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Abstract

We investigate perturbations of traveling-wave solutions to a thin-film equation
with quadratic mobility and a zero contact angle at the triple junction, where the
three phases liquid, gas and solid meet. This equation can be obtained in lubri-
cation approximation from the Navier–Stokes system of a liquid droplet with a
Navier-slip condition at the substrate. Existence and uniqueness have been estab-
lished by the author together with Giacomelli, Knüpfer and Otto in previous
work. As solutions are generically non-smooth, the approach relied on suitably sub-
tracting the leading-order singular expansion at the free boundary. In the present
work, we substantially improve this result by showing the regularizing effect of
the degenerate-parabolic equation to arbitrary orders of the singular expansion. In
comparison to related previous work, our method does not require additional com-
patibility assumptions on the initial data. The result turns out to be natural in view
of the properties of the source-type self-similar profile.
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1. Introduction

1.1. The Thin-Film Equation as a Classical Free-Boundary Problem

We are interested in the thin-film equation with quadratic mobility

∂t h + ∂z(h
2∂3z h) = 0 for t > 0 and z > Z0(t). (1.1a)

This is a fourth-order degenerate-parabolic equation for the evolution of the height
h of a two-dimensional thin viscous fluid film on a one-dimensional flat substrate
as a function of time t > 0 and base point z > Z0(t) [6,9,27]. For simplicity
we assume that the droplet extends infinitely to positive z and has a free boundary
Z0(t) denoting the contact line, that is, the triple junction between the three phases
liquid, gas and solid (cf. Fig. 1). Necessarily,

h = 0 for t > 0 and z = Z0(t), (1.1b)

which simply sets the location of the free boundary to be Z0(t). Secondly, we
assume

∂zh = 0 for t > 0 and z = Z0(t), (1.1c)

leading to a zero contact angle at the triple junction, known as complete (or perfect)
wetting. The notion can be explained if one considers quasi-static droplet motion
in which the contact angle is determined by a balance between the surface tensions
of the three interfaces at the contact line (Young’s law). The condition ∂zh = 0 at
z = Z0(t) implies that an equilibrium is generically not achieved and therefore the
film will ultimately cover the whole surface. Finally, a condition determining the
evolution of Z0(t) is imposed:

lim
z↘Z0(t)

h∂3z h = dZ0

dt
(t) for t > 0 and z = Z0(t). (1.1d)

This conditionmay be viewed as aRankine–Hugoniot condition for a viscous shock
wave. Since (1.1a) has the form of a (nonlinear) continuity equation

∂t h + ∂z(V h) = 0 for t > 0 and z > Z0(t), (1.2a)

where

V = h∂3z h (1.2b)

is the transport velocity of h, by compatibility necessarily (1.1d) holds true.
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Fig. 1. Schematic of a liquid thin film and the hodograph transform (1.4)

Equation (1.1a) is a particular version of the general class of thin-film equations

∂t h + ∂z(h
n∂3z h) = 0 for t > 0 and z ∈ {h > 0}, (1.3)

where n is a real parameter. Apparently, for n � 0, Equation (1.3) has infinite
speed of propagation and the non-negativity of h is not ensured. On the other hand,
for n = 3 (corresponding to the no-slip condition at the liquid–solid interface)
Equation (1.3) exhibits unphysical features as well: the solution is singular at the
free boundary,which does notmove unless an infinite amount of energy to overcome
dissipation is inserted into the system [8,17,26]. Since for n > 3 Equation (1.3) is
even more degenerate, for a model relevant for the motion of fluid films (in which
contact lines move with finite and in general nonzero velocity), it is necessary that
n ∈ (0, 3). The most important cases are n = 1 and n = 2, corresponding to the
lubrication approximation of Darcy’s flow in the Hele-Shaw cell (n = 1)1 or the
lubrication approximation of the Navier–Stokes equations with a (linear) Navier-
slip condition (n = 2)2 at the liquid–solid interface, respectively [9,14,22,23,27].
More detailed discussions of the literature, also addressing the well-established
existence theory of weak solutions, can be found in [2,4,15].

This work addresses the regularity of solutions at the free boundary and may
therefore be considered as a contribution to a regularity theory of higher-order
degenerate-parabolic equations, an only insufficiently explored field. The author
hopes that the present study is also relevant regarding an existence, uniqueness, and
regularity theory for the (Navier–)Stokes equations with a moving contact line, an
essentially open problem. Here, a thorough understanding of the singular behavior

1 For an extensive well-posedness and regularity theory of (1.3) for n = 1 in the complete
wetting case, we refer to [12,13,16,18]. The partial wetting case is addressed in [22,23].
2 We refer to [10] for a well-posedness and partial regularity result of (1.3) in the complete

wetting regime with n = 2 and to [19] for a result in the partial wetting regime.
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at the free boundary can potentially help in the construction of suitable function
spaces. Additionally, in view of the aforementioned no-slip paradox, the question
of how the Navier-slip condition (or even general nonlinear slip conditions) de-
singularizes the solution at the contact line z = Z0(t) is also of interest from the
applied view point. Loosely speaking, the following arguments will demonstrate
that higher spatial regularity (that is, regularity in the variable z) goes hand in
hand with higher regularity in the time variable t . In numerical studies in [28], this
observation is used to test numerical schemes regarding their precision in resolving
the dynamics of moving contact lines.

1.2. Transformations

We review the transformations discussed in detail in [10, Sec. 1.2, Sec. 1.3,
Sec. A.1]. Generic solutions to (1.1) are traveling-wave solutions, that is, solutions
of the form h(t, z) = HTW(x), where x = z − W t and W > 0 is the speed of the
traveling wave. By rescaling, we may without loss of generality assume W = 3

8 ,
and one may conclude that in the case of a moving infinite cusp a strictly monotone

similarity solution is given by HTW(x) = x
3
2 .3 Considering perturbations of this

profile, we set

h(t, Z(t, x)) = x
3
2 for t, x > 0. (1.4)

Under the assumption that h(t, z) is strictly monotone in z for z > Z0(t), Equa-
tion (1.4) uniquely determines the function Z = Z(t, x), thus interchanging depen-
dent and independent variables and fixing the boundary to x = 0. The transforma-
tion (1.4) is known as the hodograph transform (cf. Fig. 1). The related von Mises
transform has been applied already in the context of the porous-medium equation
and the thin-film equation with linear mobility in higher dimensions [18,24]. Plug-
ging expression (1.4) into (1.1a) and noting that the chain rule (applied to (1.4))
gives the transformations

∂t h = −Zt∂zh and ∂z = Z−1
x ∂x , (1.5)

Equation (1.1) now reads

− Zt Z−1
x ∂x x

3
2 + Z−1

x ∂x x3(Z−1
x ∂x )

3x
3
2 = 0 for t, x > 0.4 (1.6)

Defining

F := Z−1
x (1.7)

3 A discussion of traveling-wave solutions can be found in [5].
4 Here and in what follows, differential operators act on everything to their right, that is,

for example

Z−1
x ∂x x3(Z−1

x ∂x )3x
3
2 ≡ Z−1

x ∂x (x3(Z−1
x ∂x (Z−1

x ∂x (Z−1
x ∂x x

3
2 )))).
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and noting that Ft = −F2Zxt , we observe that (1.6) alters to

x∂t F + F2x∂x x− 1
2 ∂x x3F∂x F∂x Fx

1
2 = 0 for t, x > 0.

By commuting the powers of x with the differential operators ∂x , we then arrive at
the equation

x∂t F + M(F, . . . , F) = 0 for t, x > 0, (1.8)

where M is a 5-linear form explicitly given by

M(F1, . . . , F5) := F1F2D

(
D + 3

2

)
F3

(
D − 1

2

)
F4

(
D + 1

2

)
F5 (1.9)

and D := x∂x denotes the scaling-invariant (logarithmic) derivative in space (set-

ting s := ln x we have D = ∂s). We observe ZTW
(1.4)= x − 3

8 t and FTW
(1.7)≡ 1 for

the traveling-wave profile (indeed M(1, . . . , 1)
(1.9)= 0), so that by setting

u := F − 1 (1.10)

in fact uTW = 0 and we are lead to study the Cauchy problem

x∂t u + p(D)u = N (u) for t, x > 0, (1.11a)

u|t=0 = u(0) for x > 0. (1.11b)

Here we use the following notation:

• p(ζ ) is a fourth-order polynomial

p(ζ ) := ζ

(
ζ 2 + 1

2
ζ − 3

4

)(
ζ + 3

2

)
= ζ(ζ − β)

(
ζ + β + 1

2

)(
ζ + 3

2

)

(1.12)

with the irrational root β :=
√
13−1
4 ≈ 0.65. The operator p(D) can be derived

from the 5-linear form M (cf. (1.9)) by noting that

p(D)u = M(1, . . . , 1, u) + · · · + M(u, 1, . . . , 1).

• N (u) stands for the nonlinearity of the equation and has the structure

N (u) := p(D)u − M(1 + u, . . . , 1 + u). (1.13)

The structure of (1.11a) is such that the left-hand side is linear in u, whereas the
right-hand side contains terms that are at least quadratic and at most quintic in
{u, Du, . . . , D4u}. The form of (1.11a) can be guessed from (1.1a) immediately.
By (1.4) the linearization of the spatial part ∂z

(
h2∂3z h

)
of (1.1a) scales as x−1

and therefore the spatial operator x−1 p(D) appears, where p(ζ ) has to be of order

4. This implies the space-time scaling x ∼ t , unlike x ∼ t
1
4 for non-degenerate

fourth-order parabolic equations. Two of the roots of the polynomial p(ζ ) are
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immediate as well. The root − 3
2 is directly related to the exponent of the right-

hand side of the hodograph transform (1.4). The root 0 appears as the nonlinear
equation (1.1a) has divergence form and this feature is preserved in a linearization.
In other words, one may understand the occurrence of this root by noting that the
traveling wave FTW = 1 is simultaneously a solution of the respective linear and
nonlinear equations, and the equations for u and F yield the same linear operator.
In contrast to these two roots, the emergence of the roots β and −β − 1

2 in the
polynomial p(ζ ) in (1.12) is a genuinely non-trivial feature, specific to higher-
order degenerate-parabolic equations. In the second-order case, p(ζ ) would be a
second-order polynomial and the only two roots of p(ζ ) would be immediate by
the same arguments as above. An accessible way to understand this uncommon
phenomenon in the fourth-order case for source-type self-similar solutions using
the language of dynamical systems theory is explained in [3,11]; there the roots
discussed above turn out to be the eigenvalues of a linearized dynamical system at a
stationary point (representing the contact line) and the situation can be reduced due
to known regularity results of the corresponding invariant manifolds (Hartman–
Grobman theorem).

The rest of this work will be mainly concerned with the analysis of (1.11).

1.3. Notation

For f, g � 0 we write f �S g if there exists a constant C > 0 depending
on parameters S such that f � Cg. In this case we say that f can be estimated
by g or equivalently that g bounds/controls f . Furthermore, we write f ∼S g if
f �S g and f �S g. For a non-negative quantity r we say that a property is true
for r �S 1 (or r 	S 1, respectively) if there exists a (sufficiently large) constant
C > 0 depending on S such that the property is true for r � C−1 (r � C). Then
we say that r � 0 has to be sufficiently small (large). If S = ∅ or if the dependence
is specified elsewhere, we just write f � g etc. The space C∞

0 ((0,∞)) denotes the
space of test functions, that is, the space of all u : (0,∞) → Rwhich are infinitely
differentiable with compact support contained in (0,∞). For α ∈ R, we denote by
α� := max{k ∈ Z : k � α} the integer part (floor) of α. We write |A| for the
number of elements (cardinality) of a finite set A.

1.4. Weighted L2-Norms

For the subsequent results, we introduce a scale of weighted L2-norms |·|α .
These are given by

|u|2α :=
∫ ∞

0
x−2α(u(x))2

dx

x
=
∫ ∞

−∞
e−2αs (u(es)

)2 ds with α ∈ R. (1.14)

The larger α is, the better the decay of u(x) as x ↘ 0 if |u|α < ∞. To make this a
point-wise statement, it is convenient to define Sobolev norms

|u|2k,α :=
k∑

�=0

∫ ∞

0
x−2α(D�u(x))2

dx

x
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=
k∑

�=0

∫ ∞

−∞
e−2αs(∂�

s u(es))2ds with k ∈ N0, α ∈ R. (1.15)

We also use the notation (·, ·)k,α and (·, ·)α for the induced inner products. Setting
v(s) := e−αsu (es), it is elementary to see that |u|k,α ∼α ‖v‖W k,2(R). In particular
|u|1,α < ∞ implies u(x) = o (xα) as x ↘ 0. Note, however, that control of an
increasing number of D-derivatives does not lead to better regularity properties
of u(x) in x = 0 as D is scaling-invariant in x . Essentially the index k in the
norm |u|k,α controls the interior regularity of u, whereas α yields control on the
regularity at the boundary x = 0. The identification with the standard Sobolev
norms also guarantees that the test functions C∞

0 ((0,∞)) are dense in the spaces
{u locally integrable : |u|k,α < ∞}. More details are contained in [10, Sec. 4].

The well-posedness proof of [10] relied on the control of the initial data in the
norm |||·|||0, where∣∣∣∣∣∣∣∣∣u(0)

∣∣∣∣∣∣∣∣∣2
0

:=
∣∣∣u(0)

∣∣∣2
k+6,−δ

+
∣∣∣u(0) − u(0)

0

∣∣∣2
k+6,δ

, (1.16)

k � 3, u(0)
0 = u(0) (x = 0) (the boundary value of u(0)), and δ > 0 is chosen

sufficiently small. Indeed, the subsequent result will use the same norm with suf-
ficiently large k ∈ N and sufficiently small δ > 0 depending on the value of N0.
We notice that by quite elementary arguments (cf. [10, Eq. (8.5)]) the Lipschitz
norm of the hodograph coordinates Z(0, x) − x is controlled by this norm, that
is, supx>0

∣∣u(0)(x)
∣∣ �

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣
0. Smallness of the Lipschitz norm of Z(0, x) − x

ensures strict monotonicity and thus invertibility of transformation (1.4). This was
in fact the crucial assumption in [18,24].

2. The Main Result

2.1. A Regularity Result

For motivating our main result, we may have a heuristic look at the properties
of problem (1.11). Since we are interested in a perturbative result, that is, one where
u(0) and u are assumed to be small in suitable norms (cf. for example (1.16)), the
precise understanding of the linearized problem

x∂t u + p(D)u = f for t, x > 0, (2.1a)

u|t=0 = u(0) for x > 0 (2.1b)

with a right-hand side f (t, x) turns out the be essential. For x � 1, the term
p(D)u will be dominant. Considering p(D)u ≈ f for x � 1, all solutions of this
ordinary differential equation (ODE) are given by the sum of a particular solution
and a linear combination of solutions to the homogeneous equation p(D)u ≡ 0.

The solution space of p(D)u ≡ 0 is spanned by x0, xβ , x−β− 1
2 , and x− 3

2 . Clearly,
the last two powers are ruled out by compatibility with transformations (1.4) and
(1.7). Nonetheless, the other two, x0 and xβ , generically appear in the expansion
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of the solution u close to the boundary x = 0 as a detailed analysis of the resolvent
equation shows [10, Sec. 6]. Due to the perturbation x∂t u, one may then expect that
u = v + xβw, where both v and w are smooth functions in x up to the boundary
x = 0. While it is in principle possible to construct solutions of this form for the
linear problem (2.1), such a structure is incompatible with the nonlinear equation
(1.11a) that mixes the powers x and xβ . What we are aiming at instead is

u(t, x) = ū(t, x, xβ), (2.2)

where ū = ū(t, x, y) is a smooth function in (x, y) ∈ {(
x ′, y′) ∈ R

2 : x ′, y′ � 0
}
.

Indeed, such a result can be expected in view of the analysis of source-type self-
similar solutions by the author joint with Giacomelli and Otto [11], where a
stronger result is shown. There,

h(t, z) = t−
1
6 H(x) with x = zt−

1
6 and H(x) = Cx

3
2 (1 + ū(x, xβ)),

where C is a positive constant and ū(x, y) is analytic in a neighborhood of (x, y) =
(0, 0). Not surprisingly, as in (1.11) or (2.1), β =

√
13−1
4 turns out to be the root of

a polynomial that determines the linearized problem for H .
We denote by

KN0 := {n1 + βn2 : (n1, n2) ∈ N
2
0, n1 + βn2 < N0} (2.3)

the set of admissible exponents up to order O
(
x N0

)
(cf. Fig. 2). Our main result

reads as follows:

Theorem 2.1. For any N0 ∈ N0 there exist ε > 0, k ∈ N, and δ > 0 such that if
∣∣∣∣∣∣∣∣∣u(0)

∣∣∣∣∣∣∣∣∣
0

(1.16)=
√∣∣u(0)

∣∣2
k+6,−δ

+
∣∣∣u(0) − u(0)

0

∣∣∣2
k+6,δ

� ε,

the unique solution u of (1.11) (constructed in [10, Th. 3.1]) fulfills the point-wise
expansion (cf. Fig. 2)

u(t, x) =
∑

i∈KN0

ui (t)xi + RN0(x, t)x N0 as x ↘ 0 and t > 0, (2.4)

where the coefficients ui = ui (t) are continuous functions in t > 0, and the
correction RN0 = RN0(x, t) is again continuous and for every t > 0 uniformly
bounded in x > 0. Furthermore,

ui (t) = o(t−i ) as t → ∞ (2.5a)

and

RN0(x, t) = o(t−N0) as t → ∞ uniformly in x > 0. (2.5b)

Actually, we are able to prove further regularity properties for the coefficients
ui (t) and the correction RN0 = RN0(x, t) and also interior-regularity bounds,
the presentation of which we postpone to later sections (cf. Lemma 3.3 and Theo-
rem4.1). Note that in [10] it was only proven that u(t, x) = u0(t)+uβ(t)xβ +o(xβ)

as x ↘ 0 almost everywhere, where u0 = u0(t) is bounded and continuous

with u0(t) → 0 as t → ∞ and tβ− 1
2 uβ = tβ− 1

2 uβ(t) is square integrable with

uβ(t) = o(t
1
2−β) as t → ∞ for a subsequence.
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n1
0
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2β
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0 1 2 3 4 i

Fig. 2. Schematic of the admissible exponents i ∈ KN0 (cf. (2.3)) in the generalized power
series (2.4) of the solution u up to i � 4

2.2. Discussion

The result captures the regularizing effect of the degenerate-parabolic equation
(1.11a). Unlike in the case of the porous-medium equation

∂t h − ∂2z hm = 0 for t > 0 and z ∈ {h > 0},
with a constant m > 1—the second-order counterpart of (1.11a) for which a com-
parison principle holds and solutions become smooth for positive times [1,7,24]—
here the solution only becomes smooth in the generalized sense (2.4).

We emphasize that in the case of partial wetting, that is, without loss of gen-
erality, |∂zh| = 1 at z = Z0(t), Knüpfer found that generically such singular
expansions do appear as well; the solutions turn out to have a polynomial expan-
sion in x and x ln x for n = 2 [19], and x and x3−n for n ∈ (

0, 14
5

) \{1, 2, 5
2 ,

8
3 ,

11
4 }

[20,21] (cf. also [3] for a discussion of source-type self-similar solutions with
nonzero dynamic contact angle). In these cases, however, Knüpfer assumes such
an expansion already for the initial data which also needs to fulfill additional com-
patibility conditions. Hence in this case there is no proof available that the solution
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acquires additional regularity at the contact line for positive times, except for a
smoothing effect in [20,21, Cor. 4.3] if one waits sufficiently long. This is due to
the different techniques in [19,20] relying on the Mellin transform and a suitable
subtraction of the singular expansion multiplied with a cut off at x = ∞. The
resulting estimates contain terms with different scaling in x and consequently have
no distinct scaling in time t . Thus it seems impossible to introduce time weights in
order to capture the smoothing effect of the (non-)linear equation in this setting. On
the other hand, it is well-known in the theory of non-degenerate parabolic equations
(in domains with smooth boundary for instance) that solutions typically become
smooth for positive times without having to assume well-prepared initial data.

This (generalized) smoothing effect is the essentially new insight of Theo-
rem 2.1. The fact that we need control of an increasing number k +6 of logarithmic
derivatives D the larger N0, essentially amounts to having sufficient interior regu-
larity of the initial data. Since the degeneracy of (1.11a) is immaterial away from
x = 0, the interior regularity of problem (1.11) may be treated by standard theory.

We further remark that ε has to be chosen dependent on N0. With our method it
appears to be unavoidable to assume this dependence, so that we cannot determine
whether the series

∑
i∈K∞ ui (t)xi converges.5

We also notice that there are connections of this work with the theory of elliptic
boundary problems in domains with isolated point singularities at the boundary,
for which it is known that singular expansions of solutions occur [25]. This is not
surprising, as the underlying fluidmodel, the Stokes (or Navier–Stokes) system, has
to be solved on a moving infinite-cusp domain. In the partial wetting case, instead,
a moving infinite wedge may be considered and in fact, Knüpfer’s analysis in
[19,20] strongly relies on this analogy.

2.3. Transformation into the Original Set of Variables

In [10, Rm. 3.2, Rm. 3.3, App. A] it was explained that analogous leading-order
expansions also hold for the function h and the velocity V (the vertically-averaged
horizontal velocity within lubrication theory, cf. (1.2)). Indeed, in the expression
V = h∂3z h for the velocity (cf. (1.2b)), we may employ the hodograph transform

(1.4), that is, h = x
3
2 as well as ∂z = F∂x (cf. (1.5) and (1.7)), so that

V = 3

2
x

3
2 F∂x F∂x Fx

1
2 = M̃(F, F, F) (2.6a)

with

M̃(F1, F2, F3) := 3

2
F1

(
D − 1

2

)
F2

(
D + 1

2

)
F3. (2.6b)

5 As we will observe in Section 3, the coercivity constant of p(D − N0) with respect
to the inner product (·, ·)α vanishes as α ↗ N0 or α ↘ N0 − 1, and as N0 → ∞ the
admissible exponents in the interval (N0 − 1, N0) become dense. Thus the constant in the
maximal-regularity estimate (3.41) blows up as N0 → ∞.
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Equations (2.6) can be used to derive

V = A(t) + B(t, x) + C(t, x) (2.7a)

with

A = −3

8
(1 + u0)

3, (2.7b)

B = 3(1 + u0)
2M̃sym(u − u0, 1, 1) = 3

2
(1 + u0)

2 p̃(D)(u − u0)

where p̃(ζ ) =
(

ζ + β + 1

2

)
(ζ − β), (2.7c)

C = 3(1 + u0)M̃sym(u − u0, u − u0, 1) + M̃sym(u − u0, u − u0, u − u0).

(2.7d)

With help of expansion (2.4), Equations (2.7) upgrade to

V (t, Z(t, x)) = −3

8
(1 + u0(t))

3 +
∑

i∈KN0
1�i<N0

Vi (t)xi + O(x N0) (2.8)

as x ↘ 0 and t > 0,where the coefficients Vi (t) and the correction O
(
x N0

)
fulfill

decay estimates as in (2.5). From (2.8) we can also read off the velocity V0(t) and
the position Z0(t) of the contact line as

V0(t) = 3

8
(1 + u0(t))

3 and Z0(t) = z0 − 3

8

∫ t

0
(1 + u0(t

′))3 dt ′,

where z0 ∈ R is a free parameter.
Finally, we can derive an expression for the expansion of the film height h and

the velocity V in the vicinity of the contact line in terms of the original variables t
and z. Employing (2.4) in (1.7) in conjunction with (1.10), we conclude

Zx = (1 + u0(t))
−1 +

∑
i∈KN0

β�i<N0

(Zx )i (t)xi + O(x N0) as x ↘ 0 and t > 0,

where the coefficients and remainder fulfill estimates analogous to (2.5). Integration
of this expansion gives

x̃ := Z(t, x) − Z0(t)

= x

⎛
⎜⎜⎜⎝(1 + u0(t))

−1 +
∑

i∈KN0
β�i<N0

(1 + i)−1(Zx )i (t)xi + O
(

x N0
)
⎞
⎟⎟⎟⎠ (2.9)
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as x ↘ 0 and t > 0. Inversion yields

x = (1 + u0(t)) x̃

⎛
⎜⎜⎜⎝1 +

∑
i∈KN0

β�i<N0

ci (t)x̃ i + O(x̃ N0)

⎞
⎟⎟⎟⎠ as x̃ ↘ 0 and t > 0,

(2.10)

with coefficients ci (t) and remainder O
(
x̃ N0

)
obeying estimates analogous to those

in (2.5). Utilizing expansion (2.10) in the hodograph transform (1.4), we end up
with

h(t, z) = x̃
3
2

⎛
⎝1 +

∑
i∈KN0

ũi (t)x̃ i + O
(
x̃ N0

)⎞⎠ as x̃ ↘ 0 and t > 0,

where the ũi (t) are (at least) continuous in time t , x̃ := z − Z0(t) (cf. (2.9)), and
decay estimates as in (2.5) for the ũi (t) and the remainder O(x̃ N0) hold true. We
leave it up to the reader to directly relate the coefficients ũi (t) to the ui (t) appearing
in (2.4). Furthermore, we can also derive an expansion for the velocity V = V (t, z)
by using (2.10) in (2.8):

V (t, z) = −3

8
(1 + u0(t))

3 +
∑

i∈KN0
1�i<N0

Ṽi (t)x̃ i + O(x̃ N0) as x̃ ↘ 0 and t > 0,

where again x̃ := z − Z0(t) and the Ṽi (t) and the remainder term O(x̃ N0) meet
decay estimates as in (2.5). We remark that it is open, whether a similar expansion
for the velocity occurs for the (Navier–)Stokes equations on a moving infinite-cusp
domain.

2.4. Outline

The paper consists of two parts: the linear theory (discussed in Section 3) and
the nonlinear theory (contained in Section 4). After recalling some of the basic
notions on coercivity and maximal regularity in Section 3.1, Section 3.2 deals
with the formal structure of the linear degenerate-parabolic equation (2.1). Here
we demonstrate that by applying an appropriate combination of scaling-invariant
operators D − γ with γ ∈ R to the linear equation (2.1a), we are able to derive
maximal-regularity estimates for (2.1) that control the singular expansion of u at
x = 0 to arbitrary orders (cf. Section 3.3). Since all higher-order equations for
u are scaling-invariant, the corresponding maximal-regularity estimates have a
distinct scaling in x . Thus, when multiplied with an appropriate time weight, we
can combine them to a quasi scaling-invariant maximal-regularity estimate for u in
terms of the initial datau(0) in thequasi-minimal norm (1.16) and the right-hand side
f . These arguments are made rigorous in Sections 3.4 and 3.5 (cf. Proposition 3.2)
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without going into all details. In particular Section 3.5 is not essential for the
understanding of the main ideas.

Finally, in Section 4 we prove our main regularity result, Theorem 4.1, from
which Theorem 2.1 follows as a special case. The proof strategy is standard and
requires two ingredients: maximal-regularity estimates for the linearized problem
(2.1) and the factorization of the nonlinearity N (u) (cf. (1.13)) given in Proposi-
tion 4.1. The latter is in fact the non-trivial part of the proof (cf. Section 4.2) and
requires detailed estimates that rely on the symmetry properties of the multi-linear
formM (cf. (1.9)).

3. The Linear Problem

3.1. Coercivity and Parabolic Maximal Regularity

Again, we briefly repeat some of the linear theory in [10]. Consider the linear
problem

x∂t u + P(D)u = f for t, x > 0, (3.1a)

u|t=0 = u(0), (3.1b)

which is structurally the same as (2.1) but with a general fourth-order polynomial
P(ζ ).We assume that the zeros γ1 � . . . � γ4 of P(ζ ) are real. Thenwe know from
[10, Prop. 5.3] that there is a range of weights α—which we may call coercivity
range—such that P(D) is formally coercive, that is, (u, P(D)u)α �α |u|22,α for all
u ∈ C∞

0 ((0,∞)). A sufficient criterion (which can be elementarily computed) is

α ∈ (−∞, γ1) ∩ (γ2, γ3) ∩ (γ4,∞) and (α − m(γ ))2 � σ 2(γ )

3
, (3.2)

where m(γ ) := 1
4

∑4
j=1 γ j (mean of the zeros γ j ) and σ 2(γ ) := 1

4

∑4
j=1(γ j −

m(γ ))2 (variance of the zeros γ j ). In the particular case of P(D) = p(D), the
criterion (3.2) yields that the coercivity range contains the interval (−1, 0).

Now suppose that α ∈ R is in the coercivity range of P(D). Then, at least
formally, by quite elementary arguments (cf. [10, Sec. 2, Sec. 7.1]) we can derive
a differential version of a maximal-regularity estimate for (3.1a) that reads

d

dt
|u|2

�+2,α− 1
2

+ |∂t u|2�,α−1 + |u|2�+4,α ��,α | f |2�,α , where � ∈ N0. (3.3)

Indeed, in (3.3) derivatives f, . . . , D� f control u, . . . , D�+4u in the same norm,
which is the maximal control in space one can expect as (3.1a) is fourth-order in D.
The additional control of the time derivative ∂t u, . . . , D�∂t u (with reduced weight
due to the degeneracy in (3.1)) can be obtained by using control of u, . . . , D�+4u
and the fact that (3.1a) is fulfilled. This also yields control of the trace d

dt |u|2
�+2,α− 1

2
by interpolation. We refer to Section 3.5 for more details.
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By multiplying (3.3) with a time weight tσ (where σ � 0), we obtain the
integrated version of (3.3), that is,

sup
t�0

t2σ |u|2
�+2,α− 1

2
+
∫ ∞

0
t2σ

(
|∂t u|2�,α−1 + |u|2�+4,α

)
dt

��,α δσ,0

∣∣∣u(0)
∣∣∣2
�+2,α− 1

2

+
∫ ∞

0
t2σ | f |2�,α dt + 2σ

∫ ∞

0
t2σ−1 |u|2

�+2,α− 1
2
dt,

(3.4)

where � ∈ N0. The purpose of introducing time weights is twofold. On the one
hand they will enable us to prove the decay estimates as t → ∞ in (2.5) for the
coefficients ui and the remainder RN0 . While this would be irrelevant on a finite
time interval, they also make it possible to prove regularity immediately after time
t = 0, whereas without them the time after which regularity is obtained is unknown
(cf. [20,21, Cor. 4.3] for a similar case).

Estimate (3.4) will be the basis of all linear estimates in the sequel.

3.2. The Formal Structure of the Linear Equation

As pointed out in [10, Sec. 2], just applying maximal regularity of the form
(3.4) with σ = 0 to the linear equation (2.1a) is not sufficient in order to obtain
well-posedness of the correspondingnonlinear problem (1.11). This is so, since only
negativeweightsα are admissible (viz. in the coercivity rangeof p(D)) andhenceno
control of the boundary value u0 or the sup-norm supt,x>0 |u(t, x)| can be achieved.
On the other hand, as products of up to five factors in {u, Du, . . . , D4u} appear in
the nonlinearityN (u) (cf. (1.9) and (1.13)), the control of supt,x>0 |u(t, x)| appears
to be necessary for proving well-posedness by a contraction argument. In order to
circumvent this problem, it was convenient to apply p(D −1) to the linear equation
(2.1a) that, by using the commutation relation Dx = x(D + 1), transforms into

x∂tv
(1) + p(D − 1)v(1) = g(1) for t, x > 0, (3.5)

where v(1) := p(D)u and g(1) := p(D − 1) f . Since the coercivity range has
translated to the positive interval (0, 1) (cf. for example (3.2)), one obtains better
control on the regularity of v at the boundary x = 0. This is not surprising as in
view of (2.4) we expect u(t, x) = u0(t) + uβ(t)xβ + O(x) as x ↘ 0 and t > 0
and the powers x0 and xβ are in the kernel of p(D), whence v(1)(t, x) = O(x) as
x ↘ 0 and t > 0. Furthermore, by compatibility f (t, x) = O(x) as x ↘ 0 and
t > 0 and therefore also g(1)(t, x) = O(x) as x ↘ 0 and t > 0. As a second step
one can then retrieve regularity information on u from regularity information on
v(1) using elliptic estimates for the operator p(D) (cf. [10, Sec. 2, Lem. 7.2]).

Before reviewing the arguments, we point out the limitations of the ansatz. As
a natural second step, we apply the operator p(D − 2) to Equation (3.5) and obtain

x∂tv
(2) + p(D − 2)v(2) = g(2) for t, x > 0, (3.6)

with v(2) := p(D −1)v(1) and g(2) := p(D −2)g(1). Following the argumentation
above and noting that the coercivity range of the operator p(D − 2) contains the
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interval (1, 2), we apply the maximal-regularity estimate (3.4) to (3.6) and seem-
ingly obtain even better control on the regularity of v(2) at the boundary which
formally suggests v(t, x) = O

(
x2−ε

)
as x ↘ 0 and t > 0, where ε > 0 is arbi-

trarily small. Apparently, such a claim is too strong as generically also the term
x2β appears in the expansion of u (cf. Section 2.1), this term is not in the kernel of
p(D − 1)p(D), and thus in general v(t, x) = O

(
x2β

)
as x ↘ 0 and t > 0.

In order to work around this problem, we set

I2 :=
{

n1 + βn2 : (n1, n2) ∈ N
2
0, 1 < n1 + βn2 < 2

}
\{1 + β} = {2β, 3β}

and apply the operator
∏

i∈I2(D − i) = (D − 2β)(D − 3β) to (3.6). Setting
w(2) := (∏

i∈I2(D − i)
)
v(2) and r (2) := (∏

i∈I2(D − i)
)

g(2), Equation (3.6) turns
into

x∂tw
(2) + p(D − 2)w(2) = r (2) + xq2(D)∂tv

(2) for t, x > 0, (3.7)

where q2(D) = ∏
i∈I2(D − i) − ∏

i∈I2(D − i + 1) = −2D + 5β − 1 is a
polynomial of degree |I2| − 1 = 1. The additional term xq2(D)∂tv

(2) appears as
the commutator of

∏
i∈I2(D − i) and the multiplication with x does not vanish.

Nevertheless, (3.7) is structurally advantageous compared to (3.6) as now we may
indeed expect w(2)(t, x) = O(x2), r (2)(t, x) = O(x2), and xq2(D)∂tv

(2)(t, x) =
o(x2) as x ↘ 0 and t > 0. Hence, applying the maximal-regularity estimate (3.4)
with α ∈ (1, 2), we obtain better control on w(2) (assuming σ > 0):

sup
t�0

t2σ
∣∣∣w(2)

∣∣∣2
�+2,α− 1

2

+
∫ ∞

0
t2σ

(∣∣∣∂tw
(2)
∣∣∣2
�,α−1

+
∣∣∣w(2)

∣∣∣2
�+4,α

)
dt

��,α

∫ ∞

0
t2σ

∣∣∣r (2)
∣∣∣2
�,α

dt + 2σ
∫ ∞

0
t2σ−1

∣∣∣w(2)
∣∣∣2
�+2,α− 1

2

dt

+
∫ ∞

0
t2σ

∣∣∣q2(D)∂tv
(2)
∣∣∣2
�,α−1

dt.

(3.8)

However, the additional term
∫∞
0 t2σ

∣∣q2(D)∂tv
(2)
∣∣2
�,α−1 dt in (3.8) has to be

treated: since α − 1 ∈ (0, 1) is in the coercivity range of p(D − 1), we can apply
maximal regularity of the form (3.4) to the time-differentiated version of (3.5), that
is,

x∂2t v(1) + p(D − 1)∂tv
(1) = ∂t g

(1) for t, x > 0, (3.9)

which leaves us with

sup
t�0

t2σ
∣∣∣∂tv

(1)
∣∣∣2
�′+2,α− 3

2

+
∫ ∞

0
t2σ

(∣∣∣∂2t v(1)
∣∣∣2
�′,α−2

+
∣∣∣∂tv

(1)
∣∣∣2
�′+4,α−1

)
dt

��′,α

∫ ∞

0
t2σ

∣∣∣∂t g
(1)
∣∣∣2
�′,α−1

dt + 2σ
∫ ∞

0
t2σ−1

∣∣∣∂tv
(1)
∣∣∣2
�′+2,α− 3

2

dt. (3.10)
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Assuming �′ � �+|I2| − 1 = �+ 1 and noting that trivially
∣∣q2(D)∂tv

(2)
∣∣2
�,α−1 �∣∣∂tv

(1)
∣∣2
�′+4,α , the combination of (3.8) and (3.10) yields

sup
t�0

t2σ
(∣∣∣w(2)

∣∣∣2
�+2,α− 1

2

+
∣∣∣∂tv

(1)
∣∣∣2
�′+2,α− 3

2

)

+
∫ ∞
0

t2σ
(∣∣∣∂tw

(2)
∣∣∣2
�,α−1

+
∣∣∣w(2)

∣∣∣2
�+4,α

+
∣∣∣∂2t v(1)

∣∣∣2
�′,α−2

+
∣∣∣∂tv

(1)
∣∣∣2
�′+4,α−1

)
dt

��,�′,α

∫ ∞
0

t2σ
(∣∣∣r (2)

∣∣∣2
�,α

+
∣∣∣∂t g(1)

∣∣∣2
�′,α−1

)
dt

+2σ
∫ ∞
0

t2σ−1
(∣∣∣w(2)

∣∣∣2
�+2,α− 1

2

+
∣∣∣∂tv

(1)
∣∣∣2
�′+2,α− 3

2

dt

)
dt. (3.11)

Now the solutionsw(2) and v(1) are estimated in sufficiently strong norms by ∂t g(1)

and r (2) in respective norms and the integral
∫ ∞

0
t2σ−1

(∣∣∣w(2)
∣∣∣2
�+2,α− 1

2

+
∣∣∣∂tv

(1)
∣∣∣2
�′+2,α− 1

2

)
dt. (3.12)

The norms in (3.12) have reduced spatial and temporalweights and thus it is possible
to absorb these terms by lower-order estimates.6 We will detail the arguments in
Section 3.3. Notably it seems unavoidable to combine higher-regularity estimates
in space with higher-regularity estimates in time as opposed to the case of the
thin-film equation (1.3) with n = 1, that is, the lubrication approximation of the
Hele-Shaw cell [13, Sec. 8, Sec. 9]. This has already been observed by Knüpfer
in [19–21] for the partial wetting case using rather different techniques.

Before addressing the issue of dealing with the lower-order terms in (3.11),
we will first systematize our observations. In order to obtain better control on the
solution, we apply the operator p(D − 3) to Equation (3.7). Thus we arrive at

x∂tv
(3) + p(D − 3)v(3) = g(3) + xq2(D)p(D − 2)∂tv

(2) for t, x > 0, (3.13)

where we have set v(3) := p(D − 2)w(2) and g(3) := p(D − 3)r (2). Again, we
cannot expect to have v(3)(t, x) = O(x3) as x ↘ 0 and t > 0 as the set

I3 := {n1 + βn2 : (n1, n2) ∈ N
2
0, 2 < n1 + βn2 < 3}\{2 + β}

is non-empty (cf. Fig. 2). Applying
∏

i∈I3(D − i) to (3.7), we obtain

x∂tw
(3) + p(D − 3)w(3)

= r (3) + xq̃3(D)∂tv
(3) + xq2(D)p(D − 2)

⎛
⎝∏

i∈I3

(D − i + 1)

⎞
⎠ ∂tv

(2)

(3.14)

6 Here “lower order” is meant in the sense of using norms with lowered weights and the
same number of time derivatives.
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for t, x > 0, where again

w(3) :=
⎛
⎝∏

i∈I3

(D − i)

⎞
⎠ v(3), r (3) :=

⎛
⎝∏

i∈I3

(D − i)

⎞
⎠ g(3),

and

q̃3(D) =
∏
i∈I3

(D − i) −
∏
i∈I3

(D − i + 1)

is a polynomial in D of degree |I3| − 1 that originates from the commutator of x
and

∏
i∈I3(D − i). Then we make the rather trivial observation I2 ⊂ I3 − 1 :=

{i − 1 : i ∈ I3} (cf. Fig. 2). By exploiting

p(D − 2)

⎛
⎝∏

i∈I3

(D − i + 1)

⎞
⎠ ∂tv

(2)

=
⎛
⎝ ∏

i∈(I3−1)\I2

(D − i)

⎞
⎠ p(D − 2)

⎛
⎝∏

i∈I2

(D − i)

⎞
⎠ v(2)

︸ ︷︷ ︸
=w(2)

=
⎛
⎝ ∏

i∈(I3−1)\I2

(D − i)

⎞
⎠ v(3)

and setting

q3(D) := q̃3(D) + q2(D)
∏

i∈(I3−1)\I2

(D − i),

which is a polynomial of degree less or equal to |I3| − 1, we can rewrite the last
two terms in (3.14) and obtain

x∂tw
(3) + p(D − 3)w(3) = r (3) + xq3(D)∂tv

(3) for t, x > 0. (3.15)

As (3.15) is structurally the same as (3.7), this procedure can be iterated, and we
arrive at the following set of equations

(x∂t + p(D − n))∂m
t w(n) = ∂m

t r (n) + xqn(D)∂m+1
t v(n) for t, x > 0, (3.16)

where we define the sets of indices

In := {n1 + βn2 : (n1, n2) ∈ N
2
0, n − 1 < n1 + βn2 < n}\{n − 1 + β},

(3.17a)

Jn := {n1 + βn2 : (n1, n2) ∈ N
2
0, 0 < n1 + βn2 < n}\(N ∪ (N0 + β))

= ∪n
n′=1 In′ , (3.17b)
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introduce the functions

v(n) :=
(

n−1∏
n′=0

p(D − n′)
)⎛
⎝ ∏

i∈Jn−1

(D − i)

⎞
⎠ u, (3.18a)

w(n) :=
(

n−1∏
n′=0

p(D − n′)
)⎛
⎝∏

i∈Jn

(D − i)

⎞
⎠ u =

⎛
⎝∏

i∈In

(D − i)

⎞
⎠ v(n), (3.18b)

r (n) :=
(

n∏
n′=1

p(D − n′)
)⎛
⎝∏

i∈Jn

(D − i)

⎞
⎠ f, (3.18c)

and denote by qn(D) a polynomial of degree less or equal to |In|−1. The numbers
n ∈ N and m ∈ N0 are arbitrary.

3.3. Heuristics for Parabolic Maximal Regularity

In this section we systematize the ideas of the previous section, leading to
estimate (3.11). Throughout the section, all estimates may depend on N , n, m, α,
or δ. Applying the maximal-regularity estimate (3.4) to Equation (3.15), we obtain

sup
t�0

t2(α+n+m)−3
∣∣∣∂m

t w(n)
∣∣∣2
k(n,m,α′)+2,α′+n− 3

2

+
∫ ∞

0
t2(α+n+m)−3

∣∣∣∂m+1
t w(n)

∣∣∣2
k(n,m,α′),α′+n−2

dt

+
∫ ∞

0
t2(α+n+m)−3 +

∣∣∣∂m
t w(n)

∣∣∣2
k(n,m,α′)+4,α′+n−1

dt

� δ2(α+n+m−1),1

∣∣∣∂m
t w

(n)
|t=0

∣∣∣2
k(n,m,α′)+2,α′+n− 3

2

+
∫ ∞

0
t2(α+n+m)−3

∣∣∣∂m
t r (n)

∣∣∣2
k(n,m,α′),α′+n−1

dt

+ (1 − δn,1)

∫ ∞

0
t2(α+n+m)−3

∣∣∣∂m+1
t v(n)

∣∣∣2
k(n,m,α′)+|In |−1,α′+n−2

dt

+ (2(α + n + m) − 3)
∫ ∞

0
t2(α+n+m)−4

∣∣∣∂m
t w(n)

∣∣∣2
k(n,m,α′)+2,α′+n− 3

2

dt,

(3.19)

where we assume and use the following:

• We take a finite number of weights α ∈ [0, 1] and we choose δ > 0 sufficiently
small such that
� α′ := α ± δ ∈ (0, 1) if α ∈ (0, 1),
� δ ∈ (0, 1) and thus also 1 − δ ∈ (0, 1).
Thus α′ is in the coercivity range of p(D − 1) (that is, α + n − 1 ∈ (n − 1, n)

is in the coercivity range of p(D − n)).
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• δ > 0 has to be chosen small enough such that if α1 < α2, then also α1 + δ <

α2 − δ. Further smallness conditions on δ will be specified when necessary.
• We need to assume 2(α+n +m)−3 � 0 so that all time weights are integrable

at t = 0 (the last term in (3.19) vanishes for 2(α + n + m) − 3 = 0).
• The indices k(n, m, α) ∈ N0, determining the number of D-derivatives in the

norms appearing in (3.19), will be chosen later.

The specific choice of the weights α will be explained further below. Choosing
proper weights turns out to be essential for obtaining control on the coefficients
ui (t) of the generalized power series (2.4) of u and for being able to absorb the last
line of (3.19).

Note that estimate (3.19) itself is insufficient as the solution u still appears on
the estimate’s right-hand side in the last two lines.

3.3.1. Absorption of Remnant Terms I We will first concentrate on absorb-
ing the second but last line of (3.19) by exploiting the additional time regularity.
Therefore, we start with estimate (3.19) with n = N and m = 0. For N > 1, the
term ∫ ∞

0
t2(α+N )−3

∣∣∣∂tv
(N )

∣∣∣2
k(N ,0,α′)+|IN |−1,α′+N−2

dt

has to be absorbed. This term can be estimated by the left-hand side of (3.19) for
n = N −1 and m = 1, provided that the indices k(n, m, α′) obey k(N −1, 1, α′) �
k(N , 0, α′) + |IN | − 1. Then indeed

∣∣∣∂tv
(N )

∣∣∣
k(N ,0,α′)+|IN |−1,α′+N−2

�
∣∣∣∂tw

(N−1)
∣∣∣
k(N−1,1,α′)+4,α′+N−2

.

Next, supposing that N > 2, the term
∫ ∞

0
t2(α+N )−3

∣∣∣∂2t v(N−1)
∣∣∣2
k(N−1,1,α′)+|IN−1|−1,α′+N−3

dt

has to be absorbed, which can be achieved by combining it with estimate (3.19) for
n = N −2 andm = 2, provided that k(N −2, 2, α′) � k(N −1, 1, α′)+|IN−1|−1.
Apparently, this procedure can be iterated (cf. Fig. 3) and bymerely summing (3.19)
for indices (n, m) ∈ {(N , 0), (N − 1, 1), . . . , (1, N − 1)}, we end up with

sup
t�0

t2(α+N )−3
N−1∑
m=0

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+2,α′+N−m− 3

2

+
∫ ∞
0

t2(α+N )−3
N−1∑
m=0

∣∣∣∂m+1
t w(N−m)

∣∣∣2
k(N−m,m,α′),α′+N−m−2

dt

+
∫ ∞
0

t2(α+N )−3
N−1∑
m=0

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+4,α′+N−m−1

dt

� δ2α,1δN ,1

∣∣∣w(1)
|t=0

∣∣∣2
k
(
1,0, 12±δ

)
+2,±δ
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Fig. 3. Schematic: absorption of remnant terms I. Each node + corresponds to an estimate
of the form (3.19). The displayed arrows visualize the absorption mechanism for N = 4,
that is, the remnant at the base of the arrow (forming the second but last line in (3.19)) is
absorbed by the corresponding estimate (3.19) at the tip of the arrow under the assumption
that (3.22) holds true

+
∫ ∞
0

t2(α+N )−3
N−1∑
m=0

∣∣∣∂m
t r (N−m)

∣∣∣2
k(N−m,m,α′),α′+N−m−1

dt

+ (2α + 2N − 3)
∫ ∞
0

t2(α+N )−4
N−1∑
m=0

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+2,α′+N−m− 3

2

dt,

(3.20)

provided that we have

k(N − m − 1, m + 1, α′) � k(N − m, m, α′) + |IN−m | − 1 for m = 0, . . . , N − 2

and

2α + 2N − 3 � 0. (3.21)

For later purpose we require the stronger assumption

k(N − m − 1, m + 1, α′) � k(N − m, m, α′)+|IN−m | for m =0, . . . , N − 2.

(3.22)

3.3.2. Absorption of Remnant Terms II Estimate (3.20) is still insufficient as
yet the solution appears on the right-hand side of the estimate (forming the last
line). The absorption of this last line is indeed more complicated and demands to
specifically choose the weights α. In order to understand the choices made, we
first make additional comments on elliptic maximal regularity; in fact, one can get
control on u from control on the functions w(n).
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Proposition 3.1. Suppose that k ∈ N0, � ∈ R\K∞, and u : (0,∞) → R is smooth
satisfying

D�u(x) =
∑
i∈K�

ui i
�xi + o(x�) as x ↘ 0 (3.23)

for all � = 0, . . . , k + m with m �
∣∣K�

∣∣ (cf. (2.3) for the definition of K�). Then
for any polynomial Q(ζ ) = ∏m

�=1(ζ − ζ�) with real zeros ζ1, . . . , ζm such that
K� ⊂ {ζ1, . . . , ζm} and � /∈ {ζ1, . . . , ζm}, we have

∣∣∣∣∣∣u −
∑
i∈K�

ui xi

∣∣∣∣∣∣
k+m,�

�k,� |Q(D)u|k,� . (3.24)

A proof in a similar case can be found in [10, Lem. 7.2]. It is an immediate conse-
quence of a version of Hardy’s inequality:

Lemma 3.1. For any w ∈ C∞((0,∞)), γ, � ∈ R with γ �= �, |w|1,� < ∞, and
w(x) = o(x�) as x ↘ 0 (x ↗ ∞) if γ < � (γ > �), we have

|w|1,� �γ,� |(D − γ )w|� . (3.25)

For a particular admissible exponent i ∈ K∞\{0}, wemay choose the weights i ±δ.
Both i +δ and i −δ appear in the coercivity range of p(D −i�) or p(D −i�−1)
(these contain the intervals (i� − 1, i�) and (i�, i� + 1)). Having control on

∫ ∞

0
t2i−1

∣∣∣w(i�)
∣∣∣2
k(i�,0,i−i�+1−δ)+4,i−δ

dt if i ∈ N0

or ∫ ∞

0
t2i+1

∣∣∣w(i�+1)
∣∣∣2
k(i�+1,0,i−i�±δ)+4,i±δ

dt else,

we obtain control on

∫ ∞

0
t2i−1

∣∣∣∣∣∣u −
∑
j∈Ki

u j x j

∣∣∣∣∣∣
2

k(i�,0,i−i�+1−δ)+4+4i�+|Ji�|,i−δ

dt for i ∈ N0

or else

∫ ∞

0
t2i−1

∣∣∣∣∣∣u −
∑
j∈Ki

u j x j

∣∣∣∣∣∣
2

k(i�+1,0,i−i�−δ)+4+4(i�+1)+|Ji�+1|,i−δ

dt,

and

∫ ∞

0
t2i−1

∣∣∣∣∣∣u −
∑
j∈Ki

u j x j − ui xi

∣∣∣∣∣∣
2

k(i�+1,0,i−i�+δ)+4+4(i�+1)+|Ji�+1|,i+δ

dt,
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respectively, by using ellipticmaximal regularity given by (3.24). It is quite apparent
that, by applying the triangle inequality, the last three terms yield control on the
coefficient ui (t) of the form:

∫∞
0 t2i−1 |ui (t)|2 dt . As we have already noted in the

introduction, for α = 1
2 and N = 1 the first term in estimate (3.20) also yields

control on supt�0 |u0(t)|2 and analogous estimates of higher-order coefficients are
possible. We will postpone the details on how to extract further control on the
coefficients to Section 3.4 (cf. Lemma 3.3).7 For the moment we just note that for
controlling the singular expansion of u, it is convenient to use spatial weights i ± δ

with i ∈ K∞\{0} in our norm.
Without further ado, we start with the choice of weights by recalling that

IN−1 ⊂ IN − 1 = {i − 1 : i ∈ IN } (cf. Fig. 2). (3.26)

We fix N0 ∈ N and are aiming at controlling expansion (2.4) up to order O
(
x N0

)
.

In view of (3.26) it is reasonable to view the set of indicesA as a subset of [0, 1]×
{1, . . . , N0}. For each (α, N ) ∈ Awe may use estimate (3.20) where α′ = α ± δ ∈
(0, 1). We distinguish between two classes of weights:

(a) By the above considerations on estimating the coefficients and in view of the
fact that (3.26) holds true, we start by including (α, N ) with
� α ∈ (

IN0 − N0 + 1
) ∪ {β} and N = 2, . . . , N0,

� α ∈ ((
IN0 − N0 + 1

) ∪ {β}) ∩ ( 1
2 , 1

)
and N = 1,

� as well as (α, N ) = (0, N ) with N = 2, . . . , N0,

� and (α, N ) = (1, N ) with N = 1, . . . , N0 − 1,
in the set A. Thus we are already able to control all coefficients ui (t) with
N0 > i > 1

2 .
(b) In all these cases, we need to be able to absorb the respective remnant terms

forming the last line of (3.20). Since the weight in the norm is shifted by − 1
2 ,

this requires to include (α, N ) with
� α ∈ ((

IN0 − N0 + 1
2

) ∪ {β − 1
2 }
) ∩ (

0, 1
2

)
and N = 2, . . . , N0,

� α ∈ (
IN0 − N0 + 3

2

) ∩ ( 1
2 , 1

)
and N = 1, . . . , N0 − 1,

� as well as (α, N ) = ( 1
2 , N

)
with N = 1, . . . , N0,

in A.

Now that we have chosen the set of weightsA, we need to ensure that the absorption
mechanism for the last line of (3.20) works. This requires some additional condi-
tions on the number of derivatives k(n, m, α′). We note that since β is irrational,
by choosing δ > 0 sufficiently small we have α′ �= 1

2 for all (α, N ) ∈ A. For
(α, N ) ∈ A such that α + N � 2, we need to distinguish between three cases (cf.
Fig. 4):

(a) If α′ > 1
2 , we can absorb the remnant in the last line of (3.20) through

7 Indeed, sufficiently strong estimates on them are essential for proving appropriate esti-
mates for the nonlinearity (cf. Proposition 4.1).
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Fig. 4. Schematic: absorption of remnant terms II. Each node+ corresponds to an estimate of
the form (3.20) (with n = N −m). The displayed arrows visualize the absorptionmechanism
starting with N = 7, m = 3, and α′ > 1

2 . The symbol⊗ denotes a shift of α by− 1
2 (keeping

n and m fixed). The remnant at the base of the arrow (forming the last line in (3.20)) is
absorbed by the corresponding estimate (3.20) at the tip of the arrow under the assumption
that (3.27), (3.28), and (3.29), respectively, holds true

∫ ∞

0
t2(α+N )−4

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+2,α′+N−m− 3

2

dt

�
∫ ∞

0
t
2
(
α− 1

2+N
)
−3
∣∣∣∂m

t w(N−m)
∣∣∣2
k
(

N−m,m,α′− 1
2

)
+4,α′− 1

2+N−m−1
dt,

where the second line of the inequality appears on the left-hand side of (3.20)
with α replaced by α − 1

2 . This requires that the indices obey

k

(
N − m, m, α′ − 1

2

)
� k

(
N − m, m, α′)− 2 if α′ ∈

(
1

2
, 1

)
.

(3.27)

Indeed one may verify that by construction in all such cases
(
α − 1

2 , N
) ∈ A.

(b) If α′ < 1
2 and N − m � 2, we can absorb the remnant term in (3.20) through∫ ∞

0
t2(α+N )−4

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+2,α′+N−m− 3

2

dt

�
∫ ∞

0
t
2
(
(α+ 1

2 )+(N−1)
)
−3
∣∣∣∂m

t w((N−1)−m)
∣∣∣2
k
(
(N−1)−m,m,α′+ 1

2

)
+4,α′+ 1

2 +(N−1)−m−1
dt,

where the last line of the estimate appears on the left-hand side of (3.20) with
α replaced by α+ 1

2 and N replaced by N −1. In view of (3.18), this requires
the constraint

k

(
N − m − 1, m, α′ + 1

2

)
� k

(
N − m, m, α′)+ 2 + |IN−m |

if α′ ∈
(
0,

1

2

)
. (3.28)

Again, by construction we have
(
α + 1

2 , N − 1
) ∈ A.
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(c) If α′ < 1
2 and N −m = 1, necessarilym � 1 andwe can estimate the remnant

in (3.20) by
∫ ∞

0
t2(α+N )−4

∣∣∣∂m
t w(1)

∣∣∣2
k(1,m,α′)+2,α′− 1

2

dt

�
∫ ∞

0
t
2
(
(α+ 1

2 )+N−1
)
−3
∣∣∣∂(m−1)+1

t w(1)
∣∣∣2
k
(
1,m−1,α′+ 1

2

)
,α′+ 1

2−1
dt.

Here, the second line in the estimate is controlled in (3.20) with α+ 1
2 instead

of α and m replaced by m − 1. Yet, the absorption only works if the indices
obey

k

(
1, m − 1, α′ + 1

2

)
� k(1, m, α′) + 2 if α′ ∈

(
0,

1

2

)
. (3.29)

The above argumentation shows that we can restrict our considerations to the
cases in which α ∈ ( 1

2 , 1
)
, N = 1, and m = 0 since in the case α = 1

2 , the
remnant term in (3.20) disappears. The remaining terms can be treated by applying
an anisotropic version of Hardy’s inequality:

Lemma 3.2. Suppose v : (0,∞)2 → R is smooth, � ∈ N0, and α ∈ ( 1
2 , 1

)
. Then

∫ ∞

0
t2α−2 |v|2

�,α− 1
2±δ

dt �
∫ ∞

0
|∂tv|2

�,− 1
2±δ

dt +
∫ ∞

0
|v|2

�+1, 12±δ
. (3.30)

A proof can be found in [10, Lem. 7.5]. The remnant in (3.20) for (N , m) = (1, 0)
is of the form ∫ ∞

0
t2α−2

∣∣∣w(1)
∣∣∣2
k(1,0,α′)+2,α′− 1

2

dt

and can be absorbed by estimate (3.20) with α = 1
2 and N = 1, that is,

∫ ∞

0
t2α−2

∣∣∣w(1)
∣∣∣2
k(1,0,α′)+2,α′− 1

2

dt �
∫ ∞

0

∣∣∣∂tw
(1)
∣∣∣2
k,− 1

2±δ
dt

+
∫ ∞

0

∣∣∣w(1)
∣∣∣2
k+4, 12±δ

dt, (3.31)

where we write k := k
(
1, 0, 1

2 ± δ
)
(assuming that the values for + and − coin-

cide), provided we have

k � k
(
1, 0, α′)+ 2 if α′ ∈

(
1

2
, 1

)
and α �= 1

2
. (3.32)

By summing over all estimates (3.20) with (α, N ) ∈ A and α′ = α±δ ∈ (0, 1),
and fulfilling conditions (3.22), (3.27), (3.28), (3.29), and (3.32), we obtain

|||u|||∗ �
∣∣∣
∣∣∣
∣∣∣u(0)

∣∣∣
∣∣∣
∣∣∣∗,0

+ ||| f |||∗,1, (3.33)
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where

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣2∗,0

:=
∣∣∣w(0,0)

∣∣∣2
k+2, 12−δ

+
∣∣∣w(0,0)

∣∣∣2
k+2, 12+δ

with w(0,0) := p(D)u(0)

(3.34)

is the norm for the initial data,

|||u|||2∗ :=
∑

(α,N )∈A
α′=α±δ∈(0,1)

sup
t�0

t2(α+N )−3
N−1∑
m=0

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+2,α′+N−m− 3

2

+
∑

(α,N )∈A
α′=α±δ∈(0,1)

∫ ∞

0
t2(α+N )−3

N−1∑
m=0

∣∣∣∂m+1
t w(N−m)

∣∣∣2
k(N−m,m,α′),α′+N−m−2

dt

+
∑

(α,N )∈A
α′=α±δ∈(0,1)

∫ ∞

0
t2(α+N )−3

N−1∑
m=0

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+4,α′+N−m−1

dt

(3.35)

is the norm for the solution u (with w(n) defined in (3.18b)), and

||| f |||2∗,1 :=
∑

(α,N )∈A
α′=α±δ∈(0,1)

∫ ∞

0
t2(α+N )−3

N−1∑
m=0

∣∣∣∂m
t r (N−m)

∣∣∣2
k(N−m,m,α′),α′+N−m−1

dt

(3.36)

is the norm for the right-hand side f (with r (n) defined in (3.18c)).
Now we make a further assumption, that is, we assume

k(n, m, α′) is constant for α′ ∈
(
0,

1

2

)
, and α′ ∈

(
1

2
, 1

)
respectively,

except for half integers α ∈
{
0,

1

2
, 1

}
.

(3.37)

One may verify that thus still conditions (3.22), (3.27), (3.28), (3.29), and (3.32)
can be satisfied (see below).

3.3.3. Maximal Regularity for the Linear Equation Further applying elliptic
maximal regularity given by Proposition 3.1, we infer that the norms |||·|||0 and
|||·|||∗,0, |||·||| and |||·|||∗, as well as |||·|||1 and |||·|||∗,1, respectively, are equivalent,
where |||·|||0 is given by (1.16), that is,

∣∣∣
∣∣∣
∣∣∣u(0)

∣∣∣
∣∣∣
∣∣∣2
0

:=
∣∣∣u(0)

∣∣∣2
k+6,−δ

+
∣∣∣u(0) − u(0)

0

∣∣∣2
k+6,δ

,
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the norm |||·||| for the solution u is given by

|||u|||2 :=
∑

(α,N )∈A
α′=α±δ∈(0,1)

sup
t�0

t2(α+N )−3
N−1∑
m=0

∣∣∣∣∣∣∣
∂m

t u −
∑

i<α′+N−m− 3
2

dm ui

dtm
xi

∣∣∣∣∣∣∣

2

�(N−m,m,α′)+2,α′+N−m− 3
2

+
∑

(α,N )∈A
α′=α±δ∈(0,1)

∫ ∞

0
t2(α+N )−3

N−1∑
m=0

∣∣∣∣∣∣∂
m+1
t u −

∑
i<α′+N−m−2

dm+1ui

dtm+1 xi

∣∣∣∣∣∣
2

�(N−m,m,α′),α′+N−m−2

dt

+
∑

(α,N )∈A
α′=α±δ∈(0,1)

∫ ∞

0
t2(α+N )−3

N−1∑
m=0

∣∣∣∣∣∣∂
m
t u −

∑
i<α′+N−m−1

dm ui

dtm
xi

∣∣∣∣∣∣
2

�(N−m,m,α′)+4,α′+N−m−1

dt

(3.38)

with (cf. (3.17) and (3.18))

�(n, m, α′) := k(n, m, α′) + |Jn| + 4n, (3.39)

and the norm |||·|||1 for the right-hand side f reads

||| f |||21 :=
∑

(α,N )∈A
α′=α±δ∈(0,1)

∫ ∞

0
t2(α+N )−3

N−1∑
m=0

∣∣∣∣∣∣∂
m
t f −

∑
β<i<α′+N−m−1

dm fi

dtm
xi

∣∣∣∣∣∣
2

�(N−m,m,α′),α′+N−m−1

dt.

(3.40)

Consequently, (3.33) turns into the maximal-regularity estimate

|||u||| �
∣∣∣∣∣∣∣∣∣u(0)

∣∣∣∣∣∣∣∣∣
0
+ ||| f |||1. (3.41)

For convenience, we summarize the conditions on the numbers �(n, m, α′):
�(n, m, α′) is constant for all α′ ∈ (

0, 1
2

)
and α′ ∈ ( 1

2 , 1
)
, respectively, except

for α ∈ {
0, 1

2 , 1
}
. Furthermore, the following inequalities (through (3.39) equiva-

lent to (3.22), (3.27), (3.28), (3.29), and (3.32)) must hold:

�(N − m − 1, m + 1, α′) � �(N − m, m, α′) − 4 for N − m � 2, (3.42a)

�

(
N − m, m, α′ − 1

2

)
� �

(
N − m, m, α′)− 2

if α′ ∈
(
1

2
, 1

)
and α + N � 2, (3.42b)

�

(
N − m − 1, m, α′ + 1

2

)
� �

(
N − m, m, α′)− 2

if α′ ∈
(
0,

1

2

)
, N − m � 2, (3.42c)
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�

(
1, m − 1, α′ + 1

2

)
� �

(
1, m, α′)+ 2 if α′ ∈

(
0,

1

2

)
and m � 1,

(3.42d)

k � �
(
1, 0, α′)− 2 if α′ ∈

(
1

2
, 1

)
and α �= 1

2
.

(3.42e)

It is apparent that conditions (3.42) can be fulfilled and non-negativity of
k
(
n, m, α′) can be ensured (cf. (3.39)) if we explicitly choose (cf. (3.17b) for

the definition of Jn)

�
(
n, m, α′) := 8N0 + ∣∣JN0

∣∣+ 2 − 22 (n + m + α′)� for α /∈
{
0,

1

2
, 1

}
,

(3.43a)

�
(
n, m, α′) := 10N0 + ∣∣JN0

∣∣+ 6 − 6 (n + m + α) for α ∈
{
0,

1

2
, 1

}
,

(3.43b)

so that k = 10N0 + ∣∣JN0

∣∣− 7. This choice is also compatible with the “nonlinear”
conditions (4.1), which are necessary for the treatment of the nonlinearityN (u) in
Section 4.

3.4. Properties of the Parabolic Norms and Definition of Function Spaces

In this subsection we summarize some of the properties of the parabolic norms
|||·|||, |||·|||0, and |||·|||1 (cf. (1.16), (3.38), (3.40)).
Lemma 3.3. For given N0 ∈ N and locally integrable u, f : (0,∞)2 → R such
that the generalized power series (2.4) is valid to order O(x N0) almost everywhere,
the following estimates (with constants independent of f and u) hold true:
∫ ∞

0
t2i+2m−1

∣∣∣∣d
mui

dtm
(t)

∣∣∣∣
2

dt � |||u|||2 for i ∈ KN0−m\{0} and m ∈ N0,

(3.44a)

sup
t�0

t2i+2m
∣∣∣∣d

mui

dtm
(t)

∣∣∣∣
2

� |||u|||2 for i ∈ KN0−m− 1
2

and m ∈ N0,

(3.44b)∫ ∞

0
t2i+2m−1

∣∣∣∣d
m fi

dtm
(t)

∣∣∣∣
2

dt � ||| f |||21 for i ∈ KN0−m\{0, β} and m ∈ N0.

(3.44c)

Furthermore, for any locally integrable u(0) : (0,∞) → R such that u(0)
0 =

limx↘0 u(0)(x) exists, we have
∣∣∣u(0)

0

∣∣∣ �
∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
0 (where the constant is indepen-

dent of u(0)).



1312 Manuel V. Gnann

Proof. The estimate for u(0) has already been proven in [10, Lem. 4.3 (a)]. Esti-
mates (3.44) for the coefficients follow quite elementarily by the same reasoning
as in the proof of [10, Lem. 4.3 (b)]:

For estimate (3.44a) we take (α, N ) ∈ A with α + N − m − 1 = i and i /∈ N0
and obtain:∣∣∣∣d

mui

dtm

∣∣∣∣
2

�
∫ 2

1
2

∣∣∣∣d
mui

dtm

∣∣∣∣
2

dx

�
∫ 2

1
2

∣∣∣∣∣∣∂
m
t u −

∑
j<α+N−m−1−δ

dmu j

dtm
x j

∣∣∣∣∣∣
2

dx

+
∫ 2

1
2

∣∣∣∣∣∣∂
m
t u −

∑
j<α+N−m−1−δ

dmu j

dtm
x j − dmui

dtm
xi

∣∣∣∣∣∣
2

dx

�

∣∣∣∣∣∣∂
m
t u −

∑
j<α+N−m−1−δ

dmu j

dtm
x j

∣∣∣∣∣∣
2

�(N−m,m,α−δ)+4,α+N−m−1−δ

+
∣∣∣∣∣∣∂

m
t u −

∑
j<α+N−m−1+δ

dmu j

dtm
x j

∣∣∣∣∣∣
2

�(N−m,m,α+δ)+4,α+N−m−1+δ

.8

Multiplying with the time weight t2(α+N )−3 and integrating in time, we obtain
(3.44a) (cf. (3.38)). For proving estimate (3.44b), we take (α, N ) ∈ A with α +
N − m − 3

2 = i and the same reasoning as above (taking the sup in time instead
of integrating) leads to estimate (3.44b). The proof of (3.44c) is the same as for
(3.44a). ��

Estimates (3.44) will turn out to be relevant for estimating the nonlinearity.
However, they are also convenient in order to define appropriate spaces for our
solution and the right-hand side. As in the case of standard Sobolev spaces there
are two possible approaches.

On the one hand, onemay define for a locally integrable function u : (0,∞)2 →
R its distributional derivatives and take the infimum over all possible coefficients
ui : (0,∞) → R in the definition of the norm |||u||| in (3.38). It is apparent from
(3.38) that if |||u||| < ∞, the coefficients ui are uniquely defined almost everywhere.
This corresponds to the definition of the W -scale in the standard theory of Sobolev
spaces.

On the other hand, it was shown in [10, Lem. B.4] for N0 = 1 that one can
approximate any locally integrable u : (0,∞)2 → Rwith |||u||| < ∞ by a sequence(
u(ν) : (0,∞)2 → R

)
ν∈N of more regular functions u(ν) fulfilling:

(a) u(ν) ∈ C∞((0,∞)2) ∩ C0
0 ([0,∞)2);

8 The assumption i /∈ N0 is merely for notational simplicity. The reader may verify that
the reasoning works in the same way for i ∈ N0.
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(b) for every t ∈ [0,∞) we have u(ν)(t, x) = u(ν)
0 (t) + u(ν)

β (t)xβ for x �ν 1,

where u(ν)
0 , u(ν)

β : (0,∞) → R are smooth;

(c)
∣∣∣∣∣∣u − u(ν)

∣∣∣∣∣∣ → 0 as ν → ∞.

Taking the closure of all u : (0,∞)2 → R with (a), (b), and (c) with respect to
|||·||| (with N0 = 1), we end up with the analogue of what one commonly refers to
as the H -scale of Sobolev spaces. Lemma B.4 of reference [10] then states that for
N0 = 1 indeed H = W holds.9

Unlike in [10], where it turned out to be more convenient to rely on the W -
approach of Sobolev spaces, we will employ the H -approach in what follows.

Definition 3.1. Suppose N0 ∈ N and δ > 0 is chosen sufficiently small. Further-
more suppose that conditions (3.42) are fulfilled (cf. (3.43) for a specific choice):

(a) We define the space U0 of initial data u(0) as the closure of all u(0) ∈
C∞((0,∞)) ∩ C0

0 ([0,∞)) with u(0)(x) = u(0)
0 + u(0)

β xβ for x � 1 with
respect to |||·|||0 (cf. (1.16)).

(b) The solution space U is defined as the closure with respect to |||·||| (cf. (3.38))
of all u ∈ C∞ (

(0,∞)2
)∩ C0

0

([0,∞)2
)
such that u(t, x) = ∑

i∈KN0
ui (t)xi

for x � 1, where the ui : (0,∞) → R are smooth functions of time.
(c) The space F of right-hand sides f is defined as the closure with respect to

|||·|||1 (cf. (3.40)) of all f ∈ C∞ (
(0,∞)2

)∩C0
0

([0,∞)2
)
such that f (t, x) =∑

i∈KN0\{0,β} fi (t)xi for x � 1, where the fi : (0,∞) → R are smooth.

Wemark that in viewofLemma3.3 the coefficientsui ,u
(0)
0 , and fi of the generalized

power series are also defined (at least almost everywhere in time t) for functions
u, u(0), and f , respectively, for which |||u|||, ∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
0, and ||| f |||1, respectively, is

finite.
Next we also provide another estimate that in particular guarantees control of

the norm supt�0 ‖u‖, where
‖u‖ := sup

x>0
|u(x)| (3.45)

denotes the ∞-norm in space x . By approximation this also implies continuity of
u and derivatives if u ∈ U .

Lemma 3.4. Suppose that N0 ∈ N, m ∈ {0, . . . , N0−1}, and � ∈ {0, . . . , � (1, m,
1
2 ± δ

)+ 1
}
. Then we have

sup
t�0

t2m
∥∥∥∂m

t D�u
∥∥∥2 + sup

t�0
t2m

∥∥∥∂m
t D�(u − u0)

∥∥∥2 � |||u|||2 for all u ∈ U,

(3.46)

where the constant in the estimate is independent of u.

9 This is also true for the norm |||·|||0 as shown in [10, Lem. B.3].
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Proof. A proof for an analogous estimate is contained in [10, est. (8.5)] so that we
only sketch the arguments here. First we may show that, passing to the logarithmic
variable s := ln x and using a cut-off argument in combination with the standard
embedding H1(R) ↪→ C0(R), the following estimates hold

‖v − v0‖(0,1] � |v − v0|1,δ and ‖v‖[1,∞) � |v|1,−δ for any locally integrable v,

(3.47)

where the constants are independent of δ and ‖v‖A := supx∈A |v(x)| for any set
A ⊂ (0,∞). Estimate (3.47) in combination with Lemma 3.3 shows

supt�0 t2m
∥∥∥∂m

t D�(u − u0)

∥∥∥2

� sup
t�0

t2m
∥∥∥∥∂m

t D�u − δ�,0
dmu0

dtm

∥∥∥∥
2

(0,1]
+ sup

t�0
t2m

∣∣∣∣d
mu0

dtm

∣∣∣∣
2

+ sup
t�0

t2m
∥∥∥∂m

t D�u
∥∥∥2[1,∞)

(3.44b), (3.47)
� sup

t�0
t2m

(∣∣∣∣∂m
t u − dmu0

dtm

∣∣∣∣
2

�+1,δ
+ ∣∣∂m

t u
∣∣2
�+1,−δ

)
+ |||u|||2

(3.38)
� |||u|||2.

By the triangle inequality and again using estimate (3.44b), we obtain (3.46).

3.5. Rigorous Treatment of the Linear Equation

In this section we prove our main result for the linear equation:

Proposition 3.2. Suppose N0 ∈ N and δ > 0 is chosen sufficiently small.
Furthermore, suppose that conditions (3.42) are fulfilled (cf. (3.43) for explic-
itly chosen indices). Then for any f ∈ F and u(0) ∈ U0 there exists exactly one
solution u = S

[
u(0), f

] ∈ U of the linear degenerate-parabolic problem (2.1).
This solution fulfills the maximal-regularity estimate (3.41).

Proof of Proposition 3.2. The statement is the generalization of [10, Prop. 7.6]
for N0 = 1 to arbitrary N0 ∈ N. Since our Banach spaces U and F are nested for
increasing N0, uniqueness is already clear and it remains to prove existence. As
Proposition 3.2 for N0 = 1 is already proven, there exists a unique solution u of
(2.1) lying in the space U for N0 = 1. By approximation (cf. Definition 3.1), we
may without loss of generality assume that f ∈ C∞ (

(0,∞)2
) ∩ C0

0 ([0,∞)) and

u(0) ∈ C∞ ((0,∞))∩C0
0 ([0,∞)), with the expansions u(0)(x) = u(0)

0 +u(0)
β xβ for

x � 1, and f (t, x) = ∑
i∈KN0\{0,β} fi (t)xi for x � 1, where the fi : (0,∞) → R

are smooth functions of time. By standard parabolic theory in the bulk and using
[10, Prop. 7.6] also u ∈ C∞ (

(0,∞)2
) ∩ C0

0

([0,∞)2
)
with u(t, x) = u0(t) +

uβ(t)xβ + o
(
xβ
)
as x ↘ 0.
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AQualitative Argument for Regularity Here we argue why the solution indeed
has additional spatial regularity. As we have observed before, this requires higher
regularity in time. At the basis of our reasoning is the existence and uniqueness
result for the linear problem (2.1) given by [10, Prop. 7.6]. In particular we have
finiteness of
∫ ∞

0
t2β−1

∣∣∣∂tw
(1)
∣∣∣2
k(1,0,β±δ),β−1±δ

dt
(3.18b)∼

∫ ∞

0
t2β−1 |∂t u|2�(1,0,β±δ),β−1±δ dt

and thus we may use finiteness of the norms |∂t u|2�(1,0,β±δ),β−1±δ for some time
t = τ > 0 to solve

x∂t (∂t u) + p(D)(∂t u) = ∂t f for t > τ and x > 0

and infer that ∂t u has additional regularity for times t > τ . In principle such a
reasoning is possible but as it was noted already in [10, Sec. 2], the arguments
there10 were also suitable to obtain finiteness of the integrals

∫ ∞

0
t
∣∣∣∂tw

(1)
∣∣∣2
k(1,0,1−δ),−δ

dt ∼
∫ ∞

0
t |∂t u|2�(1,0,1−δ),−δ dt (3.48a)

and

∫ ∞

0
t
∣∣∣∂tw

(2)
∣∣∣2
k(2,0,δ),δ

dt ∼
∫ ∞

0
t

∣∣∣∣∂t u − du0

dt

∣∣∣∣
2

�(2,0,δ),δ
dt. (3.48b)

Now we may use finiteness of the norms |∂t u|�(1,0,1−δ),−δ and
∣∣∣∂t u − du0

dt

∣∣∣
�(2,0,δ),δ

for some time τν > 0 with τν ↘ 0 as ν → ∞. Applying [10, Prop. 7.6] implies that
also |||∂t u(· + τν)||| for N0 = 1 (and with appropriately chosen derivative numbers)
is finite.11 In fact, since the arguments in [10, Sec. 7] were also applicable for
general weights in the interval

( 1
2 , 1

)
, we also obtain

sup
t�τν

(t − τν)
2α−1

∣∣∣∂tw
(1)
∣∣∣2
k(1,1,α′),α′−1

dt < ∞

10 We refer to the discussion in [10, Sec. 2, Eqs. (2.8)–(2.12)] and the (rigorous) time
discretization in [10, Prop. 7.6]. Utilizing the linear equations (3.5) and (3.6) (where

v(1) (3.18)= w(1) and the difference between v(2) and w(2) is immaterial due to the
choice of the weight 1 + δ < 2β), the integrals in (3.48) are finite through con-

trol of the spatial integrals
∫∞
0 t

(∣∣∣v(1)
∣∣∣2
k(1,0,1−δ)+4,1−δ

+
∣∣∣g(1)

∣∣∣2
k(1,0,1−δ),1−δ

)
dt and

∫∞
0 t

(∣∣∣w(2)
∣∣∣2
k(2,0,δ)+4,1+δ

+
∣∣∣r (2)

∣∣∣2
k(2,0,δ),1+δ

)
dt , respectively.

11 Notice that the solution of [10, Prop. 7.6] coincides with ∂t u, because uniqueness under
the assumption

∫∞
τν

|∂t u|�(1,0,1−δ),−δ dt < ∞ holds true as can be seen in the uniqueness
proof for [10, Prop. 7.6].
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and ∫ ∞

τν

(t − τν)
2α−1

(∣∣∣∂2t w(1)
∣∣∣2
k(1,1,α′),α′−1

+
∣∣∣∂tw

(1)
∣∣∣2
k(1,1,α′),α′

)
dt < ∞

for all admissible weights α. In particular the integral
∫ ∞

τν

(t − τν)

∣∣∣∂2t w(1)
∣∣∣2
k(1,1,1−δ),−δ

dt ∼
∫ ∞

τν

(t − τν)

∣∣∣∂2t u
∣∣∣2
�(1,1,1−δ),−δ

dt

is finite and we may argue as above that

∫ ∞

τν

(t − τν)

∣∣∣∂2t w(2)
∣∣∣2
k(2,1,δ),δ

dt ∼
∫ ∞

τν

(t − τν)

∣∣∣∣∂2t u − d2u0

dt2

∣∣∣∣
2

�(2,1,δ),δ
dt

is finite. Hence
∣∣∂2t u

∣∣
�(1,1,1−δ),−δ

< ∞ and
∣∣∣∂2t u − d2u0

dt2

∣∣∣
�(2,1,δ),δ

< ∞ for some

t = τ̃ν > τν , where τ̃ν ↘ 0 as ν → ∞. Apparently the reasoning can be boot-
strapped and (taking the limit ν → ∞) we obtain

sup
t�τ

∣∣∣∂m
t w(1)

∣∣∣2
k(1,m,α′)+2,α′− 1

2

< ∞,

∫ ∞

τ

∣∣∣∂m+1
t w(1)

∣∣∣2
k(1,m,α′),α′−1

dt < ∞,

(3.49a)

and ∫ ∞

τ

∣∣∣∂m
t w(1)

∣∣∣2
k(1,m,α′)+4,α′ dt < ∞ (3.49b)

for all τ > 0, all m = 0, . . . , N0 − 1, and all admissible α.
In order to obtain additional spatial regularity, we first observe

∫ ∞

τ

∣∣∣∂m+1
t w(2)

∣∣∣2
k(2,m,α′),α′ dt

(3.22)
�

∫ ∞

τ

∣∣∣∂m+1
t w(1)

∣∣∣2
k(1,m+1,α′)+4,α′ dt < ∞ for all τ > 0.

Then we may use

∂m
t v(3) (3.18)= p(D − 2)∂m

t w(2)

(3.16)= ∂m
t r (2) + xq2(D)∂m+1

t v(2) − x∂m+1
t w(2) for t, x > 0

and therefore∣∣∣∂m
t v(3)

∣∣∣
k(2,m,α′),α′+1

�
∣∣∣∂m

t r (2)
∣∣∣
k(2,m,α′),α′+1

+
∣∣∣q2(D)∂m+1

t v(2)
∣∣∣
k(2,m,α′),α′

+
∣∣∣∂m+1

t w(2)
∣∣∣
k(2,m,α′),α′

(3.18),(3.22)
�

∣∣∣∂m
t r (2)

∣∣∣
k(2,m,α′),α′+1

+
∣∣∣∂m+1

t w(1)
∣∣∣
k(1,m+1,α′)+4,α′ .
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Since by construction
∫∞
τ

∣∣∂m
t r (2)

∣∣2
k(2,m,α′),α′+1 dt < ∞ (cf. (3.36)) and because

of (3.49b), we also have

∫ ∞

τ

∣∣∣∂m
t v(3)

∣∣∣2
k(2,m,α′),α′+1

dt < ∞ for all τ > 0.

Our aim is to show
∣∣∣∂m

t w(2)
∣∣∣
k(2,m,α′)+4,α′+1

�
∣∣∣∂m

t v(3)
∣∣∣
k(2,m,α′),α′+1

for t > 0. (3.50)

This follows by applying elliptic regularity of p(D − 2) (Proposition 3.1), but care
has to be taken as the decay assumptions (3.23) have to be satisfied: As in the
proof of [10, Lem. B.3] we may approximate ∂m

t v(3) by a sequence of functions
ψ(ν) ∈ C∞

0 ((0,∞)) in the norm |·|k(2,m,α′),α′+1. Solving p(D − 2)ω(ν) = ψ(ν) as
in [10, Lem. B.3], we find a smooth solution ω(ν) such that D�ω(ν) = O(x2)

as x ↘ 0 and D�ω(ν) = O
(

x
3
2−β

)
as x ↗ ∞ for all � � 0. By Propo-

sition 3.1,
∣∣∣ω(ν) − ω(ν′)

∣∣∣
k(2,m,α′)+4,α′+1

�
∣∣∣ψ(ν) − ψ(ν′)

∣∣∣
k(2,m,α′),α′+1

→ 0 as

ν, ν′ → ∞ and hence
∣∣ω(ν) − ω

∣∣
k(2,m,α′)+4,α′+1 → 0 as ν → ∞ for some

locally integrable ω. Since
∣∣ω(ν)

∣∣
k(2,m,α′)+4,α′+1 �

∣∣ψ(ν)
∣∣
k(2,m,α′),α′+1, in par-

ticular |ω|k(2,m,α′)+4,α′+1 �
∣∣∂m

t v(3)
∣∣
k(2,m,α′),α′+1 for t > 0 by continuity of the

norms. Hence, for establishing (3.50) it remains to prove

ω = ∂m
t w(2) almost everywhere. (3.51)

Note that

p(D − 2)(ω − ∂m
t w(2)) = p(D − 2) lim

ν→∞ ω(ν) − ∂m
t v(3)

= lim
ν→∞ ψ(ν) − ∂m

t v(3) = 0

almost everywhere and hence

ω − ∂m
t w(2) ∈ ker p(D − 2) = span

{
x2, xβ+2, x

3
2−β, x

1
2

}
. (3.52)

Because of
∣∣∂m

t w(2)
∣∣
1−δ

�
∣∣∂m

t w(1)
∣∣
4+|I2|,1−δ

< ∞, it is necessary that ∂m
t w(2) =

o
(
x1−δ

)
as x ↘ 0 and x ↗ ∞ for t > 0. Together with |ω|k(2,m,α′)+4,α′+1 < ∞,

we therefore have

ω − ∂m
t w(2) = o(x1−δ) as x ↘ 0 and ω − ∂m

t w(2) = o(x2−δ) as x ↗ ∞

almost everywhere in t > 0. In view of (3.52), this implies (3.51).

Finiteness of supt�τ

∣∣∂m
t w(2)

∣∣2
k(2,m,α′)+2,α′+ 1

2
for τ > 0 can be obtained by the

standard trace estimate
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sup
t�τ

∣∣∣∂m
t w(2)

∣∣∣2
k(2,m,α′)+2,α′+ 1

2

�
∫ ∞

τ

(∣∣∣∂m+1
t w(2)

∣∣∣2
k(2,m,α′),α′ +

∣∣∣∂m
t w(2)

∣∣∣2
k(2,m,α′)+4,α′+1

)
dt.

A proof is contained for example in [10, Lem. B.2].
Apparently the argument can be boot-strapped and we obtain

sup
t�τ

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+2,α′+N−m− 3

2

< ∞, (3.53a)

∫ ∞

τ

∣∣∣∂m+1
t w(N−m)

∣∣∣2
k(N−m,m,α′),α′+N−m−2

dt < ∞, (3.53b)

and ∫ ∞

τ

∣∣∣∂m
t w(N−m)

∣∣∣2
k(N−m,m,α′)+4,α′+N−m−1

dt < ∞ (3.53c)

for all τ > 0, all N = 1, . . . , N0, m = 0, . . . , N − 1, and all admissible α.

Proof of Estimate (3.33) Now we consider Equation (3.16), where r (n), v(n),
and w(n)—defined through (3.18)—are smooth. We are aiming at deriving esti-
mate (3.19). Therefore it is more convenient to use the logarithmic variable
s := ln x , for which Equation (3.16) reads

es∂m+1
t w(n) + p(∂s − n)∂m

t w(n) = ∂m
t r (n) + esqn(∂s)∂

m+1
t v(n) (3.54)

for t > 0 and s ∈ R. In order to simplify the notation, we write

ω := ∂m
t w(n), P(ζ ) := p(ζ − n), and ϕ := ∂m

t r (n) + esqn(∂s)∂
m+1
t v(n),

(3.55)

that is, Equation (3.54) can be rephrased as

es∂tω + P(∂s)ω = ϕ for t > 0 and s ∈ R. (3.56)

We take a cut off η ∈ C∞(R) with η � 0, η(s) ≡ 1 for |s| � 1, and η(s) ≡ 0 for
|s| � 2. Let ηR(s) := η(s/R) and test equation (3.56) with e−2μsη2Rω in L2(Rs),
where μ is in the coercivity range of P(ζ ) (we specifically choose μ := α′ + n − 1
later on). Thus we arrive at

1

2

d

dt

∫
R

e
−2

(
μ− 1

2

)
s
η2Rω2ds +

∫
R

e−2μsη2RωP(∂s)ω ds =
∫
R

e−2μsη2Rϕω ds.

Now we commute one factor ηR with the differential operator P(∂s). Since in the
commutator of ηR and P(∂s) at least one derivative acts on ηR , we obtain through
integration by parts

1

2

d

dt

∫
R

e
−2

(
μ− 1

2

)
s
(ηRω)2ds +

∫
R

e−2μs(ηRω)P(∂s)(ηRω) ds
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� 1

2ε

∫
R

e−2μs(ηRϕ)2 ds + ε

2

∫
R

e−2μs(ηRω)2 ds

+ C

R

∫ 2R

−2R
e−2μs

(
ω2 + (∂sω)2 + (∂2s ω)2

)
ds,

where C > 0 is independent of R and ε > 0 is arbitrary.12 As a next step, we use
coercivity of P(∂s) and obtain

d

dt

∫
R

e
−2

(
μ− 1

2

)
s
(ηRω)2ds +

∫
R

e−2μs
(
(ηRω)2 + (∂sηRω)2 + (∂2s ηRω)2

)
ds

�
∫
R

e−2μs(ηRϕ)2 ds + C

R

∫ 2R

−2R
e−2μs

(
ω2 + (∂sω)2 + (∂2s ω)2

)
ds.

(3.57)

Estimate (3.57) is a basic estimate that has to be combined with a higher-order
estimate to arrive at (3.19). Therefore, we again consider Equation (3.56) and
apply the operator e−2μs(∂s − 1)κ+2ηR to it (where κ = k(n, m, α′)). Testing with
∂κ+2

s (ηRω) in L2(Rs), we obtain after integrating by parts and using a standard
interpolation estimate

d

dt

∫
R

e
−2

(
μ− 1

2

)
s
(
∂κ+2

s (ηRω)
)2

ds +
∫
R

e−2μs
(
∂κ+4

s (ηRω)
)2

ds

� ε−1
κ∑

j=0

∫
R

e−2μs
∣∣∣∂ j

s (ηRϕ)

∣∣∣2 ds + ε

κ+4∑
j=0

∫
R

e−2μs
(
∂

j
s (ηRω)

)2
ds

+ 1

R

∫ 2R

−2R
e−2μs

(
ω2 + (∂κ+4

s ω)2
)
ds, (3.58)

where ε > 0 is arbitrary. Using (3.57), (3.58), and interpolating, we obtain, after
undoing the transformation s = ln x ,

d

dt
|ηRω|2

κ+2,μ− 1
2

+ |ηRω|2κ+4,μ � |ηRϕ|2κ,μ + 1

R
|η2Rω|2κ+4,μ .

Multiplying with t2σ , where σ := α+n +m − 3
2 and integrating in time (assuming

τ ′ > τ > 0), we obtain

sup
t∈[τ,τ ′]

t2σ |ηRω|2
κ+2,μ− 1

2
+
∫ τ ′

τ

t2σ |ηRω|2κ+4,μ dt

� τ 2σ
∣∣ηRω|t=τ

∣∣2
κ+2,μ− 1

2
+
∫ τ ′

τ

t2σ |ηRϕ|2κ,μ dt

+ 2σ
∫ τ ′

τ

t2σ−1 |ηRω|2
κ+2,μ− 1

2
dt + 1

R

∫ τ ′

τ

t2σ |η2Rω|2κ+4,μ dt. (3.59)

12 All constants and estimates in this part only depend on κ and μ.
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Due to (3.53) and (3.55) all terms appearing in (3.59) remain finite in the limit
R → ∞ (note that |η2Rω|κ+4,μ �

∣∣∂m
t w(n)

∣∣
k(n,m,α′)+4,α′+n−1 for t > 0) so that

we obtain

sup
t∈[τ,τ ′]

t2σ |ω|2
κ+2,μ− 1

2
+
∫ τ ′

τ

t2σ |ω|2κ+4,μ dt

� τ 2σ
∣∣ω|t=τ

∣∣2
κ+2,μ− 1

2
+
∫ τ ′

τ

t2σ |ϕ|2κ,μ dt + 2σ
∫ τ ′

τ

t2σ−1 |ω|2
κ+2,μ− 1

2
dt.

Undoing the notational change (3.55) and increasing the set
[
τ, τ ′], we end up with

(3.19), provided that for α + n + m > 3
2

τ 2σ
∣∣ω|t=τ

∣∣2
κ+2,μ− 1

2
= τ 2(α+n+m)−3

∣∣∣∂m
t w

(n)
|t=τ

∣∣∣2
k(n,m,α′)+2,α′+n− 3

2

→ 0 as τ ↘ 0

(3.60)

holds true at least for a subsequence. This is already clear for (n, m) = (1, 0) and
α′ ∈ ( 1

2 , 1
)
from the extension of the discretization argument in [10, Sec. 7]. From

(3.19) for (n, m) = (1, 0), we get

∫ ∞
0

t2α−1
(∣∣∣∂tw

(1)
∣∣∣2
k(1,0,α′),α′−1

+
∣∣∣w(1)

∣∣∣2
k(1,0,α′)+4,α′

)
dt < ∞ for α′ ∈

(
1

2
, 1

)
.

(3.61)

Utilizing
∫ ∞

0
t2α

∣∣∣w(2)
∣∣∣2
k(2,0,α′)+2,α′+ 1

2

dt

(3.28)
�

∫ ∞

0
t2α

∣∣∣w(1)
∣∣∣2
k
(
1,0,α′+ 1

2

)
+4,α′+ 1

2

dt < ∞ for α′ ∈
(
0,

1

2

)
,

weconclude that (3.60) holds for (n, m) = (2, 0) andα′ ∈ (
0, 1

2

)
, too.Additionally,

we have ∫ ∞

0
t2α

∣∣∣∂tw
(1)
∣∣∣2
k(1,1,α′)+2,α′− 1

2

dt

(3.29)
�

∫ ∞

0
t
2
(
α+ 1

2

)
−1
∣∣∣∂tw

(1)
∣∣∣2
k
(
1,0,α′+ 1

2

)
,
(
α′+ 1

2

)
−1

dt
(3.61)
< ∞

for α′ ∈ (
0, 1

2

)
, that is, (3.60) also holds for (n, m) = (1, 1) and α′ ∈ (

0, 1
2

)
.

Next, (3.19) yields
∫ ∞

0
t2α+1

(∣∣∣∂2t w(1)
∣∣∣2
k(1,1,α′),α′−1

+
∣∣∣∂tw

(1)
∣∣∣2
k(1,1,α′)+4,α′

)
dt < ∞ for α′ ∈

(
0,

1

2

)
.

(3.62)
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As ∫ ∞

0
t2α+1

∣∣∣∂tw
(1)
∣∣∣2
k(1,1,α′)+2,α′− 1

2

dt

(3.27)
�

∫ ∞

0
t
2
(
α− 1

2

)
+2
∣∣∣∂tw

(1)
∣∣∣2
k
(
1,1,α′− 1

2

)
+4,α′− 1

2

dt
(3.62)
< ∞

for α′ ∈ ( 1
2 , 1

)
, (3.60) is true for (n, m) = (1, 1) and α′ ∈ ( 1

2 , 1
)
and (3.19) yields

∫ ∞

0
t2α+1

(∣∣∣∂2t w(1)
∣∣∣2
k(1,1,α′),α′−1

+
∣∣∣∂tw

(1)
∣∣∣2
k(1,1,α′)+4,α′

)
dt < ∞ for α′ ∈

(
1

2
, 1

)
.

(3.63)

Since we also have∫ ∞

0
t2α+1

∣∣∣∂tv
(2)
∣∣∣2
k(2,0,α′)+|I2|−1,α′ dt

(3.22)
�

∫ ∞

0
t2α+1

∣∣∣∂tw
(1)
∣∣∣2
k(1,1,α′)+4,α′ dt

(3.62)
< ∞

for α′ ∈ (
0, 1

2

)
, we get from (3.19)

∫ ∞
0

t2α+1
(∣∣∣∂tw

(2)
∣∣∣2
k(2,0,α′),α′ +

∣∣∣w(2)
∣∣∣2
k(2,0,α′)+4,α′+1

)
dt < ∞ for α′ ∈

(
0,

1

2

)
.

(3.64)

This enables us to estimate∫ ∞

0
t2α

∣∣∣w(2)
∣∣∣2
k(2,0,α′)+2,α′+ 1

2

dt

(3.27)
�

∫ ∞

0
t
2
(
α− 1

2

)
+1
∣∣∣w(2)

∣∣∣2
k
(
2,0,α′− 1

2

)
+4,

(
α′− 1

2

)
+1

dt
(3.64)
< ∞

for α′ ∈ ( 1
2 , 1

)
, thus proving (3.60) with (n, m) = (2, 0) and α′ ∈ ( 1

2 , 1
)
.

Induction on n + m verifies (3.60) for all α + n + m > 3
2 .

Now, starting from (3.19), we follow the reasoning of Section 3.3 and arrive at
estimate (3.33).

Proof of Estimate (3.41) To obtain the desired maximal-regularity estimate
(3.41), we only need to be able to apply Proposition 3.1, that is, we need to verify
(3.23). We exemplify the reasoning by treating the last line of (3.35). For a fixed
value (α, N ) ∈ A it suffices to show

D�∂m
t u =

∑
i<�

dmui

dtm
i�xi + o

(
x�
)

as x ↘ 0, (3.65)

where� := α′+N −m−1,α′ = α±δ ∈ (0, 1), and � = 0, . . . , k
(
N − m, m, α′)+

4.
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Due to |||u|||∗ < ∞, we have D�∂m
t w(N−m)(x) = o(x�) as x ↘ 0. This

implies D�∂m
t u(x) = D�π(m)(x)+ D�ũ(x), where D�ũ(x) = o(x�) as x ↘ 0 and

π(m)(x) is a solution of the homogeneous equation P(D)π(m) = 0 with P(ζ ) :=(∏N−m−1
k=0 p(ζ − k)

) (∏
i∈JN−m

(ζ − i)
)
(cf. (3.18b)). Henceπ(m) = ∑

j
dm u j
dtm x j ,

where theu j are smooth functions of time t and j is a zero of the polynomial P(ζ ). In
fact, the set of admissible exponents j is smaller. Sincewe know that Proposition 3.2

also holds for N0 = 1, we need to have π(m)(x) = dm u0
dtm + dmuβ

dtm xβ + o(xβ) as
x ↘ 0. Hence j ∈ {0, β} or β < j < N0.

Now suppose that β < j < N0 and j /∈ KN0 . Since x j does not appear in the

expansion of f , we obtain from the linear equation (2.1a)
du j−1
dt + p( j)u j ≡ 0, that

is, if
dm u j
dtm �≡ 0 necessarily

dm u j−1
dtm �≡ 0. This implies j − j� ∈ {0, β} (as otherwise

negative j would appear) thus contradicting the assumption j /∈ KN0 (cf. (2.3)).
Hence indeed (3.65) holds true and Proposition 3.1 yields estimate (3.41).

4. The Nonlinear Problem

4.1. The Main Results

In this section we prove our main theorem. For the treatment of the nonlinear
problem (1.11), we need additional assumptions on the numbers �(n, m, α) which
we already state here:

�
(
N − m, m′, α′) � �

(
N − m, m, α′) for m′ � m − 1, (4.1a)

�

(
1, m′, 1

2
± δ

)
� �

(
N − m, m, α′)

2
+ 1 where

{
0 � m′ � m,

α′ + N − m − 1 < β,

(4.1b)

�

(
1, m′, 1

2
± δ

)
� �

(
N − m, m, α′)+ 3 where

{
0 � m′ � m,

α′ + N − m − 1 > β,

(4.1c)

�

(
N − m, m, α′ − 1

2

)
� �

(
N − m, m, α′)+ 2 for all α′ ∈

(
1

2
, 1

)
, (4.1d)

�

(
N − m − 1, m, α′ + 1

2

)
� �

(
N − m, m, α′)+ 2 for all α′ ∈

(
0,

1

2

)
, N − m � 2,

(4.1e)
k � �

(
1, m, α′)− 2 for all α′ > β and m � 0, (4.1f)

� (1, 0, 1 − δ) � �
(
1, m, α′)+ 2, N − m � 2,

� (2, 0, δ) � �
(
1, m, α′)+ 2

}
for all α′ > β and m �1.

(4.1g)

For the explicit choice (3.43), we are indeed able to fulfill the “linear” conditions
(3.42) and the “nonlinear” conditions (4.1). The relevance of conditions (4.1) will
become clear in the proof of the main estimate for the nonlinearity (cf. Proposi-
tion 4.1). The aim of this section is to show the following statement:
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Theorem 4.1. Suppose N0 ∈ N0 and further suppose that conditions (3.42) and
(4.1) are fulfilled (cf. (3.43) for an explicit choice). Then there exist ε > 0 and δ > 0
such that for any u(0) ∈ U0 with

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣
0 � ε (cf. (1.16)) problem (1.11) has a

unique solution u ∈ U. This solution obeys the a-priori estimate |||u||| �
∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
0

(cf. (3.38)) with a constant independent of u(0).

It is quite apparent that Theorem 4.1 (with N0 replaced by N0 + 1) yields Theo-
rem 2.1 (the regularity and decay properties of ui = ui (t) and RN0 = RN0(x, t) in
(2.4) follow fromLemma 3.3 and the definition of |||·|||, cf. (3.38), by approximation
with smooth functions as given in Definition 3.1). Theorem 4.1 in turn has already
been proven for N0 = 1 in [10, Th. 3.1] so that in particular uniqueness holds
true. The fact that existence also holds in a smaller space follows by applying the
following proposition:

Proposition 4.1. Suppose that N0 ∈ N and δ > 0 is chosen sufficiently small.
Furthermore, suppose that conditions (3.42) and (4.1) are fulfilled (cf. (3.43) for
an explicit choice). Then the following estimate for the nonlinearity N (u) (defined
in (1.9) and (1.13)) holds true:

|||N (u)|||1 � max
m=2,5

|||u|||m for any u ∈ U, (4.2)

where the constant in the estimate is independent of u.

Before proving Proposition 4.1, we show how it can be used to prove Theorem 4.1:

Proof of Theorem 4.1. In Proposition 3.2 we have constructed a solution operator
S : U0 × F → U to the linear problem (2.1), so that the nonlinear problem (1.11)
is equivalent to

u = S
[
u(0),N (u)

]
. (4.3)

This fixed-point problem can be solved by applying the contraction-mapping the-
orem, which for N0 = 1 has indeed been carried out in the proof of [10, Th. 3.1]
under the assumption of small data u(0). This implies that for

∣∣∣∣∣∣u(0)
∣∣∣∣∣∣
0 � 1 the

sequence
(
u(ν)

)
ν∈N defined through

u(1) := S[u(0), 0] and u(ν+1) := S
[
u(0),N

(
u(ν)

)]
for ν � 1 (4.4)

converges in U for N0 = 1 to the unique solution u. In particular u(ν) converges
point-wise to u (cf. Lemma 3.4). For an arbitrary N0 � 1 we note that since
u(ν) ∈ U , applying the maximal-regularity estimate (3.41) (cf. Proposition 3.2)
and the nonlinear estimate (4.2) (cf. Proposition 4.1), we obtain

∣∣∣∣∣∣∣∣∣u(1)
∣∣∣∣∣∣∣∣∣ � C

∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣
0

and
∣∣∣∣∣∣∣∣∣u(ν+1)

∣∣∣∣∣∣∣∣∣ � C

(∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣
0
+ max

m=2,5

∣∣∣∣∣∣∣∣∣u(ν)
∣∣∣∣∣∣∣∣∣m

)
for ν � 1, (4.5)



1324 Manuel V. Gnann

where C > 0 is independent of u(ν). Assuming ε � (4C2)−1 and 2C � 1,
estimates (4.5) upgrade to

∣∣∣
∣∣∣
∣∣∣u(1)

∣∣∣
∣∣∣
∣∣∣ � 1

4C
and

∣∣∣
∣∣∣
∣∣∣u(ν+1)

∣∣∣
∣∣∣
∣∣∣ � 1

4C
+ C max

m=2,5

∣∣∣
∣∣∣
∣∣∣u(ν)

∣∣∣
∣∣∣
∣∣∣m for ν � 1. (4.6)

Inequalities (4.6) in turn imply

∣∣∣∣∣∣∣∣∣u(ν)
∣∣∣∣∣∣∣∣∣ � 1

2C
for all ν � 1. (4.7)

By weak-∗-compactness, u(ν) has a subsequence that converges in the weak-∗-
topology of U to the unique limit u and therefore u ∈ U . By weak-∗ lower semi-
continuity of the norm |||·|||, estimate (4.7) implies

|||u||| � 1

2C
. (4.8)

Applying the maximal-regularity estimate (3.41) (cf. Proposition 3.2) and the non-
linear estimate (4.2) (cf. Proposition 4.1) once more to the fixed-point equation
(4.3), we obtain

|||u||| � C

(∣∣∣∣∣∣∣∣∣u(0)
∣∣∣∣∣∣∣∣∣
0
+ max

m=2,5
|||u|||m

)
,

which, in view of (4.8) and since 2C � 1, upgrades to |||u||| �
∣∣∣∣∣∣u(0)

∣∣∣∣∣∣
0. ��

4.2. Nonlinear Estimates

We conclude the paper with estimating the nonlinear part N (u) of equa-
tion (2.1a):

Proof of Proposition 4.1. We repeat some of the observations on the formal struc-
ture of the nonlinearity N (u) that are contained in [10, Sec. 8].

The Formal Structure of the Nonlinearity We recall that the nonlinearityN (u)

can be written as

N (u)
(1.13)= p(D)u − Msym(1 + u, . . . , 1 + u),

where p(D)u = 5Msym(u, 1, . . . , 1) and Msym is the symmetrization of M.
Since we know

Msym(1, . . . , 1)
(1.9)= 0, (4.9)

we can conclude that by multi-linearity N (u) is a linear combination of terms of
the form

Msym

(
u, u, ω(3), ω(4), ω(5)

)
with ω(3), ω(4), ω(5) ∈ {1, u}.13 (4.10)
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As u can be decomposed into u = (u − u0) + u0, once more appealing to (4.9)
and using multi-linearity, we infer from (4.10) that N (u) is a linear combination
(with constant coefficients) of terms of the form

Msym

(
u − u0, ω

(2), . . . , ω(5)
)

with ω(2) ∈ {u0, u − u0}, ω(3), ω(4), ω(5) ∈ {1, u0, u − u0}. (4.11)

For the first entry of Msym in (4.11) we may further use u − u0 = (u − u0 −
uβ xβ) + uβ xβ and the fact that Msym(xβ, 1, . . . , 1) = 1

5 p(D)xβ (1.12)= 0. Thus
N (u) is a linear combination (with constant coefficients) of terms of the form

Msym

(
u − u0 − uβ xβ, ω(2), . . . , ω(5)

)

with ω(2) ∈ {u0, u − u0}, ω(3), ω(4), ω(5) ∈ {1, u0, u − u0}. (4.12a)

or

Msym

(
uβ xβ, u − u0, ω

(3), ω(4), ω(5)
)

with ω(3), ω(4), ω(5) ∈ {1, u0, u − u0}.
(4.12b)

The Norms In view of the definition of the norm |||·|||1 in (3.40), it suffices to
estimate the expression

∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣∂
m
t N (u) −

∑
β<i<α′+N−m−1

dm(N (u))i

dtm
xi

∣∣∣∣∣∣
2

�,α′+N−m−1

dt,

(4.13)

where � = �(N − m, m, α′) and as in (2.4) almost everywhere

N (u) =
∑

i∈KN0

(N (u))i x i + O
(

x N0
)

as x ↘ 0 and t > 0,

for each (α, N ) ∈ Awith α′ = α±δ ∈ (0, 1) andm ∈ {0, . . . , N −1} individually.
We distinguish between sub- and super-critical terms, that is, terms for which either
α′ + N − m − 1 < β or α′ + N − m − 1 > β.

13 The identity (4.9) holds, as the single factor D appears once, because the traveling wave
uTW ≡ 0 is a solution of the nonlinear problem (1.11).
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Estimating the Sub-critical Terms In this case, the sum
∑

β<i<α′+N−m−1
dm (N (u))i

dtm xi is identically zero. It is convenient to use the decomposition (4.11)
for the nonlinearity N (u), so that by distributing the D-derivatives and applying
the triangle inequality, it suffices to estimate

∫ ∞

0
t2(α+N )−3

∣∣∣∂m
t

(
ω(1) · · ·ω(5)

)∣∣∣2
α′+N−m−1

dt,

where

ω(1) = D�1(u − u0) with 0 � �1 � � + 4,

ω(2) ∈
{

u0, D�2(u − u0)
}

with 0 � �2 � � + 4

2
,

ω( j) ∈
{
1, u0, D� j (u − u0)

}
with 0 � � j � � + 4

3
for j � 3.

Now we distribute the time derivatives on the individual factors, so that it suffices
to estimate

∫ ∞

0
t2(α+N )−3

∣∣∣ω(1) · · · ω(5)
∣∣∣2
α′+N−m−1

dt,

with new factors ω( j) obeying

ω(1) = ∂
m1
t D�1(u − u0) with 0 � �1 � � + 4 and 0 � m1 � N − 1,

ω(2) ∈
{
dm2u0

dtm2
, ∂

m2
t D�2(u − u0)

}
with 0��2 � � + 4

2
and 0�m2 � N − 1,

ω( j) ∈
{
δm j ,0,

dm j u0

dtm j
, ∂

m j
t D� j (u − u0)

}

with 0 � � j � � + 4

3
and 0 � m j � N − 1 for j � 3,

where
∑5

j=1 m j = m. This enables us to obtain the following bound:

∫ ∞

0
t2(α+N )−3

∣∣∣ω(1) · · · ω(5)
∣∣∣2
α′+N−m−1

dt

�
∫ ∞

0
t2(α+N−m+m1)−3

∣∣∣ω(1)
∣∣∣2
α′+N−m−1

dt

×
5∏

j=2

sup
t�0

t2m j

∥∥∥ω( j)
∥∥∥2 , (4.14)

where ‖v‖ := supx<0 |v(x)|. Then we note that
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∫ ∞

0
t2(α+N−m+m1)−3

∣∣∣ω(1)
∣∣∣2
α′+N−m−1

dt

�
∫ ∞

0
t2(α+N−m+m1)−3

∣∣∂m1
t u

∣∣2
�(N−m,m1,α′)+4,α′+N−m−1 dt

� |||u|||2
for the first term on the right-hand side of (4.14), provided that condition (4.1a) is
fulfilled.

We now turn our attention to the termsω( j) with j � 2 in (4.14). Ifω( j) = dm j u0
dtm j

we have supt�0 t2m j
∥∥ω( j)

∥∥2 � |||u|||2 by estimate (3.44b) of Lemma 3.3. Finally, if

ω( j) = ∂
m j
t D� j (u−u0), Lemma 3.4 yields supt�0 t2m j

∥∥ω( j)
∥∥2 � |||u|||2, provided

that condition (4.1b) is fulfilled.
In summary, we can estimate the term in (4.13) in the sub-critical case α′ +

N − m − 1 < β as follows:

∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣∂
m
t N (u) −

∑
β<i<α′+N−m−1

dm(N (u))i

dtm
xi

∣∣∣∣∣∣
2

�,α′+N−m−1

dt

� |||u|||4 ×
(
1 + |||u|||6

)
, (4.15)

where � = �(N − m, m, α′).

Estimating the Super-critical Terms Wenowaim at estimating terms of the form
(4.13) with � = �(N −m, m, α′) for each (α, N ) ∈ Awith α′ = α±δ ∈ (0, 1) and
m ∈ {0, . . . , N − 1}, where we assume α′ + N − m − 1 > β (the “super-critical”
terms). Here we use the decomposition of N (u) in the form (4.12), that is, the
super-critical terms (4.13) can be estimated by a sum of terms of the form

∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣∂
m
t

(
ω(1) · · · ω(5)

)
−

∑
i<α′+N−m−1

dm

dtm

(
ω(1) · · · ω(5)

)
i

x i

∣∣∣∣∣∣
2

α′+N−m−1

dt,

(4.16)

where one of the following two situations occurs:

(a) The ω( j) obey (cf. (4.12a))

ω(1) = D�1(u − u0 − uβ xβ) with 0 � �1 � � + 4,

ω(2) ∈
{

u0, D�2(u − u0)
}

with 0 � �2 � � + 4,

ω( j) ∈
{
1, u0, D� j (u − u0)

}
with 0 � � j � � + 4

2
for j � 3.

(b) The ω( j) obey (cf. (4.12b))

ω(1) = uβ xβ,

ω(2) = D�2(u − u0) with 0 � �2 � � + 4,

ω( j) ∈
{
1, u0, D� j (u − u0)

}
with 0 � � j � � + 4

2
for j � 3.
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Estimating (4.16) for Terms of the Form (a) As a first step, we distribute the time
derivatives on the individual factors ω( j) so that terms of the form (4.16) fulfilling
(a) can be estimated by a sum of terms of the form

∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣ω
(1) · · · ω(5) −

∑
i<α′+N−m−1

(
ω(1) · · · ω(5)

)
i

x i

∣∣∣∣∣∣
2

α′+N−m−1

dt,

(4.17)

where the ω( j) are given by

ω(1) = ∂
m1
t D�1(u − u0 − uβ xβ) with 0 � �1 � � + 4 and 0 � m1 � m,

ω(2) ∈
{
dm2u0

dtm2
, ∂

m2
t D�2(u − u0)

}
with 0 � �2 � � + 4 and 0 � m2 � m,

ω( j) ∈
{
δm j ,0,

dm j u0

dtm j
, ∂

m j
t D� j (u − u0)

}

with 0 � � j � � + 4

2
and 0 � m j � m for j � 3,

with
∑5

j=1 m j = m. Since β > 1
2 , we have ω

(1)
i ≡ 0 for i < 1 (cf. (2.3) for the

definition of admissible exponents i). Hence we may decompose ω(1) according to

ω(1) =
⎛
⎝ω(1) −

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1

⎞
⎠+

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1 ,

and instead of terms of the form (4.17), we may estimate terms of the structure

∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣
⎛
⎝ω(1) −

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1

⎞
⎠ω(2) · · · ω(5)

∣∣∣∣∣∣
2

α′+N−m−1

dt,

(4.18a)

and

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

i1

∣∣∣2
∣∣∣∣∣∣ω

(2) · · · ω(5) −
∑

i<α′+N−m−1−i1

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−i1

dt,

(4.18b)

respectively, where in the latter case 1 � i1 < α′ + N − m − 1. Furthermore, the

term (4.18b) identically vanishes if ω( j) ∈
{
δm j ,0,

dm j u0
dtm j

}
for all j � 2, so that we

may assume ω(2) = ∂
m2
t D�2(u − u0) in this case.

We begin by estimating terms of the form (4.18a) through
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∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣
⎛
⎝ω(1) −

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1

⎞
⎠ω(2) · · ·ω(5)

∣∣∣∣∣∣
2

α′+N−m−1

dt

�
∫ ∞

0
t2(α+N−m+m1)−3

∣∣∣∣∣∣ω
(1) −

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1

∣∣∣∣∣∣
2

α′+N−m−1

dt

×
5∏

j=2

sup
t�0

t2m j

∥∥∥ω( j)
∥∥∥2 .

Then we note that

∫ ∞

0
t2(α+N−m+m1)−3

∣∣∣∣∣∣ω
(1) −

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1

∣∣∣∣∣∣
2

α′+N−m−1

dt

�
∫ ∞

0
t2(α+N−m+m1)−3

∣∣∣∣∣∣∂
m1
t u −

∑
i1<α′+N−m−1

dm1ui1

dxm1
xi1

∣∣∣∣∣∣
2

�+4,α′+N−m−1

dt

� |||u|||2,

provided that the indices meet condition (4.1a). By Lemmas 3.3 and 3.4, respec-

tively, we can further bound supt�0 t2m j
∥∥ω( j)

∥∥2 � |||u|||2 for j � 2 if ω( j) �≡ 1
and we fulfill condition (4.1c).

Altogether, terms of the form (4.18a) can be bound as follows:

∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣
⎛
⎝ω(1) −

∑
1�i1<α′+N−m−1

ω
(1)
i1

xi1

⎞
⎠ω(2) · · ·ω(5)

∣∣∣∣∣∣
2

α′+N−m−1

dt

� |||u|||4 ×
(
1 + |||u|||6

)
. (4.19)

For estimating the term (4.18b), we use the L2-bound on ω
(1)
i1

, that is,

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

i1

∣∣∣2
∣∣∣∣∣∣ω

(2) · · · ω(5) −
∑

i<α′+N−m−1−i1

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−i1

dt

�
∫ ∞
0

t2m1+2i1−1
∣∣∣ω(1)

i1

∣∣∣2 dt

× sup
t�0

t2(α+N−m1−i1)−2

∣∣∣∣∣∣ω
(2) · · · ω(5) −

∑
i<α′+N−m−1−i1

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−i1

.

(4.20)
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Then we observe that by estimate (3.44a) of Lemma 3.3 we have for the second
line in (4.20)

∫ ∞

0
t2m1+2i1−1

∣∣∣ω(1)
i1

∣∣∣2 dt =
∫ ∞

0
t2m1+2i1−1

∣∣∣∣d
m1ui1

dtm1

∣∣∣∣
2

dt � |||u|||2

due to i1 + m1 < N � N0. Furthermore, we may use the decomposition

ω(2) =
⎛
⎝ω(2) −

∑
β�i2<α′+N−m−1−i1

ω
(2)
i2

xi2

⎞
⎠+

∑
β�i2<α′+N−m−1−i1

ω
(2)
i2

xi2

and therefore the last line in (4.20) reduces to estimating

sup
t�0

t2(α+N−m+m2−i1)−2

∣∣∣∣∣∣ω
(2) −

∑
β�i2<α′+N−m−1−i1

ω
(2)
i2

xi2

∣∣∣∣∣∣
2

α′+N−m−1−i1

×
5∏

j=3

sup
t�0

t2m j

∥∥∥ω( j)
∥∥∥2 (4.21a)

and

sup
t�0

t2m2+2i2
∣∣∣ω(2)

i2

∣∣∣2

× sup
t�0

t2(α+N−m1−m2−i1−i2)−2

∣∣∣∣∣∣∣
ω(3) · · · ω(5) −

∑
i<α′+N−m−1−i1−i2

(
ω(3) · · · ω(5)

)
i

xi

∣∣∣∣∣∣∣

2

α′+N−m−1−i1−i2

,

(4.21b)

where the term (4.21b) identically vanishes unless ω( j) = ∂
m j
t D� j (u − u0) for at

least one j � 3. We will assume without loss of generality ω(3) = ∂
m3
t D�3(u −u0)

in this case. Then we can decompose ω(3) into

ω(3) =
⎛
⎝ω(3) −

∑
β�i3<α′+N−m−1−i1−i2

ω
(3)
i3

xi3

⎞
⎠+

∑
β�i3<α′+N−m−1−i1−i2

ω
(3)
i3

xi3

and argue as in the previous step. Hence, in order to close the argument, we need to
estimate terms of the from (4.21a). Note that not necessarily α + N −m − 1

2 − i1 ∈
KN0 but we do know that there exist

(
α1, Ñ1

)
,
(
α2, Ñ2

)
∈ A such that

α1 + Ñ1 − m2 − 1

2
� α + N − m − i1 � α2 + Ñ2 − m2 − 1

2
(4.22)

and α j + Ñ j is maximal ( j = 1) orminimal ( j = 2) with this property, respectively,
with α′

j ∈ (0, 1) and α j ∈ {
0, 1

2 , 1
}
if α ∈ {

0, 1
2 , 1

}
. Since i1 � 1, in particular
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2α′
j� � 2α′� + 1 and Ñ j − m2 � N − m − 1 or 2α′

j� � 2α′� − 1 and

Ñ j − m2 � N − m. Further noting that

(t/x)2(α+N−m−1−i1) � (t/x)
2
(
α1+Ñ1−m2

)
−3 + (t/x)

2
(
α2+Ñ2−m2

)
−3

,

we can estimate

sup
t�0

t2(α+N−m+m2−i1)−2

∣∣∣∣∣∣ω
(2) −

∑
β�i2<α′+N−m−1−i1

ω
(2)
i2

xi2

∣∣∣∣∣∣
2

α′+N−m−1−i1

� sup
t�0

t2(α+N−m+m2−i1)−2

∣∣∣∣∣∣∂
m2
t u −

∑
i2<α′+N−m−1−i1

dm2ui2

dtm2
xi2

∣∣∣∣∣∣
2

�+4,α′+N−m−1−i1

(3,18b),(3,39)
� sup

t�0
t2(α+N−m+m2−i1)−2

∣∣∣∂m2
t w(N−m)

∣∣∣2
k(N−m,m,α′)+4,α′+N−m−1−i1

(4.1d),(4.1e)
� sup

t�0
t
2
(
α1+Ñ1

)
−3
∣∣∣∣∂m2

t w

(
Ñ1−m2

)∣∣∣∣
2

k
(

Ñ1−m2,m2,α
′
1

)
+2,α′

1+Ñ1−m2− 3
2

+ sup
t�0

t
2
(
α2+Ñ2

)
−3
∣∣∣∣∂m2

t w

(
Ñ2−m2

)∣∣∣∣
2

k
(

Ñ2−m2,m2,α
′
2

)
+2,α′

2+Ñ2−m2− 3
2

(3.18b),(3.39)
� sup

t�0
t
2
(
α1+Ñ1

)
−3

∣∣∣∣∣∣∣
∂

m2
t u −

∑
i2<α′

1+Ñ1−m2− 3
2

dm2ui2

dtm2
xi2

∣∣∣∣∣∣∣

2

�
(

Ñ1−m2,m2,α
′
1

)
+2,α′

1+Ñ1−m2− 3
2

+ sup
t�0

t
2
(
α2+Ñ2

)
−3

∣∣∣∣∣∣∣
∂

m2
t u −

∑
i2<α′

2+Ñ2−m2− 3
2

dm2ui2

dtm2
xi2

∣∣∣∣∣∣∣

2

�
(

Ñ2−m2,m2,α
′
2

)
+2,α′

2+Ñ2−m2− 3
2

(3.38)
� |||u|||2,

where Proposition 3.1 (elliptic maximal regularity) as well as conditions (4.1a),
(4.1d), and (4.1e) have been used.

Finally, the product
∏5

j=3 supt�0 t2m j
∥∥ω( j)

∥∥2 in (4.21) can be estimated as
before by using estimate (3.44b) of Lemma 3.3 and Lemma 3.4, respectively, pro-
vided condition (4.1c) is satisfied. This shows that we can bound terms of the form
(4.18b) as

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

i1

∣∣∣2
∣∣∣∣∣∣ω

(2) · · · ω(5) −
∑

i<α′+N−m−1−i1

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−i1

dt

� |||u|||4 ×
(
1 + |||u|||6

)
. (4.23)

The combination of (4.19) and (4.23) gives
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∫ ∞

0
t2(α+N )−3

∣∣∣∣∣∣ω
(1) · · · ω(5) −

∑
i<α′+N−m−1

(
ω(1) · · ·ω(5)

)
i

x i

∣∣∣∣∣∣
2

α′+N−m−1

dt

� |||u|||4 ×
(
1 + |||u|||6

)
(4.24)

for super-critical terms of type (4.17).

Estimating (4.16) for Terms of the Form (b) Distributing the time derivatives
on the factors ω( j) in (4.16) meeting (b), it suffices to estimate terms of the form

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

∣∣∣2
∣∣∣∣∣∣ω

(2) · · ·ω(5) −
∑

i<α′+N−m−1−β

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−β

,

(4.25)

where the ω( j) obey

ω(1) = dm1uβ

dtm1
with 0 � m1 � m,

ω(2) = ∂
m2
t D�2(u − u0) with 0 � �2 � � + 4 and 0 � m2 � m,

ω( j) ∈
{
δm j ,0,

dm j u0

dtm j
, ∂

m j
t D� j (u − u0)

}

with 0 � � j � � + 4

2
and 0 � m j � m for j � 3,

where
∑5

j=1 m j = m. If m1 = m = N − 1 = N0 − 1, we may use the L2-bound

on ω(1) and obtain for the term (4.25):

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

∣∣∣2
∣∣∣∣∣∣ω

(2) · · · ω(5) −
∑

i<α′+N−m−1−β

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−β

dt

�
∫ ∞
0

t2(β+N )−3
∣∣∣ω(1)

∣∣∣2 dt × sup
t�0

t2(α−β)
∣∣∣ω(2)

∣∣∣2
α′−β

×
5∏

j=3

sup
t�0

∥∥∥ω( j)
∥∥∥2 .

(4.26)

Thenwe note that we can estimate the first term in the second line of (4.26) through

∫ ∞

0
t2(β+N )−3

∣∣∣ω(1)
∣∣∣2 dt =

∫ ∞

0
t2(β+N )−3

∣∣∣∣∣
dN−1uβ

dt N−1

∣∣∣∣∣
2

dt � |||u|||2

by estimate (3.44a) of Lemma 3.3. Furthermore, since we are in the super-critical
case, we have (t/x)2(α−β) � 1 + t/x and we can bound as follows
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sup
t�0

t2(α−β)
∣∣∣ω(2)

∣∣∣2
α′−β

� sup
t�0

t2(α−β) |D(u − u0)|2�+3,α′−β

� sup
t�0

|u|2�+4,−δ + sup
t�0

|u − u0|2�+4,δ

+ (
1 − δ1,N

)
sup
t�0

t |u − u0|2�+4, 12±δ
� |||u|||2,

where Proposition 3.1 has been used and conditions (4.1f) and (4.1g) need to be
satisfied.14

The product
∏5

j=3 supt�0

∥∥ω( j)
∥∥2 in (4.26) can be estimated by employing

estimate (3.44b) of Lemma 3.3 and Lemma 3.4, respectively, if condition (4.1c)
holds true. In summary, we obtain

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

∣∣∣2
∣∣∣∣∣∣ω

(2) · · · ω(5) −
∑

i<α′+N−m−1−β

(
ω(2) · · ·ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−β

� |||u|||4 ×
(
1 + |||u|||6

)
(4.27)

in the case m1 = m = N − 1 = N0 − 1.
In all other cases, we can estimate (4.25) by taking the C0-bound on ω(1) and

get:

∫ ∞
0

t2(α+N )−3
∣∣∣ω(1)

∣∣∣2
∣∣∣∣∣∣ω

(2) · · · ω(5) −
∑

i<α′+N−m−1−β

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−β

� sup
t�0

t2m1+2β
∣∣∣ω(1)

∣∣∣2

×
∫ ∞
0

t2(α+N−m1−β)−3

∣∣∣∣∣∣ω
(2) · · · ω(5)−

∑
i<α′+N−m−1−β

(
ω(2) · · · ω(5)

)
i

xi

∣∣∣∣∣∣
2

α′+N−m−1−β

dt.

(4.28)

Then we notice

sup
t�0

t2m1+2β
∣∣∣ω(1)

∣∣∣2 = sup
t�0

t2m1+2β
∣∣∣∣d

m1uβ

dtm1

∣∣∣∣
2

� |||u|||2

by estimate (3.44b) of Lemma 3.3. For the last line of (4.28) we may use the
decomposition

ω(2) =
⎛
⎝ω(2) −

∑
β�i2<α′+N−m−1−β

ω
(2)
i2

xi2

⎞
⎠+

∑
β�i2<α′+N−m−1−β

ω
(2)
i2

xi2 ,

14 In the special case N = 1 (that is, N0 = 1 by assumption) we have α = β and the
second summand on the right-hand side can be dropped.
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so that it suffices to estimate

∫ ∞

0
t2(α+N−m+m2−β)−3

∣∣∣∣∣∣ω
(2) −

∑
β�i2<α′+N−m−1−β

ω
(2)
i2

xi2

∣∣∣∣∣∣
2

α′+N−m−1−β

dt

×
5∏

j=3

sup
t�0

t2m j

∥∥∥ω( j)
∥∥∥2 (4.29a)

and
∫ ∞

0
t2m2+2i2−1

∣∣∣ω(2)
i2

∣∣∣2 dt

× sup
t�0

t2(α+N−m1−m2−β−i2)−2

∣∣∣∣∣∣ω
(3) · · · ω(5) −

∑
i<α′+N−m−1−β−i2

(
ω(3) · · · ω(5)

)
i

x i

∣∣∣∣∣∣
2

α′+N−m−1−β−i2

,

(4.29b)

where the term (4.29b) is identically zero unless ω( j) = ∂
m j
t D� j (u − u0) for at

least one j � 3. Since β + i2 � 1, the expression (4.29b) can be treated in the
same way as the last two lines of (4.20).

For the term (4.29a) we can treat the product
∏5

j=3 supt�0 t2m j
∥∥ω( j)

∥∥2 as
before (by using Lemma 3.4 and estimate (3.44b) of Lemma 3.3, respectively)
given that we fulfill condition (4.1c). For treating the L2-part in (4.29a) we pick(
α1, Ñ1

)
,
(
α2, Ñ2

)
∈ A such that

α1 + Ñ1 − m2 � α + N − m − β � α2 + Ñ2 − m2 (4.30)

andα j + Ñ j is maximal ( j = 1) orminimal ( j = 2)with this property, respectively,
with α′

j ∈ (0, 1) and α j ∈ {
0, 1

2 , 1
}
if α ∈ {

0, 1
2 , 1

}
. Since β > 1

2 we have in

particular 2α′
j� � 2α′� + 1 and Ñ j − m2 � N − m − 1 or 2α′

j� � 2α′� − 1

and Ñ j − m2 � N − m. Utilizing

(t/x)2(α+N−m−β−1) � (t/x)
2
(
α1+Ñ1−m2−1

)
+ (t/x)

2
(
α2+Ñ2−m2−1

)
,

we obtain the estimate

∫ ∞

0
t2(α+N−m+m2−β)−3

∣∣∣∣∣∣ω
(2) −

∑
β�i2<α′+N−m−1−β

ω
(2)
i2

xi2

∣∣∣∣∣∣
2

α′+N−m−1−β

dt

�
∫ ∞

0
t2(α+N−m+m2−β)−3

∣∣∣∣∣∣∂
m2
t u −

∑
i2<α′+N−m−1−β

dm2ui2

dtm2
xi2

∣∣∣∣∣∣
2

�+4,α′+N−m−1−β

dt

(3.18b),(3.39)
�

∫ ∞

0
t2(α+N−m+m2−β)−3

∣∣∣∂m2
t w(N−m)

∣∣∣2
k(N−m,m,α′)+4,α′+N−m−1−β

dt

(4.31)
�

∫ ∞

0
t2(α1+Ñ1)−3

∣∣∣∣∂m2
t w

(
Ñ1−m2

)∣∣∣∣
2

k
(

Ñ1−m2,m2,α
′
1

)
+4,α′

1+Ñ1−m2−1
dt
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+
∫ ∞

0
t2(α2+Ñ2)−3

∣∣∣∣∂m2
t w

(
Ñ2−m2

)∣∣∣∣
2

k
(

Ñ2−m2,m2,α
′
2

)
+4,α′

2+Ñ2−m2−1
dt

(3.18b),(3.39)
�

∫ ∞

0
t2(α1+Ñ1)−3

∣∣∣∣∣∣∣
∂

m2
t u −

∑
i2<α′

1+Ñ1−m2−1

dm2ui2

dtm2
xi2

∣∣∣∣∣∣∣

2

�
(

Ñ1−m2,m2,α
′
1

)
+4,α′

1+Ñ1−m2−1

dt

+
∫ ∞

0
t2(α2+Ñ2)−3

∣∣∣∣∣∣∣
∂

m2
t u −

∑
i2<α′

2+Ñ2−m2−1

dm2ui2

dtm2
xi2

∣∣∣∣∣∣∣

2

�
(

Ñ2−m2,m2,α
′
2

)
+4,α′

2+Ñ2−m2−1

dt

(3.38)
� |||u|||2,

where we have used elliptic maximal regularity in the form of Proposition 3.1,
(4.1a), and the conditions

�

(
N − m, m, α − 1

2

)
� �

(
N − m, m, α′) for all α ∈

(
1

2
, 1

)
,

(4.31a)

�

(
N − m − 1, m, α + 1

2

)
� �

(
N − m, m, α′) for all α ∈

(
0,

1

2

)
.

(4.31b)

These conditions in particular hold if the stronger conditions (4.1d) and (4.1e) are
fulfilled.

In summary we obtain (4.27) for the case of arbitrary m1 and N as well.

Conclusion Gathering inequalities (4.15), (4.24), and (4.27), we obtain inequal-
ity (4.2), thus finishing the proof of Proposition 4.1. ��
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