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Abstract

This paper focuses on the stability analysis of WKB approximate solutions in
geometric optics with the absence of strong transparency conditions under the ter-
minology of Joly, Métivier and Rauch. We introduce a compatible condition and a
singular localization method which allows us to prove the stability of WKB solu-
tions over long time intervals. This compatible condition is weaker than the strong
transparency condition. The singular localization method allows us to do delicate
analysis near resonances. As an application, we show the long time approximation
of Klein–Gordon equations by Schrödinger equations in the non-relativistic limit
regime.
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1. Introduction

In this paper, we consider the long time behavior of the solutions to Cauchy
problems for symmetric hyperbolic systems of the following form:

⎧
⎨

⎩

∂tU + 1

ε
A(∂x )U + 1

ε2
A0U = B(U,U ),

U (0, ·) ∈ Hs(Rd),

(1.1)

where U (t, x) : R+ × R
d → R

N is the unknown, A(∂x ) = ∑d
j=1 A j∂x j with

A j , j = 1, . . . , d real-valued symmetric matrices, A0 is a real-valued skew-
symmetricmatrix and B(·, ·) : RN×R

N → R
N is a symmetric bilinear application.

The matrices A j are all of order N × N . The initial datum U (0) is supposed to be
in Sobolev space Hs with s sufficiently large.

1.1. Setting and Background

We will consider solutions of (1.1) having the from

U (t, x) = e−iωt/ε2U0,1(t, x) + eiωt/ε
2
U 0,1(t, x) + O(ε), (1.2)

which is highly oscillating in time with ω an appropriate characteristic temporal
frequency satisfying

det (−iω + A0) = 0, (1.3)

which is the so calleddispersion relation;ω is also called the temporalwave number.
The study of highly oscillating solutions to hyperbolic systems falls in the

framework of geometric optics. Considerable progress has recently been made
in this field, especially following the works of Joly, Métivier and Rauch in the
nineties (see for instance [3,6,7,10–12], for an overview and references therein).
In geometric optics, the main issue is the stability of a family of approximate
solutions, namely WKB solutions, and the main obstacle is the resonance. The
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hyperbolic system in (1.1) is symmetric semilinear. Then with Hs, s > d/2 initial
data, the local well-posedness is classical (see [20] or [22]). In spite of the presence
of the large prefactors 1/ε and 1/ε2, the uniform Hs estimate still holds due to
the symmetry of A j and the skew-symmetry of A0. Hence, with initial data that
are uniformly bounded in Hs, s > d/2, the classical existence time to Cauchy
problem (1.1) is O(1).

Our goal in this paper is to study the behavior of the solution to (1.1) beyond the
classical time O(1) up to long time of orders O(1/εγ ) for some γ > 0 given O(1)
initial data. This study falls in the framework beyond the weakly nonlinear regime
of geometric optics, thus the classical results, for instance [10]—geometric optics
for O(1) amplitude, but O(1) time, as well as [11]—diffractive optics for O(1/ε)
time, but O(ε) amplitude, do not apply. By assuming the global-in-time (or long
time) existence of approximate solutions, we exhibit some sufficient conditions on
(1.1), and introduce a singular localization method which allows us to make use of
such sufficient conditions to show the existence as well as the stability of solutions
over long time intervals. Such sufficient conditions are described in Section 1.2, in
particular in the keyAssumption 1.6. The singular localizationmethod is introduced
and described in Sections 5 and 6.

As an application, we show in Section 7 that in the non-relativistic limit
regime the quadratic Klein–Gordon equation can be well approximated by linear
Schrödinger equations over long time intervals of order O(1/ε).

We point out that the condition imposed in the key Assumption 1.6 is analogous
to, but weaker and more general than, the strong transparency condition exhibited
by Joly, Métivier and Rauch in [12]. The strong transparency condition allows a
control of the constructive interaction of characteristic waves at the resonances
by a normal form reduction, thus leading to the stability of approximate WKB
solutions. The transparency condition is analogous to the null conditions introduced
by Klainerman in [13]; the normal form reduction allowed by the transparency
property is analogous to the analysis of Shatah in [23]. As it will be shown in
Section 7.5, the quadratic Klein–Gordon equation satisfies the condition imposed
in Assumption 1.6 while it does not satisfy the strong transparency condition.

We also point out that the approximate linear transparency condition introduced
in [5, Assumption 1.7], which is alsoweaker than the strong transparency condition,
has similarities with our setting. To be precise, the condition in [5, Assumption 1.7]
can be recovered by taking α = 1/2 in our Assumption 1.6. We remark that in our
setting, ε corresponds to

√
ε in [5]. Moreover, the idea to decompose the integral

form into two parts (see page 31 in [5]), where one part is the integral over a
neighbourhood of resonances Dε := {η′ ∈ R

d : |ψε(εη′) ≤ √
ε|} and the other

part is the integral over the complement of Dε, is essentially of the same sprit
as our singular localization method. However, the analysis here is not simply a
generalization of the argument in [5] from α = 1/2 to general α > 0. In particular,
the singular localization method used in this paper can be employed to deal with the
Klein–Gordon-wave equations (1.10) and (1.11) studied in [5] and to show the same
stability results, but the analysis in [5] strongly relies on the typical structure of the
system which we do not assume in this paper (see Equation (1.9)). In particular,
the block diagonal structure of the differential operator and the special coupling
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structure of the nonlinear terms play a crucial role for the stability analysis argument
in [5].

The strong transparency condition ensures the stability ofWKBsolutions.How-
ever, many (most) physical models in geometric optics do not fulfill the strong
transparency condition, such as the Euler–Maxwell system, the Klein–Gordon sys-
tem, the Maxwell–Landau–Lifshitz system, the Klein–Gordon–Zakhorov system,
etc. Thus, the study of the case where the strong transparency condition is not
satisfied is highly important. In [18], Texier and the first author gave a systematic
study concerning the case with the absence of the strong transparency condition.
In particular, the article [18] contains a detailed account of how resonances may
destabilize the WKB solutions; there was exhibited an almost sufficient and nec-
essary condition for the stability of WKB solutions by giving a scalar index 	 of
which the positivity ensures instability and the negativity ensures stability.

However, the case	 = 0 is not included in the studyof [18]. The case considered
in this paper corresponds to a large family of subcases of the case 	 = 0. Even
if the scaling in this paper is different from the one in [18], the result obtained, as
well as the method used in this paper could give some clear clues for the study in
the scaling of [18] and others.

1.2. Assumptions and Main Results

In this section, we state our main assumptions and results.

1.2.1. Smooth Spectral Decomposition We first assume the symbol of the dif-
ferential operator on the left-hand side of (1.1) admits a smooth spectral decompo-
sition:

Assumption 1.1. We assume that the spectral decomposition

A(ξ) + A0/ i =
J∑

j=1

λ j (ξ)� j (ξ)

is smooth, meaning that the eigenvalues λ j (ξ) and the eigenprojectors � j (ξ) are
smooth in ξ ∈ R

d . Moreover, for any 1 ≤ j ≤ J , we suppose that λ j (·) and � j (·)
are in the classical symbol class S1 and S0, respectively.

The definition of the symbol classes Sm is classical and will be recalled in
Section 3.

1.2.2. WKB Solutions ByWKB (approximate) solutions of (1.1) we mean trun-
cated power series in ε, where each term in the series is a trigonometric polynomial
in θ := −ωt/ε2, that approximately solves (1.1). Precisely, a WKB solution Ua

has the form

Ua(t, x) =
Ka+1∑

n=0

εnUn(t, x, θ),

Un(t, x, θ) =
∑

p∈Hn

eipθUn,p(t, x), Ka ∈ Z+, Hn ⊂ Z, (1.4)
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which solves
⎧
⎨

⎩

∂tUa + 1

ε
A(∂x )Ua + 1

ε2
A0Ua = B(Ua,Ua) − εKa Rε,

Ua(0, x) = U (0, x) − εKψε(x)
(1.5)

with (Rε, ψε) bounded uniformly in ε in some Sobolev spaces. Parameters Ka

and K describe the level of precision of the WKB solution Ua . Here Hn are the
harmonics sets. In particular, in this paper, the leading harmonics set is defined as

H0 := {−1, 1} ⊂ R := {
p : det (−i pω + A0) = 0

}
.

The idea to find or construct such a WKB solution is quite straightforward, that
is to plug a solution Ua of the form (1.4) into the system (1.1), and then consider
the equations at each order εn, n = −2,−1, . . . . If one can solve the equations of
order εn up to some positive order Na , then one can solve the original system (1.1)
approximately, up to a small remainder of order O(εNa+1).

In this paper, we assume that there exits a global-in-time approximate solution
for (1.1).

Assumption 1.2. Let s > d/2. We assume the vector space ker(−iω + A0) is of
dimension one with e1 a generator of norm one. We assume there exists Ua ∈
Cb

([0,∞); Hs+1
) ∩ C1

b ([0,∞); Hs) solving (1.5) for all (t, x) ∈ (0,∞) × R
d

with Ka = 2, K = 1, and there holds the estimate

sup
0<ε<1

(‖Rε‖L∞(0,∞;Hs ) + ‖ψε‖Hs
)

< +∞. (1.6)

Moreover,Ua is of the form (1.4)withUn ∈ Cb
([0,∞); Hs+1

)∩C1
b ([0,∞); Hs) ,

0 ≤ n ≤ Ka + 1 = 3; in particular, the leading term U0 is of the form

U0 = e−iωt/ε2U0,1 + eiωt/ε
2
U0,−1, (1.7)

where

U0,1(t, x) = g1(t, x)e1, U0,−1(t, x) = g−1(t, x)e−1,

g−1 := ḡ1, e−1 = ē1 (1.8)

for some scalar function g1 ∈ Cb
([0,∞); Hs+1

) ∩ C1
b ([0,∞); Hs).

The notation ā stands for the complex conjugate of a.

Remark 1.3. To obtain our main result Theorem 1.8, the existence time and uniform
bound for Ua in Assumption 1.2 can be generalized to Ua ∈ Cb

([0, T
ε
]; Hs+1

) ∩
C1
b

([0, T
ε
]; Hs

)
satisfying the uniform estimate

‖Un‖L∞
(
[0, T

ε
];Hs+1

) + ‖∂tUn‖L∞
(
[0, T

ε
];Hs

) ≤ C < ∞

for some constant C independent of ε and some time T > 0 independent of ε.
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The local-in-time WKB solutions to (1.1) can be constructed by using stan-
dard WKB expansion under the constrain (1.9) given later on. The main point of
Assumption 1.2 is the global-in-time (or long time) existence and global-in-time
(or long time) uniform bounds for the approximate solutions.

In the sequel of this section, we impose some compatibility conditions which
ensure the existence of global-in-time approximate solutions such that Assumption
1.2 is satisfied.

Condition 1: The leading terms of the initial data satisfy:

U (0) = U0,1(0, x) +U 0,1(0, x) + O(ε) in Hs, U0,1(0, x) ∈ ker(−iω + A0).

This is often called the polarization condition.
Let πp be the orthogonal projection onto ker(−i pω + A0) and L−1

p be the
(partial) inverse of L p := (−i pω + A0) such that

πpL
−1
p = L−1

p πp = 0, L pL
−1
p = L−1

p L p = Id − πp.

Condition 2: We suppose for any p ∈ Z and any ξ ∈ R
d there holds

πp A(ξ)πp = 0. (1.9)

Condition 3: We suppose for any p ∈ Z there holds

πp

∑

p1+p2=p

B(πp1 , πp2) = 0. (1.10)

Condition 4: We suppose furthermore for any p ∈ Z and any ξ ∈ R
d that

πp A(ξ)L−1
p A(ξ)L−1

p A(ξ)πp = 0,

πp A(ξ)L−1
p

∑

p1+p2=p

B
(
πp1 , πp2

) + 2πp

∑

p1+p2=p

B
(
πp1 , L

−1
p2 A(ξ)πp2

)
= 0.

We then have

Proposition 1.4. Assumption 1.2 holds true if Condition 1, Condition 2, Condition
3 and Condition 4 are all satisfied. More precisely, we have:

(i) Under Condition 1 and Condition 2 and the additional assumption:

ker(−i pω + A0) = {0} for any p satisfying |p| ≥ 2; π0B(π1, π−1) = 0,

(1.11)

one can construct a uniformly bounded local-in-timeWKB solutionUa solving
(1.5) with arbitrary Ka and K .

(ii) Under Condition 1, Condition 2 and Condition 3, one can construct a uni-
formly bounded global-in-time WKB solution Ua solving (1.5) with Ka =
K = 1.

(iii) Under Condition 1, Condition 2, Condition 3 and Condition 4, one can con-
struct a uniformly bounded global-in-timeWKB solutionUa solving (1.5)with
Ka = 2, K = 1.
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The proof of Proposition 1.4 can be done by employing the standard WKB
expansion for whichwe give a detailed description in Section 7.4. TheWKB expan-
sion in Section 7.4 is done for a specific example instead of the general case, but the
procedure is essentially the same. So here we omit the proof of Proposition 1.4. We
point out that in statements (ii) and (iii) in Proposition 1.4, we do not need to assume
the additional assumption (1.11) to make sure the leading term of the approximate
solution has the form (1.7). Indeed, Condition 3, together with Condition 1, allows
us to choose trivial solutionsU0,p ≡ 0 for any p ∈ {−1, 1} in theWKB expansion.

Finally we give a remark concerning the conditions exhibited above.

Remark 1.5. Concerning condition (1.9), it was shown in [6,15] (see also [24,
Proposition 2.6] a unified proof for such algebraic lemmas) that for any ξ ∈ R

d ,
there holds

πp A(ξ)πp = ∇ξ λ jp (0) · ξ, (1.12)

where λ jp is the eigenmode in Assumption 1.1 such that λ jp (0) = −pω. Thus, con-
dition (1.9) means∇ξ λ jp (0) = 0. This associates with the condition in Assumption
1.5 in [5] saying that (−pω, 0) is a local extremum of every branch of the charac-
teristic defined in (2.1).

The condition in (1.10) corresponds exactly to the weak transparency condition
introduced by Joly, Métivier and Rauch in [12]. See also (2.2) for the precise
description.

1.2.3. Partially Strong Transparency Now we give our key assumption:

Assumption 1.6. For any p ∈ {−1, 1} and any 1 ≤ j, j ′ ≤ J , there exists some
constant C and 0 < α j, j ′,p ≤ 1 such that

∣
∣� j (ξ)B(ep)� j ′(ξ)

∣
∣ ≤ C |λ j (ξ) − λ j ′(ξ) − pω|α j, j ′,p , for all ξ ∈ R

d . (1.13)

The vectors e1 and e−1 are introduced inAssumption 1.2. The linear operator B(ep)
is defined as B(ep)V := B(ep, V ) for any V ∈ C

N .
Moreover, for any p ∈ {−1, 1} and any 1 ≤ j, j ′ ≤ J , the resonance set

R j, j ′,p := {ξ ∈ R
d : λ j (ξ) − λ j ′(ξ) − pω = 0} (1.14)

is compact. If R j, j ′,p = ∅, there exits c j, j ′,p > 0 such that

|λ j (ξ) − λ j ′(ξ) − pω| ≥ c j, j,p for all ξ ∈ R
d . (1.15)

Given Assumption 1.6, we further define the exponent:

α := min
j, j ′,p

α j, j ′,p. (1.16)

If α = 1, Assumption 1.6 becomes the strong transparency assumption (see
[12] and Section 2.2 later on). If α = 1/2, Assumption 1.6 implies [5, Assumption
1.7]. Because of the presence of the fractional power 0 < α ≤ 1, we may call
such condition imposed in Assumption 1.6 as the partially strong transparency
condition.
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We will show that under Assumption 1.6, the approximate solution assumed in
Assumption 1.2 is stable up to time of order O(1/εα). Now we give an additional
assumption, which allows us to show the stability up to even longer time tε which
is of order

tε = O
(
1/ε2α

)
, if α ≤ 1/2; tε = O(1/ε), if α ≥ 1/2.

Assumption 1.7. If for some ( j, j ′, p), the component α j, j ′,p in (1.13) cannot be
chosen equal to 1, we assume that either λ j or λ j ′ is identically a constant.

The case α j, j ′,p < 1 corresponds to the case where the interaction coefficient
� j (ξ)B(ep)� j ′(ξ) is not strongly transparent. Thenontransparent interaction coef-
ficients (or the resonances) happen quite often between two eigenmodes involving
a zero eigenmode. Thus, Assumption 1.7 is natural in such a sense.

1.2.4. Main Result We are ready to state our main theorem:

Theorem 1.8. Let s > d/2 and 0 < ε < ε0 with ε0 sufficient small. Under
Assumptions 1.1, 1.2 and 1.6, the Cauchy problem (1.1) admits a unique solution
U ∈ L∞([0, T1

εα ]; Hs) for some T1 > 0 independent of ε. Moreover, there holds
the error estimate

‖U −Ua‖L∞
(
[0, T1

εα
];Hs

) ≤ C ε. (1.17)

If in addition Assumption 1.7 is satisfied, the solution U ∈ L∞([0, T2
εα1 ]; Hs)

where T2 > 0 is independent of ε and

α1 := min{2α, 1}.

Moreover, there holds

‖U −Ua‖L∞
(
[0, T2

εα1
];Hs

) ≤ C ε. (1.18)

Here C is a constant independent of ε and the number α is defined in (1.16).

We remark that Theorem 1.8 shows a linear stability phenomenon.

Remark 1.9. Theorem1.8 gives an existence and stability result beyond the classical
existence time. In Assumption 1.2, the initial difference between the exact solution
and the approximate solution is of order O(ε). The estimates (1.17) and (1.18)
imply that the error stays of order O(ε) over long time intervals considered. This
means that the approximate solution is linearly stable over the corresponding long
time intervals, in the sense that the initial error is not much amplified through the
dynamics of the system.
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1.3. Structure of the Paper

In Section 2, we introduce some context of our study in geometric optics and
we also emphasize the novelty of the study in this paper. In Section 3, we recall
the concept of semiclassical Fourier multipliers and the action estimates including
a commutator estimate. Sections 4, 5 and 6 are devoted to the proof of Theorem
1.8. In Section 7, we give an application of our study in the non-relativistic limit
problem of Klein–Gordon equations.

In the sequel, we useC to denote a positive constant independent of ε. However,
the value of C may change from line to line.

2. Transparency Conditions and Stabilities

In this section, we first recall some basic concepts in geometric optics including
transparency conditions exhibited in [12] by Joly, Métivier and Rauch, and the
normal form method used to obtain the stability of WKB approximate solutions.
We then briefly recall the study in [18] and explain why the study of this paper is
important for stability analysis in geometric optics, particularly in completing the
program of [12,18].

2.1. Weak Transparency

In Section 1.2.2, we gave the definition of WKB solutions and we assumed
the existence of WKB solutions in Assumption 1.2. In [11,12], Joly, Métivier and
Rauch exhibited theweak transparency condition that allows one to constructWKB
approximate solutions. Before stating such weak transparency condition, we intro-
duce some basic concepts.

We define the characteristic variety of the differential operator in (1.1):

Char := {(τ, ξ) : det ( − iτ + A(iξ) + A0
) = 0}. (2.1)

Given a couple (τ, ξ), we denote by �(τ, ξ) the orthogonal projector onto

ker
( − iτ + A(iξ) + A0

)
.

We fix a basic characteristic space-time vector

β := (ω, k) ∈ R × R
d

satisfying the dispersion relation

det(−i pω + A(ik) + A0) = 0,

where k is called the spatial wave number andω is called the temporalwave number.
Remark that in this paper, the spatial wave number k is assumed to be zero,

since we are not considering solutions that are highly oscillating in spatial variable
(see (1.2)). However, to introduce the general concepts concerning transparency
conditions, we take general β = (ω, k).
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Now we can state the weak transparency condition introduce in [12]:
Weak transparency. For any p, p1 ∈ Z and any U, V ∈ C

N , one has
∣
∣�(p1β)B

(
�((p1 − p)β)U,�(pβ)V

)∣
∣ = 0. (2.2)

We find that this weak transparency condition corresponds to exactly the con-
dition introduced in (1.10).

2.2. Strong Transparency and Normal Form Method

Given a WKB solution, a nature question is the stability property of this WKB
solution. To this issue, one turns to consider the perturbed system. LetU andUa be
the exact solution and the WKB solution which solve (1.1) and (1.5) respectively.
Then the perturbation

U̇ := U −Ua

ε

solves
⎧
⎨

⎩

∂t U̇ + 1

ε
A(∂x )U̇ + 1

ε2
A0U̇ = 2B(Ua)U̇ + εB(U̇ , U̇ ) + εKa−1Rε,

U̇ (0, x) = εK−1ψε(x).
(2.3)

An advantage of considering the perturbed system (2.3) is that the nonlinear
term is small of order ε. The leading term becomes the linear one 2B(Ua)U̇ . How-
ever, evenwhen the parameter Ka and K are sufficiently large and theWKBsolution
Ua is uniformly bounded in proper Sobolev spaces and solves (1.5) globally in time,
the classical existence time T ∗

ε to (2.3) is at most of logarithmic order:

Ṫ ∗
ε ≥ T0| ln ε|, for some T0 > 0 independent of ε.

This logarithmic order existence time can be achieved by employing the argument
in [14] as well as in [4].

To achieve an even larger scale of the maximal existence time such as

Ṫ ∗
ε ≥ T

εγ
, for some T > 0, γ > 0 independent of ε,

as well as the uniform boundedness of the perturbation over such long time, one
needs to make use of more structure of the system (2.3). To this end, also in [12],
Joly, Métivier and Rauch introduced the strong transparency condition that allows
them to eliminate the linear leading term 2B(Ua)U̇ up to a remainder of order ε

by using a normal form method. If this can be done, the right-hand side of (2.3)1
becomes of order ε and the well-posedness over time of order 1/ε follows from the
classical theory. We recall the strong transparency condition:

Strong transparency. There exists a constant C such that for any p ∈ Z,
1 ≤ j, j ′ ≤ J , ξ ∈ R

d and U, V ∈ C
N , one has

∣
∣� j (ξ + pk)B

(
�(pβ)U,� j ′(ξ)V

)∣
∣ ≤ C |λ j (ξ + pk) − λ j ′(ξ) − pω| · |U | · |V |.

(2.4)
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In the above inequality (2.4), the terms � j (ξ + pk)B
(
�(pβ),� j ′(ξ)

)
on the

left-hand side are named interaction coefficients, and the factors λ j (ξ + pk) −
λ j ′(ξ)− pω on the right-hand side are called interaction phases. The frequencies ξ

such that λ j (ξ + pk) − λ j ′(ξ) − pω = 0 are named resonances and the ( j, j ′, p)-
resonance set is defined as

R j, j ′,p := {ξ ∈ R
d , λ j (ξ + pk) = pω + λ j ′(ξ)}. (2.5)

The equalities λ j (ξ + pk) − λ j ′(ξ) − pω = 0 are named resonance equations.
The strong transparency condition offers a control of the quantity

� j (ξ + pk)B
(
�(pβ)U0,p,� j ′(ξ)

)

λ j (ξ + pk) − λ j ′(ξ) − pω
,

which appears in the normal form reduction. The interaction phase plays the role
of divisor.

The method of a normal form reduction is essentially a change of unknown
which can be linear or nonlinear. In general, the nonlinear normal form method
needs more constrains on the structure of the equations than the linear one. In our
setting, we are trying to eliminate the linear leading term, it is possible to use the
linear version of the normal form method. The idea is to consider a change of
unknown of the following form:

U̇1 =
(
Id + ε2M

)−1
U̇ ,

with M to be determined. Then the system in U̇1 is of the form

∂t U̇1 + i

ε2
A(εDx )U̇1 = (2B(Ua) − i[A(εDx ), M]) + εR1,

where εR1 contains all the terms formally of order O(ε) and

Dx := ∂x/ i, A(ξ) := A(ξ) + A0/ i.

The goal is to find a proper operator M such that the O(1) term on the right-hand
side of (2.6) is eliminated with a small remainder. It is shown in [12], as well as
in [16–18,25], that such M can be well defined provided the strong transparency
condition is satisfied, and the linear leading term can be eliminated with an O(ε)

remainder.
Such a strong transparency condition is satisfied for some physical models,

such as the Maxwell–Bloch system (see [12]) and the one-dimensional Maxwell–
Landau–Lifshitz system (see [16]). Moreover, Texier showed that the Euler–
Maxwell equations satisfy a formof transparency [25], Cheverry,Guès andMétivier
[2] showed that for systemsof conservation laws, linear degeneracy of afield implies
transparency. However, many (most) physical models in geometric optics do not
fulfill the strong transparency condition, such as the Klein–Gordon system consid-
ered in Section 7 later on.

In this paper, we impose a weaker condition in Assumption 1.6 compared to the
strong transparency condition. A key novelty of our study is to extend the long time
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stability analysis in geometric optics under Assumption 1.6 without assuming the
strong transparency condition. Another novelty is to introduce a singular localiza-
tion method, which allows us to do delicate analysis for the interaction coefficients
near resonances in order to obtain long time stability.

2.3. Absence of Strong Transparency

In [18], Texier and the first author give a systematic study for the case where the
strong transparency condition fails to be satisfied for semilinear hyperbolic systems
of the following form:

∂tU + 1

ε
A0U +

∑

1≤ j≤d

A j∂x jU = 1√
ε
B(U,U ), (2.6)

where the constant matrix A0 is non-zero and skew-symmetric and the matrices
A j , 1 ≤ j ≤ d are constant and symmetric. Highly oscillating initial data are
considered:

U (0, x) = �e
(
a(x)eik·x/ε

) + √
εϕε(x).

Here k is the spatial wave number. Let ω be a temporal wave number satisfying the
dispersion relation:

det (−iω + A(ik) + A0) = 0.

The absence of strong transparency means that there exists ( j, j ′, p) such that
(2.4) is not satisfied. Denote J0 the set containing all such indices ( j, j ′, p) and
R j, j ′,p the ( j, j ′, p)-resonant set defined as in (2.5). If R j, j ′,p is empty, by the
regularity of λ j and � j , j = 1, . . . , J , the strong transparency condition (2.4) is
satisfied for the index ( j, j ′, p). Then for any ( j, j ′, p) ∈ J0, R j, j ′,p is not empty,
and the following quantity is well defined:

	 := sup
( j, j ′,p)∈J0

|gp(0, xp)|2

× sup
ξ∈R j, j ′,p

tr
(
� j (ξ + pk)B(ep)� j ′(ξ)B(e−p)� j (ξ + pk)

)
,

where gp comes from the polarization condition

U0,p(t, x) = gp(t, x)ep, ep ∈ ker(−i pω + A(ik) + A0),

and xp is a point where |gp(0, ·)| admits its maximum. Here U0,p are the leading
terms of the WKB solution. In [18], it is shown that the stability of the WKB
solution is determined by the sign of 	:
If 	 < 0, the perturbation system is symmetrizable and theWKB solution is stable.
If 	 > 0, it is shown that the WKB solution is unstable.

However, the degenerate case 	 = 0 is not included in the study of [18]. In
[17], the first author considered a subcase of 	 = 0, that is the case gp(0, x) = 0
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for any ( j, j ′, p) ∈ J0. Under the assumptions ∂t gp(0, x) = 0 and the positivity
of the following quantity

	̃ := sup
( j, j ′,p)∈J0

sup
ξ∈R j, j ′,p

tr
(
� j (ξ + pk)B(ep)� j ′(ξ)B(e−p)� j (ξ + pk)

)
,

the instability are discovered instantaneously, even though the equations linearized
around the leading WKB terms are initially stable.

The study of this paper corresponds to a large subcase of 	 = 0 which goes
through the case 	̃ = 0 under our key Assumption 1.6. Indeed, Assumption 1.6
states that, near resonances, the interaction coefficients� j (ξ+pk)B

(
�(pβ),� j ′(ξ)

)

cannot be controlled by the resonant phase |λ j (ξ + pk) − λ j ′(ξ) − pω|, but rather
are controlled by some fraction power of the resonant phase |λ j (ξ + pk)−λ j ′(ξ)−
pω|α, 0 < α ≤ 1. Even the scaling of this paper is different from that in [18], the
idea introduced in this paper may be well employed.

3. Semiclassical Fourier Multipliers

In this section, we introduce the basic concepts about semiclassical Fourier
multipliers, in particular the commutator estimates between a semiclassical Fourier
multiplier and a scalar function multiplier. This will be needed throughout the
paper. In the sequel of this paper, the function g, or gp in the next sections, is also
considered as the operator which consists in the multiplication by this function.

We say a smooth scalar, vector or matrix valued function σ(ξ) to be a classical
symbol of order m provided

|∂α
ξ σ (ξ)| ≤ Cα〈ξ 〉m−α, 〈ξ 〉 :=

(
1 + |ξ |2

) 1
2
, for any α ∈ N

d .

Weuse Sm to denote the set of all classical symbols of orderm. The classical Fourier
multiplier associated with a symbol σ(ξ) is denoted by σ(Dx ), and is defined as

σ(Dx )u := F−1[σ(ξ)û(ξ)] = F−1[σ ] ∗ u, (3.1)

where û(ξ) = F[u](ξ) is the Fourier transform of u and F−1 denotes the inverse of
Fourier transform.

The semiclassical Fourier multiplier associated with a symbol σ(ξ) is denoted
by σ(εDx ), and is defined as

σ(εDx )u := F−1[σ(εξ)û(ξ)] = F−1[σ(ε·)] ∗ u = ε−dF−1[σ ]
( ·
ε

)
∗ u. (3.2)

The definitions in (3.1) and (3.2) can be generated to less regular symbols σ as
long as the definitions make sense.

We now give two properties that we will use in this paper for classical and
semiclassical Fourier multipliers. The first one is rather direct:

Lemma 3.1. Let σ ∈ L∞, then for any s ∈ R and ε > 0:

‖σ(Dx )u‖Hs ≤ ‖σ(·)‖L∞‖u‖Hs , ‖σ(εDx )u‖Hs ≤ ‖σ(·)‖L∞‖u‖Hs .
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The second one is about the commutator estimates.

Lemma 3.2. Let σ ∈ C1 such that ‖∇ξ σ‖L∞ < ∞ and g(x) ∈ Hd/2+1+η0 a
scalar function for some η0 > 0. Then there holds for any s ≥ 0:

‖[σ(εDx ), g(x)]u‖Hs ≤ εCη0 2
s‖∇ξ σ‖L∞

×
(
‖g‖

H
d
2 +1+η0

‖u‖Hs + ‖g‖Hs+1‖u‖
H

d
2 +η0

)
.

The point of Lemma 3.2 is that the commutator of a semiclassical Fourier multiplier
and a regular scalar function is of order ε.

Proof of Lemma 3.2. Let

I (ξ) := F
[[σ(εDx ), g(x)]u

]
(ξ).

Then

‖[σ(εDx ), g(x)]u‖Hs = ‖〈ξ 〉s I (ξ)‖L2 .

By the definition of semiclassical Fourier multiplier, we have

I (ξ) = F[σ(εDx )(gu)] − F[gσ(εDx )(u)] = σ(εξ)F[(gu)] − F[gσ(εDx )(u)]
= σ(εξ)(ĝ ∗ û)(ξ) − (

ĝ ∗ (σ (ε·)û)
(ξ)

= σ(εξ)

∫

Rd
ĝ(η)û(ξ − η)dη −

∫

Rd
ĝ(η)σ (εξ − εη)û(ξ − η)dη

=
∫

Rd
ĝ(η) (σ (εξ) − σ(εξ − εη)) û(ξ − η)dη

=
∫

Rd
ĝ(η)

∫ 1

0
εη · (∇ξ σ )(εξ − ε(1 − t)η)dt û(ξ − η) dη.

Then

∣
∣〈ξ 〉s I (ξ)

∣
∣ ≤ ε‖∇ξ σ‖L∞

∫

Rd
〈ξ 〉s |η||ĝ(η)| |û(ξ − η)| dη

≤ ε‖∇ξ σ‖L∞
(∫

|η|> |ξ |
2

〈ξ 〉s |η||ĝ(η)| |û(ξ − η)| dη

+
∫

|η|≤ |ξ |
2

〈ξ 〉s |η||ĝ(η)| |û(ξ − η)| dη
)

≤ ε2s‖∇ξ σ‖L∞
( ∫

|η|> |ξ |
2

〈η〉s |η||ĝ(η)| |û(ξ − η)| dη

+
∫

|η|≤ |ξ |
2

〈ξ − η〉s |η||ĝ(η)| |û(ξ − η)| dη
)

≤ ε2s‖∇ξ σ‖L∞
(
|〈ξ 〉s+1ĝ(ξ)| ∗ |û(ξ)| + |ξ ĝ(ξ)| ∗ |〈ξ 〉s û(ξ)|

)
.
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Young’s inequality yields

∣
∣〈ξ 〉s I (ξ)

∣
∣
L2 ≤ ε2s‖∇ξ σ‖L∞

(
‖〈ξ 〉s+1ĝ(ξ)‖L2‖û(ξ)‖L1

+‖ξ ĝ(ξ)‖L1‖〈ξ 〉s û(ξ)‖L2
)
.

Hölder’s inequality implies

‖ξ ĝ(ξ)‖L1 ≤ Cη0‖〈ξ 〉d/2+1+η0 ĝ(ξ)‖L2 , ‖û(ξ)‖L1 ≤ Cη0‖〈ξ 〉d/2+η0 û(ξ)‖L2 .

Finally, we obtain

∣
∣〈ξ 〉s I (ξ)

∣
∣
L2 ≤ εCη02

s‖∇ξ σ‖L∞
(
‖g‖

H
d
2 +1+η0

‖u‖Hs + ‖g‖Hs+1‖u‖
H

d
2 +η0

)
.

This completes the proof of Lemma 3.2. ��

4. Perturbed System and Diagonalization

Now we start proving Theorem 1.8. From now on, we suppose Assumptions
1.1, 1.2 and 1.6 are satisfied.

4.1. Perturbed System near Approximate Solution

Associated with the approximate solution Ua given in Assumption 1.2, we
define the perturbation

U̇ := U −Ua

ε
, (4.1)

whereU ∈ C
([0, T ∗

ε ); Hs
)
is the local-in-time solution to originalCauchyproblem

(1.1). Then at least over time interval [0, T ∗
ε ), the perturbation U̇ solves

⎧
⎨

⎩

∂t U̇ + 1

ε
A(∂x )U̇ + 1

ε2
A0U̇ = 2B(Ua)U̇ + εB(U̇ , U̇ ) + εRε,

U̇ (0) = ψε,

(4.2)

where the linear operator B(Ua) is defined as

B(Ua)W := B(Ua,W ), for any W ∈ C
N .

The remainder (Rε, ψε) satisfies the uniform estimate given in (1.6).
To prove Theorem 1.8, it is sufficient to show the existence and uniform esti-

mates for the solution of (4.2) over corresponding long time intervals.
The perturbed system (4.2) has small nonlinearity of order O(ε). By careful,

rather classical analysis (L2 estimate and Grownwall’s inequality), it can be shown
that the maximal existence time, denoted by Ṫ ∗

ε , to Cauchy problem (4.2) satisfies

lim
ε→0

Ṫ ∗
ε = ∞.
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By employing the argument in [4], one can even show the existence up to time of
the logarithmic order:

Ṫ ∗
ε ≥ T0| ln ε|, for some T0 > 0 independent of ε.

To show the existence up to even longer time of order O(1/εγ ), we need to
discover more structure of the system (4.2). To this end, we will diagonalize the dif-
ferential operator on the left-hand side of (4.2) by diagonalizing the corresponding
symbol, then consider the system mode by mode.

4.2. Diagonalization

According to the smooth spectral decomposition assumed in Assumption 1.1,
we can write

A(εDx ) + A0/ i =
J∑

j=1

λ j (εDx )� j (εDx ), Dx := ∂x/ i.

We want to go deep to the structure of the system in (4.2). Hence, we consider
the system mode by mode, through the following change of unknown:

U̇1 =
⎛

⎜
⎝

U̇ 1
1
...

U̇ J
1

⎞

⎟
⎠ :=

⎛

⎜
⎝

�1(εDx )U̇
...

�J (εDx )U̇

⎞

⎟
⎠ ∈ R

J N . (4.3)

We remark that, by Lemma 3.1,� j (εDx ), 1 ≤ j ≤ J are linear operators bounded
from Hs to Hs for any s ∈ R. Hence

‖U̇1(t, ·)‖Hs ≤ C‖U̇ (t, ·)‖Hs , for any s ∈ R and any t ≥ 0.

Conversely, we can reconstruct U̇ via U̇1:

U̇ :=
J∑

j=1

U j
1

due to the fact

J∑

j=1

� j = Id.

We observe that

B(Ua) = B(U0) + εB(Ur ), Ur := U1 + εU2 + ε2U3. (4.4)

Then by (4.2), the equation in U̇1 is of the form

∂t U̇1 + i

ε2
A1(εDx )U̇1 = B1U̇1 + εBrU̇1 + εF1(U̇1, U̇1) + εR1. (4.5)
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The propagator A1 on the left-hand side is a diagonal matrix valued semiclas-
sical Fourier multiplier

A1(εDx ) := diag {λ1(εDx ), . . . , λJ (εDx )}.
The leading linear operator B1 on the right-hand side is

B1 := 2
(
� j (εDx )B(U0)� j ′(εDx )

)

1≤ j, j ′≤J , (4.6)

which is of matrix form and is associated with the leading termU0. By the form of
U0 in Assumption 1.2, we have

� j (εDx )B(U0)� j ′(εDx ) :=
∑

p=±1

e−i pωt/ε2� j (εDx )B(U0,p)� j ′(εDx ).

(4.7)

The terms � j (εDx )B(U0,p)� j ′(εDx ) are also named interaction coefficients. To
specify, � j (εDx )B(U0,p)� j ′(εDx ) is called ( j, j ′, p) interaction coefficient.

The remainder linear operator Br is

Br := 2
(
� j (εDx )B(Ur )� j ′(εDx )

)

1≤ j, j ′≤J ,

which is associated with the remainder term Ur defined in (4.4).
The nonlinear term F1 is

F1(U̇1, U̇1) :=
⎛

⎜
⎝

�1(εDx )B(U̇ , U̇ )
...

�J (εDx )B(U̇ , U̇ )

⎞

⎟
⎠ , U̇ =

J∑

j=1

U̇ j
1 .

Finally the remainder R1 is

R1 :=
⎛

⎜
⎝

�1(εDx )Rε

...

�J (εDx )Rε

⎞

⎟
⎠ .

To avoid notational complexity, we rewrite (4.5) in the following more compact
form

∂t U̇1 + i

ε2
A1(εDx )U̇1 = B1U̇1 + εR1, (4.8)

where R1 is the sum of all the O(ε) terms. By the uniform estimates for the
approximate solution assumed in Assumption 1.2, and by Lemmas 3.1 and 3.2
about the actions of Fourier multipliers, we have the estimate

‖R1(t, ·)‖Hμ ≤ C
(
1 + ‖U̇ (t, ·)‖L∞

) ‖U̇ (t, ·)‖Hμ, for all 0 ≤ μ ≤ s.

The initial datum of U̇1 is

U̇1(0) =
⎛

⎜
⎝

�1(εDx )ψ
ε

...

�J (εDx )ψ
ε

⎞

⎟
⎠ ,

which is uniformly bounded in Hs .
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5. Long Time Stability: Part I

This section is devoted to proving the first part of Theorem 1.8, that is the
stability over time of order O(1/εα) under Assumptions 1.1, 1.2 and 1.6.

5.1. A Singular Localization

To show the long time of order O(1/εα) well-posedness for (4.8) with O(1)
initial datum (4.9), the idea here is to eliminate the O(1) term B1 on the right-
hand side of (4.8) up to a small remainder of order O(εα) in this section. Then we
employ the classical theory to obtain the long time existence. However, the strong
transparency condition is not satisfied in our setting, so we cannot simply use the
normal form reduction method to achieve this. The main novelty of our study is
to carry out a singular localization on the interaction coefficients; together with
the normal form reduction, we show that we can eliminate the O(1) interaction
coefficients up to small remainders.

We recall the definition of resonance sets for any 1 ≤ j ≤ J, 1 ≤ j ′ ≤ J, p ∈
{−1, 1} in Assumption 1.6:

R j, j ′,p := {ξ ∈ R
d : λ j (ξ) − λ j ′(ξ) − pω = 0}.

Compared to the definition in (2.5), we remark that here we have the zero spatial
wave number: k = 0.

If for some ( j ′, j, p) the corresponding resonance set R j, j ′,p is empty, by
Assumption 1.6 and the smoothness and boundedness of� j (·), the following strong
transparency condition is automatically satisfied:

∣
∣� j (ξ)B(ep)� j ′(ξ)

∣
∣ ≤ C |λ j (ξ) − λ j ′(ξ) − pω|.

This indicates that, if ( j, j ′, p) ∈ Jr defined as

Jr := {( j, j ′, p) : R j, j ′,p = ∅},
the exponent α j, j ′,p in (1.13) can be taken to be 1. We thus introduce the index set

J1 := {( j, j ′, p) : (1.13) holds for α j, j ′,p = 1} ⊃ Jr . (5.1)

Now we introduce smooth cut-off functions χ j, j ′,p that are supported near
resonance sets:

If ( j, j ′, p) ∈ J1, χ j, j ′,p ≡ 0.

If ( j, j ′, p) ∈ J1, χ j, j ′,p ∈ C∞
c

(
R2hε

j, j ′,p

)
,

χ j, j ′,p ≡ 1 on Rhε

j, j ′,p,

0 ≤ χ j, j ′,p ≤ 1,

(5.2)

where 0 < hε < 1 is a small positive number depending on ε and is to be determined
later on, and

Rh
j, j ′,p := {ξ ∈ R

d : |λ j (ξ) − λ j ′(ξ) − pω| < h}, for h > 0 small. (5.3)
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By the compactness assumption on resonance sets in Assumption 1.6, for sufficient
small h, the sets Rh

j, j ′,p defined in (5.3) are uniformly bounded. The index hε will

be chosen relatively small such that R2hε

j, j ′,p are all bounded.
We consider the decomposition of the leading linear operator B1 defined in

(4.6) and (4.7):

B1 := Bin + Bout (5.4)

with

Bin := 2
∑

p=±1

e−i pωt/ε2 (
χ j, j ′,p(εDx )� j (εDx )B(U0,p)� j ′(εDx )

)

1≤ j, j ′≤J ,

Bout := 2
∑

p=±1

e−i pωt/ε2 ((
1 − χ j, j ′,p

)
(εDx )� j (εDx )B(U0,p)� j ′(εDx )

)

1≤ j, j ′≤J .
(5.5)

The part Bin is localized near the resonances while the other part Bout is local-
ized away from the resonances. However, this localization depends onχ j, j ′,p which
may be singular in ε duce to the definition in (5.2). Indeed, by (5.2), the support
of χ j, j ′,p shrinks to the resonance set R j, j ′,p if hε → 0 as ε → 0. By our choice
of hε later on (see (5.24) and (6.15)), we do have hε → 0 as ε → 0. This causes
the derivatives of χ j, j ′,p could be unbounded as ε → 0. This is why we call this
localization to be singular.

First of all, we show that under Assumption 1.6, the part Bin near the resonance
is small of order O(hα

ε ):

Proposition 5.1. There exits C > 0 such that for any d/2 < μ ≤ s and any
V ∈ Hμ, there holds

‖BinV ‖Hμ ≤ C (hα
ε + ε) ‖V ‖Hμ.

Proof of Proposition 5.1. By the definition ofχ j, j ′,p in (5.2), it is sufficient to prove
for any ( j, j ′, p) ∈ J1 and any u ∈ Hμ, there holds

‖χ j, j ′,p(εDx )� j (εDx )B(U0,p)� j ′(εDx )u‖Hμ ≤ C (hα
ε + ε) ‖u‖Hμ. (5.6)

By using (1.7) and (1.8) in Assumption 1.2 and the actions of semiclassical
Fourier multiplier in Lemma 3.1, we compute

‖χ j, j ′,p(εDx )� j (εDx )B(U0,p)� j ′(εDx )u‖Hμ

= ‖χ j, j ′,p(εDx )� j (εDx )B(gpep)� j ′(εDx )u‖Hμ

≤ ‖χ j, j ′,p(εDx )� j (εDx )B(ep)� j ′(εDx )(gpu)‖Hμ

+ ‖χ j, j ′,p(εDx )� j (εDx )B(ep)[gp,� j ′(εDx )]u‖Hμ

≤ ‖χ j, j ′,p(ξ)� j (ξ)B(ep)� j ′(ξ))‖L∞
ξ

‖gpu‖Hμ

+ ‖χ j, j ′,p(ξ)� j (ξ)B(ep)‖L∞
ξ

‖[gp,� j ′(εDx )]u‖Hμ.

(5.7)

By the definition of χ j, j ′,p in (5.2) and the condition (1.13) in Assumption 1.2,
we have

‖χ j, j ′,p(ξ)� j (ξ)B(ep)� j ′(ξ))‖L∞
ξ

≤ C hα
ε , ‖χ j, j ′,p(ξ)� j (ξ)B(ep)‖L∞

ξ
≤ C.
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By the regularity assumption gp ∈ L∞(0,∞; Hs+1) in Assumption 1.2, there
holds

‖gpu‖Hμ ≤ ‖gp‖Hμ‖u‖Hμ ≤ C ‖u‖Hμ.

By Lemma 3.2 concerning the commutator estimate, we have

‖[gp,� j ′(εDx )]u‖Hμ ≤ C ε ‖gp‖Hμ+1‖u‖Hμ ≤ C ε ‖u‖Hμ. (5.8)

Combining the estimates in (5.7)–(5.8) implies (5.6). The proof is completed.
��

Now it is left to deal with the part localized away from resonance sets.

5.2. Normal Form Reduction

Since Bout is localized away from resonance, we can employ the normal reduc-
tionmethod to eliminate it up to some remainder. The issue is that due the singularity
of the localization functions χ j, j ′,p in ε, the remainder may not be small.

We will see later on, we can choose hε properly to achieve a small remainder.
We need to also choose hε such that the remainder Bout after the normal form
reduction is of the same order as Bin obtained in Proposition 5.1 in order to obtain
the minimum remainder.

We introduce the following formal change of unknown:

U̇2 =
(
Id + ε2M

)−1
U̇1, (5.9)

for some operator M of the form

M =
∑

p=±1

e−i pωt/ε2
(
M (p)

j j ′
)

1≤ j, j ′≤J
, (5.10)

with the operator elements M (p)
j j ′ to be determined.

Then, by (4.8), the system in U̇2 has the form

∂t U̇2 + i

ε2
A1(εDx )U̇2 =

(
Id+ε2M

)−1 (
Bout− i[A1(εDx ), M]− ε2∂t M

)
U̇2

+
(
Id + ε2M

)−1

(
ε2Bout MU̇2 + Bin

(
Id + ε2M

)
U̇2 + εR1

)
.

(5.11)

The idea is to find some operator M properly such that the O(1) term on the
right-hand side of (5.11) is eliminated with a small remainder. This is done in the
following proposition.
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Proposition 5.2. There exist symbols M̃ (p)
j j ′ (ξ) ∈ S0, 1 ≤ j, j ′ ≤ J, p ∈ {−1, 1},

such that M defined in (5.10) with M (p)
j j ′ := M̃ (p)

j j ′ (εDx ) ◦ gp, which denotes the

composition of Fourier multiplier M̃ (p)
j j ′ (εDx ) and function multiplier gp, satisfies

Bout − i[A1(εDx ), M] − ε2∂t M = (ε hα−1
ε + ε2 hα−1

ε + ε)Mr ,

where Mr is a linear operator satisfying the estimate:

‖MrV ‖Hμ ≤ C ‖V ‖Hμ, for any d/2 < μ ≤ s and any V ∈ Hμ. (5.12)

Proof of Proposition 5.2. Given M of the form (5.10), we compute

[A1(εDx ), M] = A1(εDx )M − MA1(εDx )

=
∑

p=±1

e−i pωt/ε2
(
λ j M

(p)
j j ′ − M (p)

j j ′ λ j ′
)

1≤ j, j ′≤J

=
∑

p=±1

e−i pωt/ε2
(
(λ j − λ j ′)M

(p)
j j ′

)

1≤ j, j ′≤J
+ M (1)

r ,

where we used the simplified notation λ j := λ j (εDx ), j ∈ {1, . . . , J } and

M (1)
r :=

∑

p=±1

e−i pωt/ε2
(
[λ j ′, M

(p)
j j ′ ]

)

1≤ j, j ′≤J
. (5.13)

We then compute

ε2∂t M =
∑

p=±1

e−i pωt/ε2(−i pω)
(
M (p)

j j ′
)

1≤ j, j ′≤J
+ M (2)

r ,

where

M (2)
r := ε2

∑

p=±1

e−i pωt/ε2
(
∂t M

(p)
j j ′

)

1≤ j, j ′≤J
. (5.14)

Then

i[A1(εDx ), M] + ε2∂t M

=
∑

p=±1

e−i pωt/ε2
(
i(λ j − λ j ′ − pω)M (p)

j j ′
)

1≤ j, j ′≤J
+ M (1)

r + M (2)
r .

By (5.5) and Assumption 1.2, we have

Bout = 2
∑

p=±1

e−i pωt/ε2 (
(1 − χ j, j ′,p)(εDx )

◦� j (εDx )B(U0,p)� j ′(εDx )
)

1≤ j, j ′≤J

= 2
∑

p=±1

e−i pωt/ε2 (
(1 − χ j, j ′,p)(εDx )

◦� j (εDx )B(ep)� j ′(εDx ) ◦ gp
)

1≤ j, j ′≤J + M (3)
r
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with

M (3)
r := 2

∑

p=±1

e−i pωt/ε2(1 − χ j, j ′,p)(εDx )� j (εDx )B(ep)[gp,� j ′(εDx )].

(5.15)

Now we are ready to give the definitions of M̃ (p)
j j ′ (ξ):

M̃ (p)
j j ′ (ξ) := −2i(λ j (ξ) − λ j ′(ξ) − pω)−1(1 − χ j, j ′,p)(ξ)� j (ξ)B(ep)� j ′(ξ).

(5.16)

We observe that such M̃ (p)
j j ′ (ξ) are well defined due to the localization away from

resonances (see (5.2) and (5.3)). Moreover, by the condition (1.13) in Assumption
1.6 and the definition of the cut-off functions in (5.2), we have

‖M̃ (p)
j j ′ (ξ)‖L∞

ξ
≤ C h

α j, j ′,p−1
ε . (5.17)

Then for the operator M defined in (5.10) with M (p)
j j ′ = M̃ (p)

j j ′ (εDx ) ◦ gp, by

Assumption 1.2 (gp ∈ Cb
([0,∞); Hs+1

) ∩ C1
b ([0,∞); Hs)), we first have for

any d/2 < μ ≤ s and any u ∈ Hμ that

‖Mu‖Hμ + ‖(∂t M)u‖Hμ ≤ C hα−1
ε ‖u‖Hμ . (5.18)

Moreover, direct computation gives

Bt
1 − i[A1(εDx ), M] − ε2∂t M = M̃r

with

M̃r = −M (1)
r − M (2)

r + M (3)
r .

It is left to show the uniform bound for the operator M̃r .
Let d/2 < μ ≤ s and u ∈ Hμ. We start estimating M (1)

r . By Lemmas 3.1 and
3.2, direct computation gives

∥
∥
∥[λ j ′, M

(p)
j j ′ ]u

∥
∥
∥
Hμ

=
∥
∥
∥[λ j ′(εDx ), M̃

(p)
j j ′ (εDx )gp]u

∥
∥
∥
Hμ

=
∥
∥
∥M̃

(p)
j j ′ (εDx )[λ j ′(εDx ), gp]u

∥
∥
∥
Hμ

≤ C hα−1
ε

∥
∥[λ j ′(εDx ), gp]u

∥
∥
Hμ

≤ C ε hα−1
ε ‖gp‖L∞(0,∞;Hs+1) ‖u‖Hμ . (5.19)

Then by the definition of M (1)
r in (5.13), we have

∥
∥
∥M (1)

r u
∥
∥
∥
Hμ

≤ C ε hα−1
ε ‖u‖Hμ . (5.20)

Similarly, for M (2)
r and M (2)

r defined in (5.14) and (5.15), by Lemma 3.1 and
3.2, we deduce
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∥
∥
∥M (2)

r u
∥
∥
∥
Hμ

≤ C ε2 hα−1
ε ‖∂t gp‖L∞(0,∞;Hs ) ‖u‖Hμ ,

∥
∥
∥M (3)

r u
∥
∥
∥
Hμ

≤ C ε ‖gp‖L∞(0,∞;Hs+1) ‖u‖Hμ .
(5.21)

Summing up the estimates in (5.20) and (5.21), we obtain

∥
∥M̃ru

∥
∥
Hμ ≤ C

(
ε hα−1

ε + ε2 hα−1
ε + ε

)
‖u‖Hμ .

This completes the proof of Proposition 5.2. ��

5.3. End of the Proof

In this section, we complete the proof of the first part of Theorem 1.8. This is
achieved by choosing hε properly. First of all, we choose hε such that

ε2hα−1
ε → 0, as ε → 0. (5.22)

By (5.18), we have for any d/2 < μ ≤ s:
∥
∥
∥ε2M

∥
∥
∥L(Hμ→Hμ)

→ 0, as ε → 0.

Then for ε sufficient small, the operator
(
Id + ε2M

)
is well defined and uniformly

bounded from Hμ → Hμ, and is invertible with a uniformly bounded inverse.
Thus, letM be the operator determined in Proposition 5.2, the change of variable

(5.9) is well defined. By Propositions 5.1 and 5.2, the system (5.11) in U̇2 becomes

∂t U̇2 + i

ε2
A1(εDx )U̇2 =

(
εhα−1

ε + hα
ε + ε

)
R2, (5.23)

where there hods the estimate for any d/2 < μ ≤ s:

‖R2(t, ·)‖Hμ ≤ C
(
1 + ‖U̇2(t, ·)‖Hμ

) ‖U̇2(t, ·)‖Hμ.

Finally hε is chosen such that εhα−1
ε = hα

ε to achieve the smallest remainder.
This is equivalent to

hε = ε, (5.24)

which implies εhα−1
ε = hα

ε = εα . The condition (5.22) is also satisfied.
For the initial datum of U̇2, by (4.9) and (5.9), we have

U̇2(0) = (Id + ε2M)−1

⎛

⎜
⎝

�1(εDx )ψ
ε

...

�3(εDx )ψ
ε

⎞

⎟
⎠ (5.25)

for which the Hs norm is uniformly bounded in ε.
We consider another change of unknown corresponding to a rescalling in time:

U̇3(t) = U̇2(ε
−αt).
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Then the equation and initial datum for U̇3 are

⎧
⎨

⎩

∂t U̇3 + i

ε2+α
A1(εDx )U̇3 = R3,

U̇3(0) = U̇2(0),
(5.26)

where R3(t) := (2 + ε1−α)R2(ε
−αt) satisfies for any d/2 < μ ≤ s:

‖R3(t, ·)‖Hμ ≤ C
(
1 + ‖U̇3(t, ·)‖Hμ

) ‖U̇3(t, ·)‖Hμ.

Since s > d/2, then by the classical theory for the local-in-time well-posedness
of symmetric hyperbolic systems (see for instance Chapter 2 of [20] or Chapter 7 of
[22]), there exists a unique local-in-time solution U̇3 ∈ L∞(0, T1; Hs) to Cauchy
problem (5.26) for some T1 > 0 independent of ε.

Equivalently, there exists a unique solution U̇2 ∈ L∞(0, T1
εα ; Hs) to (5.23)–

(5.25). We go back to U̇ and obtain the well-posedness of (4.2) in L∞(0, T1
εα ; Hs).

Since the approximate solutionUa is globally well defined and uniformly bounded
in L∞(0,∞; Hs+1), we can reconstruct the solutionU for (1.1) in L∞(0, T1

εα ; Hs)

through (4.1). We then complete the proof for the first part of Theorem 1.8.
We now turn to prove the second part of Theorem 1.8.

6. Long Time Stability: Part II

This section is devoted to proving the second part of Theorem 1.8, that is the
stability of the approximate solution given in Assumption 1.2 over time O(1/εα1)

with α1 = min{2α, 1}. We suppose that Assumptions 1.1, 1.2, 1.6 and 1.7 are all
satisfied.

Wewill also employ the idea in Section 5. Themain idea of singular localization
and normal form reduction is the same as in the proof of the first part in Section
5. However, the analysis here is more delicate in order to achieve even longer time
stability.

There are two new key points. The first one is to define the singular decom-
position Bin and Bout , as well as the operator M in the normal form reduction in
such a way that we can avoid the commutator M (1)

r in (5.13) which is of order
εhα−1

ε (see (5.19), (5.20)). This can be achieved by proper choice for the positions
of χ j, j ′,p in (6.1)–(6.3) and the positions of gp in (6.8) which allows us to force
the commutators in (5.13) to appear only associated with the constant eigenmode
λ j or λ j ′ from Assumption 1.7. The other remainders M (2)

r and M (3)
r are smaller of

order ε2hα−1
ε and ε respectively (see (5.21)) and we do not need to deal with them

further.
The other key point is to avoid the commutators [χ j, j ′,p, gp]whichmay be large

because of the singularity ofχ j, j ′,p as ε → 0. This can be also achieved by choosing
the positions of cut-off functions χ j, j ′,p, (1 − χ j, j ′,p) and scalar multiplier gp in
the definitions of Bin , Bout and the operator M used in the normal form reduction,
see (6.1)–(6.3) and (6.8) later on.
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6.1. Refined Singular Localization

The cut-off functions χ j, j ′,p are the same as in Section 5.1, while the definitions
for the decomposition component Bin and Bout have to be modified.

For any ( j, j ′, p), we introduce the elements B( j, j ′,p)
in and B( j, j ′,p)

out in the fol-
lowing way:

• For any ( j, j ′, p) ∈ J1 which is defined in (5.1), we set

B( j, j ′,p)
in := 0, B( j, j ′,p)

out := 2� j (εDx )B(U0,p)� j ′(εDx ). (6.1)

• For any ( j, j ′, p) ∈ J1, byAssumption 1.7, one of λ j (ξ) and λ j ′(ξ) is constant.
If λ j (ξ) is constant, we set

B( j, j ′,p)
in := 2� j (εDx )B(U0,p)� j ′(εDx )χ j, j ′,p(εDx ),

B( j, j ′,p)
out := 2� j (εDx )B(U0,p)� j ′(εDx )(1 − χ j, j ′,p)(εDx ).

(6.2)

If λ j ′(ξ) is constant, we set

B( j, j ′,p)
in := 2χ j, j ′,p(εDx )� j (εDx )B(U0,p)� j ′(εDx ),

B( j, j ′,p)
out := 2(1 − χ j, j ′,p)(εDx )� j (εDx )B(U0,p)� j ′(εDx ).

(6.3)

The new decomposition of B1 := B̃in + B̃out is defined as

B̃in :=
∑

p=±1

e−i pωt/ε2
(
B( j, j ′,p)
in

)

1≤ j, j ′≤J
,

B̃out :=
∑

p=±1

e−i pωt/ε2
(
B( j, j ′,p)
out

)

1≤ j, j ′≤J
.

(6.4)

We remark that, compared to Bin and Bout defined before in (5.5), the new
definition through (6.1)–(6.4) pays more attention to the positions of the cut-offs
χ j, j ′,p. We will see later on in the proof of Proposition 6.2, this choice of positions,
together with the choice of positions of gp in (6.8), allows us to avoid relatively
large commutators of order εhα−1

ε as well as the commutators [χ j, j ′,p, gp].
First of all, similar to Proposition 5.1, we have:

Proposition 6.1. Let d/2 < μ ≤ s and V ∈ Hμ. There holds

‖B̃inV ‖Hμ ≤ C (hα
ε + ε) ‖V ‖Hμ.

The proof of Proposition 6.1 is similar as that of Proposition 5.1, that is to
employ Lemmas 3.1 and 3.2, Assumptions 1.2 and 1.6, and the property of the
cut-off functions χ j, j ′,p in (5.2). We do not repeat the details.
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6.2. Refined Normal Form Reduction

We employ the normal reduction method to deal with B̃out which is localized
away from resonance. Introduce the change of variable

U̇4 =
(
Id + ε2Q

)−1
U̇1, (6.5)

where U1 is given in (4.3) and solves (4.8), Q is an operator of the form

Q =
∑

p=±1

e−i pωt/ε2
(
Q(p)

j j ′
)

1≤ j, j ′≤J
(6.6)

with the operator elements Q(p)
j j ′ to be determined. Then, by (4.8), the system in U̇4

has the form

∂t U̇4 + i

ε2
A1(εDx )U̇4 =

(
Id + ε2Q

)−1 (
B̃out − i[A1(εDx ), Q] − ε2∂t Q

)
U̇4

+
(
Id + ε2Q

)−1 (
ε2 B̃out QU̇4 + B̃in

(
Id + ε2Q

)
U̇4

+ εR1) . (6.7)

One key result is the following:

Proposition 6.2. Let M̃ (p)
j j ′ (ξ) be the symbols defined in (5.16). Then the operator

Q defined in (6.6) with

Q(p)
j j ′ := gp ◦ M̃ (p)

j j ′ (εDx ) or M̃
(p)
j j ′ (εDx ) ◦ gp, if ( j, j ′, p) ∈ J1,

Q(p)
j j ′ := gp ◦ M̃ (p)

j j ′ (εDx ), if ( j, j ′, p) ∈ J1 and λ j (·) is constant,
Q(p)

j j ′ := M̃ (p)
j j ′ (εDx ) ◦ gp, if ( j, j ′, p) ∈ J1 and λ j ′(·) is constant

(6.8)

satisfies

B̃out − i[A1(εDx ), Q] − ε2∂t Q = (ε2 hα−1
ε + ε)Qr ,

where Qr is a linear operator satisfying the estimate:

‖QrV ‖Hμ ≤ C ‖V ‖Hμ, for any d/2 < μ ≤ s and V ∈ Hμ. (6.9)

Remark 6.3. We observe that, compared to Proposition 5.2, the remainder estimate
in (6.9) is better than that in (5.12) where the term εhα−1

ε is eliminated.

Proof of Proposition 6.2. First of all, the operator Q given in Proposition 6.2 is
well defined and satisfies for any d/2 < μ ≤ s and V ∈ Hμ:

‖QV ‖Hμ + ‖(∂t Q)V ‖Hμ ≤ C hα−1
ε ‖V ‖Hμ. (6.10)

Given Q of the form (6.6), we compute

[A1(εDx ), Q] = A1(εDx )Q − QA1(εDx )

=
∑

p=±1

e−i pωt/ε2
(
λ j Q

(p)
j j ′ − Q(p)

j j ′ λ j ′
)

1≤ j, j ′≤J
,

where we used the simplified notation λ j := λ j (εDx ), j ∈ {1, . . . , J }.
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We then compute

ε2∂t Q =
∑

p=±1

e−i pωt/ε2(−i pω)
(
Q(p)

j j ′
)

1≤ j, j ′≤J
+ Qr,1,

where

Qr,1 := ε2
∑

p=±1

e−i pωt/ε2
(
∂t Q

(p)
j j ′

)

1≤ j, j ′≤J
.

Direct computation gives that for any d/2 < μ ≤ s and V ∈ Hμ:

‖Qr,1V ‖Hμ ≤ C ε2hα−1
ε ‖V ‖Hμ. (6.11)

Then

B̃out − i[A1(εDx ), Q] − ε2∂t Q =
∑

p=±1

e−i pωt/ε2
(
Q(r)

j, j ′,p

)

1≤ j, j ′≤J
− Qr,1,

where

Q(r)
j, j ′,p := B( j, j ′,p)

out − i
(
λ j Q

(p)
j j ′ − Q(p)

j j ′ λ j ′ − pωQ(p)
j j ′

)
.

We now estimate Q(r)
j, j ′,p case by case:

• For ( j, j ′, p) ∈ J1, we choose Q
(p)
j j ′ = gp◦M̃ (p)

j j ′ (εDx ) (the same result follows

if we choose Q(p)
j j ′ = M̃ (p)

j j ′ (εDx ) ◦ gp), then

Q(r)
j, j ′,p = 2� j (εDx )B(gpep)� j ′(εDx )

− 2gp� j (εDx )B(ep)� j ′(εDx ) + Q j, j ′,p
r,2

= Q j, j ′,p
r,2 + Q j, j ′,p

r,3 ,

where

Q j, j ′,p
r,2 := −2[λ j , gp]M̃ (p)

j j ′ (εDx ),

Q j, j ′,p
r,3 := 2[� j (εDx ), gp]B(ep)� j ′(εDx ).

For any ( j, j ′, p) ∈ J1,α j, j ′,p = 1. Then by (5.17) and the estimates in Lemma
(3.1) and (3.2), we have for any d/2 < μ ≤ s and u ∈ Hμ:

‖Q j, j ′,p
r,2 u‖Hμ + ‖Q j, j ′,p

r,3 u‖Hμ ≤ Cε ‖u‖Hμ. (6.12)
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• For ( j, j ′, p) ∈ J1 with λ j (·) constant, we have
Q(r)

j, j ′,p = 2� j (εDx )B(gpep)� j ′(εDx )(1 − χ j, j ′,p)(εDx )

− 2gp� j (εDx )B(ep)� j ′(εDx )(1 − χ j, j ′,p)(εDx ) + Q j, j ′,p
r,4

= Q j, j ′,p
r,4 + Q j, j ′,p

r,5 ,

where

Q j, j ′,p
r,4 := −2[λ j , gp]M̃ (p)

j j ′ (εDx ) = 0

Q j, j ′,p
r,5 := 2[� j (εDx ), gp]B(ep)� j ′(εDx )(1 − χ j, j ′,p)(εDx ),

where we used the fact λ j is constant. Again by the estimates in Lemmas 3.1
and 3.2, we have for any d/2 < μ ≤ s and u ∈ Hμ:

‖Q j, j ′,p
r,5 u‖Hμ ≤ Cε ‖u‖Hμ. (6.13)

• For ( j, j ′, p) ∈ J1 with λ j ′(·) constant, we have
Q(r)

j, j ′,p = 2(1 − χ j, j ′,p)(εDx )� j (εDx )B(gpep)� j ′(εDx )

− 2(1 − χ j, j ′,p)(εDx )� j (εDx )B(ep)� j ′(εDx )gp + Q j, j ′,p
r,6

= Q j, j ′,p
r,6 + Q j, j ′,p

r,7 ,

where

Q j, j ′,p
r,6 := −2M̃ (p)

j j ′ (εDx )[λ j ′, gp] = 0

Q j, j ′,p
r,7 := 2

(
1 − χ j, j ′,p

)
(εDx )� j (εDx )B(ep)

[
gp,� j ′(εDx )

]
,

where we used the fact λ j ′ is constant. Moreover, for any d/2 < μ ≤ s and
u ∈ Hμ there holds

‖Q j, j ′,p
r,7 u‖Hμ ≤ Cε ‖u‖Hμ. (6.14)

By the estimates in (6.11), (6.12), (6.13) and (6.14), we conclude our result in
Proposition 6.2. ��

6.3. End of the Proof

In this section, we complete the proof of the first part of Theorem 1.8. Let hε

be such that

ε2hα−1
ε → 0, as ε → 0. (6.15)

Then by (6.10) for ε sufficient small, the operator
(
Id + ε2Q

)
as well as its

inverse are uniformly bounded from Hμ → Hμ. Thus, the change of variable
(6.5) is well defined. By Propositions 6.1 and 6.2, the system (6.7) in U̇4 becomes

∂t U̇4 + i

ε2
A1(εDx )U̇4 = (ε2hα−1

ε + hα
ε + ε)R4,
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where there holds the estimate for any d/2 < μ ≤ s:

‖R4(t, ·)‖Hμ ≤ C(1 + ‖U̇4(t, ·)‖Hμ)‖U̇4(t, ·)‖Hμ.

Finally hε is chosen such that ε2hα−1
ε = hα

ε to achieve the smallest remainder.
This suggests

hε = ε2. (6.16)

This implies ε2hα−1
ε = hα

ε = ε2α . The condition (6.15) is also satisfied.
For the initial datum of U̇4, by (4.9) and (5.9), we have

U̇4(0) = (Id + ε2Q)−1

⎛

⎜
⎝

�1(εDx )ψ
ε

...

�3(εDx )ψ
ε

⎞

⎟
⎠

for which the Hs norm is uniformly bounded in ε.
We consider another change of unknown corresponding to a rescalling in time:

U̇5(t) = U̇4(ε
−α1 t), α1 := min{2α, 1}.

Then the equation and initial datum for U̇5 are
⎧
⎨

⎩

∂t U̇5 + i

ε2+α1
A1(εDx )U̇5 = R5,

U̇5(0) = U̇4(0),
(6.17)

where R5(t) := (2 ε2α−α1 + ε1−α1)R4(ε
−α1 t) satisfies for any d/2 < μ ≤ s:

‖R5(t, ·)‖Hμ ≤ C
(
1 + ‖U̇5(t, ·)‖Hμ

) ‖U̇5(t, ·)‖Hμ.

Then the classical theory gives the local-in-time existence and uniqueness of
the solution U̇5 ∈ L∞(0, T2; Hs) to Cauchy problem (6.17) for some T2 > 0 inde-
pendent of ε. Going back to U̇ gives the well-posedness of (4.2) in L∞(0, T2

εα1 ; Hs).
Since the approximate solutionUa is globally well defined and uniformly bounded
in L∞(0,∞; Hs+1), we can reconstruct the solutionU for (1.1) in L∞(0, T2

εα1 ; Hs)

through (4.1). We then complete the proof for the second part of Theorem 1.8.
Now we have finished the proof of Theorem 1.8. In the next section, we apply

our result to the study of non-relativistic limit problems ofKlein–Gordon equations.

7. Example and Application

Our example contains the non-relativistic limit problems of Klein–Gordon
equations. The Klein–Gordon equation is a relativistic version of the Schrödinger
equation and is used to describe the motion of a spinless particle with positive mass
m > 0. Let c be the speed of light, h be the Planck constant, then the typical form
of the Klein–Gordon equation is

h2

mc2
∂t t u − h2

m
�u + mc2u = f (u), t ≥ 0, x ∈ R

d .
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Here u = u(t, x) is a real-valued (or complex-valued) field, and f (u) is a real-
valued (or complex-valued) function. By normalizing the mass such that m = 1
and rescaling the time and space variables as

ũ(t, x) := u
(
h−1t, h−1x

)
,

and by introducing ε = c−1, we arrive at the following non-dimensional form of
the Klein–Gordon equation

ε2∂t t u − �u + 1

ε2
u = f (u), t ≥ 0, x ∈ R

d . (7.1)

Here in (7.1), we denote the new unknown ũ still by the original notation u.
For fixed ε, the well-posedness of the Klein–Gordon equation is well studied

(see for instance [8,9]). Our concern is the long time asymptotic behavior of the
solution in the non-relativistic limit (ε → 0) with real initial data of the form

u(0) = u0,ε, (∂t u)(0) = 1

ε2
u1,ε. (7.2)

The local-in-time asymptotic behavior in the non-relativistic limit of (7.1)–(7.2)
is well studied both in mathematical analysis and in numerical computations, see
for instance [1,21] and the recent result concerning higher order approximation
by the authors in [19]. However, concerning the long time (for example of order
O(1/ε)) asymptotic behavior in this setting, there are few results according to the
authors’ knowledge.

7.1. Setting and Main Result

With quadratic nonlinearity f (u) = λu2, λ ∈ R, we will show that up to a
change of unknowns, the Klein–Gordon equation (7.1) can be treated as a system
of the form (1.1). With additional regularity assumption on the initial data in (7.2),
we verify that Assumptions 1.1, 1.2, 1.6 and 1.7 are all satisfied. Hence, we can
apply Theorem 1.8 to obtain long time O(1/ε) stability property. Moreover, the
leading term of the approximate solution solves linear Schrödinger equation. This
shows rigourously that over long time of order O(1/ε), the quadratic Klein–Gordon
equation can be well approximated by the linear Schrödinger equation in the non-
relativistic regime ε → 0.However, this examplemodel is rather non-physical since
physical nonlinearities are of the form f (u) = g(|u|2)u which fulfills the gauge
invariance. An extension of the theory presented in this paper to non quadratic
nonlinearities is needed to consider such physical nonlinearities.

We state our result.

Theorem 7.1. Assume that the real initial datum (u0,ε, u1,ε) has the form

u0,ε = ϕ0 + εϕε, u1,ε = ψ0 + εψε

with

(ϕ0, ψ0) ∈ (Hs)2 independent of ε,
{
(ϕε, ψε, ε∇ϕε)

}

0<ε<1 uniformly bounded in (Hs−4)d+2
(7.3)
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for some s > d/2 + 4. Then there exists ε0 > 0 such that for any 0 < ε < ε0 the
Cauchy problem (7.1)–(7.2) with f (u) = λ u2, λ ∈ R admits a unique solution
u ∈ L∞ (

0, T
ε
; Hs−4

)
for some T > 0 independent of ε. Moreover, there exists a

constant C independent of ε such that
∥
∥
∥u −

(
e−i t/ε2v + eit/ε

2
v̄
)∥
∥
∥
L∞

(
0, T

ε
;Hs−4

) ≤ C ε,

where v ∈ Cb(0,∞; Hs)∩C1
b(0,∞; Hs−2) is the solution to the following Cauchy

problem associate with the linear Schrödinger equation

2ivt + �v = 0, v(0) = ϕ0 + iψ0

2
. (7.4)

The rest of this section is devoted to the proof of Theorem 7.1.

7.2. Reformulation of the Equation

We rewrite the Klein–Gordon equation (7.1) as a symmetric hyperbolic system
by introducing

U := (w, v, u) :=
(
ε∇T u, ε2∂t u, u

)T :=
(
ε(∂x1u, . . . , ∂xd u), ε2∂t u, u

)T
.

Here the notation ∇ := (∂x1, . . . , ∂xd )
T is of column form. We remark that 0 could

be the scalar number zero, the zero column vector 0d , the zero row vector 0Td or the
zero matrix 0d×d , but we will not specify if there is no confusion in the context.

Then the Equation (7.1) is equivalent to

∂tU + 1

ε
A(∂x )U + 1

ε2
A0U = F(U ), (7.5)

where

A(∂x ) := −
⎛

⎝
0 ∇ 0

∇T 0 0
0 0 0

⎞

⎠ , A0 :=
⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ , F(U ) =
⎛

⎝
0

f (u)

0

⎞

⎠ . (7.6)

We consider in this paper the quadratic nonlinearity of the form f (u) = λ u2

for some λ > 0, we can write

F(U ) = B(U,U ) (7.7)

with B a symmetric bilinear form defined as

B(U1,U2) = −λ

⎛

⎝
0

u1u2
0

⎞

⎠ , for any Uj =
⎛

⎝
w j

v j

u j

⎞

⎠ , j ∈ {1, 2}. (7.8)

Moreover, by (7.2) and the assumption in Theorem 7.1, the initial datum is

U (0) =
(
ε∇T u0,ε, u1,ε, u0,ε

)T = (0, ψ0, φ0)
T + ε

(
∇T (φ0 + φε), ψε, φε

)T
.

(7.9)

Thus, we obtain a Cauchy problem (7.5)–(7.9) which has the form of (1.1).
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7.3. Spectral Decomposition

We rewrite the linear differential operator on the left-hand side of (7.5) as

∂t + i

ε2
(A(εDx ) + A0/ i) , Dx := ∂x/ i.

The symbol of the semiclassical Fourier multiplier (A(εDx ) + A0/ i) is

A(ξ) + A0/ i

which is a symmetricmatrix for any ξ ∈ R
d . Direct computation gives the following

smooth spectral decomposition

A(ξ) + A0/ i = λ1(ξ)�1(ξ) + λ2(ξ)�2(ξ) + λ3(ξ)�3(ξ) (7.10)

with the eigenvalues

λ1(ξ) =
√
1 + |ξ |2 = 〈ξ 〉, λ2(ξ) = −

√
1 + |ξ |2 = −〈ξ 〉, λ3(ξ) ≡ 0 (7.11)

and eigenprojections

� j (ξ) = 1

2

⎛

⎜
⎜
⎜
⎝

ξξT

λ2j

ξ
λ j

−iξ
λ2j

ξT

λ j
1 −i

λ j
iξT

λ2j

i
λ j

1
λ2j

⎞

⎟
⎟
⎟
⎠

, �3(ξ) = 1

d + |ξ |2

⎛

⎝
Idd 0 −iξ
0 0 0

iξ T 0 |ξ |2

⎞

⎠ , (7.12)

where j ∈ {1, 2}, ξ = (ξ1, . . . , ξd)
T is a column vector and Idd denotes the unit

matrix of orderd. It is direct to check thatλ j ∈ S1 and� j ∈ S0 for any j ∈ {1, 2, 3}.
Clearly, we have λ j ∈ S1, � j ∈ S0, j ∈ {1, 2, 3}. As a result, Assumption 1.1 is
satisfied.

According to (7.10), we can write

A(εDx ) + A0/ i = λ1(εDx )�1(εDx ) + λ2(εDx )�2(εDx ).

7.4. WKB Approximate Solution

In this section, we use WKB expansion to construct an approximate solution to
Cauchy problem (7.5)–(7.9).Moreover, wewill show that this approximate solution
is global-in-time well defined and uniformly bounded. As a result, Assumption 1.2
is verified.

7.4.1. WKB Cascade We make a formal power series expansion in ε for the
solution and each term in the series is a trigonometric polynomial in θ := −t/ε2:
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Ua =
Ka+1∑

n=0

εnUn, Un =
∑

p∈Z
eipθUn,p, Ka ∈ Z+. (7.13)

The amplitudesUn,p(t, x) are not highly-oscillating (independent of θ ) and satisfy
Un,−p = Un,p due to the reality of Ua . We plug (7.13) into (7.5) and deduce the
system of order O(εn), n = −2,−1, 0, 1.

We start from considering the equations in the terms of order O(ε−2). We
reproduce such equations as follows

(−i p + A0)U0,p = 0, for all p. (7.14)

It is easy to find that (−i p+ A0) are invertible except when p ∈ H0 := {−1, 0, 1}.
We then deduce from (7.14) that

U0,p = 0, for all p such that |p| ≥ 2. (7.15)

We do not need to include the mean mode U0,0 in the approximation. For
simplicity, we take

U0,0 = 0. (7.16)

For p = 1, (7.14) is equivalent to the so called polarization condition U0,p ∈
ker(i p + A). This implies

U0,1 = g0e1, e1 := (0Td ,−i, 1)T , g0 is a scalar function. (7.17)

For p = −1, reality implies

U0,−1 = U 0,1 = ḡ0e−1, e−1 := ē1 = (0Td , i, 1)T . (7.18)

We continue to consider the equations in the terms of order O(ε−1):

A(∂x )U0,p + (−i p + A0)U1,p = 0, for all p. (7.19)

When p = 0, by the choice of the leadingmeanmode in (7.16), Equation (7.19)
becomes

A0U1,0 = 0

which is equivalent to

U1,0 = (hT1 , 0, 0)T for some vector valued function h1 ∈ R
d . (7.20)

When p = 1, by (7.17), Equation (7.19) is equivalent to

U1,1 = g1e1 + (∇T g0, 0, 0)
T for some scalar function g1. (7.21)

When |p| ≥ 2, the invertibility of (−i p + A0) and (7.15) imply

U1,p = 0, for all p such that |p| ≥ 2. (7.22)
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The equations in the terms of order O(ε0) are as follows:

∂tU0,p + A(∂x )U1,p + (−i p + A0)U2,p =
∑

p1+p2=p

B(U0,p1 ,U0,p2), for all p.

(7.23)

When p = 0, by (7.8), (7.15)–(7.18), Equation (7.23) becomes

A(∂x )U1,0 + A0U2,0 = 2B(U0,1,U0,−1) = −2λ(0Td , |g0|2, 0)T

which is equivalent to (by employing (7.6) and (7.20))

U2,0 = (hT2 , 0, divh1 − 2λ|g0|2)T for some vector valued function h2 ∈ R
d .

(7.24)

When p = 1, by (7.6), (7.8), (7.15) and (7.16), Equation (7.23) becomes

∂tU0,1 + A(∂x )U1,1 + (−i + A0)U2,1 = 0. (7.25)

By (7.17) and (7.21), Equation (7.25) is equivalent to
{
2i∂t g0 + �g0 = 0,

U2,1 = g2e1 + (∇T g1, ∂t g0, 0)
T , for some scalar function g2.

(7.26)

This is how we obtain the linear Schrödinger Equation (7.4). The initial datum of
g0 is determined in such a way that U0(0) = (0Td , ψ0, ϕ0)

T which is the leading
term of initial data U (0) (see (7.9)). This imposes

g0(0) = ϕ0 + iψ0

2
. (7.27)

When p = 2, by (7.6), (7.8), (7.15)–(7.17), (7.22), Equation (7.23) becomes

(−2i + A0)U2,2 = B(U0,1,U0,1) = −2λ(0Td , g20, 0)
T

which is equivalent to

U2,2 = λ

3

(
0Td ,−2ig20, g

2
0

)T
. (7.28)

When |p| ≥ 3, Equation (7.23) implies

U2,p = 0, for all p such that |p| ≥ 3.

We finally consider the equations of order O(ε):

∂tU1,p + A(∂x )U2,p + (−i p + A0)U3,p = 2
∑

p1+p2=p

B(U0,p1 ,U1,p2), for all p.

(7.29)
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When p = 0, by (7.6), (7.8), (7.15)–(7.18), (7.21), (7.22), Equation (7.29)
becomes

∂tU1,0 + A(∂x )U2,0 + A0U3,0 = 4�B(U0,1,U1,−1) = −4λ(0Td ,�(g0 ḡ1), 0)
T

which is equivalent to (by (7.20) and (7.24))

∂t h1 = 0, U3,0 = (hT3 , 0, divh2 − 4λ�(g0 ḡ1))
T , (7.30)

for some vector valued function h3 ∈ R
d . The notation �a stands for the real part

of a.
Here we take a trivial solution h1 = 0 to the equation ∂t h1 = 0 in (7.30). By

(7.20), this means

U1,0 = 0. (7.31)

When p = 1, by (7.8), (7.15), (7.16), (7.22) and (7.31), Equation (7.29)
becomes

∂tU1,1 + A(∂x )U2,1 + (−i + A0)U3,1 = 0

which is equivalent to

⎧
⎨

⎩

2i∂t g1 + �g1 = 0,

U3,1 = g3e1 +
(
∇T g2, ∂t g1, 0

)T
, for some scalar function g3.

Here we used (7.21) and (7.26).
We find that g1 satisfies the same linear Schrödinger equation as g0. Since we

do not need to include initial data of g1 (this may be needed sometimes in order to
have a better initial approximation), we will take a trivial solution g1 = 0.

When p = 2, by (7.6), (7.8), (7.17), (7.15), (7.21), (7.22) and (7.31), Equation
(7.29) becomes

A(∂x )U2,2 + (−2i + A0)U3,2 = 2B
(
U0,1,U1,1

) = −2λ
(
0Td , g0g1, 0

)T

which is equivalent to (by (7.28))

U3,2 = 2λ

3

(
g0∇T g0,−2ig0g1, g0g1

)T
.

When |p| ≥ 3, (7.29) is equivalent to

U3,p = 0, for all p such that |p| ≥ 3.
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7.4.2. WKB Approximate Solution By (7.3), we have g0(0) ∈ Hs with
s > d/2 + 4. Then classically there exists a unique global-in-time solution g0
to the Cauchy problem (7.26)1–(7.27) in Sobolev space H

s . Moreover, we have the
estimate

‖∂t g0‖L∞(0,∞;Hs−2) ≤ C‖g0‖L∞(0,∞;Hs ) ≤ C‖(φ0, ψ0)‖Hs . (7.32)

To construct an approximate solution,we need to determine g j and h j , j ∈ {1, 2, 3},
appeared in Section 7.4.1. Taking

g1 = g2 = g3 = h1 = h2 = h3 = 0

implies, by employing the argument in Section 7.4.1, that

U0,1 = g0e1, U1,1 =
⎛

⎝
∇g0
0
0

⎞

⎠ , U2,0 = −2λ

⎛

⎝
0d
0

|g0|2

⎞

⎠ ,

U2,1 =
⎛

⎝
0d

∂t g0
0

⎞

⎠ , U2,2 = λ

3

⎛

⎝
0d

−2ig20
g20

⎞

⎠ , U3,2 =
⎛

⎝
g0∇g0

0
0

⎞

⎠ ,

(7.33)

and Un,p = 0 for all other (n, p) ∈ Z
2, p ≥ 0, and Un,p = Un,−p for p < 0.

We observe that all the components in (7.33) are determined by the leading
amplitude g0. By the estimate of g0 in (7.32), we have for any (n, p) ∈ Z

2:

Un,p ∈ L∞ (
0,∞; Hs−2

)
, ∂tUn,p ∈ L∞ (

0,∞; Hs−4
)

. (7.34)

Plugging all suchUn,p into (7.13) gives an approximate solutionUa of the form

Ua = U0 + εU1 + ε2U2 + ε3U3 (7.35)

which solves the following Cauchy problem globally in time
⎧
⎨

⎩

∂tUa + 1

ε
A(∂x )Ua + 1

ε2
A0Ua = B(Ua,Ua) − ε2Rε,

Ua(0) = (ε∇Tϕ0, ψ0, ϕ0)
T + ε2U2(0) + ε3U3(0),

(7.36)

where

Rε := 2B(U0,U2) + B(U1,U1) + 2εB(U1,U2) + ε2B(U2,U2)

−
3∑

n=2

εn−2
∑

p

e−i pt/ε2∂tUn,p −
∑

p

e−i pt/ε2 A(∂x )U3,p.
(7.37)

It is direct to check:

sup
0<ε<1

(
‖Rε‖L∞(0,∞;Hs−4) + ‖U (0) −Ua(0)‖Hs−4

)
< +∞. (7.38)

Recall s > d/2 + 4. Hence, by (7.34)–(7.38), this approximate solution Ua

fulfills Assumption 1.2 for the Cauchy problem (7.5)–(7.9).
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7.5. Partially Strong Transparency

By (7.8) and (7.12), direct computation implies

�3(ξ)B(·, ·) ≡ 0.

By (7.11), we have

R j, j ′,p = {ξ : λ j (ξ) − λ j ′(ξ) − p = 0}
are all empty sets except

R1,3,1 = {ξ : λ1(ξ) − 1 = 0} = {0}, R2,3,−1 = {ξ : λ2(ξ) + 1 = 0} = {0}.
(7.39)

Now we compute the interaction phases and the interaction coefficients corre-
sponding to the non-empty resonance sets in (7.39). On one hand, direct computa-
tion gives

�1(ξ)B(e1)�3(ξ) = −λ

2(d + |ξ |2)

⎛

⎜
⎜
⎝

iξξT

λ1
0 ξ |ξ |2

λ1
iξT

λ1
0 |ξ |2

λ1−ξT

λ1
0 i |ξ |2

λ1

⎞

⎟
⎟
⎠ ,

�2(ξ)B(e−1)�3(ξ) = −λ

2(d + |ξ |2)

⎛

⎜
⎜
⎝

iξξT

λ2
0 ξ |ξ |2

λ2
iξT

λ2
0 |ξ |2

λ2−ξT

λ2
0 i |ξ |2

λ2

⎞

⎟
⎟
⎠ .

(7.40)

On the other hand, the interaction phases satisfy

|λ1(ξ) − 1|−1 = |λ2(ξ) − 1|−1 = 1
√
1 + |ξ |2 − 1

=
√
1 + |ξ |2 + 1

|ξ |2 .

(7.41)

We find that |�1(ξ)B(e1)�3(ξ)| · |λ1(ξ) − 1|−1 and |�2(ξ)B(e−1)�3(ξ)| ·
|λ2(ξ) + 1|−1 are unbounded near resonance ξ = 0. This implies that the strong
transparency condition is not satisfied when (i, j, p) = (1, 3, 1) or (i, j, p) =
(2, 3,−1).

However, by (7.40) and (7.41), we can show that the following partially strong
transparency condition is satisfied

|�1(ξ)B(e1)�3(ξ)| ≤ C |λ1(ξ) − 1|1/2,
|�2(ξ)B(e−1)�3(ξ)| ≤ C |λ2(ξ) + 1|1/2.

Thus, Assumption 1.6 is satisfied with α = 1/2. Moreover, the eigenvalue λ3
is identically zero, which shows that Assumption 1.7 is also satisfied.
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7.6. Proof of Theorem 7.1

All the assumptions introduced in Section 1.2 are verified for (7.5)–(7.9). By
applying Theorem 1.8, we obtain

Theorem 7.2. There exists ε0 > 0 such that for any 0 < ε < ε0, the Cauchy
problem (7.5)–(7.9) admits a unique solution U ∈ L∞ (

0, T
ε
; Hs−4

)
for some

T > 0 independent of ε. Moreover, there holds

‖U −Ua‖L∞
(
0, T

ε
;Hs−4

) ≤ C ε,

where Ua is the approximate solution obtained in Section 7.4.2.

Theorem 7.1 is a direct corollary of Theorem 7.2.
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