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Abstract

We study the large-time behavior of solutions to the initial and initial boundary
value problems with large initial data for the compressible Navier–Stokes system
describing the one-dimensional motion of a viscous heat-conducting perfect poly-
tropic gas in unbounded domains. The temperature is proved to be bounded from
below and above, independent of both time and space. Moreover, it is shown that
the global solution is asymptotically stable as time tends to infinity. Note that the
initial data can be arbitrarily large. This result is proved by using elementary energy
methods.

1. Introduction

The compressible Navier–Stokes system describing the one-dimensional mo-
tion of a viscous heat-conducting perfect polytropic gas can be written in the La-
grange variables in the following form (see [4,24]):

vt = ux , (1.1)

ut + Px = μ
(ux

v

)
x
, (1.2)

(
e + u2

2

)

t
+ (Pu)x =

(
κ

θx

v
+ μ

uux
v

)

x
, (1.3)

P = Rθ/v, e = cvθ + const., (1.4)

where t > 0 is time, x ∈ � ⊂ R = (−∞,∞) denotes the Lagrange mass
coordinate, the unknown functions v > 0, u, θ > 0, e > 0, and P are, respectively,
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the specific volume of the gas, fluid velocity, internal energy, absolute temperature,
and pressure, μ is the viscosity coefficient, κ is the heat conductivity one, R > 0 is
the gas constant, and cv is heat capacity at constant volume. We assume that μ, κ,

and cv are positive constants.
The system (1.1)–(1.4) is supplemented with the initial condition

(v(x, 0), u(x, 0), θ(x, 0)) = (v0(x), u0(x), θ0(x)), x ∈ �, (1.5)

and three types of far-field and boundary conditions:

(1) Cauchy problem

� = R, lim|x |→∞(v(x, t), u(x, t), θ(x, t)) = (1, 0, 1), t > 0; (1.6)

(2) boundary and far-field conditions for � = (0,∞),

u(0, t) = 0, θx (0, t) = 0, lim
x→∞(v(x, t), u(x, t), θ(x, t)) = (1, 0, 1), t>0;

(1.7)

(3) boundary and far-field conditions for � = (0,∞),

u(0, t) = 0, θ(0, t) = 1, lim
x→∞(v(x, t), u(x, t), θ(x, t)) = (1, 0, 1), t>0.

(1.8)

Kanel [11] considered the Cauchy problem of the model system of equations
(1.1) (1.2) with P = Rv−γ (γ > 0) and obtained both the existence and the large-
time asymptotic behavior of the global solutions for large initial data. For system
(1.1)–(1.4), Kazhikhov and Shelukhin [16] first obtained the global existence of
solutions in bounded domains for large initial data. From that time, significant
progress has been made on the mathematical aspect of the initial and initial bound-
ary value problems. For initial boundary value problems in bounded domains, the
existence and uniqueness of global (generalized) solutions and the regularity have
been known. Moreover, the global solution is asymptotically stable as time tends
to infinity; see [1–3,18–21,23] among others. For the Cauchy problem (1.1)–(1.6)
and the initial boundary value problems (1.1)–(1.5), (1.7) and (1.1)–(1.5), (1.8) (in
unbounded domains), Kazhikhov [15] (also cf. [3,7]) proved the following:

Lemma 1.1. Assume that the initial data (v0, u0, θ0) satisfy

v0 − 1, u0, θ0 − 1 ∈ H1(�), inf
x∈�

v0(x) > 0, inf
x∈�

θ0(x) > 0, (1.9)

and are compatible with (1.7), (1.8). Then there exists a unique global (large)
generalized solution (v, u, θ) with positive v(x, t) and θ(x, t) to (1.1)–(1.6), or
(1.1)–(1.5), (1.7), or (1.1)–(1.5), (1.8) satisfying that for any T > 0,

{
v − 1, u, θ − 1 ∈ L∞(0, T ; H1(�)), vt ∈ L∞(0, T ; L2(�)),

ut , θt , vxt , uxx , θxx ∈ L2(0, T ; L2(�)).
(1.10)
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The asymptotic behavior as t → ∞ of the solution has been studied under
some smallness conditions on the initial data; see [5,8,12,14,17,22,23] and the
references therein. However, there are few results on the large-time behavior of
the solution in the case of large data. Jiang [9,10] first obtained some interesting
results on the large-time behavior of solutions for large initial data by proving that
the specific volume is pointwise bounded from below and above independent of
both time and space, and that for all t � 0 the temperature is bounded from below
and above locally in x . In particular, Jiang [9,10] showed:

Lemma 1.2. [9,10] Under the conditions of Lemma 1.1, let (v, u, θ) be a gener-
alized solution to (1.1)–(1.6), or (1.1)–(1.5), (1.7), or (1.1)–(1.5), (1.8) satisfying
(1.10) for any T > 0. Then there exists a positive constant C1 depending only on
μ, κ, R, cv, ‖(v0 − 1, u0, θ0 − 1)‖H1(�), inf x∈� v0(x), and inf x∈� θ0(x) such that

C−1
1 � v(x, t) � C1, for all (x, t) ∈ � × [0,∞). (1.11)

From then on, for large initial data, whether the temperature is pointwise bounded
frombelowand above independent of both time and space or not remains completely
open. This is an interesting problem partially because it is the key to studying the
large-time dynamical behavior of the global generalized solutions to (1.1)–(1.6),
(1.1)–(1.5), (1.7), and (1.1)–(1.5), (1.8). In this paper, wewill give a positive answer
and further prove that the global solution is asymptotically stable as time tends to
infinity for large initial data. Our main result is as follows:

Theorem 1.1. Under the conditions of Lemma 1.1, let (v, u, θ) be the (unique) gen-
eralized solution to (1.1)–(1.6), or (1.1)–(1.5), (1.7), or (1.1)–(1.5), (1.8) satisfying
(1.10) for any T > 0. Then there exists a positive constant C0 depending only on
μ, κ, R, cv, ‖(v0 − 1, u0, θ0 − 1)‖H1(�), inf x∈� v0(x), and inf x∈� θ0(x) such that

C−1
0 � θ(x, t) � C0, for all (x, t) ∈ � × [0,∞), (1.12)

sup
0�t<∞

‖(v − 1, u, θ − 1)‖H1(�)+
∫ ∞

0

(
‖vx‖2L2(�)

+ ‖(ux , θx )‖2H1(�)

)
dt�C0.

(1.13)

Moreover, the following large-time behavior holds

lim
t→∞

(‖(v − 1, u, θ − 1)(t)‖L p(�) + ‖(vx , ux , θx )(t)‖L2(�)

) = 0, (1.14)

for any p ∈ (2,∞].

Remark 1.1. In Theorem 1.1, we only assume that the initial data satisfy the con-
ditions which are needed for the global existence of generalized solutions (see
Lemma 1.1). Therefore, our results greatly improve the previous ones due to
[5,8,12,14,17,22,23] where some additional smallness conditions on the initial
data are needed.
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Remark 1.2. For large initial data, Theorem 1.1 shows that the temperature is
bounded from below and above independent of both time and space and that the
global solution converges to the constant steady state uniformly with respect to the
spatial variable as time goes to infinity. Therefore, our results improve those due to
Jiang [9,10] where he proved that the temperature is uniformly (in time) bounded
from below and above locally in x and that global solutions are convergent locally
in space as time goes to infinity.

We now make some comments on the analysis of this paper. The key step
to studying the large-time behavior of the global generalized solutions is to get
the L2-norm (in both space and time) bound of θx (see (2.3)). In fact, (2.3) has
also been obtained under some additional smallness conditions on the initial data;
see [8,12,14,17,22,23] and the references therein. However, in our case, since the
initial data may be arbitrarily large, to obtain (2.3), some new ideas are needed. The
key observations are as follows: the combination of the standard energetic estimate
(see (2.1)) with (1.11) shows that for �2(t) � {x ∈ �| θ(x, t) > 2},

∫ ∞

0

∫

�\�2(t)
θ2x dxdt

is bounded. Hence, it suffices to estimate the integral

A �
∫ ∞

0

∫

�2(t)
θ2x dxdt.

In fact, to estimate A, we multiply the equation for the temperature by (θ − 2)+
(see (2.5)). Then, to control the most difficult term appearing in (2.5), motivated by
[6], we multiply the equation for the velocity by 2u(θ −2)+ (see (2.6)). After some
careful analysis on the integration by parts over �2(t) (see (2.12)) and multiplying
the equation for the velocity by u3, we finally find that A can be controlled by (see
(2.21))

∫ ∞

0
sup
x∈�

(θ − 3/2)2+(x, t)dt,

which in fact is bounded by C(ε) + εA for any ε > 0 (see (2.22)). These are the
key to the proof of (2.3), and once that is obtained, the proof follows in the same
way as in [8,12,14,17,22,23]. The whole procedure will be carried out in the next
section.

2. Proof of Theorem 1.1

We begin with the standard energetic estimate, which is motivated by the sec-
ond law of thermodynamics and embodies the dissipative effects of viscosity and
thermal diffusion.
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Lemma 2.1. It holds that

sup
0�t<∞

∫

�

(
1

2
u2 + R(v − ln v − 1) + cv(θ − ln θ − 1)

)

+ μ

∫ ∞

0

∫

�

u2x
vθ

+ κ

∫ ∞

0

∫

�

θ2x

vθ2
� C,

(2.1)

where (and in what follows) C and Ci (i = 2, . . . , 5) denote generic positive con-
stants depending only on μ, κ, R, cv, ‖(v0 − 1, u0, θ0 − 1)‖H1(�), inf x∈� v0(x),
and inf x∈� θ0(x).

Proof. Using (1.1), (1.2), and (1.4), we rewrite (1.3) as

cvθt + R
θ

v
ux = κ

(
θx

v

)

x
+ μ

u2x
v

. (2.2)

Multiplying (1.1) by R(1 − v−1), (1.2) by u, (2.2) by 1 − θ−1, and adding them
altogether, we obtain

(u2/2 + R(v − ln v − 1) + cv(θ − ln θ − 1))t + μ
u2x
vθ

+ κ
θ2x

vθ2

=
(

μuux
v

− Ruθ

v

)

x
+ Rux + κ

(
(1 − θ−1)

θx

v

)

x
,

which together with (1.6) or (1.7) or (1.8) yields (2.1). We finish the proof of
Lemma 2.1.

Next, we derive the following L2-norm (in both space and time) bound of θux
and θx , which is essential in our analysis.

Lemma 2.2. There exists some positive constant C such that for any T > 0,

sup
0�t�T

∫

�

[
(θ − 1)2 + u4

]
+

∫ T

0

∫

�

[
(1 + θ + u2)u2x + θ2x

]
� C. (2.3)

Proof. The proof of Lemma 2.2 will be divided into three steps.

Step 1. First, for t � 0 and a > 1, denoting

�a(t) � {x ∈ �| θ(x, t) > a},

we derive from (2.1) that

sup
0�t<∞

∫

�a(t)
θ � C(a) sup

0�t<∞

∫

�

(θ − ln θ − 1) � C(a). (2.4)
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Next, integrating (2.2) multiplied by (θ −2)+ � max{θ −2, 0} over�× (0, T )

gives

cv

2

∫

�

(θ − 2)2+ + κ

∫ T

0

∫

�2(t)

θ2x

v

= cv

2

∫

�

(θ0 − 2)2+ − R
∫ T

0

∫

�

θ

v
ux (θ − 2)+ + μ

∫ T

0

∫

�

u2x
v

(θ − 2)+.

(2.5)

To estimate the last term on the right hand side of (2.5), motivated by [6], we
multiply (1.2) by 2u(θ − 2)+ and integrate the resulting equality over � × (0, T )

to get
∫

�

u2(θ − 2)+ + 2μ
∫ T

0

∫

�

u2x
v

(θ − 2)+

=
∫

�

u20(θ0 − 2)+ + 2R
∫ T

0

∫

�

θ

v
ux (θ − 2)+ + 2R

∫ T

0

∫

�2(t)

θ

v
uθx

−2μ
∫ T

0

∫

�2(t)

ux
v
uθx +

∫ T

0

∫

�2(t)
u2θt . (2.6)

Adding (2.6) to (2.5), we obtain, after using (2.2), that
∫

�

[cv

2
(θ − 2)2+ + u2(θ − 2)+

]
+ κ

∫ T

0

∫

�2(t)

θ2x

v
+ μ

∫ T

0

∫

�

u2x
v

(θ − 2)+

=
∫

�

[cv

2
(θ0 − 2)2+ + u20(θ0 − 2)+

]
+ R

∫ T

0

∫

�

θ

v
ux (θ − 2)+

+2R
∫ T

0

∫

�2(t)

θ

v
uθx − 2μ

∫ T

0

∫

�2(t)

ux
v
uθx

+ 1

cv

∫ T

0

∫

�2(t)
u2

(
μ
u2x
v

− R
θ

v
ux

)
+ κ

cv

∫ T

0

∫

�2(t)
u2

(
θx

v

)

x

�
∫

�

[cv

2
(θ0 − 2)2+ + u20(θ0 − 2)+

]
+

5∑
i=1

Ii . (2.7)

We estimate each Ii (i = 1, . . . , 5) in the following way.
First, it follows from Cauchy’s inequality and (1.11) that

|I1| = R

∣∣∣∣
∫ T

0

∫

�

θ

v
ux (θ − 2)+

∣∣∣∣

� μ

2

∫ T

0

∫

�

u2x
v

(θ − 2)+ + C
∫ T

0

∫

�

θ2(θ − 2)+

� μ

2

∫ T

0

∫

�

u2x
v

(θ − 2)+ + C
∫ T

0

∫

�

θ(θ − 3/2)2+

� μ

2

∫ T

0

∫

�

u2x
v

(θ − 2)+ + C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t), (2.8)
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where in the last inequality we have used (2.4).
Next, Cauchy’s inequality and (1.11) yield that for any ε > 0,

|I2| + |I3| = 2R

∣∣∣∣
∫ T

0

∫

�2(t)

θ

v
uθx

∣∣∣∣ + 2μ

∣∣∣∣
∫ T

0

∫

�2(t)

ux
v
uθx

∣∣∣∣

� ε

∫ T

0

∫

�

θ2x + C(ε)

∫ T

0

∫

�2(t)
u2θ2 + C(ε)

∫ T

0

∫

�

u2u2x

� ε

∫ T

0

∫

�

θ2x +C(ε)

∫ T

0
sup
x∈�

(θ−3/2)2+(x, t)+C(ε)

∫ T

0

∫

�

u2u2x ,

(2.9)

where in the last inequality we have used

∫ T

0

∫

�2(t)
u2θ2 � 16

∫ T

0

∫

�

u2(θ − 3/2)2+ � C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t),

(2.10)

due to (2.1).
Then, it follows from Cauchy’s inequality and (2.10) that

|I4| � C
∫ T

0

∫

�

u2u2x + C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t). (2.11)

Finally, for η > 0 and

ϕη(θ) �

⎧⎪⎨
⎪⎩

1, θ − 2 > η,

(θ − 2)/η, 0 � θ − 2 � η,

0, θ − 2 � 0,

Lebesgue’s dominated convergence theorem shows that for any ε > 0,

I5 = κ

cv

lim
η→0+

∫ T

0

∫

�

ϕη(θ)u2
(

θx

v

)

x

= κ

cv

lim
η→0+

∫ T

0

∫

�

(
−2ϕη(θ)uux

θx

v
− ϕ′

η(θ)u2
θ2x

v

)

� −2κ

cv

∫ T

0

∫

�2(t)
uux

θx

v

� ε

∫ T

0

∫

�

θ2x + C(ε)

∫ T

0

∫

�

u2u2x , (2.12)

where in the third inequality we have used ϕ′
η(θ) � 0.
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Noticing that

∫ T

0

∫

�

(
u2xθ + θ2x

)

=
∫ T

0

∫

�3(t)

(
u2xθ + θ2x

)
+

∫ T

0

∫

�\�3(t)

(
u2xθ + θ2x

)

� 3
∫ T

0

∫

�3(t)

(
u2x (θ − 2)+ + θ2x

)
+ C

∫ T

0

∫

�\�3(t)

(
μ
u2x
vθ

+ κ
θ2x

vθ2

)

� C
∫ T

0

∫

�2(t)

1

v

(
μu2x (θ − 2)+ + κθ2x

)
+ C,

where in the last inequality we have used �3(t) ⊂ �2(t), (1.11), and (2.1), we
substitute (2.8), (2.9), (2.11), and (2.12) into (2.7) and choose ε suitably small to
obtain

sup
0�t�T

∫

�

(θ − 2)2+ +
∫ T

0

∫

�

(
u2xθ + θ2x

)

� C + C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t) + C2

∫ T

0

∫

�

u2u2x . (2.13)

Step 2. To estimate the last term on the right hand side of (2.13), we multiply
(1.2) by u3 and integrate the resulting equality over � × (0, T ) to get

1

4

∫

�

u4 + 3μ
∫ T

0

∫

�

u2u2x
v

= 1

4

∫

�

u40 + 3R
∫ T

0

∫

�

1 − v

v
u2ux + 3R

∫ T

0

∫

�\�2(t)

θ − 1

v
u2ux

+3R
∫ T

0

∫

�2(t)

θ − 1

v
u2ux � 1

4

∫

�

u40 +
3∑

i=1

Ji . (2.14)

It follows from (2.1) and (1.11) that for any α ∈ [2, 3],

sup
0�t�T

∫

�

(v − 1)2 + sup
0�t�T

∫

�\�α(t)
(θ − 1)2

� C sup
0�t�T

∫

�

(v − ln v − 1) + C sup
0�t�T

∫

�

(θ − ln θ − 1) � C, (2.15)

which together with Holder’s inequality yields that

|J1|+|J2| � C
∫ T

0
sup
x∈�

u2(x, t)‖ux‖L2(�)

(∫

�

(v − 1)2+
∫

�\�2(t)
(θ − 1)2

)1/2

� C
∫ T

0

∫

�

u2x , (2.16)
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where in the second inequality we have used (2.1) and the following simple fact
that for any w ∈ H1(�),

sup
x∈�

w2(x) = sup
x∈�

(
−2

∫ ∞

x
w(y)wx (y)dy

)

� 2‖w‖L2(�)‖wx‖L2(�). (2.17)

The combination of Cauchy’s inequality with (2.10) leads to

|J3| � μ

∫ T

0

∫

�2(t)

u2u2x
v

+ C
∫ T

0

∫

�2(t)
θ2u2

� μ

∫ T

0

∫

�

u2u2x
v

+ C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t). (2.18)

Putting (2.16) and (2.18) into (2.14) gives

sup
0�t�T

∫

�

u4 +
∫ T

0

∫

�

u2u2x

� C + C
∫ T

0

∫

�

u2x + C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t)

� C(δ) + Cδ

∫ T

0

∫

�

θu2x + C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t), (2.19)

where in the last inequality we have used the following simple fact that for any
δ > 0,

2
∫ T

0

∫

�

u2x � δ

∫ T

0

∫

�

θu2x + δ−1
∫ T

0

∫

�

θ−1u2x � δ

∫ T

0

∫

�

θu2x + C(δ),

(2.20)

due to Cauchy’s inequality, (2.1), and (1.11).
Adding (2.19) multiplied by C2 + 1 to (2.13), then choosing δ suitably small,

we have

sup
0�t�T

∫

�

[
(θ − 2)2+ + u4

]
+

∫ T

0

∫

�

[
(θ + u2)u2x + θ2x

]

� C + C
∫ T

0
sup
x∈�

(θ − 3/2)2+(x, t). (2.21)
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Step 3. It remains to estimate the last term on the right hand side of (2.21). In
fact, standard calculations yield that for any ε > 0,

∫ T

0
sup
x∈�

(θ(x, t) − 3/2)2+ =
∫ T

0
sup
x∈�

(∫ ∞

x
∂x (θ − 3/2)+

)2

�
∫ T

0

(∫

�3/2(t)
|θx |

)2

�
∫ T

0

(∫

�3/2(t)

θ2x

θ

∫

�3/2(t)
θ

)

� C
∫ T

0

∫

�

θ2x

θ

� C(ε)

∫ T

0

∫

�

θ2x

vθ2
+ ε

∫ T

0

∫

�

θ2x

� C(ε) + ε

∫ T

0

∫

�

θ2x , (2.22)

where in the fourth and last inequalities we have used (2.4) and (2.1) respectively.
Putting (2.22) into (2.21) and choosing ε suitably small leads to

sup
0�t�T

∫

�

[
(θ − 2)2+ + u4

]
+

∫ T

0

∫

�

[
(θ + u2)u2x + θ2x

]
� C,

which combined with (2.15) and (2.20) immediately gives (2.3). The proof of
Lemma 2.2 is completed.

Next, wewill derive some necessary uniform estimates on the spatial derivatives
of the global generalized solution (v, u, θ).

Lemma 2.3. There exists some positive constant C such that for any T > 0,

sup
0�t�T

∫

�

(
v2x + u2x + θ2x

)
+

∫ T

0

∫

�

(
θv2x + u2xx + θ2xx

)
� C. (2.23)

Proof. First, integrating (1.2) multiplied by vx
v
over �, we obtain after using (1.1)

that

μ

2

d

dt

∫

�

v2x

v2
= R

∫

�

(
θ

v

)

x

vx

v
+

∫

�

ut
vx

v

= R
∫

�

θxvx

v2
− R

∫

�

θv2x

v3
+ d

dt

∫

�

u
vx

v
+

∫

�

ux
vt

v

� C
∫

�

θ2x

vθ
− R

2

∫

�

θv2x

v3
+ d

dt

∫

�

u
vx

v
+

∫

�

u2x
v

,

which together with Cauchy’s inequality, (1.11), (2.1), (2.3), and (2.22) gives

sup
0�t�T

∫

�

v2x +
∫ T

0

∫

�

θv2x � C. (2.24)
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Next, integrating (1.2) multiplied by uxx over � yields

1

2

d

dt

∫

�

u2x + μ

∫

�

u2xx
v

= R
∫

�

(
θ

v

)

x
uxx + μ

∫

�

ux
v2

vxuxx . (2.25)

It follows from (2.3), (2.24), and (2.17) that
∫ T

0

∣∣∣∣R
∫

�

(
θ

v

)

x
uxx + μ

∫

�

ux
v2

vxuxx

∣∣∣∣

� μ

4

∫ T

0

∫

�

u2xx
v

+ C
∫ T

0

∫

�

(
θ2v2x + θ2x + u2xv

2
x

)

� C + μ

4

∫ T

0

∫

�

u2xx
v

+ C max
�×[0,T ]

θ

∫ T

0

∫

�

θv2x + C
∫ T

0
‖ux (·, t)‖2L∞(�)

� C + μ

2

∫ T

0

∫

�

u2xx
v

+ C max
�×[0,T ]

θ, (2.26)

which combined with (2.25) shows

sup
0�t�T

∫

�

u2x +
∫ T

0

∫

�

u2xx � C + C max
�×[0,T ]

θ. (2.27)

Next, integrating (2.2) multiplied by θxx over � leads to

1

2

d

dt

∫

�

θ2x + κ

∫

�

θ2xx

v
= κ

∫

�

θxvx

v2
θxx − μ

∫

�

u2x
v

θxx +
∫

�

R
θ

v
uxθxx . (2.28)

Cauchy’s inequality and (2.17) give
∫ T

0

∣∣∣∣κ
∫

�

θxvx

v2
θxx − μ

∫

�

u2x
v

θxx +
∫

�

R
θ

v
uxθxx

∣∣∣∣

� C
∫ T

0
‖θxx‖L2(�)‖θx‖L∞(�)‖vx‖L2(�)

+C
∫ T

0
‖θxx‖L2(�)

(‖ux‖L∞(�)‖ux‖L2(�) + ‖θ‖L∞(�)‖ux‖L2(�)

)

� C
∫ T

0
‖θxx‖L2(�)‖θxx‖1/2L2(�)

‖θx‖1/2L2(�)
‖vx‖L2(�)

+C
∫ T

0
‖θxx‖L2(�)‖ux‖H1(�)

(‖ux‖L2(�) + ‖θ‖L∞(�)

)

� κ

4

∫ T

0

∫

�

θ2xx

v
+ C + C max

�×[0,T ]
θ3, (2.29)

where in the last inequality we have used (2.24), (2.3), and (2.27). Integrating (2.28)
over (0, T ), we obtain after using (2.29) that

sup
0�t�T

∫

�

θ2x +
∫ T

0

∫

�

θ2xx � C + C max
�×[0,T ]

θ3. (2.30)
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Finally, it follows from (2.17) and (2.3) that for all t � 0,

‖(θ − 1)(·, t)‖2
C(�)

� C‖(θ − 1)(·, t)‖L2(�)‖θx (·, t)‖L2(�)

� C‖θx (·, t)‖L2(�),
(2.31)

which combined with (2.30) yields

max
�×[0,T ]

(θ − 1)2 � C + C max
�×[0,T ]

θ3/2.

This implies that there exists a positive constant C3 such that for any (x, t) ∈
� × [0, T ],

θ(x, t) � C3, (2.32)

which together with (2.27), (2.30), and (2.24) gives (2.23) and finishes the proof
of Lemma 2.3.

Finally, the following large-time behavior of global generalized solutions to-
gether with Lemmas 2.1-2.3 finishes the proof of Theorem 1.1.

Lemma 2.4. It holds that

lim
t→∞

(‖(v − 1, u, θ − 1)(t)‖L p(�) + ‖(vx , ux , θx )(t)‖L2(�)

) = 0, (2.33)

for any p ∈ (2,∞]. Moreover, there exists a positive constant C4 such that for all
(x, t) ∈ � × [0,∞)

C−1
4 � θ(x, t) � C4. (2.34)

Proof. It follows from (2.3), (2.25), (2.26), (2.28), (2.29), (2.32), and (2.23) that
∫ ∞

0

(
‖ux (·, t)‖2L2(�)

+
∣∣∣∣
d

dt
‖ux (·, t)‖2L2(�)

∣∣∣∣
)
dt

+
∫ ∞

0

(
‖θx (·, t)‖2L2(�)

+
∣∣∣∣
d

dt
‖θx (·, t)‖2L2(�)

∣∣∣∣
)
dt � C,

which directly gives

lim
t→∞

(‖ux (·, t)‖L2(�) + ‖θx (·, t)‖L2(�)

) = 0. (2.35)

This, combined with (2.31), shows

lim
t→∞ ‖θ(·, t) − 1‖C(�) = 0.

Hence, there exists some T0 > 0 such that for all (x, t) ∈ � × [T0,∞)

1/2 � θ(x, t) � 3/2, (2.36)

which, along with (2.23), leads to
∫ ∞

T0
‖vx (·, t)‖2L2(�)

� C. (2.37)
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This, combined with (1.1) and (2.23), yields
∫ ∞

T0

∣∣∣∣
d

dt
‖vx (·, t)‖2L2(�)

∣∣∣∣ = 2
∫ ∞

T0

∣∣∣∣
∫

�

uxxvx

∣∣∣∣

�
∫ ∞

T0

∫

�

u2xx +
∫ ∞

T0

∫

�

v2x � C,

which together with (2.37) implies

lim
t→∞ ‖vx (·, t)‖L2(�) = 0. (2.38)

The combination of (2.38), (2.35), (2.15), (2.1), and (2.3) directly yields (2.33).
Finally, it follows from the proof in [3,16] that there exists someconstantC5 > 2

such that for all (x, t) ∈ � × [0,∞)

C−1
5 e−C5t � θ(x, t),

which together with (2.36) implies that for all (x, t) ∈ � × [0,∞)

C−1
5 e−C5T0 � θ(x, t).

This combinedwith (2.32) gives (2.34) providedwechooseC4 � max{C3,C5eC5T0}.
The proof of Lemma 2.4 is finished. 	
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