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Abstract

In this paper we show the existence in finite time of splash singularities for the
one-phase Muskat problem.

1. Introduction

This paper establishes some scenarios where the 2DMuskat problem produces
splash singularities; that is to say, we prove that a free boundary evolving by the
Muskat problem collapses at a single point while the interface remains smooth. The
situation is stable; we show geometries for initial data where the Rayleigh-Taylor
condition holds.

The singularities we construct are “splash” singularities in which the interface
self-intersects at a single point at the time of breakdown T∗ as in Fig. 1. Our previous
papers [6,7] showed the existenceof a splash singularity for thewaterwaveproblem.
The strategy there was to start with a “splash” singularity at the time T∗, then solve
the water wave equation backwards in time. This yields a solution to the water wave
equation in a time interval [T∗ − ε, T∗] that is well behaved at any time [T∗ − ε, T∗)
but exhibits a splash at time T∗. In our present setting, we cannot use that strategy
because the Muskat problem in the stable regime is parabolic and therefore cannot
be solved backwards in time. The importance of this issue is made clear by the fact
that water waves can form a “splat” singularity [7] whereas the Muskat solution
cannot [15] (a “splat” occurs when, at the time of breakdown, the interface self-
intersects along an arc). On the other hand, an analysis of the Muskat problem has
in common with our previous work on water waves a conformal map to the “tilde
domain”, see [7].

Recall the Muskat problem, which describes the evolution of two fluids of
different nature in porous media. Both fluids are assumed to be immiscible and
incompressible, the most common example for applications being the dynamics of
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Fig. 1. Splash singularity

water and oil [3]. In two dimensions, the two fluids occupy the connected open set
D(t) and R

2
�D(t) respectively. The characteristics of the fluids are their constant

densities and viscosities. Then the step functions ρ(x, t) and μ(x, t) represent the
density and viscosity respectively in the porous medium given by:

ρ(x, t) =
{

ρ0, x ∈ D(t),
ρ0, x ∈ R

2
�D(t),

μ(x, t) =
{

μ0, x ∈ D(t),
μ0, x ∈ R

2
�D(t),

for x ∈ R
2, t � 0; here, ρ0, ρ0, μ0, μ0 constant values. The main concern is about

the dynamics of the common free boundary ∂D(t), which is given by using the
experimental Darcy’s law:

μ(x, t)v(x, t) = −∇ p(x, t) − (0, ρ(x, t)). (1)

Here v(x, t) = (v1(x, t), v2(x, t)) is the incompressible velocity

∇ · v(x, t) = 0, (2)

and p(x, t) is the scalar pressure. Above, the permeability of the media and the
gravity constant are set equal to one without loss of generality.

The Muskat problem is a long standing matter [26] of recognized importance,
especially because of its connection with the evolution of fluids in Hele-Shaw cells.
In that setting the fluids are confined inside two closely parallel flat surfaces in such
a way that the dynamics is essentially two dimensional. The Hele-Shaw evolution
law is given by

12

b2
μ(x, t)v(x, t) = −∇ p(x, t) − (0, ρ(x, t)),
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where b is the distance between the surfaces. Therefore, it is possible to observe
that for both different scenarios comparable phenomena and properties hold [29].

Amain feature of the problem is the appearance of instabilities, which have been
shown in different situations [27,30]. From a contour dynamics point of view, the
system of equations for the free boundary is essentially ill-posed from a Hadamard
point of view [12,29]. Although theMuskat problemwith surface tension taken into
account is well-posed [2,17], it nevertheless shows fingering [18] and exponentially
growing modes [24].

On the other hand, the Muskat problem is well-posed in stable regimes without
surface tension [11,12,14]. This situation is reached for the problem when the
normal component of the jumps in the pressure gradients at the free interface is
positive [1]. Then it is said that the Rayleigh-Taylor condition holds. In such a case,
linearizing the contour equation leads to the following [12]:

f Lt (α, t) = −σ� f L(α, t), (3)

where (α, f L(α, t)) represents the free boundary (α ∈ R), σ is the Rayleigh-Taylor
function and the operator � is the square root of the negative Laplacian. Then, the
fact that σ > 0 turns theMuskat problem into a parabolic system at the linear level.
This fact has been used to prove global-in-time regularity and instant analyticity
for small initial data in different situations [4,9,12,18,23,29].

For the case of equal viscosities (μ0 = μ0), the Rayleigh-Taylor condition
holds when the more dense fluid lies below the interface and the less dense fluid
lies above it [12]. In this situation, the regime is stable if the free boundary ∂D is
represented by the graph of a function (α, f (α, t)). In particular, it is possible to
get a decay of the L∞ norm [13] as follows:

∥∥∥∥ f − 1

2π

∫ π

−π

f0dα

∥∥∥∥
L∞

(t) �
∥∥∥∥ f0− 1

2π

∫
T

f0dα

∥∥∥∥
L∞

e−Ct ,

for f (α + 2π, t) = f (α, t); and with f (α, t) ∈ L2(R)

‖ f ‖L∞(t) � ‖ f0‖L∞(1 + Ct)−1, C = C( f0) > 0.

It is easy to check that above formulas provide the same rate of decay as Equation (3)
for f L at the linear level. On the other hand, the L2 norm evolution allows one to
control half a derivative for f L due to the identity

‖ f L‖2L2(t) + 2σ
∫ t

0

∥∥∥�1/2 f L
∥∥∥2
L2

(s)ds =
∥∥∥ f L0

∥∥∥2
L2

,

while at the nonlinear level the following equality

‖ f ‖2L2(t) + σ

π

∫ t

0

∫
R

∫
R

ln
(
1 +

( f (α, s) − f (β, s)

α − β

)2)
dαdβds = ‖ f0‖2L2 ,

does not give a chance of gaining any regularity [9].
The case of a drop on a solid substrate in porous media has been studied in [25].

This case considers the dynamics of one fluid, also known as the one-phase Muskat
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problem. The authors show local well-posedness of the problem with estimates
independent of the contact angle.

In [8], solutions of the Muskat equation are exhibited for initial smooth stable
graphs; those solutions enter an unstable regime by becoming non-graphs in finite
time. The pattern is far from trivial and recently it has been shown to be richer
for the inhomogeneous and confined problems (see [22] and references therein). In
particular the significance of a turnover (non-graph scenario) is that the Rayleigh-
Taylor condition breaks down. Furthermore, [5] there exist smooth initial data in
the stable regime for theMuskat problem such that the solutions turn to the unstable
regime and later the regularity breaks down. Therefore global existence is false for
some large initial data in the stable regime, as the solutions develop singularities in
finite time.

In this paper we show that theMuskat problemwith initial data in stable regimes
can develop singularities. The singularity is a splash, where for the free boundary
given by

∂D(t) = {z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R}, (4)

there exist a blow-up time Ts > 0 and a point xs ∈ R
2 such that xs = z(α1, Ts) =

z(α2, Ts) for α1 �= α2. In particular the curve is regular, and satisfies the chord-arc
condition up to the time Ts :

|z(α, t) − z(β, t)| � Cca(t)|α − β|, ∀α, β ∈ R, Cca(t) > 0, t ∈ [0, Ts).
Free boundary incompressible fluid equations can develop splash singularities.

This scenario has been shown for the incompressible Euler equations in the water
waves form [6,7] which considers the evolution of a free boundary given by air,
with density 0, and water, with density 1 and irrotational velocity. This type of
singularity can also be shown for the case with vorticity [16]. For the case of two
incompressible fluids with positive densities, this scenario has been recently ruled
out [20]. Similarly, for Muskat this type of singularity does not also hold in the case
in which μ0 = μ0 and ρ0 �= ρ0 [21].

In this work we show finite time splash singularities with ρ0 = μ0 = 0:

(ρ(x, t), μ(x, t)) =
{

(ρ0, μ0) x ∈ D(t),
(0, 0), x ∈ R

2
�D(t),

(5)

dealing with one fluid dynamics with R
2
�D(t) a dry region. In those scenarios

the fluid essentially lies below the dry region: there is M > 1 such that R ×
(−∞,−M] ⊂ D(t). Then, the free boundary will be asymptotically flat: z(α, t) −
(α, 0) → 0 as α → ∞, or periodic in the x1 direction: z(α + 2π, t) = z(α, t) +
(2π, 0). The energy of the system is finite,∫

D(t)
|v(x, t)|2dx < ∞,

yielding physical relevant scenarios. In those cases we provide some geometries
for the interface where the Rayleigh-Taylor condition is satisfied, getting rid of
unstable situations. The main theorem of the paper is the following:
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Theorem 1.1. There exists an open set of curvesO ⊂ H3, satisfying the chord-arc
and Rayleigh-Taylor condition, such that for any z0 ∈ O the solution of Muskat
(1, 2, 4, 5) with z(α, 0) = z0(α) violates the chord-arc condition at a finite time
Ts = Ts(z0) > 0. In addition, this holds in such a way that z(α1, Ts) = z(α2, Ts)
with α1 �= α2.

Remark 1.2. At the time Ts the Muskat system (1, 2, 4, 5) breaks down.

In the rest of the paper we show the proof of above result, splitting it in several
sections. In Section 2 we construct a family of curves zl for which there is a
unique self-intersection point xs where xs = zl(α1) = zl(α2) with α1 �= α2 and
∂αzl1(α1) = ∂αzl1(α2) = 0. Plugging these curves in Darcy’s law, we find that the
Rayleigh-Taylor condition holds. Furthermore, the velocity indicates that the self-
intersection point is going to disappear going backward in time. A more general
scenario can be found in Section 7. In Section 3 we show how to make sense of
the problem with a self-intersecting interface, transforming the Muskat problem
into a new contour dynamics equation we call P(Muskat). Up to the time of the
splash we can recoverMuskat from P(Muskat), but at the time of splash P(Muskat)
makes sense and it is possible to go further in time. In Section 4 we prove the local
existence of the P(Muskat) system. In Section 5 we show a stability result for
P(Muskat). Finally, in Section 6 we show how the family of curves zl(α) together
with the existence and stability for P(Muskat) allow us to conclude the proof of
Theorem 1.1.

2. Self-Intersecting Stable Curves With Suitable Sign of Velocity

In this section we show that there exits a family of splash curves satisfying the
Rayleigh-Taylor condition, with velocities which separate the splash point running
backward-in-time.

First we use Hopf’s lemma (see [19] for example) to achieve the Rayleigh-
Taylor condition. Taking divergence in Darcy’s law (1) we have


p(x, t) = 0

for any x ∈ D(t). In addition, the continuity of the pressure on the free boundary
[11] and the fact that

−∇ p(x, t) = (0, 0)

for any x in the interior of R
2
�D(t) allow us to get

p(z(α, t), t) = 0.

Also

lim
x2→−∞ v(x, t) = 0,
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and therefore Darcy’s law gives

lim
x2→−∞ ∂x1 p(x, t) = 0,

lim
x2→−∞ ∂x2 p(x, t) = −ρ0.

It is possible to find that p(x, t) − (−ρ0x2 + c(t)) → 0 when x2 → −∞ and
to conclude that the pressure is positive in D(t) by the maximum principle for
harmonic functions. In this situation we can apply Hopf’s lemma to obtain that

−∇ p(z(α, t), t) · ∂⊥
α z(α, t) > 0, (6)

where ∂⊥
α z(α, t) = (−∂αz2(α, t), ∂αz1(α, t)) is the normal vector pointing out the

domain D(t). In the periodic setting, compactness provides

−∇ p(z(α, t), t) · ∂⊥
α z(α, t) � k(t) > 0, (7)

for any α ∈ R. In the asymptotically flat scenario, (6) again implies (7) provided
we restrict α to lie in a bounded interval. On the other hand, for large |α|, Darcy’s
law implies

μ0v(z(α, t), t) · ∂⊥
α z(α, t) = −∇ p(z(α, t), t) · ∂⊥

α z(α, t) − ρ0∂αz1(α).

Since the v → 0 and ∂αz1(α) → 1 as |α| → ∞, (7) holds for large α thus (7)
holds in all cases.

Next we deal with curves zl(α)with a unique splash point xs = zl(α1) = zl(α2)

for α1 �= α2 where

∂αz
l
1(α1) = ∂αz

l
1(α2) = 0.

We show that this configuration provides a sign for the velocity at xs . Taking the
trace of Darcy’s law to the curve and multiplying by ∂⊥

α zl(α) we have that

μ0v(zl(α)) · ∂⊥
α zl(α) = −∇ p(zl(α)) · ∂⊥

α zl(α) − ρ0∂αz
l
1(α).

Thanks to our choice of the splash curve it must be satisfied

v(zl(αi )) · ∂⊥
α zl(αi ) = −μ−1

0 ∇ p(zl(αi )) · ∂⊥
α zl(αi ) � c > 0, i = 1, 2, (8)

where again we have used Hopf’s Lemma (7). It is clear that (8) implies that the
velocity separates the splash point backwards in time. In Fig. 1 we give a graphic
sketch of the kind of splash singularities we are considering.

Theses curves yield the simplest splash scenario we can consider. In Section 7
we show the existence of different geometries that give rise to a splash singularity
for the one-phase Muskat problem.



Splash Singularities for the One-Phase Muskat Problem in Stable Regimes 219

3. Transformation to a Non-Splash Scenario

This section is devoted to transform the system into a new contour evolution
equation which we use to handle the splash singularity. We consider solutions of
Muskat satisfying (1, 2, 4, 5) for regular z(α, t) satisfying the chord-arc condition.
Taking limit as x → z(α, t) from D(t) we find

v(z(α, t), t) = u(α, t),

where

u(α, t) = BR(z, ω)(α, t) + ω(α, t)

2

zα(α, t)

|zα(α, t)|2 .

BR stands for the Birkhoff-Rott integral, which is given by

BR(α, t) = BR(z, ω)(α, t) = 1

2π
PV

∫
R

(z(α, t)−z(α−β, t))⊥

|z(α, t) − z(α − β, t)|2ω(α − β, t)dβ,

(9)

and ω is the amplitude of the vorticity concentrated on the free boundary:

(∂x1v2 − ∂x2v1)(x, t) = ω(β, t)δ(x = z(β, t)).

Byapproaching the contour inDarcy’s lawand taking the dot productwith ∂αz(α, t),
it is easy to relate the amplitude of the vorticity and the free boundary by an elliptic
implicit equation:

ω(α, t) = −2BR(z, ω)(α, t) · ∂αz(α, t) − 2
ρ0

μ0
∂αz2(α, t). (10)

We have the dynamics given by the contour equation

zt (α, t) = u(α, t) + c(α, t)∂αz(α, t), (11)

where c represents reparametrization freedom. See [11] for a detailed derivation of
the system.

From now on we establish the transformation in the periodic setting. In the
asymptotically flat case the map is different but the same properties follow using
elementary complex variable arguments. In the periodic setting, we regard z(α, t) as
a point in the cylinder C/2πZ obtained by identifying points in the complex plane
that differ by a multiple of 2π . We will transform the system with the conformal
map:

P(w) = (
tan(w/2)

)1/2
, w ∈ (C/2πZ)\iR+

and iR+ intersects the curve only at the splash point and make sure that the splash
point lies in iR+. Above, the branch of the square root is chosen in such a way that
P(zl(α)) becomes a one-to-one closed curve. In this setting the inverse map of P
is P−1 which is well defined and smooth from C to C/2πZ. See [7].
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We then consider by this new transformation the curve z̃(α, t) = P(z(α, t)).
This provides easily

z̃α(α, t) = ∇P(z(α, t))zα(α, t),

and

z̃t (α, t) = ∇P(z(α, t))zt (α, t) = ∇P(z(α, t))(u(α, t) + c(α, t)zα(α, t))

= ∇P(z(α, t))u(α, t) + c(α, t)z̃α(α, t).

For the potential φ(x, t) (∇φ(x, t) = v(x, t)) we define in the tilde domain
φ̃(x̃, t) = φ(x, t). Then

v(x, t) = ∇φ(x, t) = (∇φ̃)(P(x), t)∇P(x) = ∇P(x)T (∇φ̃)(P(x), t).

Taking the limit we find

u(α, t) = ∇P(z(α, t))T (∇φ̃)(P(z(α, t)), t) = ∇P(z(α, t))T ũ(α, t),

where ũ(α, t) = ∇φ̃(z̃(α, t), t). It yields

z̃t (α, t) = Q2(α, t)ũ(α, t) + c(α, t)z̃α(α, t), (12)

where Q2 is given by

∇P(z(α, t))∇P(z(α, t))T = Q2(α, t)I,

and I is the 2 × 2 identity matrix. In other words,

Q2(α, t) =
∣∣∣dP
dw

(z(α, t))
∣∣∣2 =

∣∣∣dP
dw

(P−1(z̃(α, t)))
∣∣∣2. (13)

Next we consider the velocity ṽ defined on the whole space by

ṽ(x̃, t) = ∇φ̃(x̃, t) = 1

2π
PV

∫
R

(x̃ − z̃(α − β, t))⊥

|x̃ − z̃(α − β, t)|2 ω̃(α − β, t)dβ,

where

(∂x̃1 ṽ2 − ∂x̃2 ṽ1)(x̃, t) = ω̃(β, t)δ(x̃ = z̃(β, t)),

in a distributional sense. Approaching the free boundary it is possible to obtain

ũ = BR(z̃, ω̃) + ω̃

2|z̃α|2 z̃α. (14)

In order to close the system we integrate Darcy’s law to find

μ0φ(z(α, t), t) = −p(z(α, t), t) − ρ0z2(α, t) = −ρ0z2(α, t),

due to the continuity of the pressure at the free boundary and the vacuum state. The
conformal map P provides

μ0φ̃(z̃(α, t), t) = −ρ0P
−1
2 (z̃(α, t)), (15)
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where P−1(z̃) = (P−1
1 (z̃), P−1

2 (z̃)). Taking one derivative and applying identity
(14) allows us to find

μ0

(
BR(z̃, ω̃) · z̃α + ω̃

2

)
= −ρ0∂α(P−1

2 (z̃)).

We rewrite the above identity as

ω̃(α, t) = −2BR(z̃, ω̃)(α, t) · z̃α(α, t) − 2
ρ0

μ0
∂α

(
P−1
2 (z̃(α, t))

)
. (16)

Identities (12) and (14) give

z̃t (α, t) = Q2(α, t)BR(z̃, ω̃)(α, t) + c̃(α, t)z̃α(α, t), (17)

for c̃ = Q2ω̃/(2|z̃α|2) + c. We pick

c̃(α, t) = α + π

2π

∫ π

−π

∂β(Q2BR(z̃, ω̃))(β, t) · z̃β(β, t)

|z̃β(β, t)|2 dβ

−
∫ α

−π

∂β(Q2BR(z̃, ω̃))(β, t) · z̃β(β, t)

|z̃β(β, t)|2 dβ,

(18)

which provides a tangential component |z̃α| depending only on the variable t . We
end up with a contour equation given by (16–18).

Finally we will find the Rayleigh-Taylor condition in terms of z̃. We define
p̃(x̃, t) = p(x, t) to obtain, with Darcy’s law,

−∇ p̃(x̃, t) = μ0∇φ̃(x̃, t) + ρ0∇P−1
2 (x̃).

Approaching the free boundary, we easily find that

σ̃ (α, t) = −∇ p̃(z̃(α, t), t) · z̃⊥α = μ0 BR(z̃, ω̃) · z̃⊥α + ρ0∇P−1
2 (z̃(α, t)) · z̃⊥α .

(19)

4. Local-Existence in the Tilde Domain

This section is devoted to show local existence for z̃ solutions of (16–18) with
z̃ ∈ C([0, T ]; Hk)with k � 3. The main difficulty lies in finding a priori estimates
for the system. In what follows we skip the details on how to pass from the a priori
estimates to obtain solutions of the system (the relevant arguments may be found
in [11]). In order to simplify the exposition we suppress the time variable and the
tilde in the equation. We define

q0 = (0, 0), q1 =
(

1√
2
,

1√
2

)
, q2 =

(−1√
2
,

1√
2

)
, q3 =

(−1√
2
,
−1√
2

)
,

q4 =
(

1√
2
,
−1√
2

)
,
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which are the singular points of the P−1 conformal map. We set z(α, t) to satisfy
z̃(α, t) �= ql for l = 0, ..., 4. In order to get this we fix D(0) so that dP

dw (w) �= 0 for
any w ∈ D(0) without loss of generality. We will check that this property remains
true for a short time. Next we define the quantity

Ek(z, t) = Ek(t) = ‖z‖2Hk (t) + ‖F(z)‖2L∞(t) + 1

m(Q2σ)(t)
+

4∑
l=0

1

m(ql)(t)
,

(20)

where

F(z)(α, β) = |β|
|z(α) − z(α − β)| , α, β ∈ [−π, π ],

and

m(Q2σ)(t) = min
α∈T

Q2(α, t)σ (α, t), m(ql)(t) = min
α∈T

|z(α, t) − ql |.

We state the main result.

Theorem 4.1. Let z(α, 0) = z0(α) ∈ Hk(T) for k � 3, F(z0) ∈ L∞,
m(Q2σ)(0) > 0 and m(ql)(0) > 0 for l = 0, ..., 4. Then there exists a time
T > 0 so that there is a unique solution z(α, t) of (16–18) in C([0, T ]; Hk).

We shall show a proof of the energy estimates.

Proposition 4.2. Let z(α, t) be a solution of (16–18). Then, the following estimate
holds:

d

dt
Ek(t) � C(Ek(t))

p

for k � 3. The constants C and p depend only on k.

Below we will show the proof for k = 3, the rest of the cases being analogous.
As in [11], we can show that

d

dt

(
‖z‖2L2(t) + ‖F(z)‖2L∞(t) + 1

m(Q2σ)(t)
+

4∑
l=0

1

m(ql)(t)

)
� C(Ek(t))

p.

Next we study

d

dt

∥∥∥∂3αz
∥∥∥2
L2

(t) = 2
∫

∂3αz(α) · ∂3αzt (α)dα.

We can estimate most of the terms as in [11]. We also quote [6] for dealing with
the Q2 factor. This factor does not introduce any unbounded character as

‖Q2‖Hk � C(Ek(t))
p.
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We will show how to deal with the unbounded and therefore singular terms. We
find

d

dt

∥∥∥∂3αz
∥∥∥2
L2

(t) � C(Ek(t))
p + I,

for

I =
∫

∂3αz(α) · Q2(α)
1

π

∫
(z(α) − z(α − β))⊥

|z(α) − z(α − β)|2 ∂3αω(α − β)dβdα.

We get I � C(Ek(t))p + I I , where

I I =
∫

∂3αz(α) · z⊥α (α)

|zα(α)|2 Q
2(α)H(∂3αω)(α)dα.

The identity H(∂α) = � allows us to rewrite I I as

I I = 1

|zα(α)|2
∫

�
(
∂3αz · z⊥α Q2

)
(α)∂2αω(α)dα.

Next we can use formula (16) to further split I I = I I I + I V where

I I I = −2

|zα(α)|2
∫

�
(
∂3αz · z⊥α Q2

)
(α)∂2α(BR(z, ω) · zα)(α)dα,

and

I V = −2ρ0μ
−1
0

|zα(α)|2
∫

�
(
∂3αz · z⊥α Q2

)
(α)∂3α(P−1

2 (z))(α)dα.

The term I I I can be estimated as K3 in p. 514 of [11]. An analogous approach
provides

I I I � C(Ek(t))
p − 2

|zα(α)|2
∫

Q2(α)BR(z, ω)(α) · z⊥α (α)∂3αz(α)

·�
(
∂3αz

)
(α)dα. (21)

For I V we consider the most singular terms as the rest are bounded: I V �
C(Ek(t))p + V where

V = − 2ρ0μ
−1
0

|zα(α)|2
∫

�
(
∂3αz · z⊥α Q2

)
(α)

(
∇P−1

2

)
(z(α)) · ∂3αz(α)dα.

Then we split further V = V I + V I I + V I I I + I X by writing the components
of the curve:

V I = 2ρ0μ
−1
0

|zα(α)|2
∫

�
(
∂3αz1∂αz2Q

2
)

(α)∂x̃1 P
−1
2 (z(α))∂3αz1(α)dα,

V I I = 2ρ0μ
−1
0

|zα(α)|2
∫

�
(
∂3αz1∂αz2Q

2
)

(α)∂x̃2 P
−1
2 (z(α))∂3αz2(α)dα,

V I I I = − 2ρ0μ
−1
0

|zα(α)|2
∫

�
(
∂3αz2∂αz1Q

2
)

(α)∂x̃1 P
−1
2 (z(α))∂3αz1(α)dα,

I X = − 2ρ0μ
−1
0

|zα(α)|2
∫

�
(
∂3αz2∂αz1Q

2
)

(α)∂x̃2 P
−1
2 (z(α))∂3αz2(α)dα.
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The commutator estimate

‖�(g f ) − g� f ‖L2 � C‖g‖
C1, 13

‖ f ‖L2

yields

V I � C(Ek(t))
p

+ 2ρ0μ
−1
0

|zα(α)|2
∫

Q2(α)∂x̃1 P
−1
2 (z(α))∂αz2(α)∂3αz1(α)�

(
∂3αz1

)
(α)dα

(22)

and

I X � C(Ek(t))
p

− 2ρ0μ
−1
0

|zα(α)|2
∫

Q2(α)∂x̃2 P
−1
2 (z(α))∂αz1(α)∂3αz2(α)�

(
∂3αz2

)
(α)dα.

(23)

Similarly, for V I I ,

V I I � C(Ek(t))
p

+ 2ρ0μ
−1
0

|zα(α)|2
∫

Q2(α)∂x̃2 P
−1
2 (z(α))∂αz2(α)∂3αz2(α)�

(
∂3αz1

)
(α)dα.

The identity

∂αz2(α)∂3αz2(α) = −∂αz1(α)∂3αz1(α) +
∣∣∣∂2αz(α)

∣∣∣2

provides

V I I � C(Ek(t))
p

− 2ρ0μ
−1
0

|zα(α)|2
∫

Q2(α)∂x̃2 P
−1
2 (z(α))∂αz1(α)∂3αz1(α)�

(
∂3αz1

)
(α)dα.

(24)

Proceeding in a similar manner we can get

V I I I � C(Ek(t))
p

+ 2ρ0μ
−1
0

|zα(α)|2
∫

Q2(α)∂x̃1 P
−1
2 (z(α))∂αz2(α)∂3αz2(α)�

(
∂3αz2

)
(α)dα.

(25)

Adding the inequalities (22)–(25) it is easy to get

V � C(Ek(t))
p − 2ρ0μ

−1
0

|zα(α)|2
∫

Q2(α)∇P−1
2 (z(α))

· z⊥α (α)∂3αz(α) · �
(
∂3αz

)
(α)dα.
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The above inequality, together with (21), lets us obtain

I I I � C(Ek(t))
p − 2μ−1

0

|zα(α)|2
∫

Q2(α)σ (α)∂3αz(α) · �
(
∂3αz

)
(α)dα,

with σ given in (19).
Finally we obtain

d

dt

∥∥∥∂3αz
∥∥∥2
L2

(t) � C(Ek(t))
p − 2μ−1

0

|zα(α)|2
∫

Q2(α)σ (α)∂3αz(α) · �
(
∂3αz

)
(α)dα.

From the a priori energy estimates we have that m(Q2σ)(t) > 0, which, together
with the pointwise inequality 2 f �( f ) � �( f 2) (see [10]), yields

d

dt

∥∥∥∂3αz
∥∥∥2
L2

(t) � C(Ek(t))
p − μ−1

0

|zα(α)|2
∫

Q2(α)σ (α)�

(∣∣∣∂3αz
∣∣∣2

)
(α)dα.

Integration by parts for the � operator gives the desired estimate.

5. Stability for the Muskat Problem

This section is devoted to demonstration of the following result:

Proposition 5.1. Let x(α, t) and y(α, t) be two curves which satisfy the contour
Equation (16–18). Then, the following estimate holds:

d

dt
‖x − y‖H1(t) � C

(
sup
[0,T ]

E3(x, t) + sup
[0,T ]

E3(y, t)

)p

‖x − y‖H1(t).

Above, E3(x, t)and E3(y, t)are given by (20). The constantsC and p are universal.

Proof. In order to simplify the exposition we suppress the time variable and we
denote f ′ = f (α − β), f = f (α), f− = f − f ′ and

∫ = ∫
T
.

We consider two solutions of the system x(α, t) and y(α, t) inC([0, T ]; H3(T))

with γ and ζ its vorticity amplitudes given by (16). We will also denote by Q2
x , Q

2
y ,

BRx , BRy and cx , cy the factors Q2, Birhoff-Rott integrals and parametrization
constants associated with x and y, respectively [see (13), (9) and (18)]. During the
time of existence T > 0 one finds sup[0,T ] E3(x, t) and sup[0,T ] E3(y, t) bounded
so that we will write

C

(
sup
[0,T ]

E3(x, t) + sup
[0,T ]

E3(y, t)

)p

� C,

by abuse of notation.
For the function z(α, t) = x(α, t) − y(α, t), one finds

1

2

d

dt
‖z‖2L2 =

∫
z · ztdα = I1 + I2 + I3 + I4,
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where

I1 =
∫

z ·
(
Q2

x − Q2
y

)
BRxdα,

I2 =
∫

z · Q2
y(BRx − BRy)dα,

I3 =
∫

z · (cx − cy)xαdα,

I4 =
∫

z · cyzαdα.

Then for I1 we find that

I1 � ‖z‖L∞‖Q2
x − Q2

y‖L2‖BRx‖L2 � C‖z‖2H1 .

In I2 we split further, as follows:

I2,1 = 1

2π

∫
z · Q2

y

∫
z⊥−

|x−|2 γ ′dβdα,

I2,2 = 1

2π

∫
z · Q2

y

∫
y⊥−

(
1

|x−|2 − 1

|y−|2
)

γ ′dβdα,

I2,3 =
∫

z · Q2
yBR(y, ω)dα,

where ω = γ − ζ . In I2,1, for the integral in β, we find a kernel of degree −2
applied to z−; thus

I2,1 � C‖z‖2H1 .

Since

I2,2 = −1

2π

∫
z · Q2

y

∫
y⊥−

(x− + y−) · z−
|x−|2|y−|2 γ ′dβdα,

we again recognize a kernel of degree −2 applied to z− above, so that

I2,2 � C‖z‖2H1 .

For I2,3 it is easy to check that BR has a kernel of degree −1 and therefore

I2,3 � C‖z‖L2‖ω‖L2 .

In order to deal with ‖ω‖L2 we write

ω + 2BR(x, ω) · xα = 2BR(y, ζ ) · yα − 2BR(x, ζ ) · xα

+ 2
ρ0

μ0

(
∇P−1

2 (y) · yα − ∇P−1
2 (x) · xα

)
.
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Bounds for the operator (I + 2BR(x, ·) · xα)−1 (see [11]) allow us to get

‖ω‖L2 � C

∥∥∥∥2BR(y, ζ ) · yα − 2BR(x, ζ ) · xα

+ ρ0

μ0

(
∇P−1

2 (y) · yα − ∇P−1
2 (x) · xα

) ∥∥∥∥
L2

.

We proceed as before to obtain

∥∥∥∥2BR(y, ζ ) · yα − 2BR(x, ζ ) · xα + ρ0

μ0

(
∇P−1

2 (y) · yα − ∇P−1
2 (x) · xα

)∥∥∥∥
L2

� C‖z‖H1 ,

giving

I2,3 � C‖z‖2H1 ,

as desired. Next we move to I3. We split further to deal with cx − cy by writing
cx − cy = G1 + G2 where

G1= α+π

2π

∫ [
∂β

(
Q2

xBRx

)
(β) · xβ(β)

|xβ(β)|2 −∂β

(
Q2

yBRy

)
(β) · yβ(β)

|yβ(β)|2
]
dβ,

and

G2 = −
∫ α

−π

[
∂β

(
Q2

xBRx

)
(β) · xβ(β)

|xβ(β)|2 − ∂β

(
Q2

yBRy

)
(β) · yβ(β)

|yβ(β)|2
]
dβ.

Thenwe decompose further, to find |G1| � |G1,1|+|G1,2|+|G1,3|+|G1,4|+|G1,5|
where

G1,1 =
∫

∂α

((
Q2

x − Q2
y

)
BRx

)
· xα

|xα|2 dα,

G1,2 =
∫

∂α

(
Q2

y

)
(BRx − BRy) · xα

|xα|2 dα,

G1,3 =
∫

Q2
y∂α(BRx − BRy) · xα

|xα|2 dα,

G1,4 =
∫

∂α

(
Q2

yBRy

)
· zα
|xα|2 dα,

G1,5 =
∫

∂β

(
Q2

yBRy

)
· yα

(
1

|xα|2 − 1

|yα|2
)
dα.

Above, we use α variables instead of β for the sake of simplicity. We can proceed
as before to get

|G1,1| + |G1,2| + |G1,4| + |G1,5| � C‖z‖H1 .
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For the most delicate term we have to split further: G1,3 = G1,3,1 + G1,3,2 +
G1,3,3 + G1,3,4 + G1,3,5 + G1,3,6, where

G1,3,1 = 1

2π

∫
Q2

y

∫
x⊥−

|x−|2 · xα

|xα|2ω′
αdβdα,

G1,3,2 = 1

2π

∫
Q2

y

∫ [
x⊥−

|x−|2 − y⊥−
|y−|2

]
· xα

|xα|2 ζ ′
αdβdα,

G1,3,3 = 1

2π

∫
Q2

y

∫
∂αz⊥−
|x−|2 · xα

|xα|2 γ ′dβdα,

G1,3,4 = 1

2π

∫
Q2

y

∫
∂α y

⊥−
[

γ ′

|x−|2 − ζ ′

|y−|2
]

· xα

|xα|2 dβdα,

G1,3,5 = − 1

π

∫
Q2

y

∫
x⊥−

|x−|4 · xα

|xα|2 x− · ∂αz−ζ ′dβdα,

and

G1,3,6 = − 1

π

∫
Q2

y

∫ [
x⊥−

|x−|4 x− · ∂α y−γ ′ − y⊥−
|y−|4 y− · ∂α y−ζ ′

]
· xα

|xα|2 dβdα.

We estimate first the less singular terms, which can be controlled as before:

|G1,3,2| + |G1,3,4| + |G1,3,6| � C‖z‖H1 .

One can rewrite G1,3,1 as follows:

G1,3,1 = 1

2π

∫
Q2

y

∫
x⊥− − x⊥

α β

|x−|2 · xα

|xα|2ω′
αdβdα,

to find a kernel of degree 0 applied to ωα . This yields

|G1,3,1| � C‖ω‖L2 � C‖z‖H1 .

Similarly,

G1,3,5 = − 1

π

∫
Q2

y

∫
x⊥− − x⊥

α β

|x−|4 · xα

|xα|2 x− · ∂αz−ζ ′dβdα,

and a kernel of order −1 applied to ∂αz− yields

|G1,3,5| � C‖z‖H1 .

It remains to deal with G1,3,3, where we simply integrate by parts to obtain

G1,3,3 = − 1

2π

∫ ∫
z⊥− · ∂α

(
1

|x−|2 Q
2
y

xα

|xα|2 γ ′
)
dβdα.

We find, as before,

|G1,3,3| � C‖z‖H1 .
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Since we are done with G1 it remains to deal with G2. The same decompositions
used to control G1 will also be used to control G2. The only term in G2 that cannot
be controlled by the ideas used for G1 is the term analogous to G1,3,3 namely:

G2,3,3 = 1

2π

∫ α

−π

Q2
y(β)

∫
(∂β z(β) − ∂β z(β − ξ))⊥

|x(β) − x(β − ξ)|2 · xβ(β)

|xβ(β)|2 γ (β − ξ)dξdβ.

We cannot integrate by parts here as in G1,3,3. We further decompose G2,3,3 =
G1

2,3,3 + G2
2,3,3 + G3

2,3,3 where

G1
2,3,3 = 1

2π

∫ α

−π

Q2
y(β)

xβ(β)

|xβ(β)|2 ·
∫

(∂β z(β) − ∂β z(β − ξ))⊥

×
[

γ (β − ξ)

|x(β) − x(β − ξ)|2 − γ (β)

|xβ(β)|24 sin2(β/2)

]
dξdβ,

G2
2,3,3 = 1

2

∫ α

−π

Q2
y(β)γ (β)

xβ(β)

|xβ(β)|4 · �(∂β z
⊥)(β)dβ

− α + π

4π

∫
Q2

y(β)γ (β)
xβ(β)

|xβ(β)|4 · �(∂β z
⊥)(β)dβ,

and

G3
2,3,3 = α + π

2

∫
Q2

y(β)γ (β)
xβ(β)

|xβ(β)|4 · �(∂β z
⊥)(β)dβ.

The fact that the kernel in ξ has degree −1 allows us to get∣∣∣G1
2,3,3

∣∣∣ � C‖z‖H1 .

Integrating by parts (� is a self-adjoint operator) it is easy to obtain∣∣∣G3
2,3,3

∣∣∣ � C‖z‖H1 .

All the bounds above for cx − cy allow us to get

I3 � C‖z‖2H1 +
∫

z · xαG
2
2,3,3dα.

Above we integrate by parts to find∫
z · xαG

2
2,3,3dα = I3,1 + I3,2

where

I3,1 = 1

2

∫ (∫ α

−π

z(β) · xβ(β)dβ

)
Q2

yγ
xα

|xα|4 · �(∂αz
⊥)dα.

and

I3,2 = − 1

4π

∫ ∫ α

−π

z(β) · xβ(β)dβdα
∫

Q2
y(β)γ (β)

xβ(β)

|xβ(β)|4 · �(∂β z
⊥)(β)dβ.
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As before, using that � is self-adjoint, it is easy to get

I3,2 � C‖z‖2H1 .

Similarly,

I3,1 = 1

2

∫
�

(
a Q2

yγ
xα

|xα|4
)

· ∂αz
⊥dα, where a(α) =

∫ α

−π

z(β) · xβ(β)dβ.

The fact that � = H(∂α) allows us to find

I3,2 � C‖z‖2H1 ,

and thus

I3 � C‖z‖2H1 .

At this point it is easy to get

I4 � C‖z‖2H1 .

If one combines the above inequalities the following is obtained:

d

dt
‖z‖2L2 � C‖z‖2H1 .

The next step is to analyze

d

dt
‖zα‖2L2 = 2

∫
∂αz · ∂αztdγ = I5 + I6 + I7 + I8 + I9,

where

I5 = 2
∫

zα · ∂α

(
Q2

x

)
(BRx − BRy)dα,

I6 = 2
∫

zα · Q2
x∂α(BRx − BRy)dα

I7 = 2
∫

zα · ∂α

((
Q2

x − Q2
y

)
BRy

)
dα,

I8 = 2
∫

zα · ∂α

(
(cx − cy)xα

)
dα,

I9 = 2
∫

zα · ∂α

(
cyzα

)
dα.

It is easy to get

I5 � C‖z‖2H1 .
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For I6 we consider I6 = I6,1 + I6,2 + I6,3 + I6,4 + I6,5 + I6,6 where

I6,1 = 1

π

∫
zα · Q2

x

∫
x⊥−

|x−|2ω′
αdβdα,

I6,2 = 1

π

∫
zα · Q2

x

∫ [
x⊥−

|x−|2 − y⊥−
|y−|2

]
ζ ′
αdβdα,

I6,3 = 1

π

∫
zα · Q2

x

∫
∂αz⊥−
|x−|2 γ ′dβdα,

I6,4 = 1

π

∫
zα · Q2

x

∫
∂α y

⊥−
[

γ ′

|x−|2 − ζ ′

|y−|2
]
dβdα,

I6,5 = − 2

π

∫
zα · Q2

x

∫
x⊥−

|x−|4 x− · ∂αz−ζ ′dβdα,

and

I6,6 = − 2

π

∫
zα · Q2

x

∫ [
x⊥−

|x−|4 x− · ∂α y−γ ′ − y⊥−
|y−|4 y− · ∂α y−ζ ′

]
dβdα.

It is easy to get

I6,2 + I6,4 + I6,6 � C‖z‖2H1 .

We split further: I6,3 = I6,3,1 + I6,3,2, to find

I6,3,1 = 1

2π

∫
zα ·

∫
∂αz⊥−
|x−|2

[
Q2

xγ
′ − (Q2

x )
′γ

]
dβdα,

and

I6,3,2 = 1

2π

∫
zα ·

∫
∂αz⊥−
|x−|2

[
Q2

xγ
′ + (Q2

x )
′γ

]
dβdα.

We find, as before,

I6,3,1 � C‖z‖2H1 .

Changing variables one could obtain

I6,3,2 = 1

4π

∫ ∫
∂αz− · ∂αz⊥−

|x−|2
[
Q2

xγ
′ + (Q2

x )
′γ

]
dβdα = 0.

We are done with I6,3. The term I6,5 is decomposed as the sum of

I6,5,1 = − 2

π

∫
zα · Q2

x

∫ [
ζ ′x⊥−
|x−|4 x− − ζ x⊥

α

|xα|44 sin2(β/2)
xα

]
· ∂αz−dβdα,

I6,5,2 = −2
∫

zα · Q2
xζ

x⊥
α

|xα|4 xα · �(zα)dα
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and we have

I6,5,1 � C‖z‖2H1 .

We use the fact that � = H(∂α), and the identity

xα · ∂2αz = −xα · ∂2α y = −zα · ∂2α y,

to rewrite

I6,5,2 = 2
∫

zα · Q2
xζ

x⊥
α

|xα|4 [�(xα · zα) − xα · �(zα)]

− 2
∫

zα · Q2
xζ

x⊥
α

|xα|4 H
(
∂2αx · zα

)
dα

+ 2
∫

zα · Q2
xζ

x⊥
α

|xα|4 H
(
zα · ∂2α y

)
dα.

Since the commutator estimate for � gives

I6,5,2 � C‖z‖2H1 ,

we are done with I6,5. It remains to deal with I6,1, where we have to find the
Rayleigh-Taylor condition. We decompose further I6,1 as the sum of

I6,1,1 = 1

π

∫
zα · Q2

x

∫ [
x⊥−

|x−|2 − x⊥
α

|xα|22 tan(β/2)

]
ω′

αdβdα and

I6,1,2 =
∫

Q2
x zα · x⊥

α

|xα|2 H(ωα)dα.

As before,

I6,1,1 � C‖z‖2H1 .

Next we will decompose ωα , pointing out first the bounded terms, and dealing later
with the unbounded. We take ωα = G3 + G4 + G5 + G6 where

G3 = −2BRx · ∂2αx + 2BRy · ∂2α y,

G4 = −2∂αBRx · xα + 2∂αBRy · yα
G5 = −2

ρ0

μ0

(
∂α

(
∇P−1

2 (x)
)

· xα − ∂α

(
∇P−1

2 (y)
)

· yα
)

,

G6 = −2
ρ0

μ0

(
∇P−1

2 (x) · ∂2αx − ∇P−1
2 (y) · ∂2α y

)
.

We split further G3 = G3,1 + G3,2

G3,1 = −2BRx · ∂2αz, G3,2 = 2(BRy − BRx ) · ∂2α y

to obtain, as before,

‖G3,2‖L2 � C‖z‖H1 .
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The term G3,1 is one of the unbounded characters. We continue by taking G4 =
G4,1 + G4,2 + G4,3 + G4,4 + G4,5 + G4,6 where

G4,1 = − 1

π

∫
∂αz⊥−
|x−|2 γ ′dβ · xα,

G4,2 = − 1

π

∫
∂α y

⊥− ·
[

γ ′

|x−|2 xα − ζ ′

|y−|2 yα
]
dβ,

G4,3 = 2

π

∫
x⊥−

|x−|4 · xα x− · ∂αz−γ ′dβ,

G4,4 = 2

π

∫ [
x⊥−

|x−|4 · xα x−γ ′ − y⊥−
|y−|4 · yα y−ζ ′

]
· ∂α y−dβ,

G4,5 = − 1

π

∫
x⊥−

|x−|2ω′
αdβ · xα,

G4,6 = − 1

π

∫ [
x⊥−

|x−|2 · xα − y⊥−
|y−|2 · yα

]
ζ ′
αdβ.

Next, G4,1 joins the unbounded terms and

‖G4,2‖L2 + ‖G4,4‖L2 + ‖G4,6‖L2 � C‖z‖H1 .

It is possible to obtain a kernel of degree −1 applied to ∂αz− in G4,3 as follows:

G4,3 = 2

π

∫
x⊥− − x⊥

α β

|x−|4 · xα x− · ∂αz−γ ′dβ.

Therefore

‖G4,3‖L2 � C‖z‖H1 .

Since

G4,5 = − 1

π

∫
x⊥− − x⊥

α β

|x−|2 ω′
αdβ · xα,

we obtain, in an analogous way,

‖G4,5‖L2 � C‖ω‖L2 � C‖z‖H1 .

For G5 it is easy to get

‖G5‖L2 � C‖z‖H1 ,

but the term G6 has to be decomposed as follows:

G6,1 = −2
ρ0

μ0
∇P−1

2 (x) · ∂2αz,

G6,2 = −2
ρ0

μ0

(
∇P−1

2 (x) − ∇P−1
2 (y)

)
· ∂2α y.
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G6,1 remains unbounded, and

‖G6,2‖L2 � C‖z‖H1

easily. Thanks to all this decomposition we find

I6,1,2 � C‖z‖2H1 + I 16,1,2 + I 26,1,2 + I 36,1,2,

where

I 16,1,2 =
∫

Q2
x zα · x⊥

α

|xα|2 H(G3,1)dα, I 26,1,2 =
∫

Q2
x zα · x⊥

α

|xα|2 H(G4,1)dα,

and

I 36,1,2 =
∫

Q2
x zα · x⊥

α

|xα|2 H(G6,1)dα.

In I 16,1,2 and I 36,1,2 the Rayleigh-Taylor condition will show up. For I 26,1,2 we con-
sider the splitting

I 2,16,1,2 =
∫

H

(
Q2

x zα · x⊥
α

|xα|2
)

1

π

∫
∂αz

⊥−
[ γ ′

|x−|2 − γ

|xα|24 sin2(β/2)

]
dβ · xαdα,

I 2,26,1,2 =
∫

H

(
Q2

x zα · x⊥
α

|xα|2
)

γ

|xα|2�(∂αz
⊥) · xαdα,

using that H is skew-adjoint. The first term satisfies

I 2,16,1,2 � C‖z‖2H1 .

For the second term we use the commutator estimate to show that

I 2,26,1,2 � C‖z‖2H1 +
∫

H

(
Q2

x zα · x⊥
α

|xα|2
)

�

(
γ

|xα|2 ∂αz
⊥ · xα

)
dα.

The fact that H2 = −I yields

I 2,26,1,2 � C‖z‖2H1 +
∫

Q2
x zα · x⊥

α

|xα|2 ∂α

(
γ

|xα|2 ∂αz
⊥ · xα

)
dα.

In the integral above we expand the derivative, to find out that it is possible to
integrate by parts in ∂α(zα · x⊥

α ). This yields

I 2,26,1,2 � C‖z‖2H1 , and therefore I 26,1,2 � C‖z‖2H1 .

Next we consider

I 16,1,2 = −
∫

Q2
x zα · x⊥

α

|xα|2 H
(
2BRx · ∂2αz

)
dα,

for which we use the commutator for the Hilbert transform

‖H(g∂α f ) − gH(∂α f )‖L2 � C‖g‖
C1, 13

‖ f ‖L2 ,
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to find

I 16,1,2 � − 2

|xα|2
∫

Q2
x zα · x⊥

α BRx · H
(
∂2αz

)
dα.

Next we split the above integral by components:

I 1,16,1,2 = 2

|xα|2
∫

Q2
x∂αz1∂αx2BRx1 · H

(
∂2αz1

)
dα, (26)

I 1,26,1,2 = 2

|xα|2
∫

Q2
x∂αz1∂αx2BRx2 · H

(
∂2αz2

)
dα,

I 1,36,1,2 = − 2

|xα|2
∫

Q2
x∂αz2∂αx1BRx1 · H

(
∂2αz1

)
dα,

I 1,46,1,2 = − 2

|xα|2
∫

Q2
x∂αz2∂αx1BRx2 · H

(
∂2αz2

)
dα. (27)

The commutator estimate for the Hilbert transform allows us to obtain

I 1,26,1,2 � C‖z‖2H1 + 2

|xα|2
∫

Q2
x∂αz1BRx2 · H

(
∂αx2∂

2
αz2

)
dα.

Together with the identity

∂αx2∂
2
αz2 = −∂αx1∂

2
αz1 − ∂αz · ∂2α y,

this provides

I 1,26,1,2 � C‖z‖2H1 − 2

|xα|2
∫

Q2
x∂αz1BRx2 · H

(
∂αx1∂

2
αz1

)
dα.

The commutator estimate yields

I 1,26,1,2 � C‖z‖2H1 − 2

|xα|2
∫

Q2
x∂αz1∂αx1BRx2 · H

(
∂2αz1

)
dα. (28)

In a similar manner we find that

I 1,36,1,2 � C‖z‖2H1 + 2

|xα|2
∫

Q2
x∂αz2∂αx2BRx1 · H

(
∂2αz2

)
dα. (29)

Adding (26)–(29) we find that

I 16,1,2 � C‖z‖2H1 − 2

|xα|2
∫

Q2
xBRx · x⊥

α zα�(zα)dα. (30)

Next,

I 36,1,2 = −2
ρ0

μ0

∫
Q2

x zα · x⊥
α

|xα|2 H
(
∇P−1

2 (x) · ∂2αz
)
dα,

and a decomposition in components as before provides

I 36,1,2 � C‖z‖2H1 − 2
ρ0

μ0|xα|2
∫

Q2
x∇P−1

2 (x) · x⊥
α zα · �(zα)dα. (31)
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Adding (30) and (31), we find that

I6,1,2 � C‖z‖2H1 + I 16,1,2 + I 36,1,2 � C‖z‖2H1 − 2
1

μ0|xα|2
∫

Q2
xσx zα · �(zα)dα.

The Rayleigh-Taylor condition (σ � 0) for the curve x gives

I6,1,2 � C‖z‖2H1 , I6,1 � C‖z‖2H1 , and finally I6 � C‖z‖2H1 .

We easily find that

I7 � C‖z‖2H1 .

For I8 we consider

I8 = 2
∫

zα · (cx − cy)∂
2
αxdα + 2

∫
zα · xα∂α(cx − cy)dα,

and integrate by parts to find

I8 = −2
∫

∂2αz · xα(cx − cy)dα.

The fact that

I8 = 2
∫

∂2α y · zα(cx − cy)dα

allows us to deal with I8 as for I3 to get

I8 � C‖z‖2H1 .

Finally, integration by parts provides

I9 =
∫

|zα|2∂αcydα � C‖z‖2H1 .

This completes the proof of Proposition 5.1. ��

6. Proof of Theorem 1.1

Let R/2πZ � α → z0(α) ∈ C/2πZ be the curve depicted in Fig. 1. For the
short time t ∈ [0, t0], we solve the P(Muskat) equation for z̃(α, t), with initial
data z̃(α, 0) = P(z0(α)) (see Section 3 for P and P−1). We then set z(α, t) =
(z1(α, t), z2(α, t)) = P−1(z̃(α, t)) ∈ C/2πZ for (α, t) ∈ (R/2πZ) × [0, t0].

We know that z̃ ∈ C([0, t0], H3(R/2πZ)), therefore we also have ∂t z̃ ∈
C([0, t0], H2(R/2πZ)) and ∂2t z̃ ∈ C([0, t0], H1(R/2πZ)) as we see from the
P(Muskat) equation. In particular, z̃ ∈ C2((R/2πZ) × [0, t0]), and therefore
z ∈ C2((R/2πZ) × [0, t0]).

We have z(α, 0) = z0(α) for all α. We will show that the curve α → z(α, t)
self-intersects transversely for small positive t.
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Fig. 2. The hatched and solid arcs

To see this, we examine the hatched arc z0(I−) and the solid arc z0(I+) depicted
in Fig. 2, where I− and I+ are disjoint intervals in R/2πZ. The curve z0(·) self-
intersects at the point z0(α+) = z0(α−), where α+ ∈ I+ and α− ∈ I−.

We may suppose that the hatched and solid arcs both have nonzero curvature at
that point. The above remarks, and the discussion of the Rayleigh Taylor condition
in Section 7, imply:

∂αz1(α+, 0) = ∂αz1(α−, 0) = 0

∂2αz1(α+, 0) > 0 > ∂2αz1(α−, 0)

∂αz2(α+, 0) �= 0, ∂αz2(α−, 0) �= 0

∂t z1(α−, 0) > 0 > ∂t z1(α+, 0).

Intuitively, the curve α → z(α, t) self-intersects transversely because the
hatched arc in Fig. 2 moves to the right as time increases, while the solid arc
moves to the left. This intuition is justified by the following elementary lemma and
its collorary:

Lemma 6.1. Let [−c0, c0]×[0, c0] � (α, t) → z(α, t) = (z1(α, t), z2(α, t)) ∈ R
2

be C2-smooth, with z(0, 0) = 0, ∂αz1(0, 0) = 0, ∂αz2(0, 0) �= 0. Given ε > 0 there
exists δ > 0 such that for any t ∈ [0, δ] a part of the curve [−c0, c0] � α → z(α, t)
admits a C2 reparametrization as a graph [−δ, δ] � x2 → (F(x2, t), x2) ∈ R

2,
where ∣∣∣∣F(x2, t) −

[
(∂t z1(0, 0))t + 1

2

∂2αz1(0, 0)

(∂αz2(0, 0))2
x22

]
� ε

[
x22 + t

]

and ∣∣∣∣∂x2F(x2, t) − ∂2αz1(0, 0)

(∂αz2(0, 0))2
x2

∣∣∣∣ � ε|x2| + Ct

for (x2, t) ∈ [−δ, δ] × [0, δ]. Here, C is independent of (x2, t).
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Proof. Using the implicit function theorem,weproduce aC2 functionα = A(x2, t)
that solves the equation z2(α, t) = x2 for x2, t given. We set F(x2, t) =
z1(A(x2, t), t), and derive the desired estimates for F and ∂x2F by Taylor-
expanding z(α, t) and A(x2, t) about (0, 0) and substituting α = A(x2, t). Details
are left to the reader. ��
Corollary 6.2. Let (α, t) → z+(α, t) = (z+1 (α, t), z+2 (α, t)) and (α, t) →
z−(α, t) = (z−1 (α, t), z−2 (α, t)) satisfy the hypothesis of the above Lemma. Suppose
∂t z

+
1 (0, 0) < 0 < ∂t z

−
1 (0, 0) and ∂2αz

+
1 (0, 0) > 0 > ∂2αz

−
1 (0, 0). Then for small

positive t, the curves α → z+(α, t) and α → z−(α, t) intersect transversely.

Proof. Let K be a large enough positive number. We apply the lemma with
ε = K−10. Then for t ∈ [0, δ], our two curves contain graphs [−δ, δ] � x2 →
(F+(x2, t), x2) and [−δ, δ] � x2 → (F−(x2, t), x2), where∣∣∣∣F±(x2, t) −

[
v±t + 1

2
a±x22

]∣∣∣∣ � K−10
[
x22 + t

]

and

|∂x2F±(x2, t) − a±x2| � K−10|x2| + Ct, (32)

and v+ < 0 < v−, a+ > 0 > a−.
It follows that F+(K−1t

1
2 , t) < F−(K−1t

1
2 , t) and F+(Kt

1
2 , t) > F−(Kt

1
2 , t)

for small t; hence, F+(x̃2, t) = F−(x̃2, t) for some x̃2 ∈ [K−1t
1
2 , Kt

1
2 ]. Thus our

curves intersect at the point (F+(x̃2, t), x̃2). That intersection is transverse because
∂x2F

+(x̃2, t) > 0 > ∂x2F
−(x̃2, t), thanks to (32). ��

We now know that the curve α → z(α, t) self-intersects transversely, as
promised.

We can now easily finish the proof of Theorem 1.1.

Proof. We fix a time t1 ∈ [0, t0] at which the curve α → z(α, t) self-intersects
transversely. Let z0∗(·) be a simple closed curve in (C/2πZ)�iR+ such that
||z0∗−z0||H3(R/2πZ) < η, with η to be picked below.We solve the P(Muskat) equa-
tion with initial data P(z0∗(·)), obtaining a solution z̃∗(α, t) for which ||z̃∗(·, t) −
z̃(·, t)||H3(R/2πZ) � Cη for t ∈ [0, t0], thanks to Section 5. Here, C is independent
of z0∗ and η. Setting z∗(α, t) = P−1(z̃∗(α, t)) for (α, t) ∈ (R/2πZ) × [0, t0], we
find that:

• z∗(α, 0) = z0∗(α) for all α;
• z∗(α, t) solves the Muskat equation on (R/2πZ) × [0, τ ) provided α →

z∗(α, t) is a simple closed curve for each t ∈ [0, τ );
and

• ||z∗(·, t) − z(·, t)||H3(R/2πZ) � Cη for t ∈ [0, t0].
For small enough t, the curve α → z∗(α, t) does not self-intersect, because

α → z∗(α, 0) = z0∗(α) is a simple closed curve. On the other hand, because
α → z(α, t1) self-intersects transversely and ||z∗(·, t) − z(·, t)||H3(R/2πZ) � Cη,
it follows that α → z∗(α, t) self-intersects transversely if we pick η small enough.
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Now let τ = inf{t ∈ [0, t0] : α → z∗(α, t) self-intersects}. Then τ ∈ (0, t1),
α → z(α, t) self intersects, and z∗(α, t) (α ∈ R/2πZ, t ∈ [0, τ )) is a Muskat
solution with initial data z∗(α, 0) = z0∗(α). Here, z0∗(·) is any simple closed curve
that avoids the slit iR+ and lies close enough to z0(·) in H3. The set of all such z0∗
is a nonempty open subset of H3.

The proof of Theorem 1.1. is complete. ��

7. A Remark on the Family of Splash Singularities

The scenario in Section 2 is the simplest one to obtain a splash singularity.
However the one-phase Muskat problem can develop this kind of point-wise col-
lapse for more geometries. In order to check that we proceed as follows. Let z(α)

be a splash curve with α1 �= α2 such that z(α1) = z(α2) and |∂αz(α)| > 0 for
every α. To consider a different situation from that introduced in Section 2, we also
assume that ∂αz1(α1) �= 0. We make the following distinction between α1 and α2:
there exists a neighborhood Uα1 of α1 and a neighborhood Uα2 of α2 such that,
if z1(β1) = z1(β2) for β1 ∈ Uα1 and β2 ∈ Uα2 , then z2(β1) � z2(β2). Roughly
speaking, we just mean that z(α2) is the upper splash point and z(α1) is the lower
splash point.

Let us analyze the normal velocity at α2 and α1. For α2 we have

μ0u(α2) · n(α2) = −∇ p(z(α2)) · n(α2) − ρ0
∂αz1(α2)

|∂αz(α2)| ,

where n(α) = ∂⊥
α z(α)/|∂αz(α)| and u(α) = v(z(α, t), t). As in Section 2, Hopf’s

lemma yields

−∇ p(z(α2)) · n(α2) > 0,

and we consider

∂αz1(α2)

|∂αz(α2)| < 0.

On the other hand, we have

μ0u(α1) · n(α1) = −∇ p(z(α1)) · n(α1) − ρ0
∂αz1(α1)

|∂αz(α1)| ,

with

−∇ p(z(α1)) · n(α1) > 0,

and

∂αz1(α1)

|∂αz(α1)| > 0.

Then the sign of ∂αz(α1) is bad for our purpose. However we can notice that

∂αz1(α1)

|∂αz(α1)| = − ∂αz1(α2)

|∂αz(α2)| ,
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and therefore

u(α2) · n(α2) > −u(α1) · n(α1).

The last inequality is enough to show that the velocity separates the splash points
backward in time. Unfortunately this is not enough to ensure that we can produce a
splash singularity by using the previous analysis. It is possible to find u(α1) · n(α1)

negative. Then the solution would cross the branch of P backwards in time. This
is a mere technical problem that we can solve as follows:

Let’s define a velocity

v(x1, x2, t) = v

(
x1, x2 − ρ0

μ0
t, t

)
+

(
0,

ρ0

μ0

)
,

a density

ρ(x1, x2, t) = ρ

(
x1, x2 − ρ0

μ0
t, t

)
,

and a viscosity

μ(x1, x2, t) = μ

(
x1, x2 − ρ0

μ0
t, t

)
.

Then we have:

∂tρ(x1, x2, t) = (∂tρ)

(
x1, x2 − ρ0

μ0
t, t

)
− ρ0

μ0
(∂x2ρ)

(
x1, x2 − ρ0

μ0
t, t

)

= −v

(
x1, x2 − ρ0

μ0
, t

)
· (∇ρ)

(
x1, x2 − ρ0

μ0
t, t

)

− ρ0

μ0
(∂x2ρ)

(
x1, x2 − ρ0

μ0
t, t

)

= −v

(
x1, x2 − ρ0

μ0
, t

)
· ∇ρ(x1, x2, t) − ρ0

μ0
∂x2ρ(x1, x2, t)

= −
(

v

(
x1, x2 − ρ0

μ0
t, t

)
+

(
0,

ρ0

μ0

))
· ∇ρ(x1, x2, t).

Thus we have that ρ satisfies

∂tρ + v · ∇ρ = 0,

and in a similar manner it is easy to get

∂tμ + v · ∇μ = 0.

On the other hand,

μ v = −∇ p,
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where we consider

p(x1, x2, t) = p

(
x1, x2 − ρ0

μ0
t, t

)
.

Then, by using v, ρ, μ and p, we can write our Muskat problem as the system

∂tρ + v · ∇ρ = 0,

∂tμ + v · ∇μ = 0,

μ v = −∇ p,

∇ · v = 0,

with the boundary condition

lim
x2→−∞

(
v(x1, x2, t) −

(
0,

ρ0

μ0

))
= 0.

In this new system we find the following: if z(α) is a splash curve such that
z(α1) = z(α2), then

μ0v(z(α1)) · n(α1) = −∇ p(z(α1)) · n(α1),

μ0v(z(α2)) · n(α2) = −∇ p(z(α2)) · n(α2),

and again we can invoke Hopf’s lemma to obtain that

−∇ p(z(α1)) · n(α1) > 0, −∇ p(z(α2)) · n(α2) > 0.

Then, the velocity separates the splash point and u(α1) · n(α1)n(α1) points in the
opposite direction to u(α2) · n(α2)n(α2). Therefore we can carry out the same
analysis that we did for the simpler case of Section 2.
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