1

2
a(wi−1,wi−1)+ 1

2
a(wi −wi−1,wi −wi−1)

(89)

j
∑

i=1

(

Gi ,wi − wi−1
)

= (G j ,w j ) − (G1,w0) −
j−1
∑

i=1

(Gi+1 − Gi ,wi ), (90)

where G and w are arbitrary functions.
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For each i = 1, . . . , r , let us test (81) for the solution (pi ,ui ) with w =
ui − ui−1:

a(ui , [ui − ui−1]) − (pi ,∇ · [ui − ui−1])
= 〈̂gi , [ui − ui−1]〉ΓN − (̂Fi , [ui − ui−1]).

Using (89) and simplifying we have:

1

2
a(ui ,ui ) + 1

2
a(ui − ui−1,ui − ui−1) − (pi ,∇ · ui ) (91)

= −(pi ,∇ · ui−1) + 1

2
a(ui−1,ui−1) + 〈̂gi , [ui − ui−1]〉ΓN + (̂Fi , [ui − ui−1]).

Testing (82) with q = pi , we have:

[�t](k(∇ · ui )∇ pi ,∇ pi ) + (∇ · ui , pi ) (92)

= (∇ · ui−1, pi ) − [�t]〈ψ i , pi 〉ΓD,v
+ [�t](Si , pi ).

Adding (91) and (92), we have the identity:

1

2
a(ui ,ui ) + 1

2
a(ui − ui−1,ui − ui−1) + [�t](k(∇ · ui )∇ pi ,∇ pi ) (93)

= 1

2
a(ui−1,ui−1) − [�t]〈ψ i , pi 〉ΓD,v

+ [�t](Si , pi ) (94)

+ 〈̂gi , [ui − ui−1]〉ΓN + (̂Fi , [ui − ui−1]). (95)

From this key identity, we perform a summation on the index i , with i = 1, . . . , j ,
and utilize (90). This results in:

j
∑

i=1

{

E(ui ) + E(ui − ui−1)
}

+
j

∑

i=1

E(pi )[�t]

=
j

∑

i=1

E(ui−1) +
j

∑

i=1

{

(Si , pi ) − 〈ψ i , pi 〉ΓD,v

}

[�t]

+ (̂F j ,u j ) − (̂F1,u0) +
j−1
∑

i=1

([̂Fi+1 − F̂i ],ui )

+ 〈̂g j ,u j 〉ΓN − 〈̂g1,u0〉ΓN +
j−1
∑

i=1

〈[̂gi+1 − ĝi ],ui 〉ΓN . (96)

We will now utilize the structure (and regularity assumptions) of ĝi , F̂i ,ψ i , and
Si to obtain a priori bounds, uniform in [r ]. Using (i) Cauchy–Schwarz in space,
(ii) the trace theorem, (iii) Bochner’s Theorem and Cauchy–Schwarz in time, (iv)



1474 L. Bociu, G. Guidoboni, R. Sacco & J. T. Webster

Young’s inequality as |ab| � εa2 + C
ε
b2, and (v) the lower bound on k(·) (see

Assumption 3.1), we obtain:

|〈ψ i , pi 〉[�t]| =
∣
∣
∣
∣
∣
[�t]−1

〈∫ ti

ti−1

ψ(t)dt, pi
〉

ΓD,v

[�t]
∣
∣
∣
∣
∣

� C

∣
∣
∣
∣

∣
∣
∣
∣

∫ ti

ti−1

ψ(t)dt

∣
∣
∣
∣

∣
∣
∣
∣
0,ΓD,v

||pi ||1

� C[�t]1/2||ψ ||L2(ti−1,ti ;L2(ΓD,v))||pi ||1
� Cε||ψ ||2L2(ti−1,ti ;L2(ΓD,v))

+ εE(pi )[�t].

The term (Si , pi )� is handled similarly (using Poincare’s inequality, rather than
the trace theorem). By the regularity of g, it follows that:

ĝi+1 − ĝi =
∫ ti

ti−1

gt (x, t) dt almost everywhere on ΓN . (97)

Using Korn’s inequality, following analogous steps as above we obtain:

∣
∣
∣
∣

〈

[̂gi+1 − ĝi ],ui
〉

ΓN

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

〈∫ ti+1

ti
g′(t)dt, ui

〉

ΓN

∣
∣
∣
∣
∣

� C

∣
∣
∣
∣

∣
∣
∣
∣

∫ ti+1

ti
g′(t)dt

∣
∣
∣
∣

∣
∣
∣
∣
0,ΓN

||ui ||1

� C[�t]1/2||g′||
L2

(

ti ,ti+1;(L2(ΓN ))
3
)||ui ||1

� C
{

||g′||2L2(ti ,ti+1;(L2(ΓN ))3)
+ E(ui )[�t]

}

.

The term (̂Fi+1 − F̂i ,ui ) is handled similarly. Summing the previous results, and
simplifying (96) we have:

j
∑

i=1

E(ui ) +
j

∑

i=1

E(pi )[�t]

� C
{

E(u0) +
j−1
∑

i=1

E(ui ) +
j−1
∑

i=1

E(ui )[�t] + ε

j−1
∑

i=1

E(pi )

+ ||g′||2
L2

(

0,T ;(L2(ΓN ))
3
) + ||F′||L2(0,T ;(L2(�))3)

+ ||g||2
C
(

[0,T ];(L2(ΓN ))
3
) + ||F||2

C
(

[0,T ];(L2(�))
3
)

+ ||ψ ||2L2(0,T ;L2(ΓD,v))
+ ||S||2L2(0,T ;L2(�))

}

. (98)
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Simplifying, using the embedding H1(0, T ; (L2(D))3) ↪→ C([0, T ]; (L2(D))3),
and possibly scaling ε (at the cost of up-scaling C ), we then have:

E(u j ) +
j

∑

i=1

E(pi )[�t] � C1 + C2

j−1
∑

i=1

E(ui )[�t], (99)

where C1 is a scalar multiple of

E(u0) + ||g||2H1(0,T ;(L2(ΓN ))3)
+ ||F||2

H1
(

0,T ;(L2(�))
3
)

+ ||ψ ||2L2(0,T ;L2(ΓD,v))
+ ||S||2L2(0,T ;L2(�))

,

and C2 is a constant which does not depend on u0 or [�t].
Remark 19. The Ci depend on: the Poincare constant for�, the Korn constant, the
trace constant, and the lower bound on the permeability κ . (See Assumption 3.1;
Section 3.6.)

Finally, we employ the discrete version of Gronwall’s Lemma on (99) to obtain:

E(u j ) � C1e
C2 j ,

from which the final conclusion of Lemma 10 follows. ��
Extending the solution to the whole time interval (0, T ] in a piecewise fashion,

as before, we have:

p[r ] =pi in (ti−1, ti ], i = 1, . . . , r (100)

u[r ] =ui in (ti−1, ti ], i = 1, . . . , r. (101)

The a priori estimates above yield that the spatially and temporally discretized
solution to (81)–(83) on V × V enjoys the bounds

||p[r ]||L2(0,T ;V ) � C (102)

||u[r ]||L2(0,T ;V) � C (103)

sup
t∈[0,T ]

||u[r ](t)||V � C, (104)

which are uniform as r → ∞ (�t → 0). Again, from the elliptic regularity
associated with the B mapping, we also have the estimate

||u[r ]||L2(0,T ;(H1+ε(�))3) � C,

where the C here is as above. From the bounds in (102)–(104) we identify weak
limit points u ∈ L2(0, T ;V) and p ∈ L2(0, T ; V ). In (81)–(83), we now consider
test functions w f and q f with w ∈ V, q ∈ V , and f ∈ C∞([0, T ]). We multiply
by the appropriate test function and sum each relation from i = 1 to i = r , utilizing
the notation introduced in Definition 4.
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Note that:
r

∑

i=1

(∇ · ui − ∇ · ui−1, q) f i = (∇ · ur , q) f r

−(∇ · u0, q) f 1 −
r−1
∑

i=1

(∇ · ui , q)( f i+1 − f i ).

Now, due to the fact that ( f [r ])+�t = 0 on (tr−1, tr ], we have that
r−1
∑

i=1

(∇ · ui , q)( f i+1 − f i ) = �t
r−1
∑

i=1

(∇ · ui , q)
f i+1 − f i

�t

=
∫ T

0
(∇ · u[r ], q)

[

( f [r ])+�t

]

dt.

We then identify the sums as appropriate integrals of piecewise functions on [0, T ];
thus, (82) becomes:
∫ T

0
(k(∇ · u[r ])∇ p[r ],∇q) f [r ] dt −

∫ T

0
(∇ · u[r ], q)

[

( f [r ])+�t

]

dt

=
∫ T

0
(S[r ], q) f [r ]dt −

∫ T

0
〈ψ [r ], q〉 f [r ]dt + (∇ · u0, q) f 1 − (∇ · ur (T ), q) f r .

(105)

Limit passage on the linear terms in both (81) and (82) proceeds exactly as before,
using the properties in Definition 4. However, owing to the loss of regularity in the
case δ = 0, we need to recover an estimate on

d

dt
L[∇ · u[r ]]

to secure limit passage on the nonlinear term (the analogue of Lemma 8).

Lemma 11. For the sequence u[r ] ∈ V (as in (102)–(104)) such that u[r ] ⇀ u in
L2(0, T ;V), we also have that ∇ · u[r ] → ∇ · u in L2(0, T ; L2(�)).

Proof. (of Lemma 11) Consider q ∈ V :
∣
∣
∣
∣
∣

(
d

dt
(L[∇ · ui ]), q

)

L2(�)

∣
∣
∣
∣
∣
=

∣
∣
∣((∇ · ui )�t , q)

∣
∣
∣ . (106)

Directly from (83), we see that
∣
∣
∣((∇ · ui )�t , q)

∣
∣
∣ � [�t]

(

κ̂||pi ||1 + ||ψ i ||L2(ΓD,v) + ||Si ||L2(�)

)

||q||V . (107)

Summing on i = 1, . . . , r , we infer that
d

dt
L[∇ · u[r ]] ∈ L2(0, T ; V ′) and

∣
∣
∣
∣

∣
∣
∣
∣

d

dt
L[∇ · u[r ]]

∣
∣
∣
∣

∣
∣
∣
∣
L2(0,T ;V ′)

� C (̂κ) ·

×
[

||pi ||L2(0,T ;V ) + ||ψ i ||L2(0,T ;L2(ΓD,v)) + ||Si ||L2(0,T ;L2(�))

]

. (108)
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Thus we have secured the bounds associated with:

L[∇ · u[r ]] ∈ L2(0, T ; H ε(�)) (109)

d

dt
L[∇ · u[r ]] ∈ L2(0, T ; V ′). (110)

Again, as in the proof of Lemma 8, we utilize the Aubin–Lions Lemma to guarantee
that ∇ · u[r ] → ∇ · u in the sense of L2(0, T ; L2(�)). ��
At this point, limit passage as r → ∞ proceeds as in Step 4 in the δ > 0 case, and
we have that (27)–(28) is satisfied for any f ∈ C∞

0 ((0, T )), q ∈ V and w ∈ V.

Step 5: Properties of the solution

The bounds (102)–(104) provide the solution (p,u) with the properties that: u ∈
L∞((0, T );V), and thus ∇ · u ∈ L∞((0, T ); L2(�)), as well as p ∈ L2(0, T ; V )

(see Section 3.5 for more details). In light of (105) and the bounds in (102)–(104),
we also see that the following estimate holds for all q ∈ V and f ∈ C∞

0 ((0, T )):
∣
∣
∣
∣
∣

∫ T

0
(∇ · u, q) f ′ dt

∣
∣
∣
∣
∣

�
[

κ̂||p||L2(0,T ;V ) + ||S||L2(0,T ;L2(�)) + ||ψ ||L2(0,T ;L2(ΓD,v)

]

||q||L2(0,T ;V )|| f ||C([0,T ])
(111)

+
(

sup
[0,T ]

||u||V
)

||q||V |||| f ||C([0,T ]). (112)

This estimate implies that ∇ · ut ∈ L2(0, T ; V ′), and by the density of the set
{∇q : q ∈ H1

0 (�)} in (L2(�))3, we also have (via Stokes’ Theorem) that ut ∈
L2(0, T ; (L2(�))3). Combining this with the fact that u ∈ L2(0, T ;V), we have
by [18] that u ∈ C([0, T ]; (L2(�))3). Additionally, as ∇ · ut ∈ L2(0, T ; V ′)
with ∇ · u ∈ L2(0, T ; L2(�)) ⊂ L2(0, T ; V ′), we know by [18, p. 302] that
∇ · u ∈ C([0, T ]; V ′).

By the membership of u in L2(0, T ;V), taking test functions of the formw f (·)
(as above—which are dense in this space), wemay consideru as a valid test function
in (27). However, ut is not a valid test function for the elasticity equation; thus, a
priori estimates on solutions must be handled in the discrete setting and obtained
via limit passage. Energy estimates have been detailed in Section 3.5, where the
final energy estimate on solutions is shown and (124) results.

Step 6: Recovering the initial condition

We follow [55] to recover the initial condition starting from the pressure equation
(28). For any q ∈ V , we can define

G(t) ≡ (∇ · u(t), q) (113)

H(t) ≡ − (k(∇ · u)∇ p,∇q)−〈ψ, q〉ΓD,v
+(S, q) (114)

F(t) ≡ ∫ t
0 H(τ )dτ (115)
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and note that F(t) is absolutely continuous on [0, T ] with F ′(t) = H(t) almost
everywhere in (0, T ).

Utilizing these definitions in (28) and performing integration by parts, for all
f ∈ C∞

0 ((0, T )) we obtain

∫ T

0
(G(t) f ′(t) + F ′(t) f (t))dt =

∫ T

0
((G(t) − F(t)) f ′(t))dt = 0.

Thus G and F differ by a constant: G − F = c.
We return to (105) and consider f ∈ C∞([0, T ])with f (0) = 1 and f (T ) = 0;

completing the limit passage here we see that for such f :

∫ T

0
(k(∇ · u)∇ p,∇q) f dt −

∫ T

0
(∇ · u, q) f ′ dt

=
∫ T

0
(S, q) f dt −

∫ T

0
〈ψ, q〉ΓD,v

f dt + (∇ · u0, q) (116)

for all q ∈ V . This can be rewritten as

∫ T

0
H f dt +

∫ T

0
G f ′ = −(∇ · u0, q).

Integrating by parts, we have:

∫ T

0
H f dt −

∫ T

0
F ′ f dt + [(F(t) + c) f (t)]∣∣T0 = −(∇ · u0, q).

Then it follows (by choosing T = 0) that c = (∇ · u0, q). Identifying F ′ = H
almost everywhere and since G = F + c, we have

(∇ · u(t), q) − (∇ · u0, q) =
∫ T

0

[−(k(∇ · u)∇ p,∇q) − 〈ψ, q〉ΓD,v
+ (S, q)

]

dt,

for all q ∈ V and almost everywhere (0, T ). This implies that the initial condition
∇ · u(0) = ∇ · u0 = d0 is satisfied for solutions to (27)–(28).

This completes the proof of Theorem 2.

3.5. A Priori Estimates

The energy estimates derived in this section are attained in two different ways
depending on the parameter δ. For δ > 0, the estimates are obtained by utilizing
u, ut , and p as test functions in (25)–(26). Utilizing u and ut (in the appropriate
sense) as test functions for δ > 0 is functionally justified after the solutions have
been constructed; this is not the case for δ = 0, as a(u,ut ) cannot be written with
u ∈ L2(0, T ;V) and ut ∈ L2(0, T ;V′) only. Hence, for δ = 0 we use a priori
estimates on the discrete solutions (pi ,ui ) ∈ V × V to (27)–(28) and then pass to
the limit.
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3.5.1. Estimates for δ > 0 Thanks to the regularity of constructed solutions, the
calculations below hold in the appropriate functional setting (not just in the sense
of distributions).

3.5.2. Energy Identities: δ > 0 Using the test functionsu,ut , and p in (25)–(26),
we obtain the following formal identities:

2E(u) + δ
d

dt
E(u) − (p,∇ · u) = (F,u) + 〈g,u〉ΓN (117)

d

dt
E(u) + 2δE(ut ) − (p,∇ · ut ) = (F,ut ) + 〈g,ut 〉ΓN (118)

(∇ · ut , p) + E(p) = (S, p) − 〈ψ, p〉ΓD,v
. (119)

Using Assumption 3.1 and a combination of trace theorem, Young’s inequality, and
Gronwall’s inequality, we obtain the a priori estimate:

E(u(t)) �
[

C1E(u(0)) +
(

C1

1 + δ

)

DATAδ

∣
∣t
0

]

exp

(
C2t

1 + δ

)

. (120)

Immediately from (120) it follows that
∫ T

0
E(u) dt �

[

C1E(u(0)) +
(

C1

1 + δ

)

DATAδ

∣
∣
T
0

]1 + δ

C2

[

exp

(
C2T

1 + δ

)

− 1

]

,

and finally

sup
t∈[0,T ]

E(u(t)) +
∫ T

0

[

E(p(t)) + E(u(t)) + δE(ut (t))
]

dt

� C1

[

E(u(0)) +
(

1

1 + δ

)

DATAδ

∣
∣
T
0

]

exp

(
C2T

1 + δ

)

. (121)

3.5.3. Estimates for δ = 0 In what follows below, we may utilize u ∈
L2(0, T ;V) and p ∈ L2(0, T ; V ) as valid test functions. We cannot, however,
utilize ut ∈ L2(0, T ;V′) as a test function on (27). The final a priori estimates on
solutions are justified by considering solutions (discretized in time) to (81)–(83),
and completing the limit passage as in Step 4 of Section 3.4.2 after making the
appropriate calculations. Note that this will yield cancellation of the terms involv-
ing (p[r ], (∇ · u[r ])�t ), but in the limit passage we will obtain only inequalities.

3.5.4. Energy Identities: δ = 0 By testing equation (28) with p, integrating in
time we obtain:

∫ T

0
(∇ · ut , p)(V ′,V )dt +

∫ T

0
E(p)dt =

∫ T

0

[

(S, p) − 〈ψ, p〉ΓD,v

]

dt. (122)

By testing equation (27) with u and integrating in time we obtain:

2
∫ T

0
E(u)dt =

∫ T

0
(p,∇ · u)dt +

∫ T

0

[

〈g,u〉ΓN + (F,u)
]

dt. (123)
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3.5.5. Final Estimate: δ = 0 Consider the discrete pre-Grownall estimate in (99)
applied to the discretized solution (pi ,ui ). UtilizingGronwall’s lemma, identifying
sums up to r with integrals of (p[r ],u[r ]) ∈ V ×V, and using the weak lower semi-
continuity of the norm, we have our final a priori estimate on [0, T ] in the δ = 0
case:

sup
t∈[0,T ]

E(u(t)) +
∫ T

0

[

E(p(t)) + E(u(t))
]

dt � C1

[

E(u(0)) + DATA0
∣
∣
T
0

]

eC2T .

(124)

Remark 20. (A Priori Estimate: A Stronger Solution for δ = 0) Let us formally
admit ut and pt as test functions in (27) and (28). In the case of constant perme-
ability, this yields estimates for “strong” solutions as in [40,51]. The key difference
in this case is the structure of the nonlinear term which does not allow pointwise
control of the pressure. The “formal identity” below follows from differentiating
(15) with δ = 0 and utilizing the test functions ut and pt :

2E(ut (t))+1

2

∫

�

k(∇·u)
d

dt
(|∇ p|2)d� = (F,ut )+〈g,ut 〉ΓN + (S, pt )−〈ψ, pt 〉ΓD,v

.

(125)

3.6. Sharp Estimates (With Respect to Constants)

In this section we present the estimates obtained above with specific control of
the constants associated with permeability, Poincare’s inequality, Korn’s inequality,
trace theorem, and Young’s inequality. Recall the system (15)–(16) from Section
3. We adjust the notation to be:

Ee(u(t)) = 1

2

[

λe||∇ · u(t)||2 + 2μe||∇u||2 + 2μe(∇u,∇uT )
]

(126)

Ev(u(t)) = 1

2

[

λv||∇ · u(t)||2 + 2μv||∇u||2 + 2μv(∇u,∇uT )
]

(127)

E(p(t)) = (k(∇ · u)∇ p,∇ p). (128)

We note the following inequalities:

||p||21 � C(P)

κ
E(p), ||u||21 � C(K )E(u) (129)

tr [u] � C(γ )||u||1, tr [p] � C(γ )||p||1, (130)

where C(P) denotes the Poincaré constant, C(K ) denotes the constant associated
with Korn’s inequality, and C(γ ) denotes the constant associated with the trace
theorem.

Lemma 12. Let δ > 0. Then we have the estimate:

sup
t∈[0,T ]

[Ee(u(t)) + δEv(u(t))] +
∫ T

0
[Ee(u) + δEv(ut )] dt +

∫ T

0
E(p) dt

� C [eK1T + eK2T ], (131)
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where

C ≡ [CEe(u(0)) + δCEv(u(0))] (132)

+C(γ, P, κ−1)

∫ T

0

[

||F||20 + ||g||2L2(ΓN )
+ ||S||20 + ||ψ ||2L2(ΓD,v)

]

K1 ≡ C(γ, K , μe, λe) (133)

K2 ≡ C(γ, K , μv, λv, δ
−1). (134)

Lemma 13. Let δ = 0. Then we have the estimate:

sup
t∈[0,T ]

Ee(u(t)) +
∫ T

0
[E(p) + Ee(u)] dt � C eK T (135)

where

C ≡ C(γ, K , μe, λe)Ee(u(0))

+C(γ, K , μe, λe) sup
[0,T ]

(

||g(t)||2L2(ΓN )
+ ||F(t)||20

)

+C(γ, P, κ−1)

∫ T

0

(

||g||2L2(ΓN )
+ ||gt ||2L2(ΓN )

+ ||ψ ||2L2(ΓD,v)

)

+C(γ, P, κ−1)

∫ T

0

(

||F||20 + ||Ft ||20 + ||S||20
)

(136)

and
K ≡ C(γ, K , P, μe, λe, κ

−1). (137)

4. Numerical Study

In this section we perform a numerical study of one-dimensional poro-elastic
and poro-visco-elastic models to investigate how the data regularity given in Defi-
nition 3 influences the theoretical estimates obtained in Section 3.6.

Various numerical approaches have been proposed for the solution of poro-
elastic models, whereas less attention has been devoted to the poro-visco-elastic
case. Time discretization is typically performed via a Backward Euler method; spa-
tial discretization has been addressed by means of various techniques, including
finite difference schemes [23,24] and finite element methods [35]. Within the con-
text of finite element methods, two main approaches have been proposed. The first
approach is a two-field formulationof the problem inwhich the pair (u, p) is approx-
imated using the Taylor–Hood finite element space [45]. The second approach is
a four-field formulation emanating from a least-squares variational principle in
which, together with the original pair (u, p), also the stress T and the Darcy fluid
velocity v are treated as independent variables of the problem. In the four-field
formulation, the Taylor–Hood finite element space is still used to approximate u
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and p, whereas the Raviart-Thomas finite element space [4,46,48] is utilized to
approximate the pair (T, v). We refer to [55] for a theoretical analysis of the first
approach and to [31] for a description of the implementation of both approaches
and a comparison in the solution of several benchmark case studies in plane strain
conditions.We also refer to [41,42] for another finite element approach inwhich the
Raviart-Thomas finite element space for the approximation of v and p is coupled
with a Discontinuous Galerkin finite element formulation to treat the elastic part of
the Biot model in the incompressible limit.

In the present article, we adopt the Backward Euler scheme for time advance-
ment and the four-field finite element approach for spatial discretization. Our for-
mulation is an extension of the four-field method based on the use of dual mixed
hybridized finite elements (see [2,4]), with the addition of a solid pressure parame-
ter to weakly enforce the dependence of the material porosity on the divergence of
the solid displacement (see also [9]). The four-field approach is adopted to properly
compute the gradients involved in the energy estimates; a hybridization procedure
is used to reduce the number of degrees of freedom involved in the numerical com-
putations. Our scheme is illustrated and implemented in the one-dimensional case
to allow, on the one hand, a preliminary validation against analytical solutions in
both linear and nonlinear models, and, on the other hand, to perform a tractable and
immediate verification of the theoretical energy estimates obtained in Section 3.6
as a function of time regularity of problem data. The convergence analysis of the
numerical scheme and its extension to multiple spatial dimensions go beyond the
scope of the present article and are currently object of an ongoing research activity.

4.1. The One-Dimensional Model

We consider the nonlinear boundary value/initial value problem (15)–(22) from
Section 2 in the computational domain� = (xstart, xend) of length L = xend−xstart
with boundary ∂� = {xstart, xend} and outward unit normal vector n such that
n(xstart) = −1 and n(xend) = +1. We also define the computational time domain
t ∈ (tstart, tend) of length T = tend − tstart, in such a way that the one-dimensional
(1D) system to be solved in the space-time domain QT := � × (tstart, tend) is:

∂σ

∂x
= −F, (138)

∂ζ

∂t
+ ∂v

∂x
= S, (139)

with the constitutive equations:

σ = 2μe
∂u

∂x
− ℘ + δ

∂

∂t

[

2μv

∂u

∂x
− λv

λe
℘

]

− p, (140)

℘

λe
+ ∂u

∂x
= 0, (141)

ζ = − ℘

λe
, (142)

v = −k

(

− ℘

λe

)
∂p

∂x
. (143)
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Throughout this section, we use the symbol σ to indicate the one-dimensional
analogue of the total stress tensorT defined in equations (4) and (5). System (138)–
(143) must be completed by suitable initial and boundary conditions. Similarly to
the general case described in Section 2, we prescribe

u(x, tstart) = u0(x) ∀x ∈ �, (144)

and we consider the following sets of boundary conditions:

σn(x, t) = g(x, t), v(x, t)n(x) = 0 ∀x ∈ ΓN , ∀t ∈ (tstart, tend), (145)

u(x, t) = 0, p(x, t) = 0 ∀x ∈ ΓD,p, ∀t ∈ (tstart, tend), (146)

u(x, t) = 0, v(x, t)n(x) = ψ(x, t) ∀x ∈ ΓD,v, ∀t ∈ (tstart, tend). (147)

Note that ΓN ∪ΓD,p ∪ΓD,v = ∂� = {xstart, xend}, and that ΓN , ΓD,p and ΓD,v can
be empty (but not all of them simultaneously). Twodifferences appear by comparing
the 1D equations (138)–(143) with the multi-dimensional version (15)–(22). The
first difference is that the Lamé and viscous parameters are not scaled to unity as
to maintain the physical parameters of the problem. The second difference is the
introduction of the elastic pressure parameter ℘ that can be replaced in (9) to write
the porosity as

φ = φ0 − P

λ
. (148)

The use of (148) in (7) and (8) allows to evaluate the permeability without explicitly
computing the derivative of the displacement field, thereby avoiding thewell-known
degradation of the accuracy associated with numerical differentiation (see [44],
Chapter 8). This aspect is treated in Section 4.3. Interestingly, the variable ℘ is
widely utilized in computational mechanics as it serves as Lagrange multiplier to
enforce material incompressibility (see [25]). Mathematically, this amounts to a
robust numerical treatment of the limit λe → +∞ and allows us to avoid the
occurrence of the locking phenomenon in the finite element discretization (see [27]
in the case of linear elasticity and Stokes flow). Volumetric locking also affects
the numerical treatment of poroelastic models. We refer to [41,42] for a numer-
ical approach to overcome locking based on the combined use of Discontinuous
Galerkin and mixed finite elements. Notice also that no boundary conditions are
required for the elastic pressure parameter ℘ because the total stress is already
prescribed on ΓN in (145).

4.2. Numerical Algorithm

The numerical algorithm for the solution of the 1D problem described above
is composed by three main steps: (i) temporal semi-discretization; (ii) fixed-point
iteration; and (iii) dual mixed hybridized finite element approximation. The details
of each step are given in following subsections.
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4.2.1. Temporal semi-discretization We divide [tstart, tend] into a finite number
r � 1 of subintervals [ti−1, ti ], i = 1, . . . , r of uniform length �t = T/r , as in
Sections 3.4.1 and 3.4.2. For any smooth function (in time) W = W (x, t), we let
W i := W (x, ti ), i = 0, . . . , r ; otherwise, should W be discontinuous (in time)
at t = ti , i ∈ [1, r ], we let W i := W (x, t−i ), i = 1, . . . , r . We note that these
definitions agree with those introduced in Sections 3.4.2 (functions with H1-time
regularity) and 3.4.1 (functionswith L2-time regularity). Using the Backward Euler
(BE) method for the time discretization, we are led to the solution of the following
sequence of r nonlinearly coupled boundary value problems:
Given ui and ℘i , i = 0, . . . , r − 1, solve:

∂σ i+1

∂x
= −Fi+1, (149)

σ i+1 = 2μe
∂ui+1

∂x
− ℘i+1 − pi+1 + δ

1

�t

[

2μv

∂ui+1

∂x
− λv

λe
℘i+1

]

−δ
1

�t

[

2μv

∂ui

∂x
− λv

λe
℘i

]

, (150)

℘i+1

λe
+ ∂ui+1

∂x
= 0, (151)

−℘i+1

λe�t
+ ∂vi+1

∂x
= Si+1 − ℘i

λe�t
, (152)

vi+1 = −k

(

−℘i+1

λe

)
∂pi+1

∂x
(153)

(154)

for x in �, with

σ i+1 n = gi+1 vi+1 n = 0 on ΓN (155)

ui+1 = 0 pi+1 = 0 on ΓD,p (156)

ui+1 = 0 vi+1 n = ψ i+1 on ΓD,v. (157)

4.2.2. Fixed-Point Iteration Weadopt a Picard iteration to numerically deal with
the nonlinear dependence of the permeability k on −℘/λe in (153). This approach
is similar to that used in [8].
Given u(0) = ui and ℘(0) = ℘i , for each j � 0 until convergence, solve:

∂σ ( j+1)

∂x
= −Fi+1, (158)

σ ( j+1) = 2μe
∂u( j+1)

∂x
− ℘( j+1) − p( j+1)

+δ
1

�t

[

2μv

∂u( j+1)

∂x
− λv

λe
℘( j+1)

]

−δ
1

�t

[

2μv

∂ui

∂x
− λv

λe
℘i

]

, (159)
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℘( j+1)

λe
+ ∂u( j+1)

∂x
= 0, (160)

−℘( j+1)

λe�t
+ ∂v( j+1/2)

∂x
= Si+1 − ℘i

λe�t
, (161)

v( j+1/2) = −k

⎛

⎝ −℘( j)

λe

⎞

⎠
∂p( j+1)

∂x
, (162)

(163)

for x in �, with

σ ( j+1) n = gi+1 v( j+1) n = 0 on ΓN (164)

u( j+1) = 0 p( j+1) = 0 on ΓD,p (165)

u( j+1) = 0 v( j+1) n = ψ i+1 on ΓD,v. (166)

The boxed term in (162) characterizes the adopted Picard iteration, where the
permeability at the iteration level j + 1 is computed using the previously available
elastic pressure ℘( j). The algorithm described above is a (semi-implicit) variant
of the staggered (or loosely coupled) algorithm proposed and successfully utilized
in [9] for the numerical study of a problem similar to that considered in this work.
It is well known that the use and analysis of solution algorithms for the treatment of
solid-fluid interacting problems is a nontrivial subject and would require a deeper
investigation. Since such an investigation is not the main focus of this article, we
postpone the examination of different solution maps to a future research.

4.3. The Dual Mixed Hybridized (DMH) Finite Element Discretization

The choice of a suitable spatial discretization is a crucial and extremely delicate
issue for the problem at hand. This is due to the fact that our numerical study aims
at interpreting the theoretical estimates obtained in Section 3.6 which require the
evaluation of gradient quantities under different regularity conditions (in time) of
input data. Thus, it is extremely important to approximate gradients accurately.
It is well-known that numerical differentiation is a very delicate process usually
affected by a degradation in the approximation accuracy (see, e.g. [44] Chapters 8
and 10). For this reason, the use of a dual mixed method where the dual variables
(the total stress σ and the discharge velocity v) are treated as independent variables
as well as the primal unknowns (the solid displacement u and the fluid pressure p)
appears to be a better option compared to a displacement-based method where the
sole primal variables are directly discretized.

In particular, we propose here a dual mixed hybridized (DMH) finite ele-
ment method which generalizes to the poro-elastic and poro-visco-elastic cases
the approach proposed in [19,20] for linear incompressible elasticity and Stokes
equations.We adopt the lowest-order Raviart–Thomas (RT) finite element pair [46]
for the dual and primal variables which provides:
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(i) equal-order optimal accuracy for the approximation of the pairs σ, u and v, p
in the graph norm of the space H(div,�) × L2(�), where

H(div,�) :=
{

τ : � → R | τ ∈ L2(�),
∂τ

∂x
∈ L2(�)

}

(coinciding with H1(�) in the 1D case);
(ii) exact satisfaction of self-equilibrium at each element level;
(iii) exact satisfaction of the action-reaction principle at the discrete level for each

internal and boundary interelement;
(iv) weak satisfaction of Dirichlet boundary conditions.

To overcome the limitation in (iv) and to substantially reduce the computational
effort, we resort, in coding, to the hybridization technique (see [48]) that makes (in
1D) the DM-RT method completely equivalent to a standard nodal displacement
formulation (for more details on hybridization, we refer to [2,4]).

4.3.1. Finite element spaces Let h > 0 be the spatial discretization parameter.
We introduce the family of triangulations {Th}h>0 defined for each h as the partition
of � into subintervals Kk = (xk−1, xk), k = 1, . . . ,Kh , Kh � 1, in such a way
that ∪Kk∈Th Kk = �. On each Kk we denote by ∂Kk the boundary of the interval
and associate with ∂Kk the unit normal vector nk such that nk = −1 at x = xk−1
and nk = +1 at x = xk . The length of Kk is hk and we set h := maxKk∈Th hk . For
a given integer q � 0 we denote by Pq(Kk) the set of polynomials of degree � q
defined on Kk . Let us define the following finite element spaces:

Uh =
{

uh ∈ L2(�) such that uh ∈ P0(Kk)∀Kk ∈ Th

}

, (167)

Vh =
{

jh ∈ L2(�) such that jh ∈ P1(Kk)∀Kk ∈ Th

}

, (168)

Mh = {μh ∈ R such that |μk | < +∞∀xk ∈ Th}. (169)

Moreover, to account for Dirichlet boundary conditions, we introduce the following
subspaces of Mh :

Mu
h,0 = {μh ∈ Mh such that μh = 0 on ΓD}, (170)

Mp
h,0 = {

μh ∈ Mh such that μh = 0 on ΓD,p
}

, (171)

where ΓD = ΓD,p ∪ ΓD,v . Let Uh := [σh, uh, ûh]T and Ph := [vh, ph, p̂h]T

denote the discrete elastic and fluid variables.
Let also U u

h := Vh ×Uh × Mu
h,0 and U

p
h := Vh ×Uh × Mp

h,0 be the finite
element spaces for the triplets Uh and Ph , respectively. The pairs σh, uh (resp.,
vh, ph) are the approximation of σ, u (resp., v, p) in the interior of each element
Kk ∈ Th . The variables ûh (resp., p̂h) are the approximation of u (resp., p) at
each node ofTh . The fundamental property of ûh (resp., p̂h) is that they are single-
valued at each node xk , k = 0, . . . ,Kh whereas uh (resp., ph) experience finite
jump discontinuities at each node. As shown below, the variables ûh (resp., p̂h)
are the Lagrange multipliers of the continuity constraint of σh (resp., vh) at each
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internal node xk , k = 1, . . . ,Kh − 1. The dual-mixed hybridized finite element
approximation of (158)–(166) is:

Find (Uh, ℘h, Ph) ∈ (U u
h ×Uh × U

p
h ) such that:

A(m−1
u σh, τh) + B(uh, τh) − C (̂uh, τh) + mp

mu
D(℘h, τh)

+ 1

mu
D(ph, τh) = qih ∀τh ∈ Vh (172)

1

λe
(℘h, ξh)h + G(ξh, ûh) = 0 ∀ξh ∈ Uh (173)

B(ξh, σh) = −(Fi+1, ξh)h ∀ξh ∈ Uh (174)

C(μh, σh) = gi+1μh |ΓN ∀μh ∈ Mu
h,0 (175)

A(k−1vh, τh) − B(ph, τh) + C( p̂h, τh) = 0 ∀τh ∈ Vh (176)

− 1

λe�t
(℘h, ξh)h + B(ξh, vh) = (Si+1, ξh)h − 1

λe�t
(℘i

h, ξh)h ∀ξh ∈ Uh

(177)

C(μh, vh) = ψ i+1μh |ΓD,v
∀μh ∈ Mp

h,0 (178)

where:

mu := 2(μe + δμv/�t), mp := (1 + δλv/(�tλe))

( f, g)h :=
∑

Kk∈Th

∫

Kk

f gdx,

qih := δ

�t

HV

λe

1

mu
D(℘i

h, τh), HV := λv + 2μv,

and the bilinear forms A, B, C , D and G are defined as:

A(m−1
u Jh, τh) =

∑

Kk∈Th

∫

Kk

m−1
u Jhτhdx ∀(Jh, τh) ∈ (Vh × Vh)

B(qh, Jh) =
∑

Kk∈Th

∫

Kk

qh
∂ Jh
∂x

dx ∀(qh, Jh) ∈ (Uh × Vh)

C(μh, Jh) =
∑

Kk∈Th

∫

∂Kk

μh Jhnkds ∀(μh, Jh) ∈ (Mh × Vh)

D(qh, τh) =
∑

Kk∈Th

∫

Kk

qhτhdx ∀(qh, τh) ∈ (Uh × Vh)

G(μh, ξh) =
∑

Kk∈Th

∫

∂Kk

ξhμhnkds ∀(ξh, μh) ∈ (Uh × Mh).
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The seven equations (172)–(178) constitute a linear algebraic system for the seven
scalar dependent variables in Uh , ℘h and Ph . The Dirichlet conditions on ΓD are
included in the standard essential manner through the definitions (170)–(171). The
spaces Uh and Vh are made of discontinuous functions over Th and are used to
approximate the primal and dual variables inside each element Ki . The spaces
Mu

h,0 and Mp
h,0 are made of functions defined only at the nodes of Th and are used

to approximate the primal variables at each node. In particular, the function ûh
(resp., p̂h) is the Lagrange multiplier that enforces the interelement continuity at
x = xk , k = 1, . . . ,Kh − 1, of the normal component σhnk (resp., vhnk) and the
Neumann boundary condition on ΓN . In mechanical terms, ûh and p̂h are referred
to as interelement connectors (see [10] and the references cited therein).

4.3.2. Static Condensation Looking at the structure of the discrete prob-
lem (172)–(178), one is tempted to conclude that there is a proliferationof unknowns
leading to a very expensive and complicated numerical coding. However, all equa-
tions except (175) and (178) are completely local and, consequently, for each ele-
ment Kk ∈ Th the internal variables σh and uh , as well as vh and ph , can be
eliminated in favor of the nodal variables ûh and p̂h and the problemdata. This elim-
ination procedure is referred to as static condensation and is the fundamental step
that makes the hybridized method efficient and computationally competitive with
standard displacement-based approaches. Static condensation can also be given an
abstract form based on the concepts of local lifting and local solver which allows
to interpret the elimination procedure as a (discrete) weak variational formulation
of the original differential problem where the unknown is the hybrid variable. Such
interpretation confers to the hybridization strategy a solid mathematical foundation
and allows to apply standard functional analysis techniques to study well posedness
and convergence of the hybridized finite element approximation (see [14] and [13]
for a discussion in the case of second-order elliptic problems with diffusive and
advective-diffusive operators).

The application of static condensation to the problem at hand is far from trivial,
since we deal with a non-scalar problem coupling fluid and solid equations. Details
on the implementation are given below.

Consider a generic element Kk ∈ Th and omit for notational brevity the suffix
Kk from all the involved quantities (whenever possible). Equation (172) can be
written in matrix form as

m−1
u Aσ + BTu − CT û + m−1

u m pD℘ + m−1
u Dp = δm−1

u
HV

�tλe
D℘i .

The quantities σ and u are the column vectors (of dimension 2 and 1, respectively)
containing the degrees of freedom for the restrictions σh |Kk and uh |Kk . The quantity
û is the column vector (of dimension 2) containing the degrees of freedom of the
restriction û∂Kk . The quantities ℘ and p are the column vectors (of dimension 1)
containing the degrees of freedom of the restrictions℘h |Kk and ph |Kk , respectively.
The quantitiesm−1

u A, B,C andD are the matrices (of dimension 2×2, 1×2, 2×2
and 2 × 1, respectively) corresponding to the restrictions to the element Kk of the
bilinear forms A, B, C and D, respectively.
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Starting from the solid phase, we see that matrix A is invertible so that

σ = muA−1
[

CT û − BTu
]

− A−1D
[

mp℘ + p
] + ri (179)

where ri := δ
HV

�tλe
A−1D℘i . If λe < +∞, we can eliminate ℘h in favor of ûh in

equation (173) to obtain
℘ = −λeGû (180)

where G is the 1 × 2 matrix defined as h−1
k [−1 + 1] such that the matrix-vector

productGû is the constant approximation of −∂u/∂x over the element Kk . Other-
wise, if λe = +∞, equation (173) becomes

∫

∂Kk

ûhnkds = 0 ∀Kk ∈ Th, (181)

which is the natural way to express material incompressibility in local weak form.
As commonly done in biomechanical calculations, we assume λe < +∞ (although
close to the incompressibile limit) so that we use (180) into (179) to obtain

σ = M û − muA−1BTu − A−1Dp + ri , (182)

having set

M := A−1 (

muC + λem pDG
)

.

Equation (174) yields
Bσ = −bi+1, (183)

having set

bi+1 = hk F
i+1(xk).

Moving to the fluid phase, equation (176) yields

v = −k( j)A−1
[

Cp̂ − BTp
]

, (184)

where k( j) := kref f (φ0 − ℘( j)|Kk/λe), while Equation (177) yields

Bv − hk
λe�t

℘ = li+1, (185)

having set

li+1 = hk S
i+1(xk) − hk

λe�t
℘i .

Substituting (180) and (184) into (185) we are able to express the internal fluid
pressure ph |Kk as a function of the sole hybrid variables ûh |∂Kk and p̂h |∂Kk through
the following relation

k( j)BA−1BTp = k( j)BA−1Cp̂ − hk
�t

Gû + li+1.
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Because of Assumption 3.1 on the permeability k, the 1 × 1 matrix Bp :=
k( j)BA−1BT is symmetric and positive definite so that the above relation yields

p = Qp̂ + Rû + B−1
p li+1, (186)

having set

Q := k( j)B−1
p BA−1C, R := − hk

�t
B−1

p G.

We conclude the elimination procedure for the fluid phase by substituting (186)
into (184) to obtain

v = Lppp̂ + Lpu û + bp (187)

Lpp = −k( j)A−1
[

C − BTQ
]

(188)

Lpu = k( j)A−1BTR (189)

bp = k( j)A−1BTB−1
p li+1. (190)

We proceed similarly for the solid phase by substituting (182) and (186) into (183)
and obtain

muBA−1BTu = B
[

M − A−1DR
]

û − BA−1DQp̂

+B
[

ri+1 − A−1DB−1
p li+1

]

+ bi+1.

The 1× 1 matrixBu := muBA−1BT is symmetric and positive definite so that the
above relation yields

u = R̃û + Q̃p̂ + B−1
u f i+1, (191)

having set

Q̃ := −B−1
u BA−1DQ R̃ := B−1

u B
[

M − A−1DR
]

,

and

f i+1 := bi+1 + B
[

ri − A−1DB−1
p li+1

]

.

We conclude the elimination procedure for the solid phase by substituting (186)
and (191) into (182) to obtain

σ = Luu û + Lupp̂ + bu (192)

Luu = M − A−1
[

muBT R̃ + DR
]

(193)

Lup = −A−1
[

muBT Q̃ + DQ
]

(194)

bu = ri − muA−1BTB−1
u f i+1 − A−1DB−1

p li+1. (195)

The above illustrated static condensation procedure corresponds to Gaussian elim-
ination, at the level of the element Kk ∈ Th , of the internal variables σh |Kk , uh |Kk
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and vh |Kk , ph |Kk in favor of ûh |∂Kk and p̂h |∂Kk (see [2]). Over the last years, the
use of static condensation has been extended also to the class of Discontinuous
Galerkin (DG) methods, giving rise to the so-called Hybridized DG finite element
formulation. A complete overview and analysis of HDG methods applied to the
solution of an elliptic model problem in multiple spatial dimensions can be found
in [15].

4.4. The linear Algebraic System

Having eliminated all the internal variables, it only remains to enforce the
continuity of interelement normal stress and normal Darcy’s velocity and enforce
the Neumann boundary conditions, see (175) and (178).Without loss of generality,
we show these steps in the case where ΓD,p = {xstart}, ΓN = {xend} and ΓD,v = ∅.
For each element Kk ∈ Th , k = 1, . . . ,Kh , and for any function ηh ∈ P1(Kk)

we set ηh(x) = η1τ1(x) + η2τ2(x) where η1, η2 are the degrees of freedom of ηh
and τ1, τ2 are the two (local) Lagrange basis functions (“hat functions”) associated
with nodes xk−1 and xk , respectively. Conditions (175) and (178) give rise to the
following 2Mh equations:

σ 2
Kk−1

(̂uk−1, ûk, p̂k−1, p̂k)=σ 1
Kk

(̂uk, ûk+1, p̂k, p̂k+1) k = 1, . . . ,Kh−1 (196)

σ 2
Kk

(̂uk−1, ûk, p̂k−1, p̂k) = gi+1 k = Kh, (197)

v2Kk−1
(̂uk−1, ûk, p̂k−1, p̂k)=v1Kk

(̂uk, ûk+1, p̂k, p̂k+1) k = 1, . . . ,Kh−1 (198)

v2Kk
(̂uk−1, ûk, p̂k−1, p̂k) = 0 k = Kh . (199)

Looking at the above relations, we see that conditions (175) and (178) are non-
local because, for each k = 1, . . . ,Kh − 1, they couple the degrees of freedom
ûk−1, ûk, ûk+1 with p̂k−1, p̂k, p̂k+1, giving rise to the following linear algebraic
block system

[

Muu Mup

Mpu Mpp

] [

û
p̂

]

=
[

bu
bp

]

(200)

in which Muu , Mup, Mpu and Mpp are tridiagonal square matrices of size equal
to Kh , û and p̂ are the vectors of nodal unknowns ûk = ûh(xk) and p̂k = p̂h(xk),
both of sizeKh , and bu , bp are the load vectors, both of sizeKh .

Some comments about the solution of the linear system (200) are in order.
First, we notice that matrix Muu is symmetric and positive definite, whereas Mpp

is symmetric and negative definite. These properties ensure that system (200) is
uniquely solvable in the stationary case (equivalent to setting 1/�t = 0). Second,
to prove that system (200) is uniquely solvable also in the time-dependent case
we can follow the same arguments based on the saddle-point theory as in [21],
Chapter 3. Third, to enforce the homogeneous Dirichlet boundary on ΓD,p we
do not eliminate the rows and columns associated with the respective unknowns
(̂uh(xstart) and p̂h(xstart)), rather, we set (using Matlab notation):

Muu(1, :) = 0, Muu(1, 1) = 1, Mup(1, :) = 0, bu(1) = 0 (201)

Mpu(1, :) = 0, Mpp(1, :) = 0, Mpp(1, 1) = 1, bp(1) = 0. (202)



1492 L. Bociu, G. Guidoboni, R. Sacco & J. T. Webster

Table 1. Summaryof themain features of the four test cases used for the numerical validation
of the DMH method.

Test case Permeability Data
V1 Constant Constant in space and time
V2 Constant Varying in space and time
V3 Varying as in (7) Varying in space, constant in time
V4 Varying as in (7) Varying in space and time

This simplifies considerably the coding and can be extended in a straightfor-
ward manner to multi-dimensions. Since we adopt a direct solver in numerical
computations (the \ command in Matlab) the use of (201)–(202) amounts to
enforcing exactly the boundary conditions u(xstart, t) = p(xstart, t) = 0 for all
t ∈ (tstart, tend).

4.5. Validation of the Numerical Method

The validity of the DMHmethod described in the previous sections is assessed
by means of four test cases (denoted by V1, V2, V3 and V4, defined in Sections
4.5.1-4.5.4), where numerical and analytical solutions are compared for various
spatial and temporal discretizations. In the following, we will consider uniform
spatial and temporal grid size parameters defined as h = L/Kh and �t = T/r ,
respectively. The accuracy of the approximation provided by the hybrid variables
ûh and p̂h is measured by computing the errors u − u∗

h and p − p∗
h , where u∗

h
and p∗

h are the conforming P1-interpolants of the nodal values ûk and p̂k , k =
0, . . . ,Kh , computed by solving the DMH linear algebraic system (200). Standard
error estimates valid for 2nd order elliptic problems predict an optimal convergence
rate ofO(h2) in the L2 norm for u∗

h and p∗
h and for σh and vh , whereas the expected

convergence rate for uh and ph is only O(h) in the L2 norm (for all the theoretical
details, see [2,4,48]). In the following, for any function w = w(x, t), we consider
the norms

‖w‖Q := sup
t∈[tstart,tend]

‖w(t)‖L2(�), ‖w‖∞ := sup
t∈[tstart,tend]

‖w(t)‖∞.

If w does not depend on time, we simply have

‖w‖Q =
(∫ xend

xstart
w2(x) dx

)1/2

, ‖w‖∞ = sup
x∈(xstart,xend)

|w(x)|.

Even though the poro-elastic and poro-visco-elastic models considered in this arti-
cle go beyond the elliptic theory, it is still very interesting to compare the results
we obtain with those available in simpler cases. To facilitate this comparison, we
consider four test cases of increasing complexity, as summarized in Table 1 and
detailed in the following sub-sections.
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4.5.1. Validation Test Case V1 Let us consider problem (138)–(143) with δ = 0
in the domain � = (0, 1), so that L = 1 cm, with the boundary conditions u =
p = 0 at xstart = 0, and σn = g1 and vn = ψ1 at xend = 1. We assume volumetric
and boundary source terms to be constant and given by

F1 = 0.3 dyne cm−3, S1 = 0.3 s−1, g1 = −0.3 dyne cm−2, ψ1 = −3 cm s−1.

We also assume that porosity and permeability are constant and given by φ = φ0 =
0.5 and k = kref = 1 cm3 s g−1, respectively. In this case, the problem admits the
exact solution:

u(x) = x

HA

[

F1
(

L − x

2

)

+ g1
]

− x2

2HAkref

[

ψ1 − S1
(

L − x

3

)]

,

p(x) = x

kref

[

S1
(

L − x

2

)

− ψ1

]

, ℘ (x) = − λe

HA
(σ (x) + p(x)),

σ (x) = g1 + F1(L − x), v(x) = ψ1 + S1(x − L),

where HA = λe + 2μe is the aggregate elastic modulus, with λe = μe =
1 dyne cm−2. Since the exact solution is stationary, we solve directly the stationary
problem by setting 1/�t = 0. We consider decreasing grid sizes h = L/Kh , with
Kh = [5, 10, 20, 40, 80, 160, 320]T .

Numerical results (not reported here) show that σh and vh are exact up to
machine precision and system conditioning. This accuracy is mathematically to
be ascribed to the fact that both σ and v belong to the finite element space (168).
Mechanically, it expresses the evidence that the DMH scheme satisfies the linear
stress patch test (see [27] and [56] for a discussion of this important issue). The
optimal accuracy of the hybrid variables is demonstrated in Fig. 1. Fig. 2 shows the
behavior of the approximation of the elastic pressure parameter. Linear convergence
is achieved in the L2 norm, consistently with the fact that we are using a locally
constant approximation of ℘ whereas second-order accuracy is obtained in the L∞
norm. This result is consistent with theoretical conclusions valid in the elliptic case
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Fig. 1. Validation test V1. Discretization errors for the hybrid variables. The convergence
rate is optimal and equal to O(h2) with respect to h
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Fig. 2. Validation test V1. Approximation of the elastic pressure. Superconvergence (O(h2))
is obtained at mesh midpoints

where superconvergence of the internal variables is achieved at the center of mass
of each element Kk (cf. [2] and [4] for the proof).

4.5.2. Validation Test Case V2 Let us now consider problem (138)–(143) with
δ = 1 in the domain � = (0, 1), so that L = 1 cm, with the boundary conditions
u = p = 0 at xstart = 0, and σn = g2(t) and vn = ψ2(t) at xend = 1. Now
volumetric and boundary source terms are not constant, neither in space nor in
time. Thus, considering the time interval (tstart, tend) = (0, T ), with T = 0.1 s, and
the spatial and temporal shape functions χ(x) = sin (ωx x) and τ(t) = sin2 (ωt t) ,

with ωx = 8/L and ωt = 8/T , we assume that the data are given by:

F2(x, t) = −{Uref χ ′′(x)[HA τ(t) + δHV τ ′(t)] − Pref τ(t) χ ′(x)},
S2(x, t) = Uref τ ′(t) χ ′(x) − kref Prefχ

′′(x)τ (t),

g2(t) = Urefχ
′(x)[HAτ(t) + δHV τ ′(t)] − Prefτ(t)χ(L),

ψ2(t) = −kref Prefτ(t)χ ′(L),

with Uref = 0.1 cm, Pref = 0.3 dyne cm−2, HA = λe + 2μe = 3 dyne cm−2,
λe = μe = 1 dyne cm−2 and HV = λv + 2μv = 0.5774 dyne s cm−2. As in
test case V1, we assume that porosity and permeability are constant and given by
φ = φ0 = 0.5 and k = kref = 1 cm3 s g−1, respectively. In this case the problem
admits the exact solution:

u(x, t) = Urefχ(x)τ (t),

p(x, t) = Prefχ(x)τ (t),

σ (x, t) = Uref χ ′(x)[HAτ(t) + δHV τ ′(t)] − Pref χ(x)τ (t),

v(x, t) = −kref Prefχ
′(x)τ (t),

℘ (x, t) = −λeUrefχ
′(x)τ (t),

which now depends on both space and time.We compute the numerical approxima-
tion of the solution considering uniform spatial and temporal grid size parameters
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Fig. 3. Validation test V2. Discretization errors for the hybrid variables. The convergence
rate is sub-optimal for both variables and equal to O(h) with respect to h
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Fig. 4. Validation test V2. Approximation of the elastic pressure

defined as h = L/Kh and �t = T/r , with Kh = [5, 10, 20, 40, 80, 160, 320]T
and r = [5, 10, 20, 40, 80, 160, 320]T .

In this case, as illustrated in Figs. 3, 4 and 5, all the approximate variables
converge to the corresponding exact ones with linear rate with respect to h, except
the variable σh (approximate total stress) which continues to converge with an
optimal rate (O(h2)). The degradation of the convergence order of theDMHmethod
is to be ascribed to the choice of the Backward Euler method as time-advancing
scheme which is well-known to be only first-order accurate in time [44]. It is
remarkable to notice that the stress variable is not affected by such a degradation,
since a time derivative is present in the constitutive equation for the stress but not
in the equation for the balance of linear momentum (138). This is not the case for
the discharge velocity because the time derivative of the fluid content ζ appears
directly in the fluid mass balance equation (139).
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Fig. 5. Validation test V2. Discretization errors for the total stress and Darcy’s velocity. The
convergence rate is optimal for the stress (O(h2)) but is sub-optimal for the velocity (O(h))

4.5.3. Validation Test Case V3 Let us consider again problem (138)–(143) with
δ = 0 in the domain � = (−1, 1), so that L = 2 cm, with the boundary conditions
u = p = 0 at xstart = −1, and σn = g3 and vn = ψ3 at xend = 1. Volumetric and
boundary source terms are given by:

F3(x) = −[UrefHA χ ′′(x) − Pref χ ′(x)],
S3(x) = −kref Prefχ

′′(x)Θ(x) − kref PrefUrefχ
′(x)χ ′′(x)�(x),

g3 = UrefHAχ(xend) − Prefχ(xend),

ψ3 = −kref Prefχ
′(xend)Θ(xend),

where:

χ(x) = sin (ωx x) , Φ(x) = φ0 +Urefχ
′(x),

Θ(x) = Φ3(x)

[1 − Φ(x)]2 , �(x) = Φ2(x)[3 − Φ(x)]
[1 − Φ(x)]3 ,

with ωx = 2π/L , Uref = 0.1 cm, Pref = 1 dyne cm−2, HA = 3 dyne cm−2

and φ0 = 0.5. Unlike previous test cases, the porosity φ is now allowed to vary
with the derivative of the displacement within the range [Φmin, Φmax], where 0 <

Φmin < Φmax < 1, in such away that the permeability k, expressed by the nonlinear
relation (7), satisfies

0 < kref
Φ3

min

(1 − Φmin)2
� k(φ) � kref

Φ3
max

(1 − Φmax)2
. (203)

The above limitations on porosity and permeability are the same as those adopted
in [8]. Here we set Φmin = 0.125, Φmax = 0.875 and kref = 1 cm3 s g−1. In this
case the problem admits the exact solution:
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u(x) = Urefχ(x),

p(x) = Prefχ(x),

σ (x) = UrefHAχ ′(x) − Prefχ(x),

v(x) = −kref Prefχ
′(x)Θ(x),

℘ (x) = −λeUrefχ
′(x).

Since the problem is stationary, we compute directly the stationary solution by set-
ting 1/�t = 0 in the numerical code. The Picard iteration (158)–(157) is terminated
at the first value of j , say j∗, such that the maximum relative increment defined as
‖X ( j∗) − X ( j∗−1)‖/‖X ( j∗)‖ is less than a prescribed tolerance ε, where ε = 10−3

and X is any variable in the set
{

uh, ph, û∗
h, p̂

∗
h, σh, vh

}

. We consider decreasing
grid sizes h = L/Kh , withKh = [5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560]T .

The simulation results are reported in Figs. 6, 7 and 8. Interestingly, even in
this fully nonlinear case where porosity and permeability vary with the problem
solution, the asymptotic convergence rates for the various approximation errors
are the same optimal values as those in the basic linear test case V1 with constant
coefficients. This e.g. demonstrates the ability of the proposed DMH method to
provide a reliable approximation of the nonlinear poro-elastic problem at hand.

4.5.4. Validation Test Case V4 This test case is the time dependent version of
the previous test case V3. Let us consider again problem (138)–(143) with δ = 1 in
the space-time domain (−1, 1) × (0, T ), so that L = 2 cm and T = 2 s, with the
boundary conditions u = p = 0 at xstart = −1, and σn = g4(t) and vn = ψ4(t)
at xend = 1. Porosity and permeability are nonlinear functions of the solution,
as described in test case V3. Now the volumetric and boundary source terms are
time-dependent and are given by:

F4(x, t) = −[Urefχ
′′(x)(HAτ(t) + δHV τ ′(t)) − Prefτ(t)χ ′(x)],

S4(x, t) = Urefχ
′(x)τ ′(t) − Prefkrefχ

′′(x)τ (t)Θ(x, t)
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Fig. 6. Validation test V3. Discretization errors for the hybrid variables show that the con-
vergence rate (O(h2)) is optimal for both variables
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Fig. 7. Validation test V3. Approximation of the elastic pressure show that superconvergence
(O(h2)) is obtained at mesh midpoints
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Fig. 8. Validation test V3. Discretization errors for the total stress and Darcy’s velocity show
that the convergence rate (O(h2)) is optimal for both variables

− kref PrefUrefχ
′(x)χ ′′(x)τ 2(t)�(x, t),

g4(t) = Urefχ
′(xend)(HAτ(t) + δHV τ ′(t)) − Prefτ(t)χ(xend),

ψ4(t) = −kref PrefΘ(xend)χ
′(xend)τ (t),

where:

χ(x) = sin(ωx x), τ (t) = sin(ωt t), Φ(x, t) = φ0 +Urefχ
′(x)τ (t),

Θ(x, t) = Φ3(x, t)

[1 − Φ(x, t)]2 , �(x, t) = Φ2(x, t)[3 − Φ(x, t)]
[1 − Φ(x, t)]3 ,

with ωt = 2π/T and all the other parameter values given as in test case V3. In this
case the problem admits the exact solution:

u(x, t) = Urefχ(x)τ (t),

p(x, t) = Prefχ(x)τ (t),
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Fig. 9. Validation test V4. Discretization errors for the hybrid variables show that the con-
vergence rate (O(h)) is sub-optimal for both variables
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Fig. 10. Validation testV4.Approximation of the elastic pressure shows that the convergence
rate is O(h) in both norms, so that no superconvergence is obtained at the mesh centers of
mass

σ(x, t) = Urefχ
′(x)(HAτ(t) + δHV τ ′(t)) − Prefχ(x)τ (t),

v(x, t) = −PrefkrefΘ(x, t)χ ′(x)τ (t),

℘ (x, t) = −λeUrefχ
′(x)τ (t).

We compute the numerical approximation of the solution considering uniform spa-
tial and temporal grid size parameters defined as h = L/Kh and �t = T/r , with
Kh = [5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560]T and r = [5, 10, 20, 40, 80,
160, 320, 640, 1280, 2560]T .

The simulation results are reported in the set of Figs. 9, 10, 11 and 12. This
corresponds to numerically solving the fully nonlinear coupled poro-visco-elastic
system in the case where the permeability is described by the Carman–Kozeny
relation (7). We see that the first-order temporal accuracy of the BE method spoils
the superconvergence property of the DMH that was achieved in the stationary
test case V3. In particular, the convergence of the hybrid variables reduces from a
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Fig. 11. Validation testV4.Discretization errors for the total stress show that the convergence
rate (O(h2)) is optimal in both norms
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Fig. 12. Validation test V4. Discretization errors for Darcy’s velocity show that the con-
vergence rate for higher values of h (and �t) is close to optimal (O(h2)). However, as
h, �t → 0, the asymptotic convergence rate becomes sub-optimal (O(h)) because the time
approximation error dominates over the second-order spatial accuracy of the DMH method

quadratic (Fig. 6) to a linear rate (Fig. 9). No superconvergence at the mesh centers
of mass is obtained in the time dependent case (Fig. 10b) unlike the stationary case
(Fig. 7b). The Darcy velocity field suffers a similar reduction in the convergence
rate which lowers from second order (Fig. 8b) to linear order (Fig. 12a). It is
remarkable to notice that the decrease in accuracy for the Darcy velocity occurs
in correspondance of small values of the discretization parameters, since for larger
values of h and �t the slope of the error curve is close to the optimal value p =
2 (Fig. 12b). This seems to indicate that problem nonlinearity drives a smooth
transition of the accuracy behaviour of the method as a function of the spatial and
temporal discretization parameters, in such a manner that the degradation effect
due to the BE method can be actually experienced only in the limit of very small
mesh parameter size. The accuracy of the approximation of the total stress is the
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sole to be preserved from stationary to time dependent conditions (compare Fig. 8a
with Fig. 11). The reason for this exception is the same as that pointed out for test
case V2.

4.6. Numerical study of the influence of data regularity on the energy estimates

We are now in a position to use the DMH method to investigate numerically
the energy estimates obtained in Section 3.6. The 1D counterparts of the three
dimensional expressions for the energies given in (126), (127) and (128) are:

Ee(u(t)) = 1

2
(λe + 4μe)‖∂u(x, t)

∂x
‖20 ∀t ∈ (tstart, tend), (204)

Ev(u(t)) = 1

2
(λv + 4μv)‖∂u(x, t)

∂x
‖20 ∀t ∈ (tstart, tend), (205)

Ep(p(t)) =
∥
∥
∥
∥

√
k

∂p(x, t)

∂x

∥
∥
∥
∥

2

0
∀t ∈ (tstart, tend). (206)

To ensure an accurate and numerically stable evaluation of these quantities it is
convenient to express each energy as a function of the dual variables σ and v used
in the DMH formulation. The application of the BE advancing scheme yields the
following form of the (approximate) energies at time t i+1, i = 0, . . . , r − 1:

Ei+1
e = 1

2
(λe + 4μe)‖εi+1

h (x)‖20, (207)

Ei+1
v = 1

2
(λv + 4μv)‖εi+1

h (x)‖20, (208)

Ei+1
p =

∥
∥
∥
∥
∥
∥

1
√

k(P i+1
h (x))

vh(x)

∥
∥
∥
∥
∥
∥

2

0

, (209)

where

εi+1
h (x) = 1

Ae

[

σh(x)
i+1 + BeP

i+1
h (x) + pi+1

h (x) − δ
HvP

i
h(x)

λe�t

]

,

having set

Ae := 2μe

(

1 + δμv

�tμe

)

, Be := 1 + δλv

�tλe
.

We notice that the evaluation of (207)–(209) does not require numerical differ-
entiation, in contrast with (204)–(206), and therefore it is expected that the high
accuracy provided by the DMH scheme in the approximation of the stress and the
pressure variables reflects into the evaluation of the energies.

It is important to recall that the energy estimates in Section 3.6 rely on different
time regularity requirements for the volumetric source of linear momentum and for
the boundary source of stress, corresponding to F and g in the 1D case, depending
on whether δ = 0 (poro-elastic model) or δ > 0 (poro-visco-elastic model). Thus,
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we would like to utilize the DMH method to simulate and compare the behavior
of the energies characterizing the poro-elastic and poro-visco-elastic models in
the presence of data with different regularity in time. To this end, we introduce a
discontinuous function of time G defined as

G (t; ta, tb) := H (t − ta) − H (t − tb), (210)

where H (y − y) is the Heaviside function centered at y, and ta and tb are such
that tstart � ta < tb � tend, and a smooth function of time Gq defined as

Gq(t; ta, tb) := 1

2
[tanh(q(t − ta)) − tanh(q(t − tb))] , (211)

which is a double hyperbolic tangent temporal lifting of the function G . Here q is
a parameter that controls the slope of the lifting in the neighbourhood of t = ta
and t = tb. The larger q the steeper the lifting, with limq→+∞ Gq(t; ta, tb) =
G (t; ta, tb) for all t ∈ (tstart, tend). Consequently, we can define the functions:

S (x, t; xa, xb, ta, tb) := [H (x − xa) − H (x − xb)]G(t; ta, tb), (212)

Sq(x, t; xa, xb, ta, tb) := [H (x − xa) − H (x − xb)]Gq(t; ta, tb), (213)

that are both discontinuous in space but that obviously enjoy different regularity in
time. A portrait of S and Sq is provided in Fig. 13 having set xstart = tstart = 0,
xend = tend = 1, xa = ta = 1/3, xb = tb = 2/3 and q = 40.

In the following, the functionsS andSq (resp. G and Gq ) are used to investi-
gate how the energies defined in (207)–(209) are influenced by the time regularity
in the volumetric (resp. boundary) data for the linear momentum (resp. stress)
in one-dimensional poro-elastic and poro-viscoelastic models. All the simulations
reported in the following sections are performed by adopting the expression (7)
for the permeability k, with the same limitation (203) as in Sect. 4.5. Analogously,
the characteristic elastic time constant is defined as τe = L

√
ρ/HA, with ρ denot-

ing the fluid density (see [5] and [22]), in such a way that the viscous aggregate
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Fig. 13. Representation of the functions S (a) and Sq (b) in the space–time domain
([1/3, 2/3] × [1/3, 2/3]) ⊂ ([0, 1] × [0, 1]) and for q = 40
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Table 2. Model parameters used for the numerical investigation of the influence of data time
regularity on the energies of the solution to poro-elastic and poro-visco-elastic models (see
Sections 4.6.1, 4.6.2)

Parameter Value Units
xstart −1 cm
xend +1 cm
L 2 cm
tstart 0 s
tend 2 s
T 2 s
μe 1 dyne cm−2

λe 1 dyne cm−2

τe 1.1547 s
μv 1.1547 dyne cm−2 s
λv 1.1547 dyne cm−2 s
HA 3 dyne cm−2

HV 3.4641 dyne cm−2 s
Cck 1 cm2

μ f 1 g cm−1 s−1

kref 1 cm3 s g−1

ρ 1 g cm−3

Φ0 0.5 [·]
Φmin 0.125 [·]
Φmax 0.875 [·]

modulus HV , via dimensional analysis, can be estimated as HV = HAτe. The
values of the main biophysical parameters used in the analysis are reported in
Tab. 2 whereas the initial and boundary conditions are described for each specific
case. The discretization parameters are Kh = 50 and NT = 200, so that we have
h = 4 ·10−2 cm and�t = 10−2 s. The parameters of the square wave with compart
support in space and time are xa = −L/8 = −0.25 cm, xb = +L/8 = +0.25 cm,
ta = −T/8 = −0.25 s and tb = +T/8 = +0.25 s (Table 2).

4.6.1. Influence of Time Regularity in the Volumetric Source of Linear
Momentum Let us consider problem (138)–(143) in the spatio-temporal domain

QT = (xstart, xend) × (tstart, tend) = (−1, 1) × (0, 2),

so that L = 2 cm and T = 2 s. Let us assume that the volumetric sources of linear
momentum and mass are given by:

F(x, t) = FS (x, t; xa, xb, ta, tb), ∀(x, t) ∈ QT , (214)

S(x, t) = 0, ∀(x, t) ∈ QT , (215)

respectively, where S is the square wave function introduced in (212) and F :=
0.1HA/L dyne cm−3 is the maximum value of F . In addition, let us impose the
following initial and boundary conditions:



1504 L. Bociu, G. Guidoboni, R. Sacco & J. T. Webster

time [s]
0 0.5 1 1.5 2

||
 F

(t
) 

||
L

2
(
Ω

)
2

×10-3

0

2

4

6

8
[dyne2/cm5]

t [s]
0 0.5 1 1.5 2

E
e
(u

(t
))

×10-4

0

2

4

6

8
[dyne/cm]

t [s]
0 0.5 1 1.5 2

δ
· 

E
v
(u

(t
))

-1

-0.5

0

0.5

1
[dyne*s/cm], delta = 0

t [s]
0 0.5 1 1.5 2

E
(p

(t
))

0

0.005

0.01
[g/s3]

time [s]
0 0.5 1 1.5 2

||
 F

(t
) 

||
L

2
(
Ω

)
2

×10-3

0

2

4

6

8
[dyne2/cm5]

t [s]
0 0.5 1 1.5 2

E
e
(u

(t
))

×10-5

0

2

4

6

8
[dyne/cm]

t [s]
0 0.5 1 1.5 2

δ
· 

E
v
(u

(t
))

×10-4

0

0.5

1
[dyne*s/cm], delta = 1

t [s]
0 0.5 1 1.5 2

E
(p

(t
))

×10-5

0

1

2

3
[g/s3]

(a) (b)

Fig. 14. Computed energies ‖F(t)‖20, Ee, Ev and Ep in the case where the system is driven
by the sole volumetric source F in the linear momentum balance equation. a δ = 0; b δ = 1

u(x, tstart) = 0, ∀x ∈ �, (216)

u(xstart, t) = u(xend, t) = 0, ∀t ∈ (tstart, tend) (217)

p(xend, t) = p(xend, t) = 0 ∀t ∈ (tstart, tend). (218)

We remark that homogeneous boundary conditions are enforced on ∂� for solid
displacement and fluid pressure in order to allow the redistribution of stress and fluid
across the material. This choice has been made to better single out the sensitivity of
the biophysical system to the sole source term F . We also remark that F has been
chosen in such a way to satisfy the regularity requirements for Lemma 12 but not
those for Lemma 13. Fig. 14a , b illustrate the simulation results for the poro-elastic
model (i.e. without solid viscoelasticity, δ = 0) and for the poro-visco-elasticmodel
(i.e. with viscoelasticity, δ = 1). Interestingly:

Case δ = 0: Fig. 14a shows two sharp peaks in Ep localized around the signal
switch-on time t = 0.75 s and the signal switch-off time t = 1.25 s,
demonstrating that the lack of regularity in time of F reflects into a
lack of regularity in the fluid energy Ep when viscoelasticity is not
included in the differential model. Interestingly, the two peaks of Ep

tend to increase in size as �t tends to zero. On the other hand, the
time evolution of the elastic energy Ee shows a rapid exponential
increase at signal switch-on followed by a similarly fast decay at
signal switch-off, because of the lack of memory in system energy
storage.

Case δ = 1: Fig. 14b shows a remarkably different behavior of Ep and Ee with
respect to what reported in Fig. 14a. The peak of Ep around the
signal switch-on time has a much lower intensity than in the case
δ = 0 (three orders ofmagnitude smaller) andfluid energy relaxation
occurs with two time constants (corresponding to the time interval
when the source is on and to the time interval when it is off) that are
much larger than in the case δ = 0.
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Fig. 15. Computed energies ‖F(t)‖20, Ee, Ev and Ep in the case where the system is driven
by the sole volumetric source F in the linear momentum balance equation and δ = 0, as a
function of the slope parameter q = 0.1, 0.5, 1, 2.5, 5, 10, 20, 40, 50, 100, +∞. The value
q = +∞ corresponds to the case where F is non-smooth in space and time

The presence of a singularity in Ep when δ = 0 is further investigated by com-
paring the results obtained when progressively reducing the time regularity of F , as
shown in Fig. 15. Specifically, we write F(x, t) = FSq(x, t; xa, xb, ta, tb) and we
compare the energies obtained when q = 0.1, 0.5, 1, 2.5, 5, 10, 20, 40, 50, 100,
+∞. Fig. 15 shows how the peaks in Ep get higher as F gets sharper (that
is q → +∞). In conclusion, when the dynamics is driven by a source F of
linear momentum such that F ∈ L2(tstart, tend; L2(xstart, xend)) but not Ft ∈
L2(tstart, tend; L2(xstart, xend)), numerical simulations show that:

– if δ > 0, Ee and Ep are bounded functions of time for all t ∈ [tstart, tend]. This
confirms experimentally the estimate (131) of Lemma 12;

– if δ = 0, Ee is a continuous function of time for all t ∈ [tstart, tend] while Ep

tends to +∞ at t = 0.75 s and t = 1.25 s as �t tends to zero. This blow-up
of the fluid energy agrees with the fact that Ft /∈ L2(tstart, tend; L2(xstart, xend))
so that the right-hand side of estimate (135) of Lemma 13 cannot be bounded.

The remaining figures of this section illustrate the space-time distributions of var-
ious biophysical quantities in the interesting case where F is defined as in (214).
The computed displacement u∗

h is shown in Fig. 16. The left panel refers to the
case δ = 0 whereas the right panel refers to the case δ = 1. In both cases we
see that the displacement is a symmetric function with respect to x = 0 in accor-
dance with the applied source and the homogeneous Dirichlet boundary conditions.
The behaviour of the displacement in the case without viscoelasticity reflects the
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Fig. 16. Computed displacement u∗
h in the case where the system is driven by the sole

volumetric source F in the linear momentum balance equation. a δ = 0; b δ = 1
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Fig. 17. Computed total stressσh in the casewhere the system is driven by the sole volumetric
source F in the linear momentum balance equation. a δ = 0; b δ = 1

exponential increase and decrease of the elastic energy and the same holds in the
viscous case where the time constant of increase and decrease of the displacement
are remarkably different.

The computed total stress σ ∗
h is the same in both cases δ = 0 and δ = 1

in accordance with linear momentum balance. Fig. 17 correctly reproduces the
piecewise linear spatial variation of the stress within the time interval [0.75, 1.25] s,
since the slope of σh is negative where F is positive. Fig. 18 shows the distribution
of the elastic pressurePh in the purely elastic and viscoelastic regimes.We remark
that Ph is proportional to −∂uh/∂x ; thus, the elastic pressure is an odd function
with respect to x = 0 since the displacement is a concave function of position
with its maximum at x = 0. Consistently with what shown in Fig.16a, b for the
displacement, the elastic pressure behaves very differently depending on whether
δ = 0 or δ = 1. The computed fluid pressure p∗

h (Darcy pressure) is shown
in Fig. 19. The behaviour of the variable is the result of the fact that, at each
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Fig. 18. Computed elastic pressure Ph in the case where the system is driven by the sole
volumetric source F in the linear momentum balance equation. a δ = 0; b δ = 1
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Fig. 19. Computed Darcy pressure p∗
h in the case where the system is driven by the sole

volumetric source F in the linear momentum balance equation. a δ = 0; b δ = 1

time level, the mass balance equation (139) is supplied with a right-hand side i.e.
proportional to the time derivative of the elastic pressure, since S = 0 in the present
configuration. This explains the various changes of sign of p∗

h in the region of the
space-time domain with t � 0.75 s. In particular, p∗

h is > 0 (resp. < 0) where
∂Ph/∂t is > 0 (resp. < 0). The computed fluid velocity vh (Darcy velocity) is
shown in Fig. 20. A remarkable difference between the two regimes (elastic and
visco-elastic) can be detected by inspecting the larger values (in module) attained
by vh in the case δ = 0. This is the same aspect that we noticed in the analysis of
the fluid energy Ep. Also, the smoothness of the velocity is rather different in the
two cases, the viscoelastic regime being much more regular than the purely elastic
regime. Corner singularities (much larger in the purely elastic case) are due to the
homogeneous Dirichlet conditions for the fluid pressure whereas the change of sign
of the velocity agrees with Darcy’s law and with the spatial distribution of p∗

h . The
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Fig. 20. Computed Darcy velocity vh in the case where the system is driven by the sole
volumetric source F in the linear momentum balance equation. a δ = 0; b δ = 1

two final sets of figures refer to the computed porosity φh and permeability kh . We
recall that these two quantities are a by-product of the DMH simulation and are
evaluated using (1) and (7) with the following substitution

ζ = ∂u

∂x
= −P

λe
.

This avoids the use of numerical differentiation and improves the accuracy of the
method. Figs. 21 and 22 look quite similar: this is due to the fact that the applied
source is small enough to maintain the nonlinear Carman–Kozeny relation (7) for
hydraulic permeability in a neighborhood of φ = φ0 and k = kref . In accordance
with this observation, we see that the profiles of the two quantities closely follow
those of the elastic pressurePh with a larger deviation from φ0 (kref ) in the elastic
regime than in the visco-elastic regime. This means that the fluid portion of the
mixture varies more considerably in the case of a poro-elastic medium than in the
case of a poro-visco-elastic medium.

4.6.2. Influence of Time Regularity in the Boundary Source of Stress Let us
consider problem (138)–(143) in the spatio-temporal domain

QT = (xstart, xend) × (tstart, tend) = (−1, 1) × (0, 2),

so that L = 2 cm and T = 2 s. Let us study the problem in the absence of volumetric
sources of linear momentum and mass, namely:

F(x, t) = 0 ∀(x, t) ∈ QT , (219)

S(x, t) = 0, ∀(x, t) ∈ QT , (220)

and let us impose the following initial and boundary conditions:

u(x, tstart) = 0, ∀x ∈ �, (221)

u(xstart, t) = p(xstart, t) = vn(xend, t) = 0, ∀t ∈ (tstart, tend) (222)

σn(xend, t) = g G (t; ta, tb) ∀t ∈ (tstart, tend), (223)
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Fig. 22. Computed permeability kh in the case where the system is driven by the sole
volumetric source F in the linear momentum balance equation. a δ = 0; b δ = 1

where G is the square wave introduced in (210) and g := 0.01HA dyne cm−2 is the
maximum value of g. We remark that now the problem dynamics is solely driven
by the boundary source term for the stress and that g has been chosen in such a way
to satisfy the requirements of Lemma 12 but not those for Lemma 13. Figs. 23, 24,
25, 26, 27, 28, 29 and 30 illustrate the simulation results for the poro-elastic model
(i.e. without solid viscoelasticity, δ = 0) and for the poro-visco-elastic model (i.e.
with viscoelasticity, δ = 1). Interestingly:

Case δ = 0: Fig. 23a shows two sharp peaks in Ep localized around the signal
switch-on time t = 0.75 s and the signal switch-off time t = 1.25 s,
demonstrating that also a lack of regularity in time of g reflects into
a lack of regularity in the fluid energy Ep when viscoelasticity is
not included in the differential model, as observed in the previous
subsection for F . Also in this case, the peaks in Ep tend to increase
in size as�t tends to zero.However, unlike the case inwhich F lacks
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Fig. 23. Computed energies ‖g(t)‖20, Ee, Ev and Ep in the case where the system is driven
by the sole boundary source g in the linear momentum balance equation. a δ = 0; b δ = 1
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Fig. 24. Computed energies ‖g(t)‖20, Ee, Ev and Ep in the case where the system is driven
by the sole boundary source g in the linear momentum balance equation and δ = 0, as a
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q = +∞ corresponds to the case where g is non-smooth in time
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Fig. 25. Computed total stress σh in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. a δ = 0; b δ = 1

regularity, when the system is driven by the non-regular boundary
term g, the two peaks of Ep do not have equal size, suggesting a
different response of the system at switch-on and switch-off times.
We also note that the time evolution of the elastic energy Ee shows
a very similar behavior to that observed when forcing the system
with F .
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Fig. 26. Computed elastic pressure Ph in the case where the system is driven by the sole
boundary source g in the linear momentum balance equation. a δ = 0; b δ = 1
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Fig. 27. Computed Darcy pressure ph in the case where the system is driven by the sole
boundary source g in the linear momentum balance equation. a δ = 0; b δ = 1

Case δ = 1: When comparing Fig. 23a, b, we notice that the peak of Ep around
the signal switch-on time has a lower intensity than in the case δ = 0
(one order of magnitude smaller) and fluid energy relaxation occurs
with two time constants (corresponding to the time interval when
the source is on and to the time interval when it is off) that are much
larger than in the case δ = 0.

The presence of a singularity in Ep when δ = 0 is further investigated by
comparing the results obtained when progressively reducing the time regularity of
g, as shown in Fig. 24. Specifically, we write g(t) = gGq(t; ta, tb) and we compare
the energies obtained when q = 0.1, 0.5, 1, 2.5, 5, 10, 20, 40, 50, 100, +∞. Fig.
24 shows how the peaks in Ep get higher as g gets sharper (i.e. q → +∞). In
conclusion, when the dynamics is driven by a source g of linear momentum such
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Fig. 28. Computed Darcy velocity vh in the case where the system is driven by the sole
boundary source g in the linear momentum balance equation. a δ = 0; b δ = 1
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Fig. 29. Computed porosity φh in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. a δ = 0; b δ = 1

that g ∈ L2(tstart, tend) but not gt ∈ L2(tstart, tend), numerical simulations show
that:

– if δ > 0, Ee and Ep are bounded functions of time for all t ∈ [tstart, tend]. This
confirms experimentally the estimate (131) of Lemma 12;

– if δ = 0, Ee is a continuous function of time for all t ∈ [tstart, tend] while Ep

tends to +∞ at t = 0.75 s and t = 1.25 s as �t tends to zero. This blow-up
of the fluid energy agrees with the fact that gt /∈ L2(tstart, tend) so that the
right-hand side of estimate (135) of Lemma 13 cannot be bounded.

The remaining figures of this section illustrate the space-time distributions of vari-
ous biophysical quantities in the interesting case where g is defined as in (223). In
order to understand whether the peaks in Ep actually correspond to blow-ups, it is
particularly interesting to compare the space-time plots of the fluid pressure ph and
the Darcy velocity vh (approximation of −k∂p/∂x). Their behavior is remarkably
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Fig. 30. Computed permeability kh in the case where the system is driven by the sole
boundary source g in the linear momentum balance equation. a δ = 0; b δ = 1

different depending on whether δ = 0 or δ = 1, exhibiting a similar trend to that
observed for the energy Ep. We also notice that, in the case δ = 0, the elastic pres-
sure ℘h (approximation of −HA∂u/∂x) is discontinuous in time and this implies
that the term ∂ut/∂x is not defined in the strong sense and that a weaker definition
of the solution is needed in the case δ = 0.

5. Conclusions

The study presented in this article synergistically combines theoretical and
numerical analyses to investigate the main features of the solutions to initial-
boundary value problems for nonlinear systems of partial differential equations
often utilized to describe the motion of a fluid through an elastic or viscoelastic
porous material. Our study identifies the presence of viscoelasticity in the solid
phase as a major determinant in the behavior of the solutions. From the theoretical
viewpoint, existence of solutions to poro-visco-elastic models can be proved under
less restrictive assumptions for data regularity when compared to the purely elastic
case. From the numerical viewpoint, the convergence of the computational scheme
is faster to be attained for poro-visco-elastic models when compared to their purely
elastic counterpart, as a consequence of the fact that solutions are smoother when
viscoelasticity is present.

The energy estimates predicted by the theory are confirmed by the numerical
experimentswhen the data are sufficiently regular. Interestingly, in the purely elastic
case, when the data do not enjoy sufficient time regularity for the estimates to hold,
the numerical experiments actually provide clues of energy blow-up, since: (i) peaks
appear in the energy Ep in correspondence to the time discontinuity of the data; (ii)
the peaks get higher as the time discretization parameter tends to zero; and (iii) the
behaviors of fluid pressure and Darcy velocity are much less smooth in the purely
elastic case than in the viscoelastic case.
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These findings are extremely interesting from the application viewpoint. As
mentioned in the introduction, we focused on the role played by viscoelasticity on
the regularity of the solutions because of its importance in the modeling of biolog-
ical tissues, as the viscoelastic tone varies with age or disease status. Our findings
suggest that the lack of viscoelasticity may increase the susceptibility of the tissue
to localized damage (due to irregularity in the Darcy velocity and peaks in the fluid
energy) as volumetric sources of linear momentum and/or boundary sources of
traction experience sudden changes in time. We are currently working on applying
these concepts to investigate the causes of hemorrhages in the optic nerve head
(ONH) tissue, where the intraocular pressure (IOP) acts as a boundary source of
traction [9]. Sudden changes in IOP physiologically occur with changes between
day and night. Our theoretical findings lead us to hypothesize that even these phys-
iological changes in IOP might induce pathological changes in the hemodynamics
of the ONH tissue if the viscoelasticity provided by the collagen fibers is not intact.
Similar considerations may be applicable to other biological tissues as well as to
bio-engineered tissues for application in Regenerative Medicine [33].

Interestingly, our findings might also be useful to understand the consequences
of gravitational changes on human tissues. As a matter of fact, sudden changes in
gravitational acceleration, such as those experienced by astronauts duringmissions,
translate into sudden changes in the volumetric source of linear momentum, which
might increase tissue vulnerability to damage, as shown by our analysis. These
considerations are particularly relevant for the ONH tissue, whose pathological
changes have been associated with the visual impairments/intracranial pressure
(VIIP) syndrome affecting many crew members during and after long-duration
space flights [36].

Based on the above considerations, we believe that the present article consti-
tutes a first attempt to combine in a novel cross-disciplinary unified framework the
theoretical analysis of nonlinear models in ContinuumMechanics, the development
of multi-field Finite Element discretization schemes and the computer simulation
of the Mechanobiological properties of Tissues and Materials. Next steps of this
research will be devoted to considering the problem of uniqueness of solutions,
to extending the numerical approach to multi-dimensional geometries and to val-
idating the proposed model against available data in human tissues such as those
investigated in [9].
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