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Abstract

In a previous article (Zillinger, Linear inviscid damping for monotone shear
flows, 2014), we have established linear inviscid damping for a large class of
monotone shear flows in a finite periodic channel and have further shown that
boundary effects asymptotically lead to the formation of singularities of derivatives
of the solution as t → ∞. As the main results of this article, we provide a detailed
description of the singularity formation and establish stability in all sub-critical
fractional Sobolev spaces and blow-up in all super-critical spaces. Furthermore,
we discuss the implications of the blow-up to the problem of nonlinear inviscid
damping in a finite periodic channel, where high regularity would be essential to
control nonlinear effects.
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1. Introduction

In this article, we are interested in a precise description of the effect of boundary
conditions on the growth of norms of solutions to the linearized 2D Euler equations
around monotone shear flows, (U (y), 0), in a finite periodic channel of period L ,
TL × [a, b],

∂tω +U (y)∂xω = U ′′(y)∂xφ = U ′′(y)v2,
Δφ = ω,

∂xφ|y=a,b = 0,

(t, x, y) ∈ R × TL × [a, b],
(1)

as well as sharp stability results in fractional Sobolev spaces.
Here, we consider the transport by (U (y), 0) and the resulting shearing as the

main underlying dynamics and hence introduce coordinates moving with the flow,

W (t, x, y) := ω(t, x − tU (y), y),

Φ(t, x, y) := φ(t, x − tU (y), y).

In these coordinates, the linearized Euler equations are given by

∂tW = U ′′(y)∂xΦ,

(∂2x + (∂y − tU ′(y)∂x )2)Φ = W,

∂xΦ|y=a,b = 0,

(t, x, y) ∈ R × TL × [a, b].

(2)

In analogy to the conventions in dispersive equations, we call this a scattering for-
mulation of the linearized Euler equations with respect to the underlying transport
problem

∂t f +U (y)∂x f = 0.

As shown in [9], under suitable assumptions onU and L , one obtains linear inviscid
damping and scattering:

Theorem 1. (Damping using regularity [9, Theorem 2.1]) Let U be such that
1
U ′ ,U ′′ ∈ W 2,∞(TL × [a, b]), let W be the solution of (2) and let v = ∇⊥φ

be the associated velocity field. Then the following statements hold:

– If W (t) − 〈W 〉x ∈ H−1
x H1

y (TL × [a, b]), then v satisfies

‖v(t) − 〈v〉x‖L2 = O(t−1)‖W (t) − 〈W 〉x‖H−1
x H1

y
,

as t → ∞.
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– If W (t) − 〈W 〉x ∈ H−1
x H2

y (TL × [a, b]), then v2 satisfies

‖v2(t)‖L2 = O(t−2)‖W (t) − 〈W 〉x‖H−1
x H1

y
,

as t → ∞.
– If W (t) − 〈W 〉x ∈ H−1

x Hs
y (TL × [a, b]), for some 1 < s < 2, then v2 satisfies

‖v2(t)‖L2 = O(t−s)‖W (t) − 〈W 〉x‖H−1
x Hs

y
,

as t → ∞.

Theorem 2. (Stability inH1 andH2 [9,Theorems4.1, 4.3 andB.1])LetU ′(U−1(·),
U ′′(U−1)(·)) ∈ W 3,∞([a, b]) and suppose that

0 < c < U ′(y) < c−1 < ∞,

and that

‖U ′′(U−1(·))‖W 3,∞L

is sufficiently small. Then, for any ω0 ∈ L2
x H

1
y (TL × [a, b]), the solution of the

linearized Euler equations, (2), with initial datum ω0 satisfies

‖W (t)‖L2
x H

1
y

� ‖ω0‖L2
x H

1
y
.

Suppose that U ′′|y=a,b �= 0, then, for any ω0 ∈ L2
x H

2
y (TL × [a, b]) with

non-vanishing Dirichlet data, ω0|y=a,b �= 0, the solution W satisfies

sup
t�0

‖W (t)‖L2
x H

2
y (TL×[a,b]) = ∞.

Conversely, restricting to perturbations ω0 ∈ L2
x H

2
y (TL × [a, b]) with vanish-

ing Dirichlet data, ω0|y=a,b = 0, we obtain stability:

‖W (t)‖L2
x H

2
y

� ‖ω0‖L2
x H

2
y
.

Combining both theorems and restricting things to perturbations with vanishing
Dirichlet data, we thus obtain linear inviscid damping with the optimal rates,

‖v(t) − 〈v〉x‖L2 = O(t−1)‖ω0 − 〈ω0〉x‖H−1
x H1

y
,

‖v2(t)‖L2 = O(t−2)‖ω0 − 〈ω0〉x‖H−1
x H2

y
,

as well as scattering, that is there exists W∞ such that

W (t)
L2−→ W∞,

as t → ∞.
If, however, ω0 does not satisfy zero Dirichlet boundary conditions, we observe

that the L2
x H

2
y norm asymptotically diverges, that is the solution forms a singularity

as t → ∞.
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1.1. Motivation

The necessity of requiring vanishing Dirichlet boundary values of the initial
perturbation, ω0, in Theorem 2 is in sharp contrast to the common setting of an
infinite periodic channel, T × R, where stability holds in arbitrary Sobolev spaces
(see [9, Theorem 3.1]). In particular, it naturally raises the question of whether
damping with integrable rates and quantitative scattering results can be obtained
for perturbations with non-vanishing Dirichlet data and what the sharp decay rates
in this case are.

Furthermore, while H2 ∩ H1
0 stability is sufficient to establish linear inviscid

dampingwith optimal rates, higher regularity is needed in order to prove consistency
with the nonlinear equation, since the Sobolev embedding only yields an estimate
of the form

‖∇⊥Φ · ∇W‖L2
xy

� ‖∇⊥Φ‖L2
xy

‖W‖Hs
xy

for (fractional) Sobolev spaces Hs, s > 2.
Additionally, as seen in the results of Bedrossian andMasmoudi [1], on non-

linear inviscid damping for Couette flow in the infinite periodic channel, very high
regularity is needed to control nonlinear effects. Stability and instability results
for the linear dynamics and the associated blow-up in supercritical spaces are thus
of great importance also for the problem of nonlinear inviscid damping in a finite
periodic channel.

In this article, we study the effects of boundary conditions and the associated
singularity formation in detail and aim to derive optimal stability and blow-up
results in fractional Sobolev spaces.

1.2. Results for General Perturbations

As the first main result of this article, in Section 3.1 we show that for general

perturbations the fractional Sobolev space H
3
2
y is critical in the sense that stability

holds in all sub-critical fractional Sobolev spaces and (infinite-time) blow-up occurs
in all super-critical fractional Sobolev spaces due to the formation of logarithmic
singularities at the boundary.

Lemma 1. Let W be a solution of the linearized Euler equations, (11), (c.f. Sec-
tion 2.1) and suppose that U ′(U−1(·)),U ′′(U−1(·)) ∈ W 2,∞([0, 1]) and that U ′
satisfies (U ′)2 > c > 0. Let s > 1 and suppose that

‖∂yW‖Hs ([0,1]) < C < ∞.

Suppose further that U ′′(U−1(·))ω0|y=0,1 is non-trivial. Then

‖∂yW (t)‖L∞([0,1]) � log |t |
as t → ±∞.
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As a consequence, for perturbations such that U ′′(U−1(·))ω0|y=0,1 is non-
trivial, for any s > 3

2 , necessarily

sup
t>0

‖W (t)‖Hs ([0,1]) = ∞.

In our stability result we additionally assume periodicity in y. As we discuss
in Remark 2, this is largely a technical assumption and the requirements can be
relaxed.

Theorem 3. Let 0 < s < 1/2, ω0 ∈ H1([0, 1]) and ω0, ∂yω0 ∈ Hs(T). Suppose
further that U ′(U−1(·)),U ′′(U−1(·)) ∈ W 2,∞(T), that there exists c > 0 such that

0 < c < U ′ < c−1 < ∞

and that

‖U ′′(U−1(·))‖W 2,∞(T)L

is sufficiently small. Then the solution, W , of the linearized Euler equations, (11),
satisfies

‖∂yW (t)‖Hs (T) � ‖ω0‖Hs (T) + ‖∂yω0‖Hs (T),

uniformly in time.

1.3. Results for Perturbations with Vanishing Dirichlet Data

When restricting ourselves to perturbations with vanishing Dirichlet data,
ω0|y=0,1 = 0, we similarly show in Section 3.4 that the critical Sobolev expo-
nent is given by 5

2 . That is, generally ∂2yW asymptotically develops logarithmic
singularities at the boundary, resulting in blow-up of all super-critical norms, while
stability holds in all sub-critical fractional Sobolev spaces Hs, s < 5

2 .

Lemma 2. Let ω0 ∈ L2
x H

2
y (TL × [0, 1]) with ω0|y=0,1 ≡ 0 and let W be the

solution of (11). Further suppose that the limits

lim
t→∞U ′′(y)∂yW |y=0,1

exist (for example by Lemma 10) and are non-trivial. Then for any s > 5/2,

sup
t�0

‖W‖Hs = ∞.

In our stability theorem we additionally require periodicity in y. As discussed
in Remark 3, this is largely a technical assumption and the requirements can be
relaxed.
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Theorem 4. Let 0 < s < 1/2 and let ω0 ∈ L2
x H

2
y (TL × [0, 1]), with vanishing

Dirichlet data, ω0|y=0,1 = 0, and ω0, ∂yω0, ∂
2
yω0 ∈ L2

x H
s
y (TL × T). Suppose

further that U ′(U−1(·)), U ′′(U−1(·)) ∈ W 3,∞(T), that there exists c > 0 such
that

0 < c < U ′ < c−1 < ∞,

and that

‖U ′′(U−1(·))‖W 3,∞(T)L

is sufficiently small. Then the solution, W , of the linearized Euler equations, (11),
satisfies

‖∂2yW (t)‖Hs (T) � ‖ω0‖Hs + ‖∂yω0‖Hs + ‖∂2yω0‖Hs ,

uniformly in time.

As consequences of these theorems, in Section 5, we obtain linear inviscid
damping (with integrable but not quadratic decay for v2) as well as a quantitative
scattering result for perturbations without zero Dirichlet data.

1.4. Consistency and Implications for the Nonlinear Problem

Using the stability results in Hs, s > 2, we show that the linear evolution
is consistent with the nonlinear equations (Theorems 12 and 13). Conversely, the
nonlinear equations are shown to similarly asymptotically develop singularities on
the boundary and hence exhibit blow-up in relatively low Sobolev regularity:

Theorem 5. Let (ω, v) be a solution of the 2D Euler equations and define

U (t, y) := 〈v1〉x (t, y),
W (t, x, y) := ω

(
t, x −

∫ t

0
U (t ′, y)dt ′, y

)
− 〈ω〉x (t, y),

Φ(t, x, y) := φ

(
t, x −

∫ t

0
U (t ′, y)dt ′, y

)
− 〈φ〉x (t, y).

Suppose further that

∂2yU (t, y)|y=0 > c > 0,

and that for some k ∈ Z,

�FxW (t, k, y)|y=0 > c > 0,

|Fx (∂y(∇⊥Φ · ∇W ))(t, k, y)|y=0| = O(t−1−ε).
(3)

Then,

|(Fx∂yW )(t, k, y)|y=0| � log(t),

and as a consequence, for any s > 2,

sup
t>0

‖W (t)‖Hs = ∞.
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As we discuss in Section 5, the assumptions (3) can be shown to be satisfied if the
asymptotic shear flow is strictly monotone and W (t) is sufficiently regular, that is

0 < c < ∂yU (t, y) < c−1 < ∞,

‖W (t)‖H6 � C < ∞,

as t → ∞; one further assumes that �FxW (0, k, y)|y=0 is sufficiently large.
Regularity results for nonlinear inviscid damping in a finite periodic channel can
thus in general not hold in high Sobolev regularity, which is in sharp contrast to
the results of Bedrossian and Masmoudi [1], on nonlinear inviscid damping for
Couette flow in an infinite periodic channel, where very high regularity is used to
control nonlinear effects.

1.5. Outline of the Article

We conclude this introduction with a short overview of the structure of the
article:

– InSection 2.1,we introduce the linearized 2DEuler equations aroundmonotone
shear flows as well as some useful changes of coordinates. Furthermore, we
briefly discuss the dynamics and the damping mechanism for the explicitly
solvable case of Couette flow and a slightly more general constant coefficient
model.

– In Section 2.3, we introduce fractional Sobolev spaces, discuss some of their
properties and introduce several estimates, which are used in the following
sections.

– In Section 3.1, we show that, for general perturbations, the critical Sobolev ex-
ponent is given by 3

2 , in the sense that stability holds for all sub-critical Sobolev
spaces and blow-up occurs in all super-critical spaces. As a consequence we es-
tablish linear inviscid damping with damping rates integrable in time for initial
data ω0 without vanishing Dirichlet data, ω0|y=0,1 = 0.

– In Section 3.4, we show that, for perturbations with vanishing Dirichlet data,
the critical Sobolev exponent is improved to 5

2 . As we discuss in Section 5,
this regularity result can be used to prove consistency with the nonlinear Euler
equations. Here, as a consequence of the super-critical blow-up, we also estab-
lish an instability result for the nonlinear dynamics, which, in particular, shows
that results in Gevrey regularity such as in [1] can not be obtained in the setting
of a finite channel.

– In Section 4, we further study the singularity formation in a slightly simplified
form and discuss critical stability and blow-up results in Sobolev spaces,Ws,p.

2. Preliminaries

2.1. The Linearized 2D Euler Equations in Scattering Formulation

In this section,we introduce the linearized 2DEuler equations aroundmonotone
shear flows in a finite periodic channel. Subsequently, we employ multiple changes
of variables and a Fourier transform in x to simplify the equations.
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The full 2D Euler equations in vorticity formulation in a finite periodic channel,
TL × [a, b], with impermeable walls are given by

∂tω + v · ∇ω = 0,

Δφ = ω,

v = ∇⊥φ,

v2|y=a,b = 0,

(t, x, y) ∈ R × TL × [a, b].

Considering solutions close to a shear flow, (U (y), 0), that is

v = (U (y), 0) + v′,
ω = −U ′(y) + ω′,

in the linearization we neglect the nonlinearity,

v′ · ∇ω′, (4)

and thus obtain the linearized 2D Euler equations:

∂tω
′ +U (y)∂xω

′ = U ′′(y)v′
2,

Δφ′ = ω′,
v′
2 = ∂xφ

′,
v′
2|y=a,b = 0.

(5)

Here, it is advantageous to introduce two changes of variables and a Fourier trans-
form in x , in order obtain a more tractable formulation:

– We note that none of the coefficient functions, U (y),U ′′(y), depend on x .
Hence, after a Fourier transform in x , the system decouples in frequency:

∂t ω̂
′(t, k, y) +U (y)ikω̂′(t, k, y) = U ′′(y)ikφ̂′(t, k, y),

(−k2 + ∂2y )φ̂
′(t, k, y) = ω̂′(t, k, y),

ikφ̂′(t, k, y)|y=0,1 = 0,

(t, k, y) ∈ R × LZ × [0, 1].

(6)

In particular, the x average, that is the mode k = 0, is preserved in time. Thus,
using the linearity and modifying the initial data

ω0 �→ ω0 − 〈ω0〉x ,

we may, without loss of generality, restrict things to modes k �= 0.
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– Considering the case of Couette flow, that is U (y) = y, the linearized Euler
equations reduce to a transport problem. In this case, one can compute the
solution explicitly:

ω′(t, x, y) = ω′(0, x + t y, y),

ω̂′(t, k, y) = ω̂′(0, k, y)eikty .

From this explicit form, we observe that it cannot be expected that ω′(t, x, y)
is regular with respect to y uniformly in time, but that regularity can only be
expected of the vorticity moving with the flow

W (t, x, y) = ω′(t, x − tU (y), y),

Ŵ (t, k, y) = ω̂′(t, k, y)e−iktU (y).

– Using the Fourier transform and considering coordinates moving with the flow,
the equation for the stream function

Φ̂(t, k, y) := φ̂′(t, k, y)e−iktU (y),

is given by

(−k2 + (∂y − iktU ′(y))2)Φ(t, k, y) = W (t, k, y).

As U ′(y) is non-constant, an analysis of the behaviour of (∂y − iktU ′(y))2
on frequency-localised functions would have to invest much technical effort to
control error terms. It is thus advantageous to instead use that monotone shear
flows are invertible and hence consider a change of variables

(x, y) �→ (x, z) = (x,U−1(y)).

Combining these three steps and introducing the notation

f (z) := U ′′(U−1(z)),

g(z) := U ′(U−1(z)),

we obtain the linearized 2D Euler equations in scattering formulation:

∂t Ŵ = f (z)ikΦ̂,

(−k2 + (g(z)(∂z − ikt))2)Φ̂ = Ŵ ,

Φ̂|z=U (a),U (b) = 0,

(t, k, z) ∈ R × LZ × [U (a),U (b)].

(7)

Here, the term scattering is used as in dispersive equations, that is the linearized
Euler equations scatter with respect to the underlying transport equation

∂t f +U (y)∂x f = 0,

which in the current coordinates means that W (t, x, y) converges to an asymptotic
profile W∞(x, y) as t → ∞.
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As additional simplifications for the notation, we relabel z as y and use the
Galilean and scaling symmetries of the equations to reduce to the setting [U (a),

U (b)] = [0, 1] (with L rescaled by a factor as well). Furthermore, since the system
decouples in k, we consider k as a given parameter, rescale Φ̂ by k−2 and drop the
hats, ·̂, from our notation:

Definition 1. (Linearized 2D Euler equations in scattering formulation) Let f, g :
[0, 1] → R be given. Then the linearized Euler equations in scattering formulation
are given by

∂tW = i f

k
Φ,(

−1 +
(
g

(
∂y

k
− i t

))2
)

Φ = W,

Φ|y=0,1 = 0,

(t, k, y) ∈ R × L(Z \ {0}) × [0, 1].

(8)

In the following section, we briefly discuss the damping mechanism for a sim-
plified model in the setting of an infinite channel. There, an explicit solution allows
us to clearly present the damping mechanism and discuss the challenges of deduc-
ing regularity results and the additional technical difficulties and boundary effects
arising in the setting of a finite periodic channel.

2.2. A Constant Coefficient Model for the Damping Mechanism

In order to obtain some insights into the dampingmechanism and the associated
challenges, in the following we recall the constant coefficient model from [9].

In this model, we consider the linearized Euler equations in scattering formula-
tion, (8), in the case of an infinite periodic channel, TL ×R , and formally replace
f and g by constants c ∈ C, d ∈ R:

∂tΛ = ic

k
Ψ,(

−1 + d2
(

∂y

k
− i t

)2
)

Ψ = Λ,

(t, k, y) ∈ R × L(Z \ {0}) × R.

We note that the case c = 0, d = 1 corresponds to Couette flow, U (y) = y.
As the coefficient functions are constant, after a Fourier transform in y, this sys-

tem further decouples with respect to the frequency η and is explicitly solvable. In
contrast to Couette flow, the dynamics ofΛ are however not trivial. More precisely,
we compute

∂tΛ̃ = − ic

k

1

1 + d2( η
k − t)2

Λ̃,

⇒ Λ̃(t, k, η) = exp

(
− ic

k

∫ t

0

1

1 + d2( η
k − τ)2

dτ

)
Λ̃(0, k, η).
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From this explicit calculation we observe multiple facts:

– In order to obtain decay of the multiplier in time, we need to require that d2 >

0. In the case of the linearized Euler equations this corresponds to requiring
(U ′)2 � d2 > 0, that is strict monotonicity. The solution operator is then
uniformly bounded by

exp

( |c|
|k|

π

|d|
)

.

– The operator norm of Λ �→ Ψ as mapping from Hs to Hs does not improve in
time, since

sup
η

1

1 + d2( η
k − t)2)

= 1

is independent of time. This can also be seen more generally by noting that the
change of variables (x, y) �→ (x − tU (y), y) is a unitary operator on L2 and
hence conjugation with it does not change the operator norm.

– One can additionally use that |ei�(c)| = 1.However, in the case of the linearized
Euler equations, using this property corresponds to using anti-symmetry of
operators and cancellations. As these are very fragile properties, we restrict
ourselves to only using the more robust damping mechanism.

Since the linearized Euler equations do not admit explicit solutions, in our proof
of stability in [9] we use a slightly more indirect argument. That is, we construct a
decreasing Fourier weight

A(t)W := F−1 exp
(
C arctan

(η

k
− t

))
FW,

where C > 0, and show that, under suitable assumptions on f, g and L ,

d

dt
〈W, AW 〉 �

∣∣∣∣2�
〈
W, A

i f

k
Φ

〉∣∣∣∣ + 〈W, ȦW 〉 � 0.

Here, by our construction of A, the last inequality corresponds to an elliptic regu-
larity result for Φ. Using that A(t) is “comparable to the identity”, that is

1 � exp
(
C arctan

(η

k
− t

))
� 1,

we thus obtain

‖W (t)‖2L2 � 〈W, A(t)W 〉 � 〈ω0, A(0)ω0〉 � ‖ω0‖2L2 .

The associated L2 stability result for both the infinite and finite periodic channel is
summarised in the following theorem:
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Theorem 6. ([9, Theorems 3.4 and 4.2]) Let W be a solution of the linearized Euler
equations, (8), in either the infinite periodic channel, TL ×R, or the finite periodic
channel, TL × [0, 1]. Further suppose that there exists c > 0 such that

0 < c < |g| < c−1 < ∞,

and that

‖ f ‖W 1,∞L

is sufficiently small. Then, for any initial datum, ω0 ∈ L2, the solution W satisfies

‖W (t)‖L2 � ‖ω0‖L2 .

In the case of finite channel, this method of proof is shown to be very stable and to
extend to stability results in arbitrary Sobolev spaces, Hs, s ∈ N.

When considering a finite channel, in addition to technical challenges such
as finding a suitable replacement for a Fourier transform and for A(t), one en-
counters boundary effects. For simplicity, in the following we consider the ex-
ample of linearized Couette flow on the channel T2π × [0, 1] and initial datum
ω0(x, y) = 2i sin(x). The linearized Euler equations are then given by

Λ(t, 1, y) ≡ 1,

(−1 + (∂y − i t)2)Ψ = 1

Ψ |y=0,1 = 0.

Taking one derivative in y, we observe that

∂yΛ ≡ 0,

(−1 + (∂y − i t)2)∂yΨ = 0.

The function ∂yΨ is a thus homogeneous solution, which in general has non-zero
Dirichlet conditions and is hence non-trivial. In particular, an estimate of ∂yΨ by
∂yΛ can thus not hold. In order to compute ∂yΨ |y=0,1 explicitly, one tests the
equation for Ψ with homogeneous solutions e±y+i t y :

〈1, e±y+i t y〉L2 = 〈(−1 + (∂y − i t)2)Ψ, e±y+i t y〉L2 = e±y+i t y∂yΨ |1y=0,

where we used that e±y+i t y is a homogeneous solution and that Ψ |y=0,1 = 0.
Considering suitable linear combinations,

u1(y) := −ei t y
sinh(1 − y)

sinh(1)
,

u2(y) := ei t (y−1) sinh(y)

sinh(1)
,

which have boundary values

−u1(0) = u2(1) = 1,

u1(1) = u2(0) = 0,
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we thus obtain

∂yΨ |y=0 = 〈1, u1〉 = − 1

i t
ei t y

sinh(1 − y)

sinh(1)
|1y=0

− 1

i t

〈
1, ei t y∂y

sinh(1 − y)

sinh(1)

〉
= 1

i t
+ O(t−2),

∂yΨ |y=1 = 〈1, u2〉 = 1

i t
ei t (y−1) sinh(y)

sinh(1)

− 1

i t

〈
1, ei t (y−1)∂y

sinh(y)

sinh(1)

〉
= 1

i t
+ O(t−2).

(9)

In particular, we note that, despite ∂yW vanishing, ∂yΨ |y=0,1 only vanishes with a
non-integrable rate.

Recalling the linearized Euler equations, (8), taking a derivative in y and re-
stricting to the boundary, we observe that ∂yW |y=0,1 satisfies

∂t∂yW |y=0,1 = i f

k
∂yΦ|y=0,1.

Considering flows with f |y=0,1 �= 0, the non-integrable decay rate in (9) thus
suggests that ∂yW |y=0,1 develops a (logarithmic) singularity as t → ∞.

In the following sections, we show that this singularity formation indeed occurs
and obtain associated blow-up results in the fractional Sobolev spaces Hs, s >
3
2 . Conversely, we show that stability holds in all sub-critical fractional Sobolev
spaces, Hs, s < 3

2 . Furthermore, as can already partially be seen in (9), the decay
behaviour of ∂yΦ|y=0,1 improves if one restricts things to initial perturbations,
ω0, with vanishing Dirichlet data, ω0|y=0,1. For such perturbations we show that
the stability and blow-up results can be improved to Hs, s < 5

2 , and Hs, s > 5
2 ,

respectively.

2.3. Fractional Sobolev Spaces

As we make extensive use of fractional Sobolev spaces, we provide a short in-
troduction to their various definitions and properties. Here we follow [4] (published
as [5]).

In the whole space, fractional Sobolev spaces can be equivalently characterized
using either a Fourier weight or an appropriate kernel:

Proposition 1. (Fractional Sobolev space onR; [4, Section 3]) Let 0 < s < 1, then
there exists Cs such that for any u ∈ S(R)

‖|η|sFu‖2L2 = Cs

∫∫
R×R

|u(x) − u(y)|2
|x − y|1+2s dxdy.

In particular, both expressions define the same quasi-norm. The fractional Sobolev
space, Hs(R), is then defined as the closure of S(R) with respect to

‖u‖2L2 + ‖|η|sFu‖2L2 .



1462 Christian Zillinger

Hs(R) is a Hilbert space with the inner product

〈u, v〉Hs = 〈u, v〉L2 + 〈|η|s/2Fu, |η|s/2Fv〉L2

= 〈u, v〉L2 + Cs

∫∫
R×R

(u(x) − u(y))(v(x) − v(y))

|x − y|1+2s dxdy.

For s > 1, s �∈ N, the fractional Sobolev space is (recursively) defined by
requiring that u ∈ Hs−1 and ∂xu ∈ Hs−1. The definition via a kernel can be
adapted to other and higher dimensional domains. In particular, we are interested
in the setting of the interval [0, 1].
Proposition 2. (Trace map; [4, Section 3]) Let 0 < s < 1 and define Hs([0, 1]) as
the closure of C∞([0, 1]) with respect to∫∫

[0,1]2
|u(x) − u(y)|2
|x − y|1+2s dxdy + ‖u‖2L2([0,1]).

Then Hs([0, 1]) is a Hilbert space. Furthermore, let s > 1/2, then Hs embeds into
C0, in particular, there exists a trace map and∣∣uy=0,1

∣∣ �s ‖u‖Hs ([0,1]).
Aclosely related space is given by the periodic fractional Sobolev space Hs(T).

Proposition 3. [3] Let 0 < s < 1/2, then for any u ∈ C∞(T),

‖|η|sFu‖2L2 �
∫∫

T×[− 1
2 , 12 ]

|u(x + y) − u(y)|2
|x |1+2s dxdy � ‖|η|sFu‖2L2 .

In particular, both the kernel and Fourier characterization define the same quasi-
norm. Furthermore,∫∫

T×[− 1
2 , 12 ]

|u(x + y) − u(y)|2
|x |1+2s dxdy = 〈Fu, Bn|n|2sFu〉l2 ,

where Bn satisfies

1 � Bn := |n|−2s
∫

[− 1
2 , 12 ]

sin2(xn)

4|x |1+2s dx � 1.

The fractional Sobolev space Hs(T) is defined as the closure of C∞(T)with respect
to

‖u‖2L2 +
∫∫

T×
[
− 1

2 , 12

] |u(x + y) − u(y)|2
|x |1+2s dxdy.

Hs(T) is a Hilbert space, where the inner product can be chosen as either

〈u, v〉Hs (T) := 〈u, v〉L2 + 〈Fu, Bn|n|2sFv〉l2

= 〈u, v〉L2 +
∫∫

(u(x + y) − u(y))(v(x + y) − v(y))

|x |1+2s dxdy,

or

〈u, v〉Hs (T) := 〈u, v〉L2 + 〈Fu, |n|2sFv〉l2 .
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From the kernel characterization, it can easily be seen that Hs(T) ⊂ Hs([0, 1]):

Proposition 4. Let 0 < s < 1, then any u ∈ Hs(T) is also in Hs([0, 1]) and
‖u‖Hs ([0,1]) � ‖u‖Hs (T).

Proof of Proposition 4 The L2 norms are equal, hence we only have to consider
the quasi-norm in Hs([0, 1]). Introducing a change of variables x �→ z + y, we
compute

‖u‖2
Ḣ s ([0,1]) =

∫∫
[0,1]2

|u(x) − u(y)|2
|x − y|1+2s dxdy

=
∫

[0,1]

∫
[0,1]−y

|u(z + y) − u(y)|2
|z|1+2s dzdy

�
∫

[0,1]

∫
[−1,2]

|u(z + y) − u(y)|2
|z|1+2s dzdy

� ‖u‖2
Ḣ s (T)

+ C‖u‖2L2 � ‖u‖2Hs (T),

where we used that

sup
|z|�1

2

1

|z|1+2s � 2.

��
As a simplification, for the stability results of Sections 3.1 and 3.4, we restrict

ourselves to fractional Sobolev spaces, Hs(T), in order to be able to use the Fourier
characterization. In this case, we further require that the coefficient functions, f, g,
corresponding to the shear flow, U , are not only sufficiently regular, for example
g ∈ W 1,∞([0, 1]), but can be periodically extended in a regular way, for example
g ∈ W 1,∞(T), in order to be able to apply the following Propositions 5 and 6:

Proposition 5. (Multiplication with Lipschitz functions) Let g ∈ W 1,∞(T) be pe-
riodic and Lipschitz, then for any s < 1/2 and any u ∈ Hs(T), also gu ∈ Hs(T)

and

‖ug‖Hs � ‖g‖W 1,∞‖u‖Hs .

Proposition 6. (Commutator Estimate) Let g ∈ C0,1(T) with g2 > c > 0 and let
0 < s < 1/2. Then for any u ∈ Hs(T)

�〈u, g2u〉Hs (T) � c‖u‖2Hs (T) − Cs‖g2‖Ċ0,1‖u‖2L2 .

Remark 1. The periodicity assumption on g drastically simplifies calculations, but
can probably be relaxed.

It can be shown that the multiplication with the characteristic function of the
positive half-line, 1[0,∞), is a boundedoperator on Hs(R), s < 1

2 (see [7, page 208]).
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Thus, one can probably allow for a jump discontinuity of the periodic extension of
g in Proposition 5 and only require that g ∈ W 1,∞([0, 1]).

In the case of Proposition 6, we, however, use that the commutator

u �→ [(−Δ)
s
2 , g]u,

where (−Δ)
s
2 is defined as the Fourier multiplier

u �→ F−1|η|sFu,

is not only a bounded operator from Hs to L2, but gains regularity in the sense that
it also is a bounded operator from Hs−ε to L2 for some ε > 0. As this is not the
case for functions with jump discontinuities, the current proof can probably only
be extended to functions g, for which the size of the jump discontinuity

|g2(1) − g2(0)|
is sufficiently small compared to min(g2) > 0, so that the possible loss due to the
jump satisfies (by the improved version of Proposition 5)

|g2(1) − g2(0)|‖1[ 12 ,1]u‖2Hs � min(g2)

2
‖u‖2Hs

and can hence be absorbed by

〈u,min(g2)u〉Hs = min(g2)‖u‖2Hs .

Removing the restriction on the size of the jump,

|g2(1) − g2(0)|,
is probably possible, but would require considerable additional technical effort.

Proof of Proposition 5We remark that gu ∈ L2 and that ‖gu‖L2 � ‖g‖W 1,∞‖u‖L2

is well-known. For the Hs seminorm we follow the standard proof via the kernel
characterization (see [4, page 21]).

∫∫
T×[− 1

2 , 12 ]
|u(x + y)g(x + y) − u(y)g(y)|2

|x |1+2s dxdy

�
∫∫

T×[− 1
2 , 12 ]

|g(x + y)|2 |u(x + y) − u(y)|2
|x |1+2s dxdy

+
∫∫

T×[− 1
2 , 12 ]

|u(y)|2 |g(x + y) − g(y)|2
|x |1+2s dxdy.

The first term can be easily controlled by ‖g‖2L∞‖u‖2Hs . For the second term we
use that g ∈ W 1,∞(T) is Lipschitz and thus

|g(x) − g(y)|2
|x − y|1+2s � 1

|x − y|2s−1 ‖g‖2W 1,∞ .
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Then,

sup
y∈T

∫
[− 1

2 , 12 ]
1

|x − y|2s−1 dx �
∫ 2

−1

1

|x |2s−1 dx < ∞,

as 1− 2s > −1 for all 0 < s < 1. The second term can thus be controlled in terms
of ‖u‖2

L2‖g‖2W 1,∞ . ��
Proof of Proposition 6 For the L2 product there is nothing to show.

By the kernel characterization

�〈u, g2u〉Hs (T) = �
∫∫

(u(x+y)−u(y))(g2(x+y)u(x+y)−g2(y)u(y))

|x |1+2s dxdy

=
∫∫

g2(x + y)
|u(x + y) − u(y)|2

|x |1+2s dxdy

− �
∫∫

g2(x + y) − g2(y)

|x |1+2s (u(x + y) − u(y))u(y)dxdy.

As g2 is Lipschitz, the second term can thus be estimated by

‖g2‖W 1,∞
∫∫

1

|x |2s |u(x + y) − u(y)||u(y)|dxdy

� 2‖g2‖W 1,∞

∥∥∥∥ 1

|x |2s
∥∥∥∥
L1
x

‖u‖2L2 � Cs‖g2‖W 1,∞‖u‖2L2 ,

where we used that 2s < 1. ��

3. Boundary Effects and Sharp Stability Results

In a previous article [9], we proved that the linearized 2D Euler equations in a
finite periodic channel, TL × [0, 1], are stable in Hm

x H1
y (TL × [0, 1]) for general

perturbations, but only stable in Hm
x H2

y (TL ×[0, 1]) under perturbations with zero
Dirichlet boundary data, ω0|y=0,1 = 0.

In this section, we study the boundary effects and the associated singular-
ity formation in more detail and show that the critical Sobolev spaces in y are

given by H
3
2
y and H

5
2
y , respectively. More precisely, we show that stability in

Hm
x Hs

y (TL × [0, 1]), s > 3
2 cannot hold for general perturbations due the de-

velopment of (logarithmic) singularities at the boundary. On the other hand, we
prove stability in Hm

x Hs
y (TL × T) for any s < 3

2 , where for technical reasons
we consider periodic fractional Sobolev spaces, Hs(T), instead of Hs([0, 1]). In
particular, stability in Hs, s > 1, allows us to prove damping with an integrable
rate and thus obtain a quantitative scattering results for initial perturbations without
zero Dirichlet data, which has not been possible with the H1 stability results of [9].

Restricting toperturbationswith zeroDirichlet boundarydata, that isω0|y=0,1 =
0,we similarly show that the critical space is given by H

5
2 and prove stability and in-

stability for Hm
x Hs

y (TL ×T), s < 5
2 , and Hm

x Hs
y (TL ×[0, 1]), s > 5

2 , respectively.
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Aswe discuss in Section 5, these improvements allow us to study consistency of the
nonlinear problem in the finite periodic channel, where the singularity formation at
the boundary and the resulting regularity restrictions have a large effect on possible
nonlinear damping results.

3.1. Stability in H3/2− and Boundary Perturbations

In [9], we established stability of the linearized Euler equations, (8), in a finite
periodic channel, TL × [0, 1], in Hm

x H1
y , for general initial data. The damping

result, Theorem 1, hence provides decay of the perturbations to the velocity field
with rate t−1, that is

‖v − 〈v〉x‖L2
x,y(TL×[0,1]) = O(t−1),

‖v2‖L2
x,y(TL×[0,1]) = O(t−1).

(10)

As this is almost sufficient to establish scattering, it is natural to ask about how far
this can be improved, that is, for which values of s, with s > 1, does stability in
Hm
x Hs

y still hold?
As the main result of this section, we show that the critical Sobolev exponent

in y is given by s = 3
2 . More precisely, in Lemma 1 (c.f. Section 1.2) and Corollary

1, we show that for perturbations ω0 with non-vanishing Dirichlet data, ω0|y=0,1,
∂yW asymptotically develops (logarithmic) singularities at the boundary and that
hence stability in Hm

x Hs
y (TL × [0, 1]), s > 3

2 , and Hm
x H2

y (TL × [0, 1]) cannot
hold, unless one restricts matters to perturbations ω0 such that ω0|y=0,1 = 0. This
singularity formation is further analyzed in Section 4, where we also study the
behavior close to the boundary and the heuristic implications for stability in L p

spaces. As we discuss in Section 5, these instability results have strong implications
for the problem of nonlinear inviscid damping in a finite channel.

As a complementary result to the singularity formation, we prove Theorem
3 from Section 1.2 and thus establish stability in the periodic fractional Sobolev
spaces Hm

x Hs
y (TL × T), s < 3/2. In particular, we obtain inviscid damping with

an integrable (but subquadratic) rate and hence scattering for initial perturbations
without zero Dirichlet data, which has not been possible with the H1 stability
results of [9], but only with the H2 stability results for perturbations with vanishing
Dirichlet data.

We recall that the linearized 2D Euler equations in a finite periodic channel,
TL × [0, 1], are given by:

∂tW = i f (y)

k
Φ,(

−1 +
(
g(y)

(
∂y

k
− i t

))2
)

Φ = W,

Φ|y=0,1 = 0,

(t, k, y) ∈ R × L(Z \ {0}) × [0, 1].

(11)



Linear Inviscid Damping and Boundary Effects 1467

Furthermore, as noted in Section 2.1, the equations (11) decouple with respect to
k. Hence, for the remainder of this section, we consider k as a given parameter and
consider the stability of

W (t) = W (t, k, ·) ∈ Hs([0, 1]).
Results for Hm

x Hs
y (TL × [0, 1]),m ∈ N0, can then be obtained by summing over

k.
Considering the evolution of ∂yW :

∂t∂yW = i f

k
∂yΦ + i f ′

k
Φ,(

−1 +
(
g

(
∂y

k
− i t

))2
)

Φ(1) = ∂yW + [(g(∂y − i t))2, ∂y]Φ,

Φ
(1)
y=0,1 = 0,

H (1) = ∂yΦ − Φ(1),

(t, k, y) ∈ R × L(Z \ {0}) × [0, 1],

(12)

at the boundary, y ∈ {0, 1}, we prove that Sobolev stability cannot hold for s > 3
2 ,

unless one restricts things to perturbations ω0 with ω0|y=0,1 ≡ 0. In that case, as
we show in Section 3.4, an instability develops for s > 5

2 .
Using a similar approach as in Section 2.2, the following lemma provides a

characterization of ∂yΦ|y=0,1 and describes the asymptotic behavior:

Lemma 3. Let W be a solution of the linearized Euler equations, (11), and suppose
that g ∈ W 2,∞([0, 1]) satisfies g2 > c > 0. Then,

∂yΦ|y=0 = k

g2(0)
〈W, u1〉,

∂yΦ|y=1 = k

g2(1)
〈W, u2〉,

(13)

where

u1(t, y) = eiktyu1(0, y),

u2(t, y) = eikt (y−1)u2(0, y),

and uj (0, y) are solutions of

(−k2 + (g∂y)
2)u = 0,

y ∈ [0, 1],
with boundary values

u1(0, 0) = u2(0, 1) = 1,

u2(0, 1) = u1(0, 0) = 0.
(14)
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Let s > 0 and suppose that

‖∂yW (t)‖Hs < C < ∞
for all time, then, as t → ∞,

〈W, u1〉 = 1

ikt
ω0|y=0 + O(t−1−s),

〈W, u2〉 = 1

ikt
ω0|y=1 + O(t−1−s).

As a corollary, we prove Lemma 1 and thus show that stability in s > 3/2 can,
in general, not hold.

Proof of Lemma 1 Restricting (12) to the boundary, we obtain

∂t∂yW |y=0,1 = i f

k
∂yΦ|y=0,1,

where we used that Φ|y=0,1 = 0.
By Lemma 3, under the assumptions of the corollary, thus

∂t∂yW |y=0,1 = 1

t

i f

k
ω0

k

g2

∣∣∣∣
y=0,1

+ O(t−1−s).

Integrating this equality and using that

i f

k
ω0

k

g2

∣∣∣∣
y=0,1

is independent of t and non-trivial,

|∂yW |y=0,1(t)| �
∫ t 1

τ
− O(τ−1−s)dτ � log |t |,

which provides the lower bound on ‖∂yW‖L∞ and hence the first result.
The second result is proven by contradiction. Let thus s > 3/2 be given and

suppose to the contrary that

‖W (t)‖Hs < C < ∞,

uniformly in time. Then, by the trace map and the first result,

log(t) � ‖∂yW‖L∞ �s ‖W (t)‖Hs < C,

which is a contradiction as t → ∞. ��
Proof of Lemma3Wenote that, by construction, u1(t, y) and u2(t, y) are solutions
of (

−1 +
(
g

(
∂y

k
− i t

))2
)
u j = 0
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with boundary values

u1(t, 0) = u2(t, 1) = 1,

u2(t, 1) = u1(t, 0) = 0,
(15)

for all times t . Hence, integrating by parts, we obtain

〈W, u j 〉 =
〈(

−1 +
(
g

(
∂y

k
− i t

))2
)

Φ, u j

〉

= u j
g2

k

(
∂y

k
− i t

)
Φ|1y=0 − Φ

g2

k

(
∂y

k
− i t

)
u j |1y=0

+ 〈Φ,

(
−1 +

(
g

(
∂y

k
− i t

))2
)
u j 〉

= u j
g2

k
∂yΦ|1y=0,

where we used thatΦ|y=0,1 = 0. Using the boundary values of u j then yields (13).
Integrating

u1(t, y) = eiktyu1(0, y) = u1(0, 1)∂y
eikty

ikt

by parts, we obtain a boundary term

1

ikt
Wu1|y=0,1 = − 1

ikt
W |y=0 = − 1

ikt
ω0|y=0,

as well as a bulk term

1

ikt
〈eikty, ∂y(Wu1(0, y))〉 = 1

ikt
〈eiktyu1, ∂yW 〉 + 1

ikt
〈eikty∂yu1,W 〉.

The boundary term is already of the desired form.
The second term of the bulk contribution can be integrated by parts once more

and thus yields a quadratically decaying contribution. It thus remains to estimate
the first term,

1

ikt
〈eiktyu1, ∂yW 〉.

Here we use duality, and estimate

〈eiktyu1, ∂yW 〉L2 � ‖eiktyu1‖H−s‖∂yW‖Hs = O(t−s)‖∂yW‖Hs .

��
As a consequence, we note that for stability in H2 it is necessary to restrict

things to perturbations with vanishing Dirichlet boundary data, ω0|y=0,1 = 0:
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Corollary 1. Let ω0 ∈ H2, f, g satisfy the assumptions of Lemma 3 and suppose
that f ω0|y=0,1 is non-trivial. Furthermore, let W (t) be the solution of the linearized
Euler equations, (11). Then,

sup
t

‖W (t)‖H2([0,1]) = ∞.

Proof. We note that this corollary corresponds to the specific case s = 2 in Lemma
1, but allows for more explicit calculations. Following the same approach as in the
proof of Lemma 1, we thus assume to the contrary that ‖W (t)‖H2 is bounded
uniformly in time. Then, at y = 0, for example,

〈W, ei t yu1〉L2 = 1

ikt
W |y=0 − 1

ikt
〈eikty, ∂y(Wu1)〉L2 ,

= 1

ikt
W |y=0 + 1

k2t2
∂y(Wu1)|1y=0 − 1

k2t2
〈eikty, ∂2y (Wu1)〉L2 .

Both the last L2 product and the trace of W and ∂yW can be controlled by
‖W‖H2([0,1]). Thus,

∂yΦ|y=0 = k

g2(0)
〈W, ei t yu1〉L2 = 1

i tg2(0)
ω0|y=0 + O(t−2)‖W‖H2([0,1]),

where we used Lemma 3.
Integrating

∂t∂yW |y=0,1 = i f

k
∂yΦ|y=0,1

in t thus yields that ∂yW |y=0,1 blows up logarithmically as t → ∞. On the other
hand, the L∞ normof ∂yW is controlled by the H2 normvia the Sobolev embedding
theorem, which yields a contradiction. ��

We have thus seen that, in general, for the purposes of stability results s cannot
be larger than 3/2. As the main result of this section we provide a proof of Theorem
3 and thus show that this condition is sharp in the sense that stability in Hs holds
for all s < 3/2. More precisely, instead of Hs([0, 1]), we consider periodic spaces,
that is

W (t, k, ·) ∈ Hs−1(T), ∂yW (t, k, ·) ∈ Hs−1(T),

where T = [0, 1]/ ∼ is the torus of unit period. As discussed in Section 2.3, this
allows us to use both a Fourier characterization and a kernel characterization.

Remark 2. The assumptions on f (y) = U ′′(U−1(y)) and g(y) := U ′(U−1(y))
(c.f. Section 2.1) in Theorem 3 are chosen such that we can apply Proposition 5 to
the functions f , g and their derivatives f ′ and g′. Furthermore, we require

g2 = U ′(U−1(·))2

to be such that we can apply Proposition 6.
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As discussed in Remark 1, these assumptions can probably be relaxed to re-
quiring that

f, g ∈ W 3,∞([0, 1]),
and that

|g2(1) − g2(0)| = |(U ′(b))2 − (U ′(a))2|
is sufficiently small compared to

min(g2) = min((U ′)2) > 0.

Proof of Theorem 3 In our proof, we split ∂yΦ into a solution with zero Dirichlet
boundary conditions and a correction term in the form of a homogeneous solution:

∂t∂yW = ik f Φ(1) + ik f ′Φ + ik f H (1),

(−k2 + (g(∂y − ikt))2)Φ(1) = ∂yW + [(g(∂y − ikt))2, ∂y]Φ,

Φ(1)|y=0,1 = 0,

where H (1) is given by

(−k2 + (g(∂y − ikt))2)H (1) = 0,

H (1) = H (1)|y=0e
iktyu1 + H (1)|y=1e

ikt (y−1)u2,

H (1)|y=0 = ∂yΦ|y=0 = 1

g2
〈W, eiktyu1〉,

H (1)|y=1 = ∂yΦ|y=1 = 1

g2
〈W, eikt (y−1)u2〉.

We then construct a specific family of symmetric operators A(t) : Hs → Hs

such that for any σ ∈ Hs

‖σ‖2Hs � 〈σ, A(t)σ 〉Hs � ‖σ‖2Hs ,

〈σ, Ȧ(t)σ 〉Hs � 0,
(16)

and such that

2�
〈
i f

k
Φ, AW

〉
Hs

+ 2�
〈
i f

k
Φ(1), A∂yW

〉
Hs

+ 2�
〈
i f ′

k
Φ, A∂yW

〉
Hs

� −C

k

(〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs
)
, (elliptic)

and

2�
〈
i f

k
H (1), A∂yW

〉
Hs

� −C

k

(〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs
)
. (boundary)
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Assuming this control and requiring k to be sufficiently large such that C
k � 1,

this then yields that

I (t) := 〈W, AW 〉Hs + 〈∂yW, A∂yW 〉
is non-increasing. In particular, we obtain that

‖W (t)‖2Hs + ‖∂yW (t)‖2Hs � I (t) � I (0) � ‖ω0‖2Hs + ‖∂yω0‖2Hs .

Specifically, we define A(t) as a diagonal operator, that is

A : einy �→ An(t)e
iny,

where

An(t) = exp

(
−

∫ t

|cn(τ )|dτ
)

for a family cn ∈ L1
t , with ‖cn‖L1

t
bounded uniformly in n. Then A(t) satisfies (16)

by construction and the elliptic and boundary estimates reduce to estimates by

C

k

∑
n

|cn(t)|〈n〉2s(|Wn|2 + |(∂yW )n|2)

� −C

k
exp

(
sup
n

‖cn‖L1
t

)
(〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs ),

which are provided by Theorems 7 and 8 in the following subsections. ��

3.2. Boundary Corrections

The control of the boundary term in the proof of Theorem 3 is provided by the
following theorem:

Theorem 7. Let 0 < s < 1/2 and let W, f, g as in Theorem 3. Furthermore, let A
be a diagonal operator comparable to the identity, that is

A : einy �→ Ane
iny,

with

1 � An � 1,

uniformly in n.
Then,

|〈A∂yW, i f H (1)〉Hs | �
∑
n

cn(t)〈n〉2s |(∂yW )n|2,

for a family cn ∈ L1
t , with ‖cn‖L1

t
bounded uniformly in n.



Linear Inviscid Damping and Boundary Effects 1473

Proof of Theorem 7 H (1) is explicitly given by

H (1) = ∂yΦ|y=0e
iktyu1 + ∂yΦ|y=1e

ikty(y−1)u2.

Hence, we have to estimate

〈A∂yW, i f H (1)〉Hs = ∂yΦ|y=0〈A∂yW, i f u1〉Hs + ∂yΦ|y=1〈A∂yW, i f u2〉Hs .

(17)

By Lemma 3,

∂yΦ|y=0 = k

g2(0)
〈W, eiktyu1〉

= k

g2(0)

(
1

ikt
ω0|y=0 + 1

ikt
〈eikty, ∂yWu1〉

)
,

∂yΦ|y=1 = k

g2(1)
〈W, eikt (y−1)u2〉

= k

g2(1)

(
1

ikt
ω0|y=1 + 1

ikt
〈eikt (y−1), ∂yWu2〉

)
.

Let us for the moment concentrate on the terms not involving ω0. Using the
control of g and 1

g , in order to estimate (17), we hence have to estimate

∣∣∣∣
〈
A∂yW,

i f

k
eiktyu1

〉
Hs

1

t
〈∂yW, eiktyu1〉L2

∣∣∣∣ . (18)

Expanding this in a basis, using that 1 � An � 1, f ∈ W 1,∞ and denoting

bn := |(∂yW )n|,
it suffices to consider

1

t

(∑
n

bn
〈n〉2s

〈n − kt〉

)(∑
n

bn
〈n − kt〉

)
. (19)

Considering the decay of the coefficients in n and taking into account that we only
control bn〈n〉s ∈ l2, we need that

〈n〉s
〈n − kt〉 ∈ l2,

which is the case iff s < 1/2.
As 0 < s < 1/2, we may choose 0 < λ < 1 such that s − λ < −1/2 and split

∑
n

bn
〈n〉s

〈n − kt〉1−λ

〈n〉s
〈n − kt〉λ

�
(∑

b2n
〈n〉2s

〈n − kt〉2(1−λ)

)1/2 ∥∥∥∥ 〈n〉s
〈n − kt〉λ

∥∥∥∥
l2

.
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Splitting the second factor in (19) in the same way, it suffices to show that

cn(t) := 1

t

1

〈n − kt〉2(1−λ)

∥∥∥∥ 〈m〉s
〈m − kt〉λ

∥∥∥∥
l2m

∥∥∥∥ 1

〈m〉s〈m − kt〉λ
∥∥∥∥
l2m

is in L1
t with ‖cn‖L1

t
bounded uniformly in n.

Estimating 〈n〉s � 〈n − kt〉s + 〈kt〉s , it suffices to show that

〈kt〉s
∥∥∥∥ 1

〈n〉s〈n − kt〉λ
∥∥∥∥
l2

� 1.

As s−λ < −1/2, there exists a δ > 0 such that λ = 1/2+ δ + s. We thus estimate∥∥∥∥ 1

〈n〉s〈n − kt〉λ
∥∥∥∥
l2

� ‖ 1

〈n〉s〈n − kt〉s ‖l∞‖ 1

〈n − kt〉1/2+δ
‖l2 .

Hence,

cn(t) � 1

t

1

〈n − kt〉2(1−λ)
∈ L1

t .

It remains to discuss
1

ikt
ω0|y=0,1.

As the trace of ω0 is controlled by its initial H1 norm, we consider ω0|y=0,1 as
constants of size 1 in what follows. Hence, we have to estimate∣∣∣∣

〈
A∂yW,

i f

k
ei t yu1

〉
1

kt

∣∣∣∣ .
Splitting ∣∣∣∣ 1kt

∣∣∣∣ =
∣∣∣∣ 1kt

∣∣∣∣
γ ∣∣∣∣ 1kt

∣∣∣∣
1−γ

with 1/2 < γ < 1/2 + ε and using Young’s inequality, we thus obtain∣∣∣∣
〈
A∂yW,

i f

k
ei t yu1

〉
1

kt

∣∣∣∣ � 〈kt〉−2γ +
∣∣∣∣ 1kt

∣∣∣∣
2(1−γ ) ∣∣∣∣

〈
A∂yW,

i f

k
ei t yu1

〉∣∣∣∣
2

.

Here, the first term is an integrable contribution. Following the same strategy as
above, the second term can be controlled by

∑
n

b2n
〈n〉2s

〈n − kt〉2(1−λ)

〈kt〉2s
〈kt〉2(1−γ )

.

Choosing γ, λ such that

s − (1 − λ) − (1 − γ ) < −1/2

and modifying cn(t) to also include

〈kt〉2s
〈kt〉2(1−γ )〈n − kt〉2(1−λ)

∈ L1
t

then proves the result. Such a choice is possible as s < 1/2 is given and we can
choose (1 − λ) < 1/2 and (1 − γ ) < 1/2 arbitrarily close to 1/2. ��
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3.3. Elliptic Control

In this section, our main goal is to prove the following theorem, which controls
the elliptic contributions in the proof of Theorem 3. Here, the main steps of the
proof of Theorem 8 are formulated as lemmata and propositions and conclude with
Lemma 9.

Theorem 8. Let 0 < s < 1/2 and let A, f, g,W as in Theorem 7. Then

|〈A∂yW, i f Φ(1) + i f ′Φ〉Hs | �
∑
n

cn(t)〈n〉2s(|(∂yW )n|2 + |Wn|2),

for a family cn ∈ L1
t , where ‖cn‖L1

t
is bounded uniformly in n.

Whenworking with non-fractional Sobolev spaces, in [9], this estimate reduced
to an elliptic regularity theorem of the form

‖Φ‖H̃1 � ‖W‖H̃−1 ,

where

‖Φ‖2
H̃1 = ‖Φ‖2L2 +

∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
2

L2

and H̃−1 was constructed by duality.
Similarly, we show that the proof of Theorem 8 reduces to estimating

‖Φ‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
2

Hs
+ ‖Φ(1)‖2Hs +

∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
2

Hs
.

Lemma 4. Let 0 < s < 1/2 and let A, f, g,W be as in Theorem 8. Then

〈A∂yW, i f Φ(1) + i f ′Φ〉Hs

�
(∑ 〈n〉2s |(∂yW )n|2

〈n − kt〉2
)1/2 (‖ f ′Φ‖Hs + ‖ f ′′Φ‖Hs + ‖ f ′(∂y − ikt)Φ‖Hs

+‖ f Φ(1)‖Hs + ‖ f ′Φ(1)‖Hs + ‖ f ′(∂y − ikt)Φ(1)‖Hs

)
.

Proof of Lemma 4 Denote

R := i f Φ(1) + i f ′Φ.

Then,

〈A∂yW, R〉Hs =
∑
n

an(∂yW )n〈n〉2s〈einy, R〉.

Multiplying by a factor

1 = 1 + i(n/k − t)

1 + i(n/k − t)
,
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we estimate

∑
n

(
An(∂yW )n

〈n〉s
1 + i(n/k − t)

)(
〈n〉s(1 + i(n/k − t))〈einy, R〉

)

�
∥∥∥∥An(∂yW )n

〈n〉s
1 + i(n/k − t)

∥∥∥∥
l2n

∥∥∥〈n〉s(1 + i(n/k − t))〈einy, R〉
∥∥∥
l2n

.

In particular, we note that

1

|1 + i(n/k − t)|2 ∈ L1
t .

Thus, it suffices to control∑
n

〈n〉2s |(1 + i(n/k − t))〈einy, R〉|2. (20)

As

ineiny = ∂ye
iny,

and as R has zero boundary values, integrating by parts yields

(1 + i(n/k − kt))〈einy, R〉 = 〈einy, R〉 +
〈
einy,

(
∂y

k
− i t

)
R

〉
.

By the triangle inequality and Young’s inequality, one thus obtains an estimate of
(20) by

‖R‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
R

∥∥∥∥
2

Hs
.

Computing (
∂y
k − i t)R by the product rule and using the triangle inequality then

concludes the proof. ��
By Proposition 5 of Section 2.3, for f, g sufficiently regular, it hence suffices

to estimate

‖Φ‖Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
Hs

+ ‖Φ(1)‖Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
Hs

.

As the estimates for Φ and Φ(1) are very similar, to simplify notation, and as we
will later on also derive such an estimate for Φ(2), in the following we consider a
general problem: let ψ solve(

−1 +
(
g

(
∂y

ik
− t

))2
)

ψ = R,

ψ |y=0,1 = 0,

y ∈ [0, 1]
C > g2 > c > 0, g ∈ W 2,∞

(ELL)
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for some R ∈ Hs, 0 � s < 1/2.
In the following we show that, as in the case s = 0, for |k−1| sufficiently small,

‖ψ‖2Hs +
∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs
�

∑
cn(t)〈n〉2s |Rn|2

for some family cn(t) ∈ L1
t with ‖cn(t)‖L1

t
< C < ∞ uniformly in n.

As in the case s = 0, the heuristic idea is to consider the inner product (now in
Hs) of the first equation in (ELL) with ψ and estimate:

‖ψ‖2Hs +
∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs
� �〈ψ, R〉Hs − errors,

(lower)

�〈ψ, R〉Hs �
(

‖ψ‖2Hs +
∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs

)1/2 (∑
cn(t)〈n〉2s |Rn|2

)1/2
.

(upper)

Here, errors are terms that can either be absorbed in the left-hand-side or estimated
by terms similar to the right-hand-side in (upper).

As we work in fractional Sobolev spaces, integration by parts and similar es-
timates involve many more boundary terms, commutators and other corrections.
Controlling all these terms in a suitable way, makes (lower) technically much more
challenging than in the integer Sobolev case. The upper estimate, however, follows
analogously, as is shown in the following lemma:

Lemma 5. Let ψ, R solve (ELL), then

�〈ψ, R〉Hs �
(

‖ψ‖2Hs +
∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs

)1/2 (∑
cn(t)〈n〉2s |Rn|2

)1/2
,

where

cn(t) = 1

1 + ( nk − t)2
∈ L1

t .

Proof of Lemma 5 Following the same strategy as in Lemma 4, we express
〈ψ, R〉Hs in a basis, multiply by a factor

1 + i(n/k − t)

1 + i(n/k − t)
,

integrate by parts and employ Cauchy–Schwarz. ��
In order to derive (lower), we first make use of our freedom in choosing the

error term, by modifying the (shifted) elliptic operator.(
−1 +

(
g

(
∂y

ik
− t

))2
)

ψ

= −ψ +
(

∂y

ik
− t

)
g2

(
∂y

ik
− t

)
ψ − g′

ik
g

(
∂y

ik
− t

)
ψ.
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Up to boundary terms, the leading operator

−1 +
(

∂y

ik
− t

)
g2

(
∂y

ik
− t

)

is hence symmetric and negative definite, which we use for a lower estimate in
Lemma 7 and in combination with Proposition 6.

Lemma 6. Let ψ ∈ Hs([0, 1]) be a solution of (ELL). Then,∣∣∣∣
〈
ψ,

g′

ik
g

(
∂y

ik
− t

)
ψ

〉
Hs

∣∣∣∣ � 1

|k| |‖ψ‖Hs

∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs
.

For k sufficiently large, instead of (lower), it thus suffices to prove

‖ψ‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
ψ

∥∥∥∥
2

Hs
� 〈ψ,−ψ+

(
∂y

ik
− t

)
g2

(
∂y

ik
− t

)
ψ〉Hs − errors.

Proof of Lemma 6 The first statement follows by Cauchy–Schwarz and applying
Proposition 5 of Section 2.3 with gg′ ∈ W 1,∞(T).

For the second statement, we note that

c

(
‖ψ‖2Hs +

∥∥∥∥
(

∂y

k
− i t

)
ψ

∥∥∥∥
2

Hs

)

� �〈ψ, R〉 − errors

= �
〈
ψ,−ψ +

(
∂y

ik
− t

)
g2

(
∂y

ik
− t

)
ψ

〉
Hs

− errors

+ �
〈
ψ,

g′

ik
g

(
∂y

ik
− t

)
ψ

〉
Hs

� �
〈
ψ,−ψ +

(
∂y

ik
− t

)
g2

(
∂y

ik
− t

)
ψ

〉
Hs

− errors

+ C

|k|

(
‖ψ‖2Hs +

∥∥∥∥
(

∂y

k
− i t

)
ψ

∥∥∥∥
2

Hs

)
.

Letting |k| � 0 be sufficiently large, C
k � c/2, which allows us to absorb the last

term in the left-hand-side. ��
In order to prove (lower), it thus remains to show that

−�
〈
ψ,

(
∂y

ik
− t

)
g2

(
∂y

ik
− t

)
ψ

〉
Hs

provides a control of
∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs
,

up to error terms.
While in the case s = 0 this reduces to an integration by parts argument, for

s > 0, two additional challenges arise:
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– Integrating by parts yields boundary terms.
– 〈u, g2u〉Hs �= 〈gu, gu〉Hs �� min(g2)‖u‖2Hs .

The second issue is addressed by Proposition 6 in Section 2.3 and the former by
the following two lemmata:

Lemma 7. Let ψ ∈ Hs([0, 1]) be a solution of (ELL). Then
∣∣∣∣
〈
ψ,

(
∂y

ik
− t

)
g2

(
∂y

ik
− t

)
ψ

〉
Hs

+
〈(

∂y

ik
− t

)
ψ, g2

(
∂y

ik
− t

)
ψ

〉
Hs

∣∣∣∣

� |k−1|
(

‖ψ‖2Hs +
∥∥∥∥
(

∂y

ik
− t

)
ψ

∥∥∥∥
2

Hs

)1/2 ∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2

∣∣∣∣g2
(

∂y

k
− i t

)
ψ |1y=0

∣∣∣∣ .

Furthermore,
∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2

�s 〈kt〉s .

Proof of Lemma 7 Expanding both terms in a Fourier basis and integrating by
parts, the difference is given by

∑
n

〈n〉2sψn
1

k
g2

(
∂y

k
− i t

)
ψ

∣∣∣∣∣
1

y=0

.

Taking absolute values inside the sum, multiplying by a factor

1 = 1 + i(n/k − t)

1 + i(n/k − t)

and using Cauchy–Schwarz, the first estimate is proven.
For the second estimate, we note that

〈n〉s � ks〈n/k − t〉s + 〈kt〉s,
and that

〈n/k − t〉s−1 ∈ l2n ,

provided s < 1/2. ��
Lemma 8. Let ψ, R solve (ELL), then the following estimates hold:

∣∣∣∣g2
(

∂y

k
− i t

)
ψ |1y=0

∣∣∣∣ � |k|−1〈t〉−s

(∑
n

|Rn|2cn(t)〈n〉2s
)1/2

.

(a)

g2
(

∂y

ik
− t

)
ψ |y=0 = k〈R, eiktyu1〉L2 , (b)
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g2
(

∂y

ik
− t

)
ψ |y=1 = k〈R, eikt (y−1)u2〉L2 ,

|〈R, eiktyu1〉L2 | �
∑
n

|Rn|
〈n
k

− t
〉−1

, (c)

|〈R, eikt (y−1)u2〉L2 | �
∑
n

|Rn|
〈n
k

− t
〉−1

,

|〈R, eikt (y−1)u2〉L2 + 〈R, eiktyu1〉L2 | � |k−1|
∑
n

|Rn|
〈n
k

− t
〉−2

.

Proof of Lemma 8 We first show that (b) and (c) imply (a). Thus, assume for the
moment that (c) holds. Then

∣∣∣∣g2
(

∂y

k
− i t

)
ψ |1y=0

∣∣∣∣ � |k−1|
∑
n

|Rn|
〈n
k

− t
〉−2

= |k−1|
∑
n

|Rn| 〈n〉s
〈n/k − t〉1/2+ε

1

〈n/k − t〉1/2+ε

1

〈n〉s〈n/k − t〉1−2ε

� |k−1|
(∑

n

|Rn|2cn(t)〈n〉2s
)1/2

∥∥∥∥ 1

〈n/k − t〉1/2+ε

∥∥∥∥
l2

∥∥∥∥ 1

〈n〉s〈n/k − t〉1−2ε

∥∥∥∥
l∞

,

where

cn(t) = 〈n/k − t〉−1−2ε ∈ L1
t .

We further estimate ∥∥∥∥ 1

〈n/k − t〉1/2+ε

∥∥∥∥
l2

�
√
k,

∥∥∥∥ 1

〈n〉s〈n/k − t〉1−2ε

∥∥∥∥
l∞

� 〈kt〉−s + 〈kt〉−1+2ε.

As s < 1/2 < 1, for ε > 0 sufficiently small, 1 − 2ε � s, which concludes the
proof of (a).

The estimates (b) have been proven previously in Lemma 3 for the case of
ψ = Φ. Again let eiktyu1, eikt (y−1)u2 be the homogeneous solutionswith boundary
values zero and one. Testing the equation and integrating by parts twice yields two
boundary terms. In the case of eiktyu1, the first boundary term is given by

eiktyu1
1

ik
g2

(
∂y

ik
− t

)
ψ |1y=0 = − 1

ik
g2

(
∂y

ik
− t

)
ψ |y=0,
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by the choice of the boundary values of eiktyu1. The second boundary term

ψ
1

ik
g2

(
∂y

ik
− t

)
eiktyu1|1y=0,

vanishes as ψ vanishes on the boundary. The result for eikt (y−1)u2 follows analo-
gously, which concludes the proof of (b).

It remains to prove (c). For the first two estimates, it suffices to prove that

〈einy, eiktyu1〉L2 � 〈n/k − t〉−1,

〈einy, eikt (y−1)u2〉L2 � 〈n/k − t〉−1.

A first, easy but non-optimal proof integrates ei(kt−n)y by parts, which yields a
control by

∣∣∣∣ k

kt − n

∣∣∣∣ .
For an improved estimate we recall that u j is given by linear combinations of

e±kU−1(y),

and that

ei(kt−n)y±kU−1(y) = 1

±k(U−1)′ + i(kt − n)
∂ye

i(kt−n)y±kU−1(y).

The improved final estimate of (c) follows by noting that eikt (y−1)u2 + eiktyu1
has boundary values 1, 1 and is thus periodic. A first integration by parts thus does
not yield any boundary contribution and we may integrate by parts once more to
obtain the quadratic decay. ��

Combining both lemmata, we thus have further simplified (lower) to estimating
〈(

∂y

ik
− t

)
ψ, g2

(
∂y

ik
− t

)
ψ

〉
Hs

.

Employing Proposition 6 of Section 2.3, as well as the L2 stability result of [9],
Theorem 6, we have thus proven the following proposition:

Proposition 7. Let ψ, R solve (ELL), 0 � s < 1/2 and R ∈ Hs. Then

‖ψ‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
ψ

∥∥∥∥
Hs

�
∑
n

|Rn|2cn(t)〈n〉2s,

where cn ∈ L1
t with ‖cn‖L1

t
bounded uniformly in n.

Having derived this generic result for (ELL), it remains to apply it to the cases
ψ = Φ and ψ = Φ(1).
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Proposition 8. Let 0 < s < 1/2, W ∈ Hs and let Φ be a solution of

(−k2 + (g(∂y − ikt))2)Φ = W,

Φ|y=0,1 = 0,

y ∈ [0, 1].
Furthermore, let g, g′ ∈ W 1,∞(T) and g2 > c > 0. Then there exists a constant
such that

‖Φ‖2Hs +
∥∥∥∥∥
(

∂y

k
− i t

)2

Φ

∥∥∥∥∥
2

Hs

�
∑
n

|Wn|2〈n〉2cn(t)

for some cn(t) ∈ L1
t .

Proof of Proposition 8 Applying Proposition 7 with ψ = Φ, R = W yields the
result. ��

Considering the caseψ = Φ(1), the upper estimate, Lemma 4, has to be slightly
modified, as the second term in

R = ∂yW +
[(

∂y

k
− i t

)
g2

(
∂y

k
− i t

)
, ∂y

]
Φ

has to be treated separately.

Lemma 9. Let Φ,W solve
(

−1 +
(
g

(
∂y

k
− i t

))2
)

Φ = W,

Φ|y=0,1 = 0,

y ∈ [0, 1].
Then,

�
〈
Φ(1),

[(
∂y

k
− i t

)
g2

(
∂y

k
− i t

)
, ∂y

]
Φ

〉
Hs

�
∑
n

〈n〉2scn(t)(|(∂yW )n|2 + |Wn|2).

Proof of Lemma 9We compute
[(

∂y

k
− i t

)
g2

(
∂y

k
− i t

)
, ∂y

]
Φ = 2

(
∂y

k
− i t

)
gg′

(
∂y

k
− i t

)
Φ.

Integrating by parts, we thus obtain a bulk term
〈(

∂y

k
− i t

)
Φ(1), 2gg′

(
∂y

k
− i t

)
Φ

〉
Hs

,
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and, similar to Lemma 6, a boundary term

∑
n

Φ(1)
n 〈n〉2sk−12gg′

(
∂y

k
− i t

)
Φ. (21)

Using Proposition 5 of Section 2.3 and Young’s inequality, the bulk term can be
estimated by

ε

∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
2

Hs
+ ε−1C

∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
2

Hs
.

Here, the second term can be estimated by Proposition 8, while the first term can
be absorbed in the left-hand-side of the estimate as in the proof of Lemma 6.

In order to estimate the boundary term, (21), we follow the same strategy as in
the proof of Lemmas 7 and 8. We thus obtain an estimate by

∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
Hs

∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2

∣∣∣∣2gg′
(

∂y

k
− i t

)
Φ|1y=0

∣∣∣∣ .
It remains to estimate ∣∣∣∣2gg′

(
∂y

k
− i t

)
Φ|1y=0

∣∣∣∣ .
Unlike in the last case of (c) in Lemma 8, there is no additional cancellation of the
contributions at y = 0 and y = 1. Hence, we estimate

|2gg′| � ‖g‖2W 1,∞

and consider the contributions at y = 0 and y = 1 separately. Using Lemma 8, we
express

(
∂y

k
− i t

)
Φ|y=0,1

in terms of

〈W, eiktyu1〉L2 = 1

ikt
W |y=0 + 1

ikt
〈eikty∂yWu1〉L2 .

To estimate both terms, we follow the same strategy as in the proof of Theorem 7.
The first term is controlled using Young’s inequality, that is

∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
Hs

∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2

W |y=0,1

ikt

� ε−1|kt |−2γ + ε

∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
2

Hs

〈kt〉2s
|kt |2(1−γ )

,

where γ > 1/2 is chosen such that 1 − γ � s. The first term is integrable in time
and the second can be absorbed in the left-hand-side.
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It remains to estimate∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
Hs

∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2

1

ikt
〈eikty∂yWu1〉L2 . (22)

For this purpose, we compute

〈eikty, ∂yWu1〉L2 = 〈eikty, u1∂yW 〉L2 + 〈eikty,W∂yu1〉L2 .

The second term can be integrated by parts once more to obtain another factor 1
ikt

and is thus easily controlled. For the first term we estimate

〈eikty, u1∂yW 〉L2 �
∑

|(∂yW )n| 〈n〉s
〈n/k − t〈1−λ

1

〈n〉s〈n/k − t〉λ ,

where 0 < λ < 1 and s + λ > 1/2.
The terms in (22) can thus be estimated by

∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
Hs

〈kt〉s
|kt |

∥∥∥∥ |(∂yW )n|〈n〉s
〈n/k − t〉1−λ

∥∥∥∥
l2

∥∥∥∥ 1

〈n〉s〈n/k − t〉λ
∥∥∥∥
l2

�
∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
Hs

1

|kt |
∥∥∥∥|(∂yW )n| 〈n〉s

〈n/k − t〉1−λ

∥∥∥∥
l2

.

Using Young’s inequality, the first factor can be absorbed, while the second
factor is of the desired form with

cn(t) := 1

|kt |
1

〈n/k − t〉2(1−λ)
∈ L1

t .

��
This concludes the stability proof in Hs, s < 3/2.
As a consequence, we now have sufficient control of regularity to obtain damp-

ing with integrable rates and scattering.

Corollary 2. (Scattering) Let 0 < s < 1/2 and let W be a solution of the linearized
Euler equations, (11), such that ‖∂yW‖Hs and ‖W‖H1 are uniformly bounded
(for example satisfying Theorem 3). Then there exists W∞ ∈ Hs

y L
2
x such that, as

t → ∞,

‖V2‖L2 = O(t−(1+s)),

W
L2−→ W∞,

‖W (t) − W∞‖L2 = O(t−s).

Proof of Corollary 2Applying Duhamel’s formula, that is integrating the equation
in time, W (t) satisfies

W (t) = ω0 +
∫ t

0
f V2(τ )dτ.
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Estimating and integrating,

‖ f V2(τ )‖L2 � ‖ f ‖L∞‖V2‖L2 = O(t−(1+s))

then yields the result. ��
Approximatingω0 ∈ L2 by functions in Hs, 1 < s < 3/2, we obtain scattering

in L2.

Corollary 3. (L2 scattering) Let f, g, k be as in Theorem 3. Then for any ω0 ∈ L2

there exists W∞ ∈ L2 such that

W
L2−→ W∞,

as t → ∞.

Proof of Corollary 3 Let (ωn
0)n∈N ∈ Hs be a sequence such that

ωn
0

L2−→ ω0,

as n → ∞. By Corollary 3, for any ωn
0 there exists an asymptotic profile Wn∞. By

the L2 stability theorem of [9], Theorem 6, the convergence of ωn
0 also implies the

convergence ofWn(t) at any time t and ofWn∞. The result then follows by choosing
an appropriate diagonal sequence in t and n. ��

3.4. Stability in H5/2−

In the previous Section 3.1, we have seen that, under general perturbations, the
critical Sobolev exponent in y is given by s = 3

2 . More precisely, for any m ∈ N0,
we have shown stability in the periodic fractional Sobolev spaces

Hm
x Hs

y (TL × T), s <
3

2
,

and that stability in

Hm
x Hs

y (TL × [0, 1]), s >
3

2
,

can in general not hold, unless one restricts things to initial perturbations ω0 with
zero Dirichlet boundary data, ω0|y=0,1 = 0.

Restricting matters to such perturbations, in [9] we established stability in
Hm
x H2

y (TL × [0, 1]), which was sufficient to prove linear inviscid damping with
the optimal algebraic rates. However, H2 stability is not sufficient to establish
consistency with the nonlinear equations, since control of the nonlinearity

∇⊥Φ · ∇W

would require an L∞ control of ∇W . As we work in two dimensions, in order to
use a Sobolev embedding, we thus require control in Hs, s > 2.
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As the main result of this section, we hence show that, for this restricted class
of perturbations, ω0, the critical Sobolev exponent in y is given by s = 5

2 . More
precisely, as shown in Lemma 2 from Section 1.3, for initial perturbations, ω0,
with zero Dirichlet data, ω0|y=0,1 = 0, generically ∂2yW asymptotically develops
(logarithmic) singularities at the boundary. Hence, even for this restricted class of
perturbations, stability in Hm

x Hs
y (TL × [0, 1]), s > 5

2 , can in general not hold. As
we discuss in Section 5, this further implies instability of the nonlinear problem
in the finite periodic channel in high Sobolev spaces and therefore, in particular,
forbids nonlinear inviscid damping results in Gevrey regularity such as in the work
of Bedrossian and Masmoudi [2].

As a complementary result to the instability, Theorem 4 establishes stability in
the periodic fractional Sobolev spaces, Hm

x Hs
y (TL × T), s < 5

2 . This additional
stability allows us to prove consistency with the nonlinear problem, also for the
finite periodic channel.

We recall that the linearized Euler equations, (11), decouple with respect to k
and we may hence consider k as a given parameter and consider the stability of

W (t) = W (t, k, ·) ∈ Hs([0, 1]) or Hs(T).

The two lemmata to follow provide a description of the evolution of derivatives
of Φ on the boundary. Using these lemmata, in Lemma 2 we show that, in general,
stability in Hs([0, 1]), s > 5

2 , cannot hold.

Lemma 10. LetW bea solutionof the linearizedEuler equations, (11), and suppose
that ‖W‖H2([0,1]) is bounded uniformly in time. Suppose further that ω0|y=0,1 ≡ 0.
Then there exist constants c0, c1 ∈ C such that

∂yW |y=0 → c0,

∂yW |y=1 → c1,

as t → ∞.

We remark that c0, c1 are in general non-trivial and not determined by ∂yω0|y=0,1.
In analogy to Lemma 1, in Lemma 2 we show that non-trivial c0, c1 asymptotically
result in a (logarithmic) blow-up at the boundary and thus provide an upper limit
on stability results.

Proof of Lemma 10Restricting the evolution equation for ∂yW , (12), to the bound-
ary, we obtain

∂t∂yW |y=0,1 = i f

k
∂yΦ|y=0,1,

wherewe used thatΦ|y=0,1 ≡ 0. It therefore suffices to show that ∂yΦ|y=0,1 decays
in t at an integrable rate. We recall that by Lemma 8,

∂yΦ|y=0 = k

g(0)
〈W, eiktyu1(0, y)〉L2 ,

∂yΦ|y=1 = k

g(1)
〈W, eikt (y−1)u2(0, y)〉L2 .
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As k �= 0 and as g is bounded away from 0, it suffices to consider the L2 products.
Integrating by parts once, we obtain

〈W, eiktyu1(0, y)〉L2 = − 1

ikt
W |y=0 − 1

ikt
〈eikty, ∂y(Wu1(0, y))〉L2

= − 1

ikt
〈eikty, ∂y(Wu1(0, y))〉L2 .

Recalling Lemma 3, a uniform control of ‖W‖Hs + ‖∂yW‖Hs for some s > 0
suffices to obtain an upper bound by O(t−1−s), and thus deduce the result.

Integrating by parts once more, we obtain

〈W, eiktyu1(0, y)〉L2 = eikty

k2t2
∂y(Wu1(0, y))|1y=0 − 1

k2t2
〈eikty, ∂2y (Wu1(0, y))〉L2 .

Again using the assumption that W |y=0,1 ≡ 0, the first term can be controlled by

Ckt
−2|∂yW |y=0,1|,

and the second term by

Ckt
−2‖W‖2H2 .

Using the uniform control of ‖W‖H2 , we thus obtain the differential inequality

|∂t∂yW |y=0,1| � t−2(|∂yW |y=0,1| + 1).

Integrating this inequality then yields the result. ��
Following a similar approach as in Section 3.1, we show that ∂2yW |y=0,1 in

general grows unboundedly as t → ∞.

Lemma 11. LetW bea solutionof the linearizedEuler equations, (11), and suppose
that, for some s > 0, ‖W (t)‖H2 and ‖∂2yW (t)‖Hs are bounded uniformly in time.
Then, as t → ∞,

∂2yΦ|y=0,1 = 1

ikt
∂yW |y=0,1 + O(t−1−s).

Proof. Following the same approach as in the proof of Lemma 3, we note that by
(11),

(
−1 +

(
g(y)

(
∂y

k
− i t

))2
)

Φ = W,

and by the choice of zero Dirichlet boundary values of Φ and W ,

g2∂2yΦ|y=0,1 = (−gg′ + iktg2)∂yΦ|y=0,1.
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Dividing by g2 and using

∂yΦ|y=0 = k

g2(0)
〈W, eiktyu1〉

= k

g2(0)

(
1

ikt
ω0|y=0 + 〈eikty, ∂yWu1〉

)
,

∂yΦ|y=1 = k

g2(1)
〈W, eikt (y−1)u2〉

= k

g2(1)

(
1

ikt
ω0|y=1 + 〈eikt (y−1), ∂yWu2〉

)
,

from Lemma 3, it thus suffices to consider

〈eikty, ∂yWu1〉,
〈eikt (y−1), ∂yWu2〉.

Integrating eikty or eikt (y−1) by parts and using boundary values of u1, u2, yields
the leading terms

1

ikt
∂yW |y=0,1,

while the remainder is given by

1

ikt
〈eikty, ∂y(∂yWu1)〉

and
1

ikt
〈eikt (y−1), ∂y(∂yWu2)〉,

respectively. By the product rule,

∂y(∂yWu j ) = u j∂
2
yW + ∂yW∂yu j .

For the latter term, integrating by parts once more yields a term controlled by

O((kt)−2)‖W‖H2 .

It thus suffices to consider only

1

ikt
〈eiktyu1, ∂2yW 〉,

1

ikt
〈eikt (y−1)u2, ∂

2
yW 〉.

Expanding into a basis and using duality, the result then follows by estimating

‖eiktyu1‖H−s + ‖eikt (y−1)u2‖H−s = O(t−s).

��
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Using this result, we obtain a proof of Lemma 2 of Section 1.3.

Proof of Lemma 2 Suppose, to the contrary, that for some s > 5/2, ‖W‖Hs is
bounded uniformly in time. Then, by Lemma 10,

∂t∂
2
yW |y=0,1 = i f

k
∂2yΦ + i f ′

k
∂yΦ|y=0,1 = i f

k2t
∂yW |y=0,1 + O(t−1−s).

Integrating this equation, we thus obtain that

log(t) � |∂2yW (t)|y=0,1| � ‖∂2yW (t)‖L∞ ,

as t → ∞. On the other hand, by the Sobolev embedding and the choice of s > 5
2 ,

‖∂2yW (t)‖L∞ � ‖W (t)‖Hs ,

which we supposed to be bounded uniformly in time. This yields a contradiction,
which proves the desired result. ��

As themain result of this sectionwe provide a proof of Theorem4 and thus show
that the above restriction is sharp in the sense that stability holds for s < 5/2. More
precisely, as in Section 3.1, instead of Hs([0, 1]), we consider periodic spaces, that
is

W (t, k, ·) ∈ Hs−1(T), ∂yW (t, k, ·) ∈ Hs−1(T),

which allows us to use both a Fourier characterization and a kernel characterization.

Remark 3. Similar to Theorem 3, the assumptions on f and g are chosen such that
we can apply Proposition 5 to the functions f , g and their derivatives f ′, f ′′ and
g′, g′′. Furthermore, we require

g2 = U ′(U−1(·))2

to be such that we can apply Proposition 6.
As discussed in Remark 1, these assumptions can probably be relaxed to re-

quiring simply that

f, g ∈ W 4,∞([0, 1]),

and that

|g2(1) − g2(0)| = |(U ′(b))2 − (U ′(a))2|

is sufficiently small compared to

min(g2) = min((U ′)2) > 0.
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Proof of Theorem 4 As in the previous section, we split the contributions in the
evolution equation into boundary corrections and potentials with zero Dirichlet
conditions. Let W be a solution of (11), then ∂2yW satisfies:

∂t∂
2
yW = i f

k
(Φ(2)+H (2))+ 2 f ′

ik
(Φ(1)+H (1)) + f ′′

ik
Φ,(

−1 +
(
g

(
∂y

k
− i t

))2
)

Φ(2) = ∂2yW +
[(

g

(
∂y

k
− i t

))2

, ∂2y

]
Φ,

Φ
(2)
y=0,π = 0,

(23)

and the homogeneous correction, H (2), satisfies
(

−1 +
(
g

(
∂y

k
− i t

))2
)
H (2) = 0,

H (2)|y=0,π = ∂2yΦ|y=0,π .

Furthermore, as discussed in the beginning of Section 3.1,Φ(1) and H (1) satisfy
(12):

∂t∂yW = i f

k
∂yΦ + i f ′

k
Φ,(

−1 +
(
g

(
∂y

k
− i t

))2
)

Φ(1) = ∂yW + [(g(∂y − i t))2, ∂y]Φ,

Φ
(1)
y=0,π = 0,

H (1) = ∂yΦ − Φ(1),

(t, k, y) ∈ R × L(Z \ {0}) × [0, 1].

(24)

As in the Proof of Theorem 3, we construct a specific family of symmetric
operators A(t) : Hs → Hs , such that for any σ ∈ Hs

‖σ‖2Hs � 〈σ, A(t)σ 〉Hs � ‖σ‖2Hs ,

〈σ, Ȧ(t)σ 〉Hs � 0

and such that

〈W, AW 〉Hs + 〈∂yW, A∂yW 〉Hs + 〈∂2yW, A∂2yW 〉Hs =: I (t)
is bounded uniformly in time.

We recall that we have derived sufficient conditions for the first two terms to
be non-increasing in the previous Section 3.1.

It thus remains to control

∂t 〈∂2yW, A∂2yW 〉Hs .
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Following a similar strategy as in the proof of Theorem 3, we separately estimate
the elliptic contribution

�
〈
i f ′′

k
Φ, A∂2yW

〉
Hs

+ �
〈
i f ′

k
Φ(1), A∂2yW

〉
Hs

+ �
〈
i f ′

k
Φ(2), A∂2yW

〉
Hs

(elliptic)

and the boundary contribution

�
〈
i f ′

k
H (1), A∂2yW

〉
Hs

+ �
〈
i f

k
H (2), A∂2yW

〉
Hs

(boundary)

in terms of

C

|k| |〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs + 〈∂2yW, Ȧ∂2yW 〉Hs |.

Requiring |k| � 0 to be sufficiently large and thus C
|k| to be sufficiently small, we

then deduce that I (t) is non-increasing, which concludes the proof. As in Section
3.1, the control of the boundary and elliptic contributions is obtained as the main
result of the following subsections. ��

3.5. Boundary Corrections

The following two theorems provide a control of the boundary contributions
in the proof of Theorem 4. Here, Theorem 9 controls contributions by H (1) and
Theorem 10 controls contributions by H (2), respectively.

Theorem 9. Let 0 < s < 1/2 and let W, f, g as in Theorem 4. Furthermore, let A
be a diagonal operator comparable to the identity, that is

A : einy �→ Ane
iny,

with

1 � An � 1,

uniformly in n. Then,
∣∣∣∣
〈
A∂2yW,

i f ′

k
H (1)

〉
Hs

∣∣∣∣ �
∑
n

cn(t)〈n〉2s(|(∂2yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t and ‖cn‖L1

t
is bounded uniformly in n.

Proof of Theorem 9 Combining the approach of Lemma 10 and Theorem 7, we
expand

H (1) = ∂yΦ|y=0e
iktyu1 + ∂yΦ|y=1e

ikty(y−1)u2.
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We may then estimate

|〈A∂2yW, eiktyu1〉Hs | �
∑
n

〈n〉2s |(∂2yW )n| 1

|k|〈n/k − t〉 .

As by our assumptions ω0|y=0,1 = 0,

∂yΦ|y=0 = k

g2(0)
〈W, eiktyu1〉L2

has good decay in time. More precisely, as in Lemma 2, we integrate by parts twice
to obtain control by ∣∣∂yΦ|y=0,1

∣∣ = O(〈kt〉−2)‖W‖H2 .

Using the H2 stability result of [9], Theorem 2, we may thus estimate

|〈A∂2yW, eiktyu1〉Hs | �〈kt〉−2
∥∥∥∥ 〈n〉s
〈n/k − t〉(1−γ )

(∂2yW )n

∥∥∥∥
l2n

∥∥∥∥ 〈n〉s
〈n/k − t〉γ

∥∥∥∥
l2

.

Choosing 0 < γ < 1 sufficiently close to 1 such that s − γ < − 1
2 then yields

∥∥∥∥ 〈η〉s
〈n/k − t〉γ

∥∥∥∥
l2n

= O(〈kt〉s).

The result thus follows with

cn(t) := 〈kt〉−2+s〈n/k − t〉−2(1−γ ) ∈ L1
t .

��
Theorem 10. Let 0 < s < 1/2 and let A,W, f, g as in Theorem 9. Then,∣∣∣∣

〈
A∂2yW,

i f

k
H (2)

〉
Hs

∣∣∣∣ �
∑
n

cn(t)〈n〉2s(|(∂2yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t and ‖cn‖L1

t
is bounded uniformly in n.

Proof of Theorem 10 Following the same approach as in Theorem 7, the estimate
of ∣∣∣∣

〈
A∂2yW,

i f

k
ei t yu1

〉
Hs

1

t
〈∂2yW, ei t yu1〉L2

∣∣∣∣
is identical up to a change of notation.

The additional boundary correction in the current case is given by

1

ikt
∂yW |y=0,1.

While ∂yW |y=0,1 is not conserved, by Lemma 10 it converges as t → ∞ and is
thus, in particular, bounded. This part of the estimate thus concludes analogously
to the proof of Theorem 7. ��
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3.6. Elliptic Regularity

This subsection’s main result is given by the following theorem, which provides
control of the elliptic contributions in the proof of Theorem 4:

Theorem 11. Let 0 < s < 1/2 and let A, f, g,W be a as in Theorem 9. Then

|〈A∂yW, i f Φ(2) + i f ′Φ(1) + i f ′′Φ(1)〉Hs |
�

∑
n

cn(t)〈n〉2s(|(∂2yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t with ‖cn‖L1

t
bounded uniformly in n.

As in Section 3.3, Lemma 12 serves to reduce the proof of Theorem 11 to a
fractional elliptic regularity problem. The desired elliptic estimate is then formu-
lated in Proposition 9, whose proof is further broken down into Lemma 13 and
Lemma 14.

Lemma 12. Let 0 < s < 1/2 and let A, f, g,W as in Theorem 9. Then

|〈A∂yW, i f Φ(2) + i f ′Φ(1) + i f ′′Φ(1)〉Hs |

�
(∑

n

cn(t)〈n〉2s |(∂2yW )n|2
)1/2

(
‖i f Φ(2)‖2Hs +

∥∥∥∥
(

∂y

k
− t

)
i f Φ(2)

∥∥∥∥
2

Hs

+ ‖i f ′Φ(1)‖2Hs +
∥∥∥∥
(

∂y

k
− t

)
i f ′Φ(1)

∥∥∥∥
2

Hs

+‖i f ′′Φ‖2Hs +
∥∥∥∥
(

∂y

k
− t

)
i f ′′Φ

∥∥∥∥
2

Hs

)1/2

.

Proof. This result is proven in the same way as Lemma 4 in Section 3.3. ��
The control of

‖i f ′Φ(1)‖2Hs +
∥∥∥∥
(

∂y

k
− t

)
i f ′Φ(1)

∥∥∥∥
2

Hs
+ ‖i f ′′Φ‖2Hs +

∥∥∥∥
(

∂y

k
− t

)
i f ′′Φ

∥∥∥∥
2

Hs

by ∑
n

cn(t)〈n〉2s(|(∂yW )n|2 + |Wn|2)

has already been obtained in the previous Section 3.1. It thus only remains to control

‖i f Φ(2)‖2Hs +
∥∥∥∥
(

∂y

k
− t

)
i f Φ(2)

∥∥∥∥
2

Hs
,

which is formulated as the following proposition:
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Proposition 9. Let f, g, ω0,W be as in Theorem 4. Then,

‖Φ(2)‖2Hs +
∥∥∥∥
(

∂y

k
− t

)
Φ(2)

∥∥∥∥
2

Hs

�
∑
n

cn(t)〈n〉2s(|(∂2yW )n|2 + |(∂yW )n|2 + |Wn|2).

Proof of Proposition 9We recall that Φ(2) satisfies (23):(
1 +

(
g

(
∂y

k
− i t

))2
)

Φ(2) = ∂2yW +
[(

g

(
∂y

k
− i t

))2

, ∂2y

]
Φ,

Φ(2)|y=0,1 = 0.

Using the generic results of Section 3.3 with

ψ = Φ(2),

R = ∂2yW +
[(

g

(
∂y

k
− i t

))2

, ∂2y

]
Φ,

the result follows if we can obtain a good control of

〈ψ, R〉Hs

for our specific choice of R.
We note that

〈ψ, ∂2yW 〉Hs �
(

‖ψ‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
ψ

∥∥∥∥
2

Hs

)1/2

×
(∑

n

〈n/k − t〉−2〈n〉2s(|(∂2yW )n|2
)1/2

is already of the desired form.
It thus remains to consider the commutator:[(

g

(
∂y

k
− i t

))2

, ∂2y

]
Φ

=:
(

∂y

k
− i t

)
2gg′

(
∂y

k
− i t

)
Φ(1) +

(
∂y

k
− i t

)
(g2)′′

(
∂y

k
− i t

)
Φ

+
(

∂y

k
− i t

)
2gg′

(
∂y

k
− i t

)
H (1) + h

(
∂y

k
− i t

)
H (1)

+ Q,

where h can be computed in terms of the derivatives of g and Q is composed of
terms involving only

Φ,Φ(1),

(
∂y

k
− i t

)
Φ,

(
∂y

k
− i t

)
Φ(1).
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Thus,

|〈ψ, Q〉Hs | � ‖ψ‖Hs

(
‖Φ‖2Hs +

∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
2

Hs
+ ‖Φ(1)‖2Hs

+
∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
2

Hs

)1/2

,

which, by the H3/2− result (Theorem 3) can absorbed

〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs � 0.

The control of the remaining terms is obtained in the following two lemmata:
��
Lemma 13. Let g, ω0,W be as in Theorem 4. Then,

〈
Φ(2),

(
∂y

k
− i t

)
2gg′

(
∂y

k
− i t

)
Φ(1) +

(
∂y

k
− i t

)
(g2)′′

(
∂y

k
− i t

)
Φ

〉
Hs

�
(

‖Φ(2)‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ(2)

∥∥∥∥
2

Hs

)1/2

·
(

‖Φ(1)‖2Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ(1)

∥∥∥∥
2

Hs
+ ‖Φ‖2Hs +

∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
2

Hs

)1/2

+
∑
n

cn(t)〈n〉2s(|(∂2yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t and ‖cn‖L1

t
is bounded uniformly in n.

Proof of Lemma 13 Integrating the leading (
∂y
k − i t) operators by parts, we obtain

bulk terms〈(
∂y

k
− i t

)
Φ(2), 2gg′

(
∂y

k
− i t

)
Φ(1) + (g2)′′

(
∂y

k
− i t

)
Φ

〉
Hs

,

which can be controlled in the desired manner using Cauchy–Schwarz and Propo-
sition 5 of Section 2.3.

It thus only remains to control the boundary contributions

∑
n

Φ(2)
n 〈n〉2s

(
2gg′

(
∂y

k
− i t

)
Φ(1) + (g2)′′

(
∂y

k
− i t

)
Φ

)∣∣∣∣
1

y=0
.

Here we again estimate

∑
n

Φ(2)
n 〈n2s〉 �

(
‖Φ(2)‖2Hs +

∥∥∥∥
(

∂y

k
− i t

)
Φ(2)

∥∥∥∥
2

Hs

)1/2 ∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2n

,
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and ∥∥∥∥ 〈n〉s
〈n/k − t〉

∥∥∥∥
l2n

� 〈kt〉s .

It remains to estimate(
2gg′

(
∂y

k
− i t

)
Φ(1) + (g2)′′

(
∂y

k
− i t

)
Φ

)
|1y=0,

where we may drop the terms which involve i t , since Φ and Φ(1) satisfy zero
Dirichlet boundary conditions.

A good control of ∂yΦ|y=0,1 in terms of ‖W‖H2 has already been obtained in
the proof of Corollary 1.

It thus remains to control ∂yΦ
(1)|y=0,1. Following a similar approach as in

Lemma 8, ∂yΦ
(1)|y=0,1 can be computed by testing the right-hand-side of the

equation against homogeneous solutions:〈
∂yW +

[(
g

(
∂y

k
− i t

))2

, ∂y

]
Φ, eiktyu1

〉
L2

,

〈
∂yW +

[(
g

(
∂y

k
− i t

))2

, ∂y

]
Φ, eikt (y−1)u2

〉
L2

.

In the case of the commutator terms, using integration by parts and the control of∥∥∥∥
(

∂y

k
− i t

)
eiktyu1

∥∥∥∥
L2

,

we estimate by

‖Φ‖L2 +
∥∥∥∥
(

∂y

k
− i t

)
Φ

∥∥∥∥
L2

,

which is controlled. In order to estimate the remaining terms involving ∂yW , we
can either use the same approach as in Section 3.2 and control by∑

n

cn(t)〈n〉2s |(∂yW )n|2,

or integrate eikty by parts to obtain an additional factor 1
ikt and estimate by

1

t

∑
n

cn(t)〈n〉2s |(∂2yW )n|2.

��
Lemma 14. Let g, ω0,W be as in Theorem 4 and let h ∈ W 1,∞(T). Then,∣∣∣∣

〈
Φ(2),

(
∂y

k
− i t

)
2gg′

(
∂y

k
− i t

)
H (1) + h

(
∂y

k
− i t

)
H (1)

〉
Hs

∣∣∣∣
� 1

|k|
(

‖Φ(2)‖Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ(2)

∥∥∥∥
Hs

)
1

t2−s
‖W‖H2 .
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Proof of Lemma 14 Using the fact that H (1) solves(
−1 +

(
g

(
∂y

k
− i t

))2
)
H (1) = 0,

as well as commuting some derivatives, one can express(
∂y

k
− i t

)
2gg′

(
∂y

k
− i t

)
H (1)

as (
∂y

k
− i t

)
h1H

(1) + h2H
(1)

for some functions h1, h2 ∈ W 1,∞(T).
Integrating the (

∂y
k − i t) by parts and using Proposition 5, the bulk term is

estimated by (
‖Φ(2)‖Hs +

∥∥∥∥
(

∂y

k
− i t

)
Φ(2)

∥∥∥∥
Hs

)
‖H1‖Hs ,

while the boundary term is estimated in a similar way as in the proof of Proposition
6, by (

‖Φ(2)‖Hs +
∥∥∥∥
(

∂y

k
− i t

)
Φ(2)

∥∥∥∥
Hs

)
t s |H1|y=0,1|.

As shown in the proof of Lemma 2:

|H1|y=0,1| = O(t−2)‖W‖H2 .

Furthermore,

H (1) = H (1)|y=0e
iktyu1 + H (1)|y=1e

ikt (y−1)u2,

and

‖eiktyu1‖2Hs �
∑
n

〈n〉2s
〈n − kt〉2 � t2s .

Thus,

t s |H (1)|y=0,1| + ‖H (1)‖Hs � 〈t〉s−2‖W‖H2 ,

which concludes the proof. ��
We remark that, under the conditions of Theorem 4, by Theorem 2, stability

in H2 also holds. Thus, ‖W‖H2 can be considered as a given constant. This then
concludes the proof of Theorem 4.

Using these improved stability results, in Section 5 we revisit the problem of
consistency and further consider the implications of these sharp (in)stability results
for the nonlinear dynamics.

Before that, however, in the following section, we further study the formation
of singularities at the boundary, the behavior of the homogeneous corrections close
to the boundary, and implications for (in)stability in fractional Sobolev spaces
W 1,p([0, 1]).
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4. Boundary Layers

Thus far we have seen that ∂yW and ∂2yW , when restricted to the boundary,
develop logarithmic singularities as t → ∞, that is

|∂yW |y=0,1| � log(t).

While such a point-wise estimate is sufficient to prove instability in C0 and
thus Hs for s > 1/2, it does not provide a description for y close to the boundary,
which would be useful for the study of L p spaces.

In the following, we therefore analyze the effect of the homogeneous correction
on our solution and describe the asymptotic behavior close to the boundary. Here,
for simplicity, we discuss only the evolution of ∂yW , but all arguments can be
adapted to study ∂2yW as well.

Recall that ∂yW evolves by (24):

∂t∂yW = i f

k
H (1) + i f

k
Φ(1) + i f ′

k
Φ.

In view of the considerations on linearized Couette flow in Section 2.2 and as Φ(1)

and Φ vanish at the boundary and have a good structure, in the following we focus
on the asymptotic behavior of

i f (y)

k

∫ T

H (1)(t, y)dt

as T → ∞ and for y close to the boundary.

Lemma 15. Let T > 1 and let u1, u2 be the solutions of

(
−1 +

(
g
∂y

k

)2
)
u = 0,

with boundary values

u1(0) = u2(1) = 1,

u1(1) = u2(0) = 0.

Then for any y ∈ [0, 1]
∫ T

1
H (1)(t, y)dt =

∫ T

1
H (1)(t, 0)eiktydt u1(y)

+
∫ T

1
H (1)(t, 1)eikt (y−1)dt u2(y).
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Proof of Lemma 15 It has be shown in the previous sections that

H (1)(t, y) = H (1)(0, t)eiktyu1(y) + H (1)(1, t)eikt (y−1)u2(y).

Integrating in time then yields the result. ��
In Section 3.1, we have shown that under Hs stability assumptions ,

H (1)(0, t) = ω0

g2

∣∣∣∣
y=0

1

t
+ O(t−1−s),

and therefore, for y = 0,
∫ T

1
H (1)(t, 0)eiktydt |y=0 = ω0

g2
|y=0

∫ T

1

eikty

t
dt |y=0 + O(1) � log(T ).

The case y > 0 is considered in the following lemma, where for convenience of
notation we additionally assume that k > 0.

Lemma 16. Let k > 0, then for any y � 1
2k ,∫ T

1

eikty

t
dt

is bounded uniformly in T, k and y.
For any 0 < y < 1

2k ,∣∣∣∣
∫ T

1

eikty

t
dt

∣∣∣∣ � min(log(T ),− log(ky)) + O(1).

Further restricting things to 0 < y < 1
2kT , we have also that

�
(∫ T

1

eikty

t
dt

)
� log(T ) + O(1).

Letting T tend to infinity, the logarithmic singularity persists:
∣∣∣∣
∫ ∞

1

eikty

t
dt

∣∣∣∣ � − log(ky) + O(1)

for 0 < y < 1
k .

Proof of Lemma 16 By a change of variables, t �→ τ = kyt , and
∫ T

1

eikty

t
dt =

∫ kyT

ky

eiτ

τ
dτ.

Let 1
2 � x1 � x2 be arbitrary but fixed. Then,

∫ x2

x1

eiτ

τ
dτ = eiτ

iτ

∣∣∣∣
x2

τ=x1

−
∫ x2

x1

eiτ

iτ 2
dτ � 1

x1
� 2.
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Letting x1 = ky for y � 1
2k then proves the first result.

Now let 0 < ky < 1
2 . In the case that kyT > 1, we can choose x1 = 1 and

x2 = kyT in the above estimate and thus obtain

∫ kT y

1

eikty

t
dt = O(1).

It hence suffices to consider
∫ min(kyT,1)

ky

eiτ

τ
dτ.

As τ ∈ (0, 1),

0 < cos(1) � �(eiτ ) � 1

does not yield cancellations. Thus, the integral is comparable to

∫ min(kyT,1)

ky

1

τ
dτ = log(min(kyT, 1)) − log(ky)

= min(log(kyT ) − log(ky),− log(ky))

= min(log(T ),− log(ky)).

Letting T tend to infinity,

lim
T→∞min(log(T ),− log(ky)) = − log(ky),

which proves the last result. ��
We have thus shown that, as T → ∞, for y close to zero,

∣∣∣∣
∫ T

1
H (1)dt

∣∣∣∣ � | log(ky)| + O(1).

In particular, while the L∞ norm diverges, for any 1 � p < ∞,

log(y) ∈ L p([0, 1]),
and thus no blowup occurs in these spaces.

In view of our stability results for fractional Sobolev spaces, a natural question
concerns the behavior of (fractional) y derivatives. Here we consider

Cs(T, y) :=
∫ T

1
t s
eikty

t
dt (25)

for s ∈ (0, 1) as a simplified interpolated model between

∫ T

1

eikty

t
dt,
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and

d

dy

∫ T

1

eikty

t
dt = ik

∫ T

1
eiktydt = eikT y − eiky

y
. (26)

We note that, letting T tend to infinity in (26), the singularity is of the form

1

y
,

which is not in L p([0, 1]) for any 1 � p � ∞. The intermediate cases 0 < s < 1
are considered in the following lemma:

Lemma 17. Let 0 < s < 1 and let Cs(T, y) be given by (25). Then

Cs(T, 0) = T s − 1

s
,

and for 0 < y < 1
2k ,

Cs(T, y) � min(T s, (ky)−s) + O(1).

For 0 < y < 1
2kT , we have also that

�(Cs(T, y)) � T s − 1

s
+ O(1).

Letting T tend to infinity, there exists a constant c ∈ C, which is in general non-
trivial, such that

Cs(∞, y) = c(ky)−s + O(1).

Proof of Lemma 17 For y = 0, we compute

∫ T

1
t s
1

t
dt = t s

s
|Ts=1 = T s − 1

s
.

Controlling eikty by its absolute value, this also provides an upper bound for all
y > 0.

Considering y > 0, we introduce a change of variables t �→ kyt

∫ T

1
t s
eikty

t
dt = (ky)−s

∫ kyT

ky

eiτ

τ 1−s
dτ, (27)

which suggests a boundary singularity of the form min((ky)−s, T s). We first esti-
mate

∫ kyT

ky

eiτ

τ 1−s
dτ
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from above. In the case 1 � x1 � x2, we integrate eiτ by parts and thus obtain an
estimate by

∣∣∣∣
∫ x2

x1

eiτ

τ 1−s
dτ

∣∣∣∣ � 1

x1−s
1

� 1, (28)

which is uniform in k, y and T . For x1, x2 � 1 it suffices to estimate by the absolute
value: ∣∣∣∣

∫ x2

x1

1

τ 1−s
dτ

∣∣∣∣ � 1

s
xs2 � 1

s
. (29)

Hence, by equation (27),
∣∣∣∣
∫ T

1
t s
eikty

t
dt

∣∣∣∣ � (ky)−s
(
1 + 1

s

)
.

If ky is very small, that is 0 < y < 1
kT , then, once again, e

iτ does not oscillate
and the real part of the integral in (27) is comparable to

∫ kyT

ky

1

τ 1−s
dτ = 1

s
(T s − 1)(ky)s .

More precisely, we estimate

cos(1) � �(eiτ ) � 1.

We thus obtain a lower bound of

�(Cs(T, y))

by

cos(1)(ky)−s 1

s
(T s − 1)(ky)s = cos(1)

1

s
(T s − 1).

We again consider (27). By (28), the limit T → ∞ exists as an improper
integral. We thus have to show that

∫ ∞

ky

eiτ

τ 1−s
dτ = c + O(|ky|s)

for some c ∈ C, which is in general non-trivial. By (29),

lim
y↓0

∫ ∞

0

eiτ

τ 1−s
dτ =: c

exists.
Splitting and using (29), again

∫ ∞

ky

eiτ

τ 1−s
dτ =

∫ ∞

0

eiτ

τ 1−s
dτ −

∫ ky

0

eiτ

τ 1−s
dτ = c + O(|ky|s).
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Thus, by equation (27),

C(∞, y) = (ky)−s
∫ ∞

ky

eiτ

τ 1−s
dτ = c(ky)−s + O(1).

��
Letting T tend to infinity, we thus have to control a singularity of the form y−s .

Lemma 18. Let 0 < s < 1 and let 1 � p < ∞, then

y−s ∈ L p([0, 1])

if and only if p < 1
s .

Proof of Lemma 18We explicitly compute

‖y−s‖p
L p =

∫ 1

0
y−sp = y1−sp

1 − sp

∣∣∣∣
1

0
,

which is finite if and only if 1 − sp > 0. ��
The above result suggests that, for 1 � p < ∞,

sup
T>1

∥∥∥∥
∫ T

1
H (1)dt

∥∥∥∥
Ws,p

is finite for 0 < s < 1
p and infinite for 1

p < s < 1. For the case p = 2, we have

shown in Section 3.1 that s = 1
2 is indeed critical in this sense.

5. Consistency and Implications for Nonlinear Inviscid Damping

A natural question, following the results on linear inviscid damping, concerns
the behavior of the full nonlinear dynamics. In this section, we prove the following
three results:

– Consistency. The linear dynamics are consistent, that is the nonlinearity, when
evolved by the linear dynamics, is an integrable perturbation (in a less regular
space). In the case of non-fractional Sobolev spaces and the infinite periodic
channel, this has been addressed in [9].

– Approximation.We consider the nonlinear problem as a coupled system for the
underlying shear flow U (t, y) := −∂−1

y 〈ω(t, ·)〉x and the perturbed vorticity
ω′(t, x, y) := ω(t, x, y) − 〈ω(t, ·, y)〉x .
Supposing that nonlinear inviscid damping holds in the sense that U (t, y) as-
ymptotically converges to a monotone shear flow and that ω′ is bounded in
some Hs, s > 5, (in coordinates moving with the flow) uniformly in time, we
show that the contribution by the nonlinearity is uniformly bounded in Hs−5

(in coordinates moving with the flow).
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– Instability. As a consequence, we provide a proof of Theorem 5 from Section
1.4 and thus show that, in a finite periodic channel, the stability result associ-
ated with nonlinear inviscid damping can generally not hold in high Sobolev
spaces. Specifically we show that otherwise ∂yW would in general develop a
logarithmic singularity at the boundary, which yields a contradiction.

The last result in particular implies that a Gevrey regularity result such as in [2]
would have to be heavily modified in the setting of a finite channel.

We first consider consistency, that is that the evolution of the nonlinear term
under the linear dynamics and shows that this would provide a uniformly controlled
correction in Duhamel’s formula. For this purpose, we note that the nonlinearity

v · ω = ∇⊥φ · ∇ω,

after the change of variables (x, y) �→ (x − tU (y), y), is given by

− (∂y − tU ′∂x )Φ∂xW + ∂xΦ(∂y − tU ′∂x )W
= −∂yΦ∂xW + ∂xΦ∂yW = ∇⊥Φ · ∇W.

Here, with a slight abuse of notation, Φ and W do not incorporate the change of
variables y �→ z := U−1(y).

Theorem 12. (Consistency) Let W be a solution of the linearized Euler equations,
(11), in the finite periodic channel TL × [0, 1], with

∫
ω0(x, y)dx ≡ 0,

f, g ∈ W 3,∞ and assume that for some s ∈ (2, 3),

‖W (t)‖Hs < C < ∞
is uniformly bounded (for example via Theorem 4). Then,

‖v · ∇ω‖L2 = O(t−(s−1)).

In particular,

W (t) +
∫ t

∇⊥Φ(τ)∇W (τ )dτ

remains in a bounded neighborhood of W (t) and there exist asymptotic profiles
W±∞,con ∈ L2 such that

W (t) +
∫ t

∇⊥Φ(τ)∇W (τ )dτ
L2−→ W±∞,con,

as t → ±∞.
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Proof. Since the change of variables (x, y) �→ (x − tU (y), y) is an L2 isometry,
we obtain

‖v · ∇ω‖L2 = ‖∇⊥Φ∇W‖L2 .

As s > 2 (and we consider two spatial dimensions, x, y), we can use a Sobolev
embedding to control

‖∇W‖L∞
xy(�) � ‖W‖Hs .

It thus suffices to estimate

‖∇⊥Φ‖L2 .

Taking the ∇⊥ into account and using the damping result (Theorem 1) we obtain

‖∇⊥Φ‖L2 = O(t−(s−1))‖W‖Hs .

As s − 1 > 1, this decay is integrable, which together with the scattering results
for W (t), Corollaries 2 and 3, concludes the proof. ��

We remark that this consistency result loses regularity and indeed controlling
the loss of regularity due to the nonlinearity is one of the main challenges in the
nonlinear problem (see [1]).

While the linear dynamics are thus consistent in the above sense, higher regu-
larity and how well the linear dynamics approximate the nonlinear dynamics is not
answered by the preceding theorem.

In the following, we consider the converse problem, that is given a nonlinearly
stable solution with inviscid damping, we estimate the effect of the nonlinearity.
For this purpose, we note that the 2D Euler equations

∂tω + v · ∇ω = 0,

v = ∇⊥φ,

Δφ = ω,

on either the infinite or finite periodic channel, possess a good structure with respect
to x averages. Denote

ω = (ω − 〈ω〉x ) + 〈ω〉x = ω′ + 〈ω〉x ,
φ = (φ − 〈φ〉x ) + 〈φ〉x = φ′ + 〈φ〉x .

Then,

∂tω
′ − (∂y〈φ〉x )∂xω′ + (∂y〈ω〉x )∂xφ′ = (∇⊥φ′ · ∇ω′)′,

∂t 〈ω〉x = 〈∇⊥φ′ · ∇ω′〉x .
In analogy to the linear setting, we denote

−∂y〈φ〉x =: U (t, y),
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and for the moment restrict our attention to the first equation, considering U (t, y)
as given.

In this formulation the Euler equations then read

∂tω
′ +U (t, y)∂yω

′ = (∂2yU (t, y))∂xφ
′ + (∇⊥φ′ · ∇ω′)′.

Further introducing the volume-preserving change of variables

(x, y) �→
(
x −

∫ t

0
U (τ, y)dτ, y

)

and defining W, Φ via these coordinates, the Euler equations in scattering formu-
lation are given by

∂tW = (∂2yU (t, y))∂xΦ + ∇⊥Φ · ∇W. (ES)

Obtaining a good control of the regularity of U (t, y) as well as appropriate decay
is a very hard problem, particularly as the evolution of U (t, y) and W is coupled.
In the following theorem, such control is therefore assumed.

Theorem 13. (Approximation) Let W (t, x, y) be a solution of (ES) and suppose
that, for some s > 2, inviscid damping holds in Hs with integrable rates, that is
suppose that, for some ε > 0,

‖∇⊥Φ‖Hs = O(t−1−ε)‖W‖Hs+2+ε .

Suppose further that ‖W (t)‖Hs+2+ε is uniformly bounded. Then,

‖∇⊥Φ · ∇W‖Hs = O(t−1−ε),

and, in particular, ∫ t

0
‖∇⊥Φ(τ) · ∇W (τ )‖Hsdτ

is bounded uniformly in t and converges as t → ∞.

Proof of Theorem 13 As s > 2, Hs forms an algebra and

‖∇⊥Φ · ∇W‖Hs � ‖∇⊥Φ‖Hs‖∇W‖Hs = O(t−1−ε),

which proves the result. ��
Remark 4. – Theorem 1 can be extended to provide sufficient conditions for

inviscid damping with integrable rates to hold, again assuming sufficient regu-
larity. The core problem of inviscid damping is thus, again, the control of the
regularity of W (t).

– If ‖W‖Hs+2+ε < δ is small, then
∫ t

0
‖∇⊥Φ(τ) · ∇W (τ )‖Hsdτ = O(δ2)

is quadratically small. The linearization thus remains valid, but only in a less
regular space. For this reason we call this theorem an “approximation” result.
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– Even if ‖W‖Hs+2+ε is not small, the nonlinearity yields a bounded contribution.
Hence, if ∥∥∥∥

∫ t

0
(∂2yU (τ, y))∂xΦ(τ)dτ

∥∥∥∥
Hs

grows unboundedly as t → ∞ , that is the linear part is unstable, then, as shown
in Theorem 5, the nonlinear dynamics cannot be stable.

As the main result of this section, we provide a proof of Theorem 5 and thus
show that, in general, solutions of (ES) cannot remain bounded in Hs, s > 2
uniformly in time.

Here, as in Theorem 13, we note that, unlike in the linear case, the x average
of the vorticity, 〈ω〉x (t, y), changes in time and that the evolution of U (t, y) and
ω′ = ω−〈ω〉x are coupled. Hence, as a simplification, in the statement of Theorem
5 we assume control of underlying shear flowU (t, y) (and thus 〈ω〉x ) as given and
focus on the evolution of the zero average part of the vorticity, W .

Proof of Theorem 5 Differentiating (ES) with respect to y, we obtain that ∂yW
satisfies

∂t∂yW = ∂y

(
∂2yU (t, y)∂xΦ

)
+ ∂y(∇⊥Φ · ∇W ).

Restricting ourselves to y = 0 and using that ∂xΦ vanishes on the boundary, as it
is assumed to be impermeable, we consider the k Fourier mode. Then,

∂tFx∂yW (t, k, 0) = ∂2yU (t, 0)ik(Fx∂yΦ)(t, k, 0) + O(t−1−ε). (30)

Similar to the previous sections, FxΦ solves a shifted elliptic equation:
(

−k2 +
(

∂y − i tk
∫ t

∂yU (τ, y)dτ

)2
)
FxΦ = FxW.

A homogeneous solution u of this equation is then of the form

u(t, y) = exp

(∫ t

(U (τ, y) −U (τ, 0))dτ

)
u(0, y).

By the same argument as in Lemma 8, FxΦ(t, 0) can be computed in terms of

〈FxW, u(t, y)〉L2 , (31)

where we assumed that

u(0, 0) = 1, u(0, 1) = 0.

Integrating

u(t, y) = u(0, y)
1∫ t

∂yU (τ, y)dτ
∂y exp

(∫ t

(U (τ, y) −U (τ, 0))dτ

)
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by parts in (31) then yields a leading order term of the form∣∣∣∣∣
1∫ t

∂yU (τ, y)dτ
W |y=0

∣∣∣∣∣ � c

t
.

Integrating (30) in time thus yields a logarithmic singularity and hence the result.
��

We remark that, using a Sobolev embedding, the decay of

|Fx (∂y(∇⊥Φ · ∇W ))(t, k, 0)|
is a consequence of inviscid damping in a high Sobolev space. More precisely,
supposing that

0 < c < ∂yU (t, y) < c−1 < ∞
for t � T , Theorem 1 yields

‖∂y(∇⊥Φ · ∇W )‖L∞ � ‖∂y(∇⊥Φ · ∇W )‖H2+ε

� C(‖U ′‖W 7,∞)‖W (t)‖H4+ε‖Φ(t)‖H4+ε

� O(t−2+ε)‖W (t)‖2H6 .

Furthermore, restricting (ES) to the boundary,

FxW (T, k, 0) = Fxω0(t, k, 0) +
∫ T

0
Fx

(
∇⊥Φ · ∇W

)
(t, k, 0)dt.

If one thus assumes that (Fx∇⊥Φ · ∇W )(t, k, 0) decays at an integrable rate, then
Fxω0(t, k, 0) converges to an in-general non-zero limit as t → ∞. Considering
sufficiently large times T ,

FxW (T, k, 0)

is thus, in general, bounded away from zero.
The theorem therefore implies that, in the generic case, solutions of (ES) in a

finite periodic channel cannot remain bounded in high Sobolev regularity. In con-
trast, for the setting of an infinite channel,Bedrossian andMasmoudi [1] establish
nonlinear inviscid damping for sufficiently small, highly regular perturbations to
Couette flow. More precisely, they require smallness in Gevrey regularity, that is

‖ω0‖2Gλ0
:=

∑
k

∫
|ω̃0(k, η)|2e2λ0|(k,η)|sdη � ε2,

for some 1
2 < s < 1. The reason for this choice of regularity is given by an analysis

of a possible nonlinear frequency cascade, which is estimated, in the worst case,
to amount to a loss of Gevrey 2 regularity, that is s = 1

2 . There are experimental
observations [8] of some echoes, but it is not clearwhether theworst case estimate of
the cascade is actually attained. Indeed, the only known lower bound on the required
regularity is given by the work of Lin and Zeng [6], who show the existence of
non-trivial stationary structures in arbitrarily small Hs, s < 3

2 neighbourhoods,
and that such structures do not exist for Hs, s > 3

2 .
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