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Abstract

In 1961 G. Polya published a paper about the eigenvalues of vibrating
membranes. The “free vibrating membrane” corresponds to the Neumann–Laplace
operator in bounded plane domains. In this paper we obtain estimates for the first
non-trivial eigenvalue of this operator in a large class of domains that we call
conformal regular domains. This class includes convex domains, John domains etc.
On the basis of our estimates we conjecture that the eigenvalues of the Neumann–
Laplace operator depend on the hyperbolic metrics of plane domains. We propose
a new method for the estimates which is based on weighted Poincaré–Sobolev
inequalities, obtained by the authors recently.

1. Introduction

Let Ω ⊂ R
2 be a bounded, simply connected plane domain with a smooth

boundary ∂Ω . We consider the Neumann–Laplace spectral problem (the free mem-
brane problem)

− Δu = λu in Ω, (1)
∂u

∂n

∣
∣
∣
∣
∂Ω

= 0. (2)

The weak statement of the spectral problem of the Neumann–Laplace operator
is as follows: a function u solves the previous problem iff u ∈ W 1,2(Ω) and

∫∫

Ω

∇u(x, y) · ∇v(x, y) dxdy = λ

∫∫

Ω

u(x, y)v(x, y) dxdy

for all v ∈ W 1,2(Ω). The weak statement of the Neumann–Laplace spectral prob-
lem is correct for any domain.
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Let ψ : D → Ω be the Riemann conformal mapping of the unit disc D ⊂ R
2

ontoΩ that is a simply connected plane domain.We shall say thatΩ is a conformal
α-regular domain [7] ifψ ′ ∈ Lα(D) for someα > 2. The degreeα does not depends
on choice ofψ (by the RiemannMapping Theorem) and depends on the hyperbolic
metric on Ω only.

The main result of the paper is:

Theorem A. Let Ω ⊂ R
2 be a conformal α-regular domain. Then the spectrum

of Neumann–Laplace operator in Ω is discrete, can be written in the form of a
non-decreasing sequence

0 = λ0[Ω] < λ1[Ω] � λ2[Ω] � · · · � λn[Ω] � · · · ,

and

1/λ1[Ω] � 4
α
√

π2

(
2α − 2

α − 2

) 2α−2
α ‖ψ ′ | Lα(D)‖2 (3)

where ψ : D → Ω is the Riemann conformal mapping of the unit disc D ⊂ R
2

onto Ω .

Note that Polya, in 1961 ([28]), obtained upper estimates for eigenvalues of
the Neumann–Laplace operator in so-called plane-covering domains. Namely, for
the first eigenvalue:

λ1[Ω] � 4π |Ω|−1.

So, for the plane-covering conformal α-regular domains we have the two-side
estimate:

α
√

π2

4

(
2α − 2

α − 2

) 2−2α
α 1

‖ψ ′ | Lα(D)‖2 � λ1[Ω] � 4π
1

|Ω| .

The first non-trivial eigenvalue of the Neumann–Laplace operator is connected
to the sharp constants in the isoperimetric inequalities [25]. Note that lower esti-
mates of the first non-trivial eigenvalue of the Neumann–Laplace operator in terms
of isoperimetric constants were considered in [3,4].

Theorem A is based on the existence of the universal weighted Poincaré–
Sobolev inequality; that is to say, in any simply connected plane domain with
non-empty boundary we have:

Theorem 1. Suppose that Ω ⊂ R
2 is a simply connected domain with non empty

boundary; ϕ : Ω → D is a conformal homeomorphism and h(x, y) = Jϕ(x, y)

is the conformal weight. Then for every function f ∈ W 1,2(Ω, h, 1), the weighted
Poincaré–Sobolev inequality

(∫∫

Ω

| f (x, y)− fΩ,h |r h(x, y) dxdy

) 1
r

� Br,2[Ω, h]
(∫∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

(4)
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holds for every r ∈ [1,∞) with the exact constant

Br,2[Ω, h] = Br,2[D] � 2π
2−r
2r ((r + 2)/2)

r+2
2r

where Br,2[D] is the exact constant in the Poincaré inequality for the unit disk D

(∫

D

|g(x, y) − gD|r dxdy

) 1
r

� Br,2[D]
(∫

D

|∇g(x, y)|2 dxdy

) 1
2

.

The paper is organized as follows. In Section 2 we discuss the notion of
conformal regular domains, formulate the Poincaré–Sobolev inequality for confor-
mal regular domains and discuss its connection with the Neumann–Laplace opera-
tor. The main point is an estimate for the constant in this inequality. We also discuss
connection between the Poincaré–Sobolev inequality and composition operators on
Sobolev spaces. Section 2 can be seen as an extension of the introduction. In Sec-
tion 3 we prove main facts about composition operators in the conformal regular
domains. In Section 4 we prove the Poincaré–Sobolev inequality for conformal
regular domains. In Sections 5 and 6 we apply the results of Section 4 to lower
estimates of the first non-trivial eigenvalue for the Neumann–Laplace operator in
the conformal regular domains. In Section 7 we compare the lower estimates with
previous results available in the literature.

2. The Neumann–Laplace Problem in Conformal Regular Domains

LetΩ ⊂ R
2 be a simply connected plane domain of finite area andψ : D → Ω

be a conformal mapping. Then
∫∫

D

|ψ ′(u, v)|2 dudv =
∫∫

D

Jψ(u, v) dudv = |Ω| < ∞.

Integrability of the derivative in the power α > 2 is impossible without additional
assumptions on the geometry of Ω . We proved in [19] that the integrability in the
power α > 2 leads to finiteness of the geodesic diameter of Ω and as result it is a
bounded domain.

A domainΩ is a conformal regular domain if it is a conformal α-regular domain
for some α > 2. Note that any C2-smooth simply connected bounded domain
domain is ∞-regular (see, for example, [24]).

The notion of conformal regular domains was introduced in [7] and was applied
to the stability problem for eigenvalues of the Dirichlet–Laplace operator. It does
not depend on choice of a conformal mappingψ : D → Ω and can be reformulated
in terms of the hyperbolic metrics [7]. That is,

∫∫

D

|ψ ′(u, v)|α dudv =
∫∫

D

(
λD(u, v)

λΩ(ψ(u, v))

)α

dudv

when λD and λΩ are hyperbolic metrics in D and Ω [5].
Note that a boundary ∂Ω of a conformal regular domain can have anyHausdorff

dimension between one and two, but cannot be equal to two [23].
In Section 4 we prove the following Poincaré–Sobolev inequality for conformal

regular domains:
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Theorem 2. Suppose that Ω ⊂ R
2 is a conformal α-regular domain. Then for

every function f ∈ W 1,2(Ω), the inequality

infc∈R
(∫∫

Ω

| f (x, y) − c|s dxdy

) 1
s

� Bs,2[Ω]
(∫∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

(5)
holds with the constant

Bs,2[Ω] � ‖Jϕ−1 |L r
r−s (D)‖ 1

s Br,2[Ω, h]
� 2π

2−r
2r ((r + 2)/2)

r+2
2r · ‖Jϕ−1 |L r

r−s (D)‖ 1
s

for any s ∈ [1,∞), where r = αs/(α − 2).

Remark 1. The conformal regular domains have an equivalent description in the
terms of the β-(quasi)hyperbolic boundary condition [6,20]. In [20] it was proved
(without estimates of constants) that domains with β-(quasi)hyperbolic boundary
conditions support the (s, p)-Poincaré–Sobolev inequalities for p that depends on
β.

The existence of the Poincaré–Sobolev inequality is an essential property of the
conformal regular domains. In [19] we proved but did not formulate the following
fact about conformal regular domains:

Theorem 3. If a simply connected domain Ω ⊂ R
2 of finite measure does not

support the (s,2)-Poincaré–Sobolev inequality

(∫

Ω

| f (x, y) − fΩ |s dxdy

) 1
s

� Bs,2[Ω]
(∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

for some s ≥ 2, then Ω is not a conformal regular domain.

Remark 2. Conformal regular domains allow narrow gaps which can destroy the
John condition [22].

It is well known that solvability of the Neumann–Laplace problem and its
spectrum discreteness depends on the regularity of Ω (see, for example, [25]).

In the present work we suggest a new method for the study of the Poincaré–
Sobolev inequality in the conformal regular domains. This method is based on
the composition operators theory on Sobolev spaces, and allows us to estimate
constants in the Poincaré–Sobolev inequalities.

As an application we study the eigenvalues problem for the Neumann–Laplace
operator. A detailed survey of this eigenvalue problem can be found in [26] (for
example). A global lower bound of the non-trivial first eigenvalue λ1[Ω] for con-
vex domains was obtained in [27]. We obtain a global lower bound for the first
eigenvalue λ1[Ω] in conformal α-regular domains, which are not necessary con-
vex domains.
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The suggested method is based on the composition operators theory [31,32]
and its application to the Sobolev type embedding theorems [14,15]. The following
diagram illustrate this idea:

W 1,p(Ω)
(ϕ−1)∗−→ W 1,q(D)

↓ ↓
Ls(Ω)

ϕ∗
←− Lr (D).

Here the operatorϕ∗ definedby the composition ruleϕ∗( f ) = f ◦ϕ is a bounded
composition operator onLebesgue spaces induced by a homeomorphismϕ ofΩ and
D and the operator (ϕ−1)∗ defined by the composition rule (ϕ−1)∗( f ) = f ◦ ϕ−1

is a bounded composition operator on Sobolev spaces.

Remark 3. In recent works we studied composition operators on Sobolev spaces
defined on planar domains in connection with the conformal mappings theory [16].
This connection leads to weighted Sobolev embeddings [17,18] with the universal
conformal weights. Another application of conformal composition operators was
given in [7], where the spectral stability problem for conformal regular domains
was considered.

3. Composition Operators

3.1. Composition Operators on Lebesgue Spaces

For any domain Ω ⊂ R
2 and any 1 � p < ∞ we consider the Lebesgue space

L p(Ω) :=
{

f : Ω → R : ‖ f | L p(Ω)‖ :=
(∫∫

Ω

| f (x, y)|p dxdy

)1/p

< ∞
}

.

The following theorem about the composition operator on Lebesgue spaces is
well known (see, for example [32]):

Theorem 4. A diffeomorphism ϕ : Ω → Ω ′ between two plane domains Ω and
Ω ′ induces a bounded composition operator

ϕ∗ : Lr (Ω ′) → Ls(Ω), 1 � s � r < ∞,

(by the chain rule ϕ∗( f ) := f ◦ ϕ) if and only if

(∫∫

Ω ′

(

Jϕ−1(u, v)
) r

r−s dudv

) r−s
rs = K < ∞, 1 � s < r < ∞,

(

esssup(u,v)∈Ω ′ Jϕ−1(u, v)
) 1

s = K < ∞, 1 � s = r < ∞.

The norm of the composition operator ‖ϕ∗‖ = K .
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3.2. Composition Operators on Sobolev Spaces

We define the Sobolev space W 1,p(Ω), 1 � p < ∞ as a Banach space of
locally integrable weakly differentiable functions f : Ω → R equipped with the
following norm:

‖ f | W 1,p(Ω)‖ =
( ∫∫

Ω

| f (x, y)|p dxdy

) 1
p +

( ∫∫

Ω

|∇ f (x, y)|p dxdy

) 1
p

.

Wealso define the homogeneous seminormedSobolev space L1,p(Ω) of locally
integrable weakly differentiable functions f : Ω → R equippedwith the following
seminorm:

‖ f | L1,p(Ω)‖ =
( ∫∫

Ω

|∇ f (x, y)|p dxdy

) 1
p

.

Recall that the embedding operator i : L1,p(Ω) → L1
loc(Ω) is continuous.

Remark 4. By the standard definition functions of L1,p(Ω) are defined only up to
a set of measure zero, but they can be redefined quasi-everywhere that is, up to a
set of p-capacity zero (see, for example [21,25]).

Let Ω and Ω ′ be domains in R
2. We say that a diffeomorphism ϕ : Ω → Ω ′

induces a bounded composition operator

ϕ∗ : L1,p(Ω ′) → L1,q(Ω), 1 � q � p � ∞

by the composition rule ϕ∗( f ) = f ◦ ϕ, if for any f ∈ L1,p(Ω ′) the composition
ϕ∗( f ) ∈ L1,q(Ω) and there exists a constant K < ∞ such that

‖ϕ∗( f ) | L1,q(Ω)‖ � K‖ f | L1,p(Ω ′)‖.

The main result of [31,32] gives an analytic description of composition opera-
tors on Sobolev spaces L1,p. We reproduce it here for diffeomorphisms.

Theorem 5. [31] A diffeomorphism ϕ : Ω → Ω ′ between two domains Ω and Ω ′
induces a bounded composition operator

ϕ∗ : L1,p(Ω ′) → L1,q(Ω), 1 � q < p < ∞,

if and only if

K p,q(ϕ;Ω) =
(∫∫

Ω

( |ϕ′(x, y)|p

|Jϕ(x, y)|
) q

p−q

dxdy

) p−q
pq

< ∞.

The norm of the composition operator ‖ϕ∗‖ � K p,q(ϕ;Ω).
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Definition 1. We call a bounded domain Ω ⊂ C as (r, q)-Poincaré domain, 1 �
q, r � ∞, if the Poincaré–Sobolev inequality

infc∈R ‖g − c | Lr (Ω)‖ � Br,q [Ω]‖g | L1,q(Ω)‖
holds for any g ∈ L1,q(Ω) with the constant Br,q [Ω] < ∞. The unit disc D ⊂ R

2

is an example of the (r, 2)-embedding domain for all r � 1.

The following theorem gives a characterization of composition operators in the
classical Sobolev spaces W 1,p (this theorem was proved, but not formulated, in
[14,15]): For readers convenience we reproduce here the proof.

Theorem 6. Let Ω ⊂ R
n be an (r, q)-Poincaré domain for some 1≤ q ≤ r ≤∞

and a domain Ω ′ has finite measure. Suppose that a diffeomorphism ϕ : Ω → Ω ′
induces a bounded composition operator

ϕ∗ : L1,p(Ω ′) → L1,q(Ω), 1 � q � p < ∞,

and the inverse diffeomorphism ϕ−1 : Ω ′ → Ω induces a bounded composition
operator

(ϕ−1)∗ : Lr (Ω) → Ls(Ω ′), 1 � s � r < ∞,

for some p � s � r .
Then ϕ : Ω → Ω ′ induces a bounded composition operator

ϕ∗ : W 1,p(Ω ′) → W 1,q(Ω), 1 � q � p < ∞.

Proof. Let f ∈ W 1,p(Ω) and g = ϕ∗( f ). Because p � r and the composition
operator (ϕ−1)∗ : Lr (Ω) → Ls(Ω ′) is bounded, the inequality

‖(ϕ−1)∗g | Ls(Ω ′)‖ � Ar,s(Ω)‖g | Lr (Ω)‖
is correct for a positive constant Ar,s(Ω).

Since domain Ω is a (r, q)-Poincaré domain

infc∈R ‖g − c | Lr (Ω)‖ � Br,q [Ω]‖g | L1,q(Ω)‖.
and the composition operator

ϕ∗ : L1,p(Ω ′) → L1,q(Ω)

is bounded, we obtain the following inequalities:

infc∈R ‖ f − c | Ls(Ω ′)‖ � Ar,s(Ω) infc∈R ‖g − c | Lr (Ω)‖
� Ar,s(Ω)Br,q [Ω]‖g | L1,q(Ω)‖� Ar,s(Ω)K p,q(Ω)Br,q [Ω]‖ f | L1,p(Ω ′)‖.

Here K p,q(Ω) is the upper bound of the norm of the composition operator ϕ∗ :
L1,p(Ω ′) → L1,q(Ω).
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The Hölder inequality implies the following estimate:

|c| = |Ω ′|− 1
p ‖c | L p(Ω ′)‖ � |Ω ′|− 1

p
(‖ f | L p(Ω ′)‖ + ‖ f − c | L p(Ω ′)‖)

� |Ω ′|− 1
p ‖ f | L p(Ω ′)‖ + |Ω ′|− 1

s ‖ f − c | Ls(Ω ′)‖.
Because q � r , we have

‖g | Lq(Ω)‖ � ‖c | Lq(Ω)‖ + ‖g − c | Lq(Ω)‖ � |c||Ω| 1q
+ |Ω| r−q

r ‖g − c | Lr (Ω)‖
�

(

|Ω ′|− 1
p ‖ f | L p(Ω ′)‖ + |Ω ′|− 1

s ‖ f − c | Ls(Ω
′)‖

)

|Ω| 1q

+ |Ω| r−q
r ‖g − c | Lr (Ω)‖.

Combining previous inequalities we finally obtain

‖g | Lq(Ω)‖ � |Ω| 1q |Ω ′|− 1
p ‖ f | L p(Ω ′)‖

+ Ar,s(Ω)K p,q(Ω)Br,q [Ω]|Ω| 1q |Ω ′|− 1
p ‖ f | L1,p(Ω ′)‖

+ K p,q(Ω)Br,q [Ω]|Ω| r−q
r ‖ f | L1,p(Ω)‖.

Therefore the composition operator

ϕ∗ : W 1,p(Ω ′) → W 1,q(Ω)

is bounded. ��

4. Poincaré–Sobolev Inequalities for Functions of W 1,2(Ω)

4.1. Weighted Lebesgue Spaces

We follow [21] for notation and basic facts about weighted Lebesgue spaces.
Let Ω ⊂ R

2 be a domain and let v : Ω → R be a locally integrable almost
everywhere positive real valued function in Ω (that is v > 0 almost everywhere).
Then a Radon measure ν is canonically associated with the weight function v:

ν(E) :=
∫∫

E
v(x, y) dxdy.

By the local integrability of v, the measure ν and the Lebesgue measure are
absolutely continuous with respect one to another, that is,

dν = v(x, y)dxdy.

In what follows, the weight v and the measure ν will be identified. The sets of
measure zero are the same for the Lebesgue measure and for the measure ν. That
means that, almost everywhere, we do not need to specify the convergence.
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Denote by

V(Ω) := {v ∈ L1
loc(Ω) : v > 0 almost everywhere on Ω}

the set of all such weights. Here L1
loc(Ω) is the space of locally integrable functions

in Ω .
For 1 � p < ∞ and v ∈ V(Ω), consider the weighted Lebesgue space

L p(Ω, v)

:=
{

f : Ω → R : ‖ f | L p(Ω, v)‖ :=
(∫∫

Ω

| f (x, y)|pv(x, y) dxdy

)1/p

< ∞
}

.

That is a Banach space for the norm ‖ f | L p(Ω, v)‖.
The space L p(Ω, v) may fail to embed into L1

loc(Ω).

Proposition 1. [21] If v
1

1−p ∈ L1
loc(Ω) and 1 < p < ∞, then the embedding

operator i : L p(Ω, v) → L1
loc(Ω), is continuous.

If v−1 ∈ L∞
loc(Ω), then the embedding operator i : L1(Ω, v) → L1

loc(Ω) is
continuous.

For 1 < p < ∞, we put

Vp(Ω) :=
{

v ∈ V(Ω) : v
1

1−p ∈ L1
loc(Ω)

}

,

and for p = 1,

V1(Ω) :=
{

v ∈ V(Ω) : v−1 ∈ L∞
loc(Ω)

}

.

Corollary 1. If a weight v is continuous and positive then i : L p(Ω, v) → L1
loc(Ω)

is continuous.

This follows immediately from Proposition 1 because a continuous and positive
weight belongs to Vp(Ω) and also to V1(Ω).

4.2. Weighted Poincaré–Sobolev Inequalities

Let ϕ : Ω → Ω ′ be a conformal homeomorphism. The following fact is well-
known:

Lemma 1. Let Ω and Ω ′ be two plane domains. Any conformal homeomorphism
w = ϕ(z) : Ω → Ω ′ induces an isometry of spaces L1,2(Ω ′) and L1,2(Ω).

Proof. Let f ∈ L1,2(Ω ′) be a smooth function. The smooth function g = f ◦ ϕ

belongs to L1,2(Ω) because
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‖∇g | L2(Ω)‖ =
(∫∫

Ω

|∇( f ◦ ϕ(x, y))|2 dxdy

) 1
2

=
(∫∫

Ω

|∇ f |2(ϕ(x, y))|ϕ′(x, y))|2 dxdy

) 1
2

=
(∫∫

Ω

|∇ f |2(ϕ(x, y))Jϕ(x, y) dxdy

) 1
2

=
(∫∫

Ω ′
|∇ f |2(u, v) dudv

)

= ‖∇ f | L2(Ω ′)‖.

Weused the equality: |ϕ′(x, y))|2 = Jϕ(x, y),which is correct for any conformal
homeomorphism.

Approximating an arbitrary function f ∈ L1,2(Ω ′) by smooth functions, we
obtain an isometry between L1,2(Ω ′) and L1,2(Ω). ��

We define the weighted Sobolev space W 1,p(Ω, h, 1), 1 � p < ∞ as the
normed space of all locally integrable weakly differentiable functions f : Ω → R

with the finite norm given by

‖ f | W 1,p(Ω, h, 1)‖ = ‖ f | L p(Ω, h)‖ + ‖∇ f | L p(Ω)‖.
The existence of the Poincaré–Sobolev inequalities depends on a conformal

(hyperbolic) geometry of Ω . For any conformal homeomorphism ϕ : Ω → D

define the conformal (hyperbolic) weight h(x, y) := Jϕ(x, y).
We denote

fΩ,h := 1

mh(Ω)

∫∫

D

f (z)h(z) dxdy = gD = 1

|D|
∫∫

D

g(w) dudv,

f (z) = g(ϕ(z)), w = ϕ(z).

Here

mh(Ω) =
∫∫

Ω

h(z) dxdy =
∫∫

Ω

Jϕ(z) dxdy =
∫∫

D

dudv = |D|.

The following “universal” weighted Poincaré–Sobolev inequality is correct for
any simply connected plane domain with non-empty boundary.

Theorem 7. Let Ω be a simply connected plane domain with non-empty boundary.
Then for any function f ∈ W 1,2(Ω, h, 1) the weighted Poincaré–Sobolev inequality

(∫∫

Ω

| f (x, y) − fΩ,h |r h(x, y) dxdy

) 1
r

� Br,2[Ω, h]
(∫∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

holds for any r � 1 with the exact constant Br,2[Ω, h] = Br,2[D] where Br,2[D] is
the exact constant of the Poincaré inequality in the unit disk

(∫

D

|g(x, y) − gD|r dxdy

) 1
r

� Br,2[D]
(∫

D

|∇g(x, y)|2 dxdy

) 1
2

.
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Proof. Let r � 1. By the Riemann Mapping Theorem there exists a conformal
homeomorphism ϕ : Ω → D. Using the change of variable formula for conformal
homeomorphism, the Poincaré–Sobolev inequality in the unit disc D ⊂ R

2 and
Lemma 1 we get

(∫∫

Ω

| f (x, y) − fΩ,h |r h(x, y) dxdy

) 1
r =

(∫∫

Ω

| f (x, y) − gD|r h(x, y) dxdy

) 1
r

=
(∫∫

Ω

| f (x, y) − gD|r Jϕ(x, y) dxdy

) 1
r =

(∫∫

D

|g(u, v) − gD|r dudv

) 1
r

� Br,2[D]
(∫∫

D

|∇g(u, v)|2 dudv

) 1
2 = Br,2[D]

(∫∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

for any function f ∈ W 1,2(Ω, h, 1). ��
Let us estimate Br,2[D] using the following n-dimensional inequalities [12].

For any μ ∈ (0, 1) and any domain Ω ⊂ R
n define the operator Vμ acting on

L1(Ω) by the expression

(

Vμ f
)

(x) =
∫

Ω

|x − y|n(μ−1) f (y) dy.

Here x = (x1, . . . , xn), y = (y1, . . . , yn) and dy = dy1...dyn .

Lemma 2. [12] The operator Vμ maps L p(Ω) continuously into Lq(Ω) for any q,
1 � q � ∞, satisfying

0 � δ = δ(p, q) = p−1 − q−1 < μ.

Furthermore, for any f ∈ L p(Ω),

‖Vμ f | Lq(Ω)‖ �
(
1 − δ

μ − δ

)1−δ

ω1−μ
n |Ω|μ−δ‖ f | L p(Ω)‖.

Here ωn = 2πn/2

nΓ (n/2) is the volume of the unit ball in R
n.

In the convex domains there are the following point-wise estimates:

Lemma 3. [12] Let Ω ⊂ R
n be a convex domain and f ∈ W 1,p(Ω). Then

| f (x) − fΩ | � dn

n|Ω|
∫

Ω

|x − y|1−n|∇ f (y)| dy almost everywhere in Ω,

where d is the diameter of Ω .

From these two lemmas follows:
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Proposition 2. Let Ω ⊂ R
n be a convex domain and f ∈ W 1,p(Ω). Then

(∫

Ω

| f (x) − fΩ |q dx

) 1
q

� dn

n|Ω|

(

1 − 1
p + 1

q
1
n − 1

p + 1
q

)1− 1
p + 1

q

ω
1− 1

n
n |Ω| 1n − 1

p + 1
q ‖|∇ f | | L p(Ω)‖.

Proof. We take μ = 1/n. Then for function f ∈ W 1,p(Ω) we have
(∫

Ω

| f (x) − fΩ |q dx

) 1
q

� dn

n|Ω|
(∫

Ω

∣
∣
∣
∣

∫

Ω

|x − y|1−n|∇ f (y)| dy

∣
∣
∣
∣

q

dx

) 1
q

= dn

n|Ω| ‖V 1
n
|∇ f | | Lq(Ω)‖

� dn

n|Ω|
(

1 − 1/p + 1/q

1/n − 1/p + 1/q

)1−1/p+1/q

ω
1−1/n
n |Ω|1/n−1/p+1/q‖|∇ f | L p(Ω)‖.

��
Proposition 2 give us the upper estimate of the constant in the weighted

Poincaré–Sobolev inequality in any simply connected plane domain Ω ⊂ R
2 with

non-empty boundary:

Br,2[Ω, h] = Br,2[D] � 2π
2−r
2r ((r + 2)/2)

r+2
2r .

We are ready to prove the main technical result of this work:

Theorem 8. If Ω is a conformal α-regular domain then:

(1) The embedding operator

i : W 1,2(Ω) ↪→ Ls(Ω),

is compact for any s � 1.
(2) For any function f ∈ W 1,2(Ω) the Poincaré–Sobolev inequality

infc∈R
(∫

Ω

| f (x, y) − fΩ |s dxdy

) 1
s

� Bs,2[Ω]
(∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

holds for any s � 1.

(3) The following estimate is correct Bs,2[Ω] � Br,2[D] · ‖ψ ′|Lα(D)‖ 2
s . Here

Br,2[D] is the exact constant for the Poincaré inequality in the unit disc, r =
αs/(α − 2).

Proof. Let s � 1. SinceΩ is a conformalα-regular domain, then for any conformal
homeomorphism ϕ : Ω → D, its inverse conformal homeomorphism ψ = ϕ−1

satisfies the following condition of α-regularity:
∫∫

D

|ψ ′(u, v)|α dudv =
∫∫

D

|Jϕ−1(u, v)|α/2 dudv < ∞.
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For the unit disc D, the embedding operator

iD : W 1,2(D) ↪→ Lr (D)

is compact (see, for example, [25]) for any r � 1.
By Theorem 4 the composition operator

ϕ∗ : Lr (D) → Ls(Ω)

is bounded if
∫∫

D

|Jϕ−1(u, v)| r
r−s dudv < ∞.

Because Ω is a conformal α-regular domain this condition holds for r
r−s = α/2

i.e for r = sα/(α − 2).
Since a conformal homeomorphism ϕ−1 induces a bounded composition oper-

ator

(ϕ−1)∗ : L1,2(Ω) → L1,2(D),

then by Theorem 6 the composition operator

(ϕ−1)∗ : W 1,2(Ω) → W 1,2(D)

is bounded.
Therefore the imbedding operator

iΩ : W 1,2(Ω) ↪→ Ls(Ω)

is compact as a composition of bounded composition operators ϕ∗, (ϕ−1)∗ and the
compact embedding operator iD, where

iD : W 1,2(D) ↪→ Lr (D).

The first part of this theorem is proved.
For any function f ∈ W 1,2(Ω) and r = sα/(α − 2) the following inequalities

are correct:

infc∈R
(∫∫

Ω

| f (x, y) − c|s dxdy

) 1
s

�
(∫∫

Ω

| f (x, y) − fΩ,h |s dxdy

) 1
s

�
(∫∫

Ω

|Jϕ(x, y)|− s
r−s dxdy

) r−s
rs ·

(∫∫

Ω

| f (x, y) − fΩ,h |r h(x, y) dxdy

) 1
r

=
(∫∫

D

|Jϕ−1(u, v)| r
r−s dudv

) r−s
rs ·

(∫∫

Ω

| f (x, y) − fΩ,h |r h(x, y) dxdy

) 1
r

=
(∫∫

D

|Jϕ−1(u, v)| α
2 dudv

) 2
αs ·

(∫∫

Ω

| f (x, y) − fΩ,h |r h(x, y) dxdy

) 1
r

.

(6)
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Using Theorem 7 we obtain

infc∈R
(∫∫

Ω

| f (x, y) − fΩ |s dxdy

) 1
s

� Br,2[D] · ‖ψ ′|Lα(D)‖ 2
s

(∫∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

.

��
For α = ∞, the following analog of the previous theorem is correct:

Theorem 9. If Ω is a conformal ∞-regular domain then:

(1) The embedding operator

i : W 1,2(Ω) ↪→ L2(Ω)

is compact.
(2) For any function f ∈ W 1,2(Ω), the Poincaré–Sobolev inequality

(∫∫

Ω

| f (x, y) − fΩ |2 dxdy

) 1
2

� B2,2[Ω]
(∫∫

Ω

|∇ f (x, y)|2 dxdy

) 1
2

holds.
(3) The following estimate is correct: B2,2[Ω] � B2,2[D] · ‖ψ ′|L∞(D)‖. Here

B2,2[D] = 1/
√

λ1[Ω] is the exact constant for the Poincaré inequality in the
unit disk.

Proof. Since Ω is a conformal ∞-regular domain then for any conformal homeo-
morphism ϕ : Ω → D its inverse conformal homeomorphism ψ = ϕ−1 satisfies
the following condition:

‖ψ ′ | L∞(D)‖2 = ‖Jϕ−1 | L∞(D)‖ < ∞.

For the unit disc D the embedding operator

iD : W 1,2(D) ↪→ L2(D)

is compact (see, for example, [25]).
By Theorem 4 the composition operator

ϕ∗ : L2(D) → L2(Ω)

is bounded if

‖ψ ′ | L∞(D)‖2 = ‖Jϕ−1 | L∞(D)‖ < ∞.

Since a conformal homeomorphism ϕ−1 induces a bounded composition oper-
ator

(ϕ−1)∗ : L1,2(Ω) → L1,2(D),
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then by Theorem 6 the composition operator

(ϕ−1)∗ : W 1,2(Ω) → W 1,2(D)

is bounded.
Therefore the embedding operator

iΩ : W 1,2(Ω) ↪→ L2(Ω)

is compact as a composition of bounded composition operators ϕ∗, (ϕ−1)∗ and the
compact embedding operator iD:

iD : W 1,2(D) ↪→ L2(D).

The first part of this theorem is proved.
For any function f ∈ W 1,2(Ω) and g = f ◦ ϕ−1 ∈ W 1,2(D), the following

inequalities are correct:

(∫∫

Ω

| f (x, y) − fΩ |2 dxdy

) 1
2

= infc∈R
(∫∫

Ω

| f (x, y) − c|2 dxdy

) 1
2

�
(∫∫

Ω

| f (x, y) − fΩ,h |2 dxdy

) 1
2

=
(∫∫

Ω

| f (x, y) − fΩ,h |2 J−1
ϕ (x, y)Jϕ(x, y) dxdy

) 1
2

� ‖Jϕ | L∞(Ω)‖− 1
2 ·

(∫∫

Ω

| f (x, y) − fΩ,h |2 Jϕ(x, y) dxdy

) 1
2

= ‖Jϕ−1 | L∞(D)‖ 1
2 ·

(∫∫

Ω

| f (x, y) − fΩ,h |2 Jϕ(x, y) dxdy

) 1
2

= ‖Jϕ−1 | L∞(D)‖ 1
2 ·

(∫∫

Ω

| f (x, y) − gD|2 Jϕ(x, y) dxdy

) 1
2

.

Using the change of variable formula and the Poincaré–Sobolev inequality in the
unit disc we have:

(∫∫

Ω

| f (x, y) − fΩ |2 dxdy

) 1
2

� ‖Jϕ−1 | L∞(D)‖ 1
2 ·

(∫∫

D

|g(u, v) − gD|2 dudv

) 1
2

= ‖Jϕ−1 | L∞(D)‖ 1
2 ·

(∫∫

D

|∇g(u, v)|2 dudv

) 1
2

= ‖ψ ′ | L∞(D)‖ ·
(∫∫

Ω

|∇ f (x, y)|2 dudv

) 1
2

.

��
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5. Eigenvalue Problem for Free Vibrating Membranes

The eigenvalue problem for free vibrating membranes is equivalent to the cor-
responding problem for the Neumann–Laplace operator. The classical formulation
for smooth domains is the following:

− Δu = λu in Ω, (7)
∂u

∂n

∣
∣
∣
∣
∂Ω

= 0. (8)

Because conformal regular domains are not necessarily smooth, the weak state-
ment of the spectral problem for the Neumann–Laplace operator is convenient: a
function u solves the previous problem if (u ∈ W 1,2(Ω)) and

∫∫

Ω

∇u(x, y) · ∇v(x, y) dxdy = λ

∫∫

Ω

u(x, y)v(x, y) dxdy

for all v ∈ W 1,2(Ω).
By the Min–Max Principle [8], the inverse to the first eigenvalue is equal to the

exact constant in the Poincaré inequality:
∫

Ω

| f (x, y) − fΩ |2 dxdy � B2
2,2[Ω]

∫

Ω

|∇ f (x, y)|2 dxdy.

We are ready to prove the main result about the spectrum (Theorem A). For the
reader’s convenience we repeat its formulation:

Theorem A. Let Ω ⊂ R
2 be a conformal α-regular domain. Then the spectrum of

the Neumann–Laplace operator in Ω is discrete, and can be written in the form of
a non-decreasing sequence:

0 = λ0[Ω] < λ1[Ω] � λ2[Ω] � · · · � λn[Ω] � · · · ,

and

1/λ1[Ω] � B2
2α/(α−2),2[D]

(∫

D

|ϕ′(x, y)|α dxdy

) 2
α

� 4π− 2
α

(
2α − 2

α − 2

) 2α−2
α ‖ψ ′ | Lα(D)‖2,

where ψ : D → Ω is the Riemann conformal mapping of the unit disc D ⊂ R
2

onto Ω .

Proof. By Theorem 8, in the case s = 2, the embedding operator

i : W 1,2(Ω) ↪→ L2(Ω)

is compact.
Therefore the spectrum of the Neumann–Laplace operator is discrete and can

be written in the form of a non-decreasing sequence.
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By the same theorem and the Min–Max principle we have

∫

Ω

| f (x, y) − fΩ |2 dxdy = infc∈R
∫

Ω

| f (x, y) − fΩ |2 dxdy

� B2
2,2[Ω]

∫

Ω

|∇ f (x, y)|2 dxdy,

where B2,2[Ω] � Br,2[D] · ‖ψ ′|Lα(D)‖.
Hence

1/λ1[Ω] � B2
r,2[D]

(∫

D

|ψ ′(u, v)|α dudv

) 2
α

.

By Proposition 2,

Br,2[Ω, h] = Br,2[D] � 2π
2−r
2r ((r + 2)/2)

r+2
2r .

Recall that in Theorem 8, r = 2α/(α − 2). In this case

B2α/(α−2),2[D] � 2π− 1
α

(
2α − 2

α − 2

) α−1
α

.

Therefore,

1/λ1[Ω] � B2
2α/(α−2),2[D]

(∫

D

|ϕ′(x, y)|α dxdy

) 2
α

� 4π− 2
α

(
2α − 2

α − 2

) 2α−2
α ‖ψ ′ | Lα(D)‖2.

��
In the case of conformal α-regular domains for α = ∞, by Theorem 9 we

immediately have:

Theorem B. Let Ω ⊂ R
2 be a conformal α-regular domain for α = ∞. Then the

spectrum of the Neumann–Laplace operator in Ω is discrete, and can be written
in the form of a non-decreasing sequence

0 = λ0[Ω] < λ1[Ω] � λ2[Ω] � · · · � λn[Ω] � · · · ,

and

1/λ1[Ω] � B2
2,2[D]‖ψ ′ | L∞(D)‖2 = ‖ψ ′ | L∞(D)‖2

j21,1
, (9)

where j1,1 is the first positive zero of the Bessel function J1, and ψ : D → Ω is
the Riemann conformal mapping of the unit disc D ⊂ R

2 onto Ω .
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5.1. Examples

Now we describe a rather wide class of plane domains for which there exist
conformal mappings with Jacobians of the class L p(D) for some p > 1, that is,
with complex derivatives of the class L p(D) for some p > 2.

Definition 2. A homeomorphism ϕ : Ω → Ω1 between planar domains is called
K -quasiconformal if it preserves orientation, belongs to the Sobolev class W 1,2

loc (Ω)

and its directional derivatives ∂α satisfy the distortion inequality

maxα |∂αϕ| � K min
α

|∂αϕ| almost everywhere in Ω.

Infinitesimally, quasiconformal homeomorphisms transform circles to ellipses with
eccentricity uniformly bounded by K . If K = 1 we recover conformal homeomor-
phisms, while for K > 1, the plane quasiconformal mappings need not be smooth.

Definition 3. A domain Ω is called a K -quasidisc if it is the image of the unit disc
D under a K -quasiconformal homeomorphism of the plane onto itself.

It is well known that the boundary of any K -quasidisc Ω admits a K 2-quasi-
conformal reflection, and thus, for example, any conformal homeomorphism ϕ :
D → Ω can be extended to a K 2-quasiconformal homeomorphism of the whole
plane to itself.

The boundaries of quasidiscs are called quasicircles. It is known that there
are quasicircles for which no segment has finite length. The Hausdorff dimension
of quasicircles was first investigated by Gehring and Väisälä [11], who proved
that it can take all values in the interval [1, 2). Smirnov proved recently [30]
that the Hausdorff dimension of any K -quasicircle is at most 1 + k2, where k =
(K − 1)/(K + 1).

Ahlfors’s 3-point condition [1] gives a complete geometric characterization of
quasicircles: a Jordan curve γ in the plane is a quasicircle if and only if for each
two points a, b in γ the (smaller) arc between them has the diameter comparable
with |a − b|. This condition is easily checked for the snowflake. On the other hand,
every quasicircle can be obtained by an explicit snowflake-type construction (see
[29]).

For any planar K -quasiconformal homeomorphismϕ : Ω → Ω1, the following
sharp result is known: J (z, ϕ) ∈ L p

loc(Ω1) for any p < K
K−1 ([2,13]).

Proposition 3. Any conformal homeomorphism ϕ : D → Ω of the unit disc D onto

a K -quasidisc Ω belongs to L1,p(D) for any 1 � p < 2K 2

K 2−1
.

Proof. Any conformal homeomorphism ϕ : D → Ω can be extended to a K 2

quasiconformal homeomorphism ψ of the whole plane to the whole plane by re-
flection. Since the domain Ω is bounded, ψ belongs to the class L p(Ω) for any
1 � p < 2K 2

K 2−1
([2,13]). Therefore ϕ belongs to the same class. ��

For quasidiscs, the following estimate readily follows from Theorem A:
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Proposition 4. Suppose a conformal homeomorphism ϕ : D → Ω maps the unit
disc D onto a K -quasidisc Ω . Then

1/λ1[Ω] � B2
2α/(α−2),2[D]

(∫

D

|ϕ′(x, y)|α dxdy

) 2
α

� 4π− 2
α

(
2α − 2

α − 2

) 2α−2
α ‖ψ ′ | Lα(D)‖2

for any 2 < α < 2K 2

K 2−1
.

As the second example, we consider the interior of the cardioid. By Alhfor’s
condition the cardioid is not a quasidisc. Because the cardioid is a conformal ∞-
regular domain, we have the following example:

Example 1. Let Ωc be the interior of the cardioid. The diffeomorphism

z = ψ(w) = (w + 1)2, z = x + iy,

is conformal and maps the unit disc D onto Ωc. Then, by Theorem B,

‖ψ ′ | L∞(D)‖ = maxw∈D 2|w + 1| � 4.

Hence,

λ1[Ωc] �
j21,1
16

.

Here j1,1 is the first positive zero of the Bessel function J1.

The third example is a m-polygon Pm .
Consider a m-polygon Pm with vertices zk on the unit circle and the angles αk

are measured in fractions of π . Then the conformal mapping of the unit discD onto
the n-polygon Pn is given by the Schwarz–Christoffel formula:

ψ(z) = C
∫ z

z0
(z − z1)

α1−1(z − z2)
α2−1 · · · · · (z − zm)αm−1dz + C1

and

ψ ′(z) = C(z − z1)
α1−1(z − z2)

α2−1 · · · · · (z − zm)αm−1.

Example 2. Qm is a regular m-polygon with vertices zk on the unit circle and the
angles αk = 1 − 2/m are measured in fractions of π . The diffeomorphism

ψ(z) = C
∫ z

z0
(zm − 1)−

2
m dz + C1, z = x + iy

is conformal and maps the unit disc D onto the regular m-polygon Qm . If we have
ϕ(0) = 0 and |ϕ′(z)| = 1, then C1 = 0 and C = 1. Then

1

λ1[Ω] � π− 2
α inf2<α<m

(
2α − 2

α − 2

) 2α−2
α

∫∫

D

|zm − 1|− 2α
m dxdy.
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6. Estimates for Domains Conformally Equivalent to a Rectangle

We take the unit ball as the basic domain for our estimates. Inmany applications
it is more convenient to take a rectangle as the basic domain:

Qab = {(x, y) ∈ R
2 : 0 < x < a, 0 < y < b}.

In this case we have the following assertion:

Theorem C. Let Ω ⊂ R
2 be a plane domain with non-empty boundary. Suppose

that there exists a conformal mapping ψ : Qab → Ω such that ψ ′ ∈ Lα(Qab) for
some α > 2. Then the spectrum of Neumann–Laplace operator in Ω is discrete
and can be written in the form of a non-decreasing sequence:

0 = λ0[Ω] < λ1[Ω] � λ2[Ω] � · · · � λn[Ω] � · · · ,

1/λ1[Ω] � B2
2α/(α−2),2[Qab]

(∫

Qab

|ϕ′(x, y)|α dxdy

) 2
α

�
(

a2 + b2

(ab)
r−1

r

)2 (
2α − 2

α − 2

) 2α−2
α ‖ψ ′ | Lα(Qab)‖2 for α < ∞

and

1/λ1[Ω] � B2
2,2[Qab]‖ψ ′ | L∞(Qab)‖2

=
(
max{a, b}

π

)2

‖ψ ′ | L∞(Qab)‖2, for α = ∞.

Proof. Because Qab is the convex domain, then by Proposition 2 we have that

Br,2(Qab) � d2

2|Qab|
(

1 − 1/2 + 1/r

1/2 − 1/2 + 1/r

)1−1/2+1/r

ω
1−1/2
n |Qab|1/2−1/2+1/2

=
(

a2 + b2

(ab)
r−1

r

)2 (
2α − 2

α − 2

) 2α−2
α

.

For B2,2(Qab) there is the exact calculation (see, for example, [26])

B2,2(Qab) = max{a, b}
π

.

Now, replacing in the proof of Theorems 8 and 9 the unit discD by the rectangle
Qab and using thewell known fact thatQab is a Poincaré domain,we proveTheorem
C in a fashion similar to the proofs of Theorems A and B. ��
Example 3. Let a = 1 and b = 2π . The conformal mapping ψ = ew : Qab → Re

maps the rectangle Qab onto the split ring Re. Then, by Theorem C

‖ψ ′ | L∞(D)‖ = maxu∈(0,1) eu � e.

Hence

λ1[Re] �
( π

2π

)2 1

‖ψ ′ | L∞(D)‖2 = 1

4e2
.
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Finally, we note that using the elementary conformal functions like sin, tan and
so on, it is possible to construct many non-trivial examples of domains in which
Theorem B gives estimates of the first non-trivial eigenvalue of the Neumann–
Laplace operator.

7. Comparison of the Estimates with Previous Results

Let Da denote the disc of the radius a > 0. Then, for Da , our estimate is exact.
In this case,

Da = ψ(D),

where ψ(z) = az. By Theorem B:

λ1[Dr ] �
j21,1

‖ψ ′ | L∞(D)‖2 = j21,1
a2 .

In the paper [27] the authors proved: if Ω is a convex domain with diameter
d(Ω) (see, also [9,10]), then

λ1[Ω] � π2

d(Ω)2
. (10)

Definition 4. Let Ω = ψ(D) be a conformal α-regular domain for α = ∞. We
call a domain Ω a conformal uniform domain if

‖ψ ′ | L∞(D)‖ � d(Ω).

For the class of conformal uniform domains the estimate (9) (Theorem B)
improves the estimate (10):

λ1[Ω] �
j21,1

‖ψ ′ | L∞(D)‖2 >
π2

d(Ω)2
.

The class of conformal uniform domains is not empty. Consider domains

Ωn = ψn(D), ψn(z) = (z + n)2, n � 1.

Then,

‖ψ ′
n | L∞(D)‖ = max|z|�1 |2(z + n)| = 2(n + 1).

From another side,

d(Ω) � |ψn(1) − ψn(−1)| = |(n + 1)2 − (n − 1)2| = 4n.

Hence ‖ψ ′
n | L∞(D)‖ � d(Ωn) and Ωn are conformal uniform domains. For

n > 3 the domains Ωn are convex, because

Re

{

1 + z
ψ ′′

n

ψ ′
n

}

> 0, n > 3.

The conformal uniform domains can be characterized in geometric terms: a
conformal ∞-regular domain Ω is conformal uniform if
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R (ψ(z),Ω) � (1 − |z|2)d(Ω),

where R (ψ(z),Ω) is a conformal radius of Ω .
Another example of conformal uniform domains is the domain Ωα = ψα(D),

where ψ(z) = eαz , for 0 = α0 < α < α1, where α0 and α1 are the zeros of the
function f (α) = 1 − α − e−2α (1/2 < α1 < 1). For these mappings ψα:

‖ψ ′
α | L∞(D)‖ = max|z|�1 |αeαz | = αeα,

and

d(Ω) � |ψα(1) − ψα(−1)| = eα − e−α.

Hence the domains Ωα are conformal uniform domains if

αeα � eα − e−α

or

f (α) = 1 − α − e−2α � 0.

For these α the domains Ωα are convex, because

Re

{

1 + z
ψ ′′

α

ψ ′
α

}

= Re {1 + αz} > 0, f or 0 = α0 < α < α1.

Acknowledgments. The authors thank the reviewer for careful reading of the paper and
useful comments.
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