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Abstract

The strong existence and thepathwise uniqueness of solutionswith L∞-vorticity
of the 2D stochastic Euler equations are proved. The noise is multiplicative and it
involves the first derivatives. A Lagrangian approach is implemented, where a sto-
chastic flow solving a nonlinear flow equation is constructed. The stability under
regularizations is also proved.

1. Introduction

The aim of this paper is to prove the strong existence and the pathwise unique-
ness of L∞ solutions to the stochastic 2D Euler equation in vorticity form

dξ + uξ · ∇ξ dt +
∞∑

k=1

σk · ∇ξ ◦ dW k = 0, ξ |t=0 = ξ0, (1.1)

where the initial vorticity ξ0 also belongs to the L∞ space. The equation above
is subject to the periodic boundary conditions and thus can be reformulated as a
problem on a 2-dimensional torus T2 = (

R/Z
)2, see for instance [41, chapter 2].

In other words, the space variable is assumed to be an element of T2 and all fields
are assumed to be 1-periodic (or simply defined onT2). The noise coefficient’s σk’s
are bounded, regular enough, divergence-free vector fields, (W k)∞k=1 is a family of
independent Brownian motions and the velocity field uξ is defined as

uξ
t (x) = K ∗ ξt (x) =

∫

T2
K (x − y) ξt (y) dy, x ∈ T

2,

where K = ∇⊥G = (−∂2G, ∂1G) and G is the Green function of the Laplacian
on the torus T2 with mean 0, that is,

uξ = −∇⊥(−�)−1ξ.
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We will also prove the stability of the solutions under regularization of the kernel
K .

The Stratonovich form is the natural one for several reasons, including physical
intuition related to the Wong–Zakai principle and the fact that an Itô term of the
form

∑∞
k=1 σk · ∇ξdW k would require a compensating second order operator to

hope for a well defined system, see [39]. Besides, the Stratonovich form preserves
the L2 normof the solution and is the right one to dealwithmanifold-valued SPDEs,
see [11]. However, for the opportunity of mathematical analysis, we will formally
rewrite the equation in the Itô form

dξ + uξ · ∇ξ dt +
∞∑

k=1

σk · ∇ξdW k − 1

2

∞∑

k=1

(σk · ∇)σk · ∇ξ dt

= 1

2

∞∑

k=1

tr[σkσ
∗
k D2ξ ] dt, (1.2)

and we will give a rigorous interpretation of the latter one (under some simplified
assumptions). Nonetheless it is useful to sometimes think heuristically in form of
the Stratonovich expression and it would be misleading to believe that the equation
has a parabolic character due to the term tr

(
aD2ξ

)
in the Itô formulation.

The noise in Equation (1.1) has a very special form, compared to general ab-
stract models of stochastic partial differential equations (SPDEs). Our aim is not an
abstract generality. We have chosen this noise for two reasons. Firstly, it occupies a
relevant position in the Mathematical Physics literature on fluids and secondly be-
cause it is of transport type, hence allowing us to use special tools related to the trans-
port equations (flows, L∞-bounds). The applied and theoretical literature on SPDEs
driven by this type of noise is rich, see for instance [5,6,14,19,22,30,31,33,36], in
particular for its relation with turbulent transport of passive scalars and the so called
Kraichnan model [27,28], one of the most remarkable theories where stochastic
models have been applied with success to explain phenomena in fluid mechanics.
The transport structure of the nonlinear deterministic part of the equation (the vor-
ticity in 2D is only transported) and of the stochastic part (Stratonovich choice is
important here), allow one to use stochastic the flows and to control the L∞-norm
of solutions (the vorticity) by the L∞-norm of initial conditions. This control is ω-
wise, uniform also inω in�. Thus, having assumed that initial vorticity is bounded,
the solution is uniformly bounded in all parameters (also ω), opposite to several
other stochastic cases, like the additive noise. This property is an important tool of
our approach and it cannot be readily extended to other stochastic perturbations of
the Euler equations.

What concerns the theory of the deterministic Euler equations, the uniqueness
for L∞-vorticity in the deterministic case is the celebrated result of Wolibner [42]
and Yudovich [44,45]. In addition to an excellent recent monograph [34] where
some additional information about the trajectory method can be found, one should
also mention more recent publications as for instance a recent review paper [15]
by Chemin and a new approach to the old non-uniqueness results of Schaeffer and
Shnirelman by De Lellis and Szèkelyhidi [16].
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The literature on the stochastic Euler equations consists of a number of works,
including [7–10,12,13,21,24–26,37,38,43]. The differences are in the structure
of the noise, the results and topologies involved and sometimes the domain and
boundary conditions. A full discussion is not possible so we limit ourselves to few
remarks. Someof theworks dealwith additive noise, someotherswithmore general,
namely multiplicative, noise but not of the form treated here which involves the
derivatives of the solution, and one paper with noise with derivatives of the solution.
When the noise is additive, the theory is more complete, also because the equation
can be studied pathwise. First results were given in [10], where the existence is
proved when the initial data belongs to the space V and the solution is an H -
valued continuous and V -valued square integrable process (where V is the space of
divergence free vector fields with finite enstrophy and H is the space of divergence
free square integrable vector fields, periodic in an appropriate sense. However this
solution, constructed pathwise on a given probability space, is not known to be
progressively measurable. Moreover, if the vorticity of the initial data is bounded
and the external forces (deterministic and random) satisfy certain assumptions,
the solution is proved to be unique. These results in the additive noise case have
been improved and generalized in the interesting paper [25], based on different
techniques with respect to [10], which relaxes various regularity and boundary
conditions on the noise for the result of existence and uniqueness of solutions with
bounded vorticity and proves very careful measurability properties in the case of
solutions in V , those which are not necessarily unique. Let us also mention that
in the additive noise case the more recent paper [23] gives delicate L∞-vorticity
estimates on invariant measures for the stochastic Navier-Stokes equations with and
their inviscid limit. Multiplicative noise, depending on the velocity field u (and not
on the gradient) has been initially treated in the paper [13] by nonstandard analysis
tools. That paper is devoted to the stochastic Euler equations on a 2-dimensional
torus and the authors prove the existence of a solution on the Loeb space and
the existence of a corresponding notion of statistical solution and it does not deal
with the uniqueness. Then, in the paper [12] the authors prove the existence (but
again not the uniqueness) of a solution to a problem with multiplicative noise as in
[13] and possibly unbounded domains, but the state space is the space the space H
intersectedwith the Sobolev space H1,p for p > 2. In thisway they are able to prove
the existence of solutions which are Hölder continuous with respect to the space
variables. The question of uniqueness in the case of multiplicative noise, which
was left open by these and other works (like [7]), has been recently investigated
in the paper [24], however only for one-dimensional Brownian motion (so that the
Doss–Sussmann transformation can be used). Finally, let us mention the recent
paper [43] by Yokoyama, which is the closest to our model (the stochastic Euler
equations in Stratonovitch form with the noise coefficients depending linearly on
the gradient of the solution), where the author proves the existence of a martingale
solution with the state space V ; the paper does not deal with the uniqueness.

We solve here the problem in the space L∞ following the Lagrangian approach
of [35]. It is based, in the stochastic case, on the investigation of the stochastic flow
equation



110 ZdzisŁaw Brzeźniak, Franco Flandoli & Mario Maurelli

�t (x) = x +
∫ t

0

∫

T2
K (�s(x) − �s(y)) ξ0(y)dy

+
∑

k

∫ t

0
σk(�s(x))dW k

s , t ∈ [0, T ], x ∈ T
2

which is a problem of interest in itself, even when the kernel K is smooth. This
equation is not trivial because of the global dependence of �t (x) on (�s(y))y∈T2

and the difficulty to develop stochastic calculus (for instance a fixed point argument)
in the space of (measure preserving, continuous) mapsψ : T2 → T

2. The approach
inspired by [35] allows us to study this equation and apply the result to the existence
and the uniqueness of Equation (1.1) in L∞.

2. The Main Results

Before stating the results,we list the hypotheseswith somepreliminary remarks.

Condition 2.1. In the paper, we will always assume that ξ0, the initial vorticity,
belongs to the space L∞(T2).

Condition 2.2. The family of processes W = (W k)∞k=1 is a cylindrical Brownian
motion (that is W k’s are independent Brownian motions), defined on a probability
space (�,A, P), with respect to the filtration F = (Ft )t∈[0,T ].

Condition 2.3. The vector fields σk’s are divergence-free and belong to C0,1(T2)

(Lipschitz periodic functions, hence almost every differentiable);moreover the fam-
ily (σk)

∞
k=1 is in W 1,∞(
2), that is

L2
σ := sup

x∈T2

∞∑

k=1

|σk(x)|2 +
∥∥∥∥∥

∞∑

k=1

|Dσk |2
∥∥∥∥∥

L∞
< +∞.

We call a(x) := ∑∞
k=1 σk(x)σk(x)∗ (A∗ denotes the transpose matrix of A). We

assume also that a ≡ cI2, where c is a non-negative constant (possibly equal to 0)
and I2 is the constant identity matrix.

Remark 2.4. Ifa(x) ≡ cI2, for all x inT2, the Itô formulation (1.2) of the stochastic
Euler Equations simplifies to

dξ + uξ · ∇ξ dt +
∞∑

k=1

σk · ∇ξdW k = 1

2
c�ξ dt. (2.1)

Indeed, since the the vector fields σk’s are divergence-free, the first order Itô cor-
rection term, namely 1

2

∑
k(σk · ∇)σk · ∇ξ dt , disappears:

∑

k

∑

i

σk,i (x)∂iσk, j (x) =
∑

i

∂i

(
∑

k

σk,i (x)σk, j (x)

)
=

∑

i

∂i ai j (x) = 0.
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Remark 2.5. Conditiona(x) ≡ cI2, x ∈ T
2, canbe avoided at the price of requiring

more regularity on the functions σk’s and of a few additional computations, which
would obscure the main arguments. Indeed, the fact that a is constant implies the
absence of the first order Itô correction term, which contains the derivatives of σ ,
and that the operator 1

2 tr[aD2] = 1
2c� commutes with the convolution with a given

function; this will avoid the use of a second order commutator lemma (not difficult
but boring and requiring maybe more regularity on the σk’s).

Remark 2.6. Let us briefly discuss examples of noise covered by the class above.
The trivial example of a noise term of the form ∇ξt · dWt where W is a 2-
dimensional Brownian motion is covered by taking σk = ek for k = 1, 2 (where
(e1, e2) is the canonical basis of R

2) and σk = 0 for k ≥ 3. In this case it
should be noticed that the stochastic Euler equations can be reduced to the clas-
sical deterministic ones by the simple transformation ξ̃ (t, x) = ξ (t, x + Wt ).
More than this one, we are mainly motivated by the examples described in the
Mathematical Physics literature quoted in the Introduction, where the noise term
has heuristically the form ∇ξ (t, x) · ∂t W (t, x), for a space-dependent random
field W (t, x), Brownian in time, with a given incremental covariance function
Q (x, y) = E [W (1, x) ⊗ W (1, y)], sometimes prescribed through its Fourier
spectrum like Q (x − y) = ∫

Z2 eik·x f (|k|) dk, for suitable functions f . A rig-
orous and simple way to deal with such space-time noise (correlated in space)
is the one adopted above, namely to prescribe a sequence of independent real
valued Brownian motions W k

t and a sequence of vector fields σk (x). The space-
dependent noise W (t, x) is then given by W (t, x) = ∑∞

k=1 σk (x) W k
t and the

function Q (x, y) = ∑∞
k=1 σk (x) ⊗ σk (y) is its incremental covariance. If one

starts with a prescribed covariance function Q(x, y) (with suitable properties), the
σk’s are an orthonormal basis of a certain Hilbert space, thus their form is not
explicitly given (though their existence is guaranteed, see [5] and [33]).

However, we should notice that in comparison with the literature on the Kraich-
nan model of turbulent advection (related to the original Kraichnan’s papers [27,
28]), we impose regularity properties on the vector fields σk which forbid us
from considering certain singular examples treated there. The covariance func-
tion Q (x, y), corresponding to our case, is always relatively regular, while it scales
with fractional powers of |x − y| in Kraichnan model, see for example [22,33].

Definition 2.7. Let ξ be an element of L∞([0, T ] × T
2 × �). We say that ξ is

F-weakly progressively measurable if, for every f in L1(T2), the process t →
〈ξt , f 〉 = ∫

T2 f ξtdx is F-progressively measurable.

Given an element w in L∞(T2), we will write

u = uw = K ∗ w.

Ifw is also time-dependent, wewill write uw
t = uwt . It is well known, see Corollary

2.18, that |uw(x)−uw(y)| ≤ L K ‖w‖L∞|x − y|(1− log |x − y|) for some constant
L K if |x − y| ≤ 1.
Nowwe give a precise definition of a solution.We use the Itô formulation, having in
mind Remark 2.4. In what follows, 〈 f, g〉 := ∫

T2 f gdx denotes the scalar product
in L2(T2).
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Definition 2.8. Let ξ0 be in L∞(T2). A distributional L∞ solution to the stochastic
Euler vorticity equation (2.1) is an F-weakly progressively measurable element ξ

in L∞([0, T ] × T
2 × �), such that, for every ϕ in C∞(T2), it holds P-a.s.

〈ξt , ϕ〉 = 〈ξ0, ϕ〉 +
∫ t

0
〈ξr , uξ

r · ∇ϕ〉dr +
∑

k

∫ t

0
〈ξr , σk · ∇ϕ〉dWr

+1

2

∫ t

0
〈ξr , tr[aD2ϕ]〉dr ∀t ∈ [0, T ]. (2.2)

It is implicit in the definition that the process 〈ξt , ϕ〉 has continuous trajectories.
Remark 2.9. If a process ξ ∈ L∞([0, T ]×T

2×�) is weakly progressive measur-
able then so is the process uξ ξ . Indeed it implies that, for every h in L1(T2 ×T

2),
the process

t �→
∫

T2

∫

T2
ξ(t, x) ξ(t, y)h(x, y)dxdy (2.3)

is progressive measurable (this can be verified first for h of the form h(x, y) =
f (x)g(y), then approximating every h with sums of such separable functions).
Now, for a test function ϕ, it is enough to write

∫
uξ ξ · ϕdx as

∫

T2

∫

T2
K (x − y) ξt (y) ξt (x) · ϕ(x)dxdy

and take h(x, y) = K (x − y)ϕ(x).

The main result about the stochastic Euler vorticity equation is as follows.

Theorem 2.10. Given ξ0 in L∞(T2) and the cylindrical Brownian motion W (with
the associated filtration), under Conditions 2.2 and 2.3 on the coefficients of the
noise, the stochastic Euler vorticity equation (2.1) admits a unique L∞ distribu-
tional solution.

Remark 2.11. Notice that the filtration is given a-priori. Thus both the existence
and the uniqueness are in the strong sense: there exists a solution ξ adapted to the
(completed) Brownian filtration (the smallest possible filtration) and any solution,
defined on a possibly larger filtered space, must coincide with ξ . The same kind of
existence and uniqueness will hold for every equation we will meet.

Theorem 2.10 will be proved by solving the associated non-local SDE:

�t (x) = x +
∫ t

0

∫

T2
K (�r (x) − �r (y)) ξ0(y) dy dr

+
∑

k

∫ t

0
σk(�r (x))dW k

r . (2.4)

Notice that here the drift, namely

u�(t, x) =
∫

T2
K (x − �t (y)) ξ0(y)dy, (2.5)

depends on the whole flow.
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Definition 2.12. • A stochastic continuous flow is ameasurable map� : [0, T ]×
T
2 × � → T

2 such that, for almost every ω in �, �(ω) : [0, T ] × T
2 → T

2

is continuous and, for every x ∈ T
2, the process �(x) : [0, T ] × � → T

2 is
progressively measurable.

• A stochastic continuous flow � is said to be measure-preserving if, for almost
every ω,�t (ω) : T2 → T

2 preserves the Lebesgue measure on T2 for every t .1

Definition 2.13. We say that a stochastic continuous flow � is solution to the SDE
(2.4) if, for every x , the process X := �(x) solves the SDE

dX = u�(X) dt +
∑

k

σk(X)dW k (2.6)

with initial condition X0 = x .

Theorem 2.14. Given ξ0 in L∞(T2) and the cylindrical Brownian motion W (with
the associated filtration), there exists a unique measure-preserving stochastic flow
solution to equation (2.4). This solution is a continuous flow � of class Cα in space
and Cβ in time, for some α > 0 and for every β < 1/2.

Remark 2.15. Actually the uniqueness holds in a larger class of flows, namely the
class SM defined at the beginning of Section 4.2, as it can be seen from the proof
of Theorem 2.14.

2.1. The Strategy

There are two ways to prove our results. We will develop mainly the one which
requires the weakest regularity assumptions on the σk’s. This strategy will be as
follows.

First we will prove that, for a log-Lipschitz random vector field u, the SDE

dXt = u(Xt ) dt +
∑

k

σk(Xt )dW k
t

admits a unique solution, given by a stochastic measure-preserving continuous flow
(Lemma 4.5). This includes the case of a “linear” version of (2.4), where the drift
is replaced by uψ for some fixed stochastic flow ψ , see also next paragraph for
notation. Then, using an iteration scheme, we will build a unique solution to (2.4),
reaching the assertion of Theorem 2.14.

In the subsequent section, we will use Theorem 2.14 to prove Theorem 2.10.
In the last section, we will show the second method: a “trick” allows us to

reduce the stochastic case to a modified deterministic case. This seems to be more
rapid but requires the σk’s to be at least C2 (at least if one wants to use classical
results), while the first method requires only a Lipschitz-type (precisely W 1,∞(
2))
hypothesis on the diffusion coefficients. That is whywewill not develop this second
method in all the details.

1 To avoid any ambiguity here and other similar situations we assume that there there
exists a measurable set �̃ of full P-measure, such that for all ω ∈ �̃ and every t ∈ [0, T ],
the map �t (ω) : T2 → T

2 preserves the Lebesgue measure on T2.
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2.2. Log-Lipschitz Property of K and Other Useful Facts

First we state the fundamental log-Lipschitz property for K and the drift uξ .
The key inequality (2.8) is stated in [35, section 1.2], and it follows from standard
estimates of the Green function G, see e.g. [3, section 4.2]. For the completeness
sake, we have recalled the proof in the appendix. For r ≥ 0, call

γ (r) = r(1 − log r)1]0,1/e[(r) + (r + (1/e))1[1/e,+∞[(r).

Remark 2.16. The following elementary properties of γ will be of use: the function
γ is increasing, concave and for every 0 < ε < 1/e, we have

γ (r) ≤ −r log ε + ε, ∀r ≥ 0. (2.7)

Lemma 2.17. The map K , introduced before, is an L p(T2) divergence-free (in the
distributional sense) vector field, for every p < 2, and verifies for certain constants
L0,K , L K :

‖K‖L1(T2) ≤ L0,K ,
∫

T2
|K (x − y) − K (x ′ − y)|dy ≤ L K γ (|x − x ′|), ∀x, x ′ ∈ T

2. (2.8)

The divergence-free property is a consequence of the fact that K is orthogonal to a
gradient of a scalar field.

Corollary 2.18. For every w in L∞(T2), uw = K ∗ w is divergence-free and
satisfies

‖uw‖L∞ ≤ L0,K ‖w‖L∞ ,

|uw(x) − uw(x ′)| ≤ L K ‖w‖L∞γ (|x − x ′|), ∀x, x ′ ∈ T
2. (2.9)

We will use also the following elementary result. We recall that, for a finite signed
measure μ on a space E and a measurable map F : E → E ′, ν = F#μ denotes
the image measure of μ on E ′, namely ν(A) = μ(F−1(A)) for every measurable
set A in E ′. Notice that ν is a finite signed measure and that |ν| ≤ F#|μ| (since
|ν|(A) ≤ F#|μ|(A) for every A).

Lemma 2.19. Let F be a measure preserving map on T
2 and let w be in L∞(T2).

Let μ the (signed) measure on T
2 with density w (with respect to the Lebesgue

measure) and define ν = F#w. Then ν has a density (denoted by v) with respect to
Lebesgue measure and ‖v‖L∞ ≤ ‖w‖L∞ .

Proof. It is enough to prove theLemmawhenw is nonnegative. Since F ismeasure-
preserving, if A is a set of zero Lebesgue measure, then L2{F ∈ A} = L2(A) = 0,
and so

∫
A dν = ∫

T2 1A(F)wdx = 0. So ν admits a (nonnegative) density v. Now,
taking ε > 0, B = {v > ‖w‖L∞ + ε}, we have

(‖w‖L∞ + ε)L2(B) ≤
∫

T2
1Bvdx =

∫

T2
1B(F)wdx ≤

≤ ‖w‖L∞L2{F ∈ B} = ‖w‖L∞L2(B),

which implies that L2(B) = 0. By arbitrariness of ε, we get ‖v‖L∞ ≤ ‖w‖L∞ . ��
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Given Lemma 2.19, we will use often v = F#w instead of ν = F#μ.
Finally some other notation. Let ψ a measurable measure-preserving flow on

T
2. With the notation in the previous section define ξ

ψ
t = (ψt )#ξ0 (which is in

L∞([0, T ] × T
2) by Lemma 2.19) and uψ = uξψ

, which also reads

uψ(t, x) =
∫

T2
K (x − ψt (y)) ξ0(y)dy.

As already noticed, the SDE (2.4) reads as

�t (x) = x +
∫ t

0
u�

r (�r (x))dr +
∑

k

∫ t

0
σk(�r (x))dW k

r .

Remark 2.20. By the definition of uψ , Corollary 2.18 and Lemma 2.19, uψ enjoys
‖uψ‖L∞ ≤ L0,K ‖ξ0‖L∞ and the following log-Lipschitz property:

|uψ(x) − uψ(x ′)| ≤ L K ‖ξ0‖L∞γ (|x − x ′|), ∀x, x ′ ∈ T
2. (2.10)

Given λ a positive constant and z0 in [0, 1/e], we will also denote by zλ(t, z0)
(omitting the λ when not necessary) the solution to the ODE

zt = z0 +
∫ t

0
λγr (zr )dr

This z is unique and has the explicit formula

z(t, z0) = zexp[−λt]
0 e1−exp[−λt]1t<t0 + (2e−1 exp[λ(t − t0)] − e−1)1t≥t0 , (2.11)

where t0 = t0(λ, z0) = 1
λ
log 1−log z0

2 is the time such that z(t0) = 1/e. Notice that,
for z0 in [0, exp[1 − 2eλT ]], it holds t0 ≥ T and so, for t in [0, T ],

z(t, z0) ≤ ezexp[−λt]
0 . (2.12)

3. The Deterministic Case

Wefirst treat the deterministic case, in order to show the basic ideas. The scheme
of the proof, strongly inspired by [35], is a suitable rewriting of [35], convenient
for generalization to the stochastic case.

Euler flows in 2D (on the torus T2) are described by the following non-local
ODE:

�t (x) = x +
∫ t

0

∫

T2
K (�s(x) − �s(y)) ξ0(y)dy. (3.1)

Equation (3.1) reads as �̇ = u�(�) (with initial condition �0 = id), notice that
the drift is log-Lipschitz. That is why we consider the auxiliary equation (linear
problem):

X x
t = x +

∫ t

0
u(s, X x

s )ds, (3.2)
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where u is a fixed measurable vector field with the following property: for every t ,
x, y,

|u(t, x) − u(t, y)| ≤ Luγ (|x − y|) (3.3)

for some Lu independent of t, x, y.

Lemma 3.1. For every initial datum x , equation (3.2) has a unique solution. This
solution is described by a (unique) flow ψ of measure-preserving homeomorphisms
of class Cα in space and Lipschitz in time, with α = exp[−Lu T ].
Proof. The existence of a global solution (in R

2) to (3.2) follows from the Peano
Theorem, since u is continuous bounded. The uniqueness holds by the Osgood
criterion (since

∫ ε

0 γ (r)−1dr = +∞)) or even by theHölder estimate below (simply
take x = y).

The Lipschitz continuity in time follows by boundedness of u. As for the Hölder
continuity, property (3.3) implies that, for every x and x ′,

|ψt (x) − ψt (x ′)| ≤ |x − x ′| + Lu

∫ t

0
γ (|ψs(x) − ψs(x ′)|)ds.

By a comparison result, |ψt (x) − ψt (x ′)| ≤ zLu (t, |x − x ′|) (recall that zλ is the
unique solution to zt = z0+∫ t

0 λγ (zs)ds). The bound (2.12) for z gives the desired
regularity. The invertibility and the continuity of the inverse map are due to the
classical cocycle law, so that the inverse flow ofψt isψ−t . The measure-preserving
property follows by a simple approximation argument, see the proof of Lemma 4.5
in the stochastic case. ��
Now we use the Picard iteration scheme to prove the existence and the uniqueness
of solutions to (3.1). Consider the set

MT =
{
ψ : [0, T ] × T

2 → T
2|ψ measurable , sup

[0,T ]

∫

T2
|ψt (x)| dx < +∞,

ψt measure-preserving for almost every t
}
.

It is a complete metric space, endowed with the distance dist (ψ1, ψ2) =
sup[0,T ]

∫
T2 |ψ1

t (x) − ψ2
t (x)| dx . For any ψ in MT , define G(ψ) as the unique

flow solution to (3.2) with u = uψ , that is

d

dt
G(ψ) = uψ(G(ψ))

(with initial condition G(ψ)(0, x) = x). Recall that

uψ(t, x) =
∫

T2
K (x − ψt (y)) ξ0(y)dy.

enjoys the log-Lipschitz property (2.10), so that by the previous Lemma G takes
values in MT .
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Lemma 3.2. For every ε > 0, for every two flows ψ1, ψ2 in MT , we have:

∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ L K ‖ξ0‖L∞
∫ t

0
γ

(∫

T2
|ψ1

s (x) − ψ2
s (x)| dx

)
ds

+L K ‖ξ0‖L∞
∫ t

0
γ

(∫

T2
|G(ψ1)s(x) − G(ψ2)s(x)| dx

)
ds (3.4)

and also

∫

T2
|G(ψ1)t − G(ψ2)t | dx

≤ L K ‖ξ0‖L∞(− log ε)

∫ t

0

∫

T2
|G(ψ1)s − G(ψ2)s | dxds

+L K ‖ξ0‖L∞(− log ε)

∫ t

0

∫

T2
|ψ1

s − ψ2
s | dxds + 2L K ‖ξ0‖L∞ tε. (3.5)

Proof. We have

∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx ≤ ‖ξ0‖L∞

∫ t

0

∫

T2

∫

T2

|K (G(ψ1)s(x) − ψ1
s (y)) − K (G(ψ2)s(x) − ψ2

s (y))| dxdyds.

In order to use (2.8), we add and subtract K (G(ψ1)s(x) − ψ2
s (y)) to the integrand

of the right-hand side. Thus we get

∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx ≤ ‖ξ0‖L∞

∫ t

0

∫

T2

∫

T2

×
[
|K (G(ψ1)s(x) − ψ1

s (y)) − K (G(ψ1)s(x) − ψ2
s (y))|

+|K (G(ψ1)s(x) − ψ2
s (y)) − K (G(ψ2)s(x) − ψ2

s (y))|
]
dxdyds

≤ ‖ξ0‖L∞
∫ t

0

∫

T2

∫

T2

[
|K (x − ψ1

s (y)) − K (x − ψ2
s (y))|

×K (G(ψ1)s(x) − y) − K (G(ψ2)s(x) − y)|
]
dxdyds

≤ L K ‖ξ0‖L∞
∫ t

0

∫

T2
γ (|ψ1

s (y) − ψ2
s (y)|)dyds

+L K ‖ξ0‖L∞
∫ t

0

∫

T2
γ (|G(ψ1)s(x) − G(ψ2)s(x)|)dxds,
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where in the second passage we used the measure-preserving property. Finally, by
the Jensen inequality applied to the concave function γ , we have

∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ L K ‖ξ0‖L∞
∫ t

0
γ

(∫

T2
|ψ1

s (x) − ψ2
s (x)| dx

)
ds

+L K ‖ξ0‖L∞
∫ t

0
γ

(∫

T2
|G(ψ1)s(x) − G(ψ2)s(x)| dx

)
ds,

that is the first estimate (3.4). Now we apply property (2.7):

∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ L K ‖ξ0‖L∞(− log ε)

∫ t

0

∫

T2
|ψ1

s (x) − ψ2
s (x)| dxds

+ L K ‖ξ0‖L∞(− log ε)

∫ t

0

∫

T2

∫

T2
|G(ψ1)s(x) − G(ψ2)s(x)| dxds

+ 2L K ‖ξ0‖L∞ tε,

that is the second estimate (3.5). ��
The following continuity result is a consequence of the previous Lemma.

Corollary 3.3. The map G : MT → MT is continuous. In fact, it is locally Hölder
continuous.

Proof. Let us denote wt = ∫
T2 |G(ψ1)t (x) − G(ψ2)t (x)| dx . Then the estimate

(3.4) in Lemma 3.2, together with monotonicity of γ , gives

wt ≤ L K ‖ξ0‖L∞ T γ

(
sup

s∈[0,T ]

∫

T2
|ψ1

s (x) − ψ2
s (x)| dx

)

+ L K ‖ξ0‖L∞
∫ t

0
γ (ws)ds.

Again by a comparison theorem (recall the definition of z in (2.11)), we get that

∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ zL K ‖ξ0‖L∞
(

t, L K ‖ξ0‖L∞ T γ

(
sup

s∈[0,T ]

∫

T2
|ψ1

s (x) − ψ2
s (x)| dx

))
.

When L K ‖ξ0‖L∞ T γ (dist (ψ1, ψ2)) ≤ exp[1− 2eL K ‖ξ0‖L∞ T ] (a condition which
is verified for dist (ψ1, ψ2) small enough, for fixed ‖ξ0‖ and T ), the estimate (2.12)
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gives:
∫

T2
|G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ e

(
L K ‖ξ0‖L∞ T γ

(
sup

s∈[0,T ]

∫

T2
|ψ1

s (x) − ψ2
s (x)| dx

))exp[−L K ‖ξ0‖L∞ t]
.

From this and the continuity of γ , we see that G is continuous on MT . The Hölder
continuity of G follows from the fact that γ is Hölder continuous. ��
We are ready to prove:

Theorem 3.4. There exists a unique solution in MT to equation (3.1), which is a
flow � of measure-preserving homeomorphisms of class Cα in space and Lipschitz
in time.

Proof. First step. First we prove the existence and the uniqueness on an inter-
val [0, T1], for T1 small enough. For the existence, we define the approximat-
ing sequence for the solution to problem (3.1). Choose ψ0

t = I . For any n, put
ψn+1 = G(ψn) (G being defined on MT1 ) and denoteρn

t = supk≥n

∫
T2 |ψk+1

t (x)−
ψk

t (x)| dx . [The reason for the supremum in k ≥ n is to have, in the formula (3.6)
below, ρn on the left hand side and ρn−1 on the right hand side: otherwise it seems
difficult to have good estimates.] The estimate (3.5) in Lemma 3.2 gives immedi-
ately that for all n ∈ N

ρn
t ≤ 2L K ‖ξ0‖L∞(− log ε)

∫ t

0
ρn−1

s ds + 2L K ‖ξ0‖L∞ tε. (3.6)

By Lemma A.1 we infer that

sup
[0,T1]

ρn
t ≤ (2eL K ‖ξ0‖L∞ T1)n

√
2πn

sup
[0,T1]

ρ0
t +2L K ‖ξ0‖L∞ T1 exp[n(2L K ‖ξ0‖L∞ T1−1)]

(3.7)
and so, provided α := 2eL K ‖ξ0‖L∞ T1 < 1, there exists a unique ψ ∈ MT1 such
that the sequence (ψn)n converges in MT1 to ψ . By Corollary 3.3 it follows that
G(ψ) = ψ .

The uniqueness follows by applying the previous iterative scheme to two solu-
tions �1, �2. More precisely we take �i,0 = �i and �i,n+1 = G(�i,n), i = 1, 2,
and we define ρ̄n

t = supk≥n

∫
T2 |�1,k

t (x) − �
2,k
t (x)| dx . Then (3.6) and so (3.7)

hold for the sequence ρ̄n (in place of ρn). But, since�1,�2 are solutions and hence
fixed points of G, �i,n = �i and ρ̄n

t = ρ̄0
t for every n, i = 1, 2 and so we get

dist (�1,�2) = sup
[0,T1]

ρ̄n
t =≤ αn sup

[0,T1]
ρ̄0

t + e−1αe−n(1−α)

= αndist (�1,�2) + αe−n(1−α),

for any integer n. Since α < 1, taking n large, we get dist (�1,�2) = 0.
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Second step.Weprove the global existence and uniqueness. They follow essentially
by iteration in time, but we prefer to make this argument explicit, since the non-
locality of the drift could create some confusion. The main point is to notice that,
for fixed 0 < T ′ < T , a flow � solves the non-local ODE (3.1) on [0, T ] if and
only if it solves the non-local ODE on [0, T ′] and it satisfies, for t in [T ′, T ],

�t (x) = �T ′(x) +
∫ t

T ′

∫

T2
K (�s(x) − �s(y)) ξ0(y)dy. (3.8)

Hence we will prove the global result by showing the existence and the uniqueness
for equation (3.8) on [T1, 2T1], and then iterating the idea. As before, we define the
approximating sequence (ψn)n of maps on [T1, 2T1] × T

2 by imposing

ψn
t (x) = �T1(x) +

∫ t

T1

∫

T2
K (ψn

s (x) − ψn−1
s (y)) ξ0(y)dy. (3.9)

Here a small technical clarification is needed for the existence, the continuity and the
measure-preserving property of ψn : they cannot be inferred directly from Lemma
3.1, since the initial datum is nomore x (we could repeat the argument starting from
�T1(x): this can be done, but at the price of introducing a flow map �T1,t which
we avoid for simplicity), so we prove that ψn exists continuous and is measure-
preserving, by defining ψn on the whole interval [0, 2T1] as ψ0

t = �t1[0,T1] +
�T11]T1,2T1] and ψn = G(ψn−1), the map G relative to the interval [0, 2T1]. In
this way ψn coincides with � on [0, T1] (in particular it satisfies the condition
ψn

T1
= �T1 ) and it verifies equation (3.9) on [T1, 2T1]. The definition of ψn (with

continuity and measure-preserving property) is now done.
Having the existence and the measure-preserving property, we can repeat the

estimates in Lemma 3.2, starting from �T1 , with no difference in the proof; in
particular the estimates hold with the same constant and with final time T which is
replaced by T − T1. In this way we get the existence on T1 ≤ t ≤ T1 + T1 = 2T1.

The uniqueness follows again applying the iterative scheme above to two solu-
tions and concluding as in step 1.

Step 3. The regularity and homeomorphism properties hold by Lemma 3.1,
since � = G(�) is in the image of G (G now being defined on the whole
[0, T ]). ��
Remark 3.5. In case ξ0 ismore smooth,more regularity of� can be obtained, using
the usual iterative scheme: if � has some regularity, then u� has more regularity,
which implies again an improvement of regularity of �, and so on.

4. The Stochastic Case

Nowwe prove the existence and the uniqueness of a stochastic continuous flow
solving equation (2.4). Notice that, differently from the classical (linear) case, the
drift depends on the whole flow, so Kunita’s theory [29,30] is not (at least easily)
applicable.
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We try to mimic the previous reasoning in the deterministic case. The last part,
the iterative procedure from the proof of Theorem 3.4, works in this simple way.
First we get a generalized Lemma 3.1 (with Itô formula to treat the modulus of the
difference of two flows), then we repeat the scheme and obtain a measurable flow
solution to (2.4).

The main difficulty is in the first part, precisely in the generalization of Lemma
3.1 to stochastic continuous flows (remember that we need a continuity property
for ω fixed). In order to get rid of the first difficulty, we will apply Kolmogorov
test, in the spirit of Kunita’s results (see [29,30]). For this we need some estimates
on the linear equation.

4.1. The Linear Stochastic Equation

Consider the following SDE (“linear” problem):

dXt = ut (Xt ) dt +
∑

k

σk(Xt )dW k
t , (4.1)

where u is a randomvector fieldwith the following properties: for every x , (t, ω) →
u(t, x, ω) is a progressively measurable process and, for every t , x, y, ω,

u(t, x, ω) ≤ L0,u, (4.2)

|u(t, x, ω) − u(t, y, ω)| ≤ Luγ (|x − y|) (4.3)

for some L0,u , Lu independent of t, x, y, ω. These properties imply that, if X is a
progressively measurable process with values in T2, then u(t, Xt ) is progressively
measurable too.

Lemma 4.1. Let X, Y be two solutions of (4.1) starting from x, x ′ resp. Then, for
any p ≥ 2, there exists δ = δ(T, Lu, Lσ , p) such that, if |x − x ′| < δ, it holds for
some constant C p,T , depending only on p and T

E[|Xt −Yt ′ |p] ≤ e|x − x ′|p exp[−(2pLu+Lσ )T ] +C p,T (L p
0,u + L p

σ )|t − t ′|p/2. (4.4)

Proof. It is enough to prove the formula in the two particular cases t = t ′ and
x = x ′. Fix t = t ′. By the Itô formula (applied to f (x) = |x |p), calling Z = X −Y ,
we have

d[|Z |p] = p|Z |p−2Z · (u(X) − u(Y )) dt

+
[
∑

k

p|Z |p−2|σk(X) − σk(Y )|2
]
dt

+
[
∑

k

p(p − 2)|Z |p−4|Z · (σk(X) − σk(Y ))|2
]
dt

+
∑

k

p|Z |p−2Z · (σk(X) − σk(Y ))dW k .
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We take the expectation and use the Lipschitz continuity of σk’s and the log-
Lipschitz property of u:

p|Z |p−1|u(X) − u(Y )|
≤ pLu |Z |p(1 − log |Z |)1|Z |<1/e + pLu |Z |p−1(|Z | + 1/e)1|Z |≥1/e

≤ pLu |Z |p(1 − log |Z |p)1|Z |<1/e + 2pLu |Z |p + 1/e1|Z |≥1/e pLuγ (|Z |p)

≤ 2pLuγ (|Z |p).

Then

E[|Z |p
t ] ≤ |x − x ′|p + 2pLu

∫ t

0
E[γ (|Z |p

s )]ds + Lσ

∫ t

0
E[|Z |p

s ]ds,

from which, using Jensen inequality for the concave function γ and the fact that
r ≤ γ (r), we obtain

E[|Z |p
t ] ≤ |x − x ′|p + 2pLu

∫ t

0
γ (E[|Z |p

s ])ds + Lσ

∫ t

0
E[|Z |p

s ]ds

≤ |x − x ′|p + (2pLu + Lσ )

∫ t

0
γ (E[|Z |p

s ])ds.

By a comparison principle, E[|Z |p
t ] ≤ z2pLu+Lσ (t, |x − x ′|p) (recall the defi-

nition of z in (2.11)). When |x − x ′| is small enough (precisely, < δ for some
δ(T, Lu, Lσ , p)), we can apply the estimate (2.12) and we get the thesis for t = t ′.

Now put x = x ′, t ′ < t . By the boundedness of u and σk’s, using the Hölder
and the Burkholder inequalities, we get

E[|Xt − Xt ′ |p] ≤ 2p−1E

[
∣∣
∫ t

t ′
u(Xr )dr

∣∣p + ∣∣
∑

k

∫ t

t ′
σk(Xr )dW k

r

∣∣p

]

≤ C p(L p
0,u + L p,T

σ )(|t − t ′|p + |t − t ′|p/2).

The proof is complete. ��
This will be enough to get the uniqueness and the continuity, but we still need the
existence. For this, we will use a generalization of the previous lemma, exhibiting
a Cauchy sequence of solutions of approximating equations. Let ρ be a C∞

c (R2)

function, define ρε(x) = ε−2ρ(ε−1x); consider the standard mollification of u:
uε(t, x, ω) = u(t, ·, ω)∗ρε(x), for x ∈ T

2 (the convolution must be understood on
the whole Rd , where u is extended by periodicity). Notice that, since by (4.3) the
field u is continuous and bounded in x , uniformly with respect to t and ω, we get
that (uε)ε converges to u uniformly in (t, x, ω): that is, we can find a continuous
function θ : [0, 1] → [0,+∞[, with θ(0) = 0, such that, for every ε > 0, δ > 0,

sup
[0,T ]×T2×�

|uε − uδ| ≤ θ(|ε − δ|). (4.5)

Moreover, Corollary 3.3 holds uniformly in ε:

sup
ε>0

|uε(t, x) − uε(t, x ′)| ≤ Luγ (|x − x ′|). (4.6)
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Similarly, we define σε
k (t, x) := σk(t, ·) ∗ ρε(x); since the σk’s are Lipschitz-

continuous (more precisely, by Condition 2.3), we get (possibly for another θ , with
the same properties as above)

sup
[0,T ]×T2

∑

k

|σε
k − σ δ

k |2 ≤ θ(|ε − δ|), (4.7)

sup
ε>0

∑

k

|σε
k (t, x) − σε

k (t, x ′)|2 ≤ L2
σ |x − x ′|2. (4.8)

Lemma 4.2. For any ε > 0, let ψε be the stochastic continuous flow solution to

dXε
t = uε

t (Xε
t ) dt +

∑

k

σε
k (Xε

t )dW k
t . (4.9)

Then, for any p ≥ 2, for every ε, δ close enough to 0, for every x , x ′ in T
2 with

|x − x ′| small enough, it holds

sup
[0,T ]

E[|ψε
t (x) − ψδ

t (x ′)|p] ≤ C
(|x − x ′|p + Cθ(ε − δ)

)exp[−Ct]

for some C > 0 (independent of ε, δ, x, x ′). In particular, (ψε)ε is a Cauchy
sequence in C([0, T ] × T

2; L p(�)).

For the sake of simplicity, we do not specify, in the result above and in the proof
below, the constants involved (using the letterC for all of them), since the estimates
will not be used in the proof of the main result.

Remark 4.3. For every ε > 0, for every initial datum, equation (4.9) has a unique
solution, which can be represented by a stochastic continuous flow ψε of C1 maps.
Indeed, by the boundedness of u, the C1 norm of uε is uniformly bounded, and
Kunita’s theory applies. Notice that here we need Kunita’s result with a stochastic
drift, namely [30], Theorem 4.6.5.

Remark 4.4. Again for ε > 0, since the stochastic integral is of Stratonovich type
(which we have written in Itô form), usual calculus rules give the standard equation
for the Jacobian, which depends only on the divergence of the vector fields. Since
uε and σε

k ’s are divergence free, the Jacobian turns out to be constant and so the
stochastic flow is measure-preserving.

Proof. First we notice that, for p ≥ 2, E[|ψε
t (x)|p] is bounded by a constant

independent of ε, t and x (simply estimate |uε(Xε)| and |σk(Xε)| with the sup-
norms of u and σk and use Hölder and Burkholder inequalities). Similarly, one sees
that ψε is in C([0, T ] × T

2; L p(�)) for every ε > 0. By Itô formula (applied to
f (x) = |x |p), calling Z = ψε

t (y) − ψδ
t (x), we have

d[|Z |p] = p|Z |p−2Z · (uε(ψε(x)) − uδ(ψδ(x ′))) dt

+
[ ∑

k

p|Z |p−2|σε
k (ψε(x)) − σ δ

k (ψδ(x ′))|2
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+
∑

k

p(p − 2)|Z |p−4|Z · (σ ε
k (ψε(x)) − σ δ

k (ψδ(x ′)))|2
]
dt

+
∑

k

p|Z |p−2Z · (σ ε
k (ψε(x)) − σ δ

k (ψδ(x ′)))dW k .

The difficult term is uε(ψε(x)) − uδ(ψδ(x ′)). For this, by (4.5) and (4.6), we have

|uε(ψε(x)) − uδ(ψδ(x ′))|
≤ |uε(ψε(x)) − uδ(ψε(x))| + |uδ(ψε(x)) − uδ(ψδ(x ′))|
≤ θ(ε − δ) + Cγ (|Z |).

The terms with σε
k are easier: by (4.7) and (4.8), we have

∑

k

|σε(ψε(x)) − σ δ
k (ψδ(x ′))|2

≤ 2
∑

k

[
|σε

k (ψε(x)) − σ δ
k (ψε(x))|2 + |σ δ

k (ψε(x)) − σ δ
k (ψδ(x ′))|2

]

≤ θ(ε − δ) + C |Z |2.
So, proceeding as before, using concavity of γ and uniform boundedness of
E[|Z |p−1] and E[|Z |p−2], we get

E[|Z |p
t ] ≤ |x − x ′|p + Cθ(|ε − δ|) +

∫ t

0
γ (E[|Z |p

s ])ds.

We conclude that, if |x − x ′|p + Cθ(|ε − δ|) is small enough (precisely, smaller
that a constant depending on T , C and p),

sup
[0,T ]

E[|Z |p
t ] ≤ C

(
|x − x ′|p + Cθ(|ε − δ|)

)exp[−Ct]
,

which implies that, if x = x ′, the sequence (ψε)ε is Cauchy in the spaceC([0, T ]×
T
2; L p(�)). ��

Lemma 4.5. Equation (4.1) has a unique solution, for every deterministic initial
datum. This solution is described by a (unique) stochastic measure-preserving con-
tinuous flow ψ of class Cα in space, for some α > 0, and Cβ in time, for every
β < 1/2.

Proof. By the previous Lemma, for every x , there exists the limit, in C([0, T ];
L p(�)), X of the approximating processes Xε = ψε(x)’s. Then we can pass to
the limit in equation (4.9), because the coefficients are continuous bounded. Hence
we infer that the process X is progressively measurable and solves (4.1). The
uniqueness follows from Lemma 4.1, with x = y. The Hölder continuity property
is a consequence of the Kolmogorov criterion, applied again to (4.4). Indeed we get
that ψ is α-Hölder continuous in space, for every α < e−CT − 2/p, and β-Hölder
continuous in time, for every β < 1/2 − 1/p, so for every β < 1/2.
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As for the measure-preserving property, we will prove that, for every bounded
measurable F : � → R, every bounded measurable h : [0, T ] → R and every
continuous bounded g : T2 → R,

∫ T

0
h(t)E

[
F

∫

T2
g(ψt (x))dx

]
dt =

∫ T

0
h(t)E

[
F

∫

T2
g(x)dx

]
dt. (4.10)

This will prove that, for almost every (t, ω), ψt (ω) is measure-preserving. By con-
tinuity in (t, x) at ω fixed, this implies easily that, for almost every ω, ψt (ω) is
measure-preserving for every t . Since the approximating flows ψε’s are measure-
preserving (remember Remark 4.4), equality (4.10) holds for the ψε’s. By the con-
vergence in L p, we can find a subsequenceψεn such that (ψεn )n converges toψ for
almost every (t, x, ω). Passing to the limit along this subsequence (using dominated
convergence theorem), we get (4.10) for ψ . The proof is
complete. ��
Remark 4.6. With a small effort, one could also show the injectivity of ψt (ω) for
all t , for almost everyω (essentially, one has to extend Lemma 4.1 to negative p and
use Kolmogorov criterion for |ψt (x)−ψt (y)|−1). Surjectivity and continuity of the
inverse map follow from the continuity and the measure-preserving property. The
range of ameasure-preserving continuousmap is a compact set, whose complement
(an open set) is Lebesgue-negligible. Thus this range must be the whole T2. Thus
the flow is a actually a flow of homeomorphisms.

Corollary 4.7. Let ξ be an element of L∞([0, T ] × T
2 × �). Then equation (4.1)

with u = uξ has a unique solution, for every deterministic initial datum, which
enjoys the properties in Lemma 4.5.

4.2. Stochastic Euler Flows

The rest of the section goes on in analogy with the deterministic case.We define
a space

SMT =
{
ψ : [0, T ] × T

2 × � → T
2 : ψ measurable with respect to P × (B)(T2),

sup
[0,T ]

∫

T2
E[|ψt (x)|]dx < +∞, ψt meas.-pres. for almost every (t, ω)

}
.

Here P is the predictable σ -algebra associated with the filtration (Ft )t . It is a com-
plete metric space, endowed with the distance dist (ψ1, ψ2) = sup[0,T ]

∫
T2 E |ψ1

t

(x) − ψ2
t (x)| dx . For a given measure-preserving stochastic flow ψ in SMT , we

call G(ψ) the unique solution to the SDE (4.1) with u = uψ . Recall again that

uψ(t, x) =
∫

T2
K (x − ψt (y)) ξ0(y)dy.

enjoys the log-Lipschitz property (2.10) and it is also progressively measurable as
required in the previous section, so that G takes values in SMT .
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Remark 4.8. One may ask at this point why, in the definition on SMT , we have
the supremum in time outside the expectation and not inside (while Burkholder
inequality allows supremum inside, in some cases). The reason is that the argument
works with the supremum outside and putting the supremum inside could create
additional difficulties. A posteriori, since the flow solution� to (2.4) is in the image
of G, it is continuous and also Hölder continuous.

Lemma 4.9. For every ε > 0 (small enough), for every ψ1, ψ2 flows in SMT , the
following estimates hold:

∫

T2
E |G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ L K ‖ξ0‖L∞
∫ t

0
γ

(∫

T2
E |ψ1

s (x) − ψ2
s (x)| dx

)
ds

+L K ‖ξ0‖L∞
∫ t

0
γ

(∫

T2
E |G(ψ1)s(x) − G(ψ2)s(x)| dx

)
ds,

+2L2
σ

∫ t

0

∫

T2
E |G(ψ1)s(x) − G(ψ2)s(x)| dxds,

∫

T2
E |G(ψ1)t − G(ψ2)t | dx

≤ (L K ‖ξ0‖L∞ + 2L2
σ )(− log ε)

∫ t

0

∫

T2
E |G(ψ1)s − G(ψ2)s | dxds

+L K ‖ξ0‖L∞(− log ε)

∫ t

0

∫

T2
E |ψ1

s − ψ2
s | dxds + 2L K ‖ξ0‖L∞ tε.

Proof. We would like to apply Itô formula to the modulus function and get an
estimate for |G(ψ1)t (x) − G(ψ2)t (x)|. Since the modulus is not C2, we use the
approximate functions fδ(x) = (|x |2+δ)1/2, for δ > 0. Calling Z = G(ψ1)t (x)−
G(ψ2)t (x), we have

d[ fδ(Z)] = fδ(Z)−1Z · [uψ1
(G(ψ1)) − uψ2

(G(ψ2))] dt

+
∑

k

fδ(Z)−1|σk(G(ψ1)) − σk(G(ψ2))|2dt

+
∑

k

fδ(Z)−3[(G(ψ1) − G(ψ2)) · (σk(G(ψ1)) − σk(G(ψ2)))]2dt

+
∑

k

fδ(Z)−1Z · [σk(G(ψ1)) − σk(G(ψ2))]dW.

Taking the expectation and using the Lipschitz property of σ , since fδ(x) ≥ |x |,
we get

E[|Zt |] ≤
∫ t

0
E[|uψ1

s (G(ψ1)s(x)) − uψ2

s (G(ψ2)s(x))|]ds

+2L2
σ

∫ t

0
E[|Zs |]ds.
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The rest of the proof follows the lines ofLemma3.2:weestimate
∫
T2 |uψ1

s (G(ψ1)s(x))

− uψ2

s (G(ψ2)s(x))| dx and use Jensen inequality to pass γ outside the integral in
x and outside the expectation. The second inequality is a consequence of justify
the first one. ��
Proof of Theorem 2.14. Similar to the proof of Theorem 3.4, we only recall the
main passages.
First step. We prove the existence and the uniqueness on an interval [0, T1], with
T1 small enough (but deterministic). The iteration scheme is completely similar
to the one in the deterministic case: we consider ψ0

t (x) = x , ψn+1 = G(ψn),
ρn

t = supk≥n

∫
T2 E |ψk+1

t (x)−ψk
t (x)| dx and proceed as in the deterministic case,

getting a limit flow � in SMT1 , for T1 such that α := 2e(L K ‖ξ0‖L∞ + L2
σ )T1 < 1

(notice that T1 is independent of ω, since all the estimates are in expectation). Such
a flow solves (2.4), because G is continuous in SMT : indeed, from Lemma 4.9
again by comparison with z

∫

T2
E |G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ zL K ‖ξ0‖L∞+2L2
σ

(
t, L K ‖ξ0‖L∞ T γ

(
sup

s∈[0,T ]

∫

T2
E |ψ1

s (x) − ψ2
s (x)| dx

))

and, if dist (ψ1, ψ2) is small enough,
∫

T2
E |G(ψ1)t (x) − G(ψ2)t (x)| dx

≤ e

(
L K ‖ξ0‖L∞ T γ

(
sup

s∈[0,T ]

∫

T2
E |ψ1

s (x) − ψ2
s (x)| dx

))exp[−(L K ‖ξ0‖L∞+2L2
σ )t]

.

The uniqueness on [0, T1] is also proved in the same way of the deterministic case.
Second step. We prove the global existence and uniqueness. For this, as in the
deterministic case, we solve the equation on [T1, 2T1]

�t (x) = �T1(x) +
∫ t

T1

∫

T2
K (�s(x) − �s(y)) ξ0(y)dy +

∑

k

∫ t

T1
σk(�s(x))dW k

s .

To get the existence for this equation, we define the approximating sequence (ψn)n

of maps on [T1, 2T1] × T
2 by imposing

ψn
t (x) = �T1(x) +

∫ t

T1

∫

T2
K (ψn

s (x) − ψn−1
s (y)) ξ0(y)dy

+
∑

k

∫ t

T1
σk(ψ

n−1
s (x))dW k

s (4.11)

The existence, the continuity and the measure-preserving property for equation
(4.11) are again not a direct consequence of Lemmata 4.1 and 4.2, since here we
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start from �T1 and not from the identity; here we also have the problem of the
randomness of �T1 , which brings us to consider the strategy in the deterministic
case. Following that strategy of the deterministic case, we can build ψn and prove
the continuity and the measure-preserving property. Then we apply the previous
estimates, again with no chance in the constants and with the final time T replaced
by T −T1 (again deterministic). This allows to conclude the existence on [T1, 2T1].
The uniqueness on this interval is as in the step 1.
Third step. The regularity properties hold by Lemmma 4.1, since � = G(�) is in
the image of G (G now being defined on the whole [0, T ]). ��

5. The Stochastic Euler Vorticity Equation

In this section we will prove Theorem 2.10. First we need the existence of
solutions to the stochastic Euler vorticity equation (2.1).

Proposition 5.1. Let � be a solution to (2.4). For t ≥ 0, define ξt = (�t )#ξ0. Then
ξ has a density (still denoted by ξ ) in L∞([0, T ]×T

2×�),which is a distributional
L∞ solution to the stochastic Euler equation (2.1).

Proof. Fix t > 0 and the probabilistic datum ω (omitted in the sequel). By Lemma
2.19, since �t is measure preserving, ξt is absolutely continuous with respect to
the Lebesgue measure on T2 and ‖ξt‖L∞ ≤ ‖ξ0‖L∞ .

Let ϕ be a test function, Itô formula applied to ϕ(�t ) gives

d[ϕ(�t )] = u�
t (�t ) · ∇ϕ(�t ) dt +

∑

k

σk(�t ) · ∇ϕ(�t )dW k
r

+1

2
tr[a(�t )D2ϕ(�t )] dt.

Now notice that, by definition of ξt , u�
t = K ∗ ξt ; so, integrating in ξ0dx , we get

(2.2). ��
For the proof of the uniqueness, we will adapt a classical argument for the transport
equation. We first recall the idea in the case σk ≡ 0 for simplicity. A formal
application of the chain rule gives

d

dt
ξt (�t ) = ∂tξt (�t ) + Dξt (�t )

d�t

dt
= (∂tξt + ut · ∇ξt )(�t ) = 0.

This implies that ξt (�t ) = ξ0, so that ξt = ξ0(�
−1
t ) is completely determined by

the flow. But we have used the chain rule for an object (ξt ) which is not regular in
general (and in fact there are counterexamples for irregular drifts). Thus we need
to regularize ξ . This regularization ξε solves a transport-type equation with an
additional term, a commutator, which we need to control to conclude the argument.
We use for this the argument in [1,2,17], where the commutator is an essential tool
for the uniqueness of the transport equation.

First we need approximate identities. For this, let ρ be a C∞(R2) nonnegative
even function, with support in [−1/2, 1/2]2 and

∫
R2 ρdx = 1. For ε > 0, define



Existence and Uniqueness for Stochastic 2D Euler Flows with Bounded Vorticity 129

ρε(x) = ε−2ρ(x/ε). If f is an integrable function on T
2, f can be extended

periodically to a locally integrable function on the wholeR2, so that the convolution
ρε ∗ f makes sense and is still a C∞ periodic function.

For a vector field v and a function w on the torus, we define formally the
commutator as

[v · ∇, ρε∗]w := v · ∇(ρε ∗ w) − ρε ∗ (v · ∇w). (5.1)

Suppose that v and w are integrable and v is divergence free. Then the expression
above defines a measurable function on T

2. Indeed, the following equalities hold
in distribution (the functions being thought as extended to the whole R2):

ρε ∗ (v · ∇w) = ρε ∗ div(vw) = −
∫

R2
∇ρε(z) · v(· − z)w(· − z)dz. (5.2)

Besides, by (5.1) and (5.2), the commutator reads

[v · ∇, ρε∗]w(x) =
∫

R2
(v(x) − v(x − z)) · ∇ρε(z)w(x − z)dz.

With the change of variable y = z/ε, x ′ = x ′
ε = x − εy we get

[v · ∇, ρε∗]w(x) =
∫

R2

v(x ′ + εy) − v(x ′)
ε

· ∇ρ(y)w(x ′)dy.

If v is in W 1,1(T2), then, for every y in R2, for almost every x ′ in T2, v(x ′ + εy)−
v(x ′) = ε

∫ 1
0 Dv(x ′ + ξεy)ydξ . Indeed, this is true for vδ = ρδ ∗ v and, for fixed

y, vδ(x ′ + εy) − vδ(x ′) − ε
∫ 1
0 Dvδ(x ′ + ξεy)ydξ , as function of x ′, converges to

0 almost every as δ → 0 (possibly passing to a subsequence). So, in this case, the
commutator has the following expression:

[v · ∇, ρε∗]w(x ′) =
∫

R2

∫ 1

0
Dv(x ′ + ξεy)ydξ · ∇ρ(y)w(x ′)dy. (5.3)

Lemma 5.2 (Commutator lemma). Let p be in [1,+∞[, let v be in W 1,p(T2)

with zero divergence, let w be in L∞(T2). Then

lim
ε→0

[v · ∇, ρε∗]w = 0 in L p(T2)

and we have the inequality

‖[v · ∇, ρε∗]w‖L p(T2) ≤ C‖Dv‖L p(T2)‖w‖L∞(T2).

Proof. The inequality follows integrating in x the p-power of the expression on the
LHS of (5.3). Precisely, since ρ is supported on [−1/2, 1/2]2, we have by Hölder
inequality (remember x ′ = x + εy)

∫

T2
|[v · ∇, ρε∗]w|pdx

≤
∫

R2

∫

T2

∫ 1

0
|Dv(x ′ + ξεy)|pdξ |w(x ′)|pdx ′|y|p|∇ρ(y)|pdy

≤ ‖Dv‖p
L p(T2)

‖w‖p
L∞(T2)

∫

R2
|y|p|∇ρ(y)|pdy
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(the integral in x ′ should be on T2 − εy, but by periodicity we can integrate on T2

as well).
For the limit, it is enough to show that

L p(T2)- lim
ε→0

[v · ∇, ρε∗]w = w(·)
(∫

R2
Dv(·)y · ∇ρ(y)dy

)
.

Indeed, by the symmetry property of ρ,
∫
R2 yi∂ jρ(y)dy = −Cδi j (where C is

independent of i) and so
∫
R2 Dv(x)y · ∇ρ(y)dy = −Cdivw = 0. By (5.3) we

have
∫

T2

∣∣∣∣[v · ∇, ρε∗]w(x) − w(x)

(∫

R2
Dv(x)y · ∇ρ(y)dy

)∣∣∣∣
p

dx ≤
∫

R2

∫

T2

∫ 1

0

|w(x ′)Dv(x ′ + ξεy) − w(x ′ + εy)Dv(x ′ + εy)|pdξdx ′|y|p|∇ρ(y)|pdy,

hence it is enough to prove that
∫

T2

∫ 1

0
|w(x ′)Dv(x ′ + ξεy) − w(x ′ + εy)Dv(x ′ + εy)|pdξdx ′ → 0

uniformly in y. Using the continuity of translations in L p for the function wDv,
we need only to show that

∫

T2

∫ 1

0
|w(x ′)Dv(x ′ + ξεy) − w(x ′)Dv(x ′)|pdξdx ′ → 0.

Since w is in L∞, this follows from
∫
T2

∫ 1
0 |Dv(x ′ + ξεy) − Dv(x ′)|pdξdx ′ → 0,

which is again a consequence of continuity of translation in L p applied to Dv. ��
Proposition 5.3. Let ξ be a (distributional) L∞ solution to the stochastic Euler
vorticity equation. Let � be a measure-preserving stochastic flow, which solves
(4.1) with u = uξ (it exists by Corollary 4.7). Then ξt = (�t )#ξ0.

Proof. We will prove that ξt (�t ) = ξ0 Lebesgue-almost every. Having this, then,
for every measurable bounded function ϕ on T

2, 〈ξt , ϕ〉 = 〈ξt (�t ), ϕ(�t )〉 =
〈ξ0, ϕ(�t )〉 (in the first equality we used the measure-preserving property) and so
ξt = (�t )#ξ0.

As mentioned before, we need to consider ξε
t = ξt ∗ ρε instead of ξt . Notice

that, for every x , ξε
t (x) = 〈ξt , ρε(x − ·)〉. So ξε(x) is a progressively measurable

process, with continuous trajectories, and the stochastic Euler vorticity equation,
applied to the test function ρε(x − ·), gives the following equality:

dξε + (u · ∇ξ) ∗ ρε dt +
∑

k

(σk · ∇ξ) ∗ ρεdW k − 1

2
tr[aD2ξε] dt = 0, (5.4)

which also reads

dξε + u · ∇ξε dt +
∑

k

σk · ∇ξεdW k − 1

2
tr[aD2ξε] dt

= [u · ∇, ρε∗]ξ dt +
∑

k

[σk · ∇, ρε∗]ξdW k .
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Now, by (5.4), since ξε is adapted regular (together with (u ·∇ξ)∗ρε, σk ·∇ξ)∗ρε,
aD2ξε), we can apply Itô–Kunita–Wentzell formula (see e.g. Theorem 8.3, page
188 of [29], with easy modifications for the case of an infinite number of k’s),
obtaining for ξε

t (�t )

dξε
t (�t ) = [ut · ∇, ρε∗]ξt (�t ) dt +

∑

k

[σk · ∇, ρε∗]ξt (�t )dW k .

Since � is measure-preserving, integrating in space we get

E

[∫

T2
|ξε

t (�t ) − ξ0| dx

]
≤

∫ t

0

∫

T2
E[|[ur · ∇, ρε∗]ξr |]dxdr

+
∑

k

∫ t

0

∫

T2
E[|[σk · ∇, ρε∗]ξr |2]1/2dxdr.

By the Commutator Lemma, for almost every r and ω in�,
∫
T2 |[ur ·∇, ρε∗]ξr | dx

tends to 0 as ε → 0. Besides, this term is dominated by

C‖Dur‖L1(T2)‖‖ξr‖L∞(T2) ≤ C ′‖ξ‖2L∞([0,T ]×T2×ξ)
.

Indeed, for every v in L∞(T2) and every finite p ≥ 1, ‖D(K ∗ v)‖L p(T2) ≤
C‖D2(−�)−1v‖L p(T2) ≤ C ′‖v‖L∞(T2). So dominated convergence theorem gives
that

lim
ε→0

∫ t

0

∫

T2
E[|[ur · ∇, ρε∗]ξr |]dxdr = 0.

Similarly, for every k, for almost every r and ω in �,
∫
T2 |[σkr · ∇, ρε∗]ξr |2dx

tends to 0 as ε → 0 and is dominated by

C‖Dσk‖2L2(T2)
‖ξr‖2L∞(T2)

.

Since
∑

k ‖Dσk‖2L2(T2)
≤ ‖∑

k |Dσk |2‖L∞(T2) < +∞ by hypothesis, then we
have (again by dominated convergence theorem)

lim
ε→0

∑

k

∫ t

0

∫

T2
E[|[σk · ∇, ρε∗]ξr |2]dxdr = 0.

Thus, for any fixed t > 0, ξε
t (�t ) tends to ξ0 in L1(T2 × �) as ε → 0. Since ξε

t
converges to ξt in L1(T2 × �) (the convergence in L1(T2) being dominated by
‖ξ‖L∞ ) and �t is measure-preserving, ξε

t (�t ) converges to ξt (�t ) in L1(T2 × �)

and thus ξt (�t ) = ξ0, which is our thesis. ��
Corollary 5.4. The uniqueness for the stochastic Euler vorticity equation (in the
class of L∞ solutions) holds.

Proof. The above Proposition 5.3 tells that a solution ξ to the stochastic Euler
vorticity equation is completely determined by the associated flow � which solves
(4.1) with u = uξ ; again for the proposition, u = u� and so � solves (2.4). Thus
the uniqueness for (2.4) implies the uniqueness for the stochastic Euler vorticity
equation. ��
This concludes the proof of Theorem 2.10.
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6. Stability

In this section we want to prove a stability result, both at Lagrangian and
Eulerian points of view, when the kernel K is regularized.

Precisely, take a family (ρε)ε of even compactly supported resolutions of iden-
tity and define K ε := K ∗ ρε. Consider the approximated non-local ODE

�ε
t (x) = x +

∫ t

0

∫

T2
K ε(�ε

r (x) − �ε
r (y) ξ0(y)dy +

∞∑

k=1

∫ t

0

∫

T2
σk(�

ε
r (x))dW k

r

(6.1)
and the approximated stochastic Euler vorticity equation

dξε + uε,ξε · ∇ξε dt +
∑

k

σk · ∇ξεdW k = 1

2
C�ξε, (6.2)

where uε,ξε := K ε ∗ ξε.
One can repeat all the previous definitions and arguments with K ε in place of

K , to get the analogues of Theorems 2.14 and 2.10: there exists a unique measure-
preserving stochastic continuous flow � solving (6.1), which is also Cα in space,
for every α < 1 and Cβ in time, for every β < 1/2; there exists a unique L∞
distributional solution ξε for (6.2). Moreover it holds that

ξε
t = (�ε

t )#ξ0. (6.3)

The first stability result is for flows:

Proposition 6.1. The family (�ε)ε converges to � (as ε → 0) in C([0, T ]; L1(T2×
�)).

Proof. The fact that �ε and � belong to C([0, T ]; L1(T2 × �)) can be proved
easily, using similar techniques to those below. For the convergence, call Zε

t (x) =
�ε

t (x) − �t (x). As in the proof of Lemma 4.9, we would like to apply Itô formula
for |Z ε|. Proceeding as in that proof (applying Itô formula to fδ(x) = (|x |2+δ)1/2),
we get

E |Z ε
t (x)| ≤

∫ t

0

∫

T2
E

∣∣K ε(�ε
r (x) − �ε

r (y)) − K (�r (x) − �r (y))
∣∣ |ξ0(y)|dydr

+2L2
σ

∫ t

0
E |Z ε

r (x)|dr.

Integrating this inequality in x , since ξ0 is bounded, we obtain
∫

T2
E |Z ε

t (x)| dx

≤ ‖ξ0‖L∞
∫ t

0

∫

T2

∫

T2
E

∣∣K ε(�ε
r (x) − �ε

r (y)) − K (�r (x) − �r (y))
∣∣ dxdydr

+2L2
σ

∫ t

0

∫

T2
E |Z ε

r (x)| dxdr
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≤ ‖ξ0‖L∞
∫ t

0

∫

T2

∫

T2
E

∣∣K ε(�ε
r (x) − �ε

r (y)) − K (�ε
r (x) − �ε

r (y))
∣∣ dxdydr

+‖ξ0‖L∞
∫ t

0

∫

T2

∫

T2
E

∣∣K (�ε
r (x) − �ε

r (y)) − K (�r (x) − �r (y))
∣∣ dxdydr

+2L2
σ

∫ t

0

∫

T2
E |Z ε

r (x)| dxdr. (6.4)

For the first integral of (6.4), we exploit the fact that �ε is measure-preserving, for
every ε; so we have

∫ t

0

∫

T2

∫

T2
E

∣∣K ε(�ε
r (x) − �ε

r (y)) − K (�ε
r (x) − �ε

r (y))
∣∣ dxdydr

=
∫ t

0

∫

T2

∫

T2
E

∣∣K ε(x − y) − K (x − y)
∣∣ dxdydr

≤ T
∫

T2
|K ε(x ′) − K (x ′)| dx ′,

wherewehave used, in the last passage, the change of variable x−y = x ′, x+y = y′
(this implies a change of domain, but the L1 norm of K ε(x ′) − K (x ′) on the new
domain is comparable with that on the torus). For the second integral of (6.4), we
exploit the log-Lipschitz property of K (estimate (2.8)) and get

∫ t

0

∫

T2

∫

T2
E

∣∣K (�ε
r (x) − �ε

r (y)) − K (�r (x) − �r (y))
∣∣ dxdydr

≤ L K

∫ t

0

∫

T2

∫

T2
Eγ (|Z ε

r (x) − Z ε
r (y)|)dxdydr

≤ L K

∫ t

0

∫

T2

∫

T2
E

[
γ (|Z ε

r (x)|) + γ (|Z ε
r (y)|)] dxdydr

≤ 2L K

∫ t

0

∫

T2
γ (E |Z ε

r (x)|)dxdr,

where we have used the sub-additivity of γ (γ (|x + y|) ≤ γ (|x |) + γ (|y|), as it
can be easily checked) and Jensen inequality. Putting all together, we have

∫

T2
E |Z ε

t (x)| dx ≤ T ‖K ε − K‖L1(T2) + (2L K ‖ξ0‖L∞

+2L2
σ )

∫ t

0

∫

T2
γ (E |Z ε

r (x)|)dxdr.

Again by comparison, we get
∫
T2 E |Z ε

t (x)| dx ≤ z2L K ‖ξ0‖L∞+2L2
σ (t, T ‖K ε −

K‖L1(T2)), where z is defined as in (2.11). Since K is in L1(T2), ‖K ε − K‖L1(T2)

tends to 0 (as ε → 0), so

sup
t∈[0,T ]

∫

T2
E |Z ε

t (x)| dx ≤ sup
t∈[0,T ]

z(t, T ‖K ε − K‖L1(T2)) → 0.

The proof is complete. ��
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Here is the result for the vorticity:

Proposition 6.2. The family (ξε)ε converges weakly to ξ (as ε → 0), in the follow-
ing sense. For every ϕ in Cb(T

2),

E

∣∣∣∣
∫

T2
ϕξε

t dx −
∫

T2
ϕξtdx

∣∣∣∣ → 0

for every t and in L p([0, T ]), for any p ∈ [1,∞).

Proof. First, notice that, by (6.3),

∫

T2
ϕξε

t dx =
∫

T2
ϕ(�ε

t ) ξ0dx

and the same without ε. In particular, ϕ(�ε
t ) ξ0 is dominated almost every by a

constant. Now fix the time t . We use here a classical argument in measure theory.
Suppose by contradiction that there exist δ > 0 and a sequence εn → 0 such that

E

∣∣∣∣
∫

T2
ϕ(�

εn
t ) ξ0dx −

∫

T2
ϕ(�t ) ξ0dx

∣∣∣∣ ≥ δ. (6.5)

The previous proposition gives that�εn
t converges to�t in L1(T2×�). So we have

for a subsequence εnk that �
εnk
t tends to �t for almost every (x, ω) and similarly

for ϕ(�
εnk
t ), since ϕ is continuous. Hence, by dominated convergence theorem, we

get that

E

∣∣∣∣
∫

T2
ϕ(�

εnk
t ) ξ0dx −

∫

T2
ϕ(�t ) ξ0dx

∣∣∣∣ → 0,

which contradicts (6.5). We have proved convergence at t fixed. Convergence in
L p([0, T ]), for any finite p, follows from this result and the Lebesgue Dominated
Convergence Theorem. ��

7. An Alternative Way: Reduction to the Deterministic Case

In this section we will see how to deduce the results in the stochastic case by
a suitable transformation, assuming the deterministic case and more regularity for
the σk’s. As we already said, we will not develop this method in all the details.

At a Lagrangian level (trajectories), consider the SDE with only the stochastic
integral, namely

dψ =
∑

k

σk(ψ) ◦ dW k . (7.1)

It is well known that, if the fields σk’s are regular enough (C3 should be sufficient,
C2 is assumed in every “classical” result) and divergence-free, then there exists a
stochastic flows ψ of C1,1(T2) measure-preserving diffeomorphisms solving (7.1)
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(aC1,1 diffeomorphism is aC1 mapwith Lipschitz-continuous derivatives, together
with its inverse). The inverse flow ψ−1

t satisfies

dψ−1
t (x) = −

∑

k

σk(x) · ∇ψ−1
t (x) ◦ dW k .

Now let� be theEuler stochastic flow (solving (2.4)) andmake a change of variable,
composing with ψ−1

t : call

�̃(t, x, ω) = ψ−1
t,ω(�t,ω(x)). (7.2)

Using the Itô–Kunita–Wentzell formula, we obtain the following random ODE for
�̃:

d�̃t = (Dψt )
−1u�

t (ψt (�̃t )) dt,

where u� is as in (2.5). This equation reads also as

d�̃t = ũ�̃
t (�̃t ) dt, (7.3)

where

ũ�̃(t, x, ω) = (Dψt,ω(x))−1
∫

T2
K (ψt,ω(x) − ψt,ω(�̃t,ω(y))) ξ0(y)dy.

The equation (7.3) is not (3.1), but the drift ũ ξ̃ has the same regularity properties
of the drift u� of (3.1), provided ψ is a flow of C1,1(T2) diffeomorphisms, since
the term Dψt appears; here we need σ to be at least C2. Thus, one could proceed
as follows:

1. First we can repeat the argument in the deterministic part, to get the existence
and the uniqueness for �̃ satisfying (7.3); since ψ is a regular flow adapted
to the Brownian filtration, this implies the strong existence and the strong
uniqueness for � itself (plus the homeomorphism property), that is Theorem
2.14;

2. Then Section 5 applies and we deduce Theorem 2.10.

This can be seen also at an Eulerian level (velocity field). Heuristically, with the
change of variable (7.2), we should consider, as new vorticity, ξ̃t = ξ0(�̃

−1
t ) =

ξt (ψt ). Indeed, let ξ be a solution to (1.1) and let ψ be as above, call

ξ̃ (t, x, ω) = ξ(t, ψ(t, x, ω), ω).

Applying, this time formally, the Itô–Kunita–Wentzell formula, we obtain the fol-
lowing random PDE for ξ̃ :

∂t ξ̃ + ũ ξ̃ · ∇ ξ̃ = 0, (7.4)

where

ũ ξ̃ = (Dψt,ω(x))−1
∫

T2
K (ψt,ω(x) − ψt,ω(y))ξ̃t (y)dy.

This fact, as well as its converse (the passage from ξ̃ to ξ ), can be made rigorous
in the following way. First, we take ξε = ξ ∗ ρε (where ρε are even compactly
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supported mollifiers) and write the equation for ξε (using commutators only for the
σk’s):

∂tξ
ε + (uξ · ∇ξ)ε +

∑

k

σk · ∇ξε ◦ Ẇ k −
∑

k

[σk · ∇, ρε∗]ξ ◦ Ẇ k = 0.

Then we multiply this equation by ϕ(ψ−1), where ϕ is any regular test function on
T
2. In this way we obtain (7.4) for ξε(ψ), with (uξ · ∇ξ)ε(ψ) in place of ũ ξ̃ · ∇ ξ̃

and with the additional commutator term
∑

k[σk · ∇, ρε∗]ξ(ψ) ◦ Ẇ k . Finally we
let ε go to 0, getting (7.4).

Again (7.4) is not the deterministic Euler vorticity equation ((1.1) with σ = 0),
but its drift ũ ξ̃ has the same regularity properties of the drift uξ of (3.1), provided
ψ is a flow C1,1(T2) diffeomorphisms. So one can repeat the arguments in the
deterministic case (flows and commutator lemma), to get the existence and the
uniqueness for the random PDE (7.4), then the strong existence and the strong
uniqueness for 1.1 follow immediately.

Finally we mention that the passage between ξ and ξ̃ can be seen at a more
abstract level; this is a classical remark, due at least to Lamperti, Doss and Sussmann
[18,32,40]. Suppose to have an SPDE of the form

dξ + A(ξ) ξ dt +
∑

k

Bkξ ◦ dW k = 0,

where A(x) and Bk are linear operators (for simplicity assume Bk time-independent);
in our case, A(ξ) = uξ · ∇ and Bk = σk · ∇. Consider formally

ξ̃t = e
∑

k Bk W k
t ξt ;

in our case, this corresponds to the composition ξ(ψ). Then formally ξ̃ satisfies the
following random PDE:

∂t ξ̃ + e
∑

k Bk W k
t A(e−∑

k Bk W k
t ξ̃ )e−∑

k Bk W k
t ξ̃ = 0.

Thus we have reduced an SPDE to a random PDE, which can be treated through
deterministic techniques.
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Appendix A: A Useful Inequality

This section contains a proof of an auxiliary inequality used in a crucial way twice
in our paper.
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Lemma A.1. Assume that A, B > 0 and T > 0. Suppose that (ρn)∞n=0 is a sequence
of continuous nonnegative functions defined on the interval [0, T ] such that for every
ε ∈ (0, 1) and every n,

ρn
t ≤ A log

1

ε

∫ t

0
ρn−1

s ds + εBt, t ∈ [0, T ]. (A.1)

Then

ρn
t ≤ (At)n

√
2πn

sup
s∈[0,t]

|ρ0
s | + Bt (eAt−1)n, t ∈ [0, T ].

Proof of Lemma A.1. By Induction one can show that for every n ∈ N
∗ and every

ε ∈ (0, 1)

ρn
t ≤ (A(− log ε))n

∫ t

0
. . .

∫ s2

0
ρ0

s1ds1 . . . dsn

+Bεt
n−1∑

k=0

(A(− log ε))k
∫ t

0
. . .

∫ s2

0
ds1 . . . dsk

≤ (A(− log ε)t)n

n! sup
s∈[0,t]

|ρ0
s | + Bεt

n−1∑

k=0

(A(− log ε)t)k

k! , t ∈ [0, T ].

(A.2)

Let us take n ∈ N. Choose ε = e−n . Then by the above inequality and Stirling’s
inequality,

ρn
t ≤ (Ant)n

n! sup
s∈[0,t]

|ρ0
s | + Be−nt

n−1∑

k=0

(Ant)k

k!

≤ (eAnt)n

n! sup
s∈[0,t]

|ρ0
s | + Bt (eAt−1)n

≤ (eAt)n

√
2πn

sup
s∈[0,t]

|ρ0
s | + Bt (eAt−1)n, t ∈ [0, T ]. (A.3)

This concludes the proof. ��

Corollary A.2. In the framework of the above Lemmma, if eAT ∗ < 1, then
supt∈[0,T ∗] ρn

t → 0.

Proof. If eAT ∗ < 1, then supt∈[0,T ∗] ρn
t is bounded from above by a sum of the

n-th terms of two convergent geometrical series. ��
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Appendix B: Proof of Inequality (2.8)

We give a sketch of the proof of inequality (2.8). Call G is the Green function of
the Laplace operator −� on the torus T2 = [−1/2, 1/2]2 (with periodic boundary
condition). We will prove:

Proposition B.1. The function G is in C∞(T2 \ {0}). Its behaviour in 0 is given by

|G(x)| ≤ C(− log |x | + 1)

and that of its derivative D(n), n positive integer, by

|DnG(x)| ≤ Cn(|x |−n + 1).

Assuming this result, we get that |K (x)| ≤ C1(|x |−1+1). This implies the estimate
(2.8) by an elementary argument (see [35], Appendix 2.3).
Proposition B.1 is a special case (at least for n ≤ 2) of a general fact, valid for
compact C∞ Riemannian manifolds of finite dimensions, see [3, section 4.2], for
the statement and a proof. We give here a different proof, taken in spirit from [4]
(which studies the three dimensional case).

Sketch of the proof. It is easy to see that the Fourier expansion of G is

G(x) = − 1

4π2

∑

k∈Z2,k �=0

1

|k|2 e2π ik·x

Since this expression seems not helpful in the analysis of regularity around 0, we
will use the solution v, in L2([0, T ] × T

2), of the heat equation

∂tv = �v,

with initial condition v0 = δ0−1 (more precisely, vt ⇀ δ0−1 as t → 0). It is easy
to see that this unique solution can be expressed in two ways: one with its Fourier
expansion, which is

v(t, x) =
∑

k∈Z2,k �=0

e−4π2|k|2t e2π ik·x , (B.1)

the other with Gaussian densities, that is

v(t, x) = −1 + 1

4π t

∑

l∈Z2

exp
−|x − l|2

4t
. (B.2)

One verifies, e.g. using (B.1), that

G(x) = −
∫ +∞

0
v(t, x) dt = −

∫ +∞

1
v(t, x) dt −

∫ 1

0
v(t, x) dt

=: −G1(x) − G2(x).

Now G1 is in C∞(T2), as one can see from its Fourier expansion, again from (B.1).
For G2 we exploit(B.2):
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G2(x) =
⎛

⎝−1 +
∫ 1

0

1

4π t

∑

l∈Z2,l �=0

exp
−|x − l|2

4t
dt

⎞

⎠

+
∫ 1

0

1

4π t
exp

−|x |2
4t

=: G3(x) + G4(x),

the sum being between functions onR2 (though x is still in [−1/2, 1/2]2). The first
addend G3 is C∞ on an open neighborhood of [−1/2, 1/2]2 (e.g. ] − 3/4, 3/4[2):
indeed, for any n nonnegative integer, we have

∫ 1

0

∣∣∣∣∣∣
D(n) 1

4π t

∑

l∈Z2,l �=0

exp
−|x − l|2

4t

∣∣∣∣∣∣
dt

�
∫ 1

0
t−(2n+1)

∑

l �=0

exp
−|x − l|2

4t
dt

�
∫ 1

0
t−(2n+1)

∞∑

h=1

exp
−h

ct
dt

∼
∫ 1

0
t−(2n+1)e−1/(ct)dt < +∞,

for some c > 0 independent of x , when x is in ] − 3/4, 3/4[2. The second addend
G4 is in C∞(] − 3/4, 3/4[2\{0}). So G is in C∞(T2\{0}. For the behaviour in 0,
this is given by the behaviour of G4, which is computed by standard techniques.
We have, with the change of variable s = |x |−1/2t ,

G4(x) ∼
∫ |x |−1/2

0
s−1e−1/(4s)ds ∼ − log |x |

and, for n ≥ 1,

|D(n)G4(x)| ∼ |x |−n
∫ |x |−1/2

0
s−(2n+1)e−1/(4s)ds ∼ |x |−n .

The proof is complete. ��
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13. Capiński, M., Cutland, N.J.: Stochastic Euler equations on the torus. Ann. Appl.
Probab. 9(3), 688–705 (1999)

14. Celani, A., Vincenzi, D.: Intermittency in passive scalar decay. Phys. D 172(1-4),
103–110 (2002)

15. Chemin, J.Y.: Èquations d’Euler d’un fluide incompressible. Facettes mathèmatiques
de la mècanique des fluides, 9-30, Ed. Éc. Polytech., Palaiseau, 2010

16. De Lellis, C., Szèkelyhidi, Jr. L.: The Euler equations as a differential inclusion. Ann.
Math. (2) 170(3), 1417–1436 (2009)

17. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and
Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

18. Doss, H.: Liens entre éuations différentielles stochastiques et ordinaires. Ann. Inst. H.
PoincarÃl’ Sect. B (N.S.) 13(2), 99–125 (1977)

19. Falkovich, G.,Gawedzki, K.,Vergassola,M.: Particles andfields in fluid turbulence.
Rev. Mod. Phys. 73(4), 913–975 (2001)

20. Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models, Saint Flour
Summer School Lectures 2010. Lecture Notes inMath. Vol. 2015, Springer, Berlin, 2011

21. Flandoli, F.,Gubinelli,M.,Priola, E.: Full well-posedness of point vortex dynamics
corresponding to stochastic 2D Euler equations. Stoch. Process. Appl. 121(7), 1445–
1463 (2011)

22. Gawedzki, K.: Stochastic processes in turbulent transport. arXiv:0806.1949v2
23. Glatt-Holtz, N., Šverák, V.,Vicol, V.: On Inviscid Limits for the Stochastic Navier–

Stokes Equations and Related Models. arXiv:1302.0542
24. Glatt-Holtz, N., Vicol, V.C.: Local and global existence of smooth solutions for the

stochastic Euler equations with multiplicative noise. Ann. Probab. 42(1), 80–145 (2014)
25. Kim, J.U.: On the stochastic Euler equations in a two-dimensional domain. SIAM J.

Math. Anal. 33 (5), 1211–1227 (2002)
26. Kim, J.U.: Existence of a local smooth solution in probability to the stochastic Euler

equations in R3. J. Funct. Anal. 256(11), 3660–3687 (2009)
27. Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence.Phys.

Fluids 11, 945–963 (1968)

http://arxiv.org/abs/0806.1949v2
http://arxiv.org/abs/1302.0542


Existence and Uniqueness for Stochastic 2D Euler Flows with Bounded Vorticity 141

28. Kraichnan, R.H.: Anomalous scaling of a randomly advected passive scalar. Phys.
Rev. Lett. 72, 1016–1019 (1994)

29. Kunita, H.: Stochastic differential equations and stochastic flows of diffeomorphisms,
Ecole d’été de probabilités de Saint-Flour, XII—1982, 143–303, Lecture Notes inMath.
1097, Springer, Berlin, 1984

30. Kunita, H.: Stochastic Flows and Stochastic Differential Equations, Cam-
bridge Studies in Advanced Math. 24. Cambridge University Press, Cambridge,
1997

31. Kupiainen, A., Muratore-Ginanneschi, P.: Scaling, renormalization and statistical
conservation laws in the Kraichnan model of turbulent advection. J. Stat. Phys. 126(3),
669–724 (2007)

32. Lamperti, J.: A simple construction of certain diffusion porcesses. J. Math. Kyoto Univ.
4, 161–170 (1964)

33. Le Jan, Y., Raimond, O.: Integration of Brownian vector fields. Ann. Probab. 30(2),
826–873 (2002)

34. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, Cambridge Texts in
Applied Mathematics. Cambridge University Press, Cambridge, 2002

35. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous
Fluids. Springer, Berlin, 1994

36. Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier–Stokes equations for turbulent
flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

37. Mikulevicius, R., Valiukevicius, G.: On stochastic Euler equation. Liet. Mat. Rink.
38 (2), 234–247 (1998); translation in Lithuanian Math. J. 38 (1998), no. 2, 181–192
(1999)

38. Mikulevicius, R., Valiukevicius, G.: On stochastic Euler equation in R
d . Electron.

J. Probab. 5(6), 20 (2000)
39. Rozovskii, B.L.: Stochastic Evolution Equations. Linear Theory and Applications to

Non-linear Filtering. Kluwer, Dordrecht, 1990
40. Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential

equations. Ann. Probab. 6(1), 19–41 (1978)
41. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF

Regional Conference Series in AppliedMathematics, Vol. 41, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1983

42. Wolibner, W.: Un theorème sur l’existence du mouvement plan d’un fluide parfait,
homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698–726
(1933)

43. Yokoyama, S.: Construction of weak solutions of a certain stochastic Navier–Stokes
equation. Stochastics 86(4), 573–593 (2014)

44. Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid (Russian). Z̆.
Vyc̆isl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

45. Yudovich, V.I.: Uniqueness theorem for the basic nonstationary problem in the dynam-
ics of an ideal incompressible fluid. Math. Res. Lett. 2(1), 27–38 (1995)
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