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Abstract

We consider the evolution of quasi-free states describing N fermions in the
mean field limit, as governed by the nonlinear Hartree equation. In the limit of
large N, we study the convergence towards the classical Vlasov equation. For a
class of regular interaction potentials, we establish precise bounds on the rate of
convergence.

1. Introduction and Main Results

This work is motivated by the study of the time-evolution of systems of N fermi-
ons in the mean field regime, characterized by a large number of weak collisions.
The many body evolution of N fermions is generated by the Hamilton operator

N N
Hy =Z—Ax_, +AZV(x,» ) (1.1)
j=1

i<j
acting on

L2R¥™N) = (¢ € L*®RN) 1 (s oo os Xan) = 0¥ (X1, .0, XN)
forall w € Sy},

the subspace of permutation antisymmetric functions in LZ(R3V) (o, denotes here
the sign of the permutation 7). Due to the antisymmetry, the kinetic energy in
(1.1) is typically (for data occupying a volume of order one) of the order N>/3 (for
bosons, particles described by permutation symmetric wave functions, it is much
smaller, of order N). Hence, to obtain a non-trivial competition between kinetic
and potential energy, we have to choose A = N~!/3. Moreover, the large kinetic
energy of the particles implies that we can only follow their time evolution for short
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times, of the order N~!/3 (the kinetic energy per particle is proportional to N2/3;

the typical velocity of the particles is therefore of the order N'/3). After rescaling
time, the evolution of the N fermions is governed by the many body Schrodinger
equation

N N

. 1

iINVoyn, =D —Ay, + WZV()Q —xj) | N (1.2)
j=l

i<j

for Yy, € L2(R*N). It is convenient to rewrite (1.2) as follows. We introduce the
small parameter

=N/

and we multiply (1.2) by 2. We obtain

N N
1
ied YN, = | D —ezAXj+ﬁ§ Vxi = xj) [ Y (1.3)
j=1 i<j

Hence, the mean field scaling for fermionic systems (characterized by the N~!
factor in front of the potential energy) is naturally linked with a semiclassical
scaling, where ¢ = N~!/3 plays the role of Planck’s constant. Notice that for
particles in d dimensions, similar arguments show that we would have to take
e = N~'/4; in fact, our analysis applies to general dimensions (with appropriate
changes on the regularity assumptions); to simplify our presentation we will only
discuss the case d = 3.

From the point of view of physics, we are interested in understanding the evolu-
tion of the fermionic system resulting from a change of the external fields. In other
words, we are interested in the solution of (1.3) for initial data describing equilib-
rium states of trapped systems. It is expected (and in certain cases, it is even known)
that equilibrium states in the mean-field regime are approximately quasi-free.

At zero temperature, the relevant quasi-free states are Slater determinants, hav-
ing the form

1
Ustater (X1, - .., XN) = i det (fj(xi)1<i j<n

where { f j}i‘vzl is an orthonormal system in L2(R3). Slater determinants are com-
pletely characterized by their one-particle reduced density wy, defined as the non-
negative trace class operator over L2(R3) with the integral kernel

oy (x;y) = N/dxz.-.dXN Vslater (X, X2, « - ., XN)VSlater (¥, X2, . . ., XN).

A simple computation shows that

N
oy = D 1) fil.

J=1
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that is wy is the orthogonal projection onto the N-dimensional space spanned
by the N orbitals fi, ..., fy defining V¥giaer (We used here the notation | f)( f| to
indicate the orthogonal projection onto f € L?(R?)). In the language of probability
theory, the one-particle reduced density corresponds to the one-particle marginal
distribution, obtained by integrating out the degrees of freedom of the other (N — 1)
particles. Slater determinants have the property that higher order marginals can all
be expressed in terms of wy via the Wick rule (this is, in fact, the defining property
of quasi-free states).

The many-body evolution of a Slater determinant, as determined by (1.3), is
not a Slater determinant. Still, because of the mean-field form of the interaction,
we can expect it to remain close, in an appropriate sense, to a Slater determinant.
Under this assumption, it is easy to find a self-consistent equation for the dynamics
of the Slater determinant. We obtain the nonlinear Hartree—Fock equation

iedon; =[—2A+ (Vxp) — Xy, oy 4] (1.4)

Here p;(x) = N~ lwy (x; x) is the normalized density of particles at x € R3, the
exchange operator X; has the integral kernel X, (x; y) = N-'Wx— Y)on (x;y),
and, as before, ¢ = N~ 1/3, 1t is easy to check that, if wy —¢ is an orthogonal
projection with rank N, then the same is true for the solution wy ;; in other words,
the Hartree—Fock evolution of a Slater determinant is again a Slater determinant.

In [7], it was shown that indeed, for sufficiently regular interaction potentials,
the many body Schrédinger evolution of initial Slater determinants can be approx-
imated by the Hartree—Fock evolution, in the sense that the one-particle reduced
density associated with the solution ¥y ; of (1.3) remains close (in the Hilbert—
Schmidt and in the trace norm) to the solution wy ; of the Hartree—Fock equation
(1.4). Previous results in this direction have been obtained in [9]; convergence
towards the Hartree—Fock dynamics in other regimes, which do not involve a semi-
classical limit, has been also established in [4,5,10,18].

At positive temperature, on the other hand, relevant quasi-free states approxi-
mating equilibria of trapped systems are mixed states, described by a one-particle
reduced density wy with troy = N and 0 < wy < 1 (it follows from the
Shale—Stinespring condition, see e. g. [20, Theorem 9.5], that every such wy is the
one-particle reduced density of a quasi-free state with N particles; Slater determi-
nants form a special case, with wy having only the eigenvalues 0 and 1). In the
simple case of N fermions with one-particle Hamiltonian & = —&2A + Vg and
no interaction, equilibrium at temperature 7 > 0 is described by the Gibbs state
with one-particle reduced density

1

= 1.5
“N 1+ e%(—"?zA'i‘Vext—lU (15

where the chemical potential © € R has to be chosen so that troy = N. If we
turn on a mean-field interaction, it is expected that equilibrium states continue to
be approximated by quasi-free states with one-particle reduced density of the form
(1.5), with the external potential Vey; appropriately modified to take into account,
in a self-consistent manner, the interaction among the particles (for results in this
direction see, for example, [16, 19]).
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In suitable scaling regimes, the state of the system at positive temperature is ex-
pected to be well approximated by an appropriate mixed quasi-free state. Similarly
as in the case of Slater determinants, mixed quasi-free states are completely charac-
terized by their one-particle reduced density. All higher order correlation functions
(that is all higher order marginals) can be expressed in terms of wy.! For the evo-
Iution of mixed quasi-free states, we find the same self-consistent equation (1.4)
derived for Slater determinants. We observe here that the properties trwy = N and
0 < wy < 1, characterizing the reduced one-particle density of mixed quasi-free
states, are preserved by the Hartree—Fock equation (1.4). In [6], it was shown that,
for sufficiently regular potential, the many-body evolution of a mixed quasi-free
state can be approximated by the self-consistent Hartree—Fock equation (1.4) (also
here, the convergence has been established through bounds on the distance between
reduced densities).

To summarize, it follows from the analysis of [6,7] that the many-body evolution
of fermionic quasi-free states can be approximated by the Hartree—Fock equation
(1.4). This holds true for Slater determinants (in this case wy ; is an orthogonal
projection with rank N) as well as for general mixed quasi-free states (satisfying
only troy ; = N and the bounds 0 < wy; < 1).

In the mean field regime, the energy contribution associated with the exchange
term can be estimated as follows, for bounded potentials V':

! 14
\ﬁ/dxdy Vi =yl P S = lonligs <€, (1.6)

where the full energy is of order N (here we used that the Hilbert—Schmidt norm?
of wy is bounded by N'/2). Because of the smallness of the exchange term, instead
of considering the Hartree—Fock equation (1.4), we will drop the exchange term
and study the fermionic Hartree dynamics, governed by the nonlinear equation

iedion, =[—e"A+ (V*p), oy, (1.7)

with p;(x) = N —le’ (x; x) (a proof of the fact that the exchange term does not
affect the dynamics can be found in Appendix A of [7]).

The Hartree equation (1.7) still depends on N (recall the choice ¢ = N -1/3
and the normalization trwy = N). It is therefore natural to ask what happens to it
in the limit N — oo. To answer this question, we define the Wigner transform of
the one-particle reduced density wy ; by setting

3 .
Wyi(x,v) = (i) /G)N,t (X + E_y; X — 8_y> e "Vdy. (1.8)
27 2 2

I'n general quasi-free states are characterized by two operators on LI(R3?),a one-particle
reduced density wpy and a pairing density «. Here we restrict our attention to states with
a = 0; this is expected to be a very good approximation for equilibrium states of fermions
in the mean field regime considered here.

2 The Hilbert-Schmidt norm of a compact operator A is defined as ||A ||%IS =trA*A.
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Hence, Wy ; is a function of position and velocity, defined on the phase-space
R3 x R3. It is normalized so that

/WN,t(X, v)dxdv = Ytroy, = 1.

The Wigner transform can be inverted, noticing that

N (X3 y) = N/dv WN,t(m, v)e"”'x?y. (1.9)

Equation (1.9) is known as the Weyl quantization of the function Wy ;. Notice that
lon.llus = VNI Wi ll2.

The Wigner transform Wy ; can be used to compute expectations in the quasi-
free state described by wy ; of observables depending only on the position x or on
the momentum —ieV of the particles. In fact, for a large class of functions f on
R3,

tr f(x) oN ¢ =/de(X)wN,t(X;X) = N/dvde(X)WN,t(x, v)
and
tr f(ieV)wn,: = N/dxdv SWWn (x,v).

In other words, [ dv Wy ;(x, v) is the density of fermions in position space at point
x € R3, while Jdx Wy +(x, v) is the density of particles with velocity v € R3.
Notice, however, that Wy ; is not a probability density on the phase-space, because
in general it is not positive.

From (1.7), we find an evolution equation for the Wigner transform Wy ;:

ied; Wy ;(x,v)

1 . B 3 —ivy
= @7 / dyied,wn s (x + Ty;x - %) e vy
2

& ey EYY\ iy

= W/dy (*Ax+sy/2 + Ax—ey/Z) WN ¢ (x + 7§ X — 7) e 'y
1 Sy. &y —iv-y
+(2ﬂ)3 /dy ((Vxp)(x +ey/2) = (V*p)(x —ey/2)) oy, (X+ 5 7)e .

Using —Axyey2 + Ay_gy2 = —2/€V, - V, and expanding

(V% p)(x +ey/2) — (V% p)(x — ey/2) = ey - V(V % p) + O(e?)
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we conclude, formally, that
ied Wy (x,v)

1 .
= —28mvx . /dy Vwa,t ()C + %, X — %) e VY

5 3 ) e VVdy 4+ 0(e?)

= —2igv- Vi Wn (x,v) +ieV(V % p)(x) - Vo Wi (x, v) + O(£).

1 e e
+8V(V*p,)(x)-m/dyyw1v,, (x+—y;x——y

As a consequence, we expect that, in the limit N — oo (and hence ¢ — 0; recall
that e = N—1/3), Wy . approaches a solution W; of the classical Vlasov equation

81W[+2UVXW[ :V(V*Q[)VUW[ (110)

with the density o;(x) = f W, (x, v)dv (in contrast with Wy ;, the limit W; is a
probability density, if this is true at time # = 0). The goal of this paper is to study
the convergence of the Hartree dynamics towards the Vlasov equation (1.10), in
the limit N — oo.

This work is not the first one devoted to the derivation of the Vlasov equation
(1.10) from quantum evolution equations. In [15,21], the Vlasov equation is ob-
tained directly from many body quantum dynamics, starting from the fundamental
N-fermion Schrodinger equation (the Vlasov equation also emerges in the N-boson
case, if the mean field limit is combined with a semiclassical limit; see [12], where
the dynamics of factored WKB states is analyzed). In [13,14], the authors take
the Hartree equation (1.7) as starting point of their analysis, and they prove con-
vergence (in a weak sense) towards the solution of the Vlasov equation (1.10).
Note that the analysis of [13,14] also applies to singular interactions, including
a Coulomb potential (the analysis was extended to the Hartree—Fock equation in
[11D.

In [11,13-15,21], the convergence towards the classical Vlasov dynamics is
established in an abstract sense, without control on its rate. The problem of deter-
mining bounds on the rate of convergence is not only of academic interest. When
considering applications to real physical systems, the number of particles N is
large but, of course, finite. Bounds on the rate of convergence are therefore im-
portant to decide whether N is large enough for the Vlasov equation to be a good
approximation of the Hartree and of the full many body Schrodinger dynamics.

Bounds on the rate of convergence of the Hartree evolution towards the Vlasov
equation have been first obtained in [3]. In this paper the authors obtain the con-
vergence in the Hilbert-Schmidt norm with a relative rate £2/7 = N~%/2! for
sufficiently regular initial data and potentials (they require V € H'(R?) and that
Vel! (R3, (1+|p|*)dp)). For smooth potentials, an expansion of the solution of
the Hartree equation (1.7) in powers of ¢ has been shown in [17] (with no control
on the remainder) and in [1,2].

Our approach here is similar to the one of [3]; we consider the solution of the
Hartree equation (1.7) for initial data @y with sufficiently smooth Wigner transform
Wy, and we compare it with the Weyl quantization of the solution of the Vlasov
equation (1.10), with initial data Wy . We consider regular interaction potentials.
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In Theorem 2.1 and in Theorem 2.2 we establish bounds on the norm-distance
of the solution of the Hartree equation wy ; with initial data wy and the Weyl
quantization @y ; of the solution of the Vlasov equation with initial data Wy . For
every fixed + € R, the relative error is of the order ¢ = N =1/3 in the limit of
large N. The dependence on N of these bounds is expected to be optimal. This
expectation is confirmed by the expansion of [1], where the next order corrections
are constructed (in fact, if we assumed initial data with smooth Wigner transform
Wy € W®(R3 x R?) and smooth interaction potential V € W (R3), the
result of Theorem 2.1 would follow from Theorem 1.2 in [1]).

In Theorem 2.1, we get convergence in the trace-norm, for very regular initial
data. In Theorem 2.2, we bound the Hilbert—Schmidt norm, under weaker assump-
tions on the regularity of Wy . The strategy to show Theorem 2.2 is similar to the
one of [3]; we regularize the initial data, we compare the solutions of the regularized
Hartree and Vlasov equations and then we establish stability of both equations with
respect to the regularization. We can improve the bounds of [3] by using the trace
norm convergence shown in Theorem 2.1 for the solutions with regularized data.
The nonlinearity in the Hartree and in the Vlasov equation depends on the con-
volution of the potential with the density of particles in space. Differences among
densities can be easily controlled through the trace-norm of the corresponding
fermionic operators (which are bounded in Theorem 2.1). Estimating them directly
by means of Hilbert—Schmidt norms, as done in [3], leads instead to a deterioration
of the rate of convergence.

Notice that, in Theorems 2.1 and 2.2, we consider the solution of the Vlasov
equation for initial data which are not probability densities. The well-posedness of
the Vlasov equation for such initial data can be obtained adapting the arguments of
[8]; in Appendix A we sketch the proof.

If we assume additionally that the sequence of initial data wy has a limit, in the
sense that its Wigner transform converges towards a probability density Wy, then
we can also establish the convergence of the Wigner transform Wy ; of the solution
of the Hartree equation towards the solution of the Vlasov equation W; with initial
data Wy (in this case, the solution of the Vlasov equation is a classical probability
density, for all # € R). This is the content of Theorem 2.3.

Our bounds on the norms of the distance between the Wigner transform Wy ;
and the solution of the Vlasov equation W; (as well as the bounds for the distance
between Wy, and the Weyl quantization VT/N, ; of the solution of the Vlasov equation
with initial data Wy ) hold for sufficiently regular initial data. In particular, Theorem
2.2 needs Wy € H2(R3 x R?) (with some additional weights; see Theorem 2.4
for the precise assumptions). This condition is justified for initial data describing
equilibrium states of confined fermionic system at positive temperatures. At zero
temperature, on the other hand, the system at equilibrium relaxes to its ground
state, which can be approximated by a Slater determinant. Typically, in this case,
the corresponding Wigner transform is not regular. For example, the ground state
of a system of N free fermions in a periodic box with volume one is a Slater
determinant with Wigner transform
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Wy (x,v) = N"'1(Jv| £ cp'/?) (1.11)

where p = N is the density of the particles (this system is translation invariant;
therefore, particles are uniformly distributed in the box). Equation (1.11) corre-
sponds to the idea that to construct the free ground state, we should fill the N one-
particle states with the smallest possible energy (by the antisymmetry of fermionic
wave functions, there cannot be two particles in the same state). If we switch on
an external potential and a mean-field interaction, it is believed that the ground
state can still be approximated by a state with Wigner transform of the form (1.11);
the only difference is that now we have to fill low energy states locally, accord-
ing to an effective particle density ptr that can be determined by minimizing the
Thomas-Fermi functional

3
Err(p) = Serr / dx p3(x) + / dx Vexe (x)p(x)

1
+§/dxdy Vix = y)p()p(y)

among all p € L' N L33 (R3) with ||p|li = N. The resulting sequence of Wigner
transforms Wy (x; v) = N~'1(Jv] £ cppl (x)) is not in HX(R3 x R). So, while
Theorems 2.1, 2.2 and 2.3 provide a good description of the fermionic dynamics
in the mean field limit at positive temperature, they cannot be applied at zero
temperature.

For such initial data, we do not get norm convergence towards the solution of
the Vlasov equation. Nevertheless, in Theorems 2.4 and 2.5 we can still prove con-
vergence for the expectation of a class of semiclassical observables. Semiclassical
observables are functions of the multiplication operator x and of the momentum
operator —ieV; they detect variations in the spatial distribution of the particles
on “macroscopic” scales of order one and, at the same time, they are sensitive to
variations of order ¢! in the momentum distribution (corresponding to the “mi-
croscopic” length scale ¢).

Let us stress the fact that, to the best of our knowledge, Theorems 2.4 and 2.5
are the first rigorous results concerning convergence from the Hartree dynamics
towards the Vlasov equation that can be applied to reasonable approximations of
ground states.

In Section 2, in the remarks following our main theorems, we provide explicit
examples of fermionic states, constructed with the help of coherent states, ap-
proximating ground states and positive temperature equilibrium states of fermionic
systems in the mean-field regime, to which our theorems can be applied.

2. Statement of the Results

In order to state our results in a precise form, we need to introduce some norms
for functions on the phase space (x, v) € R3 xR3.Fors € N, we define the Sobolev
norm

1= /|vﬂf(x,v)|2dxdv

IBISs
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where f is a multi-index, and V# can act on both position and momentum variables.
For s, a € N, we introduce also the weighted norms

111 = D [ (427 +0)|VF £(x, v)Pdxdv.
IBI<s

We are now ready to state our main theorems. In the first theorem, we assume
strong regularity of the initial data, and we prove bounds in the trace-norm.

Theorem 2.1. Ler V € W2 (R3). Let wy be a sequence of reduced densities on
L2R3), withtroy = N, 0 < wy < 1 and with Wigner transform Wy satisfying
||WN||H3 < C, uniformly in N.

We denote by wy ; the solution of the Hartree equation

iy, = [—*A+ (V% pr), oy ] 2.1)

with p;(x) = N_la)N,,(x; x) and init@l data wy.
On the other hand, we denote by Wy ; the solution of the Vlasov equation

UWn. +2v-ViWn, =V(V ) VyWy, (2.2)

with p;(x) = fdv VT/N,,(x, v) ang with initial data WN’() = Wy. Moreover, let
N .+ be the Weyl quantization of Wy ;, defined as in (1.9).

Then there exists a constant C > 0 (depending on ||V | w2~ and on
supy | Wy ||H3, but not on the higher Sobolev norms of Wy) such that

3
tr |wy, — @] £ CNe exp(C exp(C|t|))[1 + > e sup ||WN||H2»+2:|. (2.3)
=1 N

Remarks. (1) Recall that we use the normalization troy ; = N. In this sense, (2.3)
shows that wy ; and @y ; are close, in the limit of large N, since their difference
is smaller, by a factor e = N —1/3_than their trace norms.

(2) The assumption || Wy || ] < C on the Wigner transform of the initial data is
equivalent to suitable commutator estimates for the initial fermionic reduced
density wy with the differential operator V and the multiplication operator x.
We begin by noticing that

IV Wy |2 = /dxdexwmx,v)F
3

— dxd 8_
‘/ )3
= NIV, onllls- (2.4)

2

/dy eV, on](x +ey/2,x — £y/2)

Similarly, we find ||V, WN||§ = N'e2|[x, a)N]||%S. As for the weights in
the definition of the H}-norms of Wy, we notice that

1+ x2 4+ o)Wyl £ CNTHIA 4+ 57 — 20wy lifs,

for some N-independent constant C > 0.
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3)

Proceeding analogously, one can show that the estimate || Wy || S < C follows
from the bounds

N7HA 4+ x% = 20)Y?[ay, [az, [a3, [as, [as, on]N]1IFs < C,  (2.5)

uniformly in N and for all choices of ay, . .., as witheithera; = x/eora; = V.
Therefore the commutator structure allows to quantify the regularity and decay
properties of the quantum state Wy . Estimates of commutators [x, wy] and
[V, wy] already played a key role in [6,7].

The estimate supy [|Wn|| ] < C or, equivalently, the bounds (2.5), are ex-

pected to hold true for fermionic mixed states, describing systems of N par-
ticles in equilibrium at positive temperature, in the mean-field regime, [6]. A
reasonable approximation for the reduced density of such a state is given by
the superposition

oy (x;y) = / dpdr M(r. p) for (X) fpr (7). (2.6)
of the coherent states
fpr) =7 g(x — 1) 2.7)
with a probability density M with 0 < M(r, p) < 1 and

/dpdr M(r, p)=1.

In (2.7), the function g is assumed to vary on the (possibly N-dependent) scale
8 and to be normalized so that ||g||> = 1. For simplicity, we shall make the
explicit choice

1 2 /g2
_ —x“/28
80 = gy @8)

It is simple to check that, with the definition (2.6), one indeed finds that 0 <
oy Slandtroy = N.

The smoothness and decay properties of the Wigner transform Wy of (2.6)
follow from analogous properties of the phase space density M (r, p), that is

Wl s < CIMILs. 2.9)

In fact, according to the previous remark, to prove (2.9) it is enough to show
(2.5). To this end, we notice that

[x/e, wn](x; y) Z/dpd’” M(p,r)(=iVp) fpr(X) fpr(¥)
:/dpdr (iva(Ps r))fpr(x)fpr(y)
[V,on](x;y) :/dpdr M(p’r)vrfpr(x)fpr(y)

= —/dpdr (VeM(p, 1) fpr(x) fpr(y).  (2.10)
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More generally, using integration by parts, all commutators of wy with x /¢ and
V can be written as superpositions of coherent states, weighted by derivatives
of the phase space density. Therefore, (2.9) follows from

[{fprs fpr)] = ‘/dx For(X) fprr ()

= CNepo _=r ﬁ(p - p/)2], (2.11)
482 4¢2
for a constant C > 0, independent of N and §, and from the bound
a1, a2, ... [aj, on].. s
< / dpdp'drdr’ VP M (p. IV M (D', D fpr fpr )P
< CNIVPM LIV M|, < CN||M||§,({, (2.12)

for an appropriate multi-index g with || = j. The effect of the operators
(1 +x2 — £2A) appearing in (2.5) can be controlled using the decay of (2.11)
and of the probability density M.

We conclude that, for any probability density M € H} (R? x R?) with 0 <
M(r,p) £ 1forallr,p € R3, the sequence of reduced densities (2.6) is an
example of initial data satisfying the assumption of Theorem 2.1.

In our second theorem, we relax partly the regularity assumption on the initial
data. To reach this goal, we start from (2.3) and we apply an approximation ar-
gument. In contrast with Theorem 2.1, here we only get bounds for the difference
wp.; — oy ¢ in the Hilbert—-Schmidt norm (the Hilbert-Schmidt norm of a reduced
density is directly related with the L? norm of its Wigner transform; there is no
such simple relation between the trace norm of a reduced density and the L'-norm
of its Wigner transform).

Theorem 2.2. Let V € L' (R3) be such that
/|V<p>|(1 +IpiP)dp < oo. 2.13)

Let wy be a sequence of reduced densities on L*(R3), withtroy = N,0 < wy < 1
and with Wigner transform Wy satisfying ||Wy || H? < C, uniformly in N.

As in Theorem 2.1, we denote by wy ; the solution of the Hartree equation (2.1)
with initial data wy and by Wy ; the WeXl quantization of the solution VT/NJ of the
Viasov equation (2.2) with initial data Wy o = Wy. Then, there exists a constant
C > 0 depending only on supy | Wy ||H42 and on the integral (2.13) such that

oy — @n.illns < Cv/Ne exp(Cexp(Clt])). (2.14)

Instead of comparing the solution wy , of the Hartree equation with the Weyl
quantization @y ; of the solution of the Vlasov equation Wy ;, we can equivalently
compare Wy ; with the Wigner transform Wy ; of wy ;. Equation (2.14) implies
that
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IWx.c — Wi ll2 £ Ceexp(C exp(Cle))). (2.15)

If we assume that the fermionic initial data wy has a Wigner transform Wy (with
appropriately bounded H, 42—norm) approaching, in the limit of large N, a probability
density Wy on the phase space, we can also compare the Wigner transform Wy ;
of the solution wy ; of the Hartree equation with the solution W; of the Vlasov
equation with initial data Wp. In the next theorem, we show the LZ-convergence of
Wi .: towards W;.

Theorem 2.3. Let V € L' (R?) be such that (2.13) holds true. Let wy be a sequence
of reduced densities on L*(R3), with troy = N, 0 < wy < 1 and with Wigner
transform Wy satisfying || Wy || H? < C, uniformly in N.

Furthermore, let Wy be a probability density on R3 x R3 with || W0||H} < 00
and such that

Wy — Wolli < Ckn1, and |[Wy — Woll2 < Cy o (2.16)

for sequences kn 1, kn2 = 0 with ky,j — 0as N — ooforj=1,2.

Let wy ; denote the solution of the Hartree equation (2.1) with initial data wy
and let Wy ; be its Wigner transform. On the other hand, let W, denote the solution
of the Viasov equation (2.2), with initial data Wy. Then we have

Wyt — Will2 £ Ceexp(Cexp(Clt])) + Clkn.1 + kn2) exp(Clt]). (2.17)

Remarks. (1) Notice that, if [|[Wy — Wyl < ky,1 forasequence k1 — 0, and if
||WN||H§, ||W()||H42 < C uniformly in N, then, automatically, |Wy — Wy|l2 <

Ck 11\,/ 21, that is the second condition in (2.16) follows from the first one, if we

take ky 2 = /c,l\,/ 21 However, it is often possible to get a better estimate on k' 2,
improving the bound (2.17) (for instance, in the example discussed in the next
remark, we find ky 2 = kn,1 = el/2).

(2) An interesting example of a sequence of initial data satisfying all assumptions
of Theorem 2.3 can be constructed again by means of coherent states. As in
(2.6), consider the fermionic reduced densities

on(riy) = [ apdrMG. p)fyr (T )

with fp,(x) = £73/2¢iPX/¢ g(x — r) and with M a probability density on the
phase-space, with0 < M (r, p) < land ||M||; = 1and suchthat||M||H§ < 00.
For simplicity, we choose g as in (2.8) to be a Gaussian function, localized on
the length scale § = §(N), with §(N) — Oas N — oo.

The Wigner transform of wy, defined as in (1.8), is given by

3
& & & :
Wate. v = g [ avon (e Fre = F) e

1 /d drdp M(r, p)e™ =P 7<—2+572>/2>2
~ @n) ey r r, e e
) 2neryre | dydrdp M p
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_ (x—r—sy/2)2
X e 262

23/2 _ ()c—r)2 _ c‘iz(p—v)2
= 2 )3/drdpM(r, pe 2> e €2
e

where, in the last step, we evaluated the integral over y. We find

[N]

202 :
Wy — M| £ o) /d)cdvdrdpe_7 e
i

M (x 4+ dr,v+ep/§) — M(x, v)|

r

23/2 2,
< )3 /dxdvdrdp e ze !
b

1
x [ QMBI 7,6 x4 201, -+ hep o)
0
&
+ S1P1 (VM) (x + 2870 + Aep/8)1]
&
< COIVAMI1 + CSIVuM Il
&
<clo+ 5] Imiy
and similarly,
&
Iy = Ml2 £ €[5+ 5] 1M

To optimize the rate of the convergence Wy — M (thatis to make the sequence
of initial data as “classical” as possible), we choose § = &1/2 (recall that
e=NV 3). From Theorem 2.3, we conclude then that the distance between
the Wigner transform Wy, of the solution of the Hartree equation and the
solution W; of the Vlasov equation with initial data given by the probability
density Wy = M is bounded by

[W,r — Willa £ Ce'/? exp(C exp(Clt])).

Although in Theorem 2.2 and in Theorem 2.3 the assumptions on Wy are weaker
than in Theorem 2.1, we still need Wy € H42 (R? x R?), with a norm bounded uni-
formly in N. As pointed out in the introduction, this assumption is typically satisfied
for interesting initial data at positive temperature (like the ones constructed in the
remarks after Theorem 2.3), but it is not valid for Slater determinants approximating
the ground state, which are relevant at zero temperature.

In the next two theorems, we establish a weaker form of convergence for the
solution of the Hartree equation towards the solution of the Vlasov equation. We
prove convergence after testing against a semiclassical observable (whose kernel
varies on the length-scale ¢ in the (x — y) direction). The advantage of these
two results, as compared with Theorems 2.1 and 2.2, is the fact that they require
much weaker assumptions on the initial data; in particular, they can be applied to
reasonable and physically interesting approximations of the ground state of confined
systems (examples of such states are constructed in the remark after Theorem 2.5).
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Theorem 2.4. Let V € LY (R3) be so that
[17a+ 1pPiap < . 2.18)

Let wy be a sequence of reduced densities on L>(R3), withtrwoy = N, 0 < oy <
1, such that

tr|[x, on]| £ CNe, tr|[eV,wy]l < CNe. (2.19)

Denote by Wy € L' (R3 x R?) the Wigner transform of wy. We assume that

Wyl = > /dxdv|vﬂwN(x,v)| <c
IBISI

uniformly in N.
Let wy 1 be the solution of the Hartree equation (2.1) with initial data wy. On
the other hand, let @y ; be the Weyl quantization of the solution VAI'/N, 1 of the Vlasov
equation (2.2) with initial data Wy.
Then there exists a constant C > 0, such that
ip-x+q-eV (

wn —@n)| S CNe(l + |pl + |g])?eC!! (2.20)

‘tre

forall p,g e R3 t e R.

Notice that the expectation of the observable appearing in (2.20) can also be
expressed in terms of Wigner transforms. In fact, for any fermionic operator wy,
we find

tre'P¥taeV gy = /dx 61304 gy (x — gq; x)
= N/dxdv Wy (x, v)elP*eld? = NWN(p, q).
Hence (2.20) can be translated into the bound

Wri(p.@) = Wi (p. @) < Ce(l + |p| + Iq]) %"

where we recall that Wy ; is the Wigner transform of the solution wy ; of the
Hartree equation while WN, ; 1s the solution of the Vlasov equation with initial data
Wh.

If the sequence Wy has a limit W), a probability density on phase-space, then
one can also compare the Fourier transform of Wy ; with the Fourier transform of
the solution W, of the Vlasov equation with initial data Wp.

Theorem 2.5. Let V € L'(R3) satisfy (2.18). Let wy be a sequence of reduced
densities on L>(R3), withtroy = N, 0 < wy < 1 and such that

tr|[x, on]| £ CNe, tr|[eV,wn]| £ CNe.
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Denote by Wy € L'(R?® x R3) the Wigner transform of wy. We assume that
W llwi1 < C uniformly in N.
Furthermore, let Wy € W1 (R3 x R?) be a probability density, such that

Wy — Wolli < kn

for a sequence ky withky — 0as N — oo.

Let wy 1 be the solution of the Hartree equation (2.1) with initial data wn and
let Wy ; be the Wigner transform of wy ;. On the other hand, let W; denote the
solution of the Vlasov equation with initial data Wy. Then we have

1

sup ——————— | Wy 1 (p. @) — Wi(p, @)| £ C (e + k) €.
. (1+|p|+|q|)2’ ' ' |

Remark. A physically interesting example of sequence of initial data satisfying
the assumptions of Theorem 2.5 can be constructed also here with coherent states.
Similarly to (2.6), we consider the sequence of fermionic reduced densities

wn(x;y) Z/drdp M (r, p) frp(x) frp(y) 2.21)

with a probability density M € W11 (R? x R?), the coherent states
frp@) =727 g (x — 1)

and the Gaussian function g(x) = Qns?)—3/ 4e_x2/ 28 We notice that
[x, on1(x; y) = € / drdp (VpM)(r, p) frp() frp(y)

[eV,on](x;y) = 8/drdp (VM) (7, P) frp () frp().

Hence, we obtain
tri[x, on]l = Ne[|[VoM|l1, tr][eV,on]l < Ne||V,M]|y.

Moreover, it is simple to check that the Wigner transform Wy of wy satisfies
|[Wallw11 < C uniformly in N and (similarly to the remark after Theorem 2.3),

Wy = Mll1 = C(3+&/)IM |y

Choosing § = e!2 we find |[Wy — M||; < Ce'/2. Theorem 2.5 implies
therefore that the Wigner transform Wy ; of the solution of the Hartree equation
with the initial data (2.21) is such that

1

sup ——————— | Wi (p.q) — Wi(p, q)| < Cel/? V!
D> qEErTEPTEALLK p.0)

for all € R. Here W, denotes the solution of the Vlasov equation with the initial
data given by the probability density Wy = M. Notice that the assumption M €
W1 is also compatible with M being an approximate characteristic function; this
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observation is important at zero temperature, to describe systems at or close to the
ground state.

The rest of the paper is devoted to the proof of our five main theorems, appearing
in Sections 3-5. Appendix B contains an important lemma on the propagation of
regularity for the solution of the Vlasov equation (1.10), which is used in Sections
3 and 4. Appendix C, on the other hand, contains a bound on the propagation of
certain semiclassical commutators, which plays a key role in Sections 4 and 5.

3. Trace Norm Convergence for Regular Data

Here we prove Theorem 2.1. Recall that wy ; denotes the solution of the Hartree
equation

iediwon: = [hu ), on.(]
with the Hartree Hamiltonian
hi(t) = =2 A+ (V % p)(x)

and the density p;(x) = N _1a)NJ (x; x). We introduce the two-parameter group of
unitary transformations U/ (¢; s), generated by A g (). In other words, U (¢; s) solves
the equation

iedU(t;s) = hg(OU(E; s) 3.1)

with U(s; s) = 1, for all s € R. Notice that oy, = U(t; 0)onyU*(t; 0).
On the other hand, @y ; is the Wigner transform of the solution Wy ; of the
Vlasov equation (1.10). We find that wy ; satisfies

iedon, = [—*A, D]+ A

where A; is the operator with the kernel

-~ X+y ~
Ai(x;y) = V(V * pr) (T) “(x = y) on (x5 ).
We conjugate now the difference wy ; — @y ; with the unitary operator 2 (z; 0).

Taking the time derivative, we find

ied; U (1;0) (wn, — on,) Ut 0)
= —U*(t:0) [hp (1), o, — DN U 0)
+UN(1;0) ([hu (), o] — [—e* A, Dy ] — A)UE; 0)
=U"(t;0) ([V * pr, on ;1 — A U(2; 0)
= U*(t; 0) ([V * (o — Br), @n,1] + B U(t; 0) (3.2)

where B, denotes the operator with the integral kernel

- - - xX+y
Bi(x;y) = [(V * 01)(x) — (V* pr)(y) — V(V % pr) (T) (x — y)}
XN, (X5 Y). (3.3)
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Integration in time gives (since, at time r = 0, wy 0 = N0 = WN)

~ 1 /! _—
U (t;0) (wn,s — on, ) U 0) = E/o U (t; ) [V * (ps — Ps), oN s 1U(t; 5) ds
t
-|-,i / U*(t; s) ByU(t; ) ds. (3.4)
L Jo

Taking the trace norm, we obtain

t

~ 1/ _ ~ 1
trloy,, — On| = g/ tr|[V s (ps — ps), wn 5]l ds + g/ tr|By|ds. (3.5)
0 0

We will estimate the two terms in the right-hand side of (3.5) separately, and con-
clude by applying Gronwall’s lemma.

Estimate of the first term in (3.5). We start by considering the first term on the right
hand side of (3.5). To this end, we observe that

tr|[V * (ps — Ps)s ON 51| < /dzlps(z) — D@t |[[V (- —2), o]

< llos = psllisuptr [[V(z =), on sl (3.6)
Z

We start by estimating the last factor in the right-hand side of (3.6). We have

w|[V(—2),an,l = |1 —e*a) '+ 227!
(1 +xH) (1= M)[V( —2), Dyl
<A =e2A) 7 A+ 2D ins
1A +xH)(1 =MV (—2),an,llus. (BT

An explicit computation shows that
I =&*A) "' A +x) s < CVN,

As for the operator D := (1 + xH(1 = 2M)[V(z — ), ®p 5], it has the integral
kernel

D(x;y) = (1 +x)(1 —2A)(V(x —2) = V(y — 2)) @n.s(x; y)
=N +x)(1 - AN (V(x —2) = V(y—2))

/dv Wi s (x_—;— Y v)ei”'%

where we used the definition of @y s as the Weyl quantization of the solution VT/N,X
of the Vlasov equation, with initial data Wy. Taking into account the fact that the
Laplacian A, can act on the potential V (x — z), on the function Wy s or on the
phase eV =Y)/e we obtain that
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D(x; y)
=N +x2) Vx—20—V(y—2) / WN,s(%, v) v =y/e gy

_N82(l -|-x2) (AV)(x — 2) / WN,S (%7 U) SV =/e 4y

Ne? o
S Ve =0 -V =) [@i (S

) , v)ei v /e gy

INA+22) (V(x—2) = V(y—2)) / vT/N,S Tty v) V2 ¢l VOV/E gy

—N—(1+x)(VV)(x—z) /(vleA)( ery v) ef eI gy

LiNe(l+x2) (VV)(x —2) - / T G PP

x +
2

_INE a2 (V(x—z)—V(y—z))/(V1 WN,S)(X Y v) vl VEN/E gy

Dj(x;y). (3.8)

I
~.
1 M\l
—_ \S)

We estimate now the Hilbert—Schmidt norm of the different contributions on
the right hand side of (3.8). To control the term D1, we expand

D) = N1+ (V (= 2) = V(= 2) [ Ty (S5 2 0)e 0 e

= N+ AVE - =) [ (5

y , v)eiv-(x—y)/sdv
2

= iNe(1+x*)(VV)() - /(Vzﬁ’zv,s)(#, v)e"”"x‘y)/gdv

for an appropriate &£ on the segment between x — z and y — z. Using the bound

2 5 /e \2
1+x2§1+2(x+y) + 2 (x y)
2 2 e

and the assumption V € W2 (R3) we get:

2

X+ X — y\272
||Dl||%s§CN282/dxdy[1+2( zy) +?( gy)]

P . 2
x)/(VZWN,S)(g, v)e’v'@*”/gdv‘

2 _ . 2
- Cst/dXdr [1 +x2 +82r2] ‘/(VZWN,S)(X, v)e”’"dv‘

A

CNez/dde(l + X))V Wy s (X, v))?

+CNe® / dXdv|V3 Wy s (X, v)|?
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< CNe Wi sll gy + CNe I Wi sl . (3.9)

Similarly, we control the Hilbert-Schmidt norm of the second term on the right
hand side of (3.8):

~ . 2
D]l < CNe? / dXxdr[l + X> + 82r2]2‘ / Wy (X, v)e’*"dv
< CNeH Wi sllg0 + CNEP I Wi s 7.

Proceeding analogously to bound the Hilbert—-Schmidt norm of the other terms on
the right hand side of (3.8), we conclude that

1Dlns < CVN (el Wyl + 221 Wil gz + &1 W lgg + 1 Wl |

_ Proposition B.1 allows us to control the weighted Sobolev norms of the solution
Wi s of the Vlasov equation by their initial values. We obtain

IDllns < CeSPIVN [l Wyl g + 2 Wl gz + &2 IWnll g + &I Will s |
for a constant C > 0, depending on || Wy || H2 Thus, from (3.7), we finally find
[V (- —2),ans] £ CePINe

x [ Wl gy + el Wl gz + €2 1Wn g3 + &1 W ]
Therefore, from (3.6):

los = Aslite IV (- = ). @ws]]
CePINellps = ps I Wa ll )

tr [V x (o5 — ﬁs)a 5N,x]|

A A

+CePINE | ps — Bl
}[IWwllgz + elWnll gz + 2 IWa 1]
= 1+1L (3.10)

Consider first I. We have

llos — ﬁs”l = sup
JeL®R3):||J |5 <1

/ J(2)(ps(2) — ps(2))dz

A

-1 ~
N sup |tr J(wns — a)N,S)|
JATIE1

where on the right hand side the supremum is taken over all bounded operator with
operator norm lesser or equal than one. We conclude that

~ _1 ~
los — psllt S N“ trlon s — @n sl
Therefore,

1< CeVetrlon,s —anslIWnlly)- (3.11)
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To bound II, we write:
los = Asllt = lpslh + 1551 = N~ ooy s + 155 S 1+ [|Wa sl
Using that the Vlasov dynamics preserves the L? norms, we get:
IWnslle = 1Wnlle = 11 +22 + 03720+ 2% + 02 Wyl < ClIWw 9,
and thus:
LS CePINE [ Wll o [IWn g2 +elWn g3 + X IWnll ] (3.12)

From (3.6), (3.10), (3.11), (3.12), we obtain:

1 _
—/O tw |[V * (o5 = p5), @ ]| ds

&
13
< C/ eCls! trloy.s — on | ds
0
+CeINe [IWyllgz + el Wnllgg + I Wallys | (313)

where the constant C > 0 depends on ||Wy|| H?» but not on the higher Sobolev
norms of Wy . This concludes the estimate of the first term in the right-hand side
of (3.5).

Estimate for the second term in (3.5). To conclude and apply Gronwall’s lemma,
we need to bound the second term in (3.5). We find

tr|Bs] < (1 —&*A) 7' (1 + %) us (1 4+ x5 (1 — 2 A) By |lus
< CVN|(1 +x%)(1 — e2A) By |lus. (3.14)

Let U := V * py. The kernel of the operator B = (1 — e2A)By is given by
=~ x+y
Beriy) = N[Us0 = U,0) = VU (F52) - = )]
» / Wy s (% ’ U)ei plzn
1 xX+y 1 x+y
_N 2[AU —_AVU ( ) )= =AU ( )]
€s(X)4s2(xy)232
X/WNJ(X y,v)e"”'(xgy)dv
+
——[U () = Uy () — (—y)-<x—y>]

2
x [ (S5 )

+N[Us) - U, - U, (2 ; "))

~ Fo (x=y)
/WN,S(x;y,v)vze’”' e dv
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A [() ()

/ (V1) (52 v)el 5

—Ne[VUs(x) - —vzus(x ) - - vu (F22)]

/WNv )ve’ '(X;y)dv

~Ne[Uy) = Uy ) = VU, (3) - (e = )]
X /(v .V, WN,S)()%, v)ei 0.

7
=: > Bj(x:y). (3.15)
j=1

dv

In the contributions B 1 54, l~36~, E7, we need to extract additional factors of ¢; the
goal is to show that ||(1 + x2)B|lus £ C+/Ne2. To this end, we write

Us () — Us(y) — VU, (%) S —y)

1
/0 dA [VU (Ax 4+ (1 = 1)y) = VU ((x +y)/2)] - (x — y)

Z/ dk/ dp 393Uy (M(Ax+(1—x)y)+ (l—pL)(x—i-y)/Z)

i,j=1

=i =i (2= 5)

and we estimate, using the assumption V € W2 °°(RR?) and integrating by parts,

/Bvi dy; WNYS(X ; y’ v)e"”‘(xfy)/gdv .

3
|Bi(x; y)| < CNe* D
i,j=1

Hence, proceeding similarly as we did in (3.9), we get:

3
10+ Bils < Nt [ axay (14272 3
i,j=1

2
B, 81)/- WN,s (x +y ’ v) V= 0/eqy

2
=CN¢e* / dxdr [1+X2+82r2]2 ‘ / 3y O, Wivs (X, v) V" dv

< CNeH Wi, + CNeM [ Wl
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The Hilbert—Schmidt norm of the other terms in the right-hand side of (3.15) can
be estimated in a similar way. To do this, it is useful to notice that:

IV3Ulloo = V2V % Vislloo < V2V oI VA5l < CeCV!

where we used that V € W2 (R3), and that |[V5||; < C||Wy.,] )+ The final
result is:

(1 +x*) Bllns
< CVN [ W sz + 1 Wi g + e Wil g+ 51 Wl s

Therefore, by Proposition B.1,

(1 +2)Blus
< CeClIVNE [IWnll gz + el Wl + €2 IWnrll g + €21 Ww I

where the constant C > 0 depends on || Wy || H? but not on the higher Sobolev
norms of Wy . This gives:

tr 1Byl £ CePING? [IWn Iz + ell Wil g3 + eI Wl s + %I Wil g |-
(3.16)

Proof of Theorem 2.1. We are now in the position to conclude the proof. Inserting
(3.13), (3.16) into (3.5), we get:

t
trloy, — oy, < C / tre“Il oy s — oy |ds
0

C
+Ce lthSI:”WN”H}"'ESI;P Wl g3
+&” sup | Wl 4 + & sup ||WN||H;} :

N N
Finally, Gronwall’s lemma implies the desired bound
trloy,; — on,| = CNeexp(Cexp(Clt])) [sup IWnll g2 + & sup Wl 3

N N

+&?sup | Wy || g+ + & sup ||WN||H5]
N 4 N 4

with C depending only on || Wy || H2 This concludes the proof. 0O
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4. Hilbert—-Schmidt Norm Convergence

Here we prove Theorems 2.2 and 2.3. The proof of Theorem 2.2 is based on an
approximation argument, together with our previous result Theorem 2.1.
Regularization of the initial data. We start by approximating the initial data Wy .
For k > 0, we define

o~ 504V

gk(x,v) = @)

and
Wlli,(x, v) = (Wy * go)(x,v) = /dx’dv/gk(x —x, v =V)Wn&', V).

Then, we have || W}f, ||Hf < oo forall N € N. In fact, we find

ky o e
”WN”HA{ § C”WN”H‘% lfj § 2 and @l
IWN Iy = CKUZ22 Wl for j=3,4,5.
Furthermore, we notice that
Wy — WN”H 4.2)

f I

for s = 0, 1 (with the convention H? = L?) and for a < 4. We denote by a)ll‘\, the
Weyl quantization of le\‘,. We observe that

a)]f\,(x; y)
_ N/dv wh (= er )
NK3 k(xty x—y

2
~ 2n) /dvdx’dv’ eif( ) e 1O Wy (1 )ef U
T

3/2 e [ x )2 B B o
B k_/dwdx/e_é( ) e Py (v + 222 - I )
(2n)3 ) )
1 / —22/2 —w?/2 e
=—— [dwdze 72 oy (x + ==y + == ) " VR
(27‘[)3 \/_ \/_
N (21)'3 / duwdz e~ e 2 [ T T oy T | (61 ),
T
4.3)

Hence w’f\,, as a convex combination of fermionic reduced densities, is again a

fermionic reduced density (that is 0 < w’l‘v < 1andtr wﬁ‘v = N). From (4.2), we
find

N
loy — ok llns = VNI Wy — Wil £ ,/;uWNan. (4.4)
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We denote by wy ; and a)lfvy , the solution of the Hartree equation with initial data
wy and, respectively, w’l‘v On the other hand, @y ; and ‘T’lfv, , will denote the Wigner
transform of the solutions VT/N,, and Wk,,t of the Vlasov equation with initial data
Wy and, respectively, W}i,. Notice that, since the Vlasov equation preserves all the
LP norms, [|@y.llus = N2 Wy ll2 = N'/2||Wy |12 and, similarly, &%, lus =
N2|WE |5, forall t € R.

We need to compare wy ; with @y ;. To this end, we will first compare a)’]‘\,,t
with &3’1‘\“. Later, we will have to compare wy ; with “’Iz{v,t and, separately, @y
with @f .

Comparison of wlj‘v’t with 5]1‘\“. To begin, we prove that there exists a constant
C > 0 such that

3
lk, — @, lus < CN'/?e exp(C eXp(CltI))[l + > (Vi) ] (4.5)
j=1
The constant depends on supy ||Wy || HP but not on the higher Sobolev norms. To

show (4.5), we shall use our previous result, Theorem 2.1. In fact, from (2.3), (4.1)
we find

3
Iy = @y e < CNe exp(Cexp(CleD) | IWyllz + D e sup WYl 502
p=1 N
3
< CNe exp(Cexp(Clt)) | 14 D (evk)/ (4.6)

j=1

for a constant C > 0 depending only on supy || Wy || 2 We shall use this result
to prove an estimate for the Hilbert-Schmidt norm of the difference of the two
evolutions. Proceeding as in (3.1)—(3.5), we have:

1! x
+ = [ dslBglus
HS & Jo

A7)

~ 1 [t b~
oy, — s < ~ /0 as v+ ot — 7). )

where Bf is the operator with the integral kernel

Bf(x: y)= [v £ BE)—V % B = V(V % 5 (%) - y)] & (1),

We shall estimate the two terms in (4.7) separately. We start with the first. We have:

k ~k\ ~k
v o = 3. %) »

< [atkbe - Folfve-a.a.0],

< ek =70 [ ap 1o e 3k )
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Using [|pf — pflli £ N7, , — @y, llir» the identity
[e'P, ‘Blfv,s] = /0 dx e/t [ip - X, 6]1‘\”] el I=Mpx
and the assumption (2.13) on the potential, we conclude that

< CN Mo, — @y lelllx, @ llns. (4.8)

k ~k\ ~k
[V s ok =30,

We shall use the regularity of W,]f, , to extract a factor & from the commutator in
(4.8). We have:

- ~ xX+y Py, XY
L, @ 1 y) = (x = ) / dv Wy (5= v)e

_ s/dv VUVT/ZIQ!S(X;)), v)elv

and thus, similarly to (2.4),

e, @y s = eN'2[ VoW [, < CePleN W1,

The second inequality follows from the propagation of regularity for solutions of
the Vlasov equation, proven in Proposition B.1. Inserting the last bound and (4.6)
in (4.8), we obtain

3
< CN'2e? exp(Cexp(Clt]) [ 14 D (evh) |,
j=1

v« ok = 70, ) ,

(4.9)

which concludes the estimate for the first term in (4.7). Let us now consider the
second term in (4.7). We have:

2
1Bs llizs

2
:/dxdy‘(wﬁ’:)(x)—(wpv)o)—V<V*p >(T) : <x—y>‘ i P2
1 2
/0 a [V(V * B G+ (1= Dy) — V(V % ) (@ +y)/2)] ‘

=/dxdy @lfvvx(xi}')|2|)f*.\’|2

k 2 af ! ! 2 & ’
< [asay @y e —vt*| [0 [ awo-1/29 <V*ﬁy><u<xx+<l—A>y>+<1—m<x+y>/2>‘
< C/dxdy e — y[H1ak, o

using the assumption (2.13). Since
(x = W2y, (x: y) = / v a7, (S 0,

we find, similarly to (2.4),

2 4 a7k 2 s| 4 k2 s| 4
I1Bslifis < CNe*|A WY (115 < CePle*N W (17, < CeCPletN,



298 NIELS BENEDIKTER, MARCELLO PORTA, CHIARA SAFFIRIO & BENJAMIN SCHLEIN

where we used again Proposition B.1. This concludes the estimate of the second
term in (4.7). Therefore, plugging the estimates (4.9), (2.4) into (4.7), we have:

3
oy, — @ ,llus < CN'2e exp(Cexp(CleD) 1+ D (evi) |,
j=1

as claimed.

Comparison of wll‘\,‘ ; with wy ;. The next step is to compare the Hartree dynamics
of the regularized initial data with the Hartree dynamics of the original data. Our
goal is to show that:

1
loon.s — o, llus = CeCVIN2 (e + ﬁ) (4.10)

for a suitable constant C > 0, dependent on supy || Wy || H? but not on the higher
Sobolev norms.

Let U(t; s) be the unitary group generated by hg (1) = —&>A + V % p;, with
pr(x) = N_la)N,t(x; x). From

ied,U* (1; 0) why , U(t; 0) = =U*(1: O)[V x (o1 — p}), iy JU(t; 0)
we have:

wN; — oy, = Ut 0)(y — U (t; 0wy UE: 0)U*(t: 0)
= U(t; 0)(wy — bh)U*(t;0)

1 13
+E/ dsUE; IV * (py — pb), oy W (13 9).
0
Hence
k k 1 ! %2
lons — oy llus < oy — ofyllus + m/ ds/dp V)
0

ltre™ P (w5 — oy I I[e?, oy llns.  (4.11)

We start by estimating the commutator in the right-hand side. We have

1
[etp.x7 wlI{V,s] — /O et}»poc[ip X, wfv,s]el(lf)»)p‘x'
By Proposition C.1, it follows that:

e, wfy s < 1pllllx, oy lins
< ClpleCF(Ix, ¥ 1las + eV, o 1lns).
Since

I, o 1lms = eN Y2V, WL < eNY2Wo
eV, o 1llns = eN2IV Whll2 < eNV2 Wyl g1,
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we conclude that
e, iy lus < CN'?e|pleCH!. (4.12)

Then, we are left with estimating the trace on the right-hand side of (4.11). To do
this, we shall use the following lemma.

Lemma 4.1. Under the same assumptions of Theorem 2.2, there exists a constant
C > 0, only depending on supy ||WN||H3 but not on the higher Sobolev norms,
such that

sup

; 1
T+ ] ltre'” (wy, — oy )| < CeCVIN (ﬁ + 8) ) (4.13)
peR3

Plugging (4.12), (4.13) into (4.11), and using the bound (4.4) on the difference
of the initial data, we get

1
o — ofllns < CeCVIN'/2 (— + e) :
£ Vk

which concludes the proof of (4.10). Thus, we are left with the proof of Lemma
4.1.

Proof of Lemma 4.1. Consider, for an arbitrary p € R3,
tre’” oy, — wly,) = trU* (1 0)eP U1 0)(wy — U (t; 0) wy , U(t; 0))

where, asin (3.1), U (¢; 0) denotes the unitary group generated by iy () = —e2A+
V % p;, with p,(x) = N_la)N,t(x; x). From

ieU* (1, 0) iy, Ut: 0) = =U*(t; 0)[V * (pr — p}), why JU(: 0)
we find
tre'” (wy; — oly,) = wU*(t: 0P Ut 0)(wy — )
—% /Ot U (t; )P *UE; s) [V * (pg — ,Of), wlfv,s] ds
= trld*(1; 0)e'P U (1; 0) (wy — why)
o [ [P ea® -m)
U (5 )P UE ) [P, ol ] (4.14)

Since

_ I B
P(P) = B (P) = e oy — oy ),
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we conclude that
ltre'” (wn,; — oy )| S |rU* (1 0)e U 0)(wy — wy)
. /0 as [ BT @I we™ wn— ok, )
[t [U* (25 $)eP U 5), € P oo .

and therefore, using the assumption (2.13), that

sup |tre'P* (wy, — ok )
e L+ 1Pl Lo
< sup trU* (5 0)e'P Ut 0) (wy — @)
pes 1+ 1Pl
+£/lds sup L . [Z/{*(t;s)eip'XU(t;s),eiﬁ'inw]]i,Y|
Ne Jo =, ers (L+IpD(+ B .
X su —tre' P (wy s — o D). 4.15
,361153 1Jr|p|| (0N, 1l (4.15)

To bound the second term on the right hand side of (4.15) we shall use the following
lemma, whose proof is deferred to Section 6.

Lemma 4.2. Assume that (2.18) holds true. Let U(t; s) be the unitary evolution
generated by the Hartree Hamiltonian h(t) = —&ZA + (V % pt). There exists a
constant C > 0 such that

1 . .
sup |—||tr [/, U*(t; $)e™ PTEVIU (15 5)]w| < e(|pl + |gl)eC ™!

w,r

forall p,q € R3. Here, the supremum is taken over r € R3 and over all trace class
operators w on L>(R?) with tr|w| < 1.

It follows from Lemma 4.2 and from tr |“’11{v,s| = N that:

It [U*(2: )P Ut 5), € 7¥ ol (| < CNelpl|pl eI (4.16)

To bound the first term on the right hand side of (4.15), we proceed as follows. We
choose a function x. € C®(R?), with x-(x) = 1 for |x| < 1 and x-(x) = O for
|x| = 2. We set x~ = 1 — x. For an arbitrary R = 1, we decompose

trU* (t; 0)eP*U(t; 0) (wn — k)
= trld*(1; 0)e’P*U(1; 0) x < (=2 A/R) (wn — o))
+ U (50T U 0) - (> A/R) (0n — o) x<(—*A/R)
+trU* (15 0)eP U1 0) = (—e2 A /R) (wn — oK) 5= (—e>A/R)
= 1+ 1 +IIL (4.17)
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To estimate the last term, we observe that
| < tr x2 (—e’A/R)wy +tr x2 (—e* A /R,

<

[tr (—szA)wN + tr (—szA)a)ll‘\,]

==z ==

CN
|:/ dxdv v> Wy (x, v) —i—/dxdv vleli,(x, v)} < = (4.18)

from the assumption supy ||WN||H} < 00, and using that x-(—&>A/R) <

(—e2A/R). Next, let us consider the first term on the right hand side of (4.17).
We write

[ = trld*(t; 0)eP*Ut; 0) x (—e> A/R)(1 + x2) (1 + xP) (0 — o))
and we decompose
[(1 4+ x*)(on — of)](x: )

-t o[ (S5 0) < wh () e

= Di1(x;y) + Da(x; y) + D3(x; y)

where

Di(x;y) = [1+( ;—y) ]/dv [WN( —;y ) WN(X-;y v)ileiv»("s”

is the Weyl quantization of the function (1 + x2)(Wy (x, v) — Wlli, (x, v)) defined
on phase-space, while

N 2 _ 2 .
o = (22 fan [ (50 - (5 [
Ne? Ty x+y e
. /du[A WN( : )—AUW};( ! ,v) i
is the Weyl quantization of (82/4)(AUWN(x, v) — AUWK/'(X, v)) and

X+y x—y +y xX+y i, =)
Di(x;y) = N : dv W( ) W( ) iv- 45
3(x3y) € ) e / |: A I ,v)|e

:Nsx;y -/dv [VUWN(x;y,U) —VUW}@(X—;)”U)} eiv‘@

is the Weyl quantization of ex - (V, Wy (x, v) — V, W]]\‘, (x, v)). We bound the con-
tributions of the three terms D1, D>, D3 separately. We begin with

‘tru*(t; 0)eP U 0)x- (—2A/R)(1 + xz)*lDl‘
= ’trl/{*(t; 0)e'P*U(1; 0) x < (—e2A/R)Y(1 + x) 711 — e2A) 7' (1 — e2A) Dy

SN+ = e2A) asl(1 — e2A) Dy |lus
< CVN|(1 = *A)D1 |lns
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where we used that 0 < y_(—e2A/R) < 1. We have

2

x/dv [Wo(x;y,v) —W(’f(x;y,v)]ei”'(xsw.

It is not difficult to see that

2
[(1—&2A)Di](x;y) = N(1 —&2Ay) [1 + (ﬂ) }

(1 —&2A)Dillas < CVN|I(1+x2) (1 +v*)(Wy — W)l
+CV/Ne||Wy — W,’§,||H11 + CVNE2 | Wy — W,’§,||sz

gcﬁ(%mz).

Therefore,
: 1
‘tru*(t; 0)eP Ut 0)x~(—2A/R)(1 + xz)_lDl‘ <CN (ﬁ n s) .
(4.19)
The contribution of D, on the other hand, can be controlled by
’tru*(t; 0)eP U (t: 0) x - (—> A /R)(1 + xz)_lDz‘
< [lx<(—&*A/R)A 4+ x»)lusl| D2 llus
< Ce’VN|[Woll g2l x<(—e* A/R)(1 + x5 s,
where
lx<(—e*A/R)(1 +x3) " Es
=t(1+x)7' A =2A) 2 (=2A/R) 1 —2A) 711 +x2)7!
=tr(1+x)71 1 =271 = 2A) 252 (=2 A/R)(1 — 2 M)A +xH) 7!
S CRAIA+x) 710 =2 A) i
< CR?N.
Hence, we conclude that
‘trlxl*(t; 0)elP Ut 0) x (—e> A /R)(1 + xz)—lDz( < CNR&>.  (420)
We proceed similarly to bound the contribution of the term D3. We find
U6 00U 0) < (—e2A/RY(A +x7) ' D
< llx<(—=e2A/R)(1 + x2) sl D3llus
< CNRel|Wy — Wyl

CNRe
\/z ’

[IA



From the Hartree Dynamics to the Vlasov Equation 303

where in the last step we used (4.2). The last equation, combined with (4.19), (4.20)
implies that

|I|<CN( L et R+ RS)

< — +e¢ e+ —).

- Vi Vk

Analogously, one can show that the same estimate holds for the term II on the right
hand side of (4.17) as well (in this case, we introduce the identity (1 +x)(1+x2H)7!
on the right of the difference wy — a)’f\, and we use the cyclicity of the trace). With
(4.18), we conclude that

. 1 Re 1
trU*(1; 0)e!P*U(t; 0 —of)| SN — R4+ — +— ).
U (65 007U 0) (wy — )| < (ﬁ+e+ e +ﬁ+R)

Choosing R = &1, we obtain

* ip-x 1
’trb{ (t: )P U(t: 0) (wy — w/f\,)‘ <CN (ﬁ + e) .

Inserting this bound and (4.16) in (4.15) and applying Gronwall’s lemma, we
obtain

sup
pers L+ 1]

. 1
e @y, — o )| £ CeCMIN (ﬁ n s) @2

which concludes the proof of (4.13). O

Comparison of & a)N , with @y ;. We now compare the Vlasov evolution of the reg-
ularized initial data with the Vlasov evolution of the original data. We claim that
there exists a constant C > 0, depending on supy || Wy || H? but not on the higher
Sobolev norms, such that:

- - ~ CeCl
law, — @k llns = N2 Wy, — WE |, S NP2, (422
s \/E
To prove this, let
o (x) = / dv Wy, (x,v) and pf(x) = / do Wy, (x,v)  (4.23)

be the densities associated with VT’M + and Wllf, ,-Fort € R, we denote by (X;(x, v),
Vi(x, v)) and by (X f (x,v), Vlk (x, v)) the flows satisfying the differential equations

X (x,v) = 2V, (x, v)
[ Vi(x,v) = =V(V x 5)(X;(x, v)) (4.24)
and
Xk(x v) —2V (x,v)
{V (x v) = —V(V % k)(Xk(x v)) (4.25)
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with initial data given by, respectively, Xo(x, v) = X’é (x,v) = x, Vp(x,v) =
Vé‘(x, v) = v. We compare the two flows (X, V;) and (X, V,k). We have

d k k

3 X = XD, v =2V, = VH(x,v)

d - .

Vi VY (x,v) = =V(V % 5) (X (x, ) + V(V % 5 (XK (x, v)),
and therefore

d
- X — X, v 22

V,(x, v) — VE(x, v)‘

< ClIB = Al + € [Xix, v) = XFx,v)

’

d v, — vk
a(t— ) (x, v)

where we used the assumption (2.13). Gronwall’s lemma implies that

‘Xz(x,v)—Xf(x,v)‘ +

Vix,v) — V,"(x, v)‘
t

< CeC"‘/ ds 13, — 31
0

t
< ce“l / ds [ Wy — Wi (4.26)
0

We will also need to control the difference between derivatives of the flows
(X;(x,v), Vi(x,v))and (Xf (x,v), Vtk(x, v)). Integrating the flow equations (4.24),
(4.25), we have

t
ViXi(x,v) =1 +2/ Vi Vs(x, v)ds
;70 4.27)
ViVilx,v) = _/ VZ(V * 0g) (X5 (x, v)) - Vi Xs(x, v)ds,
0

which implies that
t
IV X (x, v)] = 1+2/ ds [V Vs(x, v)|
0

t
[VeVi(x, v)| = C/ ds [Vy X (x, v)|,
0

and hence, by Gronwall’s lemma, that
Vi Xi (x, 0)] + Vi Ve, v)] < €L (4.28)
Analogously, we also find
v X (X, 0)[+ [V Vilx,v)| S e .
Vo X (x, 0)] + [V Vi (x, v)] < €1 (4.29)
and

IV XE(x, v)] + |V VE(x, v)] < €1
Vo XE(x, v)| 4+ |V VE(x, v)] £ €L
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Moreover, from (4.27), we obtain

V. Vi(x, v) — Vi VE(x, v) |

t
VxX,(x,v)—Vfo(x,v)‘ < 2/ ds
0

and thus

Y,V (x, v) — Vi VG, v)‘
< /Ot ds (VZ(V * D) (X (x,0)) - Vi Xy (x, V)
—V2(V % PO (X5 (x, v) - Vi XK (x, v)
= C/Ot ds [15s — B5 Il + C/Otds 1Xs(x,v) — XE(x, 0)]|VaXs(x, )|
+C/0t ds [V, X (x, v) — Vo XK (x, v)].

To get the second inequality, we used that
IV2V % fslloo S IV VIleaIV Wil < CeFl Wil ;. (4.30)

Using (4.28) and (4.26), and applying Gronwall’s lemma, we conclude that

VX (x,v) = ViXE G, v)| +

VaVixv) = ViV )|
t t s
< e [Casip -+ e [as [Carip -t @
0 0 0
Similarly, we can also show that
[VuXi (., 0) = VX )|+ [V Vit ) = Vo VG )|

t t s
< e [Casiz -+ e [as [Carip -t @)
0 0 0

Next, we control the L! norm of the difference WN, ;= VT/]’\‘, ;- To this end, we
write

W — Wy Iy
= /dxdv|WN,,(x, V) — W}i,’t(x, v)|
- / dd| Wy (X (x. ), Vg (ra 0)) — Wh (X, (r ), VE (r 0)|
< / dxdv| Wy (X—¢(x, v), Vo (x, 1)) = Wh (X (x, ), Vi (x, V)]

+/dxdv|wf,(x,t(x,u), Voi(x,v) = Whi(XE, (x, v), VE, (x, v))].
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Using that the Vlasov dynamics preserves the volume in phase-space, we get:

(17 17k
Wy — Wl

g
§||WN—W1"V||1+/dxdv/0 dAaWI’G(/\(X_z(x,v),V_t(x,v))

+(1 =) (X5, (x, v), VX, (x, v)))'S Wy =Wl
+/dkdxdv [|(VxW1]f,) (F(x, v, 2), 0(x, v, W) || X (x, v) — Xt (, V)|

|

+ (Vo W) (F(x, v, 1), D(x, v, ) || Ve (x, v) = VE, (x, v)

where we introduced the notation

v, A) = AX () + (1= 0XE (x, ),
5x, v, 4) i= AV, (x,v) + (1 = MVE (x, v).

From (4.26), we obtain
t
IWn.e = Wy S IWy — Wil +C / ds e PN Wy s — W, Ih
0

x[/dkdxdv (Ve WE) (E(x, v, ), B(x, v, ) |

F (Vo WE) Fx, v, 4), B(x, v, 4)) |].

(4.33)
‘We observe that
/dxdv|(VxW,]§,) G(x, v, 0), B(x, v,A))]=/|(VxW,'\‘,)(JZ,ﬁ)\%
(4.34)

with the Jacobian

B ViX_ ViV, INAD A%
J = det [x (Ver VUVt> + (=2 (VUX’i, vk )|

To estimate the determinant J (X, v) in (4.34), we proceed as follows. For a
fixed constant C > 0 (that later will be chosen large enough), let us define t* > 0
such that:

C3 2Ct*
% —1/2. (4.35)
We claim that, for all |¢| < t¥,

Cle|

7

W — Wi i £C (4.36)
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We prove (4.36) for ¢t > 0 (the case of # < 0 can be handled similarly, of course).
We set

Clt|
vk

and we proceed by contradiction, assuming that zy < ¢*. At time ¢t = 0, we have:

to = inf [r >0 |Wy, — Wyl > (4.37)

Wy — Wyl < /dXdde/dU/gk(x —x', v =)Wy (x, v) = Wy (', 0]

1
— W/dxdvdrds e~ +sh/2
T

WN( \/_ v—i-?)—WN(x,v)

1
< /dxdvdrds/ A e~ 502
0

xl:% VWN(x+Aﬁ +x%)‘
I}L VWN(X-F)»#,U-FK%)H

8
(2:)37<||V Wl + 1V, W)

C
g_ W < —, 4.38
= el = (439

where in the last line we estimated the L !_norms by proceeding as in (4.30). Since,
moreover,t — Wy ;andt — W}i, , are continuous in the L'-topology, by choosing

=

C =2Cin Equation (4.37), we conclude that #y > 0. The continuity property is a
standard fact (see for example [8]).

By definition, for 0 < ¢ < g, we have (4.36) and therefore, from (4.31) and
(4.32),

£2Cl1]
VX (x, v) = Vo X5, (x, 0)| + |V Vo (x, v) = Vi VE (3, )] €
vk
and
e2C\t|
Vo X i (x,v) = Vo X5, G, o) + Vo Ve (3, 0) = W VE (v, 0)| £ CP—.
N
Writing
J(X,v)

V. X_, V,V_ v, Xk —v.Xx, V,vk —v.V_
:dt )\’ X t X t 1_)\( X —t X t XV —t X t
¢ [ (VUX_, v,v, ) Ta=» Vo Xk, = VyX_, V,Vk, -V, V.,
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and using that

ViX_i ViV |
‘det (VUX—t Vvv—t)' =1

we conclude that
e3C|t\

N

if the constant C > 0 is large enough. From (4.35), and from the assumption
to < t*, we conclude that

& o) -1 < ¢?

JE, D) > 1/2
for all 0 < ¢ < 19. Equation (4.34) implies:
/dxdv (Ve WR) (E(x, v, 2), B(x, v, 2) |
= 2/did5 |VxW11f/(5€, )| < C”W}]f/”HJ s ClIWN I
forall 0 < ¢ < #o. Similarly, we obtain
/dxdv [V, WE) (ECe, v, ), 5e, v, 2) | £ CIWa -
Plugging the last two bounds in the right hand side of (4.33), we find that
t
IWne — Wh i S Wy — Wl +C / ds e“F Wy s — Wi Sl
0

forall 0 < ¢ < fg. Equation (4.38) and Gronwall’s lemma imply that, if the constant
C > 0is sufficiently large,

clel
N

forall 0 < r < 1y, in contradiction with the definition of ¢y. This shows that 7y > ¢*.
Repeating the same argument for # < 0, we obtain that

Wy — Wi, i £C

. _ oCll
Wn: =Wy, i =C N (4.39)
for all |¢| < t*. From (4.26), we also find that
eZCltl
1X: (x, v) — XE(x, 0)] + | Vi(x, v) = VE(x, 0)| £ c2W (4.40)

for all |z] < t*. Moreover, Equations (4.31) and (4.32) imply that
JE D = 1/2 (4.41)
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for all |f| < t* and for all X, ¥ € R3. N B
Finally, we control the difference Wy ; — Wllf,y , inthe L2%-norm. To this end, we
observe that

17 k12
||WN,I - WN,t”Z

=/dxdv;WN(X,,(x,v), Vi (x, v) — WE X, (x, v), VE (e, 0))|
< 2/dxdv (W (X (x, v), Vo (x, 0) — WA (X (x, )V (x, 0) [

+2/dxdv |WE(X_i(x, ), Vo (x, v) = W (XK, (x, v), VE,(x, v))|2.
Using that the Vlasov dynamics preserves the phase-space volume, we get, for all
[t] < t*:
W = W, 113
<2(Wy - Wyl
1
+2/ dk/dxdv {|(vxw,’<v)(i(x,v,x),ﬁ(x,v,x)) P1X_ix,0) = X5, (0
0
(Vo Wh) GEx, v, ), B, v, ) [PV (x, v) — VA G, u)}z}
didv
[J (%, v)]

LA C o
§2||WN—WNH2+ZT/O dx/[|(vwa)<x,v)| v WG 9]
C4e4C|l\

k

To get the first inequality we used the estimate (4.40), while to get the last one we
used (4.41). By definition of ¢*, we conclude that, after an appropriate change of
the constant C > 0,

<10

2
Wl

CeClr
JK

forall t € R (recall that the bounds [|Wy.¢[l2. [IW5 ,[l2 < C are trivial, since the
Vlasov equation preserves the L” norms). This concludes the proof of (4.22).

Proof of Theorem 2.2. We have, using (4.5), (4.10), (4.22):

= Tk
W — Wy 2 =

||C0N,t —5N,t||HS
< k k ~k ~k ~
S llov, — oy lus + lloy , — oy llus + oy, — on ¢ llas

3
< CN'/? (e + %) exp(C exp(Clz])) (1 + Z(s\/E)f) (4.42)

j=1

for a constant C > 0 that depends on supy |Wy || H? but not on the higher Sobolev

2 we conclude that

norms. Choosing k = ¢~
lwn,s — on.illus S CN'Y2e exp(Cexp(Clt]))

as claimed. This concludes the proof of Theorem 2.2. 0O
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Proof of Theorem 2.3. Let VT/N, + be the solution of the Vlasov equation with initial
data Wy . We estimate

IWne = Well2 S IWn. = Wivellz + 1 Wi = Willz. (4.43)
The first term can be bounded by Theorem 2.2. In particular, (2.15) implies that
IWn s — Wy ill2 < Ce exp(C exp(Clt])). (4.44)

As for the second term on the right hand side of (4.43), we have to compare two
solutions of the Vlasov equation, with slightly different initial data, but this is exactly
what we did in Step 3 of the proof of Theorem 2.2. The only ingredients that we
used there were a bound for the L' and for L? norm of the difference of the initial
data. Now, by assumption we have [|[Wo — Wx |1 < «n.1, [Wo — Wil £ kv
and | Wl H? < C. Therefore, the arguments used in Step 3 of Section 4 imply that

IWn: — Will2 < Clien1 + K 2)e M.
Together with (4.44), we conclude that

Wyt — Will2 £ Ceexp(Cexp(Clt])) + Clkn.1 + kn.2) exp(Clt]).

5. Convergence for the Expectation of Semiclassical Observables

Here we prove Theorems 2.4 and 2.5. To show Theorem 2.4, we make first the
additional assumption that the Wigner transforms Wy of the fermionic operators
oy are so that supy [|[Wy || Hf < 0% later, we will relax this assumption with an
approximation argument.

Case supy | Wy || H} < 00 We use the expression (3.4) for the difference wy ; —
N+ to write

tre/PataeV (wN,: — ON,1)

1
N '/ weP T Y15 IV * (o5 — By, @5 U $)ds
€ Jo
1t
+-/ tr !PTV Y (1: ) By U (t; 5)ds 5.1
€ Jo

with By as defined in (3.3). We start by considering the first term on the right hand
side of (5.1). We have

tre'” UV Y (s )V * (py — By), DN, 1 U (5 5)
= /dz (ps(2) — P (@Ntr P TUEV Y (15 5)[V (x — 2), oy 51U (25 5)
_ / &k V() / dze % (py(2) — 75 (2))

treP VY (1 5) [, By TUK (1 5)
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1 - 7lk' o~
=5 dkV(k)tre " (wn,s — ON,5)
tr !PTV Y (1: )[R, By )UK (15 5). (5.2)
Hence,

[P ULV 5 (o, — 7). DU $)ds

[IA

1 v ik-x ~
v [ V@) |re™ (@ — )

‘trei”"‘J“q'EVU(t; e By TU (1 s)(

Ctrl|on sl
sup 5
N wers (1 + kD)

A

‘tr eik~x (a)N,s - 5N,s)

1y .
X SUp — (tr (5% U (1 )P Yt 5)] @ ) . (53)
w,k |k|

where we used the assumption (2.18) and where the supremum is taken over all
k € R3 and all w with tr |o| < 1. From Lemma 4.2, we obtain

tr e VY1 )V % (pg — By), D5 1 UL 5)ds

Ctr|c~uN, | _
< = e(Ipl + lgDe" " sup

1 ik-x ~
= T . m ‘tre (CON’S — Cl)Nys) . (54)

Consider now the second term on the right hand side of (5.1). By the cyclicity
of the trace, we find

tr &P ¥V Y (15 5) ByUF (85 5) = wld* (13 5) PV U(r: s) B, (5.5)

We recall that the kernel of the operator By is

~ - ~ f(x+Y
Bs(x;y) = [(V * 05)(X) — (V% p)(y) — V(V * py) (T) (x = y)}
xwn,s (x5 y).

Expanding the parenthesis with the potentials in Fourier integrals, we obtain

-~ - - xX+y
[(V * Ps)(xX) — (V x pg)(y) — V(V % py) (T) “(x— y)}

ik- (x+y)

ik (x —y)

- /dk Uk (e — ek —e
with U = V * py. We write

1 I
oikx _ ik :/ dkieik(xﬁ(px)y) =/ dre TPk (¢ _ y).
o di 0
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and hence

— kY kT x—y)
1 .
= / dx [eik'(k’”“(l*k)” — eik'%] ik-(x—y)
0

I |
:/ dA/ dpp e F RO A=DN A=A 5 | 2k - (x — y)]P.
0 0

eik~x

This implies that

3 1 1
By = 2/0 dA(A—l/Z)/O du/dkl?(k)k,»kj

i,j=1
% [xl-, [Xj, ei(/UHr(l7M)/2)k~xa')N7sei(;L(l7A)+(1ﬂz)/Z)koc]]‘

Therefore, we can bound the absolute value of the second term on the right hand
side of (5.1) by

’tr P (12 5) By UK (15 )

3 1 1
< Z/O d)\|x—1/2|/0 dM/dk|U(k)||k|2

i,j=1

x ‘tru*(t; )P IV (11 5)

[x;, [xj, ei(/tk+(l7//,)/2)k~xa')N’Sei(/4(l7A)+(17//.)/2)k-x]]

3 1 1
= Z/ dm—l/zl/ du/dklﬁ(k)llkl2
0 0

ij=1
x [trli, Ly, U )P VU@ 5)])

ol (A+(1=p)/2)k-x cT)N,sei(”(l_)”H(l —)/2)k-x

< Ctrla,| / dk [T (k)[k[* sup [tr [x;, [xj, U (5 )P VU1 5)]o) -

w,i, ]

(5.6)

The supremum on the right hand side is taken over all indices 7, j € {1, 2, 3} and
all trace class operators w with tr |w| < 1. This term is controlled thanks to the next
lemma, whose proof is deferred to the end of the section.

Lemma 5.1. Under the same assumptions of Theorem 2.4, there exists C > 0 such
that

sup [tr[x; [xj, U*(1;.9) P TV UE ) N w| £ Ce2(Ipl + 1gD)7e ! (5.7)
i,j,
where the supremum is taken over all i, j € {1,2,3} and over all trace class
operators on L*>(R3) with tr|w| < 1.



From the Hartree Dynamics to the Vlasov Equation

313
Using |I7(k)| < |V(k)|, the assumption (2.18) and (5.7), we conclude that

eI UG 5) B )| £ Curfaw| (] + g% (5.8)
Inserting (5.4) and (5.8) on the right hand side of (5.1), we obtain
1

sup —— )treip'x+q'€v (CUN,I - aN,Z)
pores (P1F 1q1 + 12

o
< c/ ds TON-sl i !
0 N

sup ———— |re* *(wy s — @
kp (1 + |k|)2 ‘ ( N,s N,s)
t
+c/ dstr|@y |eeC 5!
0
1
sup

d tr|5N s i
SC/ ds ———2 gCli=sl —)tre"""ﬂ"gv(w[w —@Ns)
) N pg (L+1pl+1q])? . .
t
+C/ dstr|@y. | e eCl=sl,
0

(5.9
Now, we estimate the trace norm of @y s (here we need the additional regularity
of the Wigner transforms of the initial data assumed at the beginning of the proof).
We have

tr|@n.s] = tr )(1 M)A+ )T A+ D) — 2 M)y

SN =e*A) A+ sl 4+ 21— e2A)dw s lns
< CVNIIA + x5 (1 = 2N aw s lls-

(5.10)
The operator K = (1 + (1 —e2A) @n s has the integral kernel

K@iy = N+ =8y [ @iy (S5 0)e
= N(1 +x%) / dv WN,s(g, D)e

+N(1 + xz)/dv U2WN,S(%, u)e—iv%

—e2N( +x2)/dv (A,,WN,x)(m,v) v

+l.8N(1+X2)/dUU'VvWN,S(m7 ) i
Writing

Ay
&

Aoy
&

X+y 2 X =y 2
(1+x2)=1+( 5 )+( )
we conclude that

&

4
1K llus £ CVN D el Wyl

Jj=0
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The propagation of regularity of the Vlasov equation from Proposition B.1 gives
us

4
IKllns < CVNePTS el Wyl
Jj=0

and thus, with (5.10),

4
oy | < CNePTS el Wyl
j=0

Inserting in (5.9) and applying Gronwall’s inequality, we find

I.eip-x+q-8V (CUN,t - c~UN,t)

sup ——m————— ‘
pvems (LF [P+ lg)?
4

4
< C[ZeanNuHJNeexp (C[ZejHWNHHJ exp(C|t|)). (5.11)

Jj=0 =0
This completes the proof of Theorem 2.4, under the additional assumption that
1Wn ”Hf is bounded.

Proof of Theorem 2.4. We have to relax the condition sup ||Wy || HE < OO To this
end, we proceed as follows. We set

WK (x, v) = (Wy * g)(x, v) = /dx’dv/gk(x —x,v=V)WxnE', V)

with

k2 40?)

gk(x,v) = e

(2m)?

and we denote by a)ll‘v the Weyl quantization of Wllf,. We recall from (4.3), that
(3 )

/dwdz e~ 202 [eiw'ﬁeﬁ'va)[veiﬁ'veﬂ.w'ﬁ] (x;y)

(5.12)

T @3

is a fermionic reduced density with 0 < a)ll‘v < landtr w’l‘v = N. In fact, (5.12),

together with the assumption (2.19), also implies that
N
trloy — ol | < C—. (5.13)

Tk

To see this, we write:

tr|oy — ol | <

= (2n)3 /dwdze’zz/sz’”z/2
I

jw.— L.y S v A O
eV eVE T oye K e VR —wyl,

tr



From the Hartree Dynamics to the Vlasov Equation 315

where
iw-— L.y LY i
tr‘elw Ve evE  wye VK e ke —a)N’

X

é tr (,()N,e_ﬁVV:” +tr|eiw-ﬁwNe—iw ﬁg _ wN

I
< tr|[ww, e_%'v]’ + tr|[wn, e_iw'ﬁ”
< i'tr\[aw, VI + Mtr’[w;\/, x]

\/E \/Es '
this estimate, together with the assumptions (2.19), implies that:

CN 1
tr|oy — ok | £ —=

Vk @2n)?

which proves Equation (5.13).
We have |Wyl,,; < Ck//2, forall j = 1,....4. Choosing k = &2, (5.11)
4

implies that

/dwdze_zz/ze—w2/2[|z|+ |w|],

1 .
sup —————— |trelP TV (k Gy )| £ CNeexp(Cexp(Clt))).
paers L+ 1p1+1gD? ot '

‘tre

On the other.hand, progeeding as we did between (4.14) and (4.15) (replacing
the observable e'7* with elp'”‘f'gv), we obtain

ipxtq-eV < Cexp(Clr)) trloy — ok

k
sup ———— ‘tre (wnN — N ,)
pg L+ 1pl+1ql el

With (5.13), we conclude that (again with the choice k = e72)

1 ipx+q-eV k
sup ————— )tre’p N (on .y — w )‘ < CNeexp(Clt)).
ra L +1pl+1ql S

Finally, we observe that
tre? TV Gy — @ ) = NWhi(p.q) — WE ,(p.q)
and therefore we estimate

tre? Y @y — @y )| £ CN Wy — Wil
The L' -stability of the Vlasov equation with respect to perturbation of the initial data
has been already established in the proof of Theorem 2.2. Following the arguments

between (4.23) and (4.39) (using the assumption on the W 1! Sobolev norm of the
sequence Wy ), we obtain

W = Wy Il < CeS Wy — Wil
Using again the uniform bound ||Wy|ly1.1 < C, and the choice k = 72, we find

17 7k
Wy — Wyl < CeeCll.
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‘We conclude that

1

sup ————— |tre” Y (o, — @Dy .)| £ CNeexp(Cexp(Clt]))
rg (L+|pl + 1q)? ' '

for any sequence of initial densities wy satisfying (2.19) and whose Wigner trans-
forms Wy satisfy || Wy |11 < C uniformly in N. O

Proof of Theorem 2.5. We write

(Wi (p, @) — Wi(p, )| < ’WN,I(PJ]) - VT’N,z(p,q)‘

+ ‘VT’N,z(p, q) — Wi(p, q)‘

where VT’N,, denotes the solution of the Vlasov equation with initial data Wy . From
Theorem 2.4, we know that

W (p.@) = Wi (p. @) < Ce(l + [pl + Iq 1)1,

To conclude the proof of the theorem, we need to compare the solutions WN, + and
W, of the Vlasov equation, using the fact that the two initial data are close in L'.
As in the approximation argument used in the proof of Theorem 2.4, we make use
of the L'-stability of the solution of the Vlasov equation, established in Step 3 of
the proof of Theorem 2.2. Following the arguments between (4.23) and (4.39), we
obtain

IWy,e — Welli £ CeC" Wy — Wolly
where the constant C > 0 depends only on || Wy||y1.1. This implies that
IWn:— Willoo S IWny — Willy < Cieye€ll,
Hence,
|Wx.(p, @) — Wie(p, )| £ CA+Ipl +1gD*(e +rn)eCl,

which concludes the proof Theorem 2.5. O

6. Proof of Auxiliary Lemmas

In this section we show Lemmas 4.2 and 5.1.
Proof of Lemma 4.2. 'We define the unitary evolution Ut; s) satisfying

ied, Ut;s) = e  h(t)e " U s)
= (h(t) +2i%r -V +r2e®) Ut s). 6.1)
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‘We observe that

sup ‘tr [eir'x, U*(1; $)e* PHEVayy (s s)] a)‘
= sup )tr [ei”, U*(1: $)e* PV (s s)] U(s: 0)wld* (s 0)’
= sup )tra*(s; 0) [e"”, U*(1: 5)e > PHeVay (1 s)] Us: O)a)‘ 6.2)

where the supremum is taken over all trace class operators @ on L*(R?) with
tr|w| < 1 and where we used the fact that tr [/ (s; 0)wl*(s; 0)| < tr|w|. For a
fixed w and for fixed t € R, we now compute the time-derivative of

ied trld* (s; 0) [, U (t; 5)e™ PHEVaU(t; )IU(s; O)w
= —trll*(s; 0) [h(s), [, U (t; 5) &* PV U@ ) Us; O)w
—2e2 U (s; 0)ir - V[, U (t: 5) X PTEVIU@L; ) UG )
— &2 P2l (s; 0) [, U (1 5) X PTEVI U1 )1 Us; O)w
+trl*(s; 0) [, [h(s), U*(t; 5) X PTEVIU@E ) UGs; 0)w.

Using the properties of commutators, we find

iedstrl* (s; O)[e™, U*(t; )™ PV (1; $)IU(s; O)w
= 262 trld*(s; 0)ir - V[, U*(t; 5) & PTEVIUY1; )| U(s; 0w
— 22wl (s; 0) [, U (t; 5) X PHEV9 Ut $)1Us; O)w
+trld* (55 0) U (t5 5) € PHEVAUY(1; 5), [h(s), € NNUG; O)w.  (6.3)

We have
[h(s), €7 ¥ = (=2ie*r -V — &%r?) ™.
Inserting this expression in (6.3), we get

iedstrU*(s; 0)[e” ™, U (t; )™ PTEVAL(t: $)JU(s; 0)w
= 2etrU*(s; 0) [U*(t; 5) X PHEVIUY(1; 5), ir - eV] e U(s; 0)w. (6.4)

Integrating this equation from time s to time ¢, we find

i (s; 0) [, U*(t; )™ PV (t; $)JUs; 0)w
= trU*(t; 0) [, X PV (1 O)w

t
+2i/ dr trld*(z; 0) [U* (¢ T) ¥ PHVIY 1 1), ir - V] e  UT; 0o,
which implies that
’trﬁ*(s; O™, U* (1: )& P+eV 9L (1: ) U(s: O)a)‘

< (tr [, PV a1 0) el T (1 0)‘

t o~
+2/ dr ‘tr [u*(z; D) Py r),ir-sV] ¢ U (T 0Vl (13 0)] .
S
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Since

[eir-x’ eixp-i—aV-q] — (e—isr-q/Z _ eiar-q/Z)eix-(p+r)+£V-q

we conclude that, for any trace class operator w on L2(R3), with tr lw] £ 1, we
have

1 : . ~
ﬁ‘tr [ezr~x’ U*(l; s)ezx~p+sV‘qu(t; S)]Z/[(S; O) wu*(s; 0)‘
r
' * ix-p+eV- T

Selgl+2 [ drsupitr [U(t; )P ‘fu(t;z),zﬂ-sv ®
N w r

where, on the right hand side, the supremum is taken over all trace class @ with
tr|w| < 1. From (6.2), we obtain

’

sup [tr e, U (1; s)e™¥ PHeVay(r; s)]a)‘
w,r
t .
<elgl+ 2/ dr sup |tr |:z|r—| eV, Ut 1) PV ALY (¢, ‘L’)] a)‘ . (6.5
s o,r r

Next, we bound the supremum on the right hand side of the last equation. To this
end, we observe that

sup
w

tr [zil eV, U (1 5)e PVt s):| a)‘

|r

= sup |tr |:Ll*(t; $)e PrEVaAL (1 5), iﬁ . 8V:| U(s; 0)ld* (s; 0)‘
w r

= sup |trif*(s; 0) [u*(t;s)e"X'P“V'qua;s),iﬁ -gv} L{(s;O)a)‘. (6.6)
w r
We compute

ied trU* (s; 0) [U*(£; )™ PV 9U (s 5), ir - eVIU(s; O)w
= —trU*(s; 0) [h(s), [U*(t;5) X PVt 5), ier - V]IU(s; O)w
+tr U (s;0) [[h(s), U (t; 5) €5 PYEVIUY 1 5)], ier - VIU(s; 0)w.

The Jacobi identity implies that

ied trU* (s 0) [U*(t; )™ PTEVIYt: 5), ir - eVIU(s; O)w
= —trlU*(s; 0) [U*(t; 5) X PYEVLUY (15 5), [h(s), ier - V]IIU(s: O)w. (6.7)

We have
[h(s),ir-eV]=ier - V(V x ps)(x) =ier - /dka(k)@(k)eik"‘.
Hence
ied,tr U™ (s; 0) [U*(t; )™ PTEVU(t; ), ir - eVIU(s; 0)w = —ie/dkr kV (k)5 (k)

trid*(s; 0) [U*(t; 5) 5PV Ut 5), 5T U(s: O)o.
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Integrating from time s to time #, we find
trld* (s; 0) [U*(t; $)e™ PTEVAUY(1; 5), ir - eVIU(s; 0)w
= el (1; 0) [ PTEVY iy - VUG O)w + i /t dr / dkr - kV (k) px (k)
s
trld*(z; 0) [U (15 1) PHVIUY (1 1), ¥ 1UT; 0)o.

Since

[eix-p+£V‘q’ ir-eV]=er- peix-p—&-qu’
we conclude that, for any trace class operator w with tr |w| < 1,
]tru*(s; 0) [u*(z; e PTEVa (1 5), il:—l : .sv] Us: O)w‘ = ¢lpl

t
+/ dr supl%| trld* (; 0) [U*(t; T)e PV Y (1; 1), eik'x]l/l(t;O)a)‘ /dk|k|2|f7(k)|4
K w,k

From (6.6), we find

sup
w,r

tr [zﬁ eV, Ut 5)e ¥ PHEV AL (¢, s)i| a)‘ < elp|
r
t
1 . .
+C/ dt sup |—| ‘trl/{*(r; 0) [U*(1;: D)™ PV (1t 1), e 1UT; ).
s w,r |I

Combining this bound with (6.5) and applying Gronwall, we obtain

sup |tr [e”'x, U*(t: 8)e* PV (s s)] w)
w,r
+ sup |tr |:z|r—| eV, Ut 5)e PrEVaY (1 s)i| a)‘ < eN(p|+ Iql)ec"_sl.
w,r r

O
Proof of Lemma 5.1. We observe, first of all, that
sup [tr [x; [x;, U* (13 5) P TV U (25 5) 1] ]
w
= sup [tr [x; [x;, U* (15 8) P FEY U5 9) 11UCs; 0)ld* (55 0)|
w

= sup [trUf*(s; 0) [x; [x;, U*(t;5) P TV UE 9) 1TUG; Ol (6.8)

‘We consider now the derivative
iedstrU* (53 0) [x; [x;, U (t; 5) P TV U1 ) TTUCs; O)w

= —trlU*(s; 0) [h(s), [x; [xj, U (25 5) &PV Y (85 9) 111U )
+rU* (53 0) [x; [xj, [h(s), U5 8) PV U (t; ) 1TTUCs; 0.
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The Jacobi identity implies that

igdstrU* (53 0) [x; [x;, U*(t; 5) P TV U1 ) TTUCs; O)w
= U (53 0) [x; [[x, h(s)], U (15 5) PV U(t; 5) TTUs; O)
+trU* (55 0) [[x;, ()], [xj, U (23 5) P FTV U85 5) NUCs: 0)oo.

Since [x;, h(s)] = SZVXj (and since [VX_/. , X;] = &;; is anumber), we conclude that
iedstrld* (53 0) [xi, [xj, U (t;5) &PV Y (15 5) 11 UCs; 0)w

= etrlU*(s; 0) [ Vy,, [x;, U*(t;9) &P TV U 5) 11 U(s; 0o
+etrlUd*(s; 0) [eVy,, [x;, U*(t; ) PV (12 $) [1Us; O)w. (6.9)

Integrating over time, we find
trU* (55 0)[x;, [x, U (25 )P TTEVU(t; ) U(s; 0)w
= trlU*(t; O)[x;, [, P TEVIUE )

t

+i / drtrld*(t; 0)[eVy,, [xi, U (t; )P VU DIU(T; O)w
t .

+ i/ detrd*(t; 0)[eVy,, [x;, U™ (1; )P CEV Y (1 ) U(T; 0.

Since

eip~x+q-sv] ip-x+q-eV

[xi, [x;, 1=¢%qigje

we find
[trU* (s 0)[xi, [xj, U (25 $)eP TV U (1 5)11UCs; 0ol

t
< egP + [ dr sup eV b U 00U ool
s

w,i,]
for all trace class o with tr |w| < 1. From (6.8), we obtain

sup [tr[x;, [x;, U*(t; )P TEVU(t; 5)] o)

., ]

t
§g2|q|2+/ dr sup |tr[eVy,, [xi, U*(t; )P VUt 1)),
N

w,i,]

where the suprema are taken over all trace class w on L?(R3) with tr|w| < 1.
Next, we look for an estimate for

sup [tr[eVy,, [xi, U (t; )eP TTEVUE; )l

w,i,]

= sup [trUd*(s; 0)[eVa;, [xi, U™ (2 $)e P VY (15 ) U(s; 0)o).

,i,]
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To this end, we compute the derivative

iedstrU* (55 0) [V, [x;, U (15 5) P TTEV Ut 5) 1TUCs; O)w
= —trU*(s; 0) [h(s), [V, [x;, U (t;5) P TTV Ut 5) 1 UCs; 0)w
el (53 0) [V, [x), [h(s), U1 5) P TV UE: ) NUs: 0o
= trU*(s;0) [[eVy,, h(s)], [xj, U (t; ) P TTEV U@ ) 11U (s; O)w
+rU* (53 0) [eVy,, [[x), h(s)], U (t55) P TV U1 $) TTUCS; O

With
[V, h(s)] = eV, (V % p)(x) = g/dkk,- V(k)ps (k) (6.10)

we obtain
iedstrU* (53 0) [V, [x;, U (15 5) P TTEV UY(t; 5) TNUCs; 0w

—¢ / dkk; V (k) ps (k)teU* (55 0) [5%, [, U (25 5) e P4V U(t; 5) U Cs; 0)w

HetrU*(s; 0) [eVy,, [eVy,, U (15 5) P TTEV Ut 5) 11 U(s; 0) .
Using the identity
[€FF, A] = % ¥ A — Aeih™

1
:/ dkiei,xk-eri(l—x)k-x
o da
1
:/ dre ik - x, Ale!ImPkx (6.11)
0

we conclude that

iedstrU* (53 0) [V, [x;, U (15 5) P TTEV Ut 5) TU(s; 0w

1 J
= g/ d,\/dk > kikeV (k)i (k)
0 I=1
tril*(s; 0) e [xy, [xj, U*(t; 5) PV (15 5) 11 PR (s: 0)w
+etrU*(s; 0) [eVy,, [eVy,, U (t;5) P TTEY U(1; ) 11 U(s; O)w
and hence, after integrating over time,

ltrUd* (s 0) [eVy,, [xj, U5 8) PV U(t; ) 11 UCs; 0)o|
< JwrUd*(1;0) [eVy,. [xj, P TCVIUE 0)oo|

/ dr/ dk/dk|k| V)|

x|trtd* (25 0) e [xg, [xj, U (15 1) PV U@ 1) e TP UT: 0)o

1t
+/ dr [trld*(7; 0) [ Vs, [V, UH(t: T) P TV U 1) TU(T: )]
N
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Since
[vai , [xja eip~x+q€~V]] — _iezpiqjel'p'XJrq&'V’
this implies that

sup |tr[eVy,, [x;, U (t; 5) e P TV U1 ) To]

,i,j

t
< |pllgl + C / dr sup [tr[xi, [, U (15 7) P55 11 7) Tl
S

,i,j

1
+/ dr sup |tr[eVy,, [stj,Z/{*(t; )P TV Y ) ol (6.12)
S

,i,j
Finally, we need an estimate for

sup |tr[eVy,, [eVy,, U*(t:5) P TTV U5 5) ) 0

w,i,j

= sup |[trif*(s, 0)[eVy,, [Sij,Z/l*(t;s)e"p'”q'eVU(t;s)]]M(s;O)a)|.

WL, ]
Hence, we compute the derivative
iedstrU* (s; 0)[eVy,, [eVy;, U (t: 8) e PV Ut 5) 1NUGs; 0)
= —trU*(s; 0)[h(s), [eVx;, [Va;, U (t;5) P TCEV U5 ) NUCs: 0) 0
U (53 0)[e Vs, [6Vy,, [h(s), U*(t;5) €7 TV U ) 1NUCs: 0)
= trlU*(s; 0)[[e Vi, ()], [ Vy,, U (t: 5) P TUEV U (85 )]NU (s 0w
+ U (53 0)[eVy,. [[eVx, . h()] U (1 5) P TV U1 )]NU (53 0)ew.

From (6.10), we find
iedstrUt™ (s; 0)[eVy;, [eVy;, U*(t; 5) P T2V 141 5) TTUGs:; 0)
= g/dkkiV(k)ﬁs(k) trUd* (s; 0)[e'F Y, [V, U (t:8) e PV U (1 9)1U (53 )

+8/dkkj\7(k),6}(k) U (s; 0)[eVa,, [, U (15 5)e P TUEY U(t; ) U3 ).
(6.13)
In the first term on the right hand side of the last equation we use (6.11). In the
second term, on the other hand, we notice that
trU* (s; 0)[e Vi, , [, U* (1 5) PV Ut; $)1U (53 0)ew
= trlU*(s; 0)[**, [V, U*(t; 5) P TV UL; 5)IUs; )
el (53 0)[[e Vs, €1, U (t55) P TV Ut $)U (53 0)ew.
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Again, the first term on the right hand side of the last equation can be handled with
(6.11). As for the second term, we use that [V, e ¥] = igk;e’** . Integrating
(6.13) over time, we find

|trU*(s; 0)[e Vi, [€Va,, U3 5) €7 VU5 5) TUCs; 0) ]
< U (1;0)[eVy,, [Vy,, PV 1IU(L; 0) o

t .
+C/ dr sup |tr[eVy,, [x;, U*(t; T) P TV U (1 7)o
s

w,i,]

+Ce [/ dk |/\7(k)||,b\s(k)||k|3dki|

t 1 . .
X / dt sup —|tr [, U (13 T) PV Ut 1) o] |
K} w,k |k|

To bound the integral involving the potential in the last term on the right hand side
of the last equation, we use (2.18) with || 0s]lcc < 1. From

[vai, [gvxj, esz-i-qsv ] — _Szplpjel[?)("rqSV
and from Lemma 4.2, we obtain
[trid*(s; 0)[eVy,, [8ij,U*(t; ) ePXHTEY (12 ) UGS 0) o

t
<Ce?+ C/ dz sup |tr [eVy,, [x;, U*(t; )PV Y (1 1) ]]w|. (6.14)

s i, ]

Combining (6.9) and (6.12) with the last equation and applying Gronwall lemma,
we deduce that

sup [tr [x;, [xj, U*(t; 5) PV U@ 5) 1w £ Ce2(|pl + |g])?eCl]

i,j,w
sup tr [V, [x;, U*(t; 5) €Y U ) o] < Ce*(Ipl + |q])7e !
i,j,w
o, ipx+q-eV . < 2 2 Clt—s|
Sup Itr[gvxi’ [8ij‘vu (I,S)e u(tss)]]w| :C8 (|p|+|Q|) e .

i,j,w
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Appendix A. Well-Posedness of the Vlasov Equation for Signed Measures

The goal of this appendix is to show that the arguments of [8] can be extended
to prove the well-posedness of the Vlasov equation (1.10) for initial data given by
signed measures.

Following the notation of [8], let M denote the space of all finite signed mea-
sures on the Borel o-algebra B(R®). For an open interval A C R, we denote by
M the set of all families M = {us}ren, with u, € M for all € A such that, for
all bounded intervals A" C A, there exists Cxs > 0 with sup,c o+ [|4¢]l < Ca’, and
such that the function

(VV sk ) (x) = / VV(x —x')dps (', 0)

is continuous in r € A, for all x € R3 (V denotes the interaction potential entering
the Vlasov equation (1.10)). For C > 0, we also denote by M () the set of
families M = {us}rea with [[ia; || = supgepmre) [L(B)| = « forall 7 € A.

Defining A, B : R? x R3 — R? x R? by A(x,v) = (2v,0) and B(x, v) =
(0, VV (x)) and, for every u € M,

B, (x,v) = / B(x —x',v—v)du@’,v)

we say that a family M = {;};ea € M a is a weak solution of the Vlasov equation
on the interval A if, for every test function & € D(Rﬁ) in the Schwarz space,

e () = / hx. v)duy x, v)
is differentiable in t € A and

d
gﬂt(h) = i ((A+ By, )Vh).

It is easy to check that, if the weak solution w, has a density W; (x, v), differentiable
in t, then W; is a solution of the standard Vlasov equation (1.10).

Proposition A.1. Let V € Cg(R3). For any finite signed measure n° € M, and

every open interval A C R with 0 € A, there exists a unique weak solution

M = {ut}ren of the Viasov equation on A with p;—g = ,uo.

Proof. We follow the strategy of [8], adapting it to the case of signed 1°. We will
use the variable z = (x, v) € R®. For M = {i;}iea € Ma, we define

Gu(t,2) = A(z) + By, (2) (A.1)
and we consider the solution of Newton’s equation
d
az(z‘) =Gu(t, z(1)). (A.2)

We denote by zy (¢, u) the solution of (A.2), with initial data z57 (0, u) = u.
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For a fixed u° € M, we define the map T : M — M by
(TM)(E) = n’(u € R® : 2y (1, 1) € E})

for all E € B(R®). As in [8], it is easy to check that M € M, is a weak solution
of the Vlasov equation with initial data 1° if and only if M is a fixed point of T,
thatisif TM = M.

Hence, to prove Proposition A.1, it is enough to show that T is a contraction
on M. In fact, since clearly TM € Ma(|u0]), for all M € M, it is enough
to show that the restriction of T to M (]|1°])) is a contraction, with respect to an
appropriate metric, that we are now going to define.

For two signed measures i, ' € M, we define

d(p, 1) = dgr(pg, 1) +drr(u—, 1) (A.3)

where = 4 — p— is the Jordan decomposition of y in its positive and negative
parts and where dk g is the Kantorovich—Rubinshtein metric, defined by

dgr(v,v) = inf /P(thz)dm(Z],ZZ)

meN (v,v')

where p(z1, z2) = min(|z; — z2[, 1) and N (v, V') is the space of all positive mea-
sures m on B(R!2) such that m(E x R®) = v(E) and m(R® x E) = v/(E) for all
E € B(R®). Furthermore, for M = {i;}ien, M’ = {1} }ren € Ma, we define

d(M, M') = /A d (e, 1))

It is easy to check that (A.3) defines a metric on M(A).
We claim that, for | A| small enough,

d(TM, TM') < %d(M, M) (A4)
forall M, M’ € Ma(||u°]). To prove (A.4) we observe that, for all u, u' € M,
B, (z) — B (z) = /B(z —w)dp(w) — / B(z — w)du'(w)
= /(B(Z —w1) — B(z — wa))dm(wy, wo)
—/(B(Z —wi) — B(z — w2))dm_ (w1, w)

foranym, € N(uy, p/y),m_ € N(u—, u’).Recalling that B(x, v) = (0, VV (x))
and the assumption V € Ci (R3), we find

|B(z) — By (2)] g/'B(Z_wl)_B(Z_w2)|dm+(wl»w2)
+/|B(z—w1)—B(z—w2)|dm—(w1,w2)

< C/P(wl,wz)der(wl,w2)+/,0(w1,w2)dm7(w1,w2)-
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Since the inequality holds for every my € N(uy, /) andm_ € N(u_, u_), we
conclude that

|B,(z) — By (2)| < Cd(, 1) (A.5)

forall u, ' € M and all z € RO.
Furthermore, recalling the definition (A.1), we observe that there is a constant
C, depending on ||1°||, such that

IGm(z) = Gu(| = Clz = 7| (A.6)

forall z, 7/ € R® and for all M e MA(||M0||).
For M, M’ € MA(|n°|) and u € R®, we define the quantity

a(M, M’ u) =sup |zp(t, u) — zpp (£, u)|.
teA

With (A.6), we obtain
t
lzpr (2, u) — zpp (8, )| < / (G (s, zp (s, u) — Gy (s, zp (s, u))|ds
0
§/ IGp(s,zpm(s, u) — Gy (s, zp (s, u))|ds
A

+/A Gu(s, zpr (s, u) — Gy (s, 2y (s, u))|ds
for all t € A. Combining (A.5) and (A.6), we find
lzp (t, u) — zpp (2, w)| = C/A lzp (s, u) — zpp (s, u)|ds + Cd(M, M'").
Taking the supremum over ¢, we conclude that, for sufficiently small |A],

c
aM, M, u) < ————dM, M').
1—C|A|

We are now ready to bound d(T M, TM’). For M, M’ € M (||°]]), we notice
that

(M) (E) = i, (1 € B : 24y (0,0 € E})
for every E € B(R®). Now, let

my = (F) = pS(fu € R® 2 (2 (t, u), 2pr (1, 0)) € FY)
for every F € B(R'?). Then we have my+ € N(TM;)+, (TM))4) and

/P(ZhZZ)dmt,:t(Zl’Q) =/p(ZM(t,u),ZMf(t,u))dMi(u)

< /a(M, M’ u)dul (u)

Cllipd |
1 —C|A]

A

dM, M.
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This implies that

dk R (Mo, (M) < S gy
PEI= 1A
and therefore that
C|A||In°
acrm. m’y < A r .
1—C|A|

Hence, for |A| sufficiently small, we obtain (A.4) for all M, M" € Mx(||u°]).
This proves that 7' defines a contraction on M (||°||) and implies the existence
and the uniqueness of a weak solution of the Vlasov equation, for |A| sufficiently
small. The argument can then be iterated to obtain existence and uniqueness for all
times. O

Appendix B. Regularity Estimates for Solutions of the Vlasov Equation
In the next proposition we estimate the weighted Sobolev norms || W, || HE of the
solution at time ¢ of the Vlasov equation in terms of their value at r = 0.

Proposition B.1. Assume that

/dp IV(p)I(1+ [p?) < oo. (B.1)

Let W; be the solution of the Vlasov equation (1.10) with initial data Wy. For
k=1,2,3,4,5, there exists a constant C > 0, which depends on || W0||H42 but not

on the higher Sobolev norms, such that
IWiell g5 < Ce M IWoll - (B.2)

Proof. We use a standard argument. We denote by @, (x, v) := (X;(x, v), V;(x, v))
the solution of Newton’s equations

X (x, v) = 2V;(x, v)

Vi(x,v) = =V (V% f) (X (x, v)

with initial data Xo(x, v) = x and Vp(x, v) = v. Here p;(x) = fdv Wi(x, v). We
can rewrite Newton’s equation in integral form

t
X (x,v) =x+2/ ds Vi(x, v)
lo (B3)
Vi (x, v) =v—/ VV % po) (Xs (x. ).
0

In the following, it will be convenient to introduce the following shorthand notation:
1X oo = maxjai=; | VEX(x, )|

1V, lloo = maxjai=; | VVi(x, v)| o (B.4)
1P N0 == 11X lloo + 1V, oo
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In general, to control || W || HEs it is sufficient to control ||CI>t(j ) lloo for j < k. 1In fact,
it is not difficult to see that:

||W,||§sz = Z /dxdv(l +x2 + ) VWO (X (x, v), V_,(x,v))|2

la|=k
ey Y [awaree
BISk o1 cipl

aj+... 4o g =k, \(xﬂgl
x| (VEWo) (X (x, v), Voi(x, v)|
x|V (X (x, 0), Vg (e, 0) P+ |V (X (x, v), Ve (x, 0)

A

k

2 (m1)2 (mp) 2 .

c> > IWoll 7y 11715 - 1977 1% (B.S)
n=l1 mip,...,my

mi+...+m,=k, m; ;1

to get the last step we performed a change of variables and we used that, by Gron-
wall’s lemma together with (B.3) and ||VV ||oo < 00:

1+ X2(x,v) 4+ V2(x,v) £ e+ x2 +0?). (B.6)

We start by estimating || W; || H)- To this end, we need to control || d>§1) loo- For any
multi-index « with |a| = 1, we obtain from (B.3) that

t
IV Xilloo = 1+2/ ds IV Vs lloo
0

t
IV Villoo < 1+/ ds [IV2(V % B) 0 Xy - VX, [loc
0

[IA

t
1+C/ ds |V X5l oo
0

where we used that [|V2(V * 5)lleo £ IV*VIloollBsll1, and 1751 = Wolli <

ClIWoll HY (see (4.30)). Gronwall’s lemma, together with the assumption || V2V || o <
oo, implies that

10V oo < CeCM! (B.7)
where the constant C depends on || Wyl|| HY> but not on the higher Sobolev norms.

Thanks to (B.5), the bound (B.7) immediately implies
IWillg,; = CeMIwol,, (B.8)

where the constant C depends on || Wyl| HY but not on the higher Sobolev norms.
This concludes the proof of (B.2) with k = 1. Next, let k = 2. As before, we start
by considering the derivatives V* X, V*V;, now for |a| = 2. We have:

IV (V(V % 55) 0 X9l
S IV % 5o I X V12 + VAV % 5) oo 1 X2 lloo
< CePNWoll g + IV 5 59 oo 1 X Nl (B.9)
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where in the last step we used || V3 (V) | oo < ||v2V||oo||v5s||1§CeC‘sl||W0||H41,

and we estimated | V7,1 < Cl|Wll gy = CeCBWoll - This, together with the
estimate (B.7), implies:

X oo <2 /O IV
1VPleo = € /0 XD + Ce M Woll
thus, by Gronwall’s lemma:
1917 oo = CeIWoll . (B.10)
Therefore, proceeding as in (B.8), we get
IWillg2 < CeM I Woll 2. (B.11)
where the constant C > 0 is allowed to depend on || Wy || 4 1 but not on the higher

Sobolev norms. This concludes the proof of (B.2) for k = 2. Consider now k =
3,4, 5. We will use that, for || = k:

IVOVV 5 B)lloo £ CIVP VI D IVP Al
|Bl=k—1
S CUV2V ool Wil it (B.12)

N

and

IV VIV xB) o Xl SC D D VPV

IBISlal 1
- arteetog=k

(o811
XL oo -+ X5V lloo (B.13)
for a k-dependent constant C > 0. Let k = 3. We have, for |a| = 3:

IV (V(V % B5) © X)lloo
< CUVAHY # B ool XV + 173V % B oo IX P oo 1 XM oo
HIVEV # 5) oo 1X Pl
< CeMNWoll 2 + CIXY o, (B.14)

where the constant C > 0 is allowed to depend on || Wy || 5 1 but not on the higher
Sobolev norms. The last step follows from (B.12) and from the previous estimates
on Wl 1X9 o Jj =1, 2. Plugging this bound in (B.3), we find

4

3
12 oo < Ce“MWoll 2 (B.15)
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where the constant C > 0 is allowed to depend on || Wy || H)» but not on the higher
Sobolev norms. Thus, proceeding as in (B.8):

IWill gy < Ce“MIWoll g (B.16)

where the constant C > 0 is allowed to depend on || Wy || H2 but not on the higher

Sobolev norms. This concludes the proof of (B.2) for k = 3. Let k = 4. Similarly
to (B.14), using (B.12) together with the estimates for || W|| i =1,2,3, we

HiJ
find, for || = 4:
IV (V(V % B5) 0 Xo)lloo
< IV 5 B oo IX I + 194V 5 Aol X2 oo XV 1
HIVZV 5 2 lloo (1 X oo 1 XV lloo + 1 X 1130)
HIVAV 5 ) ool X oo
< CeMWoll s + CIX Pl

where the constant C > 0 is allowed to depend on || Wy|| "} but not on the higher
Sobolev norms. This implies

4
191" 10 < CeMIWoll 5 (B.17)

where the constant C > 0 is allowed to depend on || Wy|| H?» but not on the higher
Sobolev norms. Then, we claim that

IWill g2 < CeMIWoll s (B.18)

where the constant C > 0 is allowed to depend on || Wy || 2> but not on the higher
Sobolev norms. In fact, from (B.5) we get and from the previous estimates on
190{” . j < 4, we have:

4
4
Wil < CeCtI[IIWOIIid 1§ 1% + > ||wo||i,f||wo||il’}}. (B.19)
k=2

This, together with (B.17), implies (B.18) and concludes the proof of (B.2) for
k = 4. The case k = 5 can be studied in a similar way. Let |«| = 5. Using once
more (B.12), (B.13), and proceeding as for the previous cases, we get:

IVE(VV % B5) 0 Xp)lloo < CeTMWoll s + CIIX D Nloo (B20)

where the constant C > 0 is allowed to depend on || Wy || 2> but not on the higher
Sobolev norms. By Gronwall’s lemma, we get:

5
197 oo < CeIWoll . (B21)
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where the constant C > 0 is allowed to depend on || Wy|| 2> but not on the higher
Sobolev norms. Then, we claim that:

IWill g5 < Ce<MlIWoll s, (B.22)

where the constant C > 0 is allowed to depend on || Wy|| H?» but not on the higher
Sobolev norms. To see this, we use (B.5) again. We get:

W2 . < ceCl 1woll2 q)(S) 2
IWell7s < IWolly1 196”14

4 1 3 2
HIWoll32 (195" 1319”1 + 1195”3 1957 12)

5o 15!

5
+ 2 IWoll ||W0|Iz}}, (B.23)
k=3

which, together with (B.15), (B.17), (B.21), implies (B.22). This concludes the
proof of (B.2) for k = 5, and of Proposition B.1. O

Appendix C. Propagation of Commutator Bounds Along the Hartree
Dynamics

Bounds for norms of commutators of the form [x, wy ;] and [V, wy (] play an

important role in our analysis. In this section, we show how they can be propagated
along the Hartree evolution. Similar bounds have been proven in [7].

Proposition C.1. Assume

/Iv(p)l(l +pIPdp < 0. (C.1

Let wy 1 be the solution of the nonlinear Hartree equation
. 2
iediwon;: = [—e" A+ (V *p), on ]
with initial data wy (=0 = wy. Then there exists a constant C > 0 such that

Ix, on llus < CeC [|11x, wn]llus + eV, on]lus]
eV, on . llus < CeCM [|[x, wnlllus + eV, wn]llus].

Moreover,

I, on e < CeCM |Ix, onTlle + eV, on]llu]

eV, on e < CeC Ix, onllle + 16V, on]llu].
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Proof. Let hy(t) = —&2A + (V p:)(x) and U(¢; s) be the unitary evolution
generated by kg (1), as defined in (3.1). We compute

ied;U* (t; 0)[x, oy JU1; 0) = U (1; 0)[hg (1), [x, wn JIU(2; 0)
+UT(t; 0)x, [y (1), oy JIU(E; 0)
=U"(t; 0)[[h (1), x], N JU(t; 0)
=eU*(1;0)[eV, wn JU(t; 0).

Integrating over time, we find
t
[x, wn, ] =UT; 0)[x, oy U*(1; 0) + i/ dsU(t; )[eV, wn s IU (15 5)
0
and thus
t
I[x, wn,dllas = lllx, on]lEs +/ ds [|[[eV, on s]1llHs- (C2)
0

On the other hand,

ied,U*(1;0)[eV, wn JU(t; 0)

= —Ut; 0)[hu(t), [eV, wy JIU(t; 0)
+U(t: 0)[eV, [hu (), oy NU(t: 0)
U (t; 0)[[eV, hu(D)], wn JU(t: 0)
U (t; 0)[V(V * pr), wn JU(t; 0)

e/dpp V(p) Bi(p) U (1; 0) [P, wn JU(L; 0).

Using the identity
[P, wy ] = / dr e [ip - x, wy Je' M
0
we obtain, with (C.1),
eV, wn.llus = [V, wn]llns +/dp|V(p)||p| Ipt(p)l/ dsl[x, oy s1llus
0

t
= llleV, on]lns + C/ ds [I[x, wn s]llHs- (C3)
0
Combining the last equation with (C.2) and applying Gronwall’s lemma, we find

[Ilx, o llus + eV, oy dllas] < CeS Iy, wnTllus + eV, on]lus]

as claimed. In the same way, one can also prove the estimates for the trace norms
of the commutators. O
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