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Abstract

We construct a singular minimizingmap u fromR
3 toR2 of a smooth uniformly

convex functional of the form
∫
B1

F(Du) dx .

1. Introduction

In this paper we consider minimizers of functionals of the form
∫

B1
F(Du) dx (1)

where u ∈ H1(B1) is a map from R
n to R

m and F is a smooth, uniformly convex
function on Mm×n with bounded second derivatives. By a minimizer we under-
stand a map u for which the integral above increases after we perform any smooth
deformation of u, with compact support in B1. If F satisfies these conditions then
minimizers are unique subject to their own boundary condition. Moreover u is a
minimizer if and only if it solves the Euler–Lagrange system

div(∇F(Du)) = 0, (2)

in the sense of distributions.
The regularity of minimizers of (1) is a well-studied problem. Morrey [13]

showed that in dimension n = 2 all minimizers are smooth. This is also true in the
scalar case m = 1 by the classical results of De Giorgi and Nash [3,14]. In the
scalar case, the regularity is obtained by differentiating equation (2) and treating the
problem as a linear equation with bounded measurable coefficients. An example of
De Giorgi [4] shows that these techniques cannot be extended to the case m � 2.
Another example due to Giusti and Miranda [11] shows that elliptic systems do
not have regularity even when the coefficients depend only on u. On the other hand
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it is known that minimizers of (1) are smooth away from a closed singular set of
Hausdorff n − p dimensional measure zero for some p > 2, see [9,10]. (In fact,
if F is uniformly quasi-convex then minimizers are smooth away from a closed
set of Lebesgue measure zero, see Evans [7]). However, the singular set may be
non-empty. We will discuss some interesting examples below.

Themain result of this paper is a counterexample to the regularity ofminimizers
of (1) when n = 3 and m = 2, which are the optimal dimensions in light of the
previous results. The existence of such minimizing maps from R

3 to R
3 or from

R
3 to R2 is stated as an open problem in the book of Giaquinta (see [8, p. 61]).
The first example of a singular minimizer of (1) is due to Necas [15]. He

considered the homogeneous degree one map

u(x) = x ⊗ x

|x |

fromR
n toRn2 for n large, and constructed explicitly a smooth uniformly convex F

on Mn2×n for which uminimizes (1). LaterHao et al. [12] improved the dimension
to n = 5 using

u(x) = x ⊗ x

|x | − |x |
n

I. (3)

The values of (3) are symmetric and traceless, and thus lie in a n(n + 1)/2− 1
dimensional subspace of Mn×n . Šverák and Yan [16] showed that the map (3) is
a counterexample for n = 3, m = 5. Their approach is to construct a quadratic
null Lagrangian L which respects the symmetries of u, such that ∇L = ∇F on
Du(B1) for some smooth, uniformly convex F on M5×3. The Euler–Lagrange
system div(∇F(Du)) = div(∇L(Du)) = 0 then holds automatically. In [17] they
use the same technique to construct a non-Lipschitz minimizer with n = 4, m = 3
coming from theHopffibration.Toour knowledge, these are the lowest-dimensional
examples to date.

Our strategy is different and it is based on constructing a homogenous of degree
one minimizer in the scalar case for an integrand which is convex but has “flat
pieces”.

An interesting problem about the regularity of minimizers occurs in the scalar
case when considering in (1) convex integrands F : Rn → R for which the uniform
convexity of F fails on some compact setS. Assume for simplicity that F is smooth
outside the degeneracy set S, and also that F satisfies the usual quadratic growth at
infinity. One key question is whether or not the gradient ∇u localizes as we focus
closer and closer to a point x0 ∈ B1. In [5] it was proved that, in dimension n = 2,
the sets ∇u(Bε(x0)) decrease uniformly as ε → 0 either to a point outside S, or
to a connected subset of S. In Theorem 1 below we show that this “continuity
property” of ∇u does not hold in dimension n = 3 when the set S is the union
of two disconnected convex sets. We remark that, as in the p-Laplace equation, it
is relatively standard (see [2,6]) to obtain the continuity of ∇u outside the convex
hull Sc of S.



Singular Minimizers 3

Let w be the homogeneous degree one function

w(x1, x2) = x22 − x21√
2(x21 + x22 )

= −1√
2
r cos 2θ,

and let u0 be the function on R
3 obtained by revolving w around the x1 axis,

u0(x1, x2, x3) = w

(

x1,
√
x22 + x23

)

.

We show that u0 solves a degenerate elliptic equation that is uniformly elliptic away
from the cone

K0 = {x21 > x22 + x23 }.
Theorem 1. For any δ > 0 there exists a convex function G0 ∈ C1,1−δ(R3) which
is linear on two bounded convex sets containing ∇u0(K0), uniformly convex and
smooth away from these two convex sets, such that u0 is aminimizer of the functional

∫

B1
G0(∇u0) dx .

We use u0 and G0 to construct a singular minimizing map from R
3 to R

2.
Rescaling u0 we obtain a function u1 that solves an equation that is uniformly
elliptic away from a thin cone around the x1 axis, and switching the x1 and x3 axes
we get an analogous function u2. Then u = (u1, u2) is a minimizing map for

F0(p
1, p2) := G1(p

1) + G2(p
2),

which is a convex function defined onR6 ∼= M2×3. Notice that the Euler–Lagrange
system div(∇F0(Du)) = 0 is de-coupled, and F0 fails to be uniformly convex or
smooth in certain regions. However, a key observation is that F0 separates quadrat-
ically from its tangent planes when restricted to the image of Du. We obtain our
example by making a small perturbation of F0.

More specifically, let

u1(x1, x2, x3) = u0(x1/2, x2, x3), u2(x1, x2, x3) = u1(x3, x2, x1)

and let
u = (u1, u2). (4)

Our main theorem is:

Theorem 2. The map (4) is a minimizer of
∫

B1
F(Du) dx

for some smooth, uniformly convex F : M2×3 → R.
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The paper is organized as follows. In Section 2 we state a convex extension
lemma and the key proposition, which asserts the existence of a suitable smooth
small perturbation of G0. We then use them to prove Theorem 2. In Section 3 we
prove the key proposition. This section contains most of the technical details. In
Section 3.6 we prove the extension lemma and some technical inequalities needed
for the key proposition. Finally, at the end of Section 3.6 we outline how to prove
Theorem 1.

2. Key Proposition and Proof of Theorem 2

In this section we state the extension lemma and the key proposition. We then
use them to prove Theorem 2.

The function F0 defined in the Introduction is not uniformly convex in M2×3,
but it separates quadratically from its tangent planes on the image of Du which, by
the one-homogeneity of u, is the two dimensional surface Du(S2). The quadratic
separation holds on this surface since G1 is uniformly convex in the region where
G2 is flat and vice versa. We would like to find a uniformly convex extension of F0
with the same tangent planes on Du(∂B1).

2.1. Extension Lemma

The extension lemma gives a simple criterion for deciding when the tangent
planes on a smooth surface can be extended to a global smooth, uniformly convex
function. Let Σ be a smooth compact, embedded surface in Rn of any dimension.

Lemma 3. Let G be a smooth function and v a smooth vector field on Σ such that

G(y) − G(x) − v(x) · (y − x) � γ |y − x |2, (5)

for any x, y ∈ Σ and some γ > 0. Then there exists a global smooth function F
such that F = G and ∇F = v on Σ , and D2F � γ I .

The idea of the proof is to first make a local extension by adding a largemultiple
of the square of distance from Σ . We then make an extension to all ofRn by taking
the supremum of tangent paraboloids to the local extension. Finally we mollify
and glue the local and global extensions. We postpone the proof to the appendix,
Section 3.6. We also record an obvious corollary.

Definition 4. Let G be a smooth function on an open subset O of Rn . We define
the separation function SG on O × O by

SG(x, y) = G(y) − G(x) − ∇G(x) · (y − x).

Corollary 5. Assume that G is a smooth function in a neighborhood ofΣ such that
SG(x, y) � γ |y − x |2 for any x, y ∈ Σ and some γ > 0. Then there exists a
global smooth, uniformly convex function F such that F = G and ∇F = ∇G on
Σ .
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2.2. Key Proposition

In this section we state the key proposition. We first give the setup for the

statement. Recall that w = (x22 − x21 )/
√
2(x21 + x22 ). Let

Γ = ∇w(B1 − {0}) = ∇w(S1).

We describe Γ as a collection of four congruent curves. The part of Γ in the region
{p2 � |p1|} can be written as a graph

Γ1 = {(p1, ϕ(p1))}
for p1 ∈ [−1, 1], where ϕ is even, uniformly convex, tangent to p21 = p22 at±1, and
separates from these lines like (dist)3/2. We will give a more precise description of
ϕ in Section 3.

The other pieces of Γ can be written

Γ2 = {−ϕ(p2), p2}, Γ3 = {p1,−ϕ(p1)}, Γ4 = {ϕ(p2), p2}
for pi ∈ [−1, 1], representing the left, bottom and right pieces of Γ (see Fig. 1).

Recall that u0 = w

(

x1,
√
x22 + x23

)

. Then

Ω = ∇u0(S
2)

is the surface obtained by revolving Γ around the p1 axis. Let ΩR ⊂ Ω be the
surface obtained by revolving Γ1 around the p1 axis.

In the statement below, δ and γ are small positive constants depending on ϕ.

Fig. 1. Γ consists of four identical curves separating from the lines p21 = p22 like dist3/2
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Proposition 6. For any ε > 0 there exists a smooth function G defined in a neigh-
borhood of Ω such that

div(∇G(∇u0)) = 0 in B1\{0},
and

1. If p ∈ ΩR ∩{−1+δ � p1 � 1−δ} then SG(p, q) � γ |p−q|2 for all q ∈ Ω ,
2. SG(p, q) � −ε|p − q|2 otherwise for p, q ∈ Ω .

We delay the proof of this proposition to Section 3, and use it now to prove
Theorem 2.

2.3. Proof of Theorem 2

Recall that

u1(x1, x2, x3) = u0(x1/2, x2, x3), u2(x1, x2, x3) = u1(x3, x2, x1),

and let

G1(p1, p2, p3) = G(2p1, p2, p3), G2(p1, p2, p3) = G1(p3, p2, p1).

Then by Proposition 6 we have div(∇Gi (∇ui )) = 0. Let

Σ = Du(B1).

Since D2u1 has rank 2 away from the cone

K1 = {x21 � 4(x22 + x23 )}
and similarly D2u2 has rank 2 away from

K2 = {x23 � 4(x21 + x22 )},
it is easy to see that Σ is a smooth embedded surface in R6.

Let

Ωi = ∇ui (B1 − Ki ).

Note that Ω1 is just ΩR squeezed by a factor of 1/2 in the p1 direction. Let
νi be the outer normals to Ωi . Since ui are homogeneous degree one we have
νi (∇ui (x)) = x on (B1−Ki )∩ S2. Furthermore, the preimage x ∈ S2 of any point
in Σ satisfies either |x1| � |x3| or vice versa. It follows from these observations
that if (p1, p2) ∈ Σ then either

p1 ∈ Ω1 ∩ {−β/2 � p11 � β/2} or p2 ∈ Ω2 ∩ {−β/2 � p23 � β/2}
with β such that ϕ′(β) = 1/2, β < 1 − δ (see Fig. 2). Assume p1 belongs to the
set above.
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Fig. 2. ∇u1 maps the cone K1 to a region where G1 is slightly non-convex, but ∇u2 maps
it well inside Ω2 where G2 is uniformly convex

Finally, let

F0(p
1, p2) = G1(p

1) + G2(p
2).

By rescaling Proposition 6 we have for (p1, p2), (q1, q2) ∈ Σ that

SF0((p
1, p2), (q1, q2)) = SG1(p

1, q1) + SG2(p
2, q2)

� γ |p1 − q1|2 − ε|p2 − q2|2.
Letω0 ∈ S2 be a preimage of p1 under∇u1. Then |∇u1(ω)−∇u1(ω0)| > c|ω−ω0|
and |∇ui (ω) − ∇ui (ω0)| < C |ω − ω0| for any ω ∈ S2, so

|p2 − q2| � C |p1 − q1|,
giving quadratic separation. By Corollary 5 there is a smooth uniformly convex
function F on R

6 so that F = F0 and ∇F = ∇F0 on Σ , hence u satisfies the
Euler–Lagrange system div(∇F(Du)) = 0 in B1 \ {0}. Now it is straightforward
to check that u is a weak solution of the system in the whole B1. Indeed

∫

B1
∇F(Du) · Dψ = 0, ∀ψ ∈ C∞

0 (B1),

follows by integrating first by parts in B1\Bε and then letting ε → 0.
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3. Constructions

In this section we prove the key step, Proposition 6. Since Ω = ∇u0(B1) is
the surface obtained by revolving Γ around the p1 axis, we can reduce to a one-
dimensional problem on Γ and then revolve the resulting picture around the p1
axis. Since all of our constructions will be on R2 in this section we use coordinates
(x, y) rather than (p1, p2).

3.1. Setup

Define H to be an even function in x and y which has the form

H(x, y) = f (x) + h(x)(|y| − ϕ(x)), (6)

and is defined in a neighborhood of every point on Γ1 ∪Γ3, for some smooth func-
tions f and h on [−1, 1]. In our construction h will be identically zero and f linear
near x = ±1, so H is linear in a neighborhood of the cusps ofΓ . Notice that we can
extend H to be a linear function (depending only on x) in a whole neighborhood
of Γ2 and similarly on Γ4. Then H is defined and smooth in a neighborhood of Γ .

3.2. Inequalities for ϕ

We now record some useful properties of Γ . For proofs see Section 3.6. The
first estimate gives an expansion for ϕ near x = −1.

Proposition 7. The function ϕ is even, uniformly convex, and tangent to y = |x | at
x = ±1. Furthermore, ϕ′′ is decreasing near x = −1 and we have the expansion

ϕ′′(−1 + ε) =
√
2

3
ε−1/2 + O(1). (7)

The second estimate says that the vertical reflection ofϕ over its tangent y = −x
lies above and separates from Γ2 (see Fig. 3). It follows easily from the uniform
convexity of ϕ.

Proposition 8. The function a(x) = −2x − ϕ is uniformly concave, tangent to Γ2
at x = −1, and lies strictly above Γ2 for x > −1.

3.3. Euler–Lagrange Equation

Let

G(p1, p2, p3) = H

(

p1,
√
p22 + p23

)

.

The condition that u0 solves the Euler–Lagrange equation div(∇G(∇u0)) = 0 is
equivalent to

h(x) = f ′′(x)
2ϕ′′(x)

. (8)
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Fig. 3. The graph a = −2x − ϕ lies strictly above Γ2

Indeed, since G is linear near the surfaces obtained by revolving Γ2 and Γ4,
we just need to verify the Euler–Lagrange equation where ∇u0 is on the surface
ΩR obtained by revolving Γ1. By passing a derivative the Euler–Lagrange equation
div(∇G(∇u0)) is equivalent to

tr(D2G(∇u0) · D2u0) = 0.

Let ΩR have outer normal ν and second fundamental form I I . Since u0 is
homogeneous degree one we have ν(∇u0(x)) = x on S2. Let T be a frame tangent
to S2 at x , and differentiate to obtain D2

T u0(x) = I I−1(∇u0(x)). In coordinates
tangent to ΩR at p = (p1, ϕ(p1), 0) one computes

I I = 1
√
1 + ϕ′2

(
ϕ′′

1+ϕ′2 0

0 − 1
ϕ

)

, D2G =
(

f ′′−hϕ′′
1+ϕ′2 0

0 h
ϕ

)

and the Euler–Lagrange formula follows.

Remark 9. For a fast way to compute D2G in tangential coordinates, differentiate
the equation G(p1, ϕ(p1), 0) = f (p1):

∇G · (1, ϕ′) = f ′, (1, ϕ′)T · D2G · (1, ϕ′) + hϕ′′ = f ′′.

The other eigenvalue comes from the rotational symmetry of G around the p1 axis.

Remark 10. If we do the computation in R
n we have n − 1 rotational principal

curvatures and derivatives, giving the Euler-Lagrange equation h = f ′′
(n−1)ϕ′′ .
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3.4. Convexity Conditions

Since most of our analysis is near a cusp, it is convenient to shift the picture by
the vector (1,−1) so that ϕ, f are defined on [0, 2] and ϕ is tangent to y = −x at
zero. We assume this for the remainder of the section.

We examine convexity conditions between two points on Γ1. Let p =
(x0, ϕ(x0)) and q = (x, ϕ(x)). We first write the equation for the tangent plane L p

to H at p = (x0, ϕ(x0)):

L p(x, y) = f (x0) + f ′(x0)(x − x0) + h(x0)[y − (ϕ(x0) + ϕ′(x0)(x − x0))].
Applying the Euler–Lagrange equation (8) we obtain

L p = f (x0) + f ′(x0)(x − x0) − f ′′(x0)
2ϕ′′(x0)

[y − (ϕ(x0) + ϕ′(x0)(x − x0))]. (9)

By definition,

SH (p, q) = f (x) − L p(x, ϕ(x)).

Using Equation (9) we obtain

SH (p, q) =
∫ x

x0
f ′′(t)(x − t) dt − f ′′(x0)

2ϕ′′(x0)

∫ x

x0
ϕ′′(t)(x − t) dt. (10)

Definition 11. For a nonnegative function g : R → R define the weighted average

sg(x0, x) =
∫ x
x0
g(t)(x − t) dt

g(x0)(x − x0)2
.

With this definition we have

SH (p, q) = f ′′(x0)
(

s f ′′(x0, x) − 1

2
sϕ′′(x0, x)

)

(x − x0)
2, (11)

thus, the first qualitative convexity condition is

s f ′′(x0, x) � 1

2
sϕ′′(x0, x). (12)

Remark 12. Notice that

lim
x→x0

sg(x0, x) = 1

2
.

It is easy to check that if g is increasing (decreasing) then sg(x0, x) is increasing
(decreasing) with x . With this observation one verifies that condition (12) holds for
x0, x near 0 if f ′′(x) = Cx1−α for any α ∈ (0, 1). Indeed, since f ′′ is increasing
and ϕ′′ is decreasing one only needs to check the condition at x = 0, where one
computes s f ′′(x0, 0) = 1

3−α
and 1

2 sϕ′′(x0, 0) = 1
3 + O(

√
x0) which follows by

Proposition 7.
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We now examine convexity conditions between p ∈ Γ1 and q ∈ Γ2.
Let p = (x0, ϕ(x0)). In our construction we will have h � 0, and since H is

linear near Γ2, we see that SH (p, q) � 0 if the intersection line of tangent planes
to H at p and at 0 lies above the line y = −x on [0, 2]. Using Equation (9) we
compute the formula for the intersection line:

y = ϕ(x0) − 2ϕ′′(x0)
f ′′(x0)

∫ x0

0
f ′′(t)(x0 − t) dt

+
(

ϕ′(x0) − 2ϕ′′(x0)
f ′′(x0)

∫ x0

0
f ′′(t) dt

)

· (x − x0).

(13)

If condition (12) holds at x = 0, it means that the origin lies below the intersection
line, thus SH (p, q) � 0 for all q ∈ Γ2 provided that the slope of the intersection
line above is larger than −1:

ϕ′(x0) − 2ϕ′′(x0)
f ′′(x0)

∫ x0

0
f ′′(t) dt � −1 = ϕ′(0).

Definition 13. For a nonnegative function g : R → R define

dg(x) =
∫ x
0 g(t) dt

xg(x)
.

With this definition the slope condition above can be written as

d f ′′(x) � 1

2
dϕ′′(x). (14)

Remark 14. Near x = 0 one computes 1
2dϕ′′(x) = 1 + O(

√
x). Thus, if f ′′(x) =

Cx1−α near x = 0 then (14) holds. However, away from a small neighborhood of
0, condition (14) will not hold in our construction. We will use formula (9) more
carefully, combined with Proposition 8, to deal with these cases.

Remark 15. Conditions (12) and (14) are independent of the linear part of f . Thus,
when checking convexity conditions we only need to use the properties of f ′′.

3.5. Preliminary Construction

As a stepping stone to proving Proposition 6 we construct first a C1,α function
H0 near Γ , that is globally convex. We will use this construction to prove Theorem
1 in Section 3.6. The function H ∈ C∞ is obtained by perturbing H0. Below we
define

G0(p1, p2, p3) = H0

(

p1,
√
p22 + p33

)

.

Recall in the constructions below that we have shifted the picture by (1,−1).

Proposition 16. For any α ∈ (0, 1) there exist a function H0 near Γ such that
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1. H0 is a linear function depending only on x on Γ2, and similarly on Γ4.
2. H0 is pointwise C1,1−α on the cusps of Γ and smooth otherwise,
3. div(∇G0(∇u0)) = 0 away from the cone {x21 = x22 + x23 },
4. SH0(p, q) � 0 for all p, q ∈ Γ ,
5. If p = (x, ϕ(x)) then SH0(p, q) � η(x)|p − q|2 for all q ∈ Γ , where η is

some continuous function on [0, 2] with η > 0 on (0, 2) and η(0) = η(2) = 0.

We will define f0 by f0(0) = f ′
0(0) = 0 and prescribe f ′′

0 , and then let H0
be the function determined by f0 through the Euler–Lagrange relation (8). It is
easy to check that condition (12) holds if we take f ′′

0 = ϕ′′. However, we want
h0 = f ′′

0 /(2ϕ′′) to go to zero at the endpoints so that H0 is linear on Γ2 and Γ4.
Motivated by the above and Remarks 12 and 14, define

f ′′
0 (x) =

⎧
⎪⎨

⎪⎩

δα−1ϕ′′(δ)x1−α, 0 � x � δ

ϕ′′(x), δ � x � 1

f ′′
0 (2 − x), 1 � x � 2

(see Fig. 4). Assume δ is tiny so that ϕ′′ is well approximated by its expansion
(7). Let H0 be the function as in (6) determined by f0 through the Euler–Lagrange
relation (8).

Proof of Proposition 16. The first three items are clear by construction so we
check the convexity conditions. By symmetrywe only need to consider p ∈ Γ1∪Γ2.

If p ∈ Γ2 the positive separation is a consequence of H0 � 0. This follows
from the definition of H0 on Γ1 ∪ Γ3. Also, by symmetry, the linear function on
Γ4 intersects the linear function on Γ2 on the vertical line {x = 1}, and since
Γ4 ⊂ {x > 1} we obtain H0 � 0 on Γ4 as well.

We now consider the situation when p ∈ Γ1 and distinguish two cases depend-
ing whether q ∈ Γ1 ∪ Γ3 or q ∈ Γ2 ∪ Γ4.

Fig. 4. f ′′
0 agrees with ϕ′′ on [δ, 2 − δ], behaves like x1−α near zero, and is symmetric

around x = 1
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Let p = (x0, ϕ(x0)).
First Case: Assume first that q = (x, ϕ(x)) ∈ Γ1. By symmetry of f ′′

0 around
x = 1 we may assume x < x0.

If x0 ∈ [0, δ] then by formula (11) and Remark 12 we have

SH0(p, q) � c(α) f ′′(x0)(x − x0)
2.

If x0 ∈ [δ, 2 − δ] we have f ′′
0 = ϕ′′, so one computes

SH0(p, q) =
∫ x0

x
( f ′′(t) − 1

2
ϕ′′(t))(t − x) dt.

If x � δ then this is clearly controlled below by 1
4 min(ϕ′′)(x − x0)2, and if x < δ

then we have

SH0(p, q) =
∫ δ

x
( f ′′(t) − ϕ′′(t)/2)(t − x) dt + 1

2

∫ x0

δ

ϕ′′(t)(t − x) dt,

which is controlled below by

ϕ′′(δ)(s f ′′(δ, x) − sϕ′′(δ, x)/2)(δ − x)2 + 1

4
min(ϕ′′)(x0 − δ)2 � c(α)(x − x0)

2.

Finally, if x0 � 2− δ then since f ′′
0 /ϕ′′ is decreasing on [δ, 2], we compute for

x � δ that

SH0(p, q) � 1

2

∫ x

x0
f ′′(t)(x − t) dt � 1

4
min{ f ′′

0 (x0),min(ϕ′′)}(x − x0)
2.

If x < δ then, since f ′′
0 � ϕ′′ and they agree on [δ, 2−δ], we have using expansion

(7) that

SH0(p, q) � 1

2

∫ 2−δ

δ

ϕ′′(t)(t − x) dt − C
√

δ � c(x − x0)
2.

If q ∈ Γ3 then quadratic separation holds as well since

∂y H0(x0, ϕ(x0)) = f ′′
0 (x0)

2ϕ′′(x0)
> 0.

Second Case: By symmetry we may assume q ∈ Γ2. If x0 � δ we compute

d f ′′
0
(x0) = 1

2 − α
< 1.

By Remark 14, inequality (14) holds strictly.
Now assume x0 ∈ [δ, 1]. Define

g(x) = ϕ(x) − 2 f0(x).
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Fig. 5. The tangent plane at (x, ϕ(x)) is negative on the curve y = g(x), hence on Γ2, for
x ∈ [δ, 2 − δ]

Using the tangent plane formula (9) we compute

L p(x, g(x)) = −
∫ x

x0
f ′′(t)(x − t) dt + 1

2

∫ x

x0
ϕ′′(t)(x − t) dt

= −SH0(p, (x, ϕ(x))) � 0

by the computations in the first case. Furthermore, since f ′′
0 � ϕ′′, the graph of g

lies above the function

a(x) = −2x − ϕ(x)

defined in Proposition 8 (see Fig. 5). Since a(x) lies strictly above Γ2 for x > 0
and ∂y H0(x0, ϕ(x0)) = 1/2, we have strictly positive separation on Γ2.

Finally, for x0 ∈ [1, 2], the intersection of the tangent planes at p and at p̃ =
(2 − x0, ϕ(2 − x0)) is the line x = 1 since f ′′

0 is symmetric around x = 1. By the
previous computations, the tangent plane at p̃ is negative on Γ2. Thus, the tangent
plane at p is negative on Γ2, completing the proof. ��

3.6. Proof of Key Proposition

We can slightly modify the construction of H0 from the previous section to
make it smooth, at the expense of giving up a little convexity near the cusps of Γ .
Below δ, γ > 0 are small constants depending only on ϕ. Let G(p1, p2, p3) =
H

(

p1,
√
p22 + p23

)

.

Proposition 17. For any ε > 0 there exists a smooth function H defined on a
neighborhood of Γ such that
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Fig. 6. f ′′ is a small perturbation of f ′′
0 that connects smoothly to ϕ′′ near x = δ and goes

quickly to zero near x = 0

1. H is linear (depending only on x) in a neighborhood of Γ2, respectively Γ4,
2. div(∇G(∇u0)) = 0,
3. Hy(x, ϕ(x)) � 1

2 for x ∈ [δ, 2 − δ], and Hy � 0 on Γ1,
4. If p = (x, ϕ(x)) with x ∈ [δ, 2− δ] then SH (p, q) � γ |p− q|2 for all q ∈ Γ ,
5. SH (p, q) � −ε|p − q|2 otherwise for p, q ∈ Γ .

Note that the key Proposition 6 follows easily from Proposition 17 by defining
G as above.

Let α = 1
2 in the construction of f ′′

0 from the previous section and let ε � δ.
Let f ′′ be a smoothing of f ′′

0 defined by cutting it off smoothly to zero between ε

and 2ε, gluing it smoothly to itself between δ and δ + ε, and making it symmetric
over x = 1 (see Fig. 6). Let H be the function in (6) determined by f through the
Euler–Lagrange relation (8).

Proof of Proposition 17. The first three conclusions are clear by construction so
we just need to check the convexity conclusions. Most of them will follow by
continuity.

If p ∈ Γ2 we have positive separation since H � 0, so assume p = (x0, ϕ(x0)).
If x0 ∈ [δ, 2 − δ] then the conclusion holds by continuity from the arguments

in the proof of Proposition 16 after taking ε small.
Next we may assume by symmetry that x0 ∈ [0, δ].
Case 1: Assume that x0 � 10ε.
If q = (x, ϕ(x)) with x > x0 then the positive separation follows again by

continuity. If x < x0 one computes

2s f ′′(x0, x) � 2s f ′′(x0, 0) � 4

5
(1 − (1/5)5/2) > sϕ′′(x0, 0) � sϕ′′(x0, x)

so condition (12) holds and we have positive separation on Γ1.
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Since the cutoff is between ε and 2ε and f ′′ is increasing for x < δ we compute

d f ′′(x0) <
2

3
, (15)

and by Remark 14 the condition (14) holds for x0 < δ. We thus have positive
separation on Γ2 and Γ3.

Finally, for q ∈ Γ4 positive separation follows again by continuity.
This establishes positive separation everywhere for x0 ∈ [10ε, 2 − 10ε].
Case 2: Assume x0 � 10ε.
The tangent plane at p is of order ε on Γ , so we have positive separation when

q ∈ Γ4.
Using that f ′′ is increasing and ϕ′′ decreasing near 0, we obtain positive sepa-

ration if q = (x, ϕ(x)) with x ∈ [x0, δ]. The same holds for x > δ by continuity.
If q = (x, ϕ(x)) for x < x0 we compute

SH (p, q) � − f ′′(x0)sϕ′′(x0, x)(x − x0)
2 � −C

√
ε |p − q|2,

since sϕ′′(x0, x) � sϕ′′(x0, 0) � 1. This gives the desired estimate on Γ1.
Next we bound SH (p, q) with q ∈ Γ2. For this we estimate the location of the

intersection line l p of the tangent plane at p with 0. By (13), l p passes through
(

x0, ϕ(x0) − 2ϕ′′(x0)
f ′′(x0)

∫ x0

0
(x0 − t) f ′′(t) dt

)

.

We first claim that this point lies above the line y = −x . Indeed, since f ′′ is
increasing in [0, x0], the second component is larger than ϕ(x0) − ϕ′′(x0)x20 , and
using the expansion (7) we see that

ϕ(x0) + x0 �
(
4

3
ϕ′′(x0) + O(1)

)

x20 > ϕ′′(x0)x20 .

By (15) the slope of l p is between −1 and 0, so we have positive separation for
q ∈ Γ3 and q ∈ Γ2 ∩ {y < −x0}.

Finally, from (13) we see that the slope of l p is less than ϕ′(x0). Thus, for
x < x0, l p lies above the line

y = l(x) = −x0 + ϕ′(x0)(x − x0).

A short computation using the expansion (7) shows that l(x) crosses a(x), hence
Γ2, at some x < ξ x0 where

ξ + 2

3
ξ3/2 = 1 + O(

√
ε).

In particular, ξ < 1−c. This gives that the separation is positive on Γ2∩{x > ξ x0},
and otherwise the separation is at worst −C

√
εx20 � −C

√
ε|p − q|2 (see Fig. 7).

��

Remark 18. The proof shows in fact that SH (p, q) is only negative for p, q very
close to the same cusp.
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Fig. 7. The separation is positive if q is below the line l(x), and if the separation is negative
then |p − q| is of order x0

Appendix

Convex Extension Lemma

Proof of Lemma 3. Let vT be the tangential component and v⊥ be the normal
component, and let ∇ΣG be the gradient of G on Σ . Note that condition (5)
implies vT = ∇ΣG. For x ∈ Σ let Tx , Nx be the tangent and normal subspaces to
Σ at x . Let dΣ(y) be the distance from y to Σ and let

Σr = {y : dΣ(y) < r}.

Finally, for x ∈ R
n let y(x) be the closest point inΣ to x . It is well-known that y and

d2Σ are well-defined and smooth in a neighborhood of Σ , and for x ∈ Σ , Dx y(x)
is the projection to Tx and D2(d2Σ/2)(x) is the projection to Nx . (For proofs, see
for example [1]).

Step 1: We claim that the function

F(x) = G(y(x)) + v(y(x)) · (x − y(x)) + A

2
d2Σ(x)

with A large lifts quadratically from its tangent planes in Σσ for σ sufficiently
small. We first compute for x ∈ Σ that

F(x + εz) = G(x) + ε(∇ΣG(x) · zT + v(x) · z⊥) + O(ε2)

= G(x) + εv(x) · z + O(ε2)

giving that F = G on Σ and ∇F = v on Σ .
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Now, for ε small and ν ∈ Nx we have y(x + εν) = x and dΣ(x + εν) = ε, so
Fνν(x) = A. In addition, if x ∈ Σ and x + εz ∈ Σ for some unit vector z then by
hypothesis we have

F(x + εz) = F(x) + ε∇F(x) · z + ε2

2
zT · D2F(x) · z + O(ε3)

� F(x) + ε∇F(x) · z + γ ε2.

Taking ε to zero we see that Fττ (x) > 2γ for any tangential unit vector τ .
Take any unit vector e and write e = ατ + √

1 − α2ν for some unit τ ∈ TxΣ
and ν ∈ NxΣ . Since D2(d2Σ/2) is the projection matrix onto Nx at x ∈ Σ , we have

Fee(x) = α2Fττ + (1 − α2)Fνν + 2α
√
1 − α2(F − Ad2Σ/2)τν

� 2α2γ + (1 − α2)A − Cα
√
1 − α2

for someC independent of A.We conclude that D2F > 3
2γ I onΣ for A sufficiently

large, and in particular, D2F > 3
2γ I on a neighborhood Σ2ρ of Σ .

Finally, we show that the tangent planes to F in Σσ separate quadratically for
σ small. Let x, z ∈ Σσ . We divide into two cases.

If |z − x | < ρ then x and z can be connected by a line segment contained in
Σ2ρ , so it is clear that

F(z) > F(x) + ∇F(x) · (z − x) + 3

4
γ |z − x |2.

If on the other hand |z − x | > ρ, we use that

F(y(z)) > F(y(x)) + ∇F(y(x)) · (y(z) − y(x)) + γ |y(z) − y(x)|2.
Replacing y(z) by z and y(x) by x changes these quantities by at most Cσ , and
since and |z − x | > ρ we have that

F(z) > F(x) + ∇F(x) · (z − x) + 3

4
γ |z − x |2

for all x, z ∈ Σσ for σ small.
Step 2: From now on denote the open set Σσ by N . Let Nε denote {x ∈ N :

Bε(x) ⊂ N }. Finally, let ρε denote the standard mollifier ε−nρ(x/ε) where ρ is
supported in B1, nonnegative, smooth and has unit mass.

We define a global uniformly convex function that agrees with F on N . Let

H0(y) = sup
x∈N

{

F(x) + ∇F(x) · (y − x) + 3

4
γ |y − x |2

}

.

Then H0 is a uniformly convex function onRn with D2H0 � 3
2γ I and furthermore

by construction we have that H0 = F on N .
To finish we glue H0 to a mollification. Fix δ so that Σ ⊂ N2δ . Let

Hε = ρε ∗ H0



Singular Minimizers 19

for some ε small. In Nδ we have

|Hε − H0|, |∇Hε − ∇H0| < Cε.

Finally, since D2H0 � 3
2γ I we have D2Hε > 3

2γ I.
Let η be a smooth cutoff function which is 1 on N2δ and 0 outside of Nδ . Then

let

H = ηH0 + (1 − η)Hε.

We compute

D2H = ηD2H0 + (1 − η)D2Hε + 2∇η ⊗ ∇(H0 − Hε) + D2η(H0 − Hε).

Then H is smooth, H = F on N2δ and taking ε small we have D2H > γ I ,
completing the construction. ��

Expansion of ϕ

Proof of Proposition 7. The symmetries of ϕ follow from the symmetries of w.
The curve Γ1 is parametrized by ∇w(θ) for θ ∈ [π/4, 3π/4]. Let ν be the

upward normal to Γ1. Sincew is homogeneous degree one we have ν(∇w(θ)) = θ .
Differentiating we get the the curvature κ = 1

g′′+g where g(θ) = −1√
2
cos 2θ are the

values of w on S1. Thus, ϕ is uniformly convex and its second derivatives blow up
near x = ±1. To quantify this we compute

∇w(θ) = g(θ)(cos θ, sin θ) + g′(θ)(− sin θ, cos θ)

= 1√
2
(− cos θ(1 + 2 sin2 θ), sin θ(1 + 2 cos2 θ)).

Expanding around θ = π
4 (which gets mapped to the left cusp on Γ1) we get

ϕ

(

−1 + 3

2
θ2 + θ3 + O(θ4)

)

= 1 − 3

2
θ2 + θ3 + O(θ4). (16)

Differentiating implicitly one computes

ϕ′′(−1 + ε) =
√
2

3
ε−1/2 + O(1)

and that ϕ′′ is decreasing near −1. ��
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Theorem 1

In [5] the authors show that if u is a scalar minimizer to a convex functional∫
B1

F(∇u) dx on R
2 and F is uniformly convex in a neighborhood of ∇u(B1) ∩

{|p1| < 1} then ∇u cannot jump arbitrarily fast across the strip. In particular,
∇u(Bγ ) localizes to {p1 < 1} or {p1 > −1} for some γ small. In this final section
we use the preliminary construction H0 from Section 3 to indicate why this result
is not true in three or higher dimensions.

Make a global extension of H0 by taking

H̄0(x) = sup
p∈Γ1∪Γ3

{H0(p) + ∇H0(p) · (x − p) + η(p1)|x − p|2}.

The resulting extension is smooth near any non-cusp point of Γ . It is uniformly
convex near each point on (Γ1 ∪ Γ3) ∩ {|p1| < 1} with the modulus of convexity
decaying towards the cusps. Furthermore, H̄0 is flat in a neighborhood of every point
on (Γ2 ∪ Γ4) ∩ {|p2| < 1}. Finally, if p is a cusp of Γ then it is straightforward
to check that H̄0 is pointwise C1,1−α at p, i.e. SH̄0

(p, x) < C |x − p|2−α for all x
near p. By iterating a mollification and gluing procedure similar to those used in
the proof of Lemma 3 near the cusps we can get a global convex extension H̄ that
is smooth away from the cusps, uniformly convex on Γ1 ∪Γ3 away from the cusps,
flat on convex sets containing Γ2 and Γ4, and C1,1−α at the cusps.

Remark 19. In dimension n the Euler–Lagrange equation allows us to take f ′′
0 (x) =

xn−2−α near the cusp, which gives H̄ an extra derivative for each dimension.

Let G0 be the function on R3 obtained by revolving H̄ around the p1 axis (see
Fig. 8). By construction u0 solves the Euler–Lagrange equation div(∇G0(∇u0)) =
0 away from the cone C0 = {|x1| = r} where r =

√
x22 + x33 . Thus, it is not imme-

diate that u0 minimizes
∫
B1

G0(∇u0) dx . However, we claim u0 is a minimizer. To
show this we must establish

∫

B1
∇G0(∇u0) · ∇ψ dx = 0

Fig. 8. G0 is linear on two bounded convex sets containing ∇u0({|x1| > r})
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for any ψ ∈ C∞
0 (B1). The contribution from integrating in Bε and a thin cone

{(1− ε)r < |x1| < (1+ ε)r} is small. Integrating by parts in the remaining region
with boundary S, we get a boundary term of the form

∫
S ψ∇G0(∇u0) · ν ds where

ν is the outer normal. The cones {|x1| = (1 ± ε)r} are ε close, and the outward
normals on these cones are ε close to flipping direction, so by the continuity of∇G0
the contribution from this term is also small. Taking ε to zero we get the desired
result.
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