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Abstract

In this paper, we develop an abstract framework to establish ill-posedness, in
the sense of Hadamard, for some nonlocal PDEs displaying unbounded unstable
spectra. We apply this to prove the ill-posedness for the hydrostatic Euler equations
as well as for the kinetic incompressible Euler equations and the Vlasov–Dirac–
Benney system.

1. Introduction

In this paper, we develop an abstract framework to establish ill-posedness, in
the sense of Hadamard, for some nonlocal PDEs displaying unbounded unstable
spectra; this phenomenon is reminiscent of Lax–Mizohata ill-posedness for first-
order systems violating the hyperbolicity condition (that is, when the spectrum of
the operator’s principal symbol is not included in the real line).
By (local-in-time) well-posedness of the Cauchy problem for a PDE, we mean:

• given initial data, there exists a time T > 0 so that a solution exists for all times
t ∈ [0, T ];

• the solution is unique;
• the solution map is (Hölder) continuous with respect to initial data.

This notion of well-posedness for PDEs was introduced by Hadamard [22]. The
Lax–Mizahota ill-posedness result is concerned with this definition. In this paper,
we shall describe situations in which the third well-posedness condition breaks
down (for data in Sobolev spaces).

In the context of systems of first-order partial differential equations,Hadamard’s
well-posedness was extensively studied by many authors, including Friedrichs,
Gårding, Hörmander and Lax, among others; see, for instance, [4,22,32–34,37,38,
42] and the references therein. For linear equations, it was Lax [32] andMizohata
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[38]who first showed that hyperbolicity is a necessary condition for well-posedness
of theCauchy problem forC∞ initial data. The result was later extended to quasilin-
ear systems byWakabayashi [42], and recently byMétivier [37]. The violation of
hyperbolicity creates an unbounded unstable spectrum of the underlying principal
differential operators.Métivier [37] showed that for first order systems that are not
hyperbolic, the solution map is not α-Hölder continuous (for all α ∈ (0, 1]) from
any Sobolev space to L2, or more precisely, that it does not belong to Cα(Hs, L2),
for all s � 0 and α ∈ (0, 1], within arbitrarily short time; that is, the Cauchy
problem is ill-posed, violating the above third condition for well-posedness.

In this paper, we prove an analogue ofMétivier’s result for some nonlocal PDEs,
namely, the hydrostatic Euler equations as well as for some singular Vlasov equa-
tions: the kinetic incompressible Euler equations and the Vlasov–Dirac–Benney
system. The purpose of this introduction is to briefly discuss these equations and
to present the main results. Our abstract framework for proving the ill-posedness
is inspired by the analysis of Métivier [37] and Desjardins and Grenier [13].

1.1. Hydrostatic Euler Equations

The Hydrostatic Euler equations arise in the context of two-dimensional in-
compressible ideal flows in a narrow channel (see for example [35]). They read:{

∂t u + u∂xu + v∂zu + px = 0,

∂xu + ∂zv = 0,
(1.1)

for (x, z) ∈ T × [−1, 1], where T := R/Z. The torus T is equipped with the
normalized Lebesgue measure, so that Leb(T) = 1. Here (u(t, x, z), v(t, x, z)) ∈
R
2, and p(t, x) are the unknowns in the equation. We impose the zero boundary

conditions:

v|z=±1 = 0.

The vorticity ω := ∂zu satisfies the equation

∂tω + u∂xω + v∂zω = 0, (1.2)

in which u := ∂zϕ, v := −∂xϕ, and the stream function ϕ solves the elliptic
problem:

∂2z ϕ = ω, ϕ|z=±1 = 0. (1.3)

Thus, one can observe a loss of one x-derivative in the Equation (1.2) through
v = −∂xϕ, as compared to ω. This indicates that a standard Cauchy theory cannot
be expected for this equation.

Brenier was the first to develop a Cauchy theory in Sobolev spaces for data
with convex profiles [7]; this was revisited and extended recently in Masmoudi
andWong [36] and Kukavica et al. [30]. In [31], Kukavica et al. also provide an
existence result for data with analytic regularity.

The derivation of hydrostatic Euler from the incompressible Euler equations set
in a narrow channel, for data with convex profiles, was first performed byGrenier
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[18], then by Brenier [9] with different methods (see also [36]). One key idea
in these works is the use of the convexity to build a suitable energy which is not
degenerate in the hydrostatic limit.

In [41], Renardy showed that for arbitrary odd shear flows U (z) so that 1
U (z)2

is integrable, the linearized hydrostatic Euler Equations (1.2) and (1.3) around
U ′ have unbounded unstable spectrum. Such profiles do not satisfy the convexity
condition. Following an argument of [21], this property for the spectrum can be
used to straightforwardly prove some ill-posedness for the nonlinear equations
(see also [15,16,20] for the ill-posedness of the Prandtl equations or [14] for the
SQG equations); loosely speaking, it asserts that the flow of solutions, if it exists,
cannot be C1(Hs, H1), for all s � 0, within a fixed positive time. In this work, we
shall construct a family of solutions to show that the solution map from Hs to L2

has unbounded Hölder norm, within arbitrarily short time. In the proof, we shall
take an unstable shear flow that is analytic. Such a shear flow exists; for instance,
U (z) = tanh( z

d1
) for small d1 yields unstable spectrum as shown by [12].

We prove the following ill-posedness result:

Theorem 1.1. (Ill-posedness for the hydrostatic Euler equations) There exists a
stationary shear flow U (z) such that the following holds. For all s ∈ N, α ∈ (0, 1],
and k ∈ N, there are families of solutions (ωε)ε>0 of (1.2) and (1.3), times tε =
O(ε| log ε|), and (x0, z0) ∈ T × (−1, 1) such that

lim
ε→0

‖ωε −U ′‖L2([0,tε]×�ε)

‖ωε|t=0 −U ′‖α
Hs (T×(−1,1))

= +∞ (1.4)

with �ε = B(x0, εk) × B(z0, εk).

We remark that the instability is strong enough so that it occurs within a van-
ishing spatial domain �ε and a vanishing time tε, as ε → 0. As will be seen in the
proof, (x0, z0) can actually be taken arbitrarily in T × (−1, 1).

1.2. Kinetic Incompressible Euler and Vlasov–Dirac–Benney Equations

The so-called kinetic incompressible Euler and Vlasov–Dirac–Benney systems
are kinetic models from plasma physics, arising in the context of small Debye
lengths regimes. Although our results will be stated in the three-dimensional frame-
work, they can be adapted to any dimension.

Consider first the kinetic incompressible Euler equations, which read

∂t f + v · ∇x f − ∇xϕ · ∇v f = 0, (1.5)

ρ(t, x) :=
∫
R3

f (t, x, v) dv = 1, (1.6)

for (t, x, v) ∈ R
+ × T

3 × R
3, in which f (t, x, v) is the distribution function at

time t � 0, position x ∈ T
3 := R

3/Z3, and velocity v ∈ R
3 of electrons in a

plasma. The torus T3 is equipped with the normalized Lebesgue measure, so that
Leb(T3) = 1. The potentialϕ stands for a Lagrangemultiplier (or, from the physical
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point of view, a pressure) related to the constraint ρ = 1. It is possible to obtain
an explicit formula for the potential ϕ, arguing as follows. Introduce the current
density j (t, x) := ∫

R3 f (t, x, v)v dv. We start by writing the local conservation of
charge and current from the Vlasov equation:

∂tρ + ∇ · j = 0,

∂t j + ∇ ·
∫

f v ⊗ v dv = −∇ϕ.

By using the constraint (1.6), it follows that ∇ · j = 0. Plugging this into the
conservation of current, one gets the law

−	ϕ = ∇ ·
(

∇ ·
∫

f v ⊗ v dv

)
. (1.7)

Looking for solutions to (1.5) and (1.6) of the form f (t, x, v) = ρ(t, x)δv=u(t,x)

turns out to be equivalent to finding solutions (ρ, u) of the classical incompressible
Euler equations. This therefore justifies the name we have chosen for (1.5) and
(1.6), as suggested by Brenier [6].

The Vlasov–Dirac–Benney system is closely related, reading:

∂t f + v · ∇x f − ∇xϕ · ∇v f = 0, (1.8)

ϕ =
∫
R3

f (t, x, v) dv − 1. (1.9)

This model appears to be a kinetic analogue of the compressible isentropic Euler
equations with parameter γ = 2. The name Vlasov–Dirac–Benney was coined by
Bardos [1], due to connections with the Benney model for Water Waves.

Both kinetic incompressible Euler and Vlasov–Dirac–Benney equations can be
formally derived in the quasineutral limit of the Vlasov–Poisson system, that is in
the small Debye length regime. This corresponds to the singular limit ε → 0 in the
following scaled equations:

∂t fε + v · ∇x fε − ∇xϕε · ∇v fε = 0,

where ϕε solves a Poisson equation given,

1. for the case of electron dynamics, by

−ε2	xϕε = ρε − 1, ρε :=
∫
R3

fε dv,

which yields the kinetic incompressible Euler equations in the formal limit
ε → 0 (see [6]);

2. for the case of ion dynamics, by

−ε2	xϕε = ρε − ϕε − 1, ρε :=
∫
R3

fε dv,

which yields the Vlasov–Dirac–Benney system in the formal limit ε → 0 (see
[27]).
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Directly from the laws (1.7) and (1.9) for the potential ϕ, one sees that there is
a loss of one x-derivative through the force −∇xϕ, as compared to the distribution
function f . This explains why a standard Cauchy theory cannot be expected for
these equations. What is known though is the existence of analytic solutions (see
[27], Jabin and Nouri [29], Bossy et al. [5]), as well as an Hs theory for stable
data (seeBardos andBesse [2] and the recent work of the first author andRousset
[26]).

As for the rigorous justification of the quasineutral limit, we first refer to the
work of Grenier [17] in the case of data with analytic regularity in x (see also
[23,24] where it is shown that exponentially small but rough perturbations of the
data considered byGrenier are admissible). In [8],Brenier introduced the so-called
modulated energy method and derived the incompressible Euler equations in the
limiting case of monokinetic distributions (see [27] for what concerns the case of
the compressible isentropic Euler system). In the work [28], the first author and
Hauray showed that the formal limit (to (1.5), (1.6) or (1.8), (1.9)) is in general not
true in Sobolev spaces, because of instabilities of the Vlasov–Poisson system (see
also [25]). The rigorous derivation of (1.8) and (1.9) for initial data with a Penrose
stability condition was completed only recently by the first author and Rousset
[26].

In [3], Bardos and Nouri show that around unstable homogeneous equilibria,
the linearized equations of (1.8) and (1.9) have unbounded unstable spectrum.
This property was used to prove some ill-posedness, using the above-mentioned
argument of [21], see [3, Theorem 4.1]; loosely speaking they show that the flow
of solutions, if it exists, cannot be C1(Hs, H1), for all s � 0. What we shall prove
in this paper is that the flow cannot be Cα(Hs

weight, L
2), for all s � 0, α ∈ (0, 1],

and any polynomial weight in v. In the proof we shall take unstable homogeneous
equilibria that are analytic and decaying sufficiently fast at infinity: typical examples
are double-bump equilibria satisfying these constraints.

More precisely, we prove the following ill-posedness result:

Theorem 1.2. (Ill-posedness for the kinetic incompressible Euler and Vlasov–
Dirac–Benney equations) There exists a stationary solution μ(v) such that the
following holds. For all m, s ∈ N, α ∈ (0, 1], and k ∈ N, there are families of
solutions ( fε)ε>0 of (1.5) and (1.6) (respectively, of the system (1.8), (1.9)), times
tε = O(ε| log ε|), and (x0, v0) ∈ T

3 × R
3, such that

lim
ε→0

‖ fε − μ‖L2([0,tε]×�ε)

‖〈v〉m( fε|t=0 − μ)‖α
Hs (T3×R3)

= +∞ (1.10)

with �ε = B(x0, εk) × B(v0, ε
k). Here, 〈v〉 := √

1 + |v|2.
In the proof, we shall focus only on the system (1.5)–(1.7), since the analysis is

almost identical for what concerns the Vlasov–Dirac–Benney equations. Further-
more, this result also holds for (1.5) and (1.6) and (1.5)–(1.7) in any dimension
d ∈ N

∗.
The abstract ill-posedness framework will be presented in Section 2. The ill-

posedness of the hydrostatic Euler and kinetic incompressible Euler equations is
then proved in Sections 3 and 4, respectively.
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2. An Abstract Framework for Ill-Posedness

In this section, we present a framework to study the ill-posedness of the fol-
lowing abstract PDE for U = U (t, x, z):

∂tU − LU = Q(U,U ), t � 0, x ∈ T
d := R

d/Zd , z ∈ �, (2.1)

in which L (resp. Q) is a linear (resp. bilinear) integro-differential operator in
(x, z), d ∈ N

∗ and � is an open subset of Rd ′
, d ′ ∈ N

∗. If � �= R
d ′
, then some

suitable boundary conditions on ∂� are enforced for U . The choice of Td is made
for simplicity, and other settings are possible.

Consider the sequence εk = 1
k , for k ∈ N

∗. In the following, we forget the
subscript k for readability. Following Métivier [37], we look for solutions U
under the form

U (t, x, z) ≡ u

(
t

ε
,
x

ε
, z

)
, (2.2)

where u(s, y, z) is 1-periodic in y1, . . . , yd . Assume that one can write

LU =
[
1

ε
Lu + R1(u)

] (
t

ε
,
x

ε
, z

)
,

Q(U,U ) =
[
1

ε
Q(u, u) + R2(u, u)

] (
t

ε
,
x

ε
, z

)
,

where L is independent of ε; on the other hand, althoughwedo notwrite it explicitly,
the operators R1, Q, R2 may depend on ε. This leads to the study of the following
abstract PDE:

∂su − Lu = Q(u, u) + ε(R1(u) + R2(u, u)), s � 0, y ∈ T
d , z ∈ �. (2.3)

We finally assume the existence of a family of norms (‖ · ‖δ,δ′)δ,δ′>0 satisfying the
following properties. For all δ, δ′ > 0, the corresponding function space

Xδ,δ′ := {u(y, z), ‖u‖δ,δ′ < +∞}
(with possible boundary conditions in z, if � �= R

d ′
) is complete and compactly

embedded into 〈v〉m-weighted Sobolev spaces Hs (with 〈z〉 = √
1 + |z|2), for all

m, s > 0.
Moreover, for all 0 � δ < δ1, 0 � δ′ < δ′

1, the following inequalities hold for
all u:

‖u‖δ,δ′ � ‖u‖δ1,δ
′
1
, ‖∂yu‖δ,δ′ � δ1

δ1 − δ
‖u‖δ1,δ′, ‖∂zu‖δ,δ′ � δ′

1

δ′
1 − δ′ ‖u‖δ,δ′

1
.

In what follows, we shall carry our analysis on the scaled system (2.3).
We make the following structural assumptions on the abstract PDE (2.3).

(H.1) (Spectral instability for L) There exists an eigenfunction g associated to an
eigenvalue λ0, with �λ0 > 0, for L . In other words, the set

+ := {λ0 ∈ C,�λ0 > 0, ∃g �= 0, Lg = λ0g}
is not empty.
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(H.2) [Loss of analyticity for the semigroup (in y only)] The semigroup eLs , as-
sociated to L , is well-defined in Xδ,δ′ , for s > 0 and δ′ > 0 small enough.
Furthermore, there is γ0 > 0, such that the following holds:

• For all η > 0, there exist k0 ∈ [1,+∞) and λ0 ∈ + such that∣∣∣∣�λ0

k0
− γ0

∣∣∣∣ � η. (2.4)

Moreover there exists an eigenfunction g for L , associated to λ0, such that
‖g‖δ,δ′

0
< +∞, for all δ > 0 and some δ′

0 > 0.
• For any � > γ0, there are C� > 0, δ′

1 > 0 such that for all δ − �s � 0,
δ′ ∈ (0, δ′

1], and all ε > 0,

‖eLsu‖δ−�s,δ′ � C�‖u‖δ,δ′ , ∀u ∈ Xδ,δ′ . (2.5)

(H.3) (Commutator identity) We have the identity

[∂y, L] = 0.

(H.4) (Structure of Q) Q is bilinear and we have for all δ, δ′ > 0, and all ε > 0,

‖Q( f, h)‖δ,δ′ � C0‖ f ‖δ,δ′(‖∂yh‖δ,δ′ + ‖∂zh‖δ,δ′), ∀f, h ∈ Xδ,δ′,

for some C0 > 0.
(H.5) (Structure of R1, R2) R1 is linear and R2 is bilinear.We have for all δ, δ′ > 0,

and all ε > 0,

‖R1( f )‖δ,δ′ � C0(‖ f ‖δ,δ′ + ‖∂y f ‖δ,δ′ + ‖∂z f ‖δ,δ′), ∀f ∈ Xδ,δ′,

‖R2( f, h)‖δ,δ′ � C0‖ f ‖δ,δ′(‖∂yh‖δ,δ′ + ‖∂zh‖δ,δ′), ∀f, h ∈ Xδ,δ′,

for some C0 > 0.

Let us make a few comments about (H.1)–(H.5).
The norm ‖ · ‖δ,δ′ has to be seen as an analytic norm used to build a solution to

(2.3). The requested properties are classical in the context of spaces of real analytic
functions, see for example [17,39]. Assumption (H.1) yields a violent instability
for the operatorL . In the case R1 = 0, the interpretation is clear: it reveals thatL
has an unbounded unstable spectrum. Indeed it means that for all ε > 0,

L g
( ·
ε
, ·

)
= λ0

ε
g

( ·
ε
, ·

)
,

that is, g( ·
ε
, ·) is an eigenfunction associated to the eigenvalue λ0

ε
, with �λ0 > 0.

In the case where L = L , it means that L itself has these unstable features.
Assumption (H.2) reveals a loss of analytic regularity for the semigroup asso-

ciated to L; we emphasize that the loss concerns only the y variable, and not the z
variable. The constraint on the admissible losses � > γ0 in (2.5) is sharp, in the
sense that it is the best one can hope for, in view of (2.4) and its possible conse-
quences on the growth of the spectrum. It means in practice that this number γ0 has
to be seen as the supremum of some rescaled functional; see Sections 3 and 4 for
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illustrations of these facts. Note also that the eigenfunction g has a very demand-
ing regularity with respect to the first variable. In the context of real analyticity, it
means in practice that g has to be very well localized in the Fourier space (with
respect to the first variable). The assumption (H.2) is certainly the most technical
to check in practice, while assumption (H.3) is a simple computation. Note finally
that in (H.4) and (H.5), the losses of derivatives are only of order 1, as usual for
Cauchy–Kowalevsky type results.

The main result of this section is the following abstract ill-posedness theorem:

Theorem 2.1. Assume (H.1)–(H.5). For all m, s ∈ N, α ∈ (0, 1], k ∈ N, there are
families of solutions (Uε)ε>0 of (2.1), times tε = O(ε| log ε|) and (x0, z0) ∈ T

d×�

such that

lim
ε→0

‖Uε‖L2([0,tε]×�ε)

‖〈z〉mUε|t=0‖Hs (Td×�)

= +∞ (2.6)

where �ε = B(x0, εk) × B(z0, εk).

In the case where the linear differential operator L has constant coefficients,
the theorem is due to Métivier [37] using the power series approach. In appli-
cations to the equations we have in mind, the differential operator L typically
depends on variables (x, z). Our functional framework is closer to that of Des-
jardins and Grenier [13], who introduced an analytic framework for studying
nonlinear (Rayleigh–Taylor) instability.

Remark 2.2. We expect that this abstract framework can be useful to prove ill-
posedness for multi-phase Euler models, see for example [10]. These models can
be (formally) derived in the context of the quasineutral limit of the Vlasov–Poisson
equation, see Grenier [17]. Whereas the one-dimensional model surely fits the
local framework by Métivier [37], the multi-dimensional analogue appears to be
nonlocal due to the pressure.

The choice of parameters we make below follows Métivier [37]. Let s ∈ N,
α ∈ (0, 1], k ∈ N be all arbitrary, but fixed. We take M large enough and β > 0
small enough such that

α′ := M − s

M
α − 1 + 2dk

2M
> 0, (2.7)

βM <
1

2
,

2β

1 + β
< α′. (2.8)

Let γ0 > 0 satisfying all requested properties in (H.2). Let η ∈
(
0,min

(
γ0
2 ,

βγ0
4

))
.

Weobtain a pair of eigenvalue and eigenfunction (λ0, g), and k0 ∈ [1,+∞), δ′
0 > 0,

such that the first point of (H.2) is satisfied. We note that defining

γ1 = (1 + β)
�λ0

k0
, (2.9)

we have γ1 > γ0 as well as 1
2

(�λ0
k0

+ γ1

)
> γ0. We also define

δ0 = (1 − β)M

k0
| log ε|.
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Let (x0, z0) be such that g(x0, z0) �= 0. By continuity, there is c > 0 such that for
all small enough ε,

|g(x, z)| � c, ∀(x, z) ∈ B(x0, ε
k) × B(z0, ε

k) ⊂ �ε. (2.10)

Let us assume that λ0 is real (we will explain the general case at the end of the
proof).

Unlike Métivier [37], our analysis relies on weighted in time analytic type
norms, introduced by Caflisch in his proof of the Cauchy–Kowalevsky theorem
([11]; see also [13]). To be precise, let us introduce the norm

‖w‖ = sup
0�δ�δ0

sup
0�s� 1

γ1
(δ0−δ)

[‖w(s)‖δ,δ′ + (δ0 − δ − γ1s)
γ (‖∂yw(s)‖δ,δ′

+M−γ | log ε|−γ ‖∂zw(s)‖δ,δ′)], (2.11)

in which δ′ is a shorthand for
δ′
0k0δ

M| log ε| and γ is an arbitrary fixed number in (0, 1).
We denote by X the space of functions w such that ‖w‖ < +∞; it is well known
that (X, ‖ · ‖) is a Banach space.

Theorem 2.1 is a consequence of the following lemma, where we construct
solutions in X that capture the instability for the scaled system (2.3).

Lemma 2.3. Under the assumptions (H.1)–(H.5), there is ε0 > 0 such that for all
ε ∈ (0, ε0], there exists a solution u of (2.3) of the form

u(s) = εMeλ0sg + w(s), ∀s ∈ [0, sε], (2.12)

where (λ0, g) is defined as in (H.2),

sε = (1 − β)M

k0γ1
| log ε| = 1 − β

1 + β

M

λ0
| log ε|

and w is a remainder satisfying

‖w‖ � ε
2β
1+β

M
.

Proof. We set

uapp(s) := εMeLsg = εMeλ0sg.

It follows directly from the definition and the assumption ‖g‖δ0,δ
′
0

� 1 that

‖uapp‖ � CεM | log ε|γ e
λ0δ0
γ1 � Cεκ | log ε|γ , κ := 2β

1 + β
M,

in which the logarithmic loss is due to the weight in time in the norm ‖ · ‖. Next,
we observe that by definition, uapp is a solution of

∂suapp − Luapp = Q(uapp, uapp) + ε(R1(uapp) + R2(uapp, uapp)) + Rapp
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where, thanks to the assumptions (H.4)–(H.5), the remainder Rapp satisfies the
estimate

‖Rapp‖ � Cappε
2κ | log ε|2γ .

(Here, we have used the fact that βM < 1/2, so that ε � εκ .)
Our goal is now to solve the equation for the difference w = u − uapp:

∂sw − Lw = Q(w,w) − Q(uapp, w) − Q(w, uapp) + ε(R1(w) + R2(w,w))

− ε(R2(uapp, w) + R2(w, uapp)) − Rapp
(2.13)

with w|s=0 = 0. Then u = w + uapp solves the Equation (2.3) as desired. To that
purpose, let us study the following approximation scheme:

∂swn+1 − Lwn+1 =Q(wn, wn) − Q(uapp, wn) − Q(wn, uapp) + ε(R1(wn)

+ R2(wn, wn)) − ε(R2(uapp, wn) + R2(wn, uapp)) − Rapp

with wn+1|s=0 = 0. Set w0 = 0.
We shall prove that for ε > 0 small enough, we can make the scheme converge,

and that the following estimates hold for all n � 0:

‖wn‖ � Cε2κ | log ε|1+2γ , (2.14)

for some universal constant C (independent of n). In addition, for all n � 1,

‖wn+1 − wn‖ � 1

2
‖wn − wn−1‖. (2.15)

By induction, assume that (2.14) is true for all k � n. We have

wn+1(s) =
∫ s

0
e(s−τ)L [Q(wn, wn) − (Q(uapp, wn) + Q(wn, uapp))

+ ε(R1(wn) + R2(wn, wn) − R2(uapp, wn) − R2(wn, uapp))

− Rapp] dτ
=: I1(s) + I2(s) + I3(s) + I4(s).

We claim that there are C0 > 0, γ ′ > 0 and ε0 > 0 (independent of n) such that
for all ε ∈ (0, ε0], the following estimates hold:

• For the non-linear term:

‖I1‖ � C0‖wn‖2| log ε|1+γ � C0ε
4κ | log ε|1+2γ+γ ′

.

• For the linear term:

‖I2‖ � C ′
0‖wn‖‖uapp‖| log ε|1+γ � C0ε

1+2κ | log ε|1+2γ+γ ′
.

• For the first remainder:

‖I3‖ � C ′
0ε‖wn‖(1 + ‖wn‖)| log ε|1+γ � C0ε

1+κ | log |1+2γ+γ ′
.
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• For the second remainder:

‖I4‖ � Cappε
2κ | log ε|1+2γ .

This shows that imposing ε small enough (but independently of n), (2.14) is satisfied
at rank n + 1, and thus closes the induction argument.

It remains to justify the above estimates. We shall only provide details of the
computations for I1, the other ones being similar. For all δ ∈ [1, δ0 − γ1s), we set

δ′ = δ′
0k0δ

M| log ε| and � := λ0
2k0

+ γ1
2 . Note that � > γ0. We write γ1 = λ0

k0
+ 2ν with

ν := βλ0
2k0

. We get, using (H.2) and (H.4),

‖I1(s)‖δ,δ′ �
∫ s

0
‖e(s−τ)L Q(wn, wn)‖δ,δ′ dτ

�
∫ s

0
‖Q(wn, wn)‖δ+�(s−τ),δ′ dτ

�
∫ s

0
‖wn(τ )‖δ+�(s−τ),δ′

(‖∂ywn(τ )‖δ+�(s−τ),δ′

+‖∂zwn(τ )‖δ+�(s−τ),δ′
)
dτ

�
∫ s

0
‖wn‖2 (δ0 − δ − �s − ντ)−γ (1 + Mγ | log ε|γ ) dτ,

since δ′ � δ′ + δ′
0k0�(s−τ)

M| log ε| . We thus get

‖I1(s)‖δ,δ′ � (1 + Mγ | log ε|γ )‖wn‖2
∫ s

0
(δ0 − δ − �s − ντ)−γ dτ

� (1 + Mγ | log ε|γ )‖wn‖2 1

1 − γ

1

ν
(δ0 − δ − �s)1−γ

� (1 + Mγ | log ε|γ )| log ε|1−γ ‖wn‖2,

recalling that δ0 = (1−β)M
k0

| log ε|. Likewise, by (H.3), (H.2) and (H.4), we obtain

‖∂y I1(s)‖δ,δ′ �
∫ s

0
‖∂ye(s−τ)L Q(wn, wn)‖δ,δ′ dτ

�
∫ s

0
‖e(s−τ)L∂y Q(wn, wn)‖δ,δ′ dτ

�
∫ s

0
‖∂y[Q(wn, wn)]‖δ+�(s−τ),δ′ dτ

�
∫ s

0

2δ0
(δ0 − δ − �s − ντ)

‖Q(wn, wn)‖ δ0−γ1τ

2 + δ+�(s−τ )
2 ,δ′ dτ

�
∫ s

0
‖wn‖2δ0 (δ0 − δ − �s − ντ)−1−γ (1 + Mγ | log ε|γ ) dτ

� ‖wn‖2| log ε|1+γ (δ0 − δ − �s − νs)−γ .



1328 Daniel Han-Kwan & Toan T. Nguyen

Note that � + ν = γ1. Consequently, we deduce

‖∂y I1(s)‖δ,δ′ � ‖wn‖2| log ε|1+γ (δ0 − δ − γ1s)
−γ .

Now we use that there is no loss in the z variable for the semigroup. Recalling

δ′ = δ′
0k0δ

M| log ε| , we get with similar computations

‖∂z I1(s)‖δ,δ′ �
∫ s

0
‖∂ze(s−τ)L Q(wn, wn)‖δ,δ′ dτ

�
∫ s

0
‖e(s−τ)L [Q(wn, wn)]‖

δ,
δ′0k0

M| log ε|
[

δ0−γ1τ

2 + δ
2

]δ0 (δ0 − δ − γ1τ)−1 dτ

�
∫ s

0
‖Q(wn, wn)‖

δ+�(s−τ),
δ′0k0

M| log ε|
[

δ0−γ1τ

2 + δ
2

]δ0 (δ0−δ−�τ −ντ)−1 dτ

�
∫ s

0
‖Q(wn, wn)‖

δ+�(s−τ),
δ′0k0

M| log ε|
[

δ0−γ1τ

2 + δ
2

]δ0 (δ0−δ−�s−ντ)−1 dτ

�
∫ s

0
‖wn‖2 δ0(1 + Mγ | log ε|γ )

(δ0 − δ − �s − ντ)γ+1 dτ

� ‖wn‖2| log ε|1+γ (δ0 − δ − γ1s)
−γ .

We end up with the claimed estimate for ‖I1‖, using the induction assumption on
‖wn‖. The contraction estimates are now straightforward; we have indeed for all
n � 2,

‖wn+1 − wn‖ � C1| log ε|1+γ (‖wn−1‖ + ‖wn‖)‖‖wn − wn−1‖
+C2ε

κ | log ε|1+γ ‖‖wn − wn−1‖.
By (2.14), we have

‖wn−1‖ + ‖wn‖ � ε2κ | log ε|1+2γ ,

so that by imposing ε > 0 small, we obtain (2.15).
Since (X, ‖ · ‖) is a Banach space, we get a solution w of (2.13), satisfying in

addition the estimate

‖w‖ � Cε2κ | log ε|1+2γ .

��
Finally, we complete the proof of Theorem 2.1:

Proof of Theorem 2.1. Consider the initial condition Uε|t=0(x, z) = εMg
( x

ε
, z

)
for (2.1). We note that

‖〈z〉mUε|t=0‖α
Hs � C ′εα(M−s)

By Lemma 2.3, we obtain a solution uε(s, y, z) of (2.3) with initial condition
εMg(y, z), satisfying (2.12). Thus we get a solution Uε(t, x, z) = uε

( t
ε
, x

ε
, z

)
for

(2.1). Consider the time

sε = 1 − β

1 + β

M

λ0
| log ε|
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and let tε = εsε. Using the embedding in L2, (2.12), and the lower bound (2.10),
we have, for some constants θ1, θ

′
1 > 0 that are independent of ε:

‖Uε‖L2([0,tε]×�ε)
= ‖εMeLt/εg

( ·
ε
, ·

)
+ w

( ·
ε
, ·

)
‖L2([0,tε]×�ε)

� ‖εMeLt/εg
( ·
ε
, ·

)
+ w

( ·
ε
, ·

)
‖L2([tε−ε,tε]×B(x0,εk )×B(z0,εk ))

� θ1ε
κεdk+

1
2 − ‖w

( ·
ε
, ·

)
‖L2([tε−ε,tε]×B(x0,εk )×B(z0,εk ))

� θ1ε
κεdk+

1
2 − Cεdk+

1
2 ε2κ | log ε|γ1

� θ ′
1ε

κεdk+
1
2

for sufficiently small ε. We recall that κ = 2β
1+β

M . By a view of the choice on the
parameters in (2.7) and (2.8), we get

‖Uε‖L2([0,tε]×�ε)

‖〈z〉mUε|t=0‖α
Hs

� θ ′
1

C ′ ε
M

(
2β
1+β

−α′
)
,

which tends to infinity as ε → 0. This concludes the proof of the theoremwhenλ0 is
real. In the general case, the modifications are standard, see for exampleMétivier
[37]. In Lemma 2.3, one has to replace (2.12) by

u(s) = εM�(eλ0sg) + w(s), ∀s ∈ [0, sε], (2.16)

meaning that instead of comparing to a pure exponentially growing mode, we
have to compare u to an exponentially growing mode multiplied by an oscillating
function. The above analysis can be performed again, making sure to avoid the
(discrete) times when this oscillating function cancels. ��

3. Ill-Posedness of the Hydrostatic Euler Equations

In this section, we give the proof of Theorem 1.1, establishing the ill-posedness
of the hydrostatic Euler Equation (1.1), which we write in the stream-vorticity
formulation:

∂t� +U∂x� + V ∂z� = 0, (3.1)

in which U := ∂z�, V := −∂x�, and the stream function � solves the elliptic
problem:

∂2z � = �, �|z=±1 = 0. (3.2)

We shall prove in this section how Theorem 1.1 follows from our abstract ill-
posedness framework. We work with the analytic function space Xδ,δ′ , equipped
with the following norm:

‖ω‖δ,δ′ :=
∑
n∈Z

∑
k�0

‖∂kz ωn‖L2([−1,1])
|δ′|k
k! eδ|n|, (3.3)
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for any δ, δ′ > 0, in which ωn = 〈ω, einx 〉L2(T) stands for the Fourier coefficients
ofωwith respect to x-variable.We also denote by Xδ′ the z-analytic function space,
equipped with the following norm:

‖ω‖δ′ :=
∑
k�0

‖∂kz ω‖L2([−1,1])
|δ′|k
k! . (3.4)

We study ill-posedness near a well-chosen shear flow, that is � = U ′(z). We
assume that U is real analytic so that the norm

|||U |||δ′ :=
∑
k�0

‖∂kz U ′‖L∞([−1,1])
|δ′|k
k! (3.5)

is finite for some δ′ > 0.
By viewing the analytic norms (3.3) and (3.4), we have for all 0 < δ′ < δ′

1 that

‖∂zω‖δ′ � δ′
1

δ′
1 − δ′ ‖ω‖δ′

1
,

and so

‖∂zω‖δ,δ′ � δ′
1

δ′
1 − δ′ ‖ω‖δ,δ′

1
.

We can argue similarly for ‖∂yω‖δ,δ′ .
We write the perturbed solution in the fast variables as follows:

�(t, x, z) = U ′(z) + ω

(
t

ε
,
x

ε
, z

)
, �(t, x, z) =

∫ z

−1
U (θ) dθ + ϕ

(
t

ε
,
x

ε
, z

)
.

Let (s, y) = ( t
ε
, x

ε
). The function ω(s, y, z) solves

∂sω − Lω = −∂zϕ∂yω + ∂yϕ∂zω, (3.6)

in which the linearized operator is defined by

Lω := −U∂yω + ∂yϕU ′′, ∂2z ϕ = ω, ϕ|z=±1 = 0. (3.7)

To treat the loss of derivatives from each quantity in the quadratic term ∂yϕ∂zω,
we further write the above equation in a matrix form. Set

L :=
⎛
⎝L 0 0
0 L 0
0 −U ′ +U ′′∂zϕ(·) +U ′′′ϕ(·) −U∂y

⎞
⎠ , (3.8)

in which by convention, ϕ(W ) solves ∂2z ϕ(W ) = W with ϕ|z=±1 = 0. Similarly,
for any two vector fields V = (v1, v2, v3) and W = (w1, w2, w3), we set

Q(V,W ) :=
⎛
⎝ −∂zϕ(v1)w2 + ϕ(v2)w3

−∂zϕ(v2)w2 − ∂zϕ(v1)∂yw2 + ∂yϕ(v2)w3 + ϕ(v2)∂yw3
−v1w2 − ∂zϕ(v1)∂zw2 + ∂zϕ(v2)w3 + ϕ(v2)∂zw3

⎞
⎠ .
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It follows that ω solves (3.6) if and only if the function

W :=
⎛
⎝ ω

∂yω

∂zω

⎞
⎠

solves
∂sW − LW = Q(W,W ). (3.9)

We shall show the ill-posedness of (3.9) by directly checking the assumptions
(H.1)–(H.5) made in our abstract ill-posedness framework.

3.1. Unbounded Unstable Spectrum of the Linearized Operator

Our starting point is the work by Renardy [41], in which he showed that
the linearized hydrostatic Euler system near certain shear flows U (z) possesses
ellipticity or unbounded unstable spectrum. Indeed, let us study the linearization
near U (z):

∂tω +U∂yω − ∂yϕU ′′ = 0, ∂2z ϕ = ω, ϕ|z=±1 = 0, (3.10)

and search for a growing mode of the form

ω = ein(y−ct)ω̂(z), (3.11)

with�c �= 0 and ω̂ = ∂2z ϕ̂. The stream function ϕ̂ then solves theRayleigh problem:

(U − c)∂2z ϕ̂ −U ′′ϕ̂ = 0, ϕ̂|z=±1 = 0. (3.12)

This is a very classical problem in fluid mechanics (see for instance the recent work
[19]). There are two independent solutions of the Rayleigh problem:

ϕ̂1 = U − c, ϕ̂2 = (U − c)
∫ z

−1

1

(U (z′) − c)2
dz′ (3.13)

whose Wronskian determinant is W [ϕ̂1, ϕ̂2] = ∂z ϕ̂2ϕ̂1 − ∂z ϕ̂1ϕ̂2 = 1. The pair
(ϕ̂, c) solves the Rayleigh problem if and only if c is a zero of the (Evans) function

D(c) := ϕ̂1(−1)ϕ̂2(1) − ϕ̂1(1)ϕ̂2(−1). (3.14)

This means, precisely, that c has to solve the equation∫ 1

−1

1

(U (z) − c)2
dz = 0 (3.15)

(see also [41, Theorem 1]). As an explicit example, one can take U (z) = tanh( z
d1

)

for small d1 > 0 as shown in [12]. Since c does not depend on n, the unstable spec-
trum is unbounded. Let us summarize this discussion in the following statement:

Lemma 3.1. The linearized operator L possesses a growing mode of the form
(3.11) if and only if c is a zero of the Evans function (3.14). If such a growing mode
exists, the unstable spectrum is unbounded, containing all the points λ = −inc,
with n ∈ Z such that n�c > 0 and with corresponding eigenfunctions of the form

ω = einy∂2z ϕ̂2. (3.16)
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3.2. Sharp Semigroup Bounds

Let L be the matrix operator defined as in (3.8). From now on, we consider a
shear flowU (z) such that |||U |||δ′

1
< +∞ for some δ′

1 > 0, with which the unstable
spectrum of the linearization (3.10) is unbounded; see the previous section. We set
γ0 to be defined by

γ0 := max�c �=0
{�c : D(c) = 0}. (3.17)

The above maximum exists and is positive, since by a view of (3.15) the Rayleigh
problem has no solution as |c| → ∞ and D(c) is continuous (in fact, analytic)
in {�c �= 0}. Let c0 be the solution of D(c0) = 0 so that γ0 = �c0, and let
ω be the corresponding eigenfunction as in (3.16). By Lemma 3.1, λ0 = −inc0
is an unstable eigenvalue of L, for all n ∈ Z, so that �λ0 = n�c0 > 0. Since
ω = einy∂2z ϕ̂2, as defined in (3.13), the regularity of ω follows from that of the
given shear flow U (z).

The main goal of this section is to prove the following proposition.

Proposition 3.2. Let δ, δ′ > 0 and let γ0 be defined as in (3.17). The semigroup
eLs , associated to L, is well-defined in Xδ,δ′ , for small s > 0 and small δ′. More
precisely, for any γ > γ0, there is a positive constant Cγ so that

‖eLsh‖δ−γ s,δ′ � Cγ ‖h‖δ,δ′

for all h ∈ Xδ,δ′ , 0 < δ′ � γ0, and for all s so that δ − γ s > 0.

We start the proof of Proposition 3.2 by proving the same bounds for the semi-
group eLs . In Fourier variables, we first study the semigroup eLns , that is to say we
study ω = eLnsh, solving

∂sω − Lnω = 0, ω|s=0 = h,

with

Lnω := −inUω + inϕU ′′, ∂2z ϕ = ω, ϕ|z=±1 = 0.

Lemma 3.3. For each n ∈ Z, let ω solve the transport equation (∂s + inU )ω = g.
Then,

‖ω(s)‖δ′ � eδ′|n||||U |||δ′ s‖ω(0)‖δ′ +
∫ s

0
eδ′|n||||U |||δ′ (s−τ)‖g(τ )‖δ′ dτ,

for all δ′ ∈ (0, δ′
1].

Proof. The proof follows by L2 energy estimates. Indeed, differentiating the equa-
tion for ω, we have

∂s∂
k
z ω = −in

k∑
j=0

k!
j !(k − j)!∂

k− j
z U∂

j
z ω + ∂kz g.
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Now taking the L2 product against ∂kz ω and taking the real part, we get

1

2

d

ds
‖∂kz ω‖2L2(−1,1) �

⎡
⎣|n|

k−1∑
j=0

k!
j !(k − j)! ‖∂

k− j
z U∂

j
z ω‖L2(−1,1)

+ ‖∂kz g‖L2(−1,1)

⎤
⎦ ‖∂kz ω‖L2(−1,1),

upon noting that the real part of i〈U∂kz ω, ∂kz ω〉L2(−1,1) is equal to zero. This yields

d

ds
‖∂kz ω‖L2(−1,1) � |n|

k−1∑
j=0

k!
j !(k − j)! ‖∂

k− j
z U‖L∞(−1,1)‖∂ j

z ω‖L2(−1,1)

+‖∂kz g‖L2(−1,1).

By definition of the analytic norm, we get from the above estimate

d

ds
‖ω‖δ′ � |n|

∑
k�0

|δ′|k
k!

k−1∑
j=0

k!
j !(k − j)! ‖∂

k− j
z U‖L∞(−1,1)‖∂ j

z ω‖L2(−1,1) + ‖g‖δ′

� δ′|n|
∑
k�0

k−1∑
j=0

|δ′| j
j !

|δ′|k−j−1

(k−j−1)! ‖∂
k−j−1
z U ′‖L∞(−1,1)‖∂ j

z ω‖L2(−1,1)+‖g‖δ′

� δ′|n|
∑
��0

∑
j�0

|δ′| j
j !

|δ′|�
�! ‖∂�

z U
′‖L∞(−1,1)‖∂ j

z ω‖L2(−1,1) + ‖g‖δ′

� δ′|n| |||U ′|||δ′‖ω‖δ′ + ‖g‖δ′ .
(3.18)

The lemma follows from the Gronwall inequality. ��
Lemma 3.4. Let γ0 be defined as in (3.17). For each n ∈ Z, the operator Ln

generates a continuous semigroup eLns from Xδ′ to itself, for small δ′ > 0. In
addition, for any γ > γ0, there is a positive constant Cγ so that

‖eLnsh‖δ′ � Cγ e
γ |n|s‖h‖δ′ , ∀s � 0,

for all h ∈ Xδ′ , and 0 < δ′ � γ0.

Proof. By the time rescaling s �→ s|n|, it suffices to study the semigroup for
n = ±1. Let us focus on n = 1, the case n = −1 being identical. We obtain
the sharp bound via the inverse Laplace transform for the semigroup ([40] or [43,
Appendix A]):

eL1sh = PV
1

2π i

∫ γ+i∞

γ−i∞
eλs(λ − L1)

−1h dλ,
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for sufficiently large γ , where PV denotes the Cauchy principal value. Set ω̂ :=
(λ−L1)

−1h. We shall solve the resolvent equation for all λ = −icwith sufficiently
large values of |�c|. It follows that

ω̂ = ∂2z ϕ̂, (U − c)∂2z ϕ̂ −U ′′ϕ̂ = h

i
, ϕ̂|z=±1 = 0.

This is a nonhomogenous Rayleigh problem with unknown ϕ̂. By the definition of
γ0, see (3.17), for all c such that |�c| > γ0, the Rayleigh operator (U − c)∂2z −U ′′
is invertible, and so the Rayleigh problem has an unique solution ϕ̂ (in fact, one
can derive an explicit representation involving the homogenous solutions ϕ̂1, ϕ̂2
defined as in (3.13), see for example [19]). In addition, together with zero boundary
conditions, there holds

‖ϕ̂‖H2 � C

1 + |�c| ‖h‖L2 , ∀c ∈ C : |�c| > γ0.

Recalling that ω̂ = (λ − L1)
−1h is the resolvent solution with ω̂ = ∂2z ϕ̂, we then

get

eL1sh = PV
1

2π i

∫ γ+i∞

γ−i∞
eλs(λ − L1)

−1h dλ,

= PV
1

2π

∫ iγ+∞

iγ−∞
e−ics

[ U ′′

U − c
ϕ̂ + h

i(U − c)

]
dc

= PV
1

2π

∫ iγ+∞

iγ−∞
e−ics U ′′

U − c
ϕ̂ dc + e−iU (z)sh.

This identity, together with the elliptic bound on ϕ̂, and the fact that we can take
any c such that �c = γ > γ0 yield

‖eL1sh‖L2 � C

2π

∫
R

eγ s ‖U ′′‖L∞√|U − �c|2 + γ 2
‖ϕ̂‖L2 d(�c) + ‖h‖L2

� C

2π

∫
R

eγ s ‖U ′′‖L∞√|U − �c|2 + γ 2

1

1 + |�c| ‖h‖L2 d(�c) + ‖h‖L2

� Cγ e
γ s‖h‖L2 ,

for all γ > γ0.
Next, we derive analytic estimates for ω := eL1sh, solving

(∂s + iU )ω − iU ′′ϕ = 0, ∂2z ϕ = ω,

with zero boundary conditions on ϕ. Using (3.18), we have

d

ds
‖ω‖δ′ � δ′|||U |||δ′‖ω‖δ′ + ‖U ′′ϕ‖δ′ .
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Bydefinition,‖U ′′ϕ‖δ′ � ‖U ′′‖δ′ ‖ϕ‖δ′ and‖ϕ‖δ′ � C0‖ϕ‖H1(−1,1)+|δ′|2‖∂2z ϕ‖δ′ .
We thus obtain

d

ds
‖ω‖δ′ � C0‖ϕ‖H1(−1,1) + δ′(|||U |||δ′ + δ′‖U ′′‖δ′)‖ω‖δ′

� C0‖ω‖L2 + δ′(|||U |||δ′ + δ′‖U ′′‖δ′)‖ω‖δ′ ,

in which the last estimate is due to the Poincaré inequality. Hence, for δ′ sufficiently
small so that δ′(|||U ′|||δ′ + δ′‖U ′′‖δ′) � γ0 < γ , the Gronwall inequality and the
previous L2 bound give

‖ω(s)‖δ′ � eδ′(|||U |||δ′+δ′‖U ′′‖δ′ )s‖h‖δ′ +C0

∫ s

0
eδ′(|||U |||δ′+δ′‖U ′′‖δ′ )(s−τ)‖ω(τ)‖L2 ds

� eγ s‖h‖δ′ + Cγ e
γ s‖h‖L2 ,

which proves the claimed bound for eL1s . ��
We are now in position to prove Proposition 3.2.

Proof of Proposition 3.2. Let us prove the bound for the semigroup (W1,W2,W3)

= eLs H , with L being the matrix operator defined as in (3.8). Let Wj,n(z) =
〈Wj (·, z), einy〉L2(T), for j = 1, 2, 3. By the structure of the matrix operator L ,
Lemma 3.4 gives the bound for W1,n,W2,n :

‖Wj,n‖δ′ � Cγ e
γ |n|s‖Hj,n‖δ′, j = 1, 2, (3.19)

for all γ > γ0, δ′ � γ0, and all n ∈ Z. Hence, by definition of the analytic norm,
we get

‖Wj (s)‖δ−γ s,δ′ � Cγ

∑
n∈Z

eγ |n|s‖Hj,n‖δ′e(δ−γ s)|n| � Cγ ‖Hj‖δ,δ′ .

for any s so that δ − γ s > 0.
As for W3, we write

(∂s +U∂y)W3 +U ′W2 −U ′′∂zϕ(W2) −U ′′′ϕ(W2) = 0.

Again, in Fourier variables, we have

(∂s + inU )W3,n +U ′W2,n −U ′′∂zϕ(W2,n) −U ′′′ϕ(W2,n) = 0.

Again, using (3.18), we get

d

ds
‖W3,n‖δ′ � δ′|n||||U ′|||δ′ ‖W3,n‖δ′ +‖U ′W2,n−U ′′∂zϕ(W2,n)−U ′′′ϕ(W2,n)‖δ′

� δ′|n||||U |||δ′‖W3,n‖δ′ + C0‖W2,n‖δ′ .

Using the Gronwall inequality, the bound (3.19) on W2,n , and the assumption that
δ′|||U |||δ′ � γ0, we obtain

‖W3,n(s)‖δ′ � Cγ e
γ |n|s‖Hn‖δ′ .

Summing the estimate over n ∈ Z yields the claimed bound forW3. This completes
the proof of the semigroup estimate and thus of the proposition. ��
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3.3. Conclusion

We now show that system (3.9) fits our abstract framework.
For (H.1), we note that if ω is an eigenfunction for L with an eigenvalue λ, that is

Lω = λω, then W =
⎛
⎝ ω

∂yω

∂zω

⎞
⎠ is an eigenfunction for L with the same eigenvalue

λ. In addition, the growing mode must be of the form given by Lemma 3.1. The
regularity of W follows from that of the given shear flow U (z), which is real
analytic; see (3.5). The definition of γ0 in (3.17), Lemma 3.1, and Proposition 3.2
finally prove that (H.2) holds.

Assumption (H.3) follows directly from the definition of L , whereas (H.4) and
(H.5) are clear, thanks to the structure of the quadratic nonlinearity Q(W,W ) and
the fact that there are no R1, R2 generated from the system (3.9).

4. Ill-Posedness of the Kinetic Incompressible Euler Equations

In this section, we give the proof of Theorem 1.2, establishing ill-posedness for
the kinetic incompressible Euler equations (1.5) and (1.6), which we recall below
for convenience:

∂t g + v · ∇x g − ∇x� · ∇vg = 0 (4.1)

with

−	x� = ∇x ·
(

∇x ·
(∫

v ⊗ vg dv

))
,

∫
T3

� dx = 0. (4.2)

We shall prove in this section how Theorem 1.2 follows from the abstract Theo-
rem 2.1. We work with the analytic function space Xδ,δ′ , equipped with the follow-
ing norm:

‖ f ‖δ,δ′ :=
∑
n∈Z3

∑
|α|�0

‖〈v〉m∂α
v fn‖L2(R3×R3)

|δ′||α|

|α|! eδ|n|, (4.3)

for any δ, δ′ > 0, in which fn = 〈 f, ein·y〉L2(T3). Here,m is a fixed number,m � 4.
We also introduce the v-analytic function space Xδ′ , equipped with the norm

‖ f ‖δ′ :=
∑

|α|�0

‖〈v〉m∂α
v f ‖L2(R3)

|δ′||α|

|α|! (4.4)

for any δ′ > 0. We study ill-posedness near radial homogeneous equilibria of the
form g = μ(v) ≡ μ(|v|2) and � = 0, for real analytic functions μ satisfying∫

μ(v) dv = 1 and ‖μ‖δ′ < +∞ for some δ′ > 0.
We write the perturbed solution in the fast variables as follows:

g(t, x, v) = μ(v) + f (s, y, v), �(t, x) = ϕ(s, y), s = t/ε, y = x/ε.
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The new pair ( f, ϕ) then solves⎧⎪⎨
⎪⎩

∂s f + v · ∇y f − ∇yϕ · ∇vμ − ∇yϕ · ∇v f = 0,

− 	yϕ = ∇y ·
(

∇y ·
(∫

v ⊗ v f dv

))
,

∫
T3

ϕ dy = 0.
(4.5)

We shall show that the problem (4.5) is ill-posed due to the unbounded unstable
spectrum of the linearized operator

L f := −v · ∇y f + ∇yϕ · ∇vμ, −	yϕ = ∇y ·
(

∇y ·
(∫

v ⊗ v f dv

))
,∫

T3
ϕ dy = 0,

which we shall study in details in the next section. Next, since the nonlinearity
∇yϕ · ∇v f is quadratic with respect to the partial derivatives of f , we are led to
write the problem (4.5) in the matrix form for the vector:

F :=
⎛
⎝ f

∇y f
∇v f

⎞
⎠ . (4.6)

We write F = (F1, F2, F3) ∈ R × R
3 × R

3. We introduce the matrix operator

L :=
⎛
⎝L 0 0
0 L3 0
0 M T

⎞
⎠ , (4.7)

in which

L3 =
⎛
⎝L 0 0
0 L 0
0 0 L

⎞
⎠ , T = −v · ∇y, MG := −G + ∇v(ϕ(G) · ∇vμ).

Here, the vector ϕ(G) = (ϕ(G1), ϕ(G2), ϕ(G3)) is understood as the unique so-
lution to the elliptic problem

−	yϕ(Gk) = ∇y ·
(

∇y ·
(∫

v ⊗ vGk(v) dv

))
,

with zero average over T3, for each vector field G(v).
It follows that f solves (4.5) if and only if the vector field F = (F1, F2, F3)

solves
∂s F − LF = Q(F, F), (4.8)

in which direct calculations show

Q(F, F) =
⎛
⎝ ϕ(F2) · F3

∇y(ϕ(F2) · F3)
∇v(ϕ(F2) · F3)

⎞
⎠ .

We shall show the ill-posedness of (4.8) by directly checking the assumptions
(H.1)–(H.5) made in our abstract ill-posedness framework.
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4.1. Unbounded Unstable Spectrum of the Linearized Operator

In this section, we study the linearized problem:

∂s f +v ·∇y f −∇yϕ ·∇vμ = 0, −	yϕ = ∇y ·
(

∇y ·
(∫

v ⊗ v f dv

))
. (4.9)

We search for a possible growing mode of the form:

( f, ϕ) = (ein·(y−ωt) f̂ (v), ein·(y−ωt)ϕ̂) (4.10)

for some complex constant ϕ̂ and complex function f̂ (v), with �(n · ω) > 0, for
some complex vector ω. Plugging the above ansatz into the Vlasov equation in
(4.9), we get

in · (v − ω) f̂ − inϕ̂ · ∇vμ = 0

which gives

f̂ = ∇vμ · n
n · (v − ω)

ϕ̂, ϕ̂ = −1

|n|2
∑
j,�

n jn�

∫
v jv� f̂ (v) dv. (4.11)

This yields the existence of a growing mode if and only if there is a pair (n, ω),
with �(n · ω) > 0, so that the following dispersion relation holds:

1

|n|2
∑
j,�

n jn�

∫
v jv�

∇vμ · n
n · (v − ω)

dv = −1. (4.12)

We shall call this property the Penrose instability condition.
We summarize this statement in the following lemma:

Lemma 4.1. The linearized operatorLpossesses a growingmode in the form (4.10)
if and only if the Penrose instability condition (4.12) holds for some complex number
�ω �= 0. In case of instability, the unstable spectrum is unbounded, containing all
the points λ = −in · ω, with n ∈ Z

3 so that �(n · ω) > 0 and with corresponding
eigenfunctions given by (4.10) and (4.11).

4.2. Sharp Semigroup Bounds

From now on, we consider a smooth radial equilibrium μ such that ‖μ‖δ′
1

<

+∞ for some δ′
1 > 0 and which gives unstable spectrum for (4.9). Typical ex-

amples are analytic radial double-bump equilibria with fast decay at infinity. Let
L be the matrix operator defined as in (4.7). We shall derive sharp bounds on the
corresponding semigroup eLs in the analytic function space Xδ,δ′ .

Let us introduce, for all n ∈ S
2,

Ln̂ f = −i n̂ · (v f − ∇vμϕ( f )), ϕ( f ) := −
∑
j,�

n̂ j n̂�

∫
v jv� f (v) dv.
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We set γ0 to be defined by

γ0 := sup
n̂∈S2, ∃k∈N∗,

√
kn̂∈Z3

{�λn̂ : λn̂ ∈ σ(Ln̂)}. (4.13)

Let us first quickly show that γ0 exists and is positive. Since
|ϕ( f )| ≤ C0‖〈v〉4 f ‖L2 and μ decays sufficiently fast in v, it follows that
i n̂ · ∇vμϕ( f ) is a compact perturbation of the multiplication operator −i n̂ · v. As
a consequence, the unstable spectrum of Ln̂ consists precisely of possible eigen-
values λ, solving the equation (λ −Ln̂) f = 0. It follows directly that λ = −i n̂ · ω
is an eigenvalue of Ln̂ if and only if the function

D(ω; n̂) := 1 +
∑
j,�

n̂ j n̂�

∫
v jv�

∇vμ · n̂
n̂ · (v − ω)

dv

has a zero ω ∈ C
3, for some n̂ = n

|n| . We observe that supn̂∈S2 D(ω; n̂) → 1
as |ω| → ∞, and thus possible eigenvalues must lie in a bounded domain in the
complex domain. Since we assume the existence of unstable spectrum for (4.9),
the above set is not empty, and γ0 is well-defined and positive.

The main goal of this section is to prove the following proposition.

Proposition 4.2. Let γ0 be defined as in (4.13), δ > 0. The semigroup eLs , associ-
ated to L, is well-defined in Xδ,δ′ , for s and δ′ small enough. More precisely, for
any γ > γ0, there is a positive constant Cγ so that

‖eLsh‖δ−γ s,δ′ � Cγ ‖h‖δ,δ′ ,

for all h ∈ Xδ,δ′ , and for all δ′ � min(δ′
1/2, γ0) and s so that δ − γ s > 0.

We start the proof of Proposition 4.2 with the semigroup eLs . Here, we recall
that

L f = −v · ∇y f + ∇yϕ · ∇vμ, −	yϕ = ∇y ·
(

∇y ·
(∫

v ⊗ v f dv

))
.

In Fourier variables (with respect to y), we study for all n ∈ Z
3

Ln f = −in · (v f − ∇vμϕ( f )), ϕ( f ) := −1

|n|2
∑
j,�

n jn�

∫
v jv� f (v) dv

and solve the ODEs

(∂s − Ln) f = 0, f (0, v) = f0(v).

Lemma 4.3. Let γ0 be defined as in (4.13). For each n ∈ Z
3, the operator Ln

generates a continuous semigroup eLn t from Xδ′ to itself, for δ′ small enough. In
addition, for any γ > γ0, there is a positive constant Cγ so that

‖eLnsh‖δ′ � Cγ e
γ |n|s‖h‖δ′ , ∀s � 0,

for all h ∈ Xδ′ , for small δ′ > 0.
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Proof. We introduce the time scaling s �→ |n|s. It suffices to study the semigroup
eLn̂ s for the scaled operator

Ln̂ f = −i n̂ · (v f − ∇vμϕ( f )), ϕ( f ) := −
∑
j,�

n̂ j n̂�

∫
v jv� f (v) dv

for n̂ = n
|n| . Let R be the rotation matrix so that Rn̂ = n̂1 := (1, 0, 0). Since

μ ≡ μ(|v|2), the operatorLn̂ is invariant under the change of variable: n̂ �→ Rn̂ and
v �→ Rv. Hence, it suffices to derive estimates for L1 := Ln̂1 = −iv1 + μv1ϕ(·).
Since |ϕ( f )| � C0‖〈v〉4 f ‖L2 and μv1 decays sufficiently fast in v, μv1ϕ( f ) is a
compact perturbation of the multiplication operator by −iv1. Hence L1 generates
a continuous semigroup eL1s with respect to the weighted norm ‖〈v〉m · ‖L2(R3).

In addition, following the standard semigroup theory ([40] or [43,AppendixA]),
we can write

eL1sh = PV
1

2π i

∫ γ+i∞

γ−i∞
eλs(λ − L1)

−1h dλ (4.14)

for any γ > γ0. WithL1 = −iv1 +μv1ϕ(·), the resolvent equation (λ−L1) f = h
gives

f + iμv1

λ + iv1
ϕ( f ) = h

λ + iv1
. (4.15)

By a view of ϕ( f ), we can first solve ϕ( f ) in terms of the initial data h:

ϕ( f ) = − 1

D(λ)

∫
v21h

λ + iv1
dv, D(λ) := 1 − i

∫
v21μv1

λ + iv1
dv.

We note that D(λ) = 0 if and only if λ is an eigenvalue of L1. It follows that

|ϕ( f )| � Cγ

1 + |�λ| ‖〈v〉4h‖L2(R3) (4.16)

uniformly for all λ∈γ + iR, with any fixed number γ >γ0. Thus, from (4.14) and
(4.15), we compute

eL1sh = PV
1

2π i

∫ γ+i∞

γ−i∞
eλs

[
− iμv1

λ + iv1
ϕ( f ) + h

λ + iv1

]
dλ,

in which the second integral is equal to e−iv1sh, while the first integral can be
estimated directly using the estimate (4.16) on ϕ( f ). This at once yields

‖〈v〉meL1sh‖L2 � Cγ e
γ s‖〈v〉mh‖L2 (4.17)

for any γ > γ0.

Next, for higher derivatives of f = eL1sh, we note that ∂α
v f solves

∂s∂
α
v f + iv1∂

α
v f + i∂α

v μv1ϕ( f ) + i[∂α
v , v1] f = 0.
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Standard L2 estimates for ∂α
v f yield, for all α = (α1, α2, α3) and α′ = (α1 −

1, α2, α3),

1

2

d

ds
‖〈v〉m∂α

v f (s)‖2L2 � [‖∂α
v μv1ϕ( f )‖L2 + ‖[∂α

v , v1] f ‖L2 ]‖〈v〉m∂α
v f (s)‖L2

� [C0‖〈v〉m f ‖L2‖∂α
v μv1‖L2

+ |α1|‖∂α′
v f ‖L2 ]‖〈v〉m∂α

v f (s)‖L2 ,

(4.18)

upon using the fact that the term iv1 f does not yield any contribution when taking
the real part of the L2 energy identities. By a view of the definition of the analytic
norm, the above estimates give

d

ds
‖ f (s)‖δ′ =

∑
|α|�0

d

ds
‖〈v〉m∂α

v f (s)‖L2(R3)

|δ′||α|

|α|!

� C0‖〈v〉m f ‖L2 +
∑

|α|�1

|δ′||α|

|α|! [C0‖〈v〉m f ‖L2‖∂α
v μv1‖L2

+ |α1|‖∂α′
v f ‖L2 ]

� C0(1 + ‖∇vμ‖δ′)‖〈v〉m f ‖L2 + δ′ ∑
|α′|�1

|δ′||α′|

|α′|! ‖∂α′
v f ‖L2

� C0(1 + ‖∇vμ‖δ′)‖〈v〉m f ‖L2 + δ′‖ f ‖δ′ ,

which entails

‖ f (s)‖δ′ � eδ′s‖ f (0)‖δ′ + C0(1 + ‖∇vμ‖δ′)
∫ s

0
eδ′(s−τ)‖〈v〉m f (τ )‖L2 dτ,

(4.19)
for any δ′ > 0. Now, thanks to the L2 bound (4.17) on the semigroup and the
assumption that δ′ � γ0, we get

‖ f (s)‖δ′ � C̃γ (1 + ‖∇vμ‖δ′)eγ s‖ f (0)‖δ′ . (4.20)

The claimed bound in the lemma is therefore proved. ��
We can finally end the proof of Proposition 4.2.

Proof of Proposition 4.2. We let f = eLsh. Lemma 4.3 yields

‖ fn‖δ′ � Cγ e
γ |n|s‖hn‖δ′,

for all γ > γ0, and for small enough δ′ > 0. Hence, by definition of the norms, for
any s so that δ − γ s > 0, we get

‖ f (s)‖δ−γ s,δ′ � Cγ

∑
n∈Z3

eγ |n|s‖hn‖δ′e(δ−γ s)|n| � Cγ ‖h‖δ,δ′ .
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This proves the claimed bound for eLs . As for F = eLs H , by the structure of the
matrix operator L (see (4.7)), it is clear that the above estimate holds for F1, F2.
As for F3, we write

(∂s + v · ∇y)F3 + F2 − ∇v(ϕ(F2) · ∇vμ) = 0.

Similarly to the estimate obtained in (4.19) via energy estimates, for δ′ � γ0, in
the Fourier variable n ∈ Z

3, we immediately get

‖F3,n(s)‖δ′ � eδ′|n|s‖H3,n(0)‖δ′ + C0(1 + ‖∇vμ‖δ′)
∫ s

0
eδ′|n|(s−τ)‖F2,n(τ )‖δ′ dτ

� eδ′|n|s‖H3,n(0)‖δ′ +Cγ (1+‖∇vμ‖δ′)
∫ s

0
eδ′|n|(s−τ)eγ |n|τ‖H2,n‖δ′ dτ

� eδ′|n|s‖H3,n(0)‖δ′ + Cγ (1 + ‖∇vμ‖δ′)eγ |n|s‖H2,n‖δ′ .

Hence, as above, summing the norms for all n ∈ Z
3, we obtain the claimed bound

for F3, and hence for eLs . This completes the proof of the proposition. ��

4.3. Conclusion

We are now ready to check the assumptions (H.1)–(H.5) made in the abstract
framework.

For (H.1), we note that if g is an eigenfunction forLwith an eigenvalue λ, that is

Lg = λg, then G =
⎛
⎝ g

∇yg
∇vg

⎞
⎠ is an eigenfunction for L with the same eigenvalue λ.

Thus, by construction of the growing mode of L in Lemma 4.1, the very definition
of γ0 in (4.13) and Proposition 4.2, (H.2) holds. Assumption (H.3) follows directly
from the definition of L , whereas (H.4) and (H.5) are clear, thanks to the structure of
the quadratic nonlinearity Q(F, F) and the fact that there are no R1, R2 generated
from the system (4.8).
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