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Abstract

In the present paper, we study the uniform regularity and vanishing dissipa-
tion limit for the full compressible Navier—Stokes system whose viscosity and heat
conductivity are allowed to vanish at different orders. The problem is studied in a
three dimensional bounded domain with Navier-slip type boundary conditions. It
is shown that there exists a unique strong solution to the full compressible Navier—
Stokes system with the boundary conditions in a finite time interval which is inde-
pendent of the viscosity and heat conductivity. The solution is uniformly bounded
in W1 and is a conormal Sobolev space. Based on such uniform estimates, we
prove the convergence of the solutions of the full compressible Navier—Stokes to
the corresponding solutions of the full compressible Euler system in L>(0, T'; L?),
L0, T; H") and L>®([0, T] x ) with a rate of convergence.

1. Introduction and Main Results

The motion of a compressible viscous, heat conductive, ideal polytropic fluid
is governed by the following full compressible Navier—Stokes equations (FCNS):

p; +div(p®u®)=0,
(pfu®); + div(pfu® @ u®)+Vp® = neAu® + (u + 1eVvdivu®, x €, t>0
(PP E®); + div(p*uf Ef 4+ pfu®) =« () AO* +div(tfu®),

1.1
where © is a bounded smooth domain of R3. Here p?, u® and E? represent derfsity),
velocity and total energy, respectively. The pressure function p® and total energy
E¥ are given by

1
P =Rp" 0", Ef=c, (98 - 5|u8|2) ,
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where 6 is temperature and ¢, is a positive constant. For simplicity of presentation,
we normalize ¢, to be 1. The tensor t° is represented as

1
78 = Aedivu®l + 2ueSu®, with Su® = z(vlf + (Vud)T).
Here w, A are given constants satisfying the physical restriction

nw>0, 2u+3r>0, (1.2)

and the parameter ¢ > 0 is the inverse of the Reynolds number. Also, k() > 0 is
the heat conductivity which is assumed to depend on €.

We impose the full compressible Navier—Stokes equations with the following
Navier-slip type boundary conditions:

u® -n=0, ((Su®)n); = (Au®);, and n-VO° =v6° onaQ. (1.3)

where n is the outward unit normal to d€2, u, represents the tangential part of u, A
is a smooth symmetric matrix and v is a given constant. For smooth solutions, it is
noticed that

2S()n = (V xv) X n)y = =(2S(n)v)«,

see [25] for details. The boundary condition (1.3) can be rewritten in the form of
the vorticity as

u® - n=0, nxo® =[Bul;, and n-VO° =v0%, onag, (1.4)

where w® = V x u? is the vorticity and B = 2(A — S(n)) is a symmetric matrix.
Actually, it turns out that the form (1.4) will be more convenient than (1.3) in the
energy estimates.

We are interested in the existence of strong solutions of (1.1) with uniform
bounds on an interval of time independent of the viscosity and heat conductivity,
and the vanishing dissipation limit to the full compressible Euler flow as € and « (&)
vanish, i.e,

pr + div(ou) =0,
(pu); +divipu Qu) + Vp =0, as e,k — 0+, (1.5)
[p© + 3|u®)]; + divipu(® + §lul?) + pul =0,

with slip boundary condition
u-n|39 =0. (1.6)

There is a lot of literature on the inviscid limit for incompressible Navier—Stokes
equations. The inviscid limit of the Cauchy problem has been studied by many
authors, see for instance [5,6,11,13]. However, in the presence of a physical bound-
ary, the problems become challenging due to the appearance of boundary layers.
As illustrated by Prandtl’s theory, the inviscid limit of the incompressible Navier—
Stokes with a no-slip boundary condition to the incompressible Euler flows with
a slip boundary condition (1.6) is a very difficult problem. SAMMARTINO and
CarLiscH [17,18] proved the convergence of the incompressible Navier—Stokes
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flows to the Euler flows away from the boundary and to the prandtl flows near the
boundary at the inviscid limit for the analytic initial data. Recently, MAEKAWA [12]
proved a such limit when the initial vorticity is located away from the boundary in
the two dimensional half plane. On the other hand, for the incompressible Navier—
Stokes system with a Navier-slip boundary condition (1.3) (without the heat flux
part), lots of important progress has been made on the problem. The uniform H3
bound and the inviscid limit to the Euler flow was proved by X1ao and X1 [23] for
flat boundaries, and this was generalized to W*? in [2,3] by Veiga—Crispo soon
later. However, one cannot obtain such results for general curved boundaries since
boundary layers may appear due to non-trivial curvature, as pointed out by IFTIMIE
and SUEUR [10], where the inviscid limit was also obtained in L*°(0, T, ; L2) by
a careful construction of boundary layer expansions. In order to investigate pre-
cisely the asymptotic structure and get the convergence in stronger norms such as
L0, T; H*)(s > 0), stronger estimates are needed. Recently, MasmouDI and
ROUSSET [14] established a conormal uniform estimate for three dimensional do-
mains with the Navier-slip boundary condition, which implies the uniform bound-
edness of the Lipschitz-norm for the velocity field. This allows one to obtain the
inviscid limit in the L°°-norm by a compactness argument. Based on the uniform
estimates in [14], better convergence with rates have been obtained in [8,24]. In
particular, X140 and Xin [24] proved the convergence in L*°(0, T; H 1) with a rate.

For the isentropic compressible Navier—Stokes equations, XIN and YANAGISAWA
[26] studied the vanishing viscosity limit of the linearized problem with the no-slip
boundary condition in a two dimensional half plane. For the Navier-slip boundary
condition case, WANG and WILLIAMS [21] constructed a boundary layer solution
of the compressible Navier—Stokes equations in a two dimensional half plane. The
layers constructed in [21] are of width O(4/¢), as the Prandtl boundary layer,
but the amplitude layers are of O(\/¢), which is similar to the one [10] for the
incompressible case. It is also shown [21] that the boundary layers for the density
are weaker than the one for the velocity, so, in general, it is impossible to obtain
the H3 or W>P(p > 3) estimates for the compressible Navier—Stokes system with
the Navier-slip boundary condition. Recently, PADDICK [16] obtained an uniform
conormal Sobolev estimate for the isentropic compressible Navier—Stokes systemin
the three dimensional half-space. WANG et al. [22] also obtained uniform regularity
for isentropic compressible Navier—Stokes equations with Navier-slip a boundary
conditions in a three dimensional domain with curvature; the inviscid limit was also
obtained with a rate of convergence in L*°([0, T'] x ) and L*°([0, T']; Hl). The
fact that the boundary layer for density is weaker than the one for velocity fields
was also shown in [22].

For the full compressible Navier—Stokes equations, the extent of study is quite
limited. Under the assumption that the viscosity and heat conductivity converge
to zero at the same order, DING and JIANG [7] studied the zero viscosity and heat
conductivity limit for the linearized compressible Navier—Stokes—Fourier equa-
tions with a no-slip boundary condition in the half plane. However, there is no
uniform regularity and vanishing dissipation limit results for the full compressible
Navier—Stokes equations (1.1) with Navier-slip type boundary conditions (1.3) in
a bounded domain. The aim of this paper is to investigate the uniform regularity
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for the solutions of the full compressible Navier—Stokes system (1.1) even if the
viscosity and heat conductivity converge to zero at different orders. Compared to
the isentropic case [16,22], it is difficult to obtain the Lipschitz estimates for the
solutions of (1.1) due to the appearance of temperature and the strongly coupled
system of (p?, u®, 6°). On the other hand, the amplitude and width of boundary
layers for velocity and temperature may be not at the same order if the viscous
and heat conductivity vanish at a different order. In that case the interaction of the
two different amplitude boundary layers, may throw up difficulties in the analysis
in terms of obtaining uniform regularity, especially, in terms of the Lipschitz esti-
mates. To overcome these difficulties, some new ideas and observations are needed.
It is also very important to study the vanishing dissipation limit. In addition, and
very importantly we shall investigate how the rate of convergence is influenced by
the thermal boundary layers.

Before stating our main results, we first explain the notations and conventions
used throughout this paper. Similar to [14,22], one assumes that the bounded domain
Q c R3 has a covering such that

QC Q UZ=1 Qe (1.7)
where §0 C Q, and in each € there exists a function ¥ such that

QN Qr = {x = (x1,x2,x3) | x3 > Y (x1, x2)} N,
02 N = {x3 = Yr(x1, x2)} N .
Here, €2 is said to be C’ if the functions ¥ are a C"™-function. To define the Sobolev

conormal spaces, one considers (Zx); <; < to be a finite set of generators of vector
fields that are tangential to 32, and sets

H" = {f e LX(Q)|Z' f € L*(Q), for |I| < m},

where I = (ki, ..., k;). The following notations will be used:
3
leellz, = ez = D D 127 w172,
J=11Sm
Il o= D 12"l and [VZ"ul* = D IVZ'ull},.
111Sm [|=m

Note that by using the covering of €2, one can always assume that each vector field
(p, u, 0) is supported in one of the 2;, moreover, in €2¢, the norm || - ||,, yields a
control of the standard H™ norm, whereas if ; N 92 # @, there is no control of
the normal derivatives.

Denote by Cj a positive constant independent of ¢, k € (0, 1] which depends
only on the C¥-norm of the functions v j»J = 1...,n. Since 9S2 is given locally
by x3 = ¥(x1,x2) (we omit the subscript j for notational convenience), it is
convenient to use the coordinates:

V:(y,20)— O, ¥ () +2) =x.
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Alocal basis is thus given by the vector fields (eyl ) €y2, e;) where ey = (1,0, 01)!,
ey = (0,1, dr¥) ande, = (0, 0, —1)’. On the boundary, ey1 and e are tangential
to 0€2, and in general, e, is not a normal vector field. By using this parametrization,
one can take as suitable vector fields compactly supported in €2; in the definition
of the || - ||,, norms:

Zi =10, =0 +0;y03;, i=12 Z3=¢(2)0, (1.8)

where ¢(z) = % is smooth, supported in Ry with the property ¢(0) = 0, ¢’(0) >
0, ¢(z) > 0 for z > 0. It is easy to check that

ZyZi=ZjZy, j, k=123,

and
0,Z; =Z;9,, i=1,2, and 0.Z3 # Z30,.

In this paper, we shall still denote by 9;, j = 1,2, 3 or V the derivatives in the
physical space. The coordinates of a vector field u in the basis (e, 1, e,2, e;) will be
denoted by u', thus

U= uleyl + uzeyz + u3ez. (1.9)

We shall denote by u; the coordinates in the standard basis of R3,ie u=uie; +
uzez + uszes. Denote by n the unit outward normal in the physical space which is
given locally by

1 IO\ N
10 = (V0. 9) = e | M) | = s (110
and by TI, the orthogonal projection
Mu = TH(W(y. ) =~ [u-n(¥(y. Dy, 2). (L1

which gives the orthogonal projection onto the tangent space of the boundary. Note
that n and IT are defined in the whole €2; and do not depend on z.
For later use and notational convenience, set

2% =090Z" =90 Z{" 23 Z5", (1.12)

where o, o, o1 are the differential multi-indices with @ = (g, 1), o1 = (a1,
@12, ®13), and we also use the notations

OB = D 12 f O3 1 Olpp = 2 1Zf Ol (113)

loe|Sm loe| Sk

for the smooth space-time function f(x, t).

Firstly, we consider the uniform regularity of the solutions of the full com-
pressible Navier—Stokes system (1.1) with the Navier-slip type boundary con-
ditions (1.3). Since the viscous and thermal boundary layers may appear in the
presence of physical boundaries, one needs to design a suitable functional space.
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Here, motivated by [14,22], the functional space X}, (T') for functions (p, u, ) =
(p,u,0)(x,t) is defined as

X5(T) =1 (p,u,0) € L([0, T], L?); esssup||(p,u, 0)()|lxs, < +oot,
0<t<r

(1.14)

where the norm ||(+, -, -) || xz, is given by

(o, u, )OIk
m—2
= (o 1. ) D l3gn + VU 3ps + D 105V (0. D)7y s
k=0
+ &V o)1 + & VO 2divu () ]| + « ()| A 20 (1) ||

+ V0, 1, )O3 100 + VU@ T + e[V (PO) D3 pc-  (1.15)

We remark that the term 8||V(p9)(t)||%_l2‘oo, included in (1.15), is important for
obtaining the Lipschitz estimates even though such a term is slightly strange. We
will explain the reason for including such term after Theorem 1.1 below.

In the present paper, we supplement the full compressible Navier—Stokes equa-
tions (1.1) with the initial data

(0%, u®,0%)(x,0) = (pg, ug, 0°)(x), (1.16)
such that

sup (5. ug, 6)1%: = Co, 0<Cy' Spf, 65<Co<oo,  (1.17)
0<e=l1

where éo > 0, éo > ( are positive constants independent of ¢ € (0, 1] and the
time derivatives of initial data in (1.17) are defined through the full compressible
Navier—Stokes system (1.1). Thus, the initial data (o, u, 6) is assumed to have
a higher space regularity and compatibilities. Notice that the a priori estimates
in Theorem 3.1 below are obtained in the case that the approximate solution is
sufficiently smooth up to the boundary, therefore, in order to obtain a self-contained
result, one needs to assume that the approximate initial data satisfies the boundary
compatibility conditions, that is (1.3) (or equivalent to (1.4)). For the initial data
(G- ug, 65) satisfying (1.17), it is not clear if there exists an approximate sequence
(pé"s, uf)”s, , 6y %) (8 being a regularization parameter), which satisfies the boundary
compatibilities and || (,og"S —p5, uS"S —uf, 495’6 —6§)|lxz, = Oasd — 0. Therefore,
we set
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XN ap =100, u,0) € H3™(@)|8kp, 8%60, 0% u,k=1,....m
are defined through the system (1.1) and

8tk u, 8,1‘9, k=0,...,m — 1 satisty the boundary compatibility conditions},
(1.18)
and
XY's = The closure of Xf\}?’ap in the norm [|(-, -, -)[l xz, . (1.19)

If the heat conductivity k (¢) decays too fast as ¢ — 0+, then the possible
interaction between the viscous boundary layers and thermal boundary layers is
strong and it is hard to get the uniform regularity. Thus, in order to control the
possible interaction between the viscous boundary layers and the thermal boundary
layers, throughout this paper, we assume that the heat conductivity is a continuous
function of ¢ and satisfies

e* < Cr(e) < 00, fore e (0,1], (1.20)

where C > 0 is some positive constant. Then our uniform regularity result is as
follows:

Theorem 1.1. (Uniform regularity) Let m be an integer satisfying m = 6, k(&)
satisfy (1.20), Q2 be a C" 2 domain and A € C" 1 (dK2). Consider the initial data
(G- ug, 65) € var_g given in (1.16) and satisfying (1.17). Then there exists a time
Ty > 0and C > Oindependent of ¢ € (0, 1] such that there exists a unique solution
(%, ut,0%) of (1.1), (1.3) and (1.16) on [0, To] that satisfies the estimates:

(2Co) "' £ p*(1), 65(t) £2Cy V1 € [0, Tol, (1.21)

and

To
sup [, u, 0 DIIx: + / 1V~ (0%, 69O 1% + IV (0°0°) (1) 17 .00
O§I§TO 0

To To

+e / VU @) 3 dt + (e / IV6° () I3 gmdt
0 0

m—2

To
+>° / e V2ofuf ()5, s + k(@) ABFO° (1) 5, _dt
0
k=0

To
+k(e)? / 1A 05 ()11 + IVZ™ 2 A0% (1) || 2dt
0
To »
+52/ V2~ uf (1)2dr < €y < oo, (1.22)
0

where C'] depends only on éo, C’o and Cyp42.

Remark 1.2. The novelty of this work is that we allow the viscous and heat con-
ductivity to vanish at different orders. Futhermore, it is noted that there are many
functions that satisfy condition (1.20). For example, it is easy to see that (1.20)
holds provided that « (¢) = &, where b is constant such that 0 < b < 4.
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Remark 1.3. In order to obtain the Lipschitz estimates included in (1.15), one
needs to use the pointwise estimates because the boundary layers prevent one from
obtaining a uniform estimate in H 3(Q) (or W2 P, p > 0). Thus, one has to deal with
the possible interaction of the viscous and thermal boundary layers in the pointwise
estimates. Indeed, restriction (1.20) is used to control such possible interactions,
see Lemmas 3.14-3.18 for details.

Remark 1.4. For the solution (p¢, u®, 6)(¢) of (1.1),(1.4) and (1.16), the boundary
conditions (1.3) (or equivalently (1.4)) are satisfied in the trace sense for every fixed
e € (0, Toland t € (0, Tp].

We now describe the main ideas of the proof of Theorem 1.1. It turns out that it
suffices to establish the estimates (1.22). It is noted that there are two parts included
in (1.22), that is, the conormal energy estimates part and the pointwise estimates
part. Firstly, by complicated conormal energy estimates, one can obtain

m—2

1" 1 0D + D NV U 0 DII% i + 197 o ()]
k=0

t t
+s||va;“*‘p8<t)||2+s/ ||VM8<r>||%m+/ eVt (1))2
0 0
t m=2 .
+ 1 /0 IV6° () l3gn + D /0 10K (VeV2uE, Sk AOTY(D)E 4 (1.23)
k=0

at the cost of

t t
/||VZ’"_ldivu8||2+K2||VZ’"_2A9£||2dt and /||8,’"_1V(p8,98)||2dr,
0 0

(1.24)
see Lemmas 3.2-3.6 and 3.11 below. By using the structure of mass equation and
energy equation, respectively, one can bound the first part of (1.24) at the cost of
fot ||8,m*1 V(p¢, 0%)|*> dr, see Lemma 3.7 below, so, it suffices to bound the sec-
ond part of (1.24). Considering [y [ 8" *(3.7), - V3" *divu® + 8" "' V(3.7)3 -

m—1p¢e
Va’eg 9 dx drt, one can control the second part of (1.24) and ¢|| Valm_Zdivu‘s(r) 1%+

k@) Aa;”—zea (1)]|%, see Lemma 3.8 below. Therefore, combining the above esti-
mates, one can obtain the conormal energy estimates of (1.22), except for
Vo~ 1uf||2, see also (3.162) below.

Next, we try to establish the pointwise estimates part. It is difficult to obtain
such estimates however, because the equations of p*, u®, 6¢ are strongly coupled
and the viscosity and heat conductivity are not of the same order. Actually, if one
estimates ||V p®||y41. directly, then one has to deal with the high order derivative
term f(; IV ||§_t2_oo dt, however it is hard to control this term in our functional
space. Instead, we try to control the pointwise estimates of V(p?6¢), VO® and Vu®.
This is key to overcoming the difficulty. Indeed, we can obtain (see Lemma 3.15
below)
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t
|W@%%mﬁﬂm+wvw%%mﬁﬂm+ﬁnvmwﬂuw#m

t
ge/MVWum#mdr+uq (1.25)
0

where ... means that terms can be controlled. Since the strength and width of
the thermal boundary layers is connected with «, then the first term on the RHS
above is actually the interaction of viscous and thermal boundary layers. If the heat
conductivity k vanishes too fast, it will be very hard to control such an interaction
term. To overcome this difficulty, we assume that the decay rate of « satisfies (1.20).
Then the interaction term can be controlled as follows:

t t
aAnvwwmamﬁrge{AnAwum%uh+~~

t
e [ Nar@udre . (20
0

where the last term of the above has already been controlled in the conormal energy
estimates part. It is worth pointing out that the above interaction estimate will be
employed repeatedly throughout the pointwise estimates part. On the other hand,
to control the pointwise estimate of V6¢, the most difficult part is to deal with the
term p®Vdivu® which comes from the term p®divu® on the LHS energy equation
(see also (3.223) below). Actually, if p® Vdivu® is regarded as a source term, it will
be very hard to control f(; | p? Vdivu® (t) ||%_[1,OO dt because the derivatives are too
high. We remark that such difficulty does not arise in the isentropic case [22]. To
overcome the difficulty, some new ideas are needed. Fortunately, we find that the
term p®Vdivu® can be represented as follows:

pEVdivi® = Rp [VOF + (u - V)V6]
—R[V(0°0°%); + (u® - V)V (p?0%)] + lower order terms. (1.27)

It is noted that the first part (that is, the hardest part) on the RHS of (1.27) can be
absorbed into the main part of the equation (see (3.223)—(3.226) below), while the
second part on the RHS of (1.27) can be regarded as a source term because the
term fol IV (pe0%) (1) ||312’Oo has already been controlled above. This observation is
key to closing the pointwise estimates. It is also one of the main reasons to include
e||V(p0° )”%'[2’00 in our functional space. Based on the above observation, one
can obtain the control of || V6® ”%-{l,oo' Later, by arguments similar to [22], one can
control ||Vu8||%11100 + 8||V2u5||%oo. Finally, in order to estimate ||V8,m_1u8||2, we
still need to obtain the uniform bound of || 8;”_1divu5 ||%; this is hard to get by the
conormal energy estimate because some boundary terms are hard to control. By
employing the mass equation, it is found that || afn_ldivug |? can be controlled by
the conormal energy estimates and pointwise estimates obtained above. Therefore,
combining all the above estimates, one proves (1.22).

Based on the uniform estimates in Theorem 1.1, by strong compactness argu-
ments similar to those in [14], one can justify the vanishing dissipation limit of
solutions of the full compressible Navier—Stokes system (1.1) to the solutions of
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the full Euler equations (1.5) in the L°°-norm, but without a convergence rate. In
the present paper, we are interested in the vanishing dissipation limit with rates of
convergence.

We supplement the full Euler equations (1.5) and the full compressible Navier—
Stokes equations (1.1) with the same initial data (pq, uo, 8o) satisfying

0<Cy' < po,60<Co and (po,uo,60) € H> N X% withm 2 6. (1.28)

It is well known that there exists a unique smooth solution (p, u, 0) € H 3 for the
problem (1.5) and (1.6) with initial data (pg, ug, 6p) at least locally in time [0, 77]
where 77 > 0 depends only on ||(po, uo, 60) || 3. On the other hand, it follows from
Theorem 1.1 that there exists a time Ty and C 1 independent of ¢ € (0, 1], such that
there exists a unique solution (p®, u®, 6¢) of (1.1) and (1.3) with the initial data
(po, ug, o) and that satisfies (1.21) and (1.22).

Then we justify the vanishing dissipation limit as follows:

Theorem 1.5. (Vanishing dissipation limit) Based on the above preparations, under
the assumptions of Theorem 1.1 and k(g) — 0+ as ¢ — 0+, there exists T» =
min{Ty, T1} > O, which is independent of ¢ > 0, such that

t
1o —p. u® —u, 98—9>(r>||iz+/0 ellw® — )13+ ()1(0F — 0)(D)|, dr
< Cmax{e?, k(e)?), t €0, Ty, (1.29)
t
10" —p. u —u, 0F—0) ()17, +/0 el w® — )32 +x(@0F = 0)(Dl7,. dr

< Cmax{e?, k(s)3), €0, Tal, (1.30)
and

I(p® — p,u® —u,0° — )|l L>@x[0.12])
2 3
S lp® —p u® —u,0° — 9)||Zz N —p,u® —u,6° —9)||€V|,oo

3
< Cmax{e, k(g)}10, (1.31)
where C depends only on the norm ||(po, 0, 00)l 3 + | (Po, o, 60) I xs -

Remark 1.6. It is easy to see that k(¢) = ¢ with 0 < a < 4 satisfies the condition
of Theorem 1.5.

Remark 1.7. Compared to the isentropic case [22], one can see that the
convergence rates of the vanishing dissipation limit are influenced by the decay
rate of heat conductivity. In particular, for the case k(¢) = ¢, Theorem 1.5 im-

plies that the convergence rate in L*°(0, T»; H 1) is 8%, which is slower than the
isentropic case [22] whose corresponding rate is e2. This is mainly due to the in-
fluence of thermal boundary layers, see Lemma 5.2 below. If one can prove that
K(8)% fot VA6 |2 dt is uniformly bounded, then the convergence rate of (1.30)

. 1 1 .. .
could be improved to be max(e2, k(¢)2), however it is very hard to obtain such a
uniform estimate in our framework.
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Remark 1.8. By the same arguments as Theorem 1.5, one can also prove the dissi-
pation limit of the full compressible Navier—Stokes system to the following system:

pr + div(pu) = 0,
(pu);+div(pu®u)+Vp =0, ifk(e) >Kko>0 ase— 04+
[p©O+ 3 lul)]i+divipu(@ +31ul®) + pul = ko A6,
(1.32)
with boundary conditions

u ~n|39 = 0, n- V9|3Q = 0.

The rest of the paper is organized as follows. In Section 2, we collect some
elementary facts and inequalities that will be used later. We prove the a priori
estimates of Theorem 3.1 in Section 3, which is the main part of this paper. By
using the a priori estimates, we prove Theorem 1.1 in Section 4. Section 5 is
devoted to the proof of Theorem 1.5.

Notations. Throughout this paper, the positive generic constants that are indepen-
dent of ¢ are denoted by ¢, C (through may depend on w, A). || - || denotes the
standard L2(€2; dx) norm, and || - ||z» (m = 1,2,3,...) denotes the Sobolev
H™($2; dx) norm. The notation | - | y=» will be used for the standard Sobolev norm
of functions defined on d€2. Note that this norm involves only tangential derivatives.
P(-) denotes a polynomial function.

2. Preliminaries

The following lemma [20,23] allows one to control the H™(2)-norm of a
vector valued function u by its H”~!1(2)-norm of V x u and divu, together with

the H" =% (02)-norm of u - n:

Proposition 2.1. Let m € N, be an integer. Let u € H™ be a vector-valued
function. Then there exists a constant C > 0 independent u such that

lullgn < C (||v ] gyt + 1divie]l gt + el gyt + |t ~n|Hm_%) 2.1)
and
llln < € (19 X g + ivael goos + Nl + 10 <l y) - 22)

In this paper, we shall use repeatedly the Gagliardo—Nirenberg—Morser type
inequality, whose proof can be found in [9]. First, define the space

W™ Qx[0, T]) = {f(x. 1) € L*(@x[0, TD|2* f € L*(Qx[0, T]), |a| £m}.
(2.3)
Then the Gagliardo—Nirenberg—Morser type inequality is as follows:
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Proposition 2.2. Foru,v € L>®(Q x [0, T]) N W"(Q x [0, T]) withm € Ny be
an integer. It holds that

t t
/0||(2:’/3uzyv)(r>||2dr5||u||%,o_,ox/0 (@134 d7

t
+||v||i;,ox/0 (@) g dr, 181+ Iyl =m. 24)

We also need the following anisotropic Sobolev embedding and trace estimates:

Proposition 2.3. Let m| = 0 and my = 0 be integers; f € HA' () N HY2 ()
and V f € HZX(Q). Then:

(1) The anisotropic Sobolev embedding

1f 3o < CAV £l + 1) - 1 f L ggm 25)

holds, provided that m| + my 2 3.

(2) The following trace estimate holds:
1 Pisoay S CAV Ll + 1F gme) - 1F 1l 2.6)
provided that m +my 2 2s 2 0.
Proof. The proof just uses the covering 2 C 0 Uy_; € and Proposition 2.2 in
[15], the details are omitted here. O
3. A Priori Estimates
The aim of this section is to prove some a priori estimates, which is a crucial

step to proving Theorem 1.1. For notational convenience, we drop the superscript
& throughout this section.

Theorem 3.1. Let m be an integer satisfying m = 6, let i (&) satisfy (1.20), let Q
be a C"*2 domain and A € C"™t1(3Q). For a very sufficiently smooth solution
defined on [0, T] of (1.1) and (1.3) in 2, we then have

t
lo(x, 0)] exp (—/ l[divae|| Lo dT) S plx,t)
0

!
< Jp(x,0)|exp (/ Idivue]| . dr) , Vrel0,T] 3.1
0
and

t t
to —/ 16(T)llL> dT = 6(x, 1) = 6o +/ 10(T)][Ledz, Vi e[0,T]. (3.2)
0 0
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In addition, if it holds that

1
0<co=px,0,0(x,1)s — <00, Vte[0,T],
co

1357

(3.3)

where cq is any given small positive constant. Then we have the a priori estimate

Yo, u,0)

t t
2 Nou(1) + /0 1V9" (o, )(®)|PdT + /0 1V(00) (012 .

t t
+ /0 ellVu(o)l3mdr + k(&) /0 VO (D)3 mdT
m—2

t
+ Z/ e V2afu()ll_ i + k@A O 5 _pdt
k=070
t
+ k() / 1A 01> + V2" 2 A6 (0) | *dr
0
t
+ 82/ V29"~ u(r)|de
0
< CaCa | PN (O) + 1 PN (1)) ]
where Cy depends only on %, P (-) is a polynomial and

Nin(0) = N (p, u, 0)(1) = sup {1+ (o, u, 9)(7)“%(;1}
05ty

(3.4)

(3.5)

Throughout this section, we shall work on the interval of time [0, T'] such that

co<p,0 <L we point out that the generic constant C may depend on L in this
o €0

section. Since the proof of Theorem 3.1 is very complicated, we shall divide the

proof into several subsections.

3.1. Conormal Energy Estimates for p, u and 6

Notice that
Au=Vdivu — V xV xu,

then (1.1) is rewritten as

pr + div(pu) =0,
pur +pu-Vu+Vp =—ueV x w+ Qu + A)eVdivu,
00; + pu - VO + pdivu = k() A + 2ue|Sul? + re|divu|?,

where w = V X u is the vorticity.

(3.6)

(3.7)
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Lemma 3.2. For a smooth solution of (1.1) and (1.3), it holds that for ¢ € (0, 1],

] t
sup (/ Rfl(P)+Pf2(9)+§,0|u|2dx)+cl/0 ellVu(D) 1>+ (e)IVO(7)||* dr

0<c<r
1 t
< / Rf (p0) + poh(60) + 5po|uo|2dx +C / lu(r)|?dt + Ct, (3.8)
0
where c1 > 0and fi(t) =tInt —t + 1 and fr(t) =t —Int + 1 fort > 0.

Proof. Multiplying (3.7) by %, one gets that

d
E/,oln@dx—i—/deivudx

ve|? 1 Ve -
_ K(g)/ IVOI™ 4y + e/ —u|Sul? + Aldivu|?) dx + K(8)/ " do.
02 0 o 0
3.9
It follows from the boundary condition (1.3) that
Vo -
K(e)/ n do = wc(s)/ do £ Ck(s) £ C. (3.10)
w0 Fle)
We rewrite the mass equation (3.7); to be
pr+u-Vp+ pdivu =0, 3.11)

which yields immediately that
/pdivudx = —/,0, +u-Vpdx

d
:—/p((lnp)z—f-u-VInp)dx:—E/plnpdx. (3.12)

Substituting (3.12) and (3.10) into (3.9), one obtains that

%/(Rplnp — pIn6)dx +/K(8) |v02|2 n g(zmsmz + Aldivul?) dx < C.
(3.13)
On the other hand, it follows from (1.1); and (1.1)3 that
d
E/,odx =0, (3.14)

and

d 1
—/,09+—,0|u|2dx=f<(8)/ n-V9d0+2M£/ ((Swyu)ndo
dt 2 Ble) 90

< C + 8¢l Vull* + Csllull?, (3.15)
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where we have used the following facts in the estimates of (3.15)
K(e)) / n-ve da) ¥ 2Me‘ / ((Swyu)n da’
9 Ele}

=v1((8)‘/ 9da‘+2us)/ ((Su)n);u, da‘
082 Q2
< C+ Celulj, £ C+ 82| Vul* + Csllul)®.

Then, combining (3.13)—(3.15), one obtains that
d 1 2
— R(plnp—p+1)+p(9—ln9+l)+§p|u| dx

dr
Vo
+ [ k() )

< 82| Vu|* + Cs|lu)® + C. (3.16)

+ §(2M|Su|2 + aldive?) dx

It follows from Korn’s inequality and the fact 2u + A > 0 that

Vo> e .
[ S s adiva) ax 2 261 @) 1901+ VulP)~Clul?,

(3.17)

where the fact that ¢; > 0 is a given positive constant depends on cg, 1, A, k. Thus,
choosing § small, it holds that

d 1
E(/R(plnp —p+D+p0—-—Ind+1)+ Eplulde)
+e1k (@) IVOI? + crel| Vul* £ C + Cllull*. (3.18)

Integrating (3.18) over [0, 7], one obtains (3.8). Thus the proof of Lemma 3.2 is
completed. O

However, the above basic energy estimates are far from enough to get the
vanishing dissipation limit; one needs to get some conormal derivative estimates.
Set

0 £ sup {IV(p.u, ) (D310 + 10, 1,0, pr, 111, ) (D70 + £l V2 ull 700}
0stst

(3.19)
It follows from Proposition 2.3 that

0(t) £ CPWNy (1)) form = 3. (3.20)

Lemma 3.3. For m = 3, it holds that

t t
sup ||<p,0,u><r)||%m+e/o ||Vu<r)||%imdr+x<e>/o V0@ 3,0 de

0<t<r
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t
< CCpaa{1+ 11Gp0. 10, 60) 30 + 862 / IV2u(D) 131 dT + Cot P(Nin (1))
0

t t
+ 8k (e)’ /O 186 (D) 13 n 17 +8 /O 1V97"~ (o 0)(®)Pde |, (3:21)

where § is a small amount which will be chosen later and Cs is a polynomial
function of % which may vary from line to line.

Proof. The estimate for k = 0 is already given in Lemma 3.2. Assuming that it is
proven for k < m — 1, we shall prove it fork = m = 1. Applying Z% with |a| = m
to (3.7), one obtains that

pZ%u; + pu - VZ*u + Z%Vp

= —ueZ*V x o+ Qu+1eZ*Vdivu + CY +C5,
(3.22)
PZ%; + pu - VZ%0 4+ pZ%divu — k() Z¥ A0

=218 2%(|Sul?) + re 2% (|divu|?) + C§ + C + C2,
with
C(lx =—[Z2% plu; = — Zwlgl,ﬁ—&-y:a Ca,ﬂzﬁpzyut,
C§=—12% pu - Viu = =3 4> pyy—a CapZf ()2 Vu — pu - [2%, V]u,
C§=—[2% pl0r = = 2 15/>1 p+y=a CapZP pZ76;,
Cy=—[2% pu-V10 = =3 5> p1y=a Cap ZP (0W)ZY VO — pu - [2°, V10,
C?:_[Za’ p]dlvu = — z|ﬂ|§1,ﬂ+)/:0l CagngﬁpZVdiVu,
(3.23)

where C, g are the corresponding binomial coefficients. Multiplying (3.22) by Z%u
and integrating by parts, one has that

d 1 o 12 o o
3 §p|Z u] dx+/Z VpZ®udx
= —,us/Z“V X w-Z%dx + 2u + )L)S/Z"‘Vdivu - Z%dx
+ / (€% 4+ C2) Z%udx (3.24)

Using the same arguments as Lemma 3.3 of [22], one can get that
—g/zav X - Z%dx < —%guv x Zull® + 8e | Vull 3 + 81V U3 oy
+ CsCrnr2(IVulF s + luliFgm) (3.25)
and
S/Z"‘Vdivu 2% dx < —%8||diVZ°‘u||2 + 8¢l VuFgm + 867 V2ull

+ CsCn 2 (IV U3t + lelFgn)- (3.26)
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It follows from Proposition 2.1 that

201V 2% 2 < (||v X Z%u| 241 divEull 2+ | 2% 2+ 2% ~n|H%(aQ))

A

< IV x Z%ll 2+ 1divZ¥ull 12)+ Conpa (g + 1 Vil 3y r)-
(3.27)

Substituting (3.25) and (3.26) into (3.24) and using (3.27), then integrating the
resultant inequality over [0, ¢], one obtains that

1 t t
E/p|20‘u|2dx+/ /Z"‘Vp.Z“udxdr—}—chs/ IVZ*u(r)l|7, dt
0 0

1 t t
< E/,oo|zauo|2dx+c582/ IV ()13 dt+C88/ IVu(t) 3 dt
0 0

t t
+ [ [erren 2tuds drCuunCs [ 1VumIB )+ dr.
0 0
(3.28)

On the other hand, multiplying (3.22) by % and integrating by parts, one has
that
o

d zag
%|Z“9|2dx+/RpZ°‘divuZ"‘9dx —K(g)/Z“Ae- —dx

dr ) 2

o

< 5/(2p¢Z“(|Su|2) + AZ“(|divu|2))Z;9 dx + /(Cg‘ +C¥ + Cg‘)zeg dx
+ CP(Ny(1)). (3.29)
It follows from the boundary condition (1.3)5 that
In - 2°VO|12 < Cup1 (12%01 2 + 12771 V0| 12)

< Ci (uZ’"en%nvzmen% +12m0)

1 1 1
+ V2012, IV01 7 s + ||ve||;{ml), (3.30)

which, together with integrating by parts, yields that

Z*0 Z%0
—K(S)/ZO‘AG- 7 dx = —K(S)/Z“divve 7 dx
Z%9 Z90
= —«k(¢) / divZ*Ve J dx — K(e)/[div, Z*1Vo dx
VZ*0 Z40
) / 29V dx — i (e) [ [div, 2216 = dx

Z%0
—K(s)/ Z%V6 -ndo
e 0
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VZe9|?
gK(g)/%dx-Cs“(nveuHm_l||vzae||

L 1
+ (10 [l3¢n V20 [l pgm—1 + 12960 ||zz [VZ9012|Z2*VE - nle)

3k(e) [ |VZY9)? )
— Cs5Cpg1 PN (1)), 3.31)

where we have used Young’s inequality in the last inequality of (3.31). It is easy to
calculate that

Lo Zeg
a// ; [2uZ%(|Sul?) + A 2% (dive|?)] dx dr
0

t
< 882/ IVul|3m dt + Cst P (N (1)). (3.32)
0

Substituting (3.31) and (3.32) into (3.29) and integrating the resultant inequality
over [0, t], one gets that

! 3 torvzee)?
/—2'09|Z°‘9|2dx+/ /R,oZ"divuZ"‘@ dxdr + "f)/ /%dx de
0 0

t
§/&|Za9o|2dX+C5/ K(8)||V3m9(7)||2+K(8)2IIA9(T)II%m71 dr
260 0

t t
+ 58/ IVu()3m dt + 5/ Vo™ ~1o(z)|1? dr 4 Cst PNy (1))
0 0

! Z%9
+/ /(Cg‘ +Ci +C5) 7 dx dr. (3.33)
0

Combining (3.28) and (3.33), one obtains that
l/p|Z“u|2 + L z402dx +2c1£/t IVZ%(1)|?,dt
2 20 0 L
3 Lorvze)?
. k(&) / / | | dxde
4 Jo 0

‘
+ R/ /Z“V(p@) - Z% + pZ%divu - Z°0dxdt
0

1 t
< -/p0|2“u0|2 + 22z, Pdx + ca/ IV —lo(o)|2de
2 26p 0

1
+Cs /0 el VU 15pm + e IVu(0) 13 n-1d7 + CsCmyat PN (1))

1
+Cs / K (@)IVO@) 13 + k(€)1 A0 (D131 dT
0

1
2

t 1
+C(/0 ||(C‘f,cg,cg,cg‘,cg)||2dr)2(im(gnza(u,e)uzdr) . (334
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Now we estimate the fourth term on the LHS of (3.34). Note that

ZOV(ph) = 0 - VE%p + p - VZUO + 2%, Vplo + [2%, VOlp +0 - [2%, Vp

which, together with Proposition 2.2 and Hoélder inequality, yields that
t
I = / /Z“V(,o@) - Z% + pZ%divu - Z¥0 dx dt
0
t t
> / /(9 VZ% +p-VZO)Z%u dx dt +/ /pZ“divu - Z% dxdt
0 0
1 t
- ca/ IVa;" ' (o, 0)11> dr — Cs(1 + Q(t))/ Non(7) dt
0 0
13 1
> —/ /(GZO‘,O + pZ%0)divZ¥u dx dt +/ /pZ“divu - Z%0dxdt
0 0

t t
- Ca/ IV ="(p,0)| dt +/ / OZ% + p2°0)Z°%u - ndo dt
0 0 JoQ

— CsP(Ny (1))
t t
> —/ /92“,0 ~divZ%u dx dr +/ / BZ% + pZ°0)Z% - ndo dt
0 0 Jaq
t
- CS/ Vo™= (p,6)|1? dr — Cst P(Ny (1)). (3.36)
0
We shall calculate the boundary term in (3.36) when o3 = 0 (for a3 # 0, we

have that Z%u = 0 on the boundary) in the right hand side of (3.36). It follows
from (1.3) and (2.6), for k < m, that

0, itk =m,
1z Kgky n| 4 < nA=m (3.37)
H2 Con2{lIVullpgm-1 + llullpgm}, ifk <m —1.

If |op| = ||, it follows from (3.37) that

t
/ / BZ% + pZ°0)Z% -ndo dt = 0. (3.38)
0o Joaa

If |y | = 1, integrating by parts along the boundary and using (3.38), one has that

t
/ / BZ% + pZ°0)Z%u - ndo dt
0o Jaa

t
// 02319 p + pZ§'9;°0)Z% - ndo dt
0 JoQ

t
< aj—1qao aj—1qap o, .
S CQ(I)/O (|Zy 0, 'OlH% —|—|Zy 0, QIH%)|Z u n|H% do dt

t
= 5/0 IV (0, 01131 AT + C5Cpnrat P(Npu (1)), (3.39)
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Therefore, from (3.39) and (3.38), we obtain that

t
/ / BZ% + pZ°0)Z% - ndo dt
0 JoQ
t
<4 / IV9;" ! (0. ) 11> dT + C5Cmyat PN (1)) (3.40)
0

In order to estimate the first term on the RHS of (3.36), we use the following
equation, which is derived from (3.7);:
divu = =2 _ 2L v, (3.41)
pp

Applying Z“ to (3.41), one immediately obtains that

1 1
Z%ivu = ——Z%p; — * - Z%p — Z Ca,ﬁZ’g (—) -2V py
p p IBIZ1,B+y=a P
— > CupZ’ (5) L ZVVp. (3.42)
BIZ1,B+y=a p

It is easy to get that

L ro 0 0
/ / L2, 2% 5 dxdr = / L |2%p|? dx—/ 20129 o2 dx—Ct P (N (1)).
0oJ P 2p 200
(3.43)
Integrating by parts and using boundary condition (1.3), one has

rre rre
/ /—uZ“,o~Z°‘V,odxdr=/ /—uZ“,o(VZ“,o—i—[Z“,V]p)dxdt
0J P oJ p

t
> —8/0 19071 p(0)]12 d — Cyt PNy (1).
(3.44)
It follows from Proposition 2.2 that

t 1
> ’/ /ca,ﬂezap.(zﬂ (—) CZVp 4+ 2P (Z) ZVV,O) dx dr
0 0 0
o

IBI21,B+y=

t
< 5/ Va1 p(2)|1? dr 4 Cst P(Ny (1)). (3.45)
0
Combining (3.42)—(3.45), one obtains that

t
1
—/ /92"‘,0~Z“divudxdr z/—|2“p|2dx
0 2p

1 t
—/2—|Z“p0|2dx—ca/ Vo™~ p(r)|> dr — Cst P(Nyu(1)).  (3.46)
£0 0
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Substituting (3.40) and (3.46) into (3.36), one gets that
t
I = / /Z“V(p@) - Z% 4+ pZ%divu - Z2°0 dx dt
0
1 o 12 1 o 2 ! m—1 2
= | —12%l7dx — [ ——[Z%pol"dx = C§ | V3" (p,0)]"dr
2p 2po 0
— C2Cst P (N (1)). (3.47)

In order to complete the estimates in (3.34), it remains to estimate the terms involv-
ing C¥, i = 1...5.It follows from Proposition 2.2 and (3.27) that

5 ! !
Z/ IIC?‘IIdedféC[1+P(Q(t))]/ IVa" 1912 dt + C1 P (N (0)).
i=170 0

(3.48)

Therefore, substituting (3.47) and (3.48) into (3.34) and using Cauchy inequality,
one proves (3.11). Thus, the proof of Lemma 3.3 is completed. O

3.2. Conormal Estimates for divu, Vp and VO

In order to use the compactness argument in the proof of the vanishing dissipa-
tion limit, one needs some uniform spatial derivative estimates. In this subsection,
we shall get some uniform estimates on divu, V p and V6. In fact, in order to get the
uniform estimate of ||Viu|jm-1, one needs the uniform estimate of ||divu||ym-1,
since in this paper we consider the compressible flow.

Lemma 3.4. For m 2 3, it holds that

t t
sup ||(divu,Vp,V9)(t)||2+e/ ||Vdivu(r)||2dr+/<(8)/ 1A6(7)|? dT
0<t<t 0 0

t
< C[n(divuo, Vo, Vo) |1 + 8&* / IV2u(r)|* dr
0
t
+5K(a)2/ IVAO(D)|? dr + C3tP(./\/m(t))]. (3.49)
0
Proof. Multiplying (3.7), by Vdivu, one has that

' 1
/ /(,out + pu - Vu) - Vdivu dx dt +/ /Vp - Vdivu dx dt
0 0

t t
= —/w/ /V X w - Vdivudxdrt + Qu + A)s/ ||Vdivu||2 dr. (3.50)
0 0
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It follows from integrating by parts and the boundary conditions (1.3) that

1 t
/ /(put+pu -Vu) - Vdivudx dt = —/ /(pdivut+pu - Vdivu)divu dx dt
0 0
t t
—/ /(V,o cu +Vipw) - Vu)divu dx dt+/ / o(u - Vyu - ndivu do dt
0 0 Jogq

1 2 1 12 ' 2
§—§ pldivul®dx+3 [ poldivuo|” dx+C1+P(Q@)] [ (s, V)|~ dz
0

t
/ / o(u-Vyn -udivu do dt
0 Jo

1 1
< —§/p|divu|2dx+5/,00|di\’140|2dx

+

t
+C[1+ P(Q(t))]/o G, Vi) > + [ul7, dt

1 1
< —§/p|divu|2dx + 5/po|divuo|2dx + CtP(Nip(1)). (3.51)

By using the boundary condition (1.3) and integrating by parts along the boundary,
one has that

! t
e//an)-Vdivudxdrzs// n x w- Vdivudo dt
0 0 Jog

t t
= 8/ / (Bu) - I1(Vdivu) do dt = 8/ / (Bu) - Zydivu do dt
0 Jog 0 Joq

t t
Cse u| 1|divu| 1 dt £ Cze ul| gy ||divu|| 1 dt
se || lul, gldivel 1 de < Ce [ pullyhdivaly

A

A

t t
2/ Vdivu|> dt + c3g/ 1(Vu, w)||? dz. (3.52)
0 0
Substituting (3.51) and (3.52) into (3.50), one obtains that
1 7 t t
E/,o|divu|2dx + g(2# + A)s/ [ Vdivu|?dr — R/ /V(pe) - Vdivu dx dt
0 0
1
< 3 / poldivig|? dx+Ct P(N,, (1)). (3.53)

On the other hand, applying V to (3.7)5 yields that

oVO + p(u - V)VO + pVdivu = k() AVO + z;"V(Z/L|Su|2 + Aldivu|2)
—[Vp -6, + Vp -divu + V(pu)' V0o]. (3.54)
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Multiplying (3.54) by %9, one obtains that

t \v/:] t
/ /[pVG, 4+ p(u-V)Vo] - 5 dxdr + R/ /pV@ - Vdivu dx dt
0 0
! Vo ! 2 . . Vo
=k (e) Ave-jdxdt + & V(Qu|Sul® 4+ Aldivu| )o7dxdr
0 0
! . . Y2
- (Vp-0; + Vp-divu + V(pu) Vo) - e dx dr. (3.55)
0
For the first terms on the LHS of (3.55), it follows from integrating by parts that
! Vo
/ /[,on; +p(u-V)Vo] - e dxdt
0
Y 2 L0 2
3/—|ve| dx—/—|V90| dx — CtP (N (1)). (3.56)
20 26

For the last two terms on the right hand side of (3.55), it follows from the Cauchy
inequality that

&

t 5 L, Vb
V@ulSul® + aldivul?) - = dx de
0

4 Vo
+ ‘/ /(V,o~0,+Vp-divu+V(,0u)’V9)~7dxdr
0

t
< 882/ IV2u|? dt + Cst P(Np (1)). (3.57)
0

Using the boundary condition (1.3);, one gets that

! Y%
K(E)/ /VAG - —dxdrt
0 0
t |A9|2 t |V9|2
= —k(e) dxdr 4+ k(e) A ——dxdr
0 ¢ 0 62

t Vo - 7 torAgP?
+K(8)/ / AB ! do dr < ——K(S)/ / 291 dxdt
0 Jag 0 8 0 0

t
+CK(8)/ |AB];2dT 4+ Ct P (Ny (1)) (3.58)
0
- 7 t |A9|2 t
= ——K(S)/ / dxdr +CK(8)/ | AG 1 dT + Ct PNy (1))
8 0 0 0
<

3 t |A9|2 ) t 5
—Zx(e)/o/ o drdr +8k(e) /0 IVAB|2 dt + Cst PNy (1)).
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Substituting (3.57) and (3.58) into (3.55), one obtains that

! 3 torAg)?
/ﬁ|ve|2dx+R/ /pVG-Vdivudxdr—i-—K(e)/ /' ” dx dr
26 o 4 | 0

t

< / 2%0|v90|2dx + Ca/ E2IV2ul? + k(e)*|VAO|? dt + Cst PNy (1)).
0 0

(3.59)

Combining (3.53) and (3.59), it holds that

1 t
—/glV@(r)|2+pldivu(I)|2dx—R/ /GVp-Vdivudxdr
0

2
3 t AG|? 3 !
N "(8)/ /' | dxdr+—(2,u+)»)8/ |V divu| dz
4 0 2] 4 0

t
§C[||<veo,divuo>||2+6 / e IV2ul?+k (&) IVAQ|? dT+Cst PN (1) |
0

(3.60)
Finally, it follows from (3.41) that
t
I = —/ /OVp-Vdivudxdr
0
> [ —|Vp|"dx — | —|Vpo|*dx — CtP(N,,(1)). 3.61)
2p 2p0

Substituting (3.61) into (3.60), one proves (3.49). Thus, the proof of Lemma 3.4 is
completed. O

Next we consider the higher order estimates. Firstly, we estimate Z*divu for
lag| £ m — 2 with |a] =m — 1.

Lemma 3.5. For everym 2 3 and |a| £ m — 1 with |ag| £ m — 2, it holds that

t
sup ||(Z°‘divu,Z“Vp,VZ“Q)(t)Hz+8/ |V Z%divu(z)|>dt
0<e<s 0

t
+K(8)/ | Z4A6(z)||>dT
0
t
< CCnia[NaO) + 6 + ) / IV 27 2divu(e) |2dr + Cst PN (1))
0
t t
+s / V"0, 6)(x)2dr + ¢ / V22720 ()| Pdr
0 0

t
+ 5/ 2 IV2u(D) 13 +K(8)2||VZm_2A9(r)||2dt}. (3.62)
0
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Proof. The estimate for || = 0 is already given in Lemma 3.4. Assuming that it is
proven for |a| £ m — 2. We shall prove it for |a| = m — 1 = 1 with |ag| < m — 2.
Multiplying (3.22) by V.Z*divu yields that
t '
/ /(pZ“ut + pu - VZ%) - VZ%divudxdr +/ /Z“Vp - VZ%divudxdz
0 0
' t
= —,ue/ /Z“V x w-VZ%d ivudxdr +/ /(C‘f‘ +C5) - VZ¥divudxdr
0 0
1
+Qu+ k)g/ /Z“Vdivu -V M Z%divudxdr. (3.63)
0
Since
t
/ /(pZ“u, + pu - VZ%) - VZ%divu dx dt
0
t
= —/ /(pdin“ut + pu - VdivZ%u) Z%divu dx dt
0

'
—/ /(Vp - Z%; + V(pu)' - VZ%) Z%divu dx dt
0

t
+/ / PZ%y -n+pu-V)Z%u -n)Z%ivudo dt 2 I} + I + I3,
0 Jog
(3.64)

for I and I», one easily obtains that
'
I = —/ /(pZ“divu, + pu - VZ%divu) Z*divudxdr
0
! . o u-n . o
= | ] (pldiv, 20+ ptanZ a2+ 25 Zs)laiv, 200
0 Z

x Z%divudxdt

< —/§|Z“divu(t)|2dx—i—/%lzadivudzdx

+ ol + P(Q(1))] /0 t IVut])3 s dr, (3.65)

and
L < Cl1+ P(Q(1))] /0 IValR dr, (3.66)
where ¢(z) = IZ? Noting that Z contains at least one tangential derivative Z,,

integrating by parts along the boundary and using (2.6) and (3.37), one has that

t
I3 = / / [pZ%u; -n—pu-VIn-Z% + p(u-V)(Z% - n)]Z%divudodr
0 Jao

t
=/ / [pZ%u; -n— p(u-Vn-Z%
0 JoQ
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+ p(u1dy + u28yz)(Z"‘u -n)]Z%divudodr

t
< A, . LTI a
:C[1+P(Q(t))]/0 (|z wenl 12U 3+ |2 ulH%)
C|Z2™2divu| 1 dt
H?2
t

<s / V2" 2divu||*dt + CppaCst PNy (1)). (3.67)

0

Substituting (3.65)—(3.67) into (3.64), one gets that
t
/ /(,oZ"u, + pu - VZ*u)V Z%divu dx dt
0
< —/ §|Z°‘divu(t)|2dx +/ %|Z°‘divuo|2dx
t
+6 / V2" 2divu||® dt + C5Cpyat P(Noy (1)). (3.68)
0
By the same argument as Lemma 3.6 of [22], one can obtain that
t
8/ /Z“Vdivu - VZ%divu dx dt
0
> 3 ! o q; 2 ! m—2 q: 2
2 Zs IVZ%divu||“dt — Ce IVZ"“divu||“ dt (3.69)
0 0
and
t
- s/ /Z"‘V x w-VZ%ivu dx dt
0

t t
> —Z/ |VZ%divu|®> dt — Ce/ IVZ"2w|> dt — Cpyat P(Nip(1)).
0 0
(3.70)
It follows from Proposition 2.2 that

t t
/0 ICEIIT + ICs I dr < C(1 + P(Q(t)))/o PN, (2))dt £ CtP(Ny, (1)),

(3.71)
which, together with integrating by parts, yields that

t
‘/ /(C‘f‘ + C5)VZ*divu dx dt
0

1
< ‘/ /(c?+cg)zvz°‘—ldivudxdr
0

t
+ C/ /(|C‘lx| + |C‘2¥|)|V2a_ldivu| dxdt
0

t
2‘/ /(|Zc‘f‘|+|zcg|+|c?|+|cg|).|vza_1divu| e de
0
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t t
<s / IV 2" 2divu|? d + C / ICE 12, + ISR, dr
0 0 co

co

t
<s / V2" 2divu||® dt 4+ Ct P (N (1)). (3.72)
0

Substituting (3.68)—(3.72) into (3.63), one obtains that
t
/§|Z“divu(t)|2dx _ R/ /ZO‘V(pQ) - VZ2%ivu dx dt
0
3 t
+ Z(z“ +A)e / |V Z%divu|® dt (3.73)
0
t
< / %|Z°‘divuo|2dx + C[(S +e)/ IV 2" 2divu|? dr
0
t
te / IVZ"2o|*dr + cm+zcarP<Nm<z>>].
0

Next we shall estimate the temperature part. Applying V to (3.22),, one obtains
that

oVZ0 + p(u - VIVZ0 + pVZ¥divu — k() VEXAO
= VpZ%0, + V(pu)'VZ*0 + VpZ*divu + £V Z* (2| Su|?
+ Aldivu|?) 4+ V(CE +C§ +CY), (3.74)

VZ20 yields that

with |a| = m — 1 and |ag| £ m — 2. Multiplying (3.74) by

t
/%IVZ"‘@lzdx + R/ /pVZ“@ - VZ%ivu dx dt
0

t o VZ%
— Kk (e) VZUAg— — dxdr (3.75)
0
! VZ%9
gs/ /VZ“(2u|Su|2+A|divu|2) J dx drt
0

! VZ9
+/ /V(C§‘+C§‘+C§‘) J dxdt + CtP(Nyy).
0

It follows from integrating by parts that
d o VZY0
K(€) VZA0 5 dxdr
0

! AZ40 ! VZ*0
= —K(S)/ /Z“AG 5 dxdr—f—/c(s)/ /Z“A@ 72 VOdxdr
0 0

‘ V290
+K(8)/ / 220 2 Y odr
o Jag 0
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3k(e) [T [ |Z9A0)2 ! v n-VZ90
— dxdt + «(e) ZYN)——dodr
4 Jo 0 0 Joq 0

t
+ Ck(e) / | Z2™2A6)2dT + CtP(N;y (1)). (3.76)
0

A

Noting that Z% contains at least one tangential derivative Z,, integrating by parts
along the boundary yields that

! o - VZ¥0
Z AOT do dt
0 JoQ

! a—1 1 o o 1
z0 N0 (=Z,(n-VZY) +n-VZUZ, |- ) ) dodr
0 Jog 0 0

t 1 1
< CP(Q())k(e) / [nzm—ern LIVE"2A6) 7, + ||Z’"—2Ae||Lz}
0

k(&)

=k (e)

x (|n V201 + In - vzamLz) dr

|Bol Sm—2

t t
< 5/((8)2/ IVZ"2A0|% dt + Z 8/((8)2/ I1ZP A0)% d
0 BISm—1 0

1 t

+5K(e)/ ||VZm9||2dT+CI((€)/ 12" 2A0|% dt

0 0

+ CsCmr1t PN (1)), (3.77)
where we have used the following boundary estimates, for |¢| £ m — 1 with
lawol = m — 2,

1 1
In- V290 12330) = CCn (Nn% + ||Z”12A0||%N,,;‘),

|BolSm—2

1
In - VZ0 g1 50y = CCm+1(||VZm9||2 + 2 S

1 1
||ZM0||5) 1 NZ,
(3.78)

which follows from the boundary condition (1.3) and (2.6). Substituting (3.77) into
(3.76), one obtains that

! VZ*0
—K(S)/ /VZ"‘AQ dxdr
0

)
k(&) [* [ 12900 > [ 22
> // dx dt — 8k (e) / IVZ"2A0)% dr
2 Jo 0 0
1Bol=m—2 ; ;
- > 6/((8)2/ ||ZﬁA9||2dr—5x(e)/ IVZ"0)% dt
1BI<m—1 0 0

t
- cx(e)/ 122 A0)12 dt — CsCpp1t P(N;y (1)). (3.79)
0
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For the terms on the RHS of (3.75), it follows from Proposition 2.2 and Holder
inequality that

! o 2 . 2 vZzeo ! o a2
g) vz (2,u|Su| + ldivu| ) - dxdr‘+ 1(VCE, vCe)|2dr
0 0

t t
< 8¢ /O IV2ul3 1T + CIP N3 (1)) + | Vdive| 7 ] /0 {P(Nm(r»

+ V2™ 2divu, V"~ (p, 9)||2]dz + CsCrp1t PN (1))

t t
< 882/ IV2ul3 g +CP(./\/m(t))/ IV 2" 2divu, VO™~ (p, 0)||*dr
0 0
+ CsC 1t PN (1)), (3.80)

where we have used the fact that || Vdivu|| %Oc < CP (N, (1)), which will be proved
in Lemma 3.12 below. For the term VCZ‘, one needs to be more careful. First, one
notices that

2
Ci= 2. D CupZlpu)Z"0,6
18121, B4y =c i=1

+ > CapZPou-N)ZV0.0+ pu- N[2°, 000, (381)
IBI21,B+y=a

then, from Proposition 2.2, it holds that
! 2
/ IV(pu- N[Z2%, 3,10
0

2
+ 2 [Z IV(ZP (pui) 27 0, 60) P +11 27 9,6 - V2P (pu - N)ﬂ dr
IBIZ1, py=a Li=1

t
< C(1+ P(QM))) / P(Nou(2) + V" p||? dr. (3.82)
0

For || 2 1,8+ y = «, and |a| = m — 1, one notices that

pu- N
@(2)

ZP(ou- N)VZ7 0.0 = D C5) 2P (

) ~9(2)VZ279.0, (3.83)
BB

where C 7 (z) is a bounded smooth function of z. If 8 = 0 and ly| £ m — 2, one
gets that

t - . .
/ ||zﬁ(p” N)w(z)vzyazmﬁdrng” al
0 () @(2)

2 t
/ lp(z)VZ7 3,0 dr
L>® JO

< CtP(Nu(1)). (3.84)
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If | 3| # 0, from Proposition 2.2, one obtains that

t . N
/ 125 (p”( ) )VZVBZOHZdr
0 9z

t
=C+ P(Q(t)))/ P(Niw) + H
0

pu-N 2

dt < CtP(N, (1)), (3.85)
®(2)

Hmfl

where in the last inequality, we have used the Hardy inequality

2

-N
. < Corst Va2 s (3.86)
(P(Z) Hm—1

which has already been proved on p. 543 of [14]. Then, combining (3.83)—(3.85),
one obtains that

t

Z \ 128 (pu - NYVZ73.0|? dt < CtP Ny (1)). (3.87)
IBI21,B+y =«

Thus, it follows from (3.81), (3.82) and (3.87) that

t t
/ IVCY|*dr < CP<Nm(r)>/ IV~ (p, 0) 7 dT + Ct P (N, (1)).
0 0
(3.88)

Substituting (3.79), (3.80) and (3.88) into (3.75) and using Holder inequality, one
obtains that

t
/%Ivzo‘@lzdx+R/ /pVZ“G-VZ“divudx dr
0

I 0) /f/ |Z2A62
+ == = 7 dxdr
2 Jo 0

t
< CCi [ IVZ%60]1% + 3¢ / V2020 d
0

p 1Bol=m—2
-‘1-5/((8)2/ IVZ"2a01P+ D 12PA0) dr
0 IBISm—1

+5K(8)/Ot IVZ"0|? dt + Kk (e) /Ot 1272 A0 de

+ S/OI V2" 2divu|)® + VO™ (p, 0)| dr + C,gtP(Nm(t))]. (3.89)
It follows from (3.73) and (3.89) that
/g|Z°‘divu(t)|2 n %Wzaeﬁdx

'
+ R/ /(pVZO‘O — Z%V(p0)) - VZ%divudxdt
0
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3 ! L Z9A0)?
+>Qu+ )\)s/ IV Z%divu|>dT + @/ / 127801 4
4 0 2 Jo 0
t t
< CCpr [N(©) + 562 / IV2ul2,, dr + 8k (e)? / IVZ"2A6]2d
0 0

lBol=m—2 ¢
+ok(e)? > / 128 A0|%dT +8K(8)/ IVZ™0|2dt 4 Cst P(N; (1))
0 0
1BI=m—1

1t
+ c/ k(@) Z™2A0)? + || V22" 2y ?de
0

t t
+(8+s)/ ||VZ’”_2divu||2dt+8/ ||V8tm_1(,0,9)||2dr}. (3.90)
0 0

In order to close the estimate of (3.90), one notes that

PV 299 — Z9V(pf) = —0ZVp — p[2%, V10

— > Cap(ZPo-2Vp+ 2Pp . 2VV).
IBIZ1.p+y=c
(3.91)

Since Z% # 3" ~! it follows from (2.4), (3.91) and integrating by parts that

/Ol /(pvzae — Z%V(ph)) - VZ%divu dx dt
= /Ot / (pVZ%0 — 2%V (p8)) - (2°Vdivu + [V, Z¥]divu) dx dr
2 /Ot /(pVZae — Z9V(ph)) - Z*Vdivu dx dt — 5/01 IV 2" 2divu)? dr
— Cst P(N (1))

t t
> —/ /ez“v,o-z“vmvu dx dr —5/ V2" 2divu||® dt
0 0

t
— Cst PN, () — Z ca,ﬁ/ /|Z(Zﬂ9~ZVVp+Zﬁp-ZVV9)
BIZ1pty=a 0
- 2°71'Vdivu| dx dt

t t V
;/ /ez“vp.z“v (ﬂ) +/ /ez“vp-z“v (” ")
0 P 0 P

t
- cs/ V2" 2divu||> dt — Cst PNy (1)), (3.92)
0

where we have used (3.41) in the last inequality. For the first term on the right hand
side of (3.101), one notices that
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1 1
Z°v (ﬁ) = ;Z“V,o, + z Ca’ﬂzﬂ (;) . ZVV,O,

0
1BIZ1, 4y =0

1
+ D CapZlp - 27V (;). (3.93)

Bty=a

Therefore, using (3.93) and Proposition 2.2, one has that

¢ 6 6
/ /ez“vp-z“v (&) dx dt §/—|Z°‘Vp|2dx —/—°|z°‘vp0|2dx
0 P 2p 2po

t
+3/ IV~ pl|* dr + Cst P(Nou ().
0

(3.94)
To estimate the second term on the RHS of (3.92), note that
o u Ui _go u-N _,
zZov|=.Vp) = Z —ZVi,ip+ ——Z%,Vp
P i—12 P P
+> > CapZf (ﬂ) LZVVdp
i=L2|B|21,p+y=a p
p(uN y
+ D CapZ - Z278.Vp
IBIZ1,B+y=a
+> > ca,gzﬂv( )-zyay,-p
i=1,2 +y=a
8 u-N
+ D CapZPV(——) 270.p. (3.95)
Bty=a P
Integrating by parts immediately yields that
u; u-N
/ /GZ“V,O —Z"‘VE)yi,o—i— —Z%3,Vp | dxdr
i=1,2 P P
u; u-N
/ /GZ"‘V,O —8in“Vp+ —09,2%Vp | dxdr
i=1,2 P P
o o N o
0Z%Vp - [Z V, 9, ],0+ ——@()[Z%,0;]Vp | dxdr
12 P pe(2)
i=
= CoCst PN (1)). (3.96)

It follows from Proposition 2.2 that
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> > aﬁ//ezavp Zﬁv< )~Z7/8y,-p
i=1,2 p+y=a
+ zh (;l) -ZVVB},I-,O> dxdt
- > cxﬁ/ /ezaw Zﬂv( )-Z"azpdxdt
Bty=«a

<s / 1987 plI2 dt + Cyt PN (1). (3.97)
0

On the other hand, note that for || =2 1,8+ y =, and || =m — 1

zb (14 pN) - ZV9.Vp = Z Ca,gq};(z)zg (M_(N)) ZV(Z3V,0) (3.98)

where 8| + 7| < m —1, 7] < m —2 and C, 4.7 () is some smooth bounded
function of z. Using (3.98) and similar arguments as in the proof of (3.87), one has
that

Z // Co 7 DOZ“Vp - Zﬁ( )~Z7’3ZV,odxdr
B<B.7<y

! : d u-N

< C(/ ||Z“Vp||2dr) 1> / 12 (7) - 279, Vpll?
0 BIZ1pty=a"’

< CCst P(Np (1)). (3.99)

Combining (3.95)—(3.99), one obtains that

/ /ezavp 2oV ( vp) dxdr < ca/ V9"~ p)|? dT +Cst P (Niu (1)).

(3.100)
Then, substituting (3.94) and (3.100) into (3.92), one obtains that

t
/ / (pVZ%0 — Z°V(ph)) - VZ%divudxdr
0
0 6
§/—|Z°‘V,o|2dxdr —/—0|Z°‘Vp0|2dxdt — Cst P(Nip (1))
2p 2po
t t
—CS/ V2" 2divu|*dt — ca/ Vo= p|*dr. (3.101)
0 0

Substituting (3.101) into (3.90), we have proved (3.62). Thus, the proof of Lemma
3.51is completed. O
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In the proof of Lemma 3.5, we have used the fact that |ag| < m — 2 in (3.67)
and (3.77). However, for the case Z% = a;"—‘ , arguments such as (3.67) and (3.77)
are not available anymore, and we can obtain only the following weak estimate
£||8,m_1(divu, Vp)||?, but the control of &2 fot ||V8,m_ldivu(r)||2 dr is crucial for
us to close the a priori estimation.

Lemma 3.6. For every m = 1, it holds that

l t
sup (s||(a,m—1divu,va;"—lp)(r)||2)+—(2M+/\)a2/ Vo divu(z)|? dr
0<r<i 2 0

t
<c [eu(a;"—ldivuo, Vo po) 1> + / 19"~ Vo> dr
0
+C5Cm+1tP(./\/m(t))] . (3.102)
Proof. First, it follows from the boundary condition (1.3) that
n- 0" =0 nx" 'o=[Bd" ul,, n-va"lo=v""10. (3.103)
Multiplying (3.22); (with Z* = 3") by £Vdivd," ' u, one obtains that
t
s/ /(pa,m—lu, + pu - V" lu)Vdiva™ u dx dr
0
t
+s/ /a;"—lvp - Vdiva"udx dr
0
t
= —/wz/ /v x 3" . Vdiv" ' dx de (3.104)
0
t t
+Qu+ x)ez/ Vo —tdivu|? dr + s/ /(C? +C$)Vdiva" u.
0 0
It follows from (3.103) and integrating by parts that

82

t
/ /v x 3" o Vdiv" ludx de
0

:82

t
// nx " o TI(Vdiv"'u) do dt
0 JoQ

t
< C82/ Inx 8" | 118" divu| ;1 dt
0 2 H?2

H

t
<cCye? [ 10" |y -0 Mdiva| o dr
0 H?2 H?2

A

1 t
EEZ/ V"~ tdivu||> dt 4+ CC3t P(N; (1)) (3.105)
0
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and
t
s/ /(pa;"—lu, + pu - V" luyvdiva™
0
t
= —8/ /(pat’"_ldivut + pu - V" divu)diva! ' u
0
t
— s/ /(V,o 2wy 4+ V(ow) - Vo uydive™  'udxdr
0
t
- 8/ / pu-Vin- Btm*luat'"*]divudadt
0 JoQ
< —s/ §|a;"—1divu(t)|2dx n a/ %wlm_]divuolzdx + CtPN,, (1))
t 1 1
+C[1 + P(Q(t))]e/ 197" a2 197 ull 2,
0

1
x ||a;"—1divu||§1,l||a;"—1divu||%dr (3.106)
< —s/p|a;"—1divu(t)|2dx+a/p0|a;"—1divuo|2dx
1 t
+ Rgz/ Vo ~tdivu|>dt + Ct PNy (2)).
0
Using (3.71), one obtains that

t
& / /(c;’+cgwdiva;"—1udxdf
0

A

1 t t
—52/ ||va;"—1divu||2dr+c/ Iy, cH|* dr

A

1 t
Eez/ Vo~ tdivu | dr 4 Ct PNy, (1)). (3.107)
0
Substituting (3.105)—(3.107) into (3.104), one gets that
t
s/§|a,’"*1divu(t)|2dx —sR/ /a;"*‘V(pe)-Vdiva;"*‘udxdr
0
3 2 ! m—1 3: 2
+ Z(Zu + M)e (Vo “divul||~dt
0
< e/ %a;ﬂ*ldivuoﬁdx + C3t PN, (1)). (3.108)

Finally, it follows from (3.41) and the Cauchy inequality that
t
— s/ / 3"~V (p0) - Vdiva" 'udxdr
0

t
- —g/ /{98,’"71V,0 + [0V (ph) — ea,’"*lvp]}Vdiva;"*ludxdr
0
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% &
> e/ 1 VP s/ 18"V po Pdx — Congett PWi (1)
0 2p0
_ l 2 ! m—1 3: 2 _ ! m—1 2
S @utne? [ IvartdivalPdr — ¢ [ arTivelPde. (3.109)
0 0

Substituting (3.109) into (3.108), one proves (3.102). Thus, the proof of Lemma
3.6 is completed. [

Usually, it is hard to obtain the uniform estimate for the term fot Vo, ~2divu [| 2
dr, since it involves two times standard space derivatives. We observe, however,
that div can be expressed by some good terms by using the mass conservation law.

Lemma 3.7. For every m 2 3, it holds that
1t t
[ vz P dr < € 19 p@)IP de o+ ot PG,
0 0
(3.110)
t
82/ V22" 2u(t)|? dt < Copt PNy (1)), (3.111)
0
t t
K(s>2/ IVZ"2A0(7)|* dt < CP(Nm(r»/ L+ 1V~ (0. )17
0 0
+ 2 V2ul)3 o0 dr, (3.112)
t
K(8)2/ 971 AO ()| dr £ CtP (N (2)). (3.113)
0
Proof. Applying VZ% to (3.41) with |a| £ m — 2, one has

VZ%ivu = —VZ%(n p); — VZ“(uiB),i Inp) — VZ%u - N, Inp). (3.114)

By using Proposition 2.2, it is easy to obtain

t t
[ vz an o PV 2 iy gy dr C [ 19 pIP drCr PG00,
0 0

(3.115)
and
t
/||VZ“(u~Nazln,o)||2dt
0
! "“Nfu-N 2
g/ ||V(u-N)~azlnp>||$1m72dr+/ ( ) Z3V In p) dr
0 0 @( ) 'Hm -2
N|? t
SC|PWNw()+ sup |—— /(P(Nm(l'))-f-H )dr
0§‘L’§t (p(z) L>® 0 Hm— 2
< Cut PN (1)), (3.116)

where the hardy inequality was used in the last inequality of (3.116). Combining
(3.114)—(3.116), we obtain (3.110).
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Note that

A=1+IVYPog + D@5 — 8y (3d) — 9y d:dy), (3.117)
i=1,2

which, together with (3.7),, yields that

t t
82/ V22" 2u(0)|? dr < Cs2/ 12" 282u(7)||* dT + Cot P(Noy (1))
0 0
t
< Cé? / 1272 Au(T)|* dT + Cput P(Non (1))
0

t
< C82/ 12" 2V divu(t)||> dt + Cpt PN (1))
0

< Cput PN, (1)). (3.118)
Thus, one obtains (3.111). It follows from (2.4), (3.110), (3.111) and (3.74)(with
|| = m — 2) that

t
K(S)z/ IVZ"2A0|% dt
0
t
< C(+ P(Q(1) / IVZ"2divu|® + VO~ 0 (D)1 + PN (2)) dt
0
t t
+C(1+P(Q(t)))/0 eznvzu(r)u%{mfzdw/o IV(CE, cg, co) @) dr

t
= CP(Nm(t))/ IV3;"~ (o, 0)(D)II> dt + C1 P (N (1)), (3.119)
0

which yields (3.112). Finally, it follows from (2.4) and (3.74) with Z2¢ = 8{"71
that

t t
K(e>2/ "' A6|>dr < C(1 + P(Q(t)))/ PNy (1)) dt £ CtP(N; (1)),
0 0

(3.120)
which yields (3.113). Therefore, the proof of this lemma is completed. O

Due to the difficulty on the boundary estimates, it is hard to get the uni-
form estimates on supy<,<; ||8tm_lV(p, 0)||. However, the uniform estimate on

fé ||V8tm_1(p, 0)||>dr is possible, which is crucial for us to close the a priori
estimates.

Lemma 3.8. I holds, for m = 3, that
sup (]| V! 2divu(t) > + () 1" 2 A0 (2)|1%)
0<t<r
+/0t l(vo ', Vo~ p) (o)) dr
< C{Nm(0) + 1PNy (1))} (3.121)

Proof. Multiplying (3.22),(with 2% = 3™~!) by V9" 2divu, one obtains, by
using (2.4), that
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1 t
SCn+ eV 2divu(r)||* — R/O / Vo (p6) - Vo 2divu dx dt

< —Qu 4 Vel Vo Adivug||> + Ct PN (1)), (3.122)

N =

where we have used the following facts:
t
s/ / Vo~ divu - Vo~ 2divu dx dt
0

1 1
= Ee||va,m—2divu(z)||2 - §8||V8lm_2divu0||2

and
t
- ;w/o /v x 3" e - Vo 2divu dx dt
t
= —/w/o /n x 3" o - TI(VO"~2divu) dx dt
t
<Ce | 19" ul 110" 2divu| 1 dr
0 H?2 H2

t
< Cs/ 187 Y|l g1 19" 2 divae|| j1 dT < CtP (N (1)).
0

am—1
On the other hand, multiplying (3.74) (with Z* = 3"~2) by Y%’ and using

(2.4), one obtains immediately that
t t
/ / §|va,'"—19|2 dx dr + R/ /pva;"—le - V" 2divu dx dt
0 0
t vorle
— K(8)/ /Va,’"—er S dxdt
0 )
1 t o t
< - Sivor19)2 dxdt + CP(N, (1) | €2IVull2,, . dt
8Jo ) 0 ! 0 H

+ CtP(N,(1)). (3.123)
Combining (3.122) and (3.123) and using (3.111), one gets that

1 7 [
5(2/1+)»)£||V8t’"*2divu(t)||2+g/o /gwa;"*leﬁdx dr
t V8m719
—K(e)/ /va{”*er- f@ dx dt
0

t
+ R/ /[pva;"—le — V" (pd)] - Vo Adivu dx dt
0

< N (0) + Ct PN,y (2)). (3.124)
In order to estimate the terms on the LHS of (3.124), we first note that

PV —varTl(ph) = —ovar T p—[a" L, pIVO—[3", 01V, (3.125)
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and
uj - 9yip -Nd
Vo 2divu = —3" 2V (&)— DI (—’ ) )—a;”?v (—” Zp) .
p i=1,2 p p
(3.126)

Then, using (2.4), (3.125) and (3.126), and after some tedious calculation, one
obtains that

t
R/ /[pva,'"—le — V" (p6)] - VoI~ 2divu dx dt
0
7 ([0 ¢
> gR/ /—|va;"*1p|2dxdz—al/ IV ~2divu||> dt — Cs,1 P(Np (2)).
0 Y 0
(3.127)

It follows from the trace theorem, (3.103) and integrating by parts that

! varlo
—K(S)/ /va,m—er- f@ dxdr
0

L Ao ve.varle
= k(e) am2A0 - ( - . )dxdr
0 0 0

t amle
— vk (e) / / 2N - L——dodr
0 Jaq 0

am—er 2 am—ZAG 2
i,{(g)/udx_,((s)/udx
20 26y

1 t
— CtP(Npu(1) — —/ /fwa,’"—lm?dxdr
16/, ) 6

t
— C(e) /0 (1vap2aeiz a0 =617 + a5 201
x (Ivay=tols 1o, ~"o11> + o6 )dr
A2 Al "2 Afy |2
> K(S)/%dx —K(S)/ %dx — Cst PNy (1))
1 t t
- -/ /3|va;"—19|2dxdr—3/<(5)2/ Va2 A6|%dr.  (3.128)
8 Jo 0 0
Substituting (3.127) and (3.128) into (3.124), one obtains immediately that
t
s||va,’"—2divu(z)||2+K(g)||a,’"—2A9(t)||2+/o Ivam=1@, p)|I*>dt
t t
< C[Nm(0)+5/c(s)2/ ||va,’"—2A9||2dr+C51/ Vo —2divu|® dr
0 0

+ CS],SIP(Nm(t))]
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t t
§C[Nm<0)+61/ ||Va,’"—1p||2dr+aP<Nm(r>)/ IV =t (p, 6> dr
0 0
+ Cs, .5t P(Nop (t))], (3.129)

where we have used (3.110) and (3.112) in the last inequality. Setting § = §;
P (N, (1))~ and taking 8; suitably small, one proves (3.121). Thus, the proof of
Lemma 3.8 is completed. O

Since the estimate in Lemma 3.6 is not enough for us to get the uniform estimate
for Vo," ~!u, we need some new estimate on ;" ~divu ||. Fortunately, we have the
following subtle control regarding ||9," ~divu II:

Lemma 3.9. Let us define

An@) 210w, O+ D 12V 0I5, + D 12°Vull},, .

1B1Sm—2 |B1Sm—2
(3.130)
Then, for every m 2 3, it holds that
||8;m_ldiV“(f)||2 S Co{P(An (1)) + P(Q(1)))}. (3.131)

Proof. Since the proof is the same as the one in [22], we omit the details for the
side of brevity. 0O

Remark 3.10. We point out that it does not contain the terms || Va;" -1 (p,u,0)| in
the right hand side of (3.131). The estimation of Q(z) will be given in Section
3.4 below. This key observation allows us to obtain the uniform estimates for
1V ~tul).

3.3. Normal Derivatives Estimates

Similar to the corresponding part in [22], in order to estimate ||Vul[ym-1, it
remains to estimate || x d,u|l4m-1, where x is supported compactly in one of the
2; and with value one in a neighborhood of the boundary. Indeed, it follows from
the definition of the norm that Il x By te | 3gm—1 < Cllullpm fori = 1,2. Thus, it
suffices to estimate || x 0y, 1| pm—1.

Note that

divu = pu - n + (I19y1u)1 + (T10,2u)2 (3.132)

and
Opu = [Ou - nln + I1(0,u), (3.133)

where IT is defined in (1.11). Thus it follows from (3.132) and (3.133) that

X Onttllggm-1 = [1(X ne - 1, X TT(On1t)) [l gm—1
= Cnfllxdivullpgn—1 + I x @) lgn-1 + llullpm}.  (3.134)
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Thus it suffices to estimate || x [T(3,u)||3m-1, since ||u ||y and || x divu||ym-1 have
been estimated in Sections 3.1 and 3.2, respectively. We extend the smooth sym-
metric matrix A in (1.3) to be

A(y, z) = A(Y).

Define
N2 x(wxn+T(Bu) = x(I(w x n) + I1(Bu)). (3.135)

The n defined here, which enables one to avoid to estimate V2 p, is slightly different
from the one in [14]. Then, in view of the Navier-slip boundary condition (1.3), n
satisfies:

nlag = 0. (3.136)

Since w x n = (Vu — (Vu)") - n, n can be rewritten as
N = x{M@u) — TI(V(u - n)) + TI((Vn)" - u) + T1(Bu)}, (3.137)
which immediately yields that
X TT@ni) ll3n-1 < Congr (I llpgm—1 + l[ullpm). (3.138)

Hence, it remains to estimate ||7||;ym-1. In fact, one can get the following conormal
estimates for n:

Lemma 3.11. For every m = 3, it holds that

t
sup (D) 13,1 +e/ IVnl2,, . dz
0<e<s n 0 t

t
gccm+z{P<Nm<0>>+582 / 1V22]13 - dr+carP<Nm<t))]. (3.139)
0

Proof. Notice that
Vx(u-Vu)=w-V)o—(o-V)u+divu - w,
so w solves the following vorticity equation:
pw; +pu - Vo = neAw + Fp, (3.140)
with
FIe2-Voxu —Vpx - -Vu+plw- - Vu— pdivuw. (3.141)
Consequently, we obtain that 1 solves the equation

PN+ puidyin + puzdy2n + pu - Noon — peln
= x[Fi x n+TI(BF)]+ x(F3 + F4) + Fs + eA(TIB) -u £ F, (3.142)
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where

F, = Qu+ A)eVdivu — Vp,
F3=-2u 23»:1 edjwxdjn — uswan+Z,~2:1 puiw X dyin+pu - No x d;n
- [Zle pu; Ty B - ) + pu - NTI(3,B - u)] + w3, eTI(;Boju),
Fy=— Y7 pui (@, T)(Bu) — pu - N (3.1 (Bu),
F5s = ziz:l puidyix - (@ x n+I1(Bu)) + pu - No; x - (w x n + I1(Bu))
233, €0 x0j (@ x n+ TI(Bu)) + epAx - (@ x n + I(Bu)).
(3.143)

Let us begin with the proof of the L?-energy estimate. Multiplying (3.142) by
n yields that

t t
sup /p|n|2dx+2£/ Vn|*dr §/po|n0|2dx+/ /Fr;dxdr. (3.144)
0 0

05ty
To estimate the terms on the RHS, note that
t t
/0 IXTICFy X 1) 130t AT = Co P(Nou (1)) /0 IV~ (p. 0)(T)||* dx
+ CPNu (1), (3.145)

t t
/ IXTI(BF2)3-1 dT §Cm+1[/ PN + 1V (0, 0)]* dr
0 0
t
+a2/ I Vdivie|3 dr}, (3.146)
0

t t
/ 1 F3113 - drgcm+z[82 / 1 V2l dr+tP<Nm(t))],
0 0
(3.147)

t
/0 X Fal2 1 4T < Congat PN, (1) (3.148)

Since all the terms in Fs are supported away from the boundary, one can estimate
all the derivatives by the || - ||3» norms. Therefore, it is easy to obtain

t t
/ 1F5013 s dT < Conpr |g2 / X V2ulygnos d + 1PN (@) {. (3.149)
0 0
Finally, by integrating by parts, it is easy to obtain, for |a| < m — 1, that

t !
/ /sza(A(HB) cu) - Z%dr < 88/ IVZy|?dt + Ciaot PNy (1)),
0 0

(3.150)
Consequently, substituting these estimates into (3.144) and using the Cauchy in-
equality, one has that



Uniform Regularity and Vanishing Dissipation Limit 1387

t
sup /p|n|2dx +2s/ 1Val? de
0<c<s 0

t
< /po|no|2dx +Cm+z[6/0 Vo=t (p, 0)()|1>dt
t
+3s2/ % V2ull3 -1 dT + CatP(J\/m(t))]. (3.151)
0

Thus, we proved (3.139) for £ = 0 by using Lemma 3.8.
To prove the general case, let us assume that (3.139) is proved for k < m — 2.
We apply Z* to (3.142) for |o| = m — 1 to obtain that

P2+ p(u - V)29 — neZ%An = Z°F + C% 4+ (8, (3.152)
where
C¥ = —[2%, pln, = 28121 pty = CapZPpZ¥y;,
CS = = 2 p1=1,p+y=a Cap 2P (oui) 27 dyin

— 1512154y =« CapZP (o1 - N)ZV 3n
=P N) X g2 Cp ()0 2P0,

(3.153)

where Cg(z) is bounded smooth function of z. Multiplying (3.152) by Z%n and
using (3.145)—(3.149), one obtains that

1
sup /—pIZ"‘nlzdx
0<e<i) 2

t
1
§,u8/ /Z“AnZ”‘ndxdr +/§p0|Z°’770|2dx
0
t - - t
+/ /(C‘f‘+C§‘)Z”‘ndxdr+Cm+1[582/ % V2ull3 -1 dT
0 0
t
+5/ ||va;"‘(p,9)||2dz+C5zP(Nm(t))]. (3.154)
0

By the same argument as Lemma 3.12 of [22], one gets that

t 3 t t
,s/ /Z"‘AnZ“ndxdr < —Z/w/ ||VZ°‘n||2dr+C8/ V7113 s dt
0 0 0
+ Cogat PNy (1)) (3.155)
and

t - - t
/0II(C‘f‘,CE’)II2dT§Cm+2[1+P(Q(t))]/O PN (1)) dt = Cipp2t PN (1))
(3.156)
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Substituting (3.155) and (3.156) into (3.154) and using Lemma 3.8, one obtains
that

t
sup /plZ"‘nlzdx +Ms/ IV 2|2 de
0 0

t
< Cm+2[//?0|3“770|2dx+8/ V12,2 de
0

t
+ 582/0 V2113 gt dT + C5t PNy (r))]. (3.157)

By using the induction assumption, one can eliminate the term ¢ fot IVn ||%1(,,,_2 dr.
Therefore, the proof Lemma 3.11 is completed. [

From (3.132), (3.133) and (3.138), it holds that

m—2
D 12°Vully < Cun (nun%{m 1l + D ||af"divu<r)||,%1_1_k),

|B1Sm—2 k=0
(3.158)
t t
/0 1V2ul2,, dt < Coia /0 UVl + 19012 oy + [Vdiva 2,
+ P(N,p)) dz, (3.159)
m—=2 . ¢
> /0 IV20kul?, | dr < cm+z’ /0 IVl + V712 de
k=0
m—=2 .
+Z/ lokvdival?_,_, d —i—tP(/\/m)] : (3.160)
0
k=0

t t
: / IV22"2u)2d < Cpyre / 193122 d7 + Cog 1t PO, (3.161)
0 0

where (3.110) is used in the estimate of (3.161). Setting 8 = 8; P(N;,(¢))~! and
taking §; suitably small, then it follows from (3.21), (3.62), (3.102), (3.121), (3.139),
(3.158)—(3.161) and Lemma 3.7 that

sup {Aw(0) + [0 31 + €107 (V o, diva) (T) |17
0<t<s

+ e[V 2divu () |2 + k()13 2 A0 (D) |1%)

t t
+/0 ||va;"—1(p,9)<r>||2dr+/0 ellVu()l3m + k(& IVO(D) |13 dT

rm=2 rm=2

+e/0 DV ul;, g dr +K(€)/O D F A0,y dr
k=0 k=0
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t
+/ e2IV2omtu(n)||> 4 k(e)? 10" AO (D)2 dT
0

< CCman N (0) + t PNy (1))}, form = 3. (3.162)

3.4. L*°-Estimates

This section is devoted to estimating L°°-norm parts contained in (1.15). How-
ever, it is not easy to get such estimates because the equations of p, u, 6 are strongly
coupled and the viscosity and heat conductivity are not at the same order. Actually,
if one estimates ||V p||yy1. directly, then the high order term fot IVOl342.00 dT must
appear, and it is very hard to control such a term. To overcome this difficulty, we
try to estimate the L°°-norm of V(p0),Vu and V@. Firstly, we have the following
useful Lemma:

Lemma 3.12. For every || 2 0, it holds that

IZ%p. 0. w)|700 < CP(Aw(1), form =2+ o], (3.163)
Vol 0  C3UIV (0D 3100 + VO3 00) - P(Am(0)), form =5,
(3.164)
0(1) = C3{lIVull3 0 + €l02ullFo + V(00174100
+ VO30 + P(Am(0)} form 25, (3.165)
Idivee]) 3100 S C3P(Am )L+ V(0O 13510 + V0I5 100 form = 4,
(3.166)
C3P ,
||Vdivu||%oo < 3PO1) 5 ) form = 3,
C3[P (VP00 + PUVul3, ) + P(Aw)],
(3.167)

IVdivie 3100 S CHIV0O 700 + V01 2.0
+ P(A, (1) + P(Q(1))}, form = 6. (3.168)

Proof. The proof of (3.163) is an immediate consequence of (2.5), we omit the
details here. Notice that

Vp = — L, (3.169)

which immediately implies (3.164). Using (3.163) and (3.164), we immediately
obtain (3.165).
Using (1.4);, (3.163), (3.164), (3.41), and the facts that

diviu =070, + - V)01 — p~'Ip: + (- V)pl, (3.170)
Vdivu = 07 [VO, + (u - V)VO] — p~ [ Vp, + (u - V)Vp] — p~ 'V pdivu
+Rp 'Vl + (u-V)O1+607'Vu-Vo — p~'Vu-Vp, (3.171)

it is easy to prove (3.166)—(3.168). For simplicity, we omit the details here. There-
fore, we complete the proof of Lemma 3.12. [



1390 YoNG WANG

Remark 3.13. Lemma 3.12 implies that one needs only to estimate ||V (00) ||${1,OC,
s||V(p9)||§iz,oo, ||V9||§{,,OO, ||Vu||%_lmo and &|2ul|? ~. Indeed, it is crucial to esti-
mate || V(00)ll941.0c, but not ||V p|l441..0. We also point out that the condition (1.20)
will be used repeatedly to control the possible interaction between the viscous and
the thermal boundary layers in the following analysis.

Uniform Estimate for ||VP||%11,00 and 5||VP||%.[2.30
Firstly, we have the following lemma which will be used to prove (3.174) below:

Lemma 3.14. Assume that (1.20) holds, then one has, for m = 6, that

1
5/ [10zzull 31,00 dT = Cr2{Am (0) + 1 P (N (1))} (3.172)
0

Proof. 1t follows from the momentum Equations (1.1),, (2.5), (3.117), (3.162) and
(3.168) that

t t
8/ 10221l 941,00 dT < C3/ PNy + e[| Vdivu || 100 + €[ V]l 2.0 dT

0 0

t

< C3tP(N,y) + C38/ IV, 1)llp2.00 dT < C3tP(Nip)
0
! 272 3 2 3
+cga/ IV2220, w12, IVZ20, w1, dr
0 co co

t
< C3tP(Ny) +C384/ 1(V2u, AD)|I3,; dt
0
= CCn12iNm (0) + 1 PN (1))}, (3.173)

where we have used (1.20) in the last inequality. Thus, the proof of Lemma 3.14 is
completed. [J

Lemma 3.15. Assume that (1.20) holds, then one has, for m = 6, that

t
IV 134100 +EIV PG 0+ /O IV P13 200 AT £ Cong2{ PNon (0)) + £ P (N (1))
3.174)

Proof. Note that
2 2 ! 2
IV D120 + VP12 + /O IV pl2 s do

1
< CCpia [P(Am(r)) + PN () + €l pl3 e + /O 16 P12 2. dr} .
(3.175)

Therefore, one needs only to control ¢||d, p ”%—{2,00 + fé |10, p ||%{2_oo dt. Substituting
(3.41) into (3.7),, one can obtain that
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Qu+ Ve[V + (u-V)Vpl + pVp = —p*i — uepV x
1
— Qu+nep [v (;) o+ V (%) : Vp} , (3.176)

where 1t = u; + (u - V)u. It follows from (3.169) that
1 1 /1 0
Vor = 5V(,09)r ) 591V(/09) + 0:VO + pVO; — 5V99z (3.177)
and
1 1 u
- VIVp=—@u-V)V(p8) — —(V(po) (— : v) 0
0 0 0
+ VO - V)p + pu-V)VO — gV@(u~V)9). (3.178)
Substituting (3.177) and (3.178) into (3.176), one can obtain that
Q2u+1)e[Vps + u-V)Vpl+ pVp
. 1 u
= —ppu — pepV x o — (2p +/\)8[p[V (;) o+ V (;) . Vp}
1 p
- (vp (g . v) 0+ RVOu - V)p+ Ro(u - V)V — Rgve(u : V)e)]
£ ppit — pepV x o + 1. (3.179)

Then it follows from (3.179) that

Cup+2)eldnpr + (- V)3, pl+ ponp
=—ppit-n—pepmn-Vxw)+1I-n+Qu+1eVp-(u-Vin2J.

(3.180)
Define
h& Z2%,p, (3.181)
then, applying Z% with |a| < 2, one obtains that
Qu + Melhy + (u - VYh] + ph
=2 — Qu+Ne[Z% u-V1d,p — [2% plo.p £ K. (3.182)

It is convenient to consider the above equation in the Lagrangian coordinates:

h(t, &) = h(t, X(t,8)), p(t, &) =pt, X, ), K, & =K@ X(t,8),
(3.183)
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where

L) — u(t, X(1,£)).
X(00,8)=£€eQ.

Then (3.182) is rewritten as
d - p 1

—h+ h= K, (3.184)
dr Qu+ 1e Qu+ Me

which immediately yields the following solution:

7 7 ! ﬁ(f,é)
]’l(l‘,é) = h(O,S)exp (—/0 mdf)

1 ! il ! p~(sa S) )
- _ P57 . 1
+ B e /0 K(t,&)exp ( 2 A)gds dz. (3.185)

2;1«[3-)» 2 ¢ > 0, with ¢ independent of &, together with (3.185), yields

Notice that
that

~ ~ _ea "1 el
AL = [12(0)[|Loe™ ¢ +C/ g”K(T)”L“e e UDdr. (3.186)
0
It follows from (3.186) and Holder inequality that

1Al < 1R O)]| e

1 1
o 2 I 2c(t —t 2
+C (/ IK (0)]|3 dr) (/ — exp (—(—)) dr)
0 0o € &
< IR : RO d :
S |hO)||pee™ s + C— (/ 1K (T)700 f) ,
Ve \o L
that is,
t
elh)|7e < elhO)I7 + C /0 1K (1) |7 d. (3.187)
On the other hand, integrating (3.186) over [0, ¢], one can obtain that
t ~
/0 12 de
r 2 ! H —ce VN (r—s) g
< Cel|h(0) |70 +C/ / —[[K(s)|L=e ds) dr
o \Jo ¢
I 2 ! L —ce N (t—s) :
< Celi s+ [ ([ SIROIx 0o lon(r —$)ds) de
0 \UR

2

t
< Cellh )] + C/ dr
0

- 1 —1
(”K(‘)”LOOI(OJ)(’)) * (g(f” (')I(o,,)(-))
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2 1 _ -1,
(e o)
Ll

t
< Cellh ()~ + c/ 1R (0)[12 dr. (3.188)
0

< CelhO3 + € [ (1ROl T ) 2

Then it follows from (3.188) and (3.187) that

t t
ellh(®)||3 +/0 [7(2)]2 dt < Cellh(0)]1 +c/0 K (7)]|3 dz. (3.189)

In order to close the estimates of (3.189), one still needs to control the second term
on the RHS of (3.189). Direct calculation implies that

(Vxw)-N= —3yla)2 + 8yza)1 + 01 - 3yza)3 — - 3),10)3, (3.190)

then it follows from (3.162), (3.190), (3.169) and (3.163) that

t t
/ 17113 .00 dT < C / PWNu(0) - 1+ VPl e + E IV X @) - N3 o
0 0
+ VO3 00 + €I VulF p.00) dT
t
<cC / PN (D) - (14 €2 VO[3 .00 + €7 Vull7 5.00) dT
0
t 1
< 84/ 1A6]7,4 dT +82/ IV2ull3 4 dT + CtP (N (1))
0 0

= CCni2{Nu (0) + 1 P(Nu (1))}, (3.191)

where we have used condition (1.20) in the last inequality. It follows from (3.162)
that

t
/O 1@+ 2)elZ%, u - V19upllFee + 12, p1onpll7 e de
t
< Ce? / IV2ull3 s dT + C1 PN (1)) S CCniafNow (0) + 1PN, (1)), (3.192)
0

which, together with (3.191), yields that

t
/ IR (D)2 dr < COniaNn(©) + 1 PN(@)).  (3.193)
0

Combining (3.162), (3.175), (3.181), (3.183), (3.189) and (3.193), one proves
(3.174). Thus, the proof of Lemma 3.15 is completed. [

Estimates for ||Vu|| and e||Vu||§{LOO

2
Hl,oo
Lemma 3.16. Assume that (1.20) holds, then one has, for m = 6, that

IVil2 00 € CorsatNin 0) + P(IVEI200) + 1PN (1)) (3.194)
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Proof. The proof of this lemma is similar to the corresponding lemma [22], except
the pressure is a function of density and temperature. Away from the boundary, one
clearly has, by the classical isotropic Sobolev embedding theorem, that

IxZVulie + xVulie < Clulim < An@), form =4,  (3.195)

where the support of x is away from the boundary. Therefore, by using a partition of
unity subordinated to the covering (1.7), we only need to estimate || x; ZVu|| Lo +
lxjVullp~ for j = 1. For notational convenience, we shall denote yx; by x.
Similarly to [14], we use the local parametrization in the neighborhood of the
boundary given by a normal geodesic system which makes the Laplacian have a
convenient form. Let us denote

W(y, z) = ( wfw) —zn(y) = x,

oy (y)
v (y)
—1

where

1
n(y) = —————
JIHIVE ()P

is the unit outward normal. As before, we can extend n and IT in the interior by
setting

n(W"(y,2) =ny), TN"(y,2) =TI().

Note that n(y, z) and I1(y, z) have different definitions from the ones used before.
The interest of this parametrization is that in the associated local basis (e,1, e,2, ez)

of R3, it holds that 3, = 9, and

€, e
( y) W (y,z) ( Z)

The scalar product on R? induces in this coordinate system the Riemannian metric
g under the form
¢(y,2) 0
gy, 2) = (g {) L

Therefore, the Laplacian in this coordinate system reads

wn(yz)

1
Af =0 f + 50:(nlgho. f + Agf, (3.196)
where |g| denotes the determinant of the matrix g, and A is given by

1 ]
Agf = N > 0,i(&518179, £),

ij=12

which involves only the tangential derivatives.
It follows from (3.132) (n and IT in the coordinate system we have just defined)
and Lemma 3.12, for m = 5, that
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IxVulie + X 2Vuli
< Co(llxTanu |7 oo + 12 (X M) [0 + Il xdivee]|F oo
HIZdivulFoo + 12 Zyull 7o + 1 Zyull7oo)
< C3{llxTopu )| 700 + 1 Z(xT3t0) 700 + P(Am)+ PV (00), VO[3 1.00)}-
(3.197)

Consequently, one needs only to estimate || x [19,u ||%oo + [|Z(xT10,u) ||%oo. To
estimate this quantity, it is useful to use the vorticity w. Indeed, we have

M(w x n) = N({(Vu — Vu') -n) = (@0,u — V(u-n) — Vn' -u).
Therefore, one obtains that

X T8l 00 + 12 (x TT8,0) 1|7 0
< GllIxTH (@ x )30 + I1Z(xTH(@ X )7 00 + A (1)}, (3.198)
which yields that we only need to estimate || x [T(w X n)||%Oo and | Z(xT(w x

)7 c-
By setting things in the support of x:

o(y,2) =0V (y,2), (@, 1)y, 2) = (o, w)(¥"(,2)).
Then it follows from (3.140) and (3.196) that

1 By
Py +pii' 0,1 @+ pii*d 2o+ piind.d = pe (BZZE) + Eaz(ln IgNd.® + Azéd )+ F

(3.199)
and

I R . - | - - -
put+pu18y1u+pu23yzu+pu.nazu = ue (8zzu + Eaz(ln lgdzu + Agu )+ F,

(3.200)
where

Fi(y,2) = FL(V"(y,2), Fa(y,2) = F>(W"(y,2)),

where F| and F; are defined in (3.141) and (3.143), respectively. Note that we use
the same convention as before for a vector u, and u/ denotes the components of
u in the local basis (eyl , €2, e;) just defined in this section, whereas u; denotes
its components in the standard basis of R3. The vectorial equation of (3.199) and
(3.200) have to be understood component by component in the standard basis of
R3.

Similarly to (3.137), we define that

n(y,2) = x(@ x n+ I(Bu)), (3.201)

where A is extended into the interior domain by B(y, z) = B(y). Thus, from the
boundary conditions (1.3), one has

n(y,0)=0. (3.202)
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By using (3.199) and (3.200), 1 solves the equations
pils + pit 3,17 + pid,27] + pi - nd.i
' . - -
= ue (8zzn + Eaz(ln Igl)azn) + x(F1 x n) + xII(BF>) + Fy + x Fy,
(3.203)

where the source terms are given by

Fy = (pit' 0,1 + pia*dy2 + pit - nd)x - (@ x n + I(Bii))
—pe(Dzx + 20, x9; + 30.(In[g]) - 9:x) - (& x n + [1(Bi)),
Fe = (pit' 3,1 T1 + pit*d 2 T1) - (Bit) + @ x (pii'd,1n + piid,2n)
+I((pi' 9,1 + pii*d,2) B - i) + peAgd x n + pell(BAgii).
(3.204)

Note that in the calculating of the source terms, in particular F,, which contains
all the commutators coming from the fact that » and IT are not constant, we have
used the idea that in the coordinate system that we have just defined, B, n and IT do
not depend on the normal variable. By using that Aj involves only the tangential
derivatives and that the derivatives of x are compactly supported away from the
boundary, one obtains the following estimates, for m = 6:

IXTLCFL X ) [131.0 S C2P N (1)),

1Ex 300 S CalullFgroe - MUl oo + €2 1l135.00) S C3PNon (1)),

X FelZ 00 S Calllullyynoe + Nl 100 V131 00 4 €213 500+ I VN 5,00))
< Co{ PN (@) + €211 V2ull3 4},
(3.205)

and from (3.168), it holds that

IXTHBF)I3 100 < C3{e*[Vdivu|7,100 + 1V P15 100}
< C4{PNu () + €2 [1(V6, V(00)) 3.0} (3.206)

Consequently, it follows from (3.205) and (3.206), for m = 6, that
1F 13000 S Cale® IV ullfs + 21(V0, V(0O 15 200 + PN ()}, (3:207)

where F = X(I:] X n) 4+ XH(BFz) + Fy + x F.
In order to eliminate the term %BZ (In|g])d,n, one defines

1

n= T = V. (3.208)
lgl?
Note that

[7ll3g1.00 = C3llfllggroe,  and  [illpgr.0c < C3llillpg1.00, (3.209)
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and 7 solves the equations
pily + pii dy17) + pia*d,2 7] + pil - nd:0) — £dz:]
1/~ _o_ 1 e oo
= ;(F‘i‘gazz?/ Hit S0 (n|gdzy - — pli - Vy)n) 28, (3210)

It is difficult to directly obtain the explicit solution formula of (3.210), so one
rewrites it as

A, y, O+t (1, y, 000 i+ (1, y, 0)d,27+20; (i - n)(t, y, 0)d-7]—£;.7]

=S+1p(t,y,0) = p(t, y, Dl + D [(BE)(t, y,0) = (pit ) (1, y, 219,77
i=1,2

- p(t7 Y, Z)[(ﬁ N }’l)([, Y, Z) - Zaz(ﬁ . }’l)(t’ Y, O)]azﬁ
+p(t, v, 2) — p(t,y,0)] - 20.(i - n)(t, y,000.7 2 M forz >0, (3.211)

with the boundary condition 7(¢, y, 0) = 0. By using Lemma 6.1 in the “Appendix”,
one has that

t
Il 3100 S Niollggree + /O 16~ Lo 1M |91, dT
t
+/ (L1 2e) A+ 120, u, Vi) |13 50) [l 341,00 dT

0

t

5 ||ﬁ()||7_[l.oo + C/ ||M||Hl.:>o dr + CtP(/\/m(t)). (3.212)
0

It remains to estimate the right hand side of (3.212). Firstly, by using (3.207), one
has that

IS13 100 S Cale®IV7ull3 4+ VO3 o +CP N (1)}, form 2 6. (3.213)

Next, using the Taylor formula and the fact that 7 is compactly supported in z, and
by the same argument as that of Lemma 3.14 in [22], one can obtain, for m = 5,
that

LA, y,0) = p(t, ¥, DI 5000 I1BE T, ¥, 0) = (Bia")(2, y, 2)1Dy1 711131,
+ G, y,0) = (Bi*) (2, y, 2)10,271 131,00

< p(t, y,2) = pt, y, 001 - 20:(@ - n)(t, y, 0)d:71 171,00

+ ”Io(tv y9 Z)[(ﬁ ° i’l)(f, y’ Z) - Zaz(ﬁ . }’l)(t’ y’ O)]azﬁ”%]oo § CP(Nm(t))v
(3.214)

Then it follows from (3.213) and (3.214) that

IMI3100 S Cle? IVl s+ 21 VO oo + PN (1))}, form 2 6. (3.215)
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Substituting (3.215) into (3.212), we have, for m = 6, that

t
1713100 < N7i0l13 100 + Cat PNou (1)) + Cat /0 2 IV2ull3,s + €2 VO3 0 dT
< CCni2tNw (0) + 1 PN ()}, (3.:216)

where we have used (1.20), (2.5) and the Holder inequality in the last inequal-
ity. Therefore, combining (3.162), (3.195), (3.197), (3.198), (3.201), (3.209) and
(3.216), one obtains (3.194). Therefore, the proof of Lemma 3.16 is completed.
O

Lemma 3.17. Assume that (1.20) holds, then one has, for m 2 6, that
e0zzul|7o0 S CCni2{ PN (0) + P(IVO3,1.0) + PN (1)), (3:217)
Proof. By an argument similar to the one in Lemma 3.16, one firstly has that

eldzculfoe £ Co{P(Am) + P(I(Vu, VO, V(0015 1.00) + €l 077|700 )
(3.218)

Thus, one needs only to estimate 8||82ﬁ||%00. One rewrites (3.210) as

it — 882271 = — (B — D)ily — Bl 017 — pii*d,2 ) — pi - ndij + S =1 E, (3.219)
where 7 satisfies the homogenous Dirichlet boundary condition 7|,—9 = 0. Then 5
has the following expression:

+o0
ﬁ(t,y,z)=/ G(t,z,Z)mo(y, 2y dZ’
0

t 400
+/ / Gt — 7.2, )E(r, y. ) dZ dr,
0 JO

where

1 - 2 /2
G(t,z,7) = —— exp(—IZ ZI)—exp(—'z+z|) .
47 et 4uet duet

Then one obtains that

—+o00
Vedn(t, y,z) = \/E/ 0.G(t,z,2)mo(y, 2 dz’
0

t +oo
+ JE/ / 9.G(t —7,2,2)E(z, y,2)) dZ' dr.
0 Jo

Since 1o(y, z) vanishes on the boundary due to the compatibility condition, it
follows from integrating by parts to the first term that

t
Veldzile = Velldznol Lo +/ IE (D)l dz. (3.220)

1
0 AVI—T
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Direct calculation shows that

t 1 2 t
o wd Scz/ V2u|2,, + CtP(N,,(t)), form > 5.
(/o mll €217 f) S Ce A I1V=ullzs N (1)), form =
(3.221)

Substituting (3.220) and (3.221) into (3.218) and using (3.162), (3.174) and (3.194),
one proves (3.217). Therefore, the proof of this lemma is completed. [J

Estimate for || V0|1,

In order to estimate || VO||y1., the most difficult part is to control the term
pVdivu, which comes from the term pdivu that appears on the LHS of the energy
equation (3.7)3. Actually, if pVdivu is regarded as the source term, it is very difficult
to bound the term fé Il deivu(r)H%{LOo drt, since the derivative is too high. It is
noted that such difficulty does not arise in the isentropic case [22]. To overcome
the difficulty, a new idea is needed. Fortunately, we find that the term pVdivu can
be decomposed into two parts, that is, V(p0); and V6;. The most difficult term,
V6;,, can be absorbed into the main part of equation, while V(p6); is regarded as
the source term that has already been controlled in Lemma 3.15. This observation
is key to closing the pointwise estimates.

Lemma 3.18. Assume that (1.20) holds, then one has, for m = 6, that
IIVQII%{LOO < CCps2{ PN (0)) + t P(Np (1)} (3.222)

Proof. Due to (3.163), one needs only to estimate [|0,0|p1.0 or [0,0]lp41.00. It
follows from (3.7)5 that
p[VO; + (u - V)VO] + pVdivu — k() AVO
= —Vpdivu — [Vp(&; +u-V0)+ pVu-Vo]+ 8V[2/L|Su|2 + )»Idivu|2].
(3.223)

In order to deal with the term pVdivu, using the mass equation (3.7);, one first
notices that
pdivu = Rpl6; + (u - V)0] — [pr + (u - V) pl, (3.224)

and

pVdivu = Rp[VO; + (u - V)VO] — [Vp; + (u - V)V p] — Vpdivu
+ RVpl[6; + (u- V)0 + RpVu - VO — Vu - Vp. (3.225)
Then it follows from (3.7)5 and (3.223)—(3.225) that
(R + Dp[VO; + (u - V)VO] — k() AVE
=[Vpi+u-V)Vp]l+Vu -Vp— 1+ R)[Vp&; +u-V0)+ pVu - Vo]
+eV[2u|Sul® + Aldivul’] £ By, (3.226)
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and

(R+ Dplby + (u-V)0] —k(e)AB
=[p: + - V)pl + e[2u|Sul* + A|divu|?] £ B.. (3.227)
We use the local coordinates (y, z) defined in Lemma 3.16 in the neighborhood
of the boundary, which makes the Laplacian have a convenient form. The functions
0, U, x,n, IT are the same as the ones defined in Lemma 3.16. By setting this in
the support of x:
0(y,2.0) =0(¥"(y,2),1), VO(y,z.1) = (VO(P"(y,2), ). (3.228)
Then it follows from (3.226) and (3.227) that

(R+ DIpVO,; + pii'0,1V0 + pii*d 2 V0 + pii - nd, Vo]

= x(£)(3,. VO + %Bz(ln|g|)3Z%+Ag%)+él, (3.229)
and
(R+ DIpb; + pit' 9,10 + pii*0,20 + pii - nd.0)

=k (s) (azzé + %BZ(ln lg))d.0 + Agé) + By, (3.230)

where
By = Bi(¥"(y,2),1), By = By(¥"(y,2),1). (3.231)

Define
t(y,z,1) = x(n-Vo —vh), (3.232)

then, in view of the boundary condition (1.3)3, ¢ satisfies ¢ = 0 on d€2. Considering
(3.229) - n 4+ v - (3.230), it is easy to know that ¢ satisfies

P + pit' 3,18 + pii*d 2 ¢ + pit - nd g

1 . -
= () (928 + 50:(n [8D2:¢) + x (Br-m) +vx By + F + X F!, (3.233)
where the source terms are given by

F§ = (R+ D)(pi'dy1 + pi*dye + pii - ndo)x - (n- V6 — )
—e(6) (Beex + 20010 + h.0In gD - 82x) - (- FB — 1),
F¢ = (R+DVO - (pi'dyin + pid,an) + k()n - AgVO + vic(e) Agh.
(3.234)
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Then, using arguments similar to those in Lemma 3.16, one can obtain that
1630 < C[P(Nm(o» + P(Ap) + 1PNy (1))
t 1 2
+ PN (1)) (/0 K(@NIAO 30 + 11V pllgg2o df)
t 2
+ (/0 ellVaull Lo V2 ullggr.00 df) ] EC[P(Nm(O)) + 1P (N (1))

P 2
+ (|Vuol2 s + tNm (1)) (/ eI V2u|l 31,00 dr) ]
0
S CCpui2{ PN (0)) + 1 P(Nu(1))}, (3.235)
where we have used (3.162), (3.172), (3.174), and the Holder inequality above.
Then (3.222) follows from (3.162), (3.163), (3.232) and (3.235). Therefore, the
proof of Lemma 3.18 is completed. [

Combining Lemmas 3.15-3.18, one can obtain:

Proposition 3.19. Assume that (1.20) holds, then one has, for m 2 6, that
IV (00 13100 + VN3 100 + VO 100 + €IV (00D 13 2,00 + Ell0zz0 1 7o

t
+/0 IV (0013200 AT = CCy2{ PN (0)) + 1 PN (1))} (3.236)

3.5. Proof of Theorem 3.1
Firstly, it follows from (3.162), (3.165) and (3.236) that
O(t) = CCni2{ PN (0)) 4+t P(Nyu (1))} (3.237)

In order to close the a priori estimate, one still needs to get the uniform estimate
for ||V8,m_1u||. It follows from Lemma 3.9, (3.162) and (3.237) that

IV ull® S Coni G + Inll3gn + 187" divae]7,)
< Cung2{ PN (0) + PN (1)} (3.238)

Combining (3.162), (3.236) and (3.238), one gets (3.4). Finally, it follows from
(1.1) that

t t
Ip(x. 0) exp (—/0 Idivall o< dr) < p(x, ) <Ip(x, 0)] exp (/0 Idivall e dr) ,

so we have proved (3.1). The Newton-Leibniz formula yields immediately that
(3.2). Thus the proof of Theorem 3.1 is completed. [J
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. In this section, we shall show how we can combine our
a priori estimates to obtain the uniform existence result. Let us fix m = 6, and
consider initial data such that

Zn(0) = sup II(/Oo,uO,@o)les <Co. and Cj' < pf.05 = Co. (4D)
1]

e€(0,

For such initial data, we are not aware of local existence results for (1.1) and (1.3),
so we first need to prove the local existence results for (1.1) and (1.3) with initial
data (p§, uf), 65) € Xy's. For such initial data (p§, uf), 65), it follows from the
deﬁnition of X% ’; that there exists a sequence of smooth approximate initial data

(,o0 , 0 , 008 5) e Xy NS.ap (6 being a regularization parameter) which has enough
space regularity that the tlme derivatives at the initial time can be defined by Navier—
Stokes equations and the boundary compatibility conditions can be satisfied. For
fixed ¢ € (0, 1], we construct approximate solutions, inductively, as follows:

(1) Define u® = ug‘s, and
(2) Assuming that uk=1 was defined for k > 1, let (p¥, u*, 6%) be the unique
solution to the following linearized initial boundary value problem:

'p," +div(pku*~1) =0 in(0,T) x K,
ofuk + puk=1 . Vuk 4 RV (p*0%) = eAuk + eVdivuk, in (0,T) x @,
oFF + pkuk=1 . vok 4 Rpkokdivuk—!
= k() AOF 4+ ZualSuk_l |2 4+ re|divu* =12, in(0,T) x Q,
ok, 1k, 0510 = (5, 1, 05®),  with 5% < pi°, 05 < 3o,
with boundary conditions (1.3).

4.2)

Since p*, 6% and u* are decoupled, the existence of a global unique smooth solution
(o, uk, 6%)(t) of (4.2) with 0 < p*(r),6%(t) < oo can be obtained by using
classical methods, for example, the same argument as that of in CHO and Kim [4],
and the standard elliptic regularity results as those in AGMON et al. [1]. On the other
hand, since (p8’8, uf)“s, 9(‘;’8) € H>™, one proves that there exists a positive time
T\ = T () such that, for 0 < ¢t < Ty,

N

1ok, u*, 05130 < €1, and (2Co) ™" £ p*(1), 0% (1) £2Co,  (4.3)

where 7} and Cl depend on é‘o, Land || (,00 , 8 5, 0y )|| y3n . Based on the above
uniform estimates for (o, u* 9") by the same arguments as those of Sectlon 3 of
[4], there exists a unlform time T1 (£ T1) (independent of k) such that (,0 uk, %)

converges to a limit (p*°, u®?, p®%) as k — +o0 in the following strong sense:

(Iok’ I/lk, 9/() — (p&‘,a’ Ma,S’ 98,5) in LOO(O, '1’;1’ LZ)’
and Vu* — vu®® in L*(0, Ty, L?).
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It is easy to check that (p®%, u®®, 6%9)(¢) is a classical solution to the problem
(1.1) and (1.3) with initial data (o, u5°, 65°°). Then, by virtue of the lower semi-
continuity of norms, one can deduce from (4.3) that, for 0 < ¢ < T,

1% ut?, o)) 35m = C1 and 2Co) ™" = p(1), 65° (1) < 20,
“4.4)

Applying the a priori estimates given in Theorem 3.1 to (0%, ut%, 659 (1),
we obtain a uniform time 7p > 0 and positive constant C3 (independent of ¢ and
8) such that it holds for (p%%, u®?, 6%:9)(¢) that

Yo (050, u®, 059 (1) SC3 and  (2C) ™' £ p®3(r), 65°(1) £2Cy, V1 € [0, Tl
4.5)

where Tz £ min{Ty, f"l} and the uniform constants 7T, 63 (independent of ¢, §) de-
pend only on C’o and Z,, (0). Based on the uniform estimates (4.5) for (p%, u®-?, 6¢:9),
one can pass the limit § — 0 to get a strong solution (p°, u®, 6%) of (1.1) and
(1.3) with initial data (pg, ug, 6;) satisfying (4.1) by using a strong compactness
arguments. It follows from (4.5) that (%%, u®®,6%9%) is uniformly bounded in
L®([0, Tol; H™), V(p>%, u®?, 6¢?) is uniformly bounded in L>°([0, To]; H 1),
and 3, (p%%, u®?, 6*%) is uniformly bounded in L>([0, Tp]; H~"). Then, it fol-
lows from the compactness argument [19] that (p®°, u®?®, 6%%) is compact in
C([0, Tyl; Hc"},_l).lnparticular, there exists a sequence 8, — 0+ and (p°®, u?, 8°%) €
C([0, Tol; H™~") such that

(P50 w0 050 — (pf, uf,0%) inC((0,T]; H™') ass, — 0+. (4.6)

Moreover, applying the lower semi-continuity of norms to the bounds (4.5), one
obtains the bounds for (p%, u®, 6¢) such that

Yo (0%, uf,0°)(1) £ C3 and (2Co) ™! < p(1), 6°(r) < 2Co, Vr €0, Tal.

4.7
It follows from (4.7) and the anisotropic Sobolev inequality (2.5) that
sup [[(p% — pfL utt — U, 0% — 0%) |
1€[0,Tp]
< sup [[(p5% — oL uftn — Ut 6% — 0%)|12
1€[0,Tp] 0
+ sup (V™% — pf L ut% —uf, 0% — 0F) |
1€[0,Tp] @
£,0n e &6, & &by e
P = P U — U 0% — 0%) 2 ) — O,
asé, — 0+. 4.8)

Then it is easy to check that (p®, u®, 6¢) is a strong solution of the Navier—Stokes
system. The uniqueness of the solution (p?, u®, %) is easy, since we work on func-
tions with Lipschitz regularity. Thus the whole family of (p%%, u®?, 9%%) converges
to (p°, u®, 0%) as § — 0-+. Therefore, for initial data (0§, uf;, 05) € X35, we have
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established the local existence result for (1.1) and (1.3) such that (p?, u?, 6°)(t) €
X5e, tel0,T].

We shall use the above local existence results to prove Theorem 1.1. If Ty < f“l s
then Theorem 1.1 follows from (4.7) with C; £ C3. On the other hand, if f"l <
Ty, based on the uniform estimates (4.7), we can use the local existence results
established above to extend our solution step by step to the uniform time interval
t € [0, Tp]. Therefore, the proof of Theorem 1.1 is completed. [

5. Proof of Theorem 1.5: Vanishing Dissipation Limit

In this section, we study the vanishing dissipation limit of the solutions of the
full compressible Navier—Stokes system (1.1) to the solutions of the full compress-
ible Euler system with a rate of convergence. It is well known that the solution
(p,u,0)(t) € H? of the Euler system (1.5), (1.6) and (1.28) satisfies

1 N
Zn(p w0l ek - = Ca —— = p(0),0(1) £ 2Co, (5.1)
k=0 2Co

where 6‘4 depends only on [|(po, 1o, o)l 3. On the other hand, it follows from
Theorem 1.1 that the solution (p%, u®, 0¢)(¢) of (1.1), (1.3) and (1.28) satisfies

(0%, u®, 65 ) xs, < Ci, (1) £2Co, Vrel0,Tol, (52)

0

where Ty, éo, and C‘l are defined in Theorem 1.1. In particular, this uniform
regularity implies the following bound:

1o, u®, ) e + 194 (0%, u®, %)l < C (5.3)

which plays an important role in the proof of Theorem 1.5.
Define

¢ =p"—p, Y =u"—u, £ =6°-0. (5.4)
It then follows from (1.1) and (1.5) that
¢F + pdivy® +u - Vo' = RS,
pYi + pu - Vi +V(p® — p) + @°
= —ueV x (Vx ¥%) + Qu + A)eVdivy® + RS, 5.5
p&f + pu - VE® + pdivy® + ¢
= k(e)AEE + 2pe|Suf|? + re|divut|? + RE,
where
R{ = —¢*divy® —° - V@© — ¢*divu — Vp - °,
RS = —¢°Y{ — ¢%u; + peAu + (u+ A)eVdivu, (5.6)
Ry = —¢°&f — (p° — p)divy® — (p® — p)divy + k() A0,
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and
O° = (p°u’ — pu) - Vu® = (p°u® — pu) - Vi* + (p°u® — pu) - Vu, 5.7)
Ve = (p°u® — pu) - VO = (p°u® — pu) - VE° + (p*u® — pu) - V0. '
The boundary conditions to (5.5) are
Yfon=0, nx(Vxy®)=[BY°l; +[Bul; —n x o,
and VE® -n = vEf +1v0 — VO -n on Q. (5.8)
Lemma 5.1. It holds that
t
||<¢8,w£,58)<r>||2+/0 eV I3 + @€, dr
3 3
< C(e? +x(e)?), tel0, Tl (5.9)
where T» = min{Ty, T1}, and C > 0 depends only on éo, (:’1 and C~’4.
Proof. Multiplying (5.5), by ¥ ¢, one obtains that
d 1
G [ aewtans [ ot ptars [ of - p e
dr Jo 2 Q Q
= —,ue/ V x (V x ¢ - wgdx+(2u+)»)s/ Vdivy? - % dx
Q Q
+/ R; - ¢ dx. (5.10)
Q
It follows from integrating by parts and (5.5); that
/ V(p* —p)- ¥ dx = — / (p° — p)divy® dx
Q Q
= —R/ 0¢°divyy© dx — R/ pESdivy© dx — C|l(¢°, €)1
Q Q
d 0 e,2 £ q: e e gey(2
ZR— [ —1¢°1"dx — R | p&°divy® dx — Cll(¢°, )" (5.11)
dt Jo 2p Q
It is easy to check that
—/1,8/ V x (Vxy®) - yfdx
Q
:—;w/ |V x 1//8|2dx—,u8/ nx (Vx ¢y dx
Q a0
< —uellV x ¥°)? + Ce / [BY® + Bu —n x o] - ¥° dx
aQ
< _ \V4 g2 C 12 e 5.12
= /’L‘c/‘” X W ” + Ce |1/f |L2(dg)+|w |L2(BQ) ) ( . )

g/ Vdivy® - ¢ dx = —¢||divy® >, (5.13)
Q
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®F - Yfdx| = ‘/ ((p°u® — pu) - Vyu® - ¥ dx
Q Q
= C(L+ (%, u®, Vu)ll) | (9, 1/f8)||iz, (5.14)
and
‘/Q RS -y* dx| < Cll(¢°, ¥O)I7. + Ce. (5.15)

Collecting all the above estimates, one gets that

d
I Il/f |? +R |qb| dx — /p“g‘gdivwsdx
+;w||v x || + u A+ Mel|divy©|?
< Cl@5, ¥O)I2, + Ce + Ce(Y 25 + [¥E] 1) (5.16)

On the other hand, multiplying %, one can obtain that

d P 2 / .
— — d R fdivyrf d
” SZ29|§ |“dx + Qpé vy dx +

S CI@° . YE EDNP + Cr(e)(E°17, + 151 12) + C(e” + k(e)%),  (5.17)

3k(e) [ |VES]? d

where we have used the facts that

/ s - / |V$€|2 / ss ’
K(e) | AgE dx —k(e) dx +x(e) | VO - VEedx
0 6 Q0

+K(8)/ _«9” -VEfdo

12
<- 3“‘9) 'V‘g  ax + @52
+CK(8)/ —[vE + &0 —n-VOldo
3 \ o
<- K(s) hi 5' dx + ClIE°% + Cr () (E° 2 + [E51,2)  (5.18)

and

—(2/L8|Su 1 4+ re|divu®|?) dx

vl | [ s

§C||(¢ LY EO? +C<s+x(e>)||s IS CII@, ¥, EDNI* + C(e* + k(e)?).
(5.19)

It follows from (2.1) that

IWEN0 < CLIV x weII% + [Idiv® |1 + v °1%). (5.20)
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The trace theorem yields that
112, SSIVYEN2 + Colly® 12, and |53, < SIIVES|2 + CslE°)12 (5.21)
L L
and

eyl 2 < 8e|VYEI2 + Coellyt 15 < 8e| VeI + [We]2 + Cse?,
2
Kk(e)|E8] 2 < k()| VES |2 + Csk (o) |IEF|3
3
< Sk () IVEEN? + IIEE N1 + Csk (e) 2.
(5.22)

Adding (5.16) and (5.17) together, using (5.20)—(5.22), and choosing § suitably
small, one obtains that

d

P 2 o 2 P 2 2 )
E(/Qzlwsl +R$|¢8| +%|§8| dx)—i—a(sllwé“”m+K(8)||§5”H1)

< ClI@E, ¥ EDIZ, + Cle? +xc(e)?), (5.23)

where ¢ > 0 is a positive constant independent of . Then Gronwall’s inequality
yields immediately that (5.9). Therefore, the proof of Lemma 5.1 is completed. O

Lemma 5.2. It holds that
I(divyp®, Vo©, VEOYOII* + & /0 IVdiv (01 dr 4+ k) /0 ag | de
< ca/ot 1WE L EIP + ey P dr
+Cs /0 1(@F, ¥&, E9I2, dr + Csle? +x(e)3], 1€0,T],  (5.24)

where 6 > 0 will be chosen later.
Proof. Multiplying (5.5), by Vdivy® leads to
/Q(,Ow,e + pu - V®) - Vdivy® dx + /Q V(p® — p) - Vdivy® dx
= —/w/Q V x (V x ¢%) - Vdivy® dx + Qu + A)e|| Vdivy© |2
—1—/9 R - Vdivy® dx — /Q ®° . Vdivy© dx. (5.25)
It follows from (5.5); that
Vdivy® = —%[quf + (u® - V)Vo?]
1

— —[Vp'diviy® — Vu'Ve® + V(g divu + y* - Vp)l.  (5.26)
P
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which, together with integrating by parts, yields that
/QV(pS — p) - Vdivy©dx = —R/QV(,OEE + 0¢° + ¢%E%) - Vdivy® dx
< R/Q pVES - Vdivy® dx + R/QQVQS& - Vdivy® dx

+ R‘/ div(E°Vp + ¢°VO)divyr® dx
Q

+ R‘ /o Q(pés +66%)n - divy® do| + Cll@* . £,

d
S —Rdt IW) | dx +R/ pVES - Vdivy® dx + C|l(¢°, ¥, E9)I13,,
+C|(¢>5,$ )ILz. (5.27)

It follows from (1.22) and (3.167) that
| Vdivu® || Lo + | Vdivu® |2 £ C < oo, (5.28)

where C > 0 depends only on Cj. Integrating by parts and using the Holder
inequality, one has that

/ (o¥f + pu - Vy©) - Vdivyy® dx < —/ (pdivyf + pu - Vdivy®) divy® dx
Q Q

+ ‘ / (Vpus + V(pu) V§°) divyy® dx

+ ‘/ p(u - V)Y? - ndivy® do

£-5 |dww 2 dx+819f 12 +Csl Vel +‘ / p(u - Vynyediviy® dx
d
<-4 |dw¢ 12 dx + SIIVEIZ + CsIIVYEI? + Cly 2, (5.29)

/ ®° . Vdivy® dx
Q

= ‘/ [(p%u® — pu) - V¢ + (0°u® — pu) - VulVdivy® dx
Q

< Cll(9°, 1,08)”%11 + ‘/BQ((,OSMS — pu) - Vu) - ndivy® do
< CU@ . ¥OHIF + 1@ ¥ o), (5.30)

and

V x (Vxy®) Vdivy®dx| =¢

/ nx (Vxy?®) - Vdivy® do
IQ

=£

/ (BY* 4+ Bu —n x w) - I(Vdivy®) do
a0
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<ce (14191 ) ) Idivetl
< Celldivi Il (1 + 19 llgn) < Cle + 115, (5.31)

For the term involving Rj it follows from (5.28) and integrating by parts that

< C(L+[IVdivu® | L) LI° Y7 |

‘/ RS - Vdivy® dx

1@ U]+ ellull 2 [ Vdivy© |
S SIVEN? + Gl @5, ¥O) I3 + &2 1+ Ce. (5.32)

Then the trace theorem implies that
2
7. %, )2 < CLI@T. 7. 6121 + 1@, v°. 69)113,)
< ClI@°, Y&, O +K(e)? +67). (5.33)

Substituting (5.27) and (5.29)—(5.32) into (5.25) and using the (5.33), one has that

d o .. , RO 5 .
T (/S2 5|d1v1//8| + m|v¢8| dx) — R/Q,oVés - Vdivy® dx
3 .
+50n + el Vdivy©||?
1 1
< SIWEIP + Cslll @, w& €913, + k()2 +e2]. (5.34)

Applying V to (5.5)3, one can obtain that

PEVES + p®(uf - V)VE® + pVdivy® — k() AVE®
= eV Qu|Suf|? 4+ Aldivu®|?) + VRS — Vp°&f — V(p*u®)VES — V pdivy?,

(5.35)
where
RS = —£°0; — (p°u® — pu) - VO — (p° — p)divu® + ke (e) AG. (5.36)
Multiplying (5.35) by Vng, one has that
% o %lVSEP dx + R/vags - Vdivy© dx — K(g)/SZ AVES . Vjs ©

< Sell Y I3 + SIE 17 + Csll (@ ¥*. 6915 + Ca(e? +xe(e)D). (5.37)
It follows from integrating by parts and the boundary condition (5.8) that
Ve

- K(s)/ AVE® . ——dx
Q 0

1
Z K(E)/Q §|A§5|2 dx — Cr () IVE I AE®|| — Cre (e)

L VEE
/ Aet™ VS o
a0 0
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3 1
> Z“’(”/ 1A 2 dx — C(@)IIVE|? = Cre(2)| A" 12
Q
3 1 1 1
> Z“("?)/Q SIAET P dx = Cr(@IVE"|I” = C(@ I A& I L 1A
1 1
> 5K<e>/ﬂ §|AE 1 dx — ClIE"IIT) — C(@)3[1 + k()2 VAET?]. (5.38)

Substituting (5.38) into (5.37), one obtains that
— p—8|vg€|2 dx + R/ pVES - Vdivy® dx + lx(s)/ l|As~€|2dx
dr Jo 26 o 2 N
< Sell W13, + SIIES NI + Csll(@F, ¥, E9)113,
+ Cr()3[1 + K (e)2 [ VAES 2] + Cs(e2 + k (6)?). (5.39)
Combining (5.34) and (5.39), one has that

d o .. 5, RO 5 p° 2 3 . 2
— —|d € —|V¢® —|VEf|~d -2 Me||Vd €
dt(/gz'”‘”' eI V9T o 55 IVE P dr ) 4 3t 2)e Vv
41 ()/ Lagepa
2K & Qe X
1 1
< elly* I3 + SIE 12 + Cs 1@, ¥, 6913 + k()2 +eF ]
4 Ci(e)3[1 + k()2 VAES 2. (5.40)

It follows from Theorem 1.1 and (5.1) that
t
K(s)z/ IVAES|?dr £ C < oo. (5.41)
0

Then, integrating (5.40) over [0, 7>] and using (5.41), one gets (5.24). Thus, the
proof of Lemma 5.2 is completed. [

Lemma 5.3. It holds that
t
IV x w2 +e/0 1V x ¥ ()13, dr
<8IV, YEL EDIS +ca/z IWEN + el V2ye |12 de
= ) ) L2 0 t

+Cs /0 1%, ¥, E12,1 dr + Csle? +ic(e)?], (5.42)
where 6 > 0 will be chosen later.
Proof. Multiplying (5.5), by V x (V x ) gives that
/nglpf~Vx(wa”")dx—l—/QV(pg—p)~Vx(wag)dx

+ pellV x (V x )12
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=4m+u§/vaxw%wwwmn+/é%vaxwﬁm

Q Q

+/R;waxwﬁm, (5.43)
Q

where one has rewritten (5.5), and

RS = —¢°u; + peAu + (u + 1)eVdivu,
O = pfu’ - VYt + (p°u’ — pu) - Vu.

Integrating along the boundary, one has that

‘/V(pg—p)-VX(was)dx
Q

= V V(pF = p)-(n x (Vxyf))do
il

= ‘/ I(V(p® — p)) - [BY® + Bu —n x w]dx
02

<clip® = pl 41001y +10° = plio]
< CII@E, ¥e €)% + 10, €921 (5.4

Note that the first term on the right hand side of (5.43) has been estimated in (5.31).
It remains to estimate the other terms of (5.43). By the same argument as that of
Lemma 6.3 of [22], one obtains that

/psl//f~Vx (V x ¢ dx
Q

d 1 1
>4 (/ LoV x p 2 da +/ Lo e BYS 4 oy - (Bu—n x ) da)
dr Q 2 Ple) 2
= SIWEI* — Cs(IWEllZ, + [¥FL2), (5.45)

’/ES'VX(VXI/fg)dx
Q

< CI@ . YO)3 + '/massu, - (n x (V x w*‘»‘
+ Cellull g3 19 ° L g1 + Cellull g3V x ¥ 2
< 881V x (V x YO % + Cs (1@, ¥ 21 + 165 ¥ )2 +63),  (5.46)

and

‘/éﬂvaxwﬁm
Q

< CU@E O30 + 1@, ¥ 2l (5.47)
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Then, combining (5.43) and (5.44)—(5.47), one obtains that

d 1 1

E(/Q §p8|VXI//8|2dx—|—/BQ §p8w83w8+p81ﬂ8~(3u—n xa))do)
1 £y (12

+§M8IIV>< (V xyI)

< CSI I + Cosl Ve 12+ Cs (167, ¥°, 69 1% + 22 + k(@)
(5.48)

where we have used

r 1

(65, ¥°. £ 12 SCI@F, Y&, EDZ, - 1(6F, ¥F, €92
< SIV(E, Y E9) % + Cs(e? + k(e)2),

(5. ¥ 62, < ClI@ . ¥ E) 11 - (67, ¥F, 69|

< SV, ¥, E9) 2 + Cs(e? + k(o) D),

(5.49)

which are consequences of the trace theorem and (5.9). It follows from (2.2) that

IV X 91
<G (nv X (VX YOI+ div(Y s g2+ IV 17 o I x (V ‘”8)'2%)
< IV (VX YOI+ IV x Y I2+ B +1(Bu)e —n x o 1),
S GV X (V< YOI+ 115 + O). (5.50)
Substituting (5.50) into (5.48) yields that

d 1 1

m (/ —p°|V x ¥¥|? dx +/ —p* Y BYE + p°Y® - (Bu —n x o) do)
t Q2 30 2

+e1ellV x ¥eIl,

< Collyf 17 + ColVRYe 12 4 Cs (I10F, ¥, €912 +3 +k(e)?)
(5.51)

Integrating (5.51) over [0, ¢] and using (5.49), one gets (5.42). Therefore, the proof
of Lemma 5.3 is completed. [

Proof of Theorem 1.5. It follows from (2.1) that

1513 < € (I o2 + v 12 4+ 1912 + 19l )
S CUIV x YOI + divi® 12 + 11y ° 1), (5.52)



Uniform Regularity and Vanishing Dissipation Limit 1413

and

19 < € (IV W 130 + Idive I3, + 197 0 + 1v* -l 3)
S CUV x Y130+ Idivee 15, + 1170, (5.53)
while (5.5), and (5.5)5 imply that
I3, < CU@, ¥OIIT, + e IVEYENT, + &),
IE£12, < CUI@E. ¥ON21 + k(@) IAEE |2, + &2 + K ()?).

Then, collecting (5.9), (5.24), (5.42), (5.52)—(5.54), and choosing ¢ suitably small,
one obtains that

(5.54)

t t
IV, 65 £ + ¢ /0 19122 dt + (e /0 |AEE ()] dr

! 1 1
s C/ IV@°, ¥°, E) (D)) dT + Cle2 +xc(e)3],
0

which, together with Gronwall’s inequality, yields immediately that

t t
||V<w,¢5,sg)||2+e/0 ||wf<r)||%,zdr+x<e>/0 IAES (D] dr < Cle? +k(e)7].

(5.55)
Then, (5.9) and (5.55) imply (1.29)—(1.30). On the other hand, (1.31) is an imme-
diate consequence of (1.29), (5.1) and (5.3). Thus, the proof of Theorem 1.5 is
completed. [

6. Appendix

We have the following Lemma whose proof can be found in the “Appendix” of
[22]:

Lemma 6.1. Consider h to be a smooth solution of

a(t, y)[0:h + b1 (1, y)dy1h + ba(t, y)d,2h + zb3(t, y)d:h]
—¢ed,:h =G, 7>0, (6.1)
h@, y,z) = ho(y,2), h(,y,0)=0,

for some smooth function a(t, y) satisfying c; < a(t,y) < ﬁ and vector fields

b = (b1, by, b3)' (¢, y). Assume that h and G are compactly supported in z. Then,
one has the estimate:

t
1
Wil < Ihollzgree +/0 !

! 1
G 3100 dT +/ (1 + 1l (—, b) ||L°°)
a | joo 0 a

2
x (1 + > 11Zia, b)||ioo) ]l 341,06 d. (6.2)

i=0




1414 YoNG WANG

Acknowledgments The author would like to thank Prof. DEHUA WANG for valuable discus-
sions during his stay at AMSS, CAS. The author was partially supported by the National
Natural Sciences Foundation of China, No. 11401565.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

References

. AGMON, S., DOUGLIS, A., NIRENBERG, L.: Estimates near the boundary for solutions of

elliptic partial differential equations satisfying general boundary conditions, II. Com-
mun. Pure Appl. Math. 17, 35-92 (1964)

BEIRAO DA VEIGA, H., CRrispo, F.: Sharp inviscid limit results under Navier type boundary
conditions, an L? theory. J. Math. Fluid Mech. 12, 397-411 (2010)

BEIRAO DA VEIGA, H., Crispo, F.: Concerning the Wk:P_inviscid limit for 3D flows
under a slip boundary condition. J. Math. Fluid Mech. 13, 117-135 (2011)

. CHo, Y.G., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J.

Difter. Equ. 228, 377-411 (2006)

CONSTANTIN, P.: Note on loss of regularity for solutions of the 3-D incompressible Euler
and related equations. Commun. Math. Phys. 104, 311-326 (1986)

CONSTANTIN, P., Foias, C.: Navier—Stokes Equation. University of Chicago press,
Chicago, 1988

. DING, Y.T., JIANG, N.: Zero viscosity and thermal diffusivity limit of the linearized

compressible Navier—Stokes-Fourier equations in the half plane. arXiv:1402.1390
Gie, G.M., KELLIHER, J.P.: Boundary layer analysis of the Navier—Stokes equations
with generalized Navier boundary conditions. J. Differ. Equ. 253(6), 1862-1892 (2012)
GUEs, O.: Probleme mixte hyperbolique quasi-lineaire caracteristique. Commun. Partial
Differ. Equ. 15(5), 595-645 (1990)

IFTIMIE, D., SUEUR, F.: Viscous boundary layers for the Navier—Stokes equations with
the navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145-175 (2011)

Karto, T.: Nonstationary flows of viscous and ideal fluids in R3. J. Funct. Anal. 9,
296-305 (1972)

MaAEKAWA, Y.: On the inviscid limit problem of the vorticity equations for viscous
incompressible flows in the half plane. Commun. Pure Appl. Math. 67(7), 1045-1128
(2014)

Masmoupl, N.: Remarks about the inviscid limit of the Navier—Stokes system. Commun.
Math. Phys. 270(3), 777-788 (2007)

Masmoupl, N., RousseT, F.: Uniform regularity for the Navier—Stokes equation with
Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529-575 (2012)
Masmoupl, N., RousseT, F.: Uniform regulartiy and vanishing viscosity limit for the
free surface Navier—Stokes equations. arXiv:1202.0657

PappIck, M.: The strong inviscid limit of the isentropic compressible Navier—Stokes
equations with Navier boundary conditions. Discret. Contin. Dyn. Syst. 36(5), 2673—
2709 (2016). doi:10.3934/dcds.2016.36.2673

SAMMARTINO, M., CAFLISCH, R.E.: Zero viscosity limit for analytic solutions of the
Navier—Stokes equation on a half-space. 1. Existence for Euler and Prandtl equations.
Commun. Math. Phys. 192(2), 433—-461 (1998)

SAMMARTINO, M., CAFLISCH, R.E.: Zero viscosity limit for analytic solutions of the
Navier—Stokes equation on a half-space. II. Construction of the Navier—Stokes solution.
Commun. Math. Phys. 192(2), 463—491 (1998)

Stmvon, J.: Compact sets in the space L? (0, T; B). Ann. Mat. Pura Appl. 146(4), 65-96
(1987)

TemAN, R.: Navier—Stokes Equations: Theory and Numerical Analysis. Oxford, New
York, 1979

WANG, Y.G., WiLLIaMS, M.: The inviscid limit and stability of characteristic bound-
ary layers for the compressible Navier—Stokes equations with Navier-friction boundary
conditions. Ann. Inst. Fourier (Grenoble) 62(6), 2257-2314 (2013)


http://arxiv.org/abs/1402.1390
http://arxiv.org/abs/1202.0657
http://dx.doi.org/10.3934/dcds.2016.36.2673

22.

23.

24.

25.

26.

Uniform Regularity and Vanishing Dissipation Limit 1415

WANG, Y., XIN, Z.P., YONG, Y.: Uniform regularity and vanishing viscosity limit for
the compressible Navier—Stokes with general Navier-slip boundary conditions in 3-
dimensional domains. SIAM J. Math. Anal. 47(6), 4123-4191 (2015). doi:10.1137/
151003520

X1a0, Y.L., XiN, Z.P.: On the vanishing viscosity limit for the 3D Navier—Stokes equa-
tions with a slip boundary condition. Commun. Pure Appl. Math. LX, 1027-1055 (2007)
Xi1A0, Y.L., XIN, Z.P.: On the inviscid limit of the 3D Navier—Stokes equations with gen-
eralized Navier-slip boundary conditions. Commun. Math. Stat. 1(3), 259-279 (2013)
X1a0, YL., XiN, Z.P.: On 3D Lagrangian Navier-Stokes o-model with a class of
vorticity-slip boundary conditions. J. Math. Fluid Mech. 15(2), 215-247 (2013)

XIN, Z.P., YANAGISAWA, T.: Zero-viscosity limit of the linearized Navier—Stokes equa-
tions for a compressible viscous fluid in the half-plane. Commun. Pure Appl. Math. 52,
479-541 (1999)

Institute of Applied Mathematics,
AMSS, CAS,
Beijing 100190,
China.
e-mail: yongwang @amss.ac.cn

(Received August 27, 2015 / Accepted February 17, 2016)
Published online March 10, 2016 — © Springer-Verlag Berlin Heidelberg (2016)


http://dx.doi.org/10.1137/151003520
http://dx.doi.org/10.1137/151003520

	Uniform Regularity and Vanishing Dissipation Limit for the Full Compressible Navier--Stokes System in Three Dimensional Bounded Domain
	Abstract
	1 Introduction and Main Results
	2 Preliminaries
	3 A Priori Estimates
	3.1 Conormal Energy Estimates for ρ,u and θ
	3.2 Conormal Estimates for div u, nabla rho and nabla theta
	3.3 Normal Derivatives Estimates
	3.4 Linfty-Estimates
	3.5 Proof of Theorem 3.1

	4 Proof of Theorem 1.1
	5 Proof of Theorem 1.5: Vanishing Dissipation Limit
	6 Appendix
	Acknowledgments
	References




