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Abstract

In this paper we show the existence in finite time of splash singularities for the
one-phase Muskat problem.

1. Introduction

This paper establishes some scenarios where the 2D Muskat problem produces
splash singularities; that is to say, we prove that a free boundary evolving by the
Muskat problem collapses at a single point while the interface remains smooth. The
situation is stable; we show geometries for initial data where the Rayleigh-Taylor
condition holds.

The singularities we construct are “splash” singularities in which the interface
self-intersects at a single point at the time of breakdown T, as in Fig. 1. Our previous
papers [6,7] showed the existence of a splash singularity for the water wave problem.
The strategy there was to start with a “splash” singularity at the time T, then solve
the water wave equation backwards in time. This yields a solution to the water wave
equation in a time interval [T, — ¢, T ] thatis well behaved at any time [T, — ¢, T)
but exhibits a splash at time 7. In our present setting, we cannot use that strategy
because the Muskat problem in the stable regime is parabolic and therefore cannot
be solved backwards in time. The importance of this issue is made clear by the fact
that water waves can form a “splat” singularity [7] whereas the Muskat solution
cannot [15] (a “splat” occurs when, at the time of breakdown, the interface self-
intersects along an arc). On the other hand, an analysis of the Muskat problem has
in common with our previous work on water waves a conformal map to the “tilde
domain”, see [7].

Recall the Muskat problem, which describes the evolution of two fluids of
different nature in porous media. Both fluids are assumed to be immiscible and
incompressible, the most common example for applications being the dynamics of
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Fig. 1. Splash singularity

water and oil [3]. In two dimensions, the two fluids occupy the connected open set
D(r) and R2~.D(r) respectively. The characteristics of the fluids are their constant
densities and viscosities. Then the step functions p(x, ¢) and u(x, t) represent the
density and viscosity respectively in the porous medium given by:

Po. x € R2ND(1),

mo, x € D(1),
plx, 1) = ’/J, 0, XE R2D(1),

p(x.1) = [/00, x € D),

forx € R%, ¢ = 0; here, pg, Pg» 0, Ky constant values. The main concern is about
the dynamics of the common free boundary d D(¢), which is given by using the
experimental Darcy’s law:

p(x, Hv(x, 1) = =Vp(x, 1) = (0, p(x, ). (1)
Here v(x, t) = (vi(x, t), v2(x, t)) is the incompressible velocity
V.u(x,1) =0, (2)

and p(x, t) is the scalar pressure. Above, the permeability of the media and the
gravity constant are set equal to one without loss of generality.

The Muskat problem is a long standing matter [26] of recognized importance,
especially because of its connection with the evolution of fluids in Hele-Shaw cells.
In that setting the fluids are confined inside two closely parallel flat surfaces in such
a way that the dynamics is essentially two dimensional. The Hele-Shaw evolution
law is given by

12
ﬁ“’(x’ t)'U(.x, t) = _vp('x’ t) - (07 p(xa t))5
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where b is the distance between the surfaces. Therefore, it is possible to observe
that for both different scenarios comparable phenomena and properties hold [29].

A main feature of the problem is the appearance of instabilities, which have been
shown in different situations [27,30]. From a contour dynamics point of view, the
system of equations for the free boundary is essentially ill-posed from a Hadamard
point of view [12,29]. Although the Muskat problem with surface tension taken into
account is well-posed [2, 17], it nevertheless shows fingering [ 18] and exponentially
growing modes [24].

On the other hand, the Muskat problem is well-posed in stable regimes without
surface tension [11,12,14]. This situation is reached for the problem when the
normal component of the jumps in the pressure gradients at the free interface is
positive [1]. Then it is said that the Rayleigh-Taylor condition holds. In such a case,
linearizing the contour equation leads to the following [12]:

e =—oAfEa, 1), 3)

where (o, f%(a, 1)) represents the free boundary (« € R), o is the Rayleigh-Taylor
function and the operator A is the square root of the negative Laplacian. Then, the
fact that o > 0O turns the Muskat problem into a parabolic system at the linear level.
This fact has been used to prove global-in-time regularity and instant analyticity
for small initial data in different situations [4,9,12,18,23,29].

For the case of equal viscosities (19 = [tp), the Rayleigh-Taylor condition
holds when the more dense fluid lies below the interface and the less dense fluid
lies above it [12]. In this situation, the regime is stable if the free boundary 9D is
represented by the graph of a function (¢, f(«, t)). In particular, it is possible to
get a decay of the L norm [13] as follows:

1 T 1
Hf—ﬂ/_n foda fo—E/Tfoda

for f(a + 27, 1) = f(a,1); and with f(a, 1) € L?(R)

I fllee(t) £ N folle(14+Cn™Y, € =C(fy) > 0.

67Ca

LOO

(t)é‘

L

Itis easy to check that above formulas provide the same rate of decay as Equation (3)
for f L at the linear level. On the other hand, the L? norm evolution allows one to
control half a derivative for fZ due to the identity

2
L2’

1£E1220 +20 / [ai2 7, as = | 4
L 0 12 0

while at the nonlinear level the following equality

s o f@.9) ~ [B.9))? o
0+ % [ [ (1 (20 Yaadpas = 1o

does not give a chance of gaining any regularity [9].
The case of a drop on a solid substrate in porous media has been studied in [25].
This case considers the dynamics of one fluid, also known as the one-phase Muskat




216 A. CasTRO, D. COorRDOBA, C. FEFFERMAN & F. GANCEDO

problem. The authors show local well-posedness of the problem with estimates
independent of the contact angle.

In [8], solutions of the Muskat equation are exhibited for initial smooth stable
graphs; those solutions enter an unstable regime by becoming non-graphs in finite
time. The pattern is far from trivial and recently it has been shown to be richer
for the inhomogeneous and confined problems (see [22] and references therein). In
particular the significance of a turnover (non-graph scenario) is that the Rayleigh-
Taylor condition breaks down. Furthermore, [5] there exist smooth initial data in
the stable regime for the Muskat problem such that the solutions turn to the unstable
regime and later the regularity breaks down. Therefore global existence is false for
some large initial data in the stable regime, as the solutions develop singularities in
finite time.

In this paper we show that the Muskat problem with initial data in stable regimes
can develop singularities. The singularity is a splash, where for the free boundary
given by

oD(t) = {z(a, 1) = (z1(c, 1), 22(, 1)) : @ € R}, )

there exist a blow-up time 7y > 0 and a point x; € R2 such that xg = z(ay, Ty) =
z(a, Ty) for oy # ay. In particular the curve is regular, and satisfies the chord-arc
condition up to the time Tj:

|Z(a7 t) _2(137 t)l ; Cca(t)la - ﬁ" Va? /3 € R’ Cca(t) > O’ t € [03 TS)

Free boundary incompressible fluid equations can develop splash singularities.
This scenario has been shown for the incompressible Euler equations in the water
waves form [6,7] which considers the evolution of a free boundary given by air,
with density 0, and water, with density 1 and irrotational velocity. This type of
singularity can also be shown for the case with vorticity [16]. For the case of two
incompressible fluids with positive densities, this scenario has been recently ruled
out [20]. Similarly, for Muskat this type of singularity does not also hold in the case
in which o = g and po # pg [21].

In this work we show finite time splash singularities with py = 1y = 0:

(po, o)  x € D(1),

(p(x, 1), u(x, 1)) = [ 0,0), x €R2D(®),

&)
dealing with one fluid dynamics with R?>~.D(z) a dry region. In those scenarios
the fluid essentially lies below the dry region: there is M > 1 such that R x
(=00, —M] C D(t). Then, the free boundary will be asymptotically flat: z(c, 1) —
(o, 0) — 0 as @ — o0, or periodic in the x direction: z(« + 27, ) = z(a, t) +
(27, 0). The energy of the system is finite,

/ |v(x,t)|2dx < 00,
D(t)

yielding physical relevant scenarios. In those cases we provide some geometries
for the interface where the Rayleigh-Taylor condition is satisfied, getting rid of
unstable situations. The main theorem of the paper is the following:
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Theorem 1.1. There exists an open set of curves O C H?, satisfying the chord-arc
and Rayleigh-Taylor condition, such that for any zg € O the solution of Muskat
(1,2,4,5) with z(a,0) = zo(a) violates the chord-arc condition at a finite time
Ts = Ts(zo) > 0. In addition, this holds in such a way that z(ay, Ty) = z(az, Ty)
with a1 # an.

Remark 1.2. At the time 7 the Muskat system (1,2,4,5) breaks down.

In the rest of the paper we show the proof of above result, splitting it in several
sections. In Section 2 we construct a family of curves z/ for which there is a
unique self-intersection point x; where x; = Z (ay) = Z (o) with o] # ap and
aazll (1) = aazll (a2) = 0. Plugging these curves in Darcy’s law, we find that the
Rayleigh-Taylor condition holds. Furthermore, the velocity indicates that the self-
intersection point is going to disappear going backward in time. A more general
scenario can be found in Section 7. In Section 3 we show how to make sense of
the problem with a self-intersecting interface, transforming the Muskat problem
into a new contour dynamics equation we call P(Muskat). Up to the time of the
splash we can recover Muskat from P(Muskat), but at the time of splash P(Muskat)
makes sense and it is possible to go further in time. In Section 4 we prove the local
existence of the P(Muskat) system. In Section 5 we show a stability result for
P (Muskat). Finally, in Section 6 we show how the family of curves Z (@) together
with the existence and stability for P(Muskat) allow us to conclude the proof of
Theorem 1.1.

2. Self-Intersecting Stable Curves With Suitable Sign of Velocity

In this section we show that there exits a family of splash curves satisfying the
Rayleigh-Taylor condition, with velocities which separate the splash point running
backward-in-time.

First we use Hopf’s lemma (see [19] for example) to achieve the Rayleigh-
Taylor condition. Taking divergence in Darcy’s law (1) we have

Ap(x,1) =0

for any x € D(t). In addition, the continuity of the pressure on the free boundary
[11] and the fact that

—Vp(x,t) =(0,0)
for any x in the interior of R2~.D(t) allow us to get
pz(a,1),1) =0.
Also

lim wv(x,t) =0,
Xp—>—00
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and therefore Darcy’s law gives

lim 0y p(x,1) =0,
Xp—>—00
lim 8y, p(x, 1) = —po.
Xp—>—00
It is possible to find that p(x,t) — (—ppx2 + c(t)) — 0 when x, — —oo and

to conclude that the pressure is positive in D(¢) by the maximum principle for
harmonic functions. In this situation we can apply Hopf’s lemma to obtain that

—Vp(z(a, 1), 1) - 95 z(a, 1) > 0, (6)

where sz(oz, t) = (—0qz2(a, t), dyz1(, t)) is the normal vector pointing out the
domain D(#). In the periodic setting, compactness provides

—Vp(z(a, 1), 1) - 95 z(a, 1) = k() > 0, @)

for any o € R. In the asymptotically flat scenario, (6) again implies (7) provided
we restrict « to lie in a bounded interval. On the other hand, for large ||, Darcy’s
law implies

nov(z(a, t),t) - aj‘z(a, t)=—-Vpi(a,t),t) - Bi‘z(oz, 1) — poogz1(a).

Since the v — 0 and 9,z1(o) — 1 as |a| — o0, (7) holds for large « thus (7)
holds in all cases.

Next we deal with curves z/ (o) with a unique splash point x; = z/(er]) = 2/ (ar2)
for o1 # ar where

du 2} (@) = 82 (@2) = 0.

We show that this configuration provides a sign for the velocity at x. Taking the
trace of Darcy’s law to the curve and multiplying by sz[ () we have that

1ov(Z (@) - 957 (@) = —=Vp(E (@) - 957 (@) — podaz) (@)
Thanks to our choice of the splash curve it must be satisfied
V(@ (@) - 85z (@) = —uy 'V (@) -9t (@) 2 >0, i=1,2, (8)

where again we have used Hopf’s Lemma (7). It is clear that (8) implies that the
velocity separates the splash point backwards in time. In Fig. 1 we give a graphic
sketch of the kind of splash singularities we are considering.

Theses curves yield the simplest splash scenario we can consider. In Section 7
we show the existence of different geometries that give rise to a splash singularity
for the one-phase Muskat problem.
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3. Transformation to a Non-Splash Scenario

This section is devoted to transform the system into a new contour evolution
equation which we use to handle the splash singularity. We consider solutions of
Muskat satisfying (1,2,4,5) for regular z(«, t) satisfying the chord-arc condition.
Taking limit as x — z(«, t) from D(¢) we find

v(z(e, 1), 1) = u(e, 1),

where

w(a,t) zg(a,t)
2 zgla, )2

u(e, t) = BR(z, o) (a, 1) +

BR stands for the Birkhoff-Rott integral, which is given by

(z(a, 1) —z(@ =B, )"

|z(at, ) — z(a — B, t)|2w(a

— B, ndB,
€))

BR(a, 1) = BR(z, ) (a, 1) = %PV/R

and o is the amplitude of the vorticity concentrated on the free boundary:

(0xv2 — O u1)(x, 1) = (B, 1) (x = z(B, 1)).

By approaching the contour in Darcy’s law and taking the dot product with 9, z (e, 1),
it is easy to relate the amplitude of the vorticity and the free boundary by an elliptic
implicit equation:

w(a, 1) = —2BR(z, )(a, 1) - dgz (e, 1) — 2%30@2(0[, 0. (10)
0

We have the dynamics given by the contour equation
zi(a, 1) = u(a, 1) + c(a, 1)dgz(a, 1), (1)

where ¢ represents reparametrization freedom. See [11] for a detailed derivation of
the system.

From now on we establish the transformation in the periodic setting. In the
asymptotically flat case the map is different but the same properties follow using
elementary complex variable arguments. In the periodic setting, we regard z(«, t) as
a point in the cylinder C /27 Z obtained by identifying points in the complex plane
that differ by a multiple of 27r. We will transform the system with the conformal
map:

P(w) = (tan(w/2))"?, w e (C/2nZ)\iR"

and iR™ intersects the curve only at the splash point and make sure that the splash
point lies in iR™. Above, the branch of the square root is chosen in such a way that
P (7! («)) becomes a one-to-one closed curve. In this setting the inverse map of P
is P~! which is well defined and smooth from C to C/2xZ. See [7].
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We then consider by this new transformation the curve Z(«, 1) = P(z(«, t)).
This provides easily
Za(a, 1) = VP (z(a, 1))za (e, 1),
and

Zi(a, 1) = VP(z(e, 1)z (e, 1) = VP (z(e, 1)) (u(a, 1) + c(e, 1)za (@, 1))
= VP(z(ax, t)u(e, t) + c(o, t)Zo (a, t).

For the potential ¢ (x,1) (Vop(x,t) = v(x,t)) we define in the tilde domain

¢(x,t) = ¢(x,t). Then
v(x, 1) = Vo (x,1) = (VP)(P(x), )VP(x) = VP(x) (VH)(P(x),1).
Taking the limit we find
u(a, 1) = VP(z(e, ) (V) (P (z(ar, 1)), 1) = VP (zle, 1) ii(ar, 1),
where ii(a, t) = V@ (Z(a, 1), t). It yields
Zia, 1) = Q% (e, D)ii(et, 1) + c(et, g (@, 1), (12)
where Q7 is given by
VP(z(a, VP, ) = 0% (. 1,

and [ is the 2 x 2 identity matrix. In other words,

2 dp 2 dP ., . 2
0.0 = |5-@ | = |- G| (13)
dw dw
Next we consider the velocity v defined on the whole space by
. 7o 1 (X —Za ="
D =Ve(,t) = —PV — — B, 1)dg,
BN = VRE N = 5PV | oS Gl = L0dp

where
(05,02 — 35, 01)(X, 1) = @(B, 1)8 (X = Z(B, 1)),

in a distributional sense. Approaching the free boundary it is possible to obtain
i = BRG. ) + 3 (14)
U= 7, W)+ =5 72a-
20742

In order to close the system we integrate Darcy’s law to find

no¢(z(a, 1), 1) = —p(z(a, 1), 1) — poza(a, 1) = —poz2(a, 1),

due to the continuity of the pressure at the free boundary and the vacuum state. The
conformal map P provides

1odGla, 1), 1) = —po Py ' G(a, 1)), (15)
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where P~1(2) = (P ! (2), P{l (z)). Taking one derivative and applying identity
(14) allows us to find

o (BR(E, W) Za + g) = —podu(Py ' (2)).

We rewrite the above identity as
&) = ~2BRE, @)@ 1) Zale ) = 20830 (P G ). (16)
0
Identities (12) and (14) give

Zi(a, 1) = Q%(a, 1)BR(Z, @) (a, 1) + &, DZq (@, 1), (17)

for ¢ = Q?@/(2|Z4|%) + c. We pick

Cla, 1) = % 35(Q?BR(Z, @))(B, 1) - %dﬂ
o o 5 Il (18)
—/ 35(Q23R(Z,@))(ﬂ,;).%dﬂ’

which provides a tangential component |z, | depending only on the variable . We
end up with a contour equation given by (16-18).

Finally we will find the Rayleigh-Taylor condition in terms of z. We define
p(x,t) = p(x,t) to obtain, with Darcy’s law,

—VE, 1) = noV(E, 1) + poVP; ().
Approaching the free boundary, we easily find that

G, 1) = =VpE(a,1),1) - 75 = o BRE, @) - 75 + poV P ' G, 1) - 7L
(19)

4. Local-Existence in the Tilde Domain

This section is devoted to show local existence for z solutions of (16—18) with
7 e C([0, T]; H*) with k > 3. The main difficulty lies in finding a priori estimates
for the system. In what follows we skip the details on how to pass from the a priori
estimates to obtain solutions of the system (the relevant arguments may be found
in [11]). In order to simplify the exposition we suppress the time variable and the
tilde in the equation. We define

#- ()
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which are the singular points of the P~! conformal map. We set z(«, #) to satisfy
Z(a,t) # ql forl =0, ..., 4. In order to get this we fix D(0) so that g—i(w) # 0 for
any w € D(0) without loss of generality. We will check that this property remains
true for a short time. Next we define the quantity

4

Ex(z) = Ee®) = 121200 + I FOIa () + —3——+ > —
m(Q70) () 2= mghn)
20)
where
F(2)(a, ) = P . o, pel-m ],
|z(a) — z(ee — B)I
and

m(Q*0)(t) = min Q*(ar, H)o (., 1), m(g")(t) =min |z(et, 1) — ¢'].
aeT aeT
‘We state the main result.

Theorem 4.1. Let z(x,0) = zo(w) € HY(T) for k = 3, F(zo) € L,
m(Q%c)(0) > 0 and m(g")(0) > 0 for | = 0, ...,4. Then there exists a time
T > 0 so that there is a unique solution z(«, t) of (16—18) in C([0, T']; Hk).

We shall show a proof of the energy estimates.

Proposition 4.2. Let z(«, t) be a solution of (16—18). Then, the following estimate
holds:

d
3 Br® = C(Ex()P

fork = 3. The constants C and p depend only on k.

Below we will show the proof for k = 3, the rest of the cases being analogous.
As in [11], we can show that

4

d
" (uzniz(r) +HIF@I @) + ) < C(E)".

1 1
W @® 2 m@h®
Next we study

3
0,2

d 2 3 3

T 12 () =2 [ dyz(x) - 9,z (ar)dar.

We can estimate most of the terms as in [11]. We also quote [6] for dealing with
the O factor. This factor does not introduce any unbounded character as

Q%1 gk < C(Ex(1))P.
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We will show how to deal with the unbounded and therefore singular terms. We
find

2
m O = CED+1,

3
0,2

for

_ 3 N2 l (z(a) — z(x — ﬁ))L 3 .
I _/Baz(oz) 0*(@)— @ @B Rw(a — B)dpda.

We get I £ C(Ex(t))P + I1, where

1
11 =/agz(a) 2 20 H (330) (@)de.
|za ()]

The identity H (dy) = A allows us to rewrite 11 as
1
I =—— A(33z~zJ‘ 2) @)02w()da.
IZa(Ot)Iz/ el 2 07) (%@
Next we can use formula (16) to further split I/ = 111 + IV where

" za@)?

/A (332 7y Q2) (@)82(BR(z, ®) - z4)()da,
and

_ —2popg

 lza(@)?
The term 711 can be estimated as K3 in p. 514 of [11]. An analogous approach
provides

/ A (agz Zy Q2) (@)33(Py () (@)da.

2
|2a ()2

A (agz) (o) der. 1)

111 < C(Ex(0)” — / 0*(@)BR(z, ) (@) - 22 (@)332(@)

For 1V we consider the most singular terms as the rest are bounded: IV <
C(Er(t))? 4+ V where

2 —1
= — |Zp0('l;())|2 /A (822 . Zi_Qz) (@) (sz_l) (z()) - 822(0[)(10{.

Then we split further V.= VI + VII + VIII + [ X by writing the components
of the curve:

B 2001ty

|z () |?

2 71

VIl = L0 M .

|Za ()]

_ 2p01g "
|z () |?

_ 2p01g "
|z () |?

[ 2 (02210,220%) @05, Py oz e

/ A (af,zlaazzQz) (@), Py ' (2(@)) 8322 (@)dar,

/A (agzzaazlgz) (@), Py (z(@))83z1 (@)de,

/ A (agzzaalez) ()35, P; ! (2(@))83 22 (a)dar.
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The commutator estimate
IAGgf) —gAfll2 = Cligh 41122
yields

VI s C(Ek(t))”

20 [ g3yt by ctapiucaeiin @A (1) @i
(22)
and
I1X < C(Ex(1)?
2
-2t [ QP et @@ () @i
(23)
Similarly, for VI1,
VII < C(Ex(1))?
2
|zp0<M§|z / 0% @, Py @)z @2 A (921 (@)der
The identity
duz2(@)3522(0) = =B z1 (@321 (@) + “Z(a)r
provides
VII < C(Ek(t))”
2
|zpo<g§)|z / 0% ()i, Py cleNiuzi @1 @A (221 (@)do
(24)
Proceeding in a similar manner we can get
VIII < C(Ek(t))”
2
|p0(,$|2 / 0% (@), Py (2(@))du22() 8322 (a) A (3312) ()dar.
(25)

Adding the inequalities (22)—(25) it is easy to get

V < C(E(t)? — |Po(u§|2 / 0% (@)VP;  (z(e))

2R @) z@) - A (agz) (@)da.
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The above inequality, together with (21), lets us obtain

111 = C(Ex(1)? —

o )|2/Q (@) (@) 2(a) - A(a3 )(a)da

with o given in (19).
Finally we obtain

3 2 < P _
dz|| , (1) = C(Ex(1))
L

d 3 3
o o )|2/Q (@) (@) 2(a) - A(a )(a)da

From the a priori energy estimates we have that m(Q%c)(t) > 0, which, together
with the pointwise inequality 2 f A(f) = A(f 2y (see [10]), yields

(t) < C(Ex)F — (@ )|2/Q (Ot)a(a)A( )(Ot)doe.

dr

Integration by parts for the A operator gives the desired estimate.

5. Stability for the Muskat Problem

This section is devoted to demonstration of the following result:

Proposition 5.1. Let x(«, t) and y(«, t) be two curves which satisfy the contour
Equation (16—18). Then, the following estimate holds:

p
d
—lx = yllg(0) = C(Sup E3(x, 1) + sup E3(y,t)) lx — vl (@).
dr [0,7] [0,7]

Above, E3z(x, t)and E3(y, t) are given by (20). The constants C and p are universal.

Proof. In order to simplify the exposition we suppress the time variable and we
denote ' = f(a —B), f = f(a), f- = f— fand [ = [}.

We consider two solutions of the system x (¢, ¢) and y(«, 1) in C ([0, T']; H3 (T))
with y and ¢ its vorticity amplitudes given by (16). We will also denote by Q)%, 02,
BR,, BR, and cy, c, the factors Q?, Birhoff-Rott integrals and parametrization
constants associated with x and y, respectively [see (13), (9) and (18)]. During the
time of existence 7 > 0 one finds Supyo, 7] E3(x,t) and Supyo, 7] E3(y, t) bounded
so that we will write

p
C| sup E3(x,t)+ sup E3(y,1) ] =C,
0,71 (0,T]

by abuse of notation.
For the function z(«, t) = x(«, t) — y(«, t), one finds
1d

S lel =/z~ztda=h+12+13+14,
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where

2 (02 - 0%) BR.da,

(ex — cy)xada,

Iy = /z - Cyzgda.

2 _ o2 2
It = |lzllize Q% — @yl 2IBRy 2 = Clizli

/ - 03(BR, — BRy)da,

Then for I; we find that

In I we split further, as follows:

1 2 7t ,
Iz,1=—/z-Qy/| |2ydﬂda,
1 /
12,2=— z- Qy s |2 e y dBde,

I3 = /z - 03BR(y, w)da,

where w = y — ¢. In I, for the integral in 8, we find a kernel of degree —2
applied to z_; thus

2
L = Clizlly-

Since

-1 (x +yo)-z-
Iz,z-—/z 03 / - T Ph T T )dBda,

we again recognize a kernel of degree —2 applied to z_ above, so that
Lo £ Clizlig-
For I, 3 it is easy to check that BR has a kernel of degree —1 and therefore
L3 = Cllzll2llwll 2.
In order to deal with ||w|| ;> we write

o+ 2BR(x, w) - x4 = 2BR(y, ¢) - yo —2BR(x, ¢) - xo
0 _ _
+2% (VP2 ') - ya — VP () -xa) .
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Bounds for the operator (I + 2BR(x, -) - xo) ! (see [11]) allow us to get

lollz2 = CHZBR(y, $)* Ya = 2BR(x, {) - X

o (VA0 = VB 0 )

L2

We proceed as before to obtain

HZBR(y, O ya = 2BR 0 x40 (V00 e = VB (0 )

S Clzllgn,

L2

giving
2,3 = 1»
L3 < Clizl?,

as desired. Next we move to /3. We split further to deal with ¢, — ¢y by writing
¢y — ¢y = G + G, where

6= [ a5 (02BR.) ) 2200 a5 (38R,) - 2282 L,

2 1xs ()% s (B2
and
o (B) (B)
G2 = _/_,, [3’3 (Q’Z‘BR*) P |;,sﬂ(ﬂ)|2 0 (QiBRy) P |yy/3ﬂ(,3)|2] 4P

Then we decompose further, to find |G| < |G11|+|G1.21+1G1.3|+|G1.4]+1G1 5

where
X
G =/aa (02 - @})Br.) - ~ae
o

2 x
Gio= / % (07) R~ BRy) - 15 da

Gis = / 020,(BR, — BR,) - —da,
| X |
Gia :/aa (Q3BR,) - —“5da,
x|
G /8(Q2BR) (1 1)cl
15 = BRy) v | T a.
PSR a2 ™ a2

Above, we use « variables instead of g for the sake of simplicity. We can proceed
as before to get

G|+ 1G12l+1G1al +1G151 = Clizll -
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For the most delicate term we have to split further: G13 = G131 + G132 +
G133+ G134+ G135+ G136, Where

1 2 xt Xo
Gusr =57 [ & [ pelone
G = dgd
. / / [|x TS |2} o padpder
Xo

Baz,
G133 =

o) S ¥'dBda,
O a|

/ /
[| 7 |y§_|2} i
[

Gi34 =

2—/
Gi3s = —;/ 0’

Xo ,
[ WX— - 0yz—¢ dBda,
- o

and

1 xt yt
GL“:‘;/Qi/[|x_|4x"a"‘y‘y/ -t |- o dpda:

We estimate first the less singular terms, which can be controlled as before:

|G1321+1G1341+ G136l < Clizllg.

One can rewrite G 3.1 as follows:

—xL,B X
G131— / / TP a|2 w,dBda,

to find a kernel of degree 0 applied to wg. This yields

G131 = Clloll2 = Clizllg-

Similarly,

1 xt—xt X,
G1’3’5:_;/Q§/ ozﬂ. ¢ _x_ - dyz_C'dBda,

e-* lxal?
and a kernel of order —1 applied to d,z_ yields
G351 = Clizll -

It remains to deal with G 3 3, where we simply integrate by parts to obtain

1 1 X,
G133 =—— .9 e dBda.
13,3 Zn//z_ a(|x_|2Qy| a|23/) pda

We find, as before,

G133 = Cllzll 1.
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Since we are done with G it remains to deal with G;. The same decompositions
used to control G| will also be used to control G». The only term in G, that cannot
be controlled by the ideas used for G is the term analogous to G133 namely:

(0pz(B) — 3pz(B =N xp(B)
Ix(B) —x(B =& |xp(B)I?

We cannot integrate by parts here as in G 33. We further decompose G233 =
65’3’3 + G%’3,3 + G%,3,3 where

1 o
Gozs=o— / 03 () y (B —§)dsdp.
T J-x

1 _L/" 2y *8(B)
G233 5 | O Ppr

y(B—§) Y (B)
% —
[X(B) —x(B =87 |xp(B)[>4sin*(B/2)

: / (9pz(B) — dpz(B — £))*

}dédﬂ,

1 o
G335 = 2/ 03By (B) |;:((5))|4 - A(dpz D) (B)dB
a4+ 5 xp(B) 1
- , A dB,
- /Q)(ﬂ)y(ﬂ) e M ®s
and
G =57 [ B B - aGs e,

The fact that the kernel in £ has degree —1 allows us to get

(6L 3] = Clzln.
Integrating by parts (A is a self-adjoint operator) it is easy to obtain

(G334] = Clzln.
All the bounds above for ¢, — ¢, allow us to get

L= C”Z”zl + / z- xaG%,3,3d0‘-
Above we integrate by parts to find
/z x4G333de = Iy 1 + 32

where

1 o 2 Xo 1
ni=j [ ( / Z(ﬂ)'xﬁ(ﬂ)dﬂ) 02y 2 ABurt)de

2 o [ Xe |4
and

1 o
o= [ [ @ wpapea [ pme Ll

lxg(B)I*

- A(dpzh)(B)dB.
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As before, using that A is self-adjoint, it is easy to get
I < Cllzll;
32 = 4 Hl .

Similarly,

Ba= [ (e @) austde where a@ = [ @) s

2 |xal* -

The fact that A = H(d,) allows us to find

Lo £ Clizll3,
and thus

L= Clzl3,
At this point it is easy to get

Is £ Clizll3-

If one combines the above inequalities the following is obtained:
d
3 1272 = Cliallg-
The next step is to analyze
d 2
allzalle =2 | gz Oazedy =1Is+ lo + I7 + I3 + Iy,

where

5
Il
(V]

Zo - % (0Q2) (BR, — BR,)da,

N
Il
o
N
Q

- 029, (BR, — BR,)dw

(02 ~ 02)BR e,

=
I
o

- Oy ((Cx - Cy)xa)da,

I
S

o
Il
\]

Zo * Oy (cyza)doz.

1
\\%\\

It is easy to get

2
Is < Cllzll%.
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For Is we consider I¢ = Ig 1 + Is2 + 163 + Is 4 + 16 5 + I 6 where

1 5 xt ,
=g | e O | fp
1 2 xt yE ,

Ior = — [ za- 2= 1 dBda,
6,2 = /Za Qx/ |:|X|2 |y7|2 Co Bda

aZ,

1
o= [ G [ 25y apde
x |

_ 1 5 1 y/ ;./
= f o 03 font [ - i o

2 1
2 — /
Ie5s = ——/za . Qx/—4x, - 0gz—¢'dBda,
b4 |x—|
and

2 5 xt R ,
I =—— | Za- Qx 75— Ogy—y' — Tz Y- Oyy—¢ | dBda.
T lx_| ly—|

It is easy to get

Ioo+ Ioa + Ios < Clizll3,0.

We split further: I 3 = I 3.1 + 16.3,2, to find

los1 = 5~ / /l 7|2 QzJ//—(Q )y]dﬁda

1 8aZJ__
Ie30=7— [ za-
2 X

Tl + @y ]apde
We find, as before,

and

2
Io3,1 = Clizlly,

Changing variables one could obtain

1632——// . |2 Q2]//+(Q)V]d/3da—0

We are done with /¢ 3. The term /¢ 5 is decomposed as the sum of

Xo | © 02— o,
6.1 |x |4 |xa|44 Si]lz(ﬂ/Z)

lo50 = / | |4 - A(zo)da
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and we have
Ies1 = Clizl3,.
We use the fact that A = H (dy), and the identity
Xg * agz = —Xq - ao%y =—Zy: Bgy,

to rewrite

L
16,5,2 = 2/ Ix |4 — Xo - A(2o)]

—2/ Q€| P
J_
Xo 2

+2/ 0 e (0 03y) doc

Since the commutator estimate for A gives

(agx : za) da

2
le52 = Clizllgs

we are done with ¢ 5. It remains to deal with /¢ 1, where we have to find the
Rayleigh-Taylor condition. We decompose further /s ; as the sum of

] 1 ) xt X ' dBd d
611=— [ Zu- (O P maPZn(a)2) w,dBda an

2 Xy
o1z = [ @z o Hiw)do,
o

As before,
1 <C 2
6,1,1 = ”Z”Hl'

Next we will decompose wy, pointing out first the bounded terms, and dealing later
with the unbounded. We take w, = G3 + G4 + G5 + G where

G3 = —2BR, - 32x + 2BR, - 32y,
G4 = —204BRy - x4 +204BRy - yy

Gs = =22 (3 (VB ') xe = e (VP31 0)) 3a)

Ge

00 _ _
Yl (VP2 ) - 92x — VP (y) - agy) .
1o
We split further G3 = G3,1 + G32
G31 = —2BR, -2z, G3p=2(BR, —BR,) 32y
to obtain, as before,

1G3.2ll2 = Clizll g
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The term G3,; is one of the unbounded characters. We continue by taking G4 =
G411+ Ga2+Ga3+ Gaa+ Gas+ Gae where

1 W
G4,1 =__/ - zy/d,B'xOlv
T [x—|
1 Y’ ¢’
Gyp = ——/%yf : |: 7 Xa = T3 Va dg,
7T x| [y—|
2 xt ,
Gs3 = — 7 XaX— - Oqz—y'dp,
x|

xt , ot ,
— 7 Xa XY — —7 Yo y-C | day-dp,
x| |y-|

T

2
Gyg=—

T

1 xt ,
G4,5 = _; |x_|2wad/3 *Xos

4,6 - T |.X_|2 Xo |y_|2 )70: g‘o{ N

Next, G4,1 joins the unbounded terms and

G422 + 1Gaall2 + 1Gagll2 < Clizllp.

It is possible to obtain a kernel of degree —1 applied to dyz— in G4 3 as follows:

_xJ-ﬂ ,
G43——/ — 5 XaX— - Jpz_y'dB.
x|

Therefore
1Gasli2 = Clizlig.

Since

1
G45———/ x'Ba)dﬂ'xa,

|x—|?
we obtain, in an analogous way,
1Gaslir2 = Cllwll2 < Clizll g
For G5 it is easy to get
IGsllz2 = Clizllgs
but the term G¢ has to be decomposed as follows:

Goyr = —222vpy (x) - 0%z,
M

_ _»~k0 —1 o —1 . 2
G = 2M0 (VP2 (x) — VP (y)) 82y
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G¢,1 remains unbounded, and
1Ge.2llL2 = Clizll g
easily. Thanks to all this decomposition we find
Isn2 < Clizllfy + I 12+ o120+ 101,

where

L
16‘,1,2=/Q za-l e H(G31)d0t 162,1,2=/Q za-| “7 H(Ga.1)de,
Ol

and
I3, =/Q Za —2s | “ H(Gél)dol
Ol

In I§ | , and I7 | , the Rayleigh-Taylor condition will show up. For I¢ | , we con-
sider the splitting

21 /H(Q2 xi)l/a J_[ Y’ 14 ]dﬂ d
’ = Za — Yo — * Xodd,
6,1,2 x<o Ixa|2 T o |x7|2 |xa|24sin2(l3/2) o

s
1612_/H(Q Za* az) zA(aaZ ) - Xgda,
| x| | x|

using that H is skew-adjoint. The first term satisfies

2,1
16 12 = C”Z”Hl

For the second term we use the commutator estimate to show that

J_
< Cllzl, +/H(Q a7 |2)A(|xy|28azL~xa) dar
o o

The fact that H> = —1 yields

Y
R < Clelly + [ O lw(lwlzaazl )da.

In the integral above we expand the derivative, to find out that it is possible to
integrate by parts in 9y (z4 - x;-). This yields

2.2 2 2
I51, = C”Z”H" and therefore Ig;, = Clizlly-

Next we consider

I, =— /Qza - (ZBR agz)da,

for which we use the commutator for the Hilbert transform

I1H (80 f) — §H (0o f)ll 12 = Cligh .y 122,
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to find

Igi2 < - | |2/sza Xy BR, H(a2 )d
Ot

Next we split the above integral by components:

161,’11 /Qx 002100 x2BR | - (agzl) do,

27 |xl?

I(}IZ = x |2/Q 007104 x2BRy2 - H(Bzzz) da,
o

161:13,2 = |x |2/Q 002204 X1BRy1 - (302,Z1) da,

lg1n = 2 / 02922290x1BRy2 - H (3 zz) dar.

X
The commutator estimate for the Hilbert transform allows us to obtain

1

L S Clzll + — 2 028,21BRy2 - H (84x20222) d
6 = Hl |2 xO%all x2 aX20,22 ) AX.

|x
Together with the identity

0uX20220 = —04x10221 — Daz - 02,
this provides

2
Ity < Clzli%, —W/Qiaalesz-H(ao,xla;le)da

The commutator estimate yields

2
Ity < Clzll%, —W/QiaazlaaxlBsz-H(ajzl)da

In a similar manner we find that
2

I, S Clzl?y + P / 0%0,220,2BR, | - H (a§Z2) do
a

Adding (26)—(29) we find that

I a < Cll — —/Q BR, - x2 20 A (0)dat.

00
1612__ /Q

and a decomposition in components as before provides

Next,

(VP2_1(x) 32 )

3 2
16,1,2 § C”Z”Hl - | |2
O(

/Q VP2 (x) - x Za - N (zg)do.

235

(26)

@7

(28)

(29)

(30)

€1V
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Adding (30) and (31), we find that
Is12 S Clzl%, + 1, B, <l —2—— [ 02 - A(zg)d
6,12 = Cllzlly + Ig 12+ 1512 = Cllzllg 5 | Q%0xZa - Alza)de.
ol Xel
The Rayleigh-Taylor condition (¢ = 0) for the curve x gives
Ien2 = Clizl3. Is1 < Clizll,. and finally I < Cllzll7,.
We easily find that
I = Clizl3,.
For I3 we consider
Ig = 2/za -(cx — cy)f)éxda + 2/za “ Xg 0y (cx — ¢y)da,

and integrate by parts to find

I = —2/ Boztz - Xg(cx — cy)da.
The fact that
Is = 2/a§y - Za(ex — ¢y)da
allows us to deal with I3 as for I3 to get
Iy < Clizl3,:-

Finally, integration by parts provides

@=/kﬁ%@M§Ckﬁp

This completes the proof of Proposition 5.1. O

6. Proof of Theorem 1.1

Let R/277Z 5 a — z%(a) € C/27Z be the curve depicted in Fig. 1. For the
short time ¢ € [0, tp], we solve the P(Muskat) equation for z(c, ¢), with initial
data Z(a, 0) = P(z%(a)) (see Section 3 for P and P~'). We then set z(a, 1) =
(z1(a, 1), z2(er, 1)) = P71 E (e, 1)) € C/2nZ for (a, 1) € (R/2w7Z) x [0, 1o].

We know that z € C([0, t], H3(R/27rZ)), therefore we also have 0,7 €
C([0, o], H*(R/27Z)) and 377 € C([0, t9], H' (R/27Z)) as we see from the
P(Muskat) equation. In particular, 7 € C2((R/2nZ) x [0, t9]), and therefore
z € C3((R/2n7Z) x [0, 1p]).

We have z(«, 0) = %) for all @. We will show that the curve @ — z(a, 1)
self-intersects transversely for small positive t.
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Fig. 2. The hatched and solid arcs

To see this, we examine the hatched arc z%(7 ™) and the solid arc z° (1 1) depicted
in Fig. 2, where I~ and It are disjoint intervals in R/27Z. The curve z°(-) self-
intersects at the point z°(¢™) = z%(a™), where at € It anda™ € I~

‘We may suppose that the hatched and solid arcs both have nonzero curvature at
that point. The above remarks, and the discussion of the Rayleigh Taylor condition
in Section 7, imply:

0oz1(a4,0) = 9yz1(x—,0) =0
92z1(as,0) > 0> 8271 (ar—, 0)
0az2(0t4,0) #0, dpz2(2—,0) #0
9z1(a—,0) > 0 > 921 (a4, 0).

Intuitively, the curve o« — z(«,t) self-intersects transversely because the

hatched arc in Fig. 2 moves to the right as time increases, while the solid arc

moves to the left. This intuition is justified by the following elementary lemma and
its collorary:

Lemma 6.1. Let [—cqg, col X [0, col 3 (o, 1) — z(e, 1) = (z1 (@, 1), 22(ex, 1)) € R?
be C2-smooth, with z(0, 0) = 0, 3421 (0, 0) = 0, 95220, 0) # 0. Given ¢ > Qthere
exists § > 0 such that foranyt € [0, 8] a part of the curve [—cg, cg] > ¢ — z(a, t)
admits a C? reparametrization as a graph [—38,8] 2 xo — (F(x2,1),x2) € R2,
where
1 3221(0 0) 2:|
F(x2,t) — | (8,21(0,0))t + - —¢—""_x Se[xz—i—t]
’ (x2,1) [(r 1(0,0)) 3 (22002 2 | 2822
and
3221(0,0)
2%2
(0422(0, 0))
for (x2,1) € [—6, 8] x [0, §]. Here, C is independent of (x2, t).

<é¢lxy| + Ct

asz(XZv t) -
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Proof. Using the implicit function theorem, we produceaC2 functiona = A(xp, )
that solves the equation zp(«,?) = xp for xp,t given. We set F(xp,t) =
Z21(A(x2,t),t), and derive the desired estimates for F' and dy, F by Taylor-
expanding z(w, t) and A(x3, t) about (0, 0) and substituting « = A(x3, t). Details
are left to the reader. 0O

Corollary 6.2. Let (a,t) — z7(a,t) = (zf(a,1),25 (e, 1)) and (o, 1) —
z (a, t) = (z) (@, 1), 2, (e, 1)) satisfy the hypothesis of the above Lemma. Suppose
Btzi"(O, 0) <0 < 9z,(0,0) and 351?(0, 0) >0 > 8(311_(0, 0). Then for small
positive t, the curves o — 7V (a, t) and o — 7~ (a, t) intersect transversely.

Proof. Let K be a large enough positive number. We apply the lemma with
¢ = K~10 Then for r € [0, §], our two curves contain graphs [—§, 6] 2 xo —
(Ft(x2,1), x2) and [—6, 8] © xo — (F~(x2,1), x2), where

1
‘Fi(xz, t) — |:vit + Eaix§i|

< k10 [x%—f-t]

and
|00y F¥(x2, 1) — a*xa] < K~"xa| 4 C, (32)

andvt <0 <v ,at>0>a".

Itfollows that F* (K12, 1) < F~(K~'t2, t)and Ft(Kt2,1) > F~ (K12, 1)
for small t; hence, F1(%5,1) = F~ (¥, ) for some X, € [K_lt%, Kt%]. Thus our
curves intersect at the point (F ¥ (X7, t), X2). That intersection is transverse because
Oy, FT(X2,1) > 0 > 0y, F~ (X2, 1), thanks to (32). O

We now know that the curve o« — z(«,t) self-intersects transversely, as
promised.
We can now easily finish the proof of Theorem 1.1.

Proof. We fix a time #; € [0, #p] at which the curve @« — z(«, t) self-intersects
transversely. Let zg(~) be a simple closed curve in (C/2mwZ)~iR™ such that
| |Z2 al H3R/227) < N, With 7 to be picked below. We solve the P(Muskat) equa-
tion with initial data P(z2(~)), obtaining a solution Z,(c, t) for which ||Z.(-, ) —
z2(-, 1)] |H3(R/2nZ) < Cnfort € [0, tp], thanks to Section 5. Here, C is independent
of z¥ and 7. Setting z.(a, 1) = P~ (Z4(a, 1)) for (o, 1) € (R/277Z) x [0, 1], we
find that:

o 7,(x,0) = sz)(oz) for all «;

e z.(a, 1) solves the Muskat equation on (R/277Z) x [0, t) provided @« —
z«(a, 1) is a simple closed curve for each ¢ € [0, 7);
and

o [lzi(. ) = z2C, Dl g3 277y = Cn fort € [0, 1o].

For small enough t, the curve o — z4(«, f) does not self-intersect, because
a = z4(a,0) = zg(a) is a simple closed curve. On the other hand, because
o — z(a, 1) self-intersects transversely and ||z, (-, 1) — z(:, t)||H3(]R/2nZ) < (Cp,
it follows that &« — z.(«, ) self-intersects transversely if we pick n small enough.
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Now let T = inf{r € [0, 19] : « — z«(«, t) self-intersects}. Then t € (0, 1),
o — z(o, t) self intersects, and z.(«, t) (¢ € R/2xZ,t € [0, 7)) is a Muskat
solution with initial data z,(«, 0) = zg (o). Here, zg(-) is any simple closed curve
that avoids the slit iR and lies close enough to z%() in H3. The set of all such zg
is a nonempty open subset of H>.

The proof of Theorem 1.1. is complete. O

7. A Remark on the Family of Splash Singularities

The scenario in Section 2 is the simplest one to obtain a splash singularity.
However the one-phase Muskat problem can develop this kind of point-wise col-
lapse for more geometries. In order to check that we proceed as follows. Let z(«)
be a splash curve with a7 # «p such that z(«w1) = z(a2) and [dyz(c)| > O for
every a. To consider a different situation from that introduced in Section 2, we also
assume that 9,71 (1) # 0. We make the following distinction between o) and a:
there exists a neighborhood Uy, of o1 and a neighborhood Uy, of «; such that,
if z1(B1) = z1(Bo) for B1 € Uy, and By € Uy,, then z2(B1) = z2(B2). Roughly
speaking, we just mean that z(«») is the upper splash point and z(«p) is the lower
splash point.

Let us analyze the normal velocity at o and «1. For oy we have

0xz1(a2)
|0a2(02)|”

where n(a) = sz(a)/|8az(a)| and u(a) = v(z(e, t), t). As in Section 2, Hopf’s
lemma yields

pou(az) - n(az) = =Vp(z(@2)) - n(az) — po

—Vp(z(az)) - n(az) > 0,

and we consider

0 21(002)
[0ez(a2)]
On the other hand, we have
0021 (0t1)
pou(@r) - n(ay) = =V p(z(@r)) - @) — pp -z,
[0gz(a1)]
with
=Vp(z(a1)) - n(ar) > 0,
and
aazl(al)
[0z (1)

Then the sign of d,z(r1) is bad for our purpose. However we can notice that

0yz1(a) _ 0y 21 (02)
|0z (1) 10g2(02)|”
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and therefore

u(a) -n(az) > —u(ay) - n(ay).

The last inequality is enough to show that the velocity separates the splash points
backward in time. Unfortunately this is not enough to ensure that we can produce a
splash singularity by using the previous analysis. It is possible to find u (o) - n(aq)
negative. Then the solution would cross the branch of P backwards in time. This

is a mere technical problem that we can solve as follows:
Let’s define a velocity

v(xy, x2,1) =v (xl,xz - &t,t) + (0, &) ,
o o

a density

£0
p(x1,x2,1) = p (xl,m - —t,t),
= 1o

and a viscosity

£0
n(xy, x2,t) = (XLXZ - —t, t) .
= o
Then we have:

£0 £0 £0
0;p(x1,x2,1) = (0;0) (xl,xz - —t, t) — —(0x,0) (xl,xz - —t, t)
- 12%0) 1220) 1220)

=-v (x1,x2 - &, t) -(Vp) (x1,Xz - &t, t)
Ko 1o

£0 £0
— —(0x,0) (Xh X — —t1, t)
Ko Ho

00 Po
=-v (M, Xy — —, t) - Vp(xy, xp,1) — — 0y, p(x1, X2, 1)
Ho = Mo T

- (v (xl, X2 — &t, t) + (0, &)) - Vp(xy, x2,1).
Mno 12%0) -

Thus we have that 14 satisfies

Ihp+uv-Vp=0,
and in a similar manner it is easy to get
o +v-Vu=0.
On the other hand,

pv=-—Vp,
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where we consider
£0
p(-xlv-x21 t) = p (xlsxz - _t7 t) .
- Ho

Then, by using v, Py I and p, we can write our Muskat problem as the system

hp+uv-Vp=0,

dpu+uv-Vp =0,
puv=-Vp,
V. 0,

|<
1

with the boundary condition

lim (g(xl,xz, 1) — (0, &)) =0.
x—>—00 o

In this new system we find the following: if z(«) is a splash curve such that
z(a1) = z(a2), then

pov(z(er)) - n(ar) = —=Vp(z(ar)) - n(ar),
pov(z(e2)) - n(az) = =V p(z(a2)) - n(az),

and again we can invoke Hopf’s lemma to obtain that
—Vp(z(a) -n(a1) >0, —Vp(z(a)) - n(az) > 0.

Then, the velocity separates the splash point and u(ce1) - n(o)n(eey) points in the
opposite direction to u(az) - n(az)n(az). Therefore we can carry out the same
analysis that we did for the simpler case of Section 2.
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