
Digital Object Identifier (DOI) 10.1007/s00205-015-0961-z
Arch. Rational Mech. Anal. 221 (2016) 273–334

From the Hartree Dynamics to the Vlasov
Equation

Niels Benedikter, Marcello Porta, Chiara Saffirio &
Benjamin Schlein

Communicated by S. Serfaty

Abstract

We consider the evolution of quasi-free states describing N fermions in the
mean field limit, as governed by the nonlinear Hartree equation. In the limit of
large N , we study the convergence towards the classical Vlasov equation. For a
class of regular interaction potentials, we establish precise bounds on the rate of
convergence.

1. Introduction and Main Results

Thiswork ismotivated by the study of the time-evolution of systems of N fermi-
ons in the mean field regime, characterized by a large number of weak collisions.
The many body evolution of N fermions is generated by the Hamilton operator

HN =
N∑

j=1

−�x j + λ

N∑

i< j

V (xi − x j ) (1.1)

acting on

L2
a(R

3N ) = {ψ ∈ L2(R3N ) : ψ(xπ1, . . . , xπN ) = σπψ(x1, . . . , xN )

for all π ∈ SN },
the subspace of permutation antisymmetric functions in L2(R3N ) (σπ denotes here
the sign of the permutation π ). Due to the antisymmetry, the kinetic energy in
(1.1) is typically (for data occupying a volume of order one) of the order N 5/3 (for
bosons, particles described by permutation symmetric wave functions, it is much
smaller, of order N ). Hence, to obtain a non-trivial competition between kinetic
and potential energy, we have to choose λ = N−1/3. Moreover, the large kinetic
energy of the particles implies that we can only follow their time evolution for short
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times, of the order N−1/3 (the kinetic energy per particle is proportional to N 2/3;
the typical velocity of the particles is therefore of the order N 1/3). After rescaling
time, the evolution of the N fermions is governed by the many body Schrödinger
equation

i N 1/3∂tψN ,t =
⎡

⎣
N∑

j=1

−�x j + 1

N 1/3

N∑

i< j

V (xi − x j )

⎤

⎦ψN ,t (1.2)

for ψN ,t ∈ L2
a(R

3N ). It is convenient to rewrite (1.2) as follows. We introduce the
small parameter

ε = N−1/3

and we multiply (1.2) by ε2. We obtain

iε∂tψN ,t =
⎡

⎣
N∑

j=1

−ε2�x j + 1

N

N∑

i< j

V (xi − x j )

⎤

⎦ψN ,t . (1.3)

Hence, the mean field scaling for fermionic systems (characterized by the N−1

factor in front of the potential energy) is naturally linked with a semiclassical
scaling, where ε = N−1/3 plays the role of Planck’s constant. Notice that for
particles in d dimensions, similar arguments show that we would have to take
ε = N−1/d ; in fact, our analysis applies to general dimensions (with appropriate
changes on the regularity assumptions); to simplify our presentation we will only
discuss the case d = 3.

From the point of view of physics, we are interested in understanding the evolu-
tion of the fermionic system resulting from a change of the external fields. In other
words, we are interested in the solution of (1.3) for initial data describing equilib-
rium states of trapped systems. It is expected (and in certain cases, it is even known)
that equilibrium states in the mean-field regime are approximately quasi-free.

At zero temperature, the relevant quasi-free states are Slater determinants, hav-
ing the form

ψSlater(x1, . . . , xN ) = 1√
N ! det ( f j (xi ))1�i, j�N

where { f j }Nj=1 is an orthonormal system in L2(R3). Slater determinants are com-
pletely characterized by their one-particle reduced density ωN , defined as the non-
negative trace class operator over L2(R3) with the integral kernel

ωN (x; y) = N
∫

dx2 . . . dxN ψSlater(x, x2, . . . , xN )ψSlater(y, x2, . . . , xN ).

A simple computation shows that

ωN =
N∑

j=1

| f j 〉〈 f j |,
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that is ωN is the orthogonal projection onto the N -dimensional space spanned
by the N orbitals f1, . . . , fN defining ψSlater (we used here the notation | f 〉〈 f | to
indicate the orthogonal projection onto f ∈ L2(R3)). In the language of probability
theory, the one-particle reduced density corresponds to the one-particle marginal
distribution, obtained by integrating out the degrees of freedom of the other (N−1)
particles. Slater determinants have the property that higher order marginals can all
be expressed in terms of ωN via the Wick rule (this is, in fact, the defining property
of quasi-free states).

The many-body evolution of a Slater determinant, as determined by (1.3), is
not a Slater determinant. Still, because of the mean-field form of the interaction,
we can expect it to remain close, in an appropriate sense, to a Slater determinant.
Under this assumption, it is easy to find a self-consistent equation for the dynamics
of the Slater determinant. We obtain the nonlinear Hartree–Fock equation

iε∂tωN ,t = [−ε2� + (V ∗ ρt ) − Xt , ωN ,t ]. (1.4)

Here ρt (x) = N−1ωN (x; x) is the normalized density of particles at x ∈ R
3, the

exchange operator Xt has the integral kernel Xt (x; y) = N−1V (x − y)ωN ,t (x; y),
and, as before, ε = N−1/3. It is easy to check that, if ωN ,t=0 is an orthogonal
projection with rank N , then the same is true for the solution ωN ,t ; in other words,
the Hartree–Fock evolution of a Slater determinant is again a Slater determinant.

In [7], it was shown that indeed, for sufficiently regular interaction potentials,
the many body Schrödinger evolution of initial Slater determinants can be approx-
imated by the Hartree–Fock evolution, in the sense that the one-particle reduced
density associated with the solution ψN ,t of (1.3) remains close (in the Hilbert–
Schmidt and in the trace norm) to the solution ωN ,t of the Hartree–Fock equation
(1.4). Previous results in this direction have been obtained in [9]; convergence
towards the Hartree–Fock dynamics in other regimes, which do not involve a semi-
classical limit, has been also established in [4,5,10,18].

At positive temperature, on the other hand, relevant quasi-free states approxi-
mating equilibria of trapped systems are mixed states, described by a one-particle
reduced density ωN with trωN = N and 0 � ωN � 1 (it follows from the
Shale–Stinespring condition, see e. g. [20, Theorem 9.5], that every such ωN is the
one-particle reduced density of a quasi-free state with N particles; Slater determi-
nants form a special case, with ωN having only the eigenvalues 0 and 1). In the
simple case of N fermions with one-particle Hamiltonian h = −ε2� + Vext and
no interaction, equilibrium at temperature T > 0 is described by the Gibbs state
with one-particle reduced density

ωN = 1

1 + e
1
T (−ε2�+Vext−μ)

(1.5)

where the chemical potential μ ∈ R has to be chosen so that trωN = N . If we
turn on a mean-field interaction, it is expected that equilibrium states continue to
be approximated by quasi-free states with one-particle reduced density of the form
(1.5), with the external potential Vext appropriately modified to take into account,
in a self-consistent manner, the interaction among the particles (for results in this
direction see, for example, [16,19]).
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In suitable scaling regimes, the state of the system at positive temperature is ex-
pected to be well approximated by an appropriate mixed quasi-free state. Similarly
as in the case of Slater determinants, mixed quasi-free states are completely charac-
terized by their one-particle reduced density. All higher order correlation functions
(that is all higher order marginals) can be expressed in terms of ωN .1 For the evo-
lution of mixed quasi-free states, we find the same self-consistent equation (1.4)
derived for Slater determinants. We observe here that the properties trωN = N and
0 � ωN � 1, characterizing the reduced one-particle density of mixed quasi-free
states, are preserved by the Hartree–Fock equation (1.4). In [6], it was shown that,
for sufficiently regular potential, the many-body evolution of a mixed quasi-free
state can be approximated by the self-consistent Hartree–Fock equation (1.4) (also
here, the convergence has been established through bounds on the distance between
reduced densities).

To summarize, it follows from the analysis of [6,7] that themany-body evolution
of fermionic quasi-free states can be approximated by the Hartree–Fock equation
(1.4). This holds true for Slater determinants (in this case ωN ,t is an orthogonal
projection with rank N ) as well as for general mixed quasi-free states (satisfying
only trωN ,t = N and the bounds 0 � ωN ,t � 1).

In the mean field regime, the energy contribution associated with the exchange
term can be estimated as follows, for bounded potentials V :

∣∣∣
1

2N

∫
dxdy V (x − y)|ω(x; y)|2

∣∣∣ � ‖V ‖∞
2N

‖ωN‖2HS � C, (1.6)

where the full energy is of order N (here we used that the Hilbert–Schmidt norm2

of ωN is bounded by N 1/2). Because of the smallness of the exchange term, instead
of considering the Hartree–Fock equation (1.4), we will drop the exchange term
and study the fermionic Hartree dynamics, governed by the nonlinear equation

iε∂tωN ,t = [−ε2� + (V ∗ ρt ), ωN ,t ] (1.7)

with ρt (x) = N−1ωN ,t (x; x) (a proof of the fact that the exchange term does not
affect the dynamics can be found in Appendix A of [7]).

The Hartree equation (1.7) still depends on N (recall the choice ε = N−1/3

and the normalization trωN = N ). It is therefore natural to ask what happens to it
in the limit N → ∞. To answer this question, we define the Wigner transform of
the one-particle reduced density ωN ,t by setting

WN ,t (x, v) =
( ε

2π

)3 ∫
ωN ,t

(
x + εy

2
; x − εy

2

)
e−iv·ydy. (1.8)

1 In general quasi-free states are characterized by two operators on L2(R3), a one-particle
reduced density ωN and a pairing density α. Here we restrict our attention to states with
α = 0; this is expected to be a very good approximation for equilibrium states of fermions
in the mean field regime considered here.
2 The Hilbert–Schmidt norm of a compact operator A is defined as ‖A‖2HS = trA∗A.
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Hence, WN ,t is a function of position and velocity, defined on the phase-space
R
3 × R

3. It is normalized so that

∫
WN ,t (x, v)dxdv = ε3trωN ,t = 1.

The Wigner transform can be inverted, noticing that

ωN ,t (x; y) = N
∫

dv WN ,t

( x + y

2
, v
)
eiv· x−y

ε . (1.9)

Equation (1.9) is known as the Weyl quantization of the functionWN ,t . Notice that
‖ωN ,t‖HS = √

N‖WN ,t‖2.
The Wigner transform WN ,t can be used to compute expectations in the quasi-

free state described by ωN ,t of observables depending only on the position x or on
the momentum −iε∇ of the particles. In fact, for a large class of functions f on
R
3,

tr f (x) ωN ,t =
∫

dx f (x)ωN ,t (x; x) = N
∫

dvdx f (x)WN ,t (x, v)

and

tr f (iε∇) ωN ,t = N
∫

dxdv f (v)WN ,t (x, v).

In other words,
∫
dv WN ,t (x, v) is the density of fermions in position space at point

x ∈ R
3, while

∫
dx WN ,t (x, v) is the density of particles with velocity v ∈ R

3.
Notice, however, thatWN ,t is not a probability density on the phase-space, because
in general it is not positive.

From (1.7), we find an evolution equation for the Wigner transform WN ,t :

iε∂tWN ,t (x, v)

= 1

(2π)3

∫
dy iε∂tωN ,t

(
x + εy

2
; x − εy

2

)
e−iv·y

= ε2

(2π)3

∫
dy (−�x+εy/2 + �x−εy/2) ωN ,t

(
x + εy

2
; x − εy

2

)
e−iv·y

+ 1

(2π)3

∫
dy ((V ∗ ρt )(x + εy/2) − (V ∗ ρt )(x − εy/2)) ωN ,t

(
x + εy

2
; x − εy

2

)
e−iv·y .

Using −�x+εy/2 + �x−εy/2 = −2/ε∇x · ∇y and expanding

(V ∗ ρt )(x + εy/2) − (V ∗ ρt )(x − εy/2) � εy · ∇(V ∗ ρt ) + O(ε2)
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we conclude, formally, that

iε∂tWN ,t (x, v)

= −2ε
1

(2π)3
∇x ·

∫
dy ∇yωN ,t

(
x + εy

2
; x − εy

2

)
e−iv·y

+ ε∇(V ∗ ρt )(x) · 1

(2π)3

∫
dy y ωN ,t

(
x + εy

2
; x − εy

2

)
e−iv·ydy + O(ε2)

= −2iεv · ∇xWN ,t (x, v) + iε∇(V ∗ ρt )(x) · ∇vWN ,t (x, v) + O(ε2).

As a consequence, we expect that, in the limit N → ∞ (and hence ε → 0; recall
that ε = N−1/3), WN ,t approaches a solution Wt of the classical Vlasov equation

∂tWt + 2v · ∇xWt = ∇(V ∗ �t ) · ∇vWt (1.10)

with the density �t (x) = ∫
Wt (x, v)dv (in contrast with WN ,t , the limit Wt is a

probability density, if this is true at time t = 0). The goal of this paper is to study
the convergence of the Hartree dynamics towards the Vlasov equation (1.10), in
the limit N → ∞.

This work is not the first one devoted to the derivation of the Vlasov equation
(1.10) from quantum evolution equations. In [15,21], the Vlasov equation is ob-
tained directly from many body quantum dynamics, starting from the fundamental
N -fermion Schrödinger equation (theVlasov equation also emerges in the N -boson
case, if the mean field limit is combined with a semiclassical limit; see [12], where
the dynamics of factored WKB states is analyzed). In [13,14], the authors take
the Hartree equation (1.7) as starting point of their analysis, and they prove con-
vergence (in a weak sense) towards the solution of the Vlasov equation (1.10).
Note that the analysis of [13,14] also applies to singular interactions, including
a Coulomb potential (the analysis was extended to the Hartree–Fock equation in
[11]).

In [11,13–15,21], the convergence towards the classical Vlasov dynamics is
established in an abstract sense, without control on its rate. The problem of deter-
mining bounds on the rate of convergence is not only of academic interest. When
considering applications to real physical systems, the number of particles N is
large but, of course, finite. Bounds on the rate of convergence are therefore im-
portant to decide whether N is large enough for the Vlasov equation to be a good
approximation of the Hartree and of the full many body Schrödinger dynamics.

Bounds on the rate of convergence of the Hartree evolution towards the Vlasov
equation have been first obtained in [3]. In this paper the authors obtain the con-
vergence in the Hilbert–Schmidt norm with a relative rate ε2/7 = N−2/21 for
sufficiently regular initial data and potentials (they require V ∈ H1(R3) and that
V̂ ∈ L1(R3, (1+|p|4)dp)). For smooth potentials, an expansion of the solution of
the Hartree equation (1.7) in powers of ε has been shown in [17] (with no control
on the remainder) and in [1,2].

Our approach here is similar to the one of [3]; we consider the solution of the
Hartree equation (1.7) for initial dataωN with sufficiently smoothWigner transform
WN , and we compare it with the Weyl quantization of the solution of the Vlasov
equation (1.10), with initial data WN . We consider regular interaction potentials.
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In Theorem 2.1 and in Theorem 2.2 we establish bounds on the norm-distance
of the solution of the Hartree equation ωN ,t with initial data ωN and the Weyl
quantization ω̃N ,t of the solution of the Vlasov equation with initial data WN . For
every fixed t ∈ R, the relative error is of the order ε = N−1/3 in the limit of
large N . The dependence on N of these bounds is expected to be optimal. This
expectation is confirmed by the expansion of [1], where the next order corrections
are constructed (in fact, if we assumed initial data with smooth Wigner transform
WN ∈ W∞,∞(R3 × R

3) and smooth interaction potential V ∈ W∞,∞(R3), the
result of Theorem 2.1 would follow from Theorem 1.2 in [1]).

In Theorem 2.1, we get convergence in the trace-norm, for very regular initial
data. In Theorem 2.2, we bound the Hilbert–Schmidt norm, under weaker assump-
tions on the regularity of WN . The strategy to show Theorem 2.2 is similar to the
one of [3]; we regularize the initial data, we compare the solutions of the regularized
Hartree and Vlasov equations and then we establish stability of both equations with
respect to the regularization. We can improve the bounds of [3] by using the trace
norm convergence shown in Theorem 2.1 for the solutions with regularized data.
The nonlinearity in the Hartree and in the Vlasov equation depends on the con-
volution of the potential with the density of particles in space. Differences among
densities can be easily controlled through the trace-norm of the corresponding
fermionic operators (which are bounded in Theorem 2.1). Estimating them directly
by means of Hilbert–Schmidt norms, as done in [3], leads instead to a deterioration
of the rate of convergence.

Notice that, in Theorems 2.1 and 2.2, we consider the solution of the Vlasov
equation for initial data which are not probability densities. The well-posedness of
the Vlasov equation for such initial data can be obtained adapting the arguments of
[8]; in Appendix A we sketch the proof.

If we assume additionally that the sequence of initial data ωN has a limit, in the
sense that its Wigner transform converges towards a probability density W0, then
we can also establish the convergence of theWigner transformWN ,t of the solution
of the Hartree equation towards the solution of the Vlasov equation Wt with initial
data W0 (in this case, the solution of the Vlasov equation is a classical probability
density, for all t ∈ R). This is the content of Theorem 2.3.

Our bounds on the norms of the distance between the Wigner transform WN ,t

and the solution of the Vlasov equation Wt (as well as the bounds for the distance
betweenWN ,t and theWeyl quantization W̃N ,t of the solution of theVlasov equation
with initial dataWN ) hold for sufficiently regular initial data. In particular, Theorem
2.2 needs WN ∈ H2(R3 × R

3) (with some additional weights; see Theorem 2.4
for the precise assumptions). This condition is justified for initial data describing
equilibrium states of confined fermionic system at positive temperatures. At zero
temperature, on the other hand, the system at equilibrium relaxes to its ground
state, which can be approximated by a Slater determinant. Typically, in this case,
the corresponding Wigner transform is not regular. For example, the ground state
of a system of N free fermions in a periodic box with volume one is a Slater
determinant with Wigner transform
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WN (x, v) = N−11(|v| � cρ1/3) (1.11)

where ρ = N is the density of the particles (this system is translation invariant;
therefore, particles are uniformly distributed in the box). Equation (1.11) corre-
sponds to the idea that to construct the free ground state, we should fill the N one-
particle states with the smallest possible energy (by the antisymmetry of fermionic
wave functions, there cannot be two particles in the same state). If we switch on
an external potential and a mean-field interaction, it is believed that the ground
state can still be approximated by a state with Wigner transform of the form (1.11);
the only difference is that now we have to fill low energy states locally, accord-
ing to an effective particle density ρTF that can be determined by minimizing the
Thomas-Fermi functional

ETF(ρ) = 3

5
cTF

∫
dx ρ5/3(x) +

∫
dx Vext(x)ρ(x)

+1

2

∫
dxdy V (x − y)ρ(x)ρ(y)

among all ρ ∈ L1 ∩ L5/3(R3) with ‖ρ‖1 = N . The resulting sequence of Wigner
transforms WN (x; v) = N−11(|v| � cρ1/3

TF (x)) is not in H2(R3 × R
3). So, while

Theorems 2.1, 2.2 and 2.3 provide a good description of the fermionic dynamics
in the mean field limit at positive temperature, they cannot be applied at zero
temperature.

For such initial data, we do not get norm convergence towards the solution of
the Vlasov equation. Nevertheless, in Theorems 2.4 and 2.5 we can still prove con-
vergence for the expectation of a class of semiclassical observables. Semiclassical
observables are functions of the multiplication operator x and of the momentum
operator −iε∇; they detect variations in the spatial distribution of the particles
on “macroscopic” scales of order one and, at the same time, they are sensitive to
variations of order ε−1 in the momentum distribution (corresponding to the “mi-
croscopic” length scale ε).

Let us stress the fact that, to the best of our knowledge, Theorems 2.4 and 2.5
are the first rigorous results concerning convergence from the Hartree dynamics
towards the Vlasov equation that can be applied to reasonable approximations of
ground states.

In Section 2, in the remarks following our main theorems, we provide explicit
examples of fermionic states, constructed with the help of coherent states, ap-
proximating ground states and positive temperature equilibrium states of fermionic
systems in the mean-field regime, to which our theorems can be applied.

2. Statement of the Results

In order to state our results in a precise form, we need to introduce some norms
for functions on the phase space (x, v) ∈ R

3×R
3. For s ∈ N, we define the Sobolev

norm

‖ f ‖2Hs =
∑

|β|�s

∫
|∇β f (x, v)|2dxdv
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where β is a multi-index, and∇β can act on both position andmomentum variables.
For s, a ∈ N, we introduce also the weighted norms

‖ f ‖2Hs
a

=
∑

|β|�s

∫
(1 + x2 + v2)a |∇β f (x, v)|2dxdv.

We are now ready to state our main theorems. In the first theorem, we assume
strong regularity of the initial data, and we prove bounds in the trace-norm.

Theorem 2.1. Let V ∈ W 2,∞(R3). Let ωN be a sequence of reduced densities on
L2(R3), with trωN = N, 0 � ωN � 1 and with Wigner transform WN satisfying
‖WN‖H5

4
� C, uniformly in N.

We denote by ωN ,t the solution of the Hartree equation

i∂tωN ,t = [−ε2� + (V ∗ ρt ), ωN ,t ] (2.1)

with ρt (x) = N−1ωN ,t (x; x) and initial data ωN .
On the other hand, we denote by W̃N ,t the solution of the Vlasov equation

∂t W̃N ,t + 2v · ∇x W̃N ,t = ∇(V ∗ ρ̃t ) · ∇vW̃N ,t (2.2)

with ρ̃t (x) = ∫
dv W̃N ,t (x, v) and with initial data W̃N ,0 = WN . Moreover, let

ω̃N ,t be the Weyl quantization of W̃N ,t , defined as in (1.9).
Then there exists a constant C > 0 (depending on ‖V ‖W 2,∞ and on

supN ‖WN‖H2
4
, but not on the higher Sobolev norms of WN ) such that

tr
∣∣ωN ,t − ω̃N ,t

∣∣ � CNε exp(C exp(C |t |))
[
1 +

3∑

k=1

εk sup
N

‖WN‖Hk+2
4

]
. (2.3)

Remarks. (1) Recall that we use the normalization trωN ,t = N . In this sense, (2.3)
shows thatωN ,t and ω̃N ,t are close, in the limit of large N , since their difference
is smaller, by a factor ε = N−1/3, than their trace norms.

(2) The assumption ‖WN‖H5
4

� C on the Wigner transform of the initial data is
equivalent to suitable commutator estimates for the initial fermionic reduced
density ωN with the differential operator ∇ and the multiplication operator x .
We begin by noticing that

‖∇xWN‖22 =
∫

dxdv |∇xWN (x, v)|2

=
∫

dxdv

∣∣∣∣
ε3

(2π)3

∫
dy e−iv·y[∇, ωN ](x + εy/2, x − εy/2)

∣∣∣∣
2

= N−1‖[∇, ωN ]‖2HS. (2.4)

Similarly, we find ‖∇vWN‖22 = N−1ε−2‖[x, ωN ]‖2HS. As for the weights in
the definition of the Hs

a -norms of WN , we notice that

‖(1 + x2 + v2)a/2WN‖22 � CN−1‖(1 + x2 − ε2�)a/2ωN‖2HS,
for some N -independent constant C > 0.
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Proceeding analogously, one can show that the estimate ‖WN‖H5
4

� C follows
from the bounds

N−1‖(1 + x2 − ε2�)a/2[a1, [a2, [a3, [a4, [a5, ωN ]]]]]‖2HS � C, (2.5)

uniformly in N and for all choices of a1, . . . , a5 with either ai = x/ε or ai = ∇.
Therefore the commutator structure allows to quantify the regularity and decay
properties of the quantum state WN . Estimates of commutators [x, ωN ] and
[ε∇, ωN ] already played a key role in [6,7].

(3) The estimate supN ‖WN‖H5
4

� C or, equivalently, the bounds (2.5), are ex-
pected to hold true for fermionic mixed states, describing systems of N par-
ticles in equilibrium at positive temperature, in the mean-field regime, [6]. A
reasonable approximation for the reduced density of such a state is given by
the superposition

ωN (x; y) =
∫

dpdr M(r, p) f pr (x) f pr (y), (2.6)

of the coherent states

f pr (x) = ε−3/2e−i p·x/εg(x − r) (2.7)

with a probability density M with 0 � M(r, p) � 1 and
∫

dpdr M(r, p) = 1.

In (2.7), the function g is assumed to vary on the (possibly N -dependent) scale
δ and to be normalized so that ‖g‖2 = 1. For simplicity, we shall make the
explicit choice

g(x) = 1

(2πδ2)3/4
e−x2/2δ2 . (2.8)

It is simple to check that, with the definition (2.6), one indeed finds that 0 �
ωN � 1 and trωN = N .
The smoothness and decay properties of the Wigner transform WN of (2.6)
follow from analogous properties of the phase space density M(r, p), that is

‖WN‖H5
4

� C‖M‖H5
4
. (2.9)

In fact, according to the previous remark, to prove (2.9) it is enough to show
(2.5). To this end, we notice that

[x/ε, ωN ](x; y) =
∫

dpdr M(p, r)(−i∇p) f pr (x) f pr (y)

=
∫

dpdr (i∇pM(p, r)) f pr (x) f pr (y)

[∇, ωN ](x; y) =
∫

dpdr M(p, r)∇r f pr (x) f pr (y)

= −
∫

dpdr (∇r M(p, r)) f pr (x) f pr (y). (2.10)
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More generally, using integration by parts, all commutators ofωN with x/ε and
∇ can be written as superpositions of coherent states, weighted by derivatives
of the phase space density. Therefore, (2.9) follows from

|〈 f pr , f p′r ′ 〉| =
∣∣∣∣
∫

dx f pr (x) f p′r ′(x)

∣∣∣∣

= CN exp

{
− (r − r ′)2

4δ2
− δ2

4ε2
(p − p′)2

}
, (2.11)

for a constant C > 0, independent of N and δ, and from the bound

‖[a1, [a2, . . . , [a j , ωN ] . . .]‖2HS
�
∫

dpdp′drdr ′ |∇βM(p, r)||∇βM(p′, r ′)||〈 f p,r , f p′,r ′ 〉|2

� CN‖∇βM‖2‖‖∇βM‖2 � CN‖M‖2
H j
0
, (2.12)

for an appropriate multi-index β with |β| = j . The effect of the operators
(1 + x2 − ε2�) appearing in (2.5) can be controlled using the decay of (2.11)
and of the probability density M .
We conclude that, for any probability density M ∈ H5

4 (R3 × R
3) with 0 �

M(r, p) � 1 for all r, p ∈ R
3, the sequence of reduced densities (2.6) is an

example of initial data satisfying the assumption of Theorem 2.1.

In our second theorem, we relax partly the regularity assumption on the initial
data. To reach this goal, we start from (2.3) and we apply an approximation ar-
gument. In contrast with Theorem 2.1, here we only get bounds for the difference
ωN ,t − ω̃N ,t in the Hilbert–Schmidt norm (the Hilbert-Schmidt norm of a reduced
density is directly related with the L2 norm of its Wigner transform; there is no
such simple relation between the trace norm of a reduced density and the L1-norm
of its Wigner transform).

Theorem 2.2. Let V ∈ L1(R3) be such that
∫

|V̂ (p)|(1 + |p|2) dp < ∞. (2.13)

LetωN be a sequence of reduced densities on L2(R3), with trωN = N, 0 � ωN � 1
and with Wigner transform WN satisfying ‖WN‖H2

4
� C, uniformly in N.

As in Theorem 2.1, we denote by ωN ,t the solution of the Hartree equation (2.1)
with initial data ωN and by ω̃N ,t the Weyl quantization of the solution W̃N ,t of the
Vlasov equation (2.2) with initial data W̃N ,0 = WN . Then, there exists a constant
C > 0 depending only on supN ‖WN‖H2

4
and on the integral (2.13) such that

‖ωN ,t − ω̃N ,t‖HS � C
√
Nε exp(C exp(C |t |)). (2.14)

Instead of comparing the solution ωN ,t of the Hartree equation with the Weyl
quantization ω̃N ,t of the solution of the Vlasov equation W̃N ,t , we can equivalently
compare W̃N ,t with the Wigner transform WN ,t of ωN ,t . Equation (2.14) implies
that
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‖WN ,t − W̃N ,t‖2 � Cε exp(C exp(C |t |)). (2.15)

Ifwe assume that the fermionic initial dataωN has aWigner transformWN (with
appropriately bounded H2

4 -norm) approaching, in the limit of large N , a probability
density W0 on the phase space, we can also compare the Wigner transform WN ,t

of the solution ωN ,t of the Hartree equation with the solution Wt of the Vlasov
equation with initial dataW0. In the next theorem, we show the L2-convergence of
WN ,t towards Wt .

Theorem 2.3. Let V ∈ L1(R3) be such that (2.13) holds true. LetωN be a sequence
of reduced densities on L2(R3), with trωN = N, 0 � ωN � 1 and with Wigner
transform WN satisfying ‖WN‖H2

4
� C, uniformly in N.

Furthermore, let W0 be a probability density on R
3 × R

3 with ‖W0‖H2
4

< ∞
and such that

‖WN − W0‖1 � CκN ,1, and ‖WN − W0‖2 � CκN ,2 (2.16)

for sequences κN ,1, κN ,2 � 0 with κN , j → 0 as N → ∞ for j = 1, 2.
Let ωN ,t denote the solution of the Hartree equation (2.1) with initial data ωN

and let WN ,t be its Wigner transform. On the other hand, let Wt denote the solution
of the Vlasov equation (2.2), with initial data W0. Then we have

‖WN ,t − Wt‖2 � Cε exp(C exp(C |t |)) + C(κN ,1 + κN ,2) exp(C |t |). (2.17)

Remarks. (1) Notice that, if ‖WN −W0‖1 � κN ,1 for a sequence κN ,1 → 0, and if
‖WN‖H2

4
, ‖W0‖H2

4
� C uniformly in N , then, automatically, ‖WN − W0‖2 �

Cκ
1/2
N ,1, that is the second condition in (2.16) follows from the first one, if we

take κN ,2 = κ
1/2
N ,1. However, it is often possible to get a better estimate on κN ,2,

improving the bound (2.17) (for instance, in the example discussed in the next
remark, we find κN ,2 = κN ,1 = ε1/2).

(2) An interesting example of a sequence of initial data satisfying all assumptions
of Theorem 2.3 can be constructed again by means of coherent states. As in
(2.6), consider the fermionic reduced densities

ωN (x; y) =
∫

dpdrM(r, p) f pr (x) f pr (y)

with f pr (x) = ε−3/2eip·x/εg(x − r) and with M a probability density on the
phase-space,with 0 � M(r, p) � 1and‖M‖1 = 1and such that‖M‖H2

4
< ∞.

For simplicity, we choose g as in (2.8) to be a Gaussian function, localized on
the length scale δ = δ(N ), with δ(N ) → 0 as N → ∞.
The Wigner transform of ωN , defined as in (1.8), is given by

WN (x, v) = ε3

(2π)3

∫
dy ωN

(
x + εy

2
; x − εy

2

)
eiy·v

= 1

(2π)3 (2πδ2)3/2

∫
dydrdp M(r, p)eiy·(v−p)e− (x−r+εy/2)2

2δ2
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× e− (x−r−εy/2)2

2δ2

= 23/2

(2πε)3

∫
drdp M(r, p) e− (x−r)2

2δ2 e
− δ2(p−v)2

ε2

where, in the last step, we evaluated the integral over y. We find

‖WN − M‖1 � 23/2

(2π)3

∫
dxdvdrdp e− r2

2 e−p2

|M (x + δr, v + εp/δ) − M(x, v)|
� 23/2

(2π)3

∫
dxdvdrdp e− r2

2 e−p2

×
∫ 1

0
dλ[δ|r | |(∇x M) (x + λδr, v + λεp/δ)|

+ ε

δ
|p| |(∇vM) (x + λδr, v + λεp/δ)|]

� Cδ‖∇x M‖1 + C
ε

δ
‖∇vM‖1

� C
[
δ + ε

δ

]
‖M‖H2

4

and similarly,

‖WN − M‖2 � C
[
δ + ε

δ

]
‖M‖H2

4
.

To optimize the rate of the convergenceWN → M (that is tomake the sequence
of initial data as “classical” as possible), we choose δ = ε1/2 (recall that
ε = N−1/3). From Theorem 2.3, we conclude then that the distance between
the Wigner transform WN ,t of the solution of the Hartree equation and the
solution Wt of the Vlasov equation with initial data given by the probability
density W0 = M is bounded by

‖WN ,t − Wt‖2 � Cε1/2 exp(C exp(C |t |)).
Although inTheorem2.2 and inTheorem2.3 the assumptions onWN areweaker

than in Theorem 2.1, we still needWN ∈ H2
4 (R3 ×R

3), with a norm bounded uni-
formly in N . As pointed out in the introduction, this assumption is typically satisfied
for interesting initial data at positive temperature (like the ones constructed in the
remarks after Theorem2.3), but it is not valid for Slater determinants approximating
the ground state, which are relevant at zero temperature.

In the next two theorems, we establish a weaker form of convergence for the
solution of the Hartree equation towards the solution of the Vlasov equation. We
prove convergence after testing against a semiclassical observable (whose kernel
varies on the length-scale ε in the (x − y) direction). The advantage of these
two results, as compared with Theorems 2.1 and 2.2, is the fact that they require
much weaker assumptions on the initial data; in particular, they can be applied to
reasonable andphysically interesting approximations of the ground state of confined
systems (examples of such states are constructed in the remark after Theorem 2.5).
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Theorem 2.4. Let V ∈ L1(R3) be so that
∫

|V̂ (p)|(1 + |p|3)dp < ∞. (2.18)

Let ωN be a sequence of reduced densities on L2(R3), with trωN = N, 0 � ωN �
1, such that

tr |[x, ωN ]| � CNε, tr |[ε∇, ωN ]| � CNε. (2.19)

Denote by WN ∈ L1(R3 × R
3) the Wigner transform of ωN . We assume that

‖WN‖W 1,1 =
∑

|β|�1

∫
dxdv|∇βWN (x, v)| � C

uniformly in N.
Let ωN ,t be the solution of the Hartree equation (2.1) with initial data ωN . On

the other hand, let ω̃N ,t be the Weyl quantization of the solution W̃N ,t of the Vlasov
equation (2.2) with initial data WN .

Then there exists a constant C > 0, such that
∣∣∣tr eip·x+q·ε∇ (

ωN ,t − ω̃N ,t
)∣∣∣ � CNε(1 + |p| + |q|)2eC|t | (2.20)

for all p, q ∈ R
3, t ∈ R.

Notice that the expectation of the observable appearing in (2.20) can also be
expressed in terms of Wigner transforms. In fact, for any fermionic operator ωN ,
we find

tr eip·x+q·ε∇ωN =
∫

dx ei/2εp·qeip·xωN (x − εq; x)

= N
∫

dxdv WN (x, v)eip·x eiq·v = NŴN (p, q).

Hence (2.20) can be translated into the bound
∣∣∣ŴN ,t (p, q) − ̂̃WN ,t (p, q)

∣∣∣ � Cε(1 + |p| + |q|)2eC|t |

where we recall that WN ,t is the Wigner transform of the solution ωN ,t of the
Hartree equation while W̃N ,t is the solution of the Vlasov equation with initial data
WN .

If the sequence WN has a limit W0, a probability density on phase-space, then
one can also compare the Fourier transform of WN ,t with the Fourier transform of
the solution Wt of the Vlasov equation with initial data W0.

Theorem 2.5. Let V ∈ L1(R3) satisfy (2.18). Let ωN be a sequence of reduced
densities on L2(R3), with trωN = N, 0 � ωN � 1 and such that

tr |[x, ωN ]| � CNε, tr |[ε∇, ωN ]| � CNε.
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Denote by WN ∈ L1(R3 × R
3) the Wigner transform of ωN . We assume that

‖WN‖W 1,1 � C uniformly in N.
Furthermore, let W0 ∈ W 1,1(R3 × R

3) be a probability density, such that

‖WN − W0‖1 � κN

for a sequence κN with κN → 0 as N → ∞.
Let ωN ,t be the solution of the Hartree equation (2.1) with initial data ωN and

let WN ,t be the Wigner transform of ωN ,t . On the other hand, let Wt denote the
solution of the Vlasov equation with initial data W0. Then we have

sup
p,q

1

(1 + |p| + |q|)2
∣∣ŴN ,t (p, q) − Ŵt (p, q)

∣∣ � C (ε + κN ) eC|t |.

Remark. A physically interesting example of sequence of initial data satisfying
the assumptions of Theorem 2.5 can be constructed also here with coherent states.
Similarly to (2.6), we consider the sequence of fermionic reduced densities

ωN (x; y) =
∫

drdp M(r, p) frp(x) f̄r p(y) (2.21)

with a probability density M ∈ W 1,1(R3 × R
3), the coherent states

fr,p(x) = ε−3/2e−i p·x/εg(x − r)

and the Gaussian function g(x) = (2πδ2)−3/4e−x2/2δ2 . We notice that

[x, ωN ](x; y) = ε

∫
drdp (∇pM)(r, p) frp(x) f̄r p(y)

[ε∇, ωN ](x; y) = ε

∫
drdp (∇r M)(r, p) frp(x) f̄r p(y).

Hence, we obtain

tr |[x, ωN ]| � Nε‖∇vM‖1, tr |[ε∇, ωN ]| � Nε‖∇r M‖1.
Moreover, it is simple to check that the Wigner transform WN of ωN satisfies
‖WN‖W 1,1 � C uniformly in N and (similarly to the remark after Theorem 2.3),

‖WN − M‖1 � C(δ + ε/δ)‖M‖W 1,1 .

Choosing δ = ε1/2, we find ‖WN − M‖1 � Cε1/2. Theorem 2.5 implies
therefore that the Wigner transform WN ,t of the solution of the Hartree equation
with the initial data (2.21) is such that

sup
p,q∈R3

1

(1 + |q| + |p|)2
∣∣ŴN ,t (p, q) − Ŵt (p, q)

∣∣ � Cε1/2 eC|t |

for all t ∈ R. Here Wt denotes the solution of the Vlasov equation with the initial
data given by the probability density W0 = M . Notice that the assumption M ∈
W 1,1 is also compatible with M being an approximate characteristic function; this
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observation is important at zero temperature, to describe systems at or close to the
ground state.

The rest of the paper is devoted to the proof of our fivemain theorems, appearing
in Sections 3–5. Appendix B contains an important lemma on the propagation of
regularity for the solution of the Vlasov equation (1.10), which is used in Sections
3 and 4. Appendix C, on the other hand, contains a bound on the propagation of
certain semiclassical commutators, which plays a key role in Sections 4 and 5.

3. Trace Norm Convergence for Regular Data

Herewe prove Theorem 2.1. Recall thatωN ,t denotes the solution of theHartree
equation

iε∂tωN ,t = [hH (t), ωN ,t ]
with the Hartree Hamiltonian

hH (t) = −ε2� + (V ∗ ρt )(x)

and the density ρt (x) = N−1ωN ,t (x; x). We introduce the two-parameter group of
unitary transformations U(t; s), generated by hH (t). In other words, U(t; s) solves
the equation

iε∂tU(t; s) = hH (t)U(t; s) (3.1)

with U(s; s) = 1, for all s ∈ R. Notice that ωN ,t = U(t; 0)ωNU∗(t; 0).
On the other hand, ω̃N ,t is the Wigner transform of the solution W̃N ,t of the

Vlasov equation (1.10). We find that ω̃N ,t satisfies

iε∂t ω̃N ,t = [−ε2�, ω̃N ,t ] + At

where At is the operator with the kernel

At (x; y) = ∇(V ∗ ρ̃t )

(
x + y

2

)
· (x − y) ω̃N ,t (x; y).

We conjugate now the difference ωN ,t − ω̃N ,t with the unitary operator U(t; 0).
Taking the time derivative, we find

i ε ∂t U∗(t; 0) (ωN ,t − ω̃N ,t )U(t; 0)
= −U∗(t; 0) [hH (t), ωN ,t − ω̃N ,t ]U(t; 0)

+U∗(t; 0) ([hH (t), ωN ,t ] − [−ε2 �, ω̃N ,t ] − At )U(t; 0)
= U∗(t; 0) ([V ∗ ρt , ω̃N ,t ] − At )U(t; 0)
= U∗(t; 0) ([V ∗ (ρt − ρ̃t ), ω̃N ,t ] + Bt )U(t; 0) (3.2)

where Bt denotes the operator with the integral kernel

Bt (x; y) =
[
(V ∗ ρ̃t )(x) − (V ∗ ρ̃t )(y) − ∇(V ∗ ρ̃t )

(
x + y

2

)
· (x − y)

]

×ω̃N ,t (x; y). (3.3)
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Integration in time gives (since, at time t = 0, ωN ,0 = ω̃N ,0 = ωN )

U∗(t; 0) (ωN ,t − ω̃N ,t )U(t; 0) = 1

iε

∫ t

0
U∗(t; s) [V ∗ (ρs − ρ̃s), ω̃N ,s]U(t; s) ds

+ 1

iε

∫ t

0
U∗(t; s) Bs U(t; s) ds. (3.4)

Taking the trace norm, we obtain

tr |ωN ,t − ω̃N ,t | � 1

ε

∫ t

0
tr |[V ∗ (ρs − ρ̃s), ω̃N ,s]| ds + 1

ε

∫ t

0
tr |Bs | ds. (3.5)

We will estimate the two terms in the right-hand side of (3.5) separately, and con-
clude by applying Gronwall’s lemma.
Estimate of the first term in (3.5). We start by considering the first term on the right
hand side of (3.5). To this end, we observe that

tr |[V ∗ (ρs − ρ̃s), ω̃N ,s]| �
∫

dz|ρs(z) − ρ̃s(z)| tr
∣∣[V (· − z), ω̃N ,s]

∣∣

� ‖ρs − ρ̃s‖1 sup
z

tr |[V (z − ·), ω̃N ,s]|. (3.6)

We start by estimating the last factor in the right-hand side of (3.6). We have

tr |[V (· − z), ω̃N ,s]| = tr |(1 − ε2�)−1(1 + x2)−1

(1 + x2)(1 − ε2�)[V (· − z), ω̃N ,s]|
� ‖(1 − ε2�)−1(1 + x2)−1‖HS

‖(1 + x2)(1 − ε2�)[V (· − z), ω̃N ,s]‖HS. (3.7)

An explicit computation shows that

‖(1 − ε2�)−1(1 + x2)−1‖HS � C
√
N .

As for the operator D := (1 + x2)(1 − ε2�)[V (z − ·), ω̃N ,s], it has the integral
kernel

D(x; y) = (1 + x2)(1 − ε2�x )(V (x − z) − V (y − z)) ω̃N ,s(x; y)
= N (1 + x2)(1 − ε2�x )(V (x − z) − V (y − z))∫

dv W̃N ,s

( x + y

2
, v
)
eiv· x−y

ε

where we used the definition of ω̃N ,s as the Weyl quantization of the solution W̃N ,s

of the Vlasov equation, with initial data W0. Taking into account the fact that the
Laplacian �x can act on the potential V (x − z), on the function W̃N ,s or on the
phase eiv·(x−y)/ε, we obtain that
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D(x; y)
= N (1 + x2) (V (x − z) − V (y − z))

∫
W̃N ,s

( x + y

2
, v
)
ei v·(x−y)/ε dv

−Nε2(1 + x2) (�V )(x − z)
∫

W̃N ,s

( x + y

2
, v
)
ei v·(x−y)/ε dv

−Nε2

4
(1 + x2) (V (x − z) − V (y − z))

∫
(�1W̃N ,s)

( x + y

2
, v
)
ei v·(x−y)/ε dv

+N (1 + x2) (V (x − z) − V (y − z))
∫

W̃N ,s

( x + y

2
, v
)

v2 ei v·(x−y)/ε dv

−Nε2

2
(1 + x2) (∇V )(x − z) ·

∫
(∇1W̃N ,s)

( x + y

2
, v
)
ei v·(x−y)/ε dv

−i Nε(1 + x2) (∇V )(x − z) ·
∫

W̃N ,s

( x + y

2
, v
)

v ei v·(x−y)/ε dv

− i Nε

2
(1 + x2) (V (x−z)−V (y−z))

∫
(∇1W̃N ,s)

( x + y

2
, v
)

v ei v·(x−y)/ε dv.

=:
7∑

j=1

Dj (x; y). (3.8)

We estimate now the Hilbert–Schmidt norm of the different contributions on
the right hand side of (3.8). To control the term D1, we expand

D1(x; y) = N (1 + x2)(V (x − z) − V (y − z))
∫

W̃N ,s

( x + y

2
, v
)
eiv·(x−y)/εdv

= N (1 + x2)(∇V )(ξ) · (x − y)
∫

W̃N ,s

( x + y

2
, v
)
eiv·(x−y)/εdv

= i Nε(1 + x2)(∇V )(ξ) ·
∫

(∇2W̃N ,s)
( x + y

2
, v
)
eiv·(x−y)/εdv

for an appropriate ξ on the segment between x − z and y − z. Using the bound

1 + x2 � 1 + 2

(
x + y

2

)2

+ ε

2

2
(
x − y

ε

)2

and the assumption V ∈ W 2,∞(R3) we get:

‖D1‖2HS � CN 2ε2
∫

dxdy
[
1 + 2

( x + y

2

)2 + ε2

2

( x − y

ε

)2]2

×
∣∣∣
∫

(∇2W̃N ,s)
( x + y

2
, v
)
eiv·(x−y)/εdv

∣∣∣
2

= CNε2
∫

dXdr
[
1 + X2 + ε2r2

]2 ∣∣∣
∫

(∇2W̃N ,s)(X, v)eiv·rdv
∣∣∣
2

� CNε2
∫

dXdv(1 + X2)2|∇2W̃N ,s(X, v)|2

+CNε6
∫

dXdv|∇3
2 W̃N ,s(X, v)|2
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� CNε2‖W̃N ,s‖H1
4

+ CNε6‖W̃N ,s‖H3 . (3.9)

Similarly, we control the Hilbert–Schmidt norm of the second term on the right
hand side of (3.8):

‖D2‖2HS � CNε4
∫

dXdr [1 + X2 + ε2r2]2
∣∣∣
∫

W̃N ,s(X, v)eiv·rdv
∣∣∣
2

� CNε4‖W̃N ,s‖2H0
4

+ CNε8‖W̃N ,s‖2H2 .

Proceeding analogously to bound the Hilbert–Schmidt norm of the other terms on
the right hand side of (3.8), we conclude that

‖D‖HS � C
√
N
[
ε‖W̃N ,s‖H1

4
+ ε2‖W̃N ,s‖H2

4
+ ε3‖W̃N ,s‖H3

4
+ ε4‖W̃N ,s‖H4

4

]
.

Proposition B.1 allows us to control the weighted Sobolev norms of the solution
W̃N ,s of the Vlasov equation by their initial values. We obtain

‖D‖HS � CeC|s|√N
[
ε‖WN‖H1

4
+ ε2‖WN‖H2

4
+ ε3‖WN‖H3

4
+ ε4‖WN‖H4

4

]

for a constant C > 0, depending on ‖WN‖H2
4
. Thus, from (3.7), we finally find

tr |[V (· − z), ω̃N ,s]| � CeC|s|Nε

×
[
‖WN‖H1

4
+ ε‖WN‖H2

4
+ ε2‖WN‖H3

4
+ ε3‖WN‖H4

4

]
.

Therefore, from (3.6):

tr |[V ∗ (ρs − ρ̃s), ω̃N ,s]| � ‖ρs − ρ̃s‖1tr |[V (· − z), ω̃N ,s]|
� CeC|s|Nε‖ρs − ρ̃s‖1‖WN‖H1

4

+CeC|s|Nε2‖ρs − ρ̃s‖1
×[‖WN‖H2

4
+ ε‖WN‖H3

4
+ ε2‖WN‖H4

4

]

=: I + II. (3.10)

Consider first I. We have

‖ρs − ρ̃s‖1 = sup
J∈L∞(R3):‖J‖∞�1

∣∣∣∣
∫

J (z)(ρs(z) − ρ̃s(z))dz

∣∣∣∣

� N−1 sup
J :‖J‖�1

∣∣tr J (ωN ,s − ω̃N ,s)
∣∣

where on the right hand side the supremum is taken over all bounded operator with
operator norm lesser or equal than one. We conclude that

‖ρs − ρ̃s‖1 � N−1 tr |ωN ,s − ω̃N ,s |.
Therefore,

I � CeC|s|ε tr |ωN ,s − ω̃N ,s |‖WN‖H1
4
. (3.11)
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To bound II, we write:

‖ρs − ρ̃s‖1 � ‖ρs‖1 + ‖ρ̃s‖1 = N−1trωN ,s + ‖ρ̃s‖1 � 1 + ‖W̃N ,s‖1.
Using that the Vlasov dynamics preserves the L p norms, we get:

‖W̃N ,s‖1 = ‖WN‖1 = ‖(1 + x2 + v2)−2(1 + x2 + v2)2WN‖1 � C‖WN‖H0
4
,

and thus:

II � CeC|s|Nε2‖WN‖H0
4

[‖WN‖H2
4

+ ε‖WN‖H3
4

+ ε2‖WN‖H4
4

]
. (3.12)

From (3.6), (3.10), (3.11), (3.12), we obtain:

1

ε

∫ t

0
tr
∣∣[V ∗ (ρs − ρ̃s), ω̃N ,s

]∣∣ ds

� C
∫ t

0
eC|s| tr |ωN ,s − ω̃N ,s | ds

+CeC|t |Nε
[
‖WN‖H2

4
+ ε‖WN‖H3

4
+ ε2‖WN‖H4

4

]
(3.13)

where the constant C > 0 depends on ‖WN‖H2
4
, but not on the higher Sobolev

norms of WN . This concludes the estimate of the first term in the right-hand side
of (3.5).
Estimate for the second term in (3.5). To conclude and apply Gronwall’s lemma,
we need to bound the second term in (3.5). We find

tr |Bs | � ‖(1 − ε2�)−1(1 + x2)−1‖HS ‖(1 + x2)(1 − ε2�)Bs‖HS
� C

√
N‖(1 + x2)(1 − ε2�)Bs‖HS. (3.14)

Let Us := V ∗ ρ̃s . The kernel of the operator B̃ := (1 − ε2�)Bs is given by

B̃(x; y) = N
[
Us(x) −Us(y) − ∇Us

( x + y

2

)
· (x − y)

]

×
∫

W̃N ,s

( x + y

2
, v
)
ei v· (x−y)

ε dv

−Nε2
[
�Us(x) − 1

4
�∇Us

( x + y

2

)
· (x − y) − 1

2
�Us

( x + y

2

)]

×
∫

W̃N ,s

( x + y

2
, v
)
ei v· (x−y)

ε dv

−Nε2

4

[
Us(x) −Us(y) − ∇Us

( x + y

2

)
· (x − y)

]

×
∫

(�1W̃N ,s)
( x + y

2
, v
)
ei v· (x−y)

ε dv

+N
[
Us(x) −Us(y) − ∇Us

( x + y

2

)
· (x − y)

]

∫
W̃N ,s

( x + y

2
, v
)
v2ei v· (x−y)

ε dv
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−Nε2

2

[
∇Us(x) − 1

2
∇2Us

( x + y

2

)
(x − y) − ∇Us

( x + y

2

)]

×
∫

(∇1W̃N ,s)
( x + y

2
, v
)
ei v· (x−y)

ε dv

−Nε
[
∇Us(x) − 1

2
∇2Us

( x + y

2

)
(x − y) − ∇Us

( x + y

2

)]

×
∫

W̃N ,s

( x + y

2
, v
)
vei v· (x−y)

ε dv

−Nε
[
Us(x) −Us(y) − ∇Us

( x + y

2

)
· (x − y)

]

×
∫

(v · ∇1W̃N ,s)
( x + y

2
, v
)
ei v· (x−y)

ε dv

=:
7∑

j=1

B̃ j (x; y). (3.15)

In the contributions B̃1, B̃4, B̃6, B̃7, we need to extract additional factors of ε; the
goal is to show that ‖(1 + x2)B̃‖HS � C

√
Nε2. To this end, we write

Us(x) −Us(y) − ∇Us

(
x + y

2

)
· (x − y)

=
∫ 1

0
dλ
[∇Us

(
λx + (1 − λ)y

)− ∇Us
(
(x + y)/2

)] · (x − y)

=
3∑

i, j=1

∫ 1

0
dλ
∫ 1

0
dμ∂i∂ jUs

(
μ(λx + (1 − λ)y) + (1 − μ)(x + y)/2

)

(x − y)i (x − y) j
(
λ − 1

2

)

and we estimate, using the assumption V ∈ W 2,∞(R3) and integrating by parts,

|B̃1(x; y)| � CNε2
3∑

i, j=1

∣∣∣∣
∫

∂vi ∂v j W̃N ,s

( x + y

2
, v
)
eiv·(x−y)/εdv

∣∣∣∣ .

Hence, proceeding similarly as we did in (3.9), we get:

‖(1 + x2)B̃1‖2HS � CN 2ε4
∫

dxdy (1 + x2)2
3∑

i, j=1

×
∣∣∣∣
∫

∂vi ∂v j W̃N ,s

( x + y

2
, v
)
eiv·(x−y)/εdv

∣∣∣∣
2

= CNε4
∫

dXdr
[
1+X2+ε2r2

]2
∣∣∣∣
∫

∂vi ∂v j W̃N ,s (X, v) eiv·rdv
∣∣∣∣
2

� CNε4‖W̃N ,s‖2H2
4

+ CNε8‖W̃N ,s‖2H4 .
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The Hilbert–Schmidt norm of the other terms in the right-hand side of (3.15) can
be estimated in a similar way. To do this, it is useful to notice that:

‖∇3U‖∞ = ‖∇2V ∗ ∇ρ̃s‖∞ � ‖∇2V ‖∞‖∇ρ̃s‖1 � CeC|s|

where we used that V ∈ W 2,∞(R3), and that ‖∇ρ̃s‖1 � C‖W̃N ,s‖H1
4
. The final

result is:

‖(1 + x2)B̃‖HS
� C

√
N
[
ε2‖W̃N ,s‖H2

4
+ ε3‖W̃N ,s‖H3

4
+ ε4‖W̃N ,s‖H4

4
+ ε5‖W̃N ,s‖H5

4

]
.

Therefore, by Proposition B.1,

‖(1 + x2)B̃‖HS
� CeC|s|√Nε2

[
‖WN‖H2

4
+ ε‖WN‖H3

4
+ ε2‖WN‖H4

4
+ ε3‖WN‖H5

4

]

where the constant C > 0 depends on ‖WN‖H2
4
but not on the higher Sobolev

norms of WN . This gives:

tr |Bs | � CeC|s|Nε2
[
‖WN‖H2

4
+ ε‖WN‖H3

4
+ ε2‖WN‖H4

4
+ ε3‖WN‖H5

4

]
.

(3.16)

Proof of Theorem 2.1. We are now in the position to conclude the proof. Inserting
(3.13), (3.16) into (3.5), we get:

tr |ωN ,t − ω̃N ,t | � C
∫ t

0
tr eC|s| |ωN ,s − ω̃N ,s |ds

+CeC|t |Nε

[
‖WN‖H2

4
+ ε sup

N
‖WN‖H3

4

+ ε2 sup
N

‖WN‖H4
4

+ ε3 sup
N

‖WN‖H5
4

]
.

Finally, Gronwall’s lemma implies the desired bound

tr |ωN ,t − ω̃N ,t | � CNε exp(C exp(C |t |))
[
sup
N

‖WN‖H2
4

+ ε sup
N

‖WN‖H3
4

+ ε2 sup
N

‖WN‖H4
4

+ ε3 sup
N

‖WN‖H5
4

]

with C depending only on ‖WN‖H2
4
. This concludes the proof. ��
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4. Hilbert–Schmidt Norm Convergence

Here we prove Theorems 2.2 and 2.3. The proof of Theorem 2.2 is based on an
approximation argument, together with our previous result Theorem 2.1.
Regularization of the initial data. We start by approximating the initial data WN .
For k > 0, we define

gk(x, v) = k3

(2π)3
e− k

2 (x2+v2)

and

Wk
N (x, v) = (WN ∗ gk)(x, v) =

∫
dx ′dv′gk(x − x ′, v − v′)WN (x ′, v′).

Then, we have ‖Wk
N‖H5

4
< ∞ for all N ∈ N. In fact, we find

‖Wk
N‖

H j
4

� C‖WN‖H2
4

if j � 2 and

‖Wk
N‖

H j
4

� Ck( j−2)/2‖WN‖H2
4

for j = 3, 4, 5.
(4.1)

Furthermore, we notice that

‖WN − Wk
N‖Hs

a
� C√

k
‖WN‖Hs+1

a
(4.2)

for s = 0, 1 (with the convention H0 ≡ L2) and for a � 4. We denote by ωk
N the

Weyl quantization of Wk
N . We observe that

ωk
N (x; y)
= N

∫
dv Wk

N

( x + y

2
, v
)
eiv· x−y

ε

= Nk3

(2π)3

∫
dvdx ′dv′ e− k

2

(
x+y
2 −x ′

)2
e− k

2 (v−v′)2WN (x ′, v′)eiv· x−y
ε

= k3/2

(2π)3

∫
dwdx ′ e− k

2

(
x+y
2 −x ′

)2
e−w2/2ωN

(
x ′ + x − y

2
, x ′ − x − y

2

)
e
iw· x−y√

kε

= 1

(2π)3

∫
dwdz e−z2/2e−w2/2ωN

(
x + z√

k
, y + z√

k

)
e
iw· x−y√

kε

= 1

(2π)3

∫
dwdz e−z2/2e−w2/2

[
e
iw· x√

kε e
z√
k
·∇

ωNe
− z√

k
·∇
e
−iw· x√

kε

]
(x; y).

(4.3)

Hence ωk
N , as a convex combination of fermionic reduced densities, is again a

fermionic reduced density (that is 0 � ωk
N � 1 and trωk

N = N ). From (4.2), we
find

‖ωN − ωk
N‖HS = √

N‖WN − Wk
N‖2 �

√
N

k
‖WN‖H1 . (4.4)
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Wedenote byωN ,t andωk
N ,t the solution of theHartree equationwith initial data

ωN and, respectively, ωk
N . On the other hand, ω̃N ,t and ω̃k

N ,t will denote theWigner

transform of the solutions W̃N ,t and W̃ k
N ,t of the Vlasov equation with initial data

WN and, respectively, Wk
N . Notice that, since the Vlasov equation preserves all the

L p norms, ‖ω̃N ,t‖HS = N 1/2‖W̃N ,t‖2 = N 1/2‖WN‖2 and, similarly, ‖ω̃k
N ,t‖HS =

N 1/2‖Wk
N‖2, for all t ∈ R.

We need to compare ωN ,t with ω̃N ,t . To this end, we will first compare ωk
N ,t

with ω̃k
N ,t . Later, we will have to compare ωN ,t with ωk

N ,t and, separately, ω̃N ,t

with ω̃k
N ,t .

Comparison of ωk
N ,t with ω̃k

N ,t . To begin, we prove that there exists a constant
C > 0 such that

‖ωk
N ,t − ω̃k

N ,t‖HS � CN 1/2ε exp(C exp(C |t |))
[
1 +

3∑

j=1

(ε
√
k) j

]
. (4.5)

The constant depends on supN ‖WN‖H2
4
, but not on the higher Sobolev norms. To

show (4.5), we shall use our previous result, Theorem 2.1. In fact, from (2.3), (4.1)
we find

‖ωk
N ,t − ω̃k

N ,t‖tr � CNε exp(C exp(C |t |))
⎛

⎝‖Wk
N‖H2

4
+

3∑

β=1

εβ sup
N

‖Wk
N‖

Hβ+2
4

⎞

⎠

� CNε exp(C exp(C |t |))
⎛

⎝1 +
3∑

j=1

(ε
√
k) j

⎞

⎠ (4.6)

for a constant C > 0 depending only on supN ‖WN‖H2
4
. We shall use this result

to prove an estimate for the Hilbert-Schmidt norm of the difference of the two
evolutions. Proceeding as in (3.1)–(3.5), we have:

‖ωk
N ,t − ω̃k

N ,t‖HS � 1

ε

∫ t

0
ds

∥∥∥[V ∗ (ρk
s − ρ̃k

s ), ω̃
k
N ,s]

∥∥∥
HS

+ 1

ε

∫ t

0
ds ‖Bk

s ‖HS
(4.7)

where Bk
s is the operator with the integral kernel

Bk
s (x; y)=

[
V ∗ ρ̃k

s (x)−V ∗ ρ̃k
s (y)−∇(V ∗ ρ̃k

s )

(
x + y

2

)
· (x − y)

]
ω̃k
N ,t (x; y).

We shall estimate the two terms in (4.7) separately. We start with the first. We have:

∥∥∥[V ∗ (ρk
s − ρ̃k

s ), ω̃
k
N ,s]

∥∥∥
HS

�
∫

dz|ρk
s (z) − ρ̃k

s (z)| ·
∥∥∥[V (z − ·), ω̃k

N ,s]
∥∥∥
HS

� ‖ρk
s − ρ̃k

s ‖1
∫

dp |Ṽ (p)|
∥∥∥[eip·x , ω̃k

N ,s]
∥∥∥
HS

.
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Using ‖ρk
s − ρ̃k

s ‖1 � N−1‖ωk
N ,t − ω̃k

N ,t‖tr , the identity

[eip·x , ω̃k
N ,s] =

∫ 1

0
dλ eiλp·x

[
i p · x, ω̃k

N ,s

]
ei(1−λ)p·x

and the assumption (2.13) on the potential, we conclude that
∥∥∥[V ∗ (ρk

s − ρ̃k
s ), ω̃

k
N ,s]

∥∥∥
HS

� CN−1‖ωk
N ,s − ω̃k

N ,s‖tr‖[x, ω̃k
N ,s]‖HS. (4.8)

We shall use the regularity of Wk
N ,t to extract a factor ε from the commutator in

(4.8). We have:

[x, ω̃k
N ,s](x; y) = (x − y)

∫
dv W̃ k

N ,s

( x + y

2
, v
)
eiv· x−y

ε

= ε

∫
dv ∇vW̃

k
N ,s

( x + y

2
, v
)
eiv· x−y

ε

and thus, similarly to (2.4),
∣∣[x, ω̃k

N ,s]
∥∥
HS = εN 1/2

∥∥∇vW̃
k
N ,s

∥∥
2 � CeC|s|εN 1/2‖WN‖H1 .

The second inequality follows from the propagation of regularity for solutions of
the Vlasov equation, proven in Proposition B.1. Inserting the last bound and (4.6)
in (4.8), we obtain

∥∥∥[V ∗ (ρk
s − ρ̃k

s ), ω̃
k
N ,s]

∥∥∥
HS

� CN 1/2ε2 exp(C exp(C |t |))
⎛

⎝1 +
3∑

j=1

(ε
√
k) j

⎞

⎠ ,

(4.9)

which concludes the estimate for the first term in (4.7). Let us now consider the
second term in (4.7). We have:

‖Bs‖2HS
=
∫

dxdy

∣∣∣∣(V ∗ ρ̃ks )(x) − (V ∗ ρ̃ks )(y) − ∇(V ∗ ρ̃ks )

(
x + y

2

)
· (x − y)

∣∣∣∣
2
|ω̃k

N ,s (x; y)|2

=
∫

dxdy |ω̃k
N ,s (x; y)|2|x − y|2

∣∣∣∣
∫ 1

0
dλ

[
∇(V ∗ ρ̃ks )(λx + (1 − λ)y) − ∇(V ∗ ρ̃ks )((x + y)/2)

] ∣∣∣∣
2

�
∫

dxdy |ω̃k
N ,s (x; y)|2|x − y|4

∣∣∣∣
∫ 1

0
dλ
∫ 1

0
dμ (λ − 1/2)∇2(V ∗ ρ̃ks ) (μ(λx + (1 − λ)y) + (1 − μ)(x + y)/2)

∣∣∣∣
2

� C
∫

dxdy |x − y|4|ω̃k
N ,s (x; y)|2

using the assumption (2.13). Since

(x − y)2ω̃k
N ,s(x; y) = −ε2

∫
dv �vW̃

k
N ,s

( x + y

2
, v
)
eiv· x−y

ε ,

we find, similarly to (2.4),

‖Bs‖2HS � CNε4‖�vW̃
k
N ,s‖22 � CeC|s|ε4N‖Wk

N‖2H2 � CeC|s|ε4N ,
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where we used again Proposition B.1. This concludes the estimate of the second
term in (4.7). Therefore, plugging the estimates (4.9), (2.4) into (4.7), we have:

‖ωk
N ,t − ω̃k

N ,t‖HS � CN 1/2ε exp(C exp(C |t |))
⎛

⎝1 +
3∑

j=1

(ε
√
k) j

⎞

⎠ ,

as claimed.
Comparison of ωk

N ,t with ωN ,t . The next step is to compare the Hartree dynamics
of the regularized initial data with the Hartree dynamics of the original data. Our
goal is to show that:

‖ωN ,t − ωk
N ,t‖HS � CeC|t |N 1/2

(
ε + 1√

k

)
(4.10)

for a suitable constant C > 0, dependent on supN ‖WN‖H2
4
but not on the higher

Sobolev norms.
Let U(t; s) be the unitary group generated by hH (t) = −ε2� + V ∗ ρt , with

ρt (x) = N−1ωN ,t (x; x). From
iε∂tU∗(t; 0) ωk

N ,t U(t; 0) = −U∗(t; 0)[V ∗ (ρt − ρk
t ), ω

k
N ,t ]U(t; 0)

we have:

ωN ,t − ωk
N ,t = U(t; 0)(ωN − U∗(t; 0)ωk

N ,tU(t; 0))U∗(t; 0)
= U(t; 0)(ωN − ωk

N )U∗(t; 0)
+ 1

iε

∫ t

0
ds U(t; s)[V ∗ (ρs − ρk

s ), ω
k
N ,s]U∗(t; s).

Hence

‖ωN ,t − ωk
N ,t‖HS � ‖ωN − ωk

N‖HS + 1

Nε

∫ t

0
ds
∫

dp |V̂ (p)|
|tr e−i p·x (ωN ,s − ωk

N ,s)| ‖[eip·x , ωk
N ,s]‖HS. (4.11)

We start by estimating the commutator in the right-hand side. We have

[eip·x , ωk
N ,s] =

∫ 1

0
eiλp·x [i p · x, ωk

N ,s]ei(1−λ)p·x .

By Proposition C.1, it follows that:

‖[eip·x , ωk
N ,s]‖HS � |p|‖[x, ωk

N ,s]‖HS
� C |p|eC|s|(‖[x, ωk

N ]‖HS + ‖[ε∇, ωk
N ]‖HS).

Since

‖[x, ωk
N ]‖HS = εN 1/2‖∇vW

k
0 ‖2 � εN 1/2‖W0‖H1

‖[ε∇, ωk
N ]‖HS = εN 1/2‖∇xW

k
0 ‖2 � εN 1/2‖W0‖H1 ,
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we conclude that

‖[eip·x , ωk
N ,s]‖HS � CN 1/2ε|p|eC|s|. (4.12)

Then, we are left with estimating the trace on the right-hand side of (4.11). To do
this, we shall use the following lemma.

Lemma 4.1. Under the same assumptions of Theorem 2.2, there exists a constant
C > 0, only depending on supN ‖WN‖H2

4
but not on the higher Sobolev norms,

such that

sup
p∈R3

1

1 + |p| |tr e
ip·x (ωN ,t − ωk

N ,t )| � CeC|t |N
(

1√
k

+ ε

)
. (4.13)

Plugging (4.12), (4.13) into (4.11), and using the bound (4.4) on the difference
of the initial data, we get

‖ωN ,t − ωk
N ,t‖HS � CeC|t |N 1/2

(
1√
k

+ ε

)
,

which concludes the proof of (4.10). Thus, we are left with the proof of Lemma
4.1.

Proof of Lemma 4.1. Consider, for an arbitrary p ∈ R
3,

tr eip·x (ωN ,t − ωk
N ,t ) = trU∗(t; 0)eip·xU(t; 0)(ωN − U∗(t; 0) ωk

N ,t U(t; 0))

where, as in (3.1),U(t; 0) denotes the unitary group generated by hH (t) = −ε2�+
V ∗ ρt , with ρt (x) = N−1ωN ,t (x; x). From

iε∂tU∗(t; 0) ωk
N ,t U(t; 0) = −U∗(t; 0)[V ∗ (ρt − ρk

t ), ω
k
N ,t ]U(t; 0)

we find

tr eip·x (ωN ,t − ωk
N ,t ) = trU∗(t; 0)eip·xU(t; 0)(ωN − ωk

N )

− 1

iε

∫ t

0
trU∗(t; s)eip·xU(t; s) [V ∗ (ρs − ρk

s ), ω
k
N ,s] ds

= trU∗(t; 0)eip·xU(t; 0)(ωN − ωk
N )

+ 1

iε

∫ t

0

∫
d p̃ V̂ ( p̃)(ρ̂s( p̃) − ρ̂k

s ( p̃))

trU∗(t; s)eip·xU(t; s)[ei p̃·x , ωk
N ,s]. (4.14)

Since

ρ̂s( p̃) − ρ̂k
s ( p̃) = 1

N
tr ei p̃·x (ωN ,s − ωk

N ,s),
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we conclude that

|tr eip·x (ωN ,t − ωk
N ,t )| � |trU∗(t; 0)eip·xU(t; 0)(ωN − ωk

N )|
+ 1

Nε

∫ t

0
ds
∫

d p̃ |V̂ ( p̃)| |tr ei p̃·x (ωN ,s − ωk
N ,s)|

|tr [U∗(t; s)eip·xU(t; s), ei p̃·x ]ωk
N ,s |,

and therefore, using the assumption (2.13), that

sup
p∈R3

1

1 + |p| |tr eip·x (ωN ,t − ωk
N ,t )|

� sup
p∈R3

1

1 + |p| |trU
∗(t; 0)eip·xU(t; 0)(ωN − ωk

N )|

+ C

Nε

∫ t

0
ds sup

p, p̃∈R3

1

(1 + |p|)(1 + | p̃|) |tr
[
U∗(t; s)eip·xU(t; s), ei p̃·x

]
ωk
N ,s |

× sup
p̃∈R3

1

1 + | p̃| |tr e
i p̃·x (ωN ,s − ωk

N ,s)|. (4.15)

To bound the second term on the right hand side of (4.15) we shall use the following
lemma, whose proof is deferred to Section 6.

Lemma 4.2. Assume that (2.18) holds true. Let U(t; s) be the unitary evolution
generated by the Hartree Hamiltonian h(t) = −ε2� + (V ∗ ρt ). There exists a
constant C > 0 such that

sup
ω,r

1

|r | |tr [e
ir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]ω| � ε(|p| + |q|)eC|t−s|

for all p, q ∈ R
3. Here, the supremum is taken over r ∈ R

3 and over all trace class
operators ω on L2(R3) with tr |ω| � 1.

It follows from Lemma 4.2 and from tr |ωk
N ,s | = N that:

|tr [U∗(t; s)eip·xU(t; s), ei p̃·x ]ωk
N ,s | � CNε|p|| p̃| eC|t−s|. (4.16)

To bound the first term on the right hand side of (4.15), we proceed as follows. We
choose a function χ< ∈ C∞(R3), with χ<(x) = 1 for |x | � 1 and χ<(x) = 0 for
|x | � 2. We set χ> = 1 − χ<. For an arbitrary R � 1, we decompose

trU∗(t; 0)eip·xU(t; 0)(ωN − ωk
N )

= trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(ωN − ωk
N )

+ trU∗(t; 0)eip·xU(t; 0)χ>(−ε2�/R)(ωN − ωk
N )χ<(−ε2�/R)

+ trU∗(t; 0)eip·xU(t; 0)χ>(−ε2�/R)(ωN − ωk
N )χ>(−ε2�/R)

=: I + II + III. (4.17)
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To estimate the last term, we observe that

|III| � trχ2
>(−ε2�/R)ωN + trχ2

>(−ε2�/R)ωk
N

� 1

R

[
tr (−ε2�)ωN + tr (−ε2�)ωk

N

]

= N

R

[∫
dxdv v2WN (x, v) +

∫
dxdv v2Wk

N (x, v)

]
� CN

R
(4.18)

from the assumption supN ‖WN‖H2
4

< ∞, and using that χ>(−ε2�/R) �
(−ε2�/R). Next, let us consider the first term on the right hand side of (4.17).
We write

I = trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1(1 + x2)(ωN − ωk
N )

and we decompose
[
(1 + x2)(ωN − ωk

N )
]
(x; y)

= N (1 + x2)
∫

dv

[
WN

( x + y

2
, v
)

− Wk
N

( x + y

2
, v
)]

eiv· (x−y)
ε

= D1(x; y) + D2(x; y) + D3(x; y)
where

D1(x; y) = N

[
1+

(
x + y

2

)2
]∫

dv

[
WN

( x+y

2
, v
)
−Wk

N

( x+y

2
, v
)]

eiv· (x−y)
ε

is the Weyl quantization of the function (1 + x2)(WN (x, v) − Wk
N (x, v)) defined

on phase-space, while

D2(x; y) = Nε2

4

(
x − y

ε

)2 ∫
dv

[
WN

( x + y

2
, v
)

− Wk
N

( x + y

2
, v
)]

eiv· (x−y)
ε

= Nε2

4

∫
dv

[
�vWN

( x + y

2
, v
)

− �vW
k
N

( x + y

2
, v
)]

eiv· (x−y)
ε

is the Weyl quantization of (ε2/4)(�vWN (x, v) − �vWk
N (x, v)) and

D3(x; y) = Nε
x + y

2
· x − y

ε

∫
dv

[
WN

( x + y

2
, v
)

− Wk
N

( x + y

2
, v
)]

eiv· (x−y)
ε

= Nε
x + y

2
·
∫

dv

[
∇vWN

( x + y

2
, v
)

− ∇vW
k
N

( x + y

2
, v
)]

eiv· (x−y)
ε

is the Weyl quantization of εx · (∇vWN (x, v) − ∇vWk
N (x, v)). We bound the con-

tributions of the three terms D1, D2, D3 separately. We begin with
∣∣∣trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1D1

∣∣∣

=
∣∣∣trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1(1 − ε2�)−1(1 − ε2�)D1

∣∣∣

� ‖(1 + x2)−1(1 − ε2�)−1‖HS‖(1 − ε2�)D1‖HS
� C

√
N‖(1 − ε2�)D1‖HS
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where we used that 0 � χ<(−ε2�/R) � 1. We have

[
(1 − ε2�)D1

]
(x; y) = N (1 − ε2�x )

[
1 +

(
x + y

2

)2
]

×
∫

dv

[
W0

( x + y

2
, v
)

− Wk
0

( x + y

2
, v
)]

eiv· (x−y)
ε .

It is not difficult to see that

‖(1 − ε2�)D1‖HS � C
√
N‖(1 + x2)(1 + v2)(WN − Wk

N )‖2
+C

√
Nε‖WN − Wk

N‖H1
1

+ C
√
Nε2‖WN − Wk

N‖H2
2

� C
√
N

(
1√
k

+ ε

)
.

Therefore,
∣∣∣trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1D1

∣∣∣ � CN

(
1√
k

+ ε

)
.

(4.19)

The contribution of D2, on the other hand, can be controlled by
∣∣∣trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1D2

∣∣∣

� ‖χ<(−ε2�/R)(1 + x2)−1‖HS‖D2‖HS
� Cε2

√
N‖W0‖H2‖χ<(−ε2�/R)(1 + x2)−1‖HS,

where

‖χ<(−ε2�/R)(1 + x2)−1‖2HS
= tr (1 + x2)−1(1 − ε2�)−1χ2

<(−ε2�/R)(1 − ε2�)−1(1 + x2)−1

= tr (1 + x2)−1(1 − ε2�)−1(1 − ε2�)2χ2
<(−ε2�/R)(1 − ε2�)−1(1 + x2)−1

� CR2‖(1 + x2)−1(1 − ε2�)−1‖2HS
� CR2N .

Hence, we conclude that
∣∣∣trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1D2

∣∣∣ � CN R ε2. (4.20)

We proceed similarly to bound the contribution of the term D3. We find
∣∣∣trU∗(t; 0)eip·xU(t; 0)χ<(−ε2�/R)(1 + x2)−1D3

∣∣∣

� ‖χ<(−ε2�/R)(1 + x2)−1‖HS‖D3‖HS
� CN R ε‖WN − Wk

N‖H1
1

� CN R ε√
k

,
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where in the last step we used (4.2). The last equation, combined with (4.19), (4.20)
implies that

|I| � CN

(
1√
k

+ ε + Rε2 + Rε√
k

)
.

Analogously, one can show that the same estimate holds for the term II on the right
hand side of (4.17) as well (in this case, we introduce the identity (1+x2)(1+x2)−1

on the right of the difference ωN − ωk
N and we use the cyclicity of the trace). With

(4.18), we conclude that

∣∣∣trU∗(t; 0)eip·xU(t; 0)(ωN − ωk
N )

∣∣∣ � CN

(
1√
k

+ ε + Rε2 + Rε√
k

+ 1

R

)
.

Choosing R = ε−1, we obtain

∣∣∣trU∗(t; 0)eip·xU(t; 0)(ωN − ωk
N )

∣∣∣ � CN

(
1√
k

+ ε

)
.

Inserting this bound and (4.16) in (4.15) and applying Gronwall’s lemma, we
obtain

sup
p∈R3

1

1 + |p|
∣∣∣tr eip·x (ωN ,t − ωk

N ,t )

∣∣∣ � CeC|t |N
(

1√
k

+ ε

)
, (4.21)

which concludes the proof of (4.13). ��
Comparison of ω̃k

N ,t with ω̃N ,t . We now compare the Vlasov evolution of the reg-
ularized initial data with the Vlasov evolution of the original data. We claim that
there exists a constant C > 0, depending on supN ‖WN‖H2

4
but not on the higher

Sobolev norms, such that:

‖ω̃N ,t − ω̃k
N ,t‖HS = N 1/2

∥∥W̃N ,t − W̃ k
N ,t

∥∥
2 � N 1/2CeC|t |

√
k

. (4.22)

To prove this, let

ρ̃t (x) =
∫

dv W̃N ,t (x, v) and ρ̃k
t (x) =

∫
dv W̃ k

N ,t (x, v) (4.23)

be the densities associated with W̃N ,t and W̃ k
N ,t . For t ∈ R, we denote by (Xt (x, v),

Vt (x, v)) and by (Xk
t (x, v), V k

t (x, v)) the flows satisfying the differential equations

{
Ẋt (x, v) = 2Vt (x, v)

V̇t (x, v) = −∇(V ∗ ρ̃t )(Xt (x, v))
(4.24)

and
{
Ẋ k
t (x, v) = 2V k

t (x, v)

V̇ k
t (x, v) = −∇(V ∗ ρ̃k

t )(X
k
t (x, v))

(4.25)
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with initial data given by, respectively, X0(x, v) = Xk
0(x, v) = x , V0(x, v) =

V k
0 (x, v) = v. We compare the two flows (Xt , Vt ) and (Xk

t , V
k
t ). We have

d

dt
(Xt − Xk

t )(x, v) = 2(Vt − V k
t )(x, v)

d

dt
(Vt − V k

t )(x, v) = −∇(V ∗ ρ̃t )(Xt (x, v)) + ∇(V ∗ ρ̃k
t )(X

k
t (x, v)),

and therefore
∣∣∣∣
d

dt
(Xt − Xk

t )(x, v)

∣∣∣∣ � 2
∣∣∣Vt (x, v) − V k

t (x, v)

∣∣∣
∣∣∣∣
d

dt
(Vt − V k

t )(x, v)

∣∣∣∣ � C‖ρ̃t − ρ̃k
t ‖1 + C

∣∣∣Xt (x, v) − Xk
t (x, v)

∣∣∣ ,

where we used the assumption (2.13). Gronwall’s lemma implies that
∣∣∣Xt (x, v) − Xk

t (x, v)

∣∣∣+
∣∣∣Vt (x, v) − V k

t (x, v)

∣∣∣

� CeC|t |
∫ t

0
ds ‖ρ̃s − ρ̃k

s ‖1

� CeC|t |
∫ t

0
ds ‖Ws − Wk

s ‖1. (4.26)

We will also need to control the difference between derivatives of the flows
(Xt (x, v), Vt (x, v)) and (Xk

t (x, v), V k
t (x, v)). Integrating theflowequations (4.24),

(4.25), we have

∇x Xt (x, v) = 1 + 2
∫ t

0
∇x Vs(x, v)ds

∇x Vt (x, v) = −
∫ t

0
∇2(V ∗ ρ̃s)(Xs(x, v)) · ∇x Xs(x, v) ds,

(4.27)

which implies that

|∇x Xt (x, v)| � 1 + 2
∫ t

0
ds |∇x Vs(x, v)|

|∇x Vt (x, v)| � C
∫ t

0
ds |∇x Xs(x, v)|,

and hence, by Gronwall’s lemma, that

|∇x Xt (x, v)| + |∇x Vt (x, v)| � eC|t |. (4.28)

Analogously, we also find

|∇vXt (x, v)| + |∇vVt (x, v)| � eC|t | (4.29)

and

|∇x X
k
t (x, v)| + |∇x V

k
t (x, v)| � eC|t |

|∇vX
k
t (x, v)| + |∇x V

k
t (x, v)| � eC|t |.
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Moreover, from (4.27), we obtain

∣∣∣∇x Xt (x, v) − ∇x X
k
t (x, v)

∣∣∣ � 2
∫ t

0
ds

∣∣∣∇x Vs(x, v) − ∇x V
k
s (x, v)

∣∣∣ ,

and thus
∣∣∣∇x Vt (x, v) − ∇x V

k
t (x, v)

∣∣∣

�
∫ t

0
ds

∣∣∣∇2(V ∗ ρ̃s)(Xs(x, v)) · ∇x Xs(x, v)

−∇2(V ∗ ρ̃k
s )(X

k
s (x, v)) · ∇x X

k
s (x, v)

∣∣∣

� C
∫ t

0
ds ‖ρ̃s − ρ̃k

s ‖1 + C
∫ t

0
ds |Xs(x, v) − Xk

s (x, v)||∇x Xs(x, v)|

+C
∫ t

0
ds |∇x Xs(x, v) − ∇x X

k
s (x, v)|.

To get the second inequality, we used that

‖∇3V ∗ ρ̃s‖∞ � ‖∇2V ‖∞‖∇W̃N‖1 � CeC|s|‖WN‖H1
4
. (4.30)

Using (4.28) and (4.26), and applying Gronwall’s lemma, we conclude that
∣∣∣∇x Xt (x, v) − ∇x X

k
t (x, v)

∣∣∣+
∣∣∣∇x Vt (x, v) − ∇x V

k
t (x, v)

∣∣∣

� CeC|t |
∫ t

0
ds ‖ρ̃s − ρ̃k

s ‖1 + CeC|t |
∫ t

0
ds
∫ s

0
dr ‖ρ̃r − ρ̃k

r ‖1. (4.31)

Similarly, we can also show that
∣∣∣∇vXt (x, v) − ∇vX

k
t (x, v)

∣∣∣+
∣∣∣∇vVt (x, v) − ∇vV

k
t (x, v)

∣∣∣

� CeC|t |
∫ t

0
ds ‖ρ̃s − ρ̃k

s ‖1 + CeC|t |
∫ t

0
ds

∫ s

0
dr ‖ρ̃r − ρ̃k

r ‖1. (4.32)

Next, we control the L1 norm of the difference W̃N ,t − W̃ k
N ,t . To this end, we

write

‖W̃N ,t − W̃ k
N ,t‖1

=
∫

dxdv
∣∣W̃N ,t (x, v) − W̃ k

N ,t (x, v)
∣∣

=
∫

dxdv
∣∣WN (X−t (x, v), V−t (x, v)) − Wk

N (Xk−t (x, v), V k−t (x, v))
∣∣

�
∫

dxdv
∣∣WN (X−t (x, v), V−t (x, v)) − Wk

N (X−t (x, v), V−t (x, v))
∣∣

+
∫

dxdv
∣∣Wk

N (X−t (x, v), V−t (x, v)) − Wk
N (Xk−t (x, v), V k−t (x, v))

∣∣.



306 Niels Benedikter, Marcello Porta, Chiara Saffirio & Benjamin Schlein

Using that the Vlasov dynamics preserves the volume in phase-space, we get:

‖W̃N ,t − W̃ k
N ,t‖1

� ‖WN −Wk
N‖1+

∫
dxdv

∣∣∣∣
∫ 1

0
dλ

d

dλ
Wk

N

(
λ(X−t (x, v), V−t (x, v))

+(1−λ)(Xk−t (x, v), V k−t (x, v))

)∣∣∣∣�‖WN −Wk
N‖1

+
∫

dλdxdv
[∣∣(∇xW

k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣∣∣X−t (x, v) − Xk−t (x, v)
∣∣

+ ∣∣(∇vW
k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣∣∣V−t (x, v) − V k−t (x, v)
∣∣
]
,

where we introduced the notation

x̃(x, v, λ) := λX−t (x, v) + (1 − λ)Xk−t (x, v),

ṽ(x, v, λ) := λV−t (x, v) + (1 − λ)V k−t (x, v).

From (4.26), we obtain

‖W̃N ,t − W̃ k
N ,t‖1 � ‖WN − Wk

N‖1 + C
∫ t

0
ds eC|s|‖W̃N ,s − W̃ k

N ,s‖1

×
[ ∫

dλdxdv
∣∣(∇xW

k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣

+ ∣∣(∇vW
k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣
]
.

(4.33)

We observe that
∫

dxdv
∣∣(∇xW

k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣ =
∫ ∣∣(∇xW

k
N )(x̃, ṽ)

∣∣ dx̃dṽ

|J (x̃, ṽ)|
(4.34)

with the Jacobian

J = det

[
λ

(∇x X−t ∇x V−t

∇vX−t ∇vV−t

)
+ (1 − λ)

(∇x Xk−t ∇x V k−t
∇vXk−t ∇vV k−t

)]
.

To estimate the determinant J (x̃, ṽ) in (4.34), we proceed as follows. For a
fixed constant C > 0 (that later will be chosen large enough), let us define t∗ > 0
such that:

C3 e2Ct∗
√
k

= 1/2. (4.35)

We claim that, for all |t | < t∗,

‖W̃N ,t − W̃ k
N ,t‖1 � C

eC|t |
√
k

. (4.36)
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We prove (4.36) for t > 0 (the case of t < 0 can be handled similarly, of course).
We set

t0 = inf

{
t > 0 : ‖W̃N ,t − W̃ k

N ,t‖1 >
CeC|t |
√
k

}
(4.37)

and we proceed by contradiction, assuming that t0 < t∗. At time t = 0, we have:

‖WN − Wk
N‖1 �

∫
dxdvdx ′dv′gk(x − x ′, v − v′)|WN (x, v) − WN (x ′, v′)|

= 1

(2π)3

∫
dxdvdrds e−(r2+s2)/2

∣∣∣∣WN

(
x + r√

k
, v + s√

k

)
− WN (x, v)

∣∣∣∣

� 1

(2π)3

∫
dxdvdrds

∫ 1

0
dλ e−(r2+s2)/2

×
[ |r |√

k

∣∣∣∣∇xWN

(
x + λ

r√
k
, v + λ

s√
k

)∣∣∣∣

+ |s|√
k

∣∣∣∣∇vWN

(
x + λ

r√
k
, v + λ

s√
k

)∣∣∣∣

]

� 8π

(2π)3

1√
k
(‖∇xWN‖1 + ‖∇vWN‖1)

� C√
k
‖WN‖H1

4
� C̃√

k
, (4.38)

where in the last line we estimated the L1-norms by proceeding as in (4.30). Since,
moreover, t → W̃N ,t and t → W̃ k

N ,t are continuous in the L
1-topology, by choosing

C = 2C̃ in Equation (4.37), we conclude that t0 > 0. The continuity property is a
standard fact (see for example [8]).

By definition, for 0 � t � t0, we have (4.36) and therefore, from (4.31) and
(4.32),

∣∣∇x X−t (x, v) − ∇x X
k−t (x, v)

∣∣+ ∣∣∇x V−t (x, v) − ∇x V
k−t (x, v)

∣∣ � C2 e
2C|t |
√
k

and

∣∣∇vX−t (x, v) − ∇vX
k−t (x, v)

∣∣+ ∣∣∇vV−t (x, v) − ∇vV
k−t (x, v)

∣∣ � C2 e
2C|t |
√
k

.

Writing

J (̃x, ṽ)

= det

[
λ

(∇x X−t ∇x V−t

∇vX−t ∇vV−t

)
+ (1 − λ)

(∇x Xk−t − ∇x Xt ∇x V k−t − ∇x V−t

∇vXk−t − ∇vX−t ∇vV k−t − ∇vV−t

)]
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and using that
∣∣∣∣det

(∇x X−t ∇x V−t

∇vX−t ∇vV−t

)∣∣∣∣ = 1

we conclude that

||J (̃x, ṽ)| − 1| � C3 e
3C|t |
√
k

if the constant C > 0 is large enough. From (4.35), and from the assumption
t0 < t∗, we conclude that

|J (̃x, ṽ)| > 1/2

for all 0 � t � t0. Equation (4.34) implies:
∫

dxdv
∣∣(∇xW

k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣

� 2
∫

dx̃dṽ
∣∣∇xW

k
N (x̃, ṽ)

∣∣ � C‖Wk
N‖H1

4
� C‖WN‖H1

4

for all 0 < t � t0. Similarly, we obtain
∫

dxdv
∣∣(∇vW

k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣ � C‖WN‖H1
4
.

Plugging the last two bounds in the right hand side of (4.33), we find that

‖W̃N ,t − W̃ k
N ,t‖1 � ‖WN − Wk

N‖1 + C
∫ t

0
ds eC|s|‖W̃N ,s − W̃ k

N ,s‖1

for all 0 � t � t0. Equation (4.38) andGronwall’s lemma imply that, if the constant
C > 0 is sufficiently large,

‖W̃N ,t − W̃ k
N ,t‖1 � C

eC|t |
√
k

for all 0 � t � t0, in contradiction with the definition of t0. This shows that t0 > t∗.
Repeating the same argument for t < 0, we obtain that

‖W̃N ,t − W̃ k
N ,t‖1 � C

eC|t |
√
k

(4.39)

for all |t | < t∗. From (4.26), we also find that

|Xt (x, v) − Xk
t (x, v)| + |Vt (x, v) − V k

t (x, v)| � C2 e
2C|t |
√
k

(4.40)

for all |t | < t∗. Moreover, Equations (4.31) and (4.32) imply that

|J (̃x, ṽ)| � 1/2 (4.41)
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for all |t | < t∗ and for all x̃, ṽ ∈ R
3.

Finally, we control the difference W̃N ,t − W̃ k
N ,t in the L

2-norm. To this end, we
observe that

‖W̃N ,t − W̃ k
N ,t‖22

=
∫

dxdv
∣∣WN (X−t (x, v), V−t (x, v)) − Wk

N (Xk−t (x, v), V k−t (x, v))
∣∣2

� 2
∫

dxdv
∣∣WN (X−t (x, v), V−t (x, v)) − Wk

N (X−t (x, v)V−t (x, v))
∣∣2

+2
∫

dxdv
∣∣Wk

N (X−t (x, v), V−t (x, v)) − Wk
N (Xk−t (x, v), V k−t (x, v))

∣∣2.

Using that the Vlasov dynamics preserves the phase-space volume, we get, for all
|t | < t∗:

‖W̃N ,t − W̃ k
N ,t‖22

� 2‖WN − Wk
N‖22

+2
∫ 1

0
dλ
∫

dxdv
{∣∣(∇xW

k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣2∣∣X−t (x, v) − Xk−t (x, v)
∣∣2

+∣∣(∇vW
k
N ) (x̃(x, v, λ), ṽ(x, v, λ))

∣∣2∣∣V−t (x, v) − V k−t (x, v)
∣∣2
}

� 2‖WN − Wk
N‖22 + 2

C4e4C |t |

k

∫ 1

0
dλ
∫ [∣∣(∇xW

k
N )(x̃, ṽ)

∣∣2 + ∣∣(∇vW
k
N )(x̃, ṽ)

∣∣2] dx̃d ṽ

|J (x̃, ṽ)|
� 10

C4e4C |t |

k
‖WN‖2H1 .

To get the first inequality we used the estimate (4.40), while to get the last one we
used (4.41). By definition of t∗, we conclude that, after an appropriate change of
the constant C > 0,

‖W̃N ,t − W̃ k
N ,t‖2 � CeC|t |

√
k

for all t ∈ R (recall that the bounds ‖W̃N ,t‖2, ‖W̃ k
N ,t‖2 � C are trivial, since the

Vlasov equation preserves the L p norms). This concludes the proof of (4.22).

Proof of Theorem 2.2. We have, using (4.5), (4.10), (4.22):

‖ωN ,t − ω̃N ,t‖HS
� ‖ωN ,t − ωk

N ,t‖HS + ‖ωk
N ,t − ω̃k

N ,t‖HS + ‖ω̃k
N ,t − ω̃N ,t‖HS

� CN 1/2
(

ε + 1√
k

)
exp(C exp(C |t |))(1 +

3∑

j=1

(ε
√
k) j

)
(4.42)

for a constant C > 0 that depends on supN ‖WN‖H2
4
but not on the higher Sobolev

norms. Choosing k = ε−2, we conclude that

‖ωN ,t − ω̃N ,t‖HS � CN 1/2ε exp(C exp(C |t |))
as claimed. This concludes the proof of Theorem 2.2. ��
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Proof of Theorem 2.3. Let W̃N ,t be the solution of the Vlasov equation with initial
data WN . We estimate

‖WN ,t − Wt‖2 � ‖WN ,t − W̃N ,t‖2 + ‖W̃N ,t − Wt‖2. (4.43)

The first term can be bounded by Theorem 2.2. In particular, (2.15) implies that

‖WN ,t − W̃N ,t‖2 � Cε exp(C exp(C |t |)). (4.44)

As for the second term on the right hand side of (4.43), we have to compare two
solutions of theVlasov equation,with slightly different initial data, but this is exactly
what we did in Step 3 of the proof of Theorem 2.2. The only ingredients that we
used there were a bound for the L1 and for L2 norm of the difference of the initial
data. Now, by assumption we have ‖W0 − WN‖1 � κN ,1, ‖W0 − WN‖2 � κN ,2
and ‖W0‖H2

4
� C . Therefore, the arguments used in Step 3 of Section 4 imply that

‖W̃N ,t − Wt‖2 � C(κN ,1 + κN ,2)e
C|t |.

Together with (4.44), we conclude that

‖WN ,t − Wt‖2 � Cε exp(C exp(C |t |)) + C(κN ,1 + κN ,2) exp(C |t |).
��

5. Convergence for the Expectation of Semiclassical Observables

Here we prove Theorems 2.4 and 2.5. To show Theorem 2.4, we make first the
additional assumption that the Wigner transforms WN of the fermionic operators
ωN are so that supN ‖WN‖H4

4
< ∞; later, we will relax this assumption with an

approximation argument.
Case supN ‖WN‖H4

4
< ∞. We use the expression (3.4) for the difference ωN ,t −

ω̃N ,t to write

tr eip·x+q·ε∇ (ωN ,t − ω̃N ,t )

= 1

ε

∫ t

0
tr eip·x+q·ε∇ U(t; s)[V ∗ (ρs − ρ̃s), ω̃N ,s]U∗(t; s)ds

+1

ε

∫ t

0
tr eip·x+q·ε∇ U(t; s)Bs U∗(t; s)ds (5.1)

with Bs as defined in (3.3). We start by considering the first term on the right hand
side of (5.1). We have

tr eip·x+q·ε∇ U(t; s)[V ∗ (ρs − ρ̃s), ω̃N ,s]U∗(t; s)
=
∫

dz (ρs(z) − ρ̃s(z))tr e
ip·x+q·ε∇ U(t; s)[V (x − z), ω̃N ,s]U∗(t; s)

=
∫

dk V̂ (k)
∫

dz e−ik·z(ρs(z) − ρ̃s(z))

tr eip·x+q·ε∇ U(t; s)[eik·x , ω̃N ,s]U∗(t; s)
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= 1

N

∫
dk V̂ (k) tr e−ik·z(ωN ,s − ω̃N ,s)

tr eip·x+q·ε∇ U(t; s)[eik·x , ω̃N ,s]U∗(t; s). (5.2)

Hence,
∣∣∣tr eip·x+q·ε∇ U(t; s)[V ∗ (ρs − ρ̃s), ω̃N ,s]U(t; s)ds

∣∣∣

� 1

N

∫
dk |V̂ (k)|

∣∣∣tr eik·x (ωN ,s − ω̃N ,s)

∣∣∣
∣∣∣tr eip·x+q·ε∇ U(t; s)[eik·x , ω̃N ,s]U∗(t; s)

∣∣∣

� C tr |ω̃N ,s |
N

sup
k∈R3

1

(1 + |k|)2
∣∣∣tr eik·x (ωN ,s − ω̃N ,s)

∣∣∣

× sup
ω,k

1

|k|
∣∣∣tr [eik·x ,U∗(t; s)eip·x+q·ε∇ U(t; s)] ω

∣∣∣ , (5.3)

where we used the assumption (2.18) and where the supremum is taken over all
k ∈ R

3 and all ω with tr |ω| � 1. From Lemma 4.2, we obtain

∣∣∣tr eip·x+q·ε∇U(t; s)[V ∗ (ρs − ρ̃s), ω̃N ,s]U(t; s)ds
∣∣∣

� C tr |ω̃N ,s |
N

ε(|p| + |q|)eC|t−s| sup
k

1

(1 + |k|)2
∣∣∣tr eik·x (ωN ,s − ω̃N ,s)

∣∣∣ . (5.4)

Consider now the second term on the right hand side of (5.1). By the cyclicity
of the trace, we find

tr eip·x+q·ε∇ U(t; s) Bs U∗(t; s) = trU∗(t; s) eip·x+q·ε∇ U(t; s) Bs . (5.5)

We recall that the kernel of the operator Bs is

Bs(x; y) =
[
(V ∗ ρ̃s)(x) − (V ∗ ρ̃s)(y) − ∇(V ∗ ρ̃s)

(
x + y

2

)
· (x − y)

]

×ω̃N ,s(x; y).
Expanding the parenthesis with the potentials in Fourier integrals, we obtain

[
(V ∗ ρ̃s)(x) − (V ∗ ρ̃s)(y) − ∇(V ∗ ρ̃s)

(
x + y

2

)
· (x − y)

]

=
∫

dk Û (k)(eik·x − eik·y − eik·
(x+y)

2 ik · (x − y))

with U = V ∗ ρ̃s . We write

eik·x − eik·y =
∫ 1

0
dλ

d

dλ
eik·(λx+(1−λ)y) =

∫ 1

0
dλeik·(λx+(1−λ)y)ik · (x − y),



312 Niels Benedikter, Marcello Porta, Chiara Saffirio & Benjamin Schlein

and hence

eik·x − eik·y − eik·
x+y
2 ik · (x − y)

=
∫ 1

0
dλ
[
eik·(λx+(1−λ)y) − eik·

x+y
2

]
ik · (x − y)

=
∫ 1

0
dλ
∫ 1

0
dμ eik·[μ(λx+(1−λ)y)+(1−μ)(x+y)/2](λ − 1/2)[k · (x − y)]2.

This implies that

Bs =
3∑

i, j=1

∫ 1

0
dλ (λ − 1/2)

∫ 1

0
dμ

∫
dk Û (k)ki k j

×
[
xi ,

[
x j , e

i(μλ+(1−μ)/2)k·x ω̃N ,se
i(μ(1−λ)+(1−μ)/2)k·x]] .

Therefore, we can bound the absolute value of the second term on the right hand
side of (5.1) by
∣∣∣tr eip·x+q·ε∇ U(t; s) Bs U∗(t; s)

∣∣∣

�
3∑

i, j=1

∫ 1

0
dλ|λ − 1/2|

∫ 1

0
dμ

∫
dk|Û (k)||k|2

×
∣∣∣trU∗(t; s)eip·x+q·ε∇U(t; s)

[xi , [x j , ei(μλ+(1−μ)/2)k·x ω̃N ,se
i(μ(1−λ)+(1−μ)/2)k·x ]]

∣∣∣

=
3∑

i, j=1

∫ 1

0
dλ|λ − 1/2|

∫ 1

0
dμ

∫
dk|Û (k)||k|2

×
∣∣∣tr [xi , [x j ,U∗(t; s)eip·x+q·ε∇U(t; s)]]
ei(μλ+(1−μ)/2)k·x ω̃N ,se

i(μ(1−λ)+(1−μ)/2)k·x
∣∣∣

� C tr|ω̃N ,s |
∫

dk |Û (k)||k|2 sup
ω,i, j

∣∣∣tr [xi , [x j ,U∗(t; s)eip·x+q·ε∇U(t; s)]]ω
∣∣∣ .

(5.6)

The supremum on the right hand side is taken over all indices i, j ∈ {1, 2, 3} and
all trace class operators ω with tr |ω| � 1. This term is controlled thanks to the next
lemma, whose proof is deferred to the end of the section.

Lemma 5.1. Under the same assumptions of Theorem 2.4, there exists C > 0 such
that

sup
i, j,ω

∣∣∣tr [xi [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]] ω

∣∣∣ � Cε2(|p| + |q|)2eC|t−s| (5.7)

where the supremum is taken over all i, j ∈ {1, 2, 3} and over all trace class
operators on L2(R3) with tr |ω| � 1.
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Using |Û (k)| � |V̂ (k)|, the assumption (2.18) and (5.7), we conclude that
∣∣∣tr eip·x+q·ε∇ U(t; s) Bs U∗(t; s)

∣∣∣ � C tr |ω̃N ,s | (|p| + |q|)2ε2eC|t−s|. (5.8)

Inserting (5.4) and (5.8) on the right hand side of (5.1), we obtain

sup
p,q∈R3

1

(|p| + |q| + 1)2

∣∣∣tr eip·x+q·ε∇ (ωN ,t − ω̃N ,t )

∣∣∣

� C
∫ t

0
ds

tr |ω̃N ,s |
N

eC|t−s| sup
k

1

(1 + |k|)2
∣∣∣tr eik·x (ωN ,s − ω̃N ,s)

∣∣∣

+C
∫ t

0
ds tr |ω̃N ,s |εeC|t−s|

� C
∫ t

0
ds

tr |ω̃N ,s |
N

eC|t−s| sup
p,q

1

(1 + |p| + |q|)2
∣∣∣tr eip·x+q·ε∇(ωN ,s − ω̃N ,s)

∣∣∣

+C
∫ t

0
ds tr |ω̃N ,s | ε eC|t−s|. (5.9)

Now, we estimate the trace norm of ω̃N ,s (here we need the additional regularity
of the Wigner transforms of the initial data assumed at the beginning of the proof).
We have

tr |ω̃N ,s | = tr
∣∣∣(1 − ε2�)−1(1 + x2)−1(1 + x2)(1 − ε2�)ω̃N ,s

∣∣∣

� ‖(1 − ε2�)−1(1 + x2)−1‖HS‖(1 + x2)(1 − ε2�)ω̃N ,s‖HS
� C

√
N‖(1 + x2)(1 − ε2�)ω̃N ,s‖HS. (5.10)

The operator K = (1 + x2)(1 − ε2�) ω̃N ,s has the integral kernel

K (x; y) = N (1 + x2)(1 − ε2�x )

∫
dv W̃N ,s

( x + y

2
, v
)
e−iv· x−y

ε

= N (1 + x2)
∫

dv W̃N ,s

( x + y

2
, v
)
e−iv· x−y

ε

+N (1 + x2)
∫

dv v2W̃N ,s

( x + y

2
, v
)
e−iv· x−y

ε

−ε2N (1 + x2)
∫

dv (�vW̃N ,s)
( x + y

2
, v
)
e−iv· x−y

ε

+iεN (1 + x2)
∫

dv v · ∇vW̃N ,s

( x + y

2
, v
)
e−iv· x−y

ε .

Writing

(1 + x2) = 1 +
(
x + y

2

)2

+
(
x − y

ε

)2

we conclude that

‖K‖HS � C
√
N

4∑

j=0

ε j‖W̃N ,s‖H j
4
.
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The propagation of regularity of the Vlasov equation from Proposition B.1 gives
us

‖K‖HS � C
√
NeC|s|

4∑

j=0

ε j‖WN‖
H j
4

and thus, with (5.10),

tr |ω̃N ,s | � CNeC|s|
4∑

j=0

ε j‖WN‖
H j
4
.

Inserting in (5.9) and applying Gronwall’s inequality, we find

sup
p,q∈R3

1

(1 + |p| + |q|)2
∣∣∣tr eip·x+q·ε∇(ωN ,t − ω̃N ,t )

∣∣∣

� C

[ 4∑

j=0

ε j‖WN‖
H j
4

]
Nε exp

(
C

[ 4∑

j=0

ε j‖WN‖
H j
4

]
exp(C |t |)

)
. (5.11)

This completes the proof of Theorem 2.4, under the additional assumption that
‖WN‖H4

4
is bounded.

Proof of Theorem 2.4. We have to relax the condition sup ‖WN‖H4
4

< ∞. To this
end, we proceed as follows. We set

Wk
N (x, v) = (WN ∗ gk)(x, v) =

∫
dx ′dv′gk(x − x ′, v − v′)WN (x ′, v′)

with

gk(x, v) = k3

(2π)3
e− k

2 (x2+v2)

and we denote by ωk
N the Weyl quantization of Wk

N . We recall from (4.3), that

ωk
N (x; y)
= 1

(2π)3

∫
dwdz e−z2/2e−w2/2

[
e
iw· x√

kε e
z√
k
·∇

ωNe
− z√

k
·∇
e
−iw· x√

kε

]
(x; y)
(5.12)

is a fermionic reduced density with 0 � ωk
N � 1 and trωk

N = N . In fact, (5.12),
together with the assumption (2.19), also implies that

tr
∣∣ωN − ωk

N

∣∣ � C
N√
k
. (5.13)

To see this, we write:

tr
∣∣ωN − ωk

N

∣∣ � 1

(2π)3

∫
dwdz e−z2/2e−w2/2

tr
∣∣∣eiw· x√

kε e
z√
k
·∇

ωNe
− z√

k
·∇
e
−iw· x√

kε − ωN

∣∣∣,
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where

tr
∣∣∣eiw· x√

kε e
z√
k
·∇

ωNe
− z√

k
·∇
e
−iw· x√

kε − ωN

∣∣∣

� tr
∣∣[ωN , e

− z√
k
·∇]∣∣+ tr

∣∣eiw· x√
kε ωNe

−iw· x√
kε − ωN

∣∣

� tr
∣∣[ωN , e

− z√
k
·∇]∣∣+ tr

∣∣[ωN , e
−iw· x√

kε
]∣∣

� |z|√
k
tr
∣∣[ωN ,∇]∣∣+ |w|√

kε
tr
∣∣[ωN , x]∣∣ ;

this estimate, together with the assumptions (2.19), implies that:

tr
∣∣ωN − ωk

N

∣∣ � CN√
k

1

(2π)3

∫
dwdz e−z2/2e−w2/2[|z| + |w|],

which proves Equation (5.13).
We have ‖Wk

N‖
H j
4

� Ck j/2, for all j = 1, . . . , 4. Choosing k = ε−2, (5.11)

implies that

sup
p,q∈R3

1

(1 + |p| + |q|)2
∣∣∣tr eip·x+q·ε∇(ωk

N ,t − ω̃N ,t )

∣∣∣ � CNε exp(C exp(C |t |)).

On the other hand, proceeding as we did between (4.14) and (4.15) (replacing
the observable eip·x with eip·x+q·ε∇ ), we obtain

sup
p,q

1

1 + |p| + |q|
∣∣∣tr eip·x+q·ε∇(ωN ,t − ωk

N ,t )

∣∣∣ � C exp(C |t |) tr|ωN − ωk
N |.

With (5.13), we conclude that (again with the choice k = ε−2)

sup
p,q

1

1 + |p| + |q|
∣∣∣tr eip·x+q·ε∇(ωN ,t − ωk

N ,t )

∣∣∣ � CNε exp(C |t |).

Finally, we observe that

tr eip·x+q·ε∇(ω̃N ,t − ω̃k
N ,t ) = N (ŴN ,t (p, q) − Ŵ k

N ,t (p, q))

and therefore we estimate
∣∣∣tr eip·x+q·ε∇(ω̃N ,t − ω̃k

N ,t )

∣∣∣ � CN‖W̃N ,t − W̃ k
N ,t‖1.

The L1-stability of theVlasov equationwith respect to perturbationof the initial data
has been already established in the proof of Theorem 2.2. Following the arguments
between (4.23) and (4.39) (using the assumption on the W 1,1 Sobolev norm of the
sequence WN ), we obtain

‖W̃N ,t − W̃ k
N ,t‖1 � CeC|t |‖WN − Wk

N‖1.
Using again the uniform bound ‖WN‖W 1,1 � C , and the choice k = ε−2, we find

‖W̃N ,t − W̃ k
N ,t‖1 � CεeC|t |.
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We conclude that

sup
p,q

1

(1 + |p| + |q|)2
∣∣∣tr eip·x+q·ε∇(ωN ,t − ω̃N ,t )

∣∣∣ � CNε exp(C exp(C |t |))

for any sequence of initial densities ωN satisfying (2.19) and whose Wigner trans-
forms WN satisfy ‖WN‖W 1,1 � C uniformly in N . ��
Proof of Theorem 2.5. We write

∣∣ŴN ,t (p, q) − Ŵt (p, q)
∣∣ �

∣∣∣ŴN ,t (p, q) − ̂̃WN ,t (p, q)

∣∣∣

+
∣∣∣ ̂̃WN ,t (p, q) − Ŵt (p, q)

∣∣∣

where W̃N ,t denotes the solution of the Vlasov equation with initial dataWN . From
Theorem 2.4, we know that

∣∣∣ŴN ,t (p, q) − ̂̃WN ,t (p, q)

∣∣∣ � Cε(1 + |p| + |q|)2eC|t |.

To conclude the proof of the theorem, we need to compare the solutions W̃N ,t and
Wt of the Vlasov equation, using the fact that the two initial data are close in L1.
As in the approximation argument used in the proof of Theorem 2.4, we make use
of the L1-stability of the solution of the Vlasov equation, established in Step 3 of
the proof of Theorem 2.2. Following the arguments between (4.23) and (4.39), we
obtain

‖W̃N ,t − Wt‖1 � CeC|t |‖WN − W0‖1
where the constant C > 0 depends only on ‖W0‖W 1,1 . This implies that

‖ ̂̃WN ,t − Ŵt‖∞ � ‖W̃N ,t − Wt‖1 � CκNe
C|t |.

Hence,

∣∣ŴN ,t (p, q) − Ŵt (p, q)
∣∣ � C(1 + |p| + |q|)2(ε + κN )eC|t |,

which concludes the proof Theorem 2.5. ��

6. Proof of Auxiliary Lemmas

In this section we show Lemmas 4.2 and 5.1.

Proof of Lemma 4.2. We define the unitary evolution Ũ(t; s) satisfying
iε∂t Ũ(t; s) = eir ·x h(t) e−ir ·x Ũ(t; s)

= (h(t) + 2iε2r · ∇ + r2ε2) Ũ(t; s). (6.1)
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We observe that

sup
ω

∣∣∣tr
[
eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)

]
ω

∣∣∣

= sup
ω

∣∣∣tr
[
eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)

]
U(s; 0)ωŨ∗(s; 0)

∣∣∣

= sup
ω

∣∣∣tr Ũ∗(s; 0)
[
eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)

]
U(s; 0)ω

∣∣∣ (6.2)

where the supremum is taken over all trace class operators ω on L2(R3) with
tr |ω| � 1 and where we used the fact that tr |U(s; 0)ωŨ∗(s; 0)| � tr |ω|. For a
fixed ω and for fixed t ∈ R, we now compute the time-derivative of

iε∂s tr Ũ∗(s; 0)[eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]U(s; 0)ω
= −tr Ũ∗(s; 0) [h(s), [eir ·x ,U∗(t; s) eix ·p+ε∇·q U(t; s)]]U(s; 0)ω

− 2ε2 tr Ũ∗(s; 0) ir · ∇ [eir ·x ,U∗(t; s) eix ·p+ε∇·q U(t; s)]U(s; 0)ω
− ε2 r2 tr Ũ∗(s; 0) [eir ·x ,U∗(t; s) eix ·p+ε∇·q U(t; s)]U(s; 0)ω
+ tr Ũ∗(s; 0) [eir ·x , [h(s),U∗(t; s) eix ·p+ε∇·q U(t; s)]]U(s; 0)ω.

Using the properties of commutators, we find

iε∂s tr Ũ∗(s; 0)[eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]U(s; 0)ω
= −2ε2 tr Ũ∗(s; 0) ir · ∇ [eir ·x ,U∗(t; s) eix ·p+ε∇·q U(t; s)]U(s; 0)ω
− ε2 r2 tr Ũ∗(s; 0) [eir ·x ,U∗(t; s) eix ·p+ε∇·q U(t; s)]U(s; 0)ω
+ tr Ũ∗(s; 0) [U∗(t; s) eix ·p+ε∇·q U(t; s), [h(s), eir ·x ]]U(s; 0)ω. (6.3)

We have

[h(s), eir ·x ] = (−2iε2r · ∇ − ε2r2) eir ·x .

Inserting this expression in (6.3), we get

iε∂s tr Ũ∗(s; 0)[eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]U(s; 0)ω
= 2εtr Ũ∗(s; 0) [U∗(t; s) eix ·p+ε∇·q U(t; s), ir · ε∇] eir ·x U(s; 0)ω. (6.4)

Integrating this equation from time s to time t , we find

tr Ũ∗(s; 0)[eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]U(s; 0)ω
= tr Ũ∗(t; 0)[eir ·x , eix ·p+ε∇·q ]U(t; 0)ω

+2i
∫ t

s
dτ tr Ũ∗(τ ; 0) [U∗(t; τ) eix ·p+ε∇·q U(t; τ), ir · ε∇] eir ·x U(τ ; 0)ω,

which implies that
∣∣∣tr Ũ∗(s; 0)[eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]U(s; 0)ω

∣∣∣

�
∣∣∣tr [eir ·x , eix ·p+ε∇·q ]U(t; 0)ωŨ∗(t; 0)

∣∣∣

+2
∫ t

s
dτ

∣∣∣tr
[
U∗(t; τ)eix ·p+ε∇·qU(t; τ), ir · ε∇

]
eir ·xU(τ ; 0)ω Ũ∗(τ ; 0)

∣∣∣ .
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Since

[eir ·x , eix ·p+ε∇·q ] = (e−iεr ·q/2 − eiεr ·q/2)eix ·(p+r)+ε∇·q

we conclude that, for any trace class operator ω on L2(R3), with tr |ω| � 1, we
have

1

|r |
∣∣∣tr [eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]U(s; 0) ω Ũ∗(s; 0)

∣∣∣

� ε|q| + 2
∫ t

s
dτ sup

ω

∣∣∣∣tr
[
U∗(t; τ)eix ·p+ε∇·qU(t; τ), i

r

|r | · ε∇
]

ω

∣∣∣∣ ,

where, on the right hand side, the supremum is taken over all trace class ω with
tr |ω| � 1. From (6.2), we obtain

sup
ω,r

∣∣∣tr [eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)]ω
∣∣∣

� ε|q| + 2
∫ t

s
dτ sup

ω,r

∣∣∣∣tr
[
i
r

|r | · ε∇,U∗(t; τ)eix ·p+ε∇·qU(t; τ)

]
ω

∣∣∣∣ . (6.5)

Next, we bound the supremum on the right hand side of the last equation. To this
end, we observe that

sup
ω

∣∣∣∣tr
[
i
r

|r | · ε∇,U∗(t; s)eix ·p+ε∇·qU(t; s)
]

ω

∣∣∣∣

= sup
ω

∣∣∣∣tr
[
U∗(t; s)eix ·p+ε∇·qU(t; s), i r

|r | · ε∇
]
U(s; 0)ωU∗(s; 0)

∣∣∣∣

= sup
ω

∣∣∣∣trU∗(s; 0)
[
U∗(t; s)eix ·p+ε∇·qU(t; s), i r

|r | · ε∇
]
U(s; 0)ω

∣∣∣∣ . (6.6)

We compute

iε∂s trU∗(s; 0) [U∗(t; s)eix ·p+ε∇·qU(t; s), ir · ε∇]U(s; 0)ω
= −trU∗(s; 0) [h(s), [U∗(t; s) eix ·p+ε∇·q U(t; s) , iεr · ∇]]U(s; 0)ω

+ trU∗(s; 0) [[h(s), U∗(t; s) eix ·p+ε∇·q U(t; s)], iεr · ∇]U(s; 0)ω.

The Jacobi identity implies that

iε∂s trU∗(s; 0) [U∗(t; s)eix ·p+ε∇·qU(t; s), ir · ε∇]U(s; 0)ω
= −trU∗(s; 0) [U∗(t; s) eix ·p+ε∇·q U(t; s), [h(s), iεr · ∇]]U(s; 0)ω. (6.7)

We have

[h(s), ir · ε∇] = iεr · ∇(V ∗ ρs)(x) = iεr ·
∫

dkkV̂ (k)ρ̂s(k)e
ik·x .

Hence

iε∂s trU∗(s; 0) [U∗(t; s)eix ·p+ε∇·qU(t; s), ir · ε∇]U(s; 0)ω = −iε
∫

dkr · kV̂ (k)ρ̂t (k)

trU∗(s; 0) [U∗(t; s) eix ·p+ε∇·q U(t; s), eik·x ]U(s; 0)ω.
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Integrating from time s to time t , we find

trU∗(s; 0) [U∗(t; s)eix ·p+ε∇·qU(t; s), ir · ε∇]U(s; 0)ω
= trU∗(t; 0)[eix ·p+ε∇·q , ir · ε∇]U(t; 0)ω + i

∫ t

s
dτ
∫

dkr · kV̂ (k)ρ̂τ (k)

trU∗(τ ; 0) [U∗(t; τ)eix ·p+ε∇·q U(t; τ), eik·x ]U(τ ; 0)ω.

Since

[eix ·p+ε∇·q , ir · ε∇] = εr · peix ·p+ε∇·q ,

we conclude that, for any trace class operator ω with tr |ω| � 1,

∣∣∣trU∗(s; 0)
[
U∗(t; s)eix ·p+ε∇·qU(t; s), i r

|r | · ε∇
]
U(s; 0)ω

∣∣∣ = ε|p|

+
∫ t

s
dτ sup

ω,k

1

|k|
∣∣∣trU∗(τ ; 0) [U∗(t; τ)eix ·p+ε∇·q U(t; τ), eik·x ]U(τ ; 0)ω

∣∣∣
∫

dk|k|2|V̂ (k)|.

From (6.6), we find

sup
ω,r

∣∣∣tr
[
i
r

|r | · ε∇,U∗(t; s)eix ·p+ε∇·qU(t; s)
]

ω

∣∣∣ � ε|p|

+C
∫ t

s
dτ sup

ω,r

1

|r |
∣∣∣trU∗(τ ; 0) [U∗(t; τ)eix ·p+ε∇·q U(t; τ), eik·x ]U(τ ; 0)ω

∣∣∣ .

Combining this bound with (6.5) and applying Gronwall, we obtain

sup
ω,r

∣∣∣tr
[
eir ·x ,U∗(t; s)eix ·p+ε∇·qU(t; s)

]
ω

∣∣∣

+ sup
ω,r

∣∣∣tr
[
i
r

|r | · ε∇,U∗(t; s)eix ·p+ε∇·qU(t; s)
]

ω

∣∣∣ � εN (|p| + |q|)eC|t−s|.

��
Proof of Lemma 5.1. We observe, first of all, that

sup
ω

|tr [xi [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]ω|
= sup

ω
|tr [xi [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ωU∗(s; 0)|

= sup
ω

|trU∗(s; 0) [xi [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω|. (6.8)

We consider now the derivative

iε∂s trU∗(s; 0) [xi [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω
= −trU∗(s; 0) [h(s), [xi [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]]]U(s; 0)ω

+ trU∗(s; 0) [xi [x j , [h(s),U∗(t; s) eip·x+q·ε∇ U(t; s) ]]]U(s; 0)ω.
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The Jacobi identity implies that

iε∂s trU∗(s; 0) [xi [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω
= trU∗(s; 0) [xi [[x j , h(s)],U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω

+ trU∗(s; 0) [[xi , h(s)], [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω.

Since [x j , h(s)] = ε2∇x j (and since [∇x j , xi ] = δi j is a number), we conclude that

iε∂s trU∗(s; 0) [xi , [x j , U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω
= εtrU∗(s; 0) [ε∇x j , [xi ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω

+ εtrU∗(s; 0) [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω. (6.9)

Integrating over time, we find

trU∗(s; 0)[xi , [x j , U∗(t; s)eip·x+q·ε∇U(t; s)]]U(s; 0)ω
= trU∗(t; 0)[xi , [x j , eip·x+q·ε∇]]U(t; 0)ω

+ i
∫ t

s
dτ trU∗(τ ; 0)[ε∇x j , [xi ,U∗(t; τ)eip·x+q·ε∇U(t; τ)]]U(τ ; 0)ω

+ i
∫ t

s
dτ trU∗(τ ; 0)[ε∇xi , [x j ,U∗(t; τ)eip·x+q·ε∇U(t; τ)]]U(τ ; 0)ω.

Since

[xi , [x j , eip·x+q·ε∇]] = ε2qiq j e
ip·x+q·ε∇

we find

|trU∗(s; 0)[xi , [x j ,U∗(t; s)eip·x+q·ε∇U(t; s)]]U(s; 0)ω|
� ε2|q|2 +

∫ t

s
dτ sup

ω,i, j
|tr [ε∇x j , [xi ,U∗(t; τ)eip·x+q·ε∇U(t; τ)]]ω|

for all trace class ω with tr |ω| � 1. From (6.8), we obtain

sup
ω,i, j

|tr [xi , [x j ,U∗(t; s)eip·x+q·ε∇U(t; s)]]ω|

� ε2|q|2 +
∫ t

s
dτ sup

ω,i, j
|tr [ε∇x j , [xi ,U∗(t; τ)eip·x+q·ε∇U(t; τ)]]ω|,

where the suprema are taken over all trace class ω on L2(R3) with tr |ω| � 1.
Next, we look for an estimate for

sup
ω,i, j

|tr [ε∇x j , [xi ,U∗(t; s)eip·x+q·ε∇U(t; s)]]ω|

= sup
ω,i, j

|trU∗(s; 0)[ε∇x j , [xi ,U∗(t; s)eip·x+q·ε∇U(t; s)]]U(s; 0)ω|.
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To this end, we compute the derivative

iε∂s trU∗(s; 0) [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω
= −trU∗(s; 0) [h(s), [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]]U(s; 0)ω

+ trU∗(s; 0) [ε∇xi , [x j , [h(s),U∗(t; s) eip·x+q·ε∇ U(t; s) ]]]U(s; 0)ω
= trU∗(s; 0) [[ε∇xi , h(s)], [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω

+ trU∗(s; 0) [ε∇xi , [[x j , h(s)],U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω.

With

[ε∇xi , h(s)] = ε∇xi (V ∗ ρs)(x) = ε

∫
dkki V̂ (k)ρ̂s(k)e

ik·x , (6.10)

we obtain

iε∂s trU∗(s; 0) [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω
= ε

∫
dkki V̂ (k)ρ̂s(k)trU∗(s; 0) [eik·x , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω

+εtrU∗(s; 0) [ε∇xi , [ε∇xi ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω.

Using the identity

[eik·x , A] = eik·x A − Aeik·x

=
∫ 1

0
dλ

d

dλ
eiλk·x Aei(1−λ)k·x

=
∫ 1

0
dλeiλk·x [ik · x, A]ei(1−λ)k·x (6.11)

we conclude that

iε∂s trU∗(s; 0) [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω

= ε

∫ 1

0
dλ
∫

dk
j∑

l=1

ki k�V̂ (k)ρ̂s(k)

trU∗(s; 0) eiλk·x [x�, [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]] ei(1−λ)k·xU(s; 0)ω
+ εtrU∗(s; 0) [ε∇xi , [ε∇xi ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω

and hence, after integrating over time,

|trU∗(s; 0) [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0)ω|
� |trU∗(t; 0) [ε∇xi , [x j , eip·x+q·ε∇]]U(t; 0)ω|

+
∫ t

s
dτ

∫ 1

0
dλ
∫

dk|k|2|V̂ (k)|
×|trU∗(τ ; 0) eiλk·x [x�, [x j ,U∗(t; τ) eip·x+q·ε∇ U(t; τ) ]] ei(1−λ)k·xU(τ ; 0)ω|
+
∫ t

s
dτ |trU∗(τ ; 0) [ε∇xi , [ε∇x j ,U∗(t; τ) eip·x+q·ε∇ U(t; τ) ]]U(τ ; 0)ω|.
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Since

[ε∇xi , [x j , eip·x+qε·∇]] = −iε2 piq j e
ip·x+qε·∇ ,

this implies that

sup
ω,i, j

|tr [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]ω|

� ε2|p||q| + C
∫ t

s
dτ sup

ω,i, j
|tr [xi , [x j ,U∗(t; τ) eip·x+q·ε∇ U(t; τ) ]]ω|

+
∫ t

s
dτ sup

ω,i, j
|tr [ε∇xi , [ε∇x j ,U∗(t; τ) eip·x+q·ε∇ U(t; τ) ]]ω|. (6.12)

Finally, we need an estimate for

sup
ω,i, j

|tr [ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]] ω|

= sup
ω,i, j

|trU∗(s, 0)[ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0) ω|.

Hence, we compute the derivative

iε∂s trU∗(s; 0)[ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0) ω

= −trU∗(s; 0)[h(s), [ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]]U(s; 0) ω

+ trU∗(s; 0)[ε∇xi , [ε∇x j , [h(s),U∗(t; s) eip·x+q·ε∇ U(t; s) ]]]U(s; 0) ω

= trU∗(s; 0)[[ε∇xi , h(s)], [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s)]]U(s; 0)ω
+ trU∗(s; 0)[ε∇xi , [[ε∇x j , h(s)],U∗(t; s) eip·x+q·ε∇ U(t; s)]]U(s; 0)ω.

From (6.10), we find

iε∂s trU∗(s; 0)[ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0) ω

= ε

∫
dkki V̂ (k)ρ̂s(k) trU∗(s; 0)[eik·x , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s)]]U(s; 0)ω

+ε

∫
dkk j V̂ (k)ρ̂s(k) trU∗(s; 0)[ε∇xi , [eik·x ,U∗(t; s)eip·x+q·ε∇ U(t; s)]]U(s; 0)ω.

(6.13)

In the first term on the right hand side of the last equation we use (6.11). In the
second term, on the other hand, we notice that

trU∗(s; 0)[ε∇xi , [eik·x ,U∗(t; s) eip·x+q·ε∇ U(t; s)]]U(s; 0)ω
= trU∗(s; 0)[eik·x , [ε∇xi ,U∗(t; s) eip·x+q·ε∇ U(t; s)]]U(s; 0)ω

+ trU∗(s; 0)[[ε∇xi , e
ik·x ],U∗(t; s) eip·x+q·ε∇ U(t; s)]U(s; 0)ω.
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Again, the first term on the right hand side of the last equation can be handled with
(6.11). As for the second term, we use that [ε∇xi , e

ik·x ] = iεki eik·x . Integrating
(6.13) over time, we find

|trU∗(s; 0)[ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0) ω|
� |trU∗(t; 0)[ε∇xi , [ε∇x j , e

ip·x+q·ε∇ ]]U(t; 0) ω|
+C

∫ t

s
dτ sup

ω,i, j
|tr [ε∇xi , [x j ,U∗(t; τ) eip·x+q·ε∇ U(t; τ)]]ω|

+Cε

[∫
dk |V̂ (k)||ρ̂s(k)||k|3dk

]

×
[∫ t

s
dτ sup

ω,k

1

|k| |tr [e
ik·x ,U∗(t; τ) eip·x+q·ε∇ U(t; τ)]ω|

]
.

To bound the integral involving the potential in the last term on the right hand side
of the last equation, we use (2.18) with ‖ρ̂s‖∞ � 1. From

[ε∇xi , [ε∇x j , e
ip·x+q·ε∇ ] = −ε2 pi p j e

ip·x+q·ε∇

and from Lemma 4.2, we obtain

|trU∗(s; 0)[ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]]U(s; 0) ω|
� Cε2 + C

∫ t

s
dτ sup

ω,i, j
|tr [ε∇xi , [x j ,U∗(t; τ)eip·x+q·ε∇ U(t; τ)]]ω|. (6.14)

Combining (6.9) and (6.12) with the last equation and applying Gronwall lemma,
we deduce that

sup
i, j,ω

|tr [xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]] ω| � Cε2(|p| + |q|)2eC|t−s|

sup
i, j,ω

|tr [ε∇xi , [x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]] ω| � Cε2(|p| + |q|)2eC|t−s|

sup
i, j,ω

|tr [ε∇xi , [ε∇x j ,U∗(t; s) eip·x+q·ε∇ U(t; s) ]] ω| � Cε2(|p| + |q|)2eC|t−s|.

��
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Appendix A. Well-Posedness of the Vlasov Equation for Signed Measures

The goal of this appendix is to show that the arguments of [8] can be extended
to prove the well-posedness of the Vlasov equation (1.10) for initial data given by
signed measures.

Following the notation of [8], let M denote the space of all finite signed mea-
sures on the Borel σ -algebra B(R6). For an open interval � ⊂ R, we denote by
M� the set of all families M = {μt }t∈�, with μt ∈ M for all t ∈ � such that, for
all bounded intervals �′ ⊂ �, there exists C�′ > 0 with supt∈�′ ‖μt‖ < C�′ , and
such that the function

(∇V ∗ μt ) (x) =
∫

∇V (x − x ′) dμt (x
′, v′)

is continuous in t ∈ �, for all x ∈ R
3 (V denotes the interaction potential entering

the Vlasov equation (1.10)). For C > 0, we also denote by M�(κ) the set of
families M = {μt }t∈� with ‖μt‖ = supB∈B(R6) |μ(B)| = κ for all t ∈ �.

Defining A, B : R3 × R
3 → R

3 × R
3 by A(x, v) = (2v, 0) and B(x, v) =

(0,∇V (x)) and, for every μ ∈ M,

Bμ(x, v) =
∫

B(x − x ′, v − v′)dμ(x ′, v′)

we say that a familyM = {μt }t∈� ∈ M� is a weak solution of the Vlasov equation
on the interval � if, for every test function h ∈ D(R6) in the Schwarz space,

μt (h) =
∫

h(x, v)dμt (x, v)

is differentiable in t ∈ � and

d

dt
μt (h) = μt ((A + Bμt )∇h).

It is easy to check that, if the weak solutionμt has a densityWt (x, v), differentiable
in t , then Wt is a solution of the standard Vlasov equation (1.10).

Proposition A.1. Let V ∈ C2
b (R

3). For any finite signed measure μ0 ∈ M, and
every open interval � ⊂ R with 0 ∈ �, there exists a unique weak solution
M = {μt }t∈� of the Vlasov equation on � with μt=0 = μ0.

Proof. We follow the strategy of [8], adapting it to the case of signed μ0. We will
use the variable z = (x, v) ∈ R

6. For M = {μt }t∈� ∈ M�, we define

GM (t, z) = A(z) + Bμt (z) (A.1)

and we consider the solution of Newton’s equation

d

dt
z(t) = GM (t, z(t)). (A.2)

We denote by zM (t, u) the solution of (A.2), with initial data zM (0, u) = u.
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For a fixed μ0 ∈ M, we define the map T : M� → M� by

(T M)t (E) = μ0({u ∈ R
6 : zM (t, u) ∈ E})

for all E ∈ B(R6). As in [8], it is easy to check that M ∈ M� is a weak solution
of the Vlasov equation with initial data μ0 if and only if M is a fixed point of T ,
that is if T M = M .

Hence, to prove Proposition A.1, it is enough to show that T is a contraction
on M�. In fact, since clearly T M ∈ M�(‖μ0‖), for all M ∈ M�, it is enough
to show that the restriction of T to M�(‖μ0‖) is a contraction, with respect to an
appropriate metric, that we are now going to define.

For two signed measures μ,μ′ ∈ M, we define

d̃(μ,μ′) = dK R(μ+, μ′+) + dK R(μ−, μ′−) (A.3)

where μ = μ+ − μ− is the Jordan decomposition of μ in its positive and negative
parts and where dK R is the Kantorovich–Rubinshtein metric, defined by

dK R(ν, ν′) = inf
m∈N (ν,ν′)

∫
ρ(z1, z2)dm(z1, z2)

where ρ(z1, z2) = min(|z1 − z2|, 1) and N (ν, ν′) is the space of all positive mea-
sures m on B(R12) such that m(E × R

6) = ν(E) and m(R6 × E) = ν′(E) for all
E ∈ B(R6). Furthermore, for M = {μt }t∈�, M ′ = {μ′

t }t∈� ∈ M�, we define

d(M, M ′) =
∫

�

d̃(μt , μ
′
t ).

It is easy to check that (A.3) defines a metric on M(�).
We claim that, for |�| small enough,

d(T M, T M ′) � 1

2
d(M, M ′) (A.4)

for all M, M ′ ∈ M�(‖μ0‖). To prove (A.4) we observe that, for all μ,μ′ ∈ M,

Bμ(z) − Bμ′(z) =
∫

B(z − w)dμ(w) −
∫

B(z − w)dμ′(w)

�
∫

(B(z − w1) − B(z − w2))dm+(w1, w2)

−
∫

(B(z − w1) − B(z − w2))dm−(w1, w2)

for anym+ ∈ N (μ+, μ′+),m− ∈ N (μ−, μ′−). Recalling that B(x, v)=(0,∇V (x))
and the assumption V ∈ C2

b (R
3), we find

|Bμ(z) − Bμ′(z)| �
∫

|B(z − w1) − B(z − w2)|dm+(w1, w2)

+
∫

|B(z − w1) − B(z − w2)|dm−(w1, w2)

� C
∫

ρ(w1, w2)dm+(w1, w2) +
∫

ρ(w1, w2)dm−(w1, w2).
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Since the inequality holds for every m+ ∈ N (μ+, μ′+) and m− ∈ N (μ−, μ′−), we
conclude that

|Bμ(z) − Bμ′(z)| � Cd̃(μ,μ′) (A.5)

for all μ,μ′ ∈ M and all z ∈ R
6.

Furthermore, recalling the definition (A.1), we observe that there is a constant
C , depending on ‖μ0‖, such that

|GM (z) − GM (z′)| � C |z − z′| (A.6)

for all z, z′ ∈ R
6 and for all M ∈ M�(‖μ0‖).

For M, M ′ ∈ M�(‖μ0‖) and u ∈ R
6, we define the quantity

α(M, M ′, u) = sup
t∈�

|zM (t, u) − zM ′(t, u)|.

With (A.6), we obtain

|zM (t, u) − zM ′(t, u)| �
∫ t

0
|GM (s, zM (s, u) − GM ′(s, zM ′(s, u))|ds

�
∫

�

|GM (s, zM (s, u) − GM (s, zM ′(s, u))|ds

+
∫

�

GM (s, zM ′(s, u) − GM ′(s, zM ′(s, u))|ds

for all t ∈ �. Combining (A.5) and (A.6), we find

|zM (t, u) − zM ′(t, u)| � C
∫

�

|zM (s, u) − zM ′(s, u)|ds + Cd(M, M ′).

Taking the supremum over t , we conclude that, for sufficiently small |�|,

α(M, M ′, u) � C

1 − C |�|d(M, M ′).

We are now ready to bound d(T M, T M ′). For M, M ′ ∈ M�(‖μ0‖), we notice
that

(T Mt )±(E) = μ0±
(
{u ∈ R

6 : zM (t, u) ∈ E}
)

for every E ∈ B(R6). Now, let

mt,±(F) = μ0±({u ∈ R
6 : (zM (t, u), zM ′(t, u)) ∈ F})

for every F ∈ B(R12). Then we have mt,± ∈ N ((T Mt )±, (T M ′
t )±) and

∫
ρ(z1, z2)dmt,±(z1, z2) =

∫
ρ(zM (t, u), zM ′(t, u))dμ0±(u)

�
∫

α(M, M ′, u)dμ0±(u)

�
C‖μ0±‖
1 − C |�|d(M, M ′).
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This implies that

dK R((T Mt )±, (T M ′
t )±) �

C‖μ0±‖
1 − C |�|d(M, M ′)

and therefore that

d(T M, T M ′) � C |�|‖μ0‖
1 − C |�| d(M, M ′).

Hence, for |�| sufficiently small, we obtain (A.4) for all M, M ′ ∈ M�(‖μ0‖).
This proves that T defines a contraction on M�(‖μ0‖) and implies the existence
and the uniqueness of a weak solution of the Vlasov equation, for |�| sufficiently
small. The argument can then be iterated to obtain existence and uniqueness for all
times. ��

Appendix B. Regularity Estimates for Solutions of the Vlasov Equation

In the next proposition we estimate the weighted Sobolev norms ‖Wt‖Hk
2
of the

solution at time t of the Vlasov equation in terms of their value at t = 0.

Proposition B.1. Assume that
∫

dp |V̂ (p)|(1 + |p|2) < ∞. (B.1)

Let Wt be the solution of the Vlasov equation (1.10) with initial data W0. For
k = 1, 2, 3, 4, 5, there exists a constant C > 0, which depends on ‖W0‖H2

4
but not

on the higher Sobolev norms, such that

‖Wt‖Hk
4

� CeC|t |‖W0‖Hk
4
. (B.2)

Proof. Weuse a standard argument.We denote by�t (x, v) := (Xt (x, v), Vt (x, v))

the solution of Newton’s equations

Ẋt (x, v) = 2Vt (x, v)

V̇t (x, v) = −∇ (V ∗ ρ̃t ) (Xt (x, v))

with initial data X0(x, v) = x and V0(x, v) = v. Here ρ̃t (x) = ∫
dv Wt (x, v). We

can rewrite Newton’s equation in integral form

Xt (x, v) = x + 2
∫ t

0
ds Vs(x, v)

Vt (x, v) = v −
∫ t

0
∇(V ∗ ρs)(Xs(x, v)).

(B.3)

In the following, it will be convenient to introduce the following shorthand notation:

‖X ( j)
t ‖∞ := max|α|= j

∥∥∇αXt (x, v)
∥∥∞

‖V ( j)
t ‖∞ := max|α|= j

∥∥∇αVt (x, v)
∥∥∞

‖�( j)
t ‖∞ := ‖X ( j)

t ‖∞ + ‖V ( j)
t ‖∞.

(B.4)
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In general, to control ‖Wt‖Hk
s
, it is sufficient to control ‖�( j)

t ‖∞ for j � k. In fact,
it is not difficult to see that:

‖Wt‖2Hk
4

=
∑

|α|=k

∫
dxdv (1 + x2 + v2)4

∣∣∇αW0
(
X−t (x, v), V−t (x, v)

)∣∣2

� C
∑

|β|�k

∑

α1,..., α|β|
α1+...+α|β|=k, |αi |�1

∫
dxdv (1 + x2 + v2)4

×∣∣(∇βW0
)(
X−t (x, v), V−t (x, v)

)∣∣2

×∣∣∇α1
(
X−t (x, v), V−t (x, v)

)∣∣2 · · · ∣∣∇α|β|(X−t (x, v), V−t (x, v)
)∣∣2

� C
k∑

n=1

∑

m1,...,mn
m1+...+mn=k,mi�1

‖W0‖2Hn
4
‖�(m1)−t ‖2∞ · · · ‖�(mn)−t ‖2∞; (B.5)

to get the last step we performed a change of variables and we used that, by Gron-
wall’s lemma together with (B.3) and ‖∇V ‖∞ < ∞:

1 + X2
t (x, v) + V 2

t (x, v) � CeC|t |(1 + x2 + v2). (B.6)

We start by estimating ‖Wt‖H1
4
. To this end, we need to control ‖�(1)

t ‖∞. For any
multi-index α with |α| = 1, we obtain from (B.3) that

‖∇αXt‖∞ � 1 + 2
∫ t

0
ds ‖∇αVs‖∞

‖∇αVt‖∞ � 1 +
∫ t

0
ds ‖∇2(V ∗ ρ̃s) ◦ Xs · ∇αXs‖∞

� 1 + C
∫ t

0
ds ‖∇αXs‖∞

where we used that ‖∇2(V ∗ ρ̃s)‖∞ � ‖∇2V ‖∞‖ρ̃s‖1, and ‖ρ̃s‖1�‖W0‖1 �
C‖W0‖H0

4
(see (4.30)).Gronwall’s lemma, togetherwith the assumption‖∇2V ‖∞ <

∞, implies that

‖�(1)
t ‖∞ � CeC|t | (B.7)

where the constant C depends on ‖W0‖H0
4
, but not on the higher Sobolev norms.

Thanks to (B.5), the bound (B.7) immediately implies

‖Wt‖2H1
4

� CeC|t |‖W0‖2H1
4

(B.8)

where the constant C depends on ‖W0‖H0
4
, but not on the higher Sobolev norms.

This concludes the proof of (B.2) with k = 1. Next, let k = 2. As before, we start
by considering the derivatives ∇αXt ,∇αVt , now for |α| = 2. We have:

‖∇α(∇(V ∗ ρ̃s) ◦ Xs)‖∞
� ‖∇3(V ∗ ρ̃s)‖∞‖X (1)

s ‖2∞ + ‖∇2(V ∗ ρ̃s)‖∞‖X (2)
s ‖∞

� CeC|s|‖W0‖H1
4

+ ‖∇2(V ∗ ρ̃s)‖∞‖X (2)
s ‖∞ (B.9)
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where in the last stepweused‖∇3(V∗ρ̃s)‖∞ � ‖∇2V ‖∞‖∇ρ̃s‖1�CeC|s|‖W0‖H1
4
,

and we estimated ‖∇ρ̃s‖1 � C‖Ws‖H1
4

� CeC|s|‖W0‖H1
4
. This, together with the

estimate (B.7), implies:

‖X (2)
t ‖∞ � 2

∫ t

0
ds ‖V (2)

s ‖∞

‖V (2)
t ‖∞ � C

∫ t

0
ds‖X (2)

s ‖∞ + CeC|t |‖W0‖H1
4

thus, by Gronwall’s lemma:

‖�(2)
t ‖∞ � CeC|t |‖W0‖H1

4
. (B.10)

Therefore, proceeding as in (B.8), we get

‖Wt‖H2
4

� CeC|t |‖W0‖H2
4
, (B.11)

where the constant C > 0 is allowed to depend on ‖W0‖H1
4
, but not on the higher

Sobolev norms. This concludes the proof of (B.2) for k = 2. Consider now k =
3, 4, 5. We will use that, for |α| = k:

‖∇α∇(V ∗ ρ̃s)‖∞ � C‖∇2V ‖∞
∑

|β|=k−1

‖∇βρ̃s‖1

� C‖∇2V ‖∞‖Ws‖Hk−1
4

(B.12)

and

‖∇α(∇(V ∗ ρ̃s) ◦ Xs)‖∞ � C
∑

|β|�|α|

∑

α1,...,α|β|
α1+···+α|β|=k

∥∥∇β∇(V ∗ ρ̃s)
∥∥∞

×‖X (|α1|)
s ‖∞ · · · ‖X (|α|β||)

s ‖∞ (B.13)

for a k-dependent constant C > 0. Let k = 3. We have, for |α| = 3:

‖∇α(∇(V ∗ ρ̃s) ◦ Xs)‖∞
� C[‖∇4(V ∗ ρ̃s)‖∞‖X (1)

s ‖3∞ + ‖∇3(V ∗ ρ̃s)‖∞‖X (2)
s ‖∞‖X (1)

s ‖∞
+‖∇2(V ∗ ρ̃s)‖∞‖X (3)

s ‖∞]
� CeC|s|‖W0‖H2

4
+ C‖X (3)

s ‖∞, (B.14)

where the constant C > 0 is allowed to depend on ‖W0‖H1
4
, but not on the higher

Sobolev norms. The last step follows from (B.12) and from the previous estimates
on ‖Ws‖H j

4
, ‖X ( j)

s ‖∞, j = 1, 2. Plugging this bound in (B.3), we find

‖�(3)
t ‖∞ � CeC|t |‖W0‖H2

4
(B.15)
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where the constant C > 0 is allowed to depend on ‖W0‖H1
4
, but not on the higher

Sobolev norms. Thus, proceeding as in (B.8):

‖Wt‖H3
4

� CeC|t |‖W0‖H3
4

(B.16)

where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. This concludes the proof of (B.2) for k = 3. Let k = 4. Similarly
to (B.14), using (B.12) together with the estimates for ‖Ws‖H j

4
, j = 1, 2, 3, we

find, for |α| = 4:

‖∇α(∇(V ∗ ρ̃s) ◦ Xs)‖∞
� C

[
‖∇5(V ∗ ρ̃s)‖∞‖X (1)

s ‖4∞ + ‖∇4(V ∗ ρ̃s)‖∞‖X (2)
s ‖∞‖X (1)

s ‖2∞
+‖∇3(V ∗ ρ̃s)‖∞(‖X (3)

s ‖∞‖X (1)
s ‖∞ + ‖X (2)

s ‖2∞)

+‖∇2(V ∗ ρ̃s)‖∞‖X (4)
s ‖∞

]

� CeC|s|‖W0‖H3
4

+ C‖X (4)
s ‖∞

where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. This implies

‖�(4)
t ‖∞ � CeC|t |‖W0‖H3

4
(B.17)

where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. Then, we claim that

‖Wt‖H4
4

� CeC|t |‖W0‖H4
4
, (B.18)

where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. In fact, from (B.5) we get and from the previous estimates on
‖�( j)

t ‖∞, j � 4, we have:

‖Wt‖2H4
4

� CeC|t |
[
‖W0‖2H1

4
‖�(4)

0 ‖2∞ +
4∑

k=2

‖W0‖2Hk
4
‖W0‖2kH2

4

]
. (B.19)

This, together with (B.17), implies (B.18) and concludes the proof of (B.2) for
k = 4. The case k = 5 can be studied in a similar way. Let |α| = 5. Using once
more (B.12), (B.13), and proceeding as for the previous cases, we get:

‖∇α(∇(V ∗ ρ̃s) ◦ Xs)‖∞ � CeC|t |‖W0‖H4
4

+ C‖X (5)
s ‖∞, (B.20)

where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. By Gronwall’s lemma, we get:

‖�(5)
t ‖∞ � CeC|t |‖W0‖H4

4
, (B.21)
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where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. Then, we claim that:

‖Wt‖H5
4

� CeC|t |‖W0‖H5
4
, (B.22)

where the constant C > 0 is allowed to depend on ‖W0‖H2
4
, but not on the higher

Sobolev norms. To see this, we use (B.5) again. We get:

‖Wt‖2H5
4

� CeC|t |
[
‖W0‖2H1

4
‖�(5)

0 ‖2
H4
4

+‖W0‖2H2
4
(‖�(4)

0 ‖2∞‖�(1)
0 ‖2 + ‖�(3)

0 ‖2∞‖�(2)
0 ‖2∞)

+
5∑

k=3

‖W0‖2Hk
4
‖W0‖2kH2

4

]
, (B.23)

which, together with (B.15), (B.17), (B.21), implies (B.22). This concludes the
proof of (B.2) for k = 5, and of Proposition B.1. ��

Appendix C. Propagation of Commutator Bounds Along the Hartree
Dynamics

Bounds for norms of commutators of the form [x, ωN ,t ] and [ε∇, ωN ,t ] play an
important role in our analysis. In this section, we show how they can be propagated
along the Hartree evolution. Similar bounds have been proven in [7].

Proposition C.1. Assume

∫
|V̂ (p)|(1 + |p|2)dp < ∞. (C.1)

Let ωN ,t be the solution of the nonlinear Hartree equation

iε∂tωN ,t = [−ε2� + (V ∗ ρt ), ωN ,t ]

with initial data ωN ,t=0 = ωN . Then there exists a constant C > 0 such that

‖[x, ωN ,t ]‖HS � CeC|t | [‖[x, ωN ]‖HS + ‖[ε∇, ωN ]‖HS]
‖[ε∇, ωN ,t ]‖HS � CeC|t | [‖[x, ωN ]‖HS + ‖[ε∇, ωN ]‖HS] .

Moreover,

‖[x, ωN ,t ]‖tr � CeC|t | [‖[x, ωN ]‖tr + ‖[ε∇, ωN ]‖tr]
‖[ε∇, ωN ,t ]‖tr � CeC|t | [‖[x, ωN ]‖tr + ‖[ε∇, ωN ]‖tr] .
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Proof. Let hH (t) = −ε2� + (V ∗ ρt )(x) and U(t; s) be the unitary evolution
generated by hH (t), as defined in (3.1). We compute

iε∂tU∗(t; 0)[x, ωN ,t ]U(t; 0) = −U∗(t; 0)[hH (t), [x, ωN ,t ]]U(t; 0)
+U∗(t; 0)[x, [hH (t), ωN ,t ]]U(t; 0)

= U∗(t; 0)[[h(t), x], ωN ,t ]U(t; 0)
= ε U∗(t; 0)[ε∇, ωN ,t ]U(t; 0).

Integrating over time, we find

[x, ωN ,t ] = U(t; 0)[x, ωN ]U∗(t; 0) + i
∫ t

0
ds U(t; s)[ε∇, ωN ,s]U∗(t; s)

and thus

‖[x, ωN ,t ]‖HS � ‖[x, ωN ]‖HS +
∫ t

0
ds ‖[ε∇, ωN ,s]‖HS. (C.2)

On the other hand,

iε∂tU∗(t; 0)[ε∇, ωN ,t ]U(t; 0)
= −U∗(t; 0)[hH (t), [ε∇, ωN ,t ]]U(t; 0)

+U∗(t; 0)[ε∇, [hH (t), ωN ,t ]]U(t; 0)
= U∗(t; 0)[[ε∇, hH (t)], ωN ,t ]U(t; 0)
= ε U∗(t; 0)[∇(V ∗ ρt ), ωN ,t ]U(t; 0)
= ε

∫
dp p V̂ (p) ρ̂t (p)U∗(t; 0)[eip·x , ωN ,t ]U(t; 0).

Using the identity

[eip·x , ωN ,t ] =
∫ 1

0
dλ eiλp·x [i p · x, ωN ,t ]ei(1−λ)p·x

we obtain, with (C.1),

‖[ε∇, ωN ,t ]‖HS � ‖[ε∇, ωN ]‖HS +
∫

dp|V̂ (p)||p|2|ρ̂t (p)|
∫ t

0
ds‖[x, ωN ,s]‖HS

� ‖[ε∇, ωN ]‖HS + C
∫ t

0
ds ‖[x, ωN ,s]‖HS. (C.3)

Combining the last equation with (C.2) and applying Gronwall’s lemma, we find

[‖[x, ωN ,t ]‖HS + ‖[ε∇, ωN ,t ]‖HS
]

� CeC|t | [‖[x, ωN ]‖HS + ‖[ε∇, ωN ]‖HS]
as claimed. In the same way, one can also prove the estimates for the trace norms
of the commutators. ��
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