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Abstract

We consider a harmonic chain perturbed by an energy conserving noise and
show that after a space-time rescaling the energy-energy correlation function is
given by the solution of a skew-fractional heat equation with exponent 3/4.

1. Introduction

The problem of anomalous diffusion of energy in one-dimensional chains of
coupled oscillators has attracted a lot interest since the end of the 90’s, see the
review papers [7,18]. In one dimension the presence of long time tails in the cor-
relation functions of the energy current shows that transport coefficients are ill
defined. Recently, following [26], Spohn goes further and gives in [23] very pre-
cise predictions about the long-time behavior of the dynamic correlations of the
conserved fields, identifying explicitly several universality classes (see also [24]).1

The predictions are based on the so-called nonlinear fluctuating hydrodynamics,
which claim that in order to capture the super-diffusive behavior of the system
it suffices to expand the system of Euler equations up to second order and add
conservative space-time white noise satisfying the fluctuation-dissipation relation.
These mesoscopic equations are the starting point from which the predictions are
deduced. Thus, they do not depend on the microscopic specificities of the model
but only on its behavior in a coarse space-time scale. The method applies also to
conservative systems whose hydrodynamic equations are described by a system of
hyperbolic conservation laws.

Up to now, mathematical progress on this issue has been rather modest. The
validity of the hydrodynamic equations should be the consequence of the good
mixing properties of the microscopic dynamics, properties well known to be very

1 In [26] the focus is on one-dimensional fluids.
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difficult to justify rigorously for Hamiltonian systems. Therefore, during the last
years, following the pioneering works [22] and [11], it has been proposed to super-
pose stochastic perturbations to the deterministic Hamiltonian evolution in order to
ensure the required chaoticity. In [2] it is proved that the thermal conductivity of an
unpinned one-dimensional harmonic chain of oscillators perturbed by an energy-
momentum conservative noise is infinite, while if a pinning potential (destroying
momentum conservation) is added, it is finite. In [3], it is then shown that if the
intensity ε of the noise goes to 0, the local spectral density evolves according to a
linear phonon Boltzmann equation in a space-time scale of order ε−1. The latter
can be interpreted as the evolution of the density of a Markov process. In [14,16],
the authors study the long time behavior of additive functionals of this Markov
process and deduce that the long-time, large-scale limit of the solution of the previ-
ous Boltzmann equation converges to the solution of the fractional heat equation:

∂t u = −(−�)3/4u, (1.1)

where � is the one-dimensional Laplacian (see also [9,10,19–21] and references
therein). This result is in perfect agreement with the nonlinear fluctuating hydrody-
namics predictions ([23]). Nevertheless, observe that it is obtained in a double limit
procedure and that it is a priori much more difficult and interesting to obtain the
fractional heat equation in a unique space-time scaling limit bypassing the meso-
scopic Boltzmann equation. The aim of this paper is to present a general method
permitting, precisely, the solution of this problem.

The model we consider in this paper has been introduced in [6] and presents
strong analogies with the models described above. We believe, in fact, that with
some extrawork, the proof can be carried out also for themodels of [2]. The systems
of [6] can be described as follows. Let V andU be two non-negative potentials onR
and consider the Hamiltonian system ( r(t),p(t) )t≥0, whose equations of motion
are given by

dpx
dt

= V ′(rx+1) − V ′(rx ),
drx
dt

= U ′(px ) −U ′(px−1), x ∈ Z, (1.2)

where px is the momentum of the particle x , qx its position and rx = qx − qx−1 is
the “deformation” of the lattice at x . Standard chains of oscillators are recovered for
a quadratic kinetic energy U (p) = p2/2. Now, take V = U , and call η2x−1 = rx
and η2x = px . The dynamics can be rewritten as:

dηx (t) =
(
V ′(ηx+1) − V ′(ηx−1)

)
dt. (1.3)

Notice that with these new variables, the energy of the system is simply given by∑
x∈Z V (ηx ). If V (η) = η2/2, which is the case considered in this paper, then

we recover a chain of harmonic oscillators. Then, following the spirit of [2], the
deterministic evolution is perturbed by adding a noisewhich consists to exchangeηx
with ηx+1 at random exponential times, independently for each bond {x, x+1}. The
dynamics still conserves the energy

∑
x∈Z V (ηx ) and the “volume”

∑
x∈Z ηx =∑

x∈Z[px + rx ] and destroys all the other conserved quantities. As argued in [6],
the volume conservation law is responsible for the anomalous energy diffusion
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observed for this class of energy-volume conserving dynamics. This can be shown
for quadratic interactions ([6]) with a behavior similar to the one observed in [2]
but also for exponential interactions ([4]). The technical advantage to dealing with
this kind of stochastic perturbation is that the number of conserved quantities is
only 2 (energy and volume) and not 3 (energy, momentum and stretch) as it is for
the dynamics of [2]. In a recent paper, Jara et al. ([15]) obtained similar results to
ours, but by very different techniques, for the dynamics of [2]. Extension of this
work is investigated in [5].

Our proof is based on some recent ideas introduced in [13]. One way to study
the diffusivity of a conserved quantity of given system is to look at the evolution
of the space-time correlations of the conserved quantity on a diffusive (or 1 : 2 : 4)
space-time scaling, with respect to a given stationary state. For diffusive systems,
these correlations evolve according to a linear heat equation, and the corresponding
diffusion coefficient is what we call the diffusivity of the quantity at the given
stationary state.

As we will see for the model described above, energy correlations evolve on a
1 : 2 : 3 superdiffusive space-time scale. If we scale space with a mesh 1

n , then we
have to speed up the time by a factor n3/2 in order to see a non-trivial evolution
of the energy correlations. For the expert reader, we can explain why is it difficult
to obtain a limiting evolution in this situation. Since the model we are looking
at is conservative, the continuity equation relating spatial variations of the energy
with the energy current, allows to perform an integration by parts which absorbs a
factor n of the time scale. If the system satisfies the, so-called, gradient condition,
the Fourier’s law is satisfied at the microscopic level, and the ergodic properties
of the underlying dynamics are enough to perform a second integration by parts,
absorbing an extra factor n of the time scale. This second integration by parts allows
to obtain the heat equation as the limit of the correlations of the conserved quantity.
If the system does not satisfy the gradient condition, the so-called non-gradient
method introduced by Varadhan [27] allows to use a central limit theorem in order
to showan approximate version of thefluctuation-dissipation relation, which allows
to perform the second integration by parts. The non-gradient method is extremely
technical and difficult to apply and it gives rigorous justification to theGreen-Kubo
formula for the diffusivity of a system.

If we believe that our scaling is the right one, what we need to perform is a sort
of fractional integration by parts, since the extra factor n1/2 would be overcome by
a standard integration by parts. In [13] we introduced what we call the quadratic
correlation field associated to the volume. This field has two different meaningful
scaling limits. In the hyperbolic scaling tn, the volume correlations evolve accord-
ing to a linear transport equation. In particular, the correlations do not evolve on a
reference frame moving with the characteristic speed. In the diffusive time scaling
tn2 and on the same moving reference frame, the volume correlations follow the
heat equation. It turns out that the energy current can be expressed as a singular
functional of the quadratic correlation field. A two-dimensional Laplace problem
can be used to express this singular functional in terms of a regular function of the
quadratic field and a boundary term. This boundary term turns out to be a skew
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version of the fractional Laplacian of order 3/4 of the energy, and, in particular, it
allows to perform a sort of fractional integration by parts.

The paper is organized as follows. In Section 2 we define the model and state
the main result. In Section 3 we briefly discuss a duality property of the model. In
Section 4 we give a formal intuitive proof, that is rigorously performed in Section 5.
Computational details are provided in the Appendices.

2. The Model

2.1. Description of the Model

For η : Z → R and α > 0, define

|||η|||α =
∑
x∈Z

∣∣η(x)
∣∣e−α|x |. (2.1)

Define �α = {η : Z → R; |||η|||α < +∞}. The normed space (�α, ||| · |||) turns
out to be a Banach space. In �α we consider the system of ODE’s

d
dt η̃t (x) = η̃t (x + 1) − η̃t (x − 1) for t ≥ 0 and x ∈ Z. (2.2)

The Picard–Lindelöf Theorem shows that the system (2.2) is well posed in �α .
We will superpose to this deterministic dynamics a stochastic dynamics as follows.
To each bond {x, x + 1}, with x ∈ Z we associate an exponential clock of rate
one. Those clocks are independent among them. Each time the clock associated to
{x, x + 1} rings, we exchange the values of η̃t (x) and η̃t (x + 1). Since there is an
infinite number of such clocks, the existence of this dynamics needs to be justified.
If we freeze the clocks associated to bonds not contained in {−M, . . . , M}, the
dynamics is easy to define, since it corresponds to a piecewise deterministicMarkov
process. It can be shown that for an initial data η0 in

� =
⋂
α>0

�α, (2.3)

these piecewise deterministic processes stay at � and they converge to a well-
defined Markov process {ηt ; t ≥ 0}, as M → ∞, see [6] and references therein.
This Markov process is the rigorous version of the dynamics described above.
Notice that � is a complete metric space with respect to the distance

d(η, ξ) =
∑
	∈N

1

2	
min{1, |||η − ξ ||| 1

	
}. (2.4)

Let us describe the generator of the process {ηt ; t ≥ 0}. For x, y ∈ Z and η ∈ �

we define ηx,y ∈ � as

ηx,y(z) =

⎧⎪⎨
⎪⎩

η(y); z = x

η(x); z = y

η(z); z �= x, y.

(2.5)
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We say that a function f : � → R is local if there exists a finite set B ⊆ Z such
that f (η) = f (ξ) whenever η(x) = ξ(x) for any x ∈ B. For a smooth function
f : � → R we denote by ∂x f : � → R its partial derivative with respect to
η(x). For a function f : � → R that is local, smooth and bounded, we define
L f : � → R as L f = S f + A f , where for any η ∈ �,

S f (η) =
∑
x∈Z

(
f (ηx,x+1) − f (η)

)
, (2.6)

A f (η) =
∑
x∈Z

(
η(x + 1) − η(x − 1)

)
∂x f (η). (2.7)

Denote byCb(�) the space of bounded functions f : � → Rwhich are continuous
with respect to the distance d(·, ·). The generator of {ηt ; t ≥ 0} turns out to be the
closure in Cb(�) of the operator L .

The process {ηt ; t ≥ 0} has a family {μρ,β; ρ ∈ R, β > 0} of invariant
measures given by

μρ,β(dη) =
∏
x∈Z

√
β
2π exp

{
−β

2

(
η(x) − ρ

)2} dη(x). (2.8)

It also has two conserved quantities. If one of the numbers
∑
x∈Z

η0(x),
∑
x∈Z

η0(x)
2 (2.9)

is finite, then its value is preserved by the evolution of {ηt ; t ≥ 0}. Following [6], we
will call these conserved quantities volume and energy. Notice that

∫
η(x)dμρ,β =

ρ and
∫

η(x)2dμρ,β = ρ2 + 1
β
.

2.2. Description of the Result

Fix ρ ∈ R and β > 0, and consider the process {ηt ; t ≥ 0} with initial
distributionμρ,β . Notice that {ηt+λ; t ≥ 0} has the same distribution of the process
with initial measure μρ+λ,β . Therefore, we can assume, without loss of generality,
that ρ = 0.Wewill writeμβ = μ0,β andwewill denote by Eβ the expectation with
respect to μβ . We will denote by P the law of {ηt ; t ≥ 0} and by E the expectation
with respect to P. The energy correlation function {St (x); x ∈ Z, t ≥ 0} is defined
as

St (x) = β2

2 E

[(
η0(0)

2 − 1
β

)(
ηt (x)

2 − 1
β

)]
(2.10)

for any x ∈ Z and any t ≥ 0. The constant β2

2 is just the inverse of the variance
of η(x)2 − 1

β
under μβ . By translation invariance of the dynamics and the initial

distribution μβ , we see that

β2

2 E

[(
η0(x)

2 − 1
β

)(
ηt (y)

2 − 1
β

)]
= St (y − x) (2.11)

for any x, y ∈ Z. Our main result is the following:
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Theorem 2.1. Let f, g : R → R be smooth functions of compact support. Then,

lim
n→∞

1
n

∑
x,y∈Z

f
( x
n

)
g
( y
n

)
Stn3/2(x − y) =

∫∫
f (x)g(y)Pt (x − y)dxdy, (2.12)

where {Pt (x); x ∈ R, t ≥ 0} is the fundamental solution of the fractional heat
equation

∂t u = − 1√
2

{
(−�)3/4 − ∇(−�)1/4

}
u. (2.13)

A fundamental step in the proof of this theorem will be the analysis of the
correlation function {St (x, y); x �= y ∈ Z, t ≥ 0} given by

St (x, y) = β2

2 E
[(

η0(0)
2 − 1

β

)
ηt (x)ηt (y)

]
(2.14)

for any t ≥ 0 and any x �= y ∈ Z. Notice that this definitionmakes perfect sense for
x = y and, in fact, we have St (x, x) = St (x). For notational convenience we define
St (x, x) as equal to St (x). However, these quantities are of a different nature, since
St (x) is related to energy fluctuations and St (x, y) is related to volume fluctuations
(for x �= y).

Remark 2.2. It is not difficult to see that with a bit of technical work our techniques
actually show that the distribution valued process {E n

t (·) ; t ≥ 0} defined for any
test function f by

E n
t ( f ) = 1√

n

∑
x∈Z

f
( x
n

) (
ηtn3/2(x)

2 − 1
β

)

converges, as n goes to infinity, to an infinite dimensional 3/4-fractional Ornstein–
Uhlenbeckprocess, that is the centeredGaussian processwith covariance prescribed
by the right hand side of (2.12).

Remark 2.3. It is interesting to notice that Pt is the maximally asymmetric 3/2-
Levy distribution. It has power law as |x |−5/2 towards the diffusive peak and
stretched exponential as exp[−|x |3] towards the exterior of the sound cone ([25]
Chapter 4). As noticed to us by Spohn, this reflects the expected physical property
that no propagation beyond the sound cone occurs.

In order to prove Theorem 2.1 we can assume that β = 1, since the general
case can be recovered from this particular case bymultiplying the process by β−1/2.
Thus, in the rest of the paper β = 1.

3. Duality

LetH2 be the subspace of L2(μ1) spanned by the functions {η(x)η(y); x �= y ∈
Z}, {η(x)2 −1; x ∈ Z}. As we can see in Appendix A, the spaceH2 is left invariant
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under the action of the operator L . By the definition of the generator of a Markov
process, we know that for any bounded, local, smooth function F : � → R,

d
dtE[F(ηt )] = E[LF(ηt )] (3.1)

for any t ≥ 0. Moreover, the Markov property shows that for any bounded function
G : � → R and any t ≥ 0,

d
dtE[G(η0)F(ηt )] = E[G(η0)LF(ηt )]. (3.2)

Taking well-chosen approximating functions, we can show that these formulas hold
for functions in H2. Using the fact that the operator L leaves H2 invariant, we see
that there exists an operator L : 	2(Z2) → 	2(Z2) such that

d
dt St (x, y) = L St (x, y) (3.3)

for any t ≥ 0 and for any x, y ∈ Z. In other words, the family of functions
{St (x, y); t ≥ 0; x, y ∈ Z} satisfies a closed set of equations. This property is
known in the literature as duality, since it allows as to solve (3.3) explicitly in terms
of the semigroup associated to the operatorL . Therefore, in principle the analysis
of scaling limits of the functions {St (x, y); t ≥ 0; x, y ∈ Z} can be obtained as a
consequence of the analysis of scaling limits of the operator L . We will see that
this approach is actually not convenient, because it misses the different roles played
by the conserved quantities.

4. Weak Formulation of (3.3)

Denote by C∞
c (R) the space of infinitely differentiable functions f : R → R

of compact support. Let g ∈ C∞
c (R) be a fixed function. For any n ∈ N and t ≥ 0

and any f ∈ C∞
c (R), we define the field {S n

t ; t ≥ 0} as

S n
t ( f ) = 1

n

∑
x,y∈Z

g
( x
n

)
f
( y
n

)
Stn3/2(y − x). (4.1)

Rearranging terms in a convenient way we have that

S n
t ( f ) = 1

2E

⎡
⎣
(

1√
n

∑
x∈Z

g
( x
n

) (
η0(x)

2 − 1
))

×
⎛
⎝ 1√

n

∑
y∈Z

f
( y
n

) (
ηtn3/2(y)

2 − 1
)⎞
⎠
⎤
⎦ . (4.2)

For any function f ∈ C∞
c (R), define the weighted 	2(Z)-norm as

‖ f ‖2,n =
√

1
n

∑
x∈Z

f
( x
n

)2
. (4.3)
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By the Cauchy–Schwarz inequality we have the a priori bound
∣∣S n

t ( f )
∣∣ ≤ ‖g‖2,n‖ f ‖2,n (4.4)

for any t ≥ 0, any n ∈ N and any f, g ∈ C∞
c (R). Let C∞

c (R2) be the space of
infinitely differentiable functions h : R2 → R. For a function h ∈ C∞

c (R2) we
define {Qn

t (h); t ≥ 0} as

Qn
t (h) = 1

2E

⎡
⎣
(

1√
n

∑
x∈Z

g
( x
n

) (
η0(x)

2 − 1
))

×
⎛
⎝ 1

n

∑
y �=z∈Z

h
( y
n ,

z
n

)
ηtn3/2(y)ηtn3/2(z)

⎞
⎠
⎤
⎦ . (4.5)

In this way we have defined a two-dimensional field {Qn
t ; t ≥ 0}. Notice that

Qn
t (h) = 1

n3/2

∑
x∈Z

y �=z∈Z

g
( x
n

)
h
( y
n ,

z
n

)
Stn3/2(y − x, z − x). (4.6)

Notice as well that Qn
t (h) depends only on the symmetric part of the function h.

Therefore,wewill always assume,without loss of generality, that h(x, y) = h(y, x)
for any x, y ∈ Z. We also point out that Qn

t (h) does not depend on the values of h
at the diagonal {x = y}. We have the a priori bound

∣∣Qn
t (h)

∣∣ ≤ 2‖g‖2,n‖h̃‖2,n, (4.7)

where ‖h̃‖n is the weighted 	2(Z2)-norm of h̃ as in

‖h̃‖2,n =
√

1
n2

∑
x,y∈Z

h̃
( x
n ,

y
n

)2
, (4.8)

and h̃ is defined by
h̃
( x
n ,

y
n

) = h
( x
n ,

y
n

)
1x �=y .

We notice that we use the same notation for the weighted 	2(Z)-norm for functions
in C∞

c (R) and C∞
c (R2). Using the computations of Appendix A, we can obtain

some differential equations satisfied by the fieldsS n
t and Qn

t . Before writing these
equations down,we need to introduce some definitions. For a function f ∈ C∞

c (R),
we define a discrete approximation �n f : R → R of the second derivative of f as

�n f
( x
n

) = n2
(
f
( x+1

n

)+ f
( x−1

n

)− 2 f
( x
n

))
. (4.9)

We also define ∇n f ⊗ δ : 1
nZ

2 → R as

(∇n f ⊗ δ
)( x

n ,
y
n

) =

⎧⎪⎨
⎪⎩

n2
2

(
f
( x+1

n

)− f
( x
n

)); y = x+1
n2
2

(
f
( x
n

)− f
( x−1

n

)); y = x−1

0; otherwise.

(4.10)
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Less evident than the interpretation of �n f , ∇n f ⊗ δ turns out to be a discrete
approximation of the distribution f ′(x) ⊗ δ(x = y), where δ(x = y) is the δ of
Dirac at the line x = y. We have that

d
dtS

n
t ( f ) = −2Qn

t (∇n f ⊗ δ) + S n
t

(
1√
n
�n f

)
. (4.11)

By the a priori bound (4.4), the term S n
t ( 1√

n
�n f ) is negligible, as n → ∞. If

the scaling tn3/2 is correct, the term Qn
t (∇n f ⊗ δ) should be the relevant one. This

motivates the study of the field Qn
t . In order to describe the equation satisfied by

Qn
t (h), we need some extra definitions. For h ∈ C∞

c (R2) we define the discrete
approximation �nh : R2 → R of the Laplacian of h as

�nh
( x
n ,

y
n

) = n2
(
h
( x+1

n ,
y
n

)+h
( x−1

n ,
y
n

)+h
( x
n ,

y+1
n

)+h
( x
n ,

y−1
n

)−4h
( x
n ,

y
n

))
.

(4.12)
We also define a discrete approximationAnh : R → R of the directional derivative
(−2,−2) · ∇h as

Anh
( x
n ,

y
n

) = n
(
h
( x
n ,

y−1
n

)+ h
( x−1

n ,
y
n

)− h
( x
n ,

y+1
n

)− h
( x+1

n ,
y
n

))
. (4.13)

Let us finally introduce a discrete approximationDnh : 1
nZ → R of the directional

derivative of h along the diagonal x = y as

Dnh
( x
n

) = n
(
h
( x
n , x+1

n

)− h
( x−1

n , x
n

))
(4.14)

and a discrete approximation of the distribution ∂yh(x, x)⊗ δ(x = y) , denoted by
D̃nh : 1

nZ
2 → R, as

D̃nh
( x
n ,

y
n

) =

⎧⎪⎨
⎪⎩

n2
(
h
( x
n , x+1

n

)− h
( x
n , x

n

)); y = x + 1

n2
(
h
( x−1

n , x
n

)− h
( x−1

n , x−1
n

)); y = x − 1

0; otherwise.

(4.15)

Then we can write down the equation satisfied by the field Qn
t (h):

d
dt Q

n
t (h) = Qn

t

(
n−1/2�nh+n1/2Anh

)−2S n
t

(
Dnh

)+2Qn
t

(
n−1/2D̃nh

)
. (4.16)

Notice that in equation (4.16), bothfieldsS n
t andQn

t appearwith non-negligible
terms. Moreover, the first term involving Qn

t is quite singular, since it involves an
approximation of a distribution. Looking at the equations (4.11) and (4.16) we see
a possible strategy: given f ∈ C∞

c (R), if we choose h in a careful way, we can
try to cancel out the terms Qn

t (∇n f ⊗ δ) and Qn
t (n

−1/2�nh + n1/2Anh). Then the
term S n

t (Dnh) will provide a non-trivial drift for the differential equation (4.11)
and with a little bit of luck the term Qn

t (n
−1/2D̃nh) turns out to be negligible. This

is the strategy that will be pursued in the following section.

5. Proof of Theorem 2.1

In this section we prove Theorem 2.1. We start with a non-rigorous discussion
as a guideline of what are we going to do.
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5.1. Heuristics

Asexplained above, the idea is to combine equations (4.11) and (4.16) in a clever
way in order to obtain a weak formulation of a differential equation involving the
field S n

t alone. Let hn : 1
nZ

2 → R be the solution of the equation

n−1/2�nh
( x
n ,

y
n

)+ n1/2Anh
( x
n ,

y
n

) = ∇n f ⊗ δ
( x
n ,

y
n

)
. (5.1)

Define H = {(x, y) ∈ R
2; y ≥ 0}. It turns out that hn

( x
n ,

y
n

)
is well approximated

by g
( x+y

2n ,
|x−y|
2
√
n

)
, where g : H → R is the solution of the parabolic equation

{
∂2y g(x, y) − 4∂x g(x, y) = 0 for x ∈ R, y > 0,

2∂yg(x, 0) = f ′(x) for x ∈ R.
(5.2)

The solution g of this problem is unique in L2(H) and regular. Using Fourier
transform, it can be shown that

∂x g(·, 0) = 1
4
√
2

[
(−�)3/4 − ∇(−�)1/4

]
f. (5.3)

The heuristic explanation for the non-trivial scaling connecting g and hn is the
following. We are looking at a random perturbation of an Hamiltonian dynamics.
Therefore, it makes sense to see the evolution on a hyperbolic space-time scaling in
order to see something evolving. If we scale both spatial coordinates as 1

n , we will
see a linear transport equation whose velocity 2 is parallel to the diagonal x = y.
Therefore there is no evolution along the direction transversal to the diagonal. If
we want to see an evolution on that direction in the same time scale, we have to
scale that spatial direction in a different way. It turns out that the 1√

n
scaling is the

correct one.
Therefore, we expect that

lim
n→∞

√
n‖hn‖22,n = 2

∫

H

g(x, y)2dxdy. (5.4)

In particular, ‖hn‖2,n = O( 1
n1/4

). We also expect that

lim
n→∞Dnhn

( x
n

) = ∂x g(x, 0). (5.5)

Considering the integral formulation of the differential equation satisfied by the
sum S n

t ( f ) + 2Qn
t (hn), we see that

S n
t ( f ) = S n

0 ( f ) − 4
∫ t

0
S n

s (∂x g(·, 0))ds + 4√
n

∫ t

0
Qn

s (D̃nhn)ds (5.6)

plus terms of order O( 1√
n
). At this heuristic level, we can argue that the second

integral on the right-hand side of (5.6) is small, since it has a 1√
n
in front of it. This

2 Since we fixed ρ = 0 the velocity, which is 2ρ, is zero.
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is not straightforward and, in fact, replacing hn by the approximation furnished
by the function g, one observes that n−1/2D̃nhn diverges with n. A more careful
study of the true solution hn shows that n−1/2D̃nhn is, in fact, of order 1 in L2.
But even with this estimate the a priori bound (4.7) is not sufficient to show that∫ t
0

1√
n
Qn

s (D̃nhn)ds is small. Some extra dynamical argument detailed in Section 5.3
proves that this term vanishes, as n → ∞.

Recalling (5.3),we see that (5.6) is an approximatedweak formulation of (2.13).
With a little bit of work, we can show that for f : [0, t] ×R → R regular enough,

S n
t ( ft ) = S n

0 ( f0) +
∫ t

0
S n

s (∂t fs + L fs)ds (5.7)

plus terms of order O( 1√
n
). Here we have used the notation L = − 1√

2
(−�)3/4 −

1√
2
∇(−�)1/4. Passing to the limit and showing that the function

fs(x) =
∫

f (y)Pt−s(y − x)dy (5.8)

can be used as a test function, Theorem 2.1 would be proved.

5.2. Topology and Relative Compactness

As explained at the end of Section 4 it is not straightforward to follow the
strategy of proof of Theorem 2.1 outlined in the previous section. Therefore, we
will divide the proof in various steps. For topological reasons it will be convenient to
fix a finite time-horizon T > 0. In this section we start showing that the sequence
{S n

t ; t ∈ [0, T ]}n∈N is relatively compact. Of course, we need to specify the
topology with respect to which this sequence is relatively compact. Let us define
the Hermite polynomials H	 : R → R as

H	(x) = (−1)	e
x2
2

d	

dx	
e− x2

2 (5.9)

for any 	 ∈ N0 and any x ∈ R. We define the Hermite functions f	 : R → R as

f	(x) = 1√
	!√2π

H	(x)e
− x2

4 (5.10)

for any 	 ∈ N0 and any x ∈ R. The Hermite functions { f	; 	 ∈ N0} form an
orthonormal basis of L2(R). For each k ∈ R, we define the Sobolev space Hk as
the completion of C∞

c (R) with respect to the norm ‖ · ‖Hk defined as

‖g‖Hk =
√∑

	∈N0

(1 + 	)2k〈 f	, g〉2 (5.11)

for any g ∈ C∞
c (R). Here we use the notation 〈 f	, g〉 = ∫

g(x) f	(x)dx . Notice
that H0 = L2(R) and Hk ⊆ L2(R) ⊆ H−k , for any k > 0. By continuity, the
inner product 〈·, ·〉 can be extended to a continuous bilinear form in Hk × H−k

for any k > 0. This bilinear form allows us to identify, for any k ∈ R, the space
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H−k with the dual of Hk . An important property is that the inclusion Hk ⊆ Hk′
is compact and Hilbert-Schmidt, whenever k − k′ > 1

2 . The space Hk is a Hilbert
space with respect to the inner product

〈g, h〉k =
∑
	∈N0

(1 + 	)2k〈 f	, g〉〈 f	, h〉. (5.12)

Let us denote by C ([0, T ];Hk) the space of continuous functions from [0, T ] to
Hk . We have the following compactness criterion in C ([0, T ];Hk) for k negative
enough.

Proposition 5.1. For any k < − 1
2 , a sequence {Snt ; t ∈ [0, T ]}n∈N of elements in

the space C ([0, T ];Hk) is relatively compact if:

(i) for any 	 ∈ N0 the sequence of real-valued functions {〈Snt , f	〉; t ∈ [0, T ]}n∈N
is equicontinuous,

(ii) the set {Snt ( f	); t ∈ [0, T ]; n ∈ N; 	 ∈ N0} is bounded in R.

Proof. By the Arzela–Ascoli theorem, we need to prove equicontinuity and bound-
edness of {Snt ; t ∈ [0, T ]}n∈N in C ([0, T ];Hk). Notice that

sup
|t−s|<δ

‖Snt − Sns ‖2Hk
= sup

|t−s|<δ

∑
	≥0

(1 + 	)2k
∣∣〈Snt , f	〉 − 〈Sns , f	〉

∣∣2

≤
∑
	≥0

sup
|t−s|<δ

(1 + 	)2k
∣∣〈Snt , f	〉 − 〈Sns , f	〉

∣∣2.
(5.13)

Therefore, for each M ∈ N,

sup
|t−s|<δ

‖Snt − Sns ‖2Hk
≤

M−1∑
	=0

(1 + 	)2k sup
|t−s|<δ

∣∣〈Snt , f	〉 − 〈Sns , f	〉
∣∣2

+ 4 sup
t∈[0,T ]
n∈N
	∈N0

∣∣〈Snt , f	〉
∣∣2 ∑

	≥M

(1 + 	)2k .
(5.14)

By (ii), making M large enough and independent of n or T the second sum can be
made arbitrarily small. Now that M is fixed, the first sum can be made arbitrarily
small taking δ small enough, independently ofn or T . This proves the equicontinuity
of the sequence {Snt ; t ∈ [0, T ]}n∈N. The boundedness follows from (ii) and a
similar argument. ��
Another very useful compactness criterion is given by the Banach–Alaoglu theo-
rem, on its version for Hilbert spaces:

Proposition 5.2. (Banach–Alaoglu theorem) LetH be a separable Hilbert space.
Any set K ⊆ H that is bounded with respect to the strong topology of H is
sequentially, weakly relatively compact inH .
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We will use this proposition for the Hilbert spaces H−k and L2([0, T ];H−k)

for k big enough.
Recall the a priori bound (4.4). In order to make an effective use of Proposition

5.2, we need a way to estimate the 	2n(Z)-norm of various discretizations of f	 in
terms of their continuous counterparts. Let us denote by ‖ · ‖p the L p(R)-norm.
We have the following lemma:

Lemma 5.3. For any smooth function f : R → R,
∣∣∣∣∣
1
n

∑
x∈Z

f
( x
n

)2 −
∫

f (x)2dx

∣∣∣∣∣ ≤ 2
n ‖ f ′‖1‖ f ‖∞. (5.15)

Proof. It is enough to observe that for any a < b,

∣∣∣∣
∫ b

a

(
f (x)2 − f (a)2

)
dx

∣∣∣∣ ≤ 2(b − a) sup
x

| f (x)|
∫ b

a
| f ′(x)|dx . (5.16)

��
In view of this lemma, we need a way to compute L p(R)-norms of Hermite

functions. We have the following:

Proposition 5.4. For any δ > 0 there exists a constant c = c(δ) such that

‖ f	‖1 ≤ c(1 + 	)
1+δ
4 (5.17)

for any 	 ∈ N0. There also exists a constant c(∞) such that

‖ f	‖∞ ≤ c(∞)

(1 + 	)
1
6

(5.18)

for any 	 ∈ N0.

The estimate (5.17) is proved in Appendix G, and the estimate (5.18) is proved
in [17] for example. Notice that any polynomial bound (even positive!) would have
sufficed for what follows. Let us see how to use this proposition in order to obtain
bounds on the L p-norms of Hermite functions. The Hermite functions { f	; 	 ∈ N0}
satisfy the relation

f ′
	 = 1

2

(√
	 f	−1 − √

	 + 1 f	+1
)
. (5.19)

Therefore, for any δ > 0 there exists a constant c such that

‖ f ′
	‖1 ≤ c(1 + 	)3/4+δ (5.20)

for each 	 ∈ N0. In particular, by Lemma 5.3 there exists a constant c such that

‖ f	‖22,n ≤ 1 + c(1 + 	)
7
12+δ

n
(5.21)
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for any 	 ∈ N0 and any n ∈ N. This estimate combined with the a priori bound
(4.4) gives that

‖S n
t ‖2H−k

=
∑
	≥0

(1 + 	)−2k
∣∣S n

t ( f	)
∣∣2

≤ ‖g‖22,n
∑
	≥0

1

(1 + 	)2k

(
1 + c(1 + 	)

7
12+δ

n

)
(5.22)

for any t ≥ 0. Since g is smooth, by Lemma 5.3 ‖g‖2,n is bounded in n. Therefore
we conclude that

Lemma 5.5. For any k > 19
24 , the sequence {S n

t ; t ∈ [0, T ]}n∈N is sequentially,
weakly relatively compact in L2([0, T ];H−k). Moreover, for any t ∈ [0, T ] fixed,
the sequence {S n

t ; n ∈ N} is sequentially, weakly relatively compact inH−k .

5.3. Characterization of Limit Points

In this section we obtain various properties satisfied by any limit point of
{S n

t ; t ∈ [0, T ]}n∈N and we will show that these properties characterize the limit
point in a unique way. Fix k > 19

24 and let {St ; t ∈ [0, T ]} be a limit point
of {S n

t ; t ∈ [0, T ]}n∈N with respect to the weak topology of L2([0, T ];H−k).
With some abuse of notation, we will denote by n the subsequence for which
{S n

t ; t ∈ [0, T ]}n∈N converges to {St ; t ∈ [0, T ]}. Without loss of generality,
we can assume that as n → ∞ the distribution {S n

t }n∈N converges to St with
respect to the weak topology of H−k and that the path {S n

s ; s ∈ [0, t]}n∈N con-
verges to {Ss; s ∈ [0, t]} with respect to the weak topology of L2([0, t];H−k)

for any t ∈ [0, T ] such that t
T ∈ Q. In order to simplify the notation, we define

[0, T ]Q = {t ∈ [0, T ]; t
T ∈ Q}.

Fix a function f ∈ C∞
c (R) and let hn : 1

nZ × 1
nZ → R be the solution of the

equation

n−1/2�nh + n1/2Anh = ∇n f ⊗ δ. (5.23)

The following properties of hn are shown in Appendix D:

Lemma 5.6. Let f ∈ C∞
c (R). The solution of (5.23) satisfies

lim
n→∞

1

n2
∑
x,y∈Z

hn
( x
n ,

y
n

)2 = 0 (5.24)

and

lim
n→∞

1

n

∑
x∈Z

∣∣Dnhn
( x
n

)+ 1
4L f

( x
n

)∣∣2 = 0. (5.25)

In other words, ‖hn‖2,n, ‖Dnhn + 1
4L f ‖2,n converge to 0, as n → ∞.
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By (4.11) and (4.16), we see that

S n
T ( f ) =S n

0 ( f ) +
∫ T

0
S n

t

(− 4Dnhn
)
dt + 2

[
Qn

0(hn) − Qn
T (hn)

]

+
∫ T

0
S n

t

( 1√
n
�n f

)
dt + 4

∫ T

0
Qn

t

( 1√
n
D̃n(hn)

)
dt.

(5.26)

Therefore, by the a priori bound (4.7) and by Lemma 5.6, we have that

S n
T ( f ) = S n

0 ( f ) +
∫ T

0
S n

t (L f )dt + 4
∫ T

0
Qn

t

( 1√
n
D̃n(hn)

)
dt + εn( f ) (5.27)

where the error term

εn( f ) =
∫ T

0
S n

t

(− 4Dnhn − L f
)
dt + 2

[
Qn

0(hn) − Qn
T (hn)

]

goes to 0, as n → ∞. As explained above, it turns out that the a priori bound (4.7)
is not sufficient to show that the penultimate term on the right hand side of (5.27)
goes to 0, as n → ∞, since

1

n3
∑
x∈Z

D̃nhn
( x
n , x+1

n

)2 (5.28)

is of order one. Therefore, we again use (4.16) applied to h = vn , where vn is the
solution of the Poisson equation

n−1/2�nvn
( x
n ,

y
n

)+ n1/2Anvn
( x
n ,

y
n

) = n−1/2D̃nhn . (5.29)

Then we have
∫ T

0
Qn

t

( 1√
n
D̃nhn

)
dt =2

∫ T

0
S n

t (Dnvn)dt − 2
∫ T

0
Qn

t

( 1√
n
D̃nvn

)
dt

+ Qn
T (vn) − Qn

0(vn).

We have the following estimates on vn which are proved in Appendix E.

Lemma 5.7. The solution vn of (5.29) satisfies

lim
n→∞

1
n2

∑
x,y∈Z

vn
( x
n ,

y
n

)2 = 0, (5.30)

lim
n→∞

1
n

∑
x∈Z

Dnvn
( x
n

)2 = 0, (5.31)

lim
n→∞

1
n3

∑
x∈Z

D̃nvn
( x
n , x+1

n

)2 = 0. (5.32)

In other words, ‖vn‖2,n, ‖Dnvn‖2,n and
∥∥∥ 1√

n
D̃nvn

∥∥∥
2,n

converge to 0, as n → ∞.
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Now, we use the a priori bounds (4.4) and (4.7) and it follows that

S n
T ( f ) = S n

0 ( f ) +
∫ T

0
S n

t (L f )dt + ε′
n( f ) (5.33)

with the error term

ε′
n( f ) = 4

∫ T

0
Qn

t

( 1√
n
D̃n(hn)

)
dt

that goes to 0 as n → ∞. Recall that {S n
t ; t ∈ [0, T ]}n∈N converges weakly to

{St ; t ∈ [0, T ]}, as n → ∞. Therefore, we could take the limit in (5.33) if we
could show that L f ∈ Hk . It turns out that this is not the case. In fact, the operator
L is an integro-differential operator with heavy tails. Even for f ∈ C∞

c (R) the
function L f has heavy tails. We can show the following:

Lemma 5.8. (Lemma 2.8, [8]) For any f ∈ C∞
c (R) there exists a constant c =

c( f ) such that ∣∣L f (x)
∣∣ ≤ c

(1 + x2)5/4
(5.34)

for any x ∈ R.

An important consequence of this lemma is that L f ∈ L2(R). Notice that f ′
also satisfies the hypothesis of the lemma, and therefore we can take c such that we
also have ∣∣ d

dxL f (x)
∣∣ ≤ c

(1 + x2)5/4
(5.35)

for any x ∈ R. Using Lemma 5.3 we conclude that ‖L f ‖2,n is uniformly bounded
in n. Moreover, it can be approximated by functions inHk , uniformly in n. In fact,
consider the bump function φ : R → R given by

φ(x) =
∫ ∞

|x |
e− 1

y(1−y) 1{y∈[0,1]}dy (5.36)

and define for M ∈ N the function gM : R → R as

gM (x) =
{
1, |x | ≤ M,
φ(|x |−M)

φ(0) , |x | > M.
(5.37)

Using (5.34) and (5.35) we see that

lim
M→∞ sup

n∈N
‖(1 − gM )L f ‖2,n = 0. (5.38)

We claim that gML f ∈ Hk for any k > 0.Notice that gML f ∈ C∞
c (R). Therefore,

this will be a consequence of the following:

Lemma 5.9. Let f be a smooth function with limx→±∞ f (x) = 0. Assume that
(∂x − x

2 ) f ∈ L2(R). Then f ∈ Hk for any k ≤ 1
2 . In particular, if f ∈ C∞

c (R),
then f ∈ Hk for any k ∈ R.
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Proof. Using the relation H ′
	+1 = (	 + 1)H	 and integrating by parts, we see that

〈 f	, f 〉 = −1√
	 + 1

〈 f	+1,
(
∂x − x

2

)
f 〉. (5.39)

Therefore,
∑
	≥0

(1 + 	)〈 f	, f 〉2 =
∑
	≥1

〈 f	,
(
∂x − x

2

)
f 〉2 ≤ ∥∥(∂x − x

2

)
f
∥∥2
2 , (5.40)

which shows the first part of the lemma. Repeating the argument j times, we see
that ∑

	≥0

(1 + 	) j 〈 f	, f 〉2 ≤ ∥∥(∂x − x
2

) j
f
∥∥2
2, (5.41)

which shows the second part of the lemma. ��
Using (5.38) and (4.4) we can write (5.33) as

S n
T ( f ) = S n

0 ( f ) +
∫ T

0
S n

t (gML f )dt + εn,M ( f ) (5.42)

with

εn,M ( f ) =
∫ T

0
S n

t ((1 − gM )L f )dt + ε′
n( f )

which goes to 0, as n → ∞ and then M → ∞.
Now we can pass to the limit on each one of the terms in this equation, since

gML f ∈ Hk . Taking n → ∞ and then M → ∞ we conclude that

ST ( f ) = S0( f ) +
∫ T

0
St (L f ) dt (5.43)

for any f ∈ C∞
c (R). Repeating the arguments above for t ∈ [0, T ]Q we see that

St ( f ) = S0( f ) +
∫ t

0
Ss(L f )ds (5.44)

for any t ∈ [0, T ]Q. Notice that the a priori bound (4.4) is stable under weak limits,
and therefore we have that

∣∣St ( f )
∣∣ ≤ ‖g‖2‖ f ‖2 (5.45)

for any t ∈ [0, T ]Q and any f ∈ C∞
c (R). Using this bound back into (5.44), we

see that ∣∣St ( f ) − Ss( f )
∣∣ ≤ |t − s|‖g‖2‖L f ‖2 (5.46)

for any s, t ∈ [0, T ]Q. In other words, the function t �→ St ( f ), defined for
t ∈ [0, T ]Q is uniformly Lipschitz. In particular, it can be continuously extended
to [0, T ] in a unique way. Here we face a problem: this extension does not need to
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be equal to {St ; t ≥ 0}, since the latter is an element of L2([0, T ];H−k). If we can
prove that {St ( f ); t ∈ [0, T ]} is continuous, then both processes would be equal.
The idea is to use the compactness criterion of Proposition 5.1. It turns out that it
is not convenient to use this lemma for the sequence {S n

t ; t ∈ [0, T ]}n∈N but for
another auxiliary sequence. Fix n ∈ N and let {S̃ n

t ; t ∈ [0, T ]} be the field given
by

S̃ n
t ( f ) = S n

0 ( f ) +
∫ t

0
S n

s (L f )ds (5.47)

for any t ∈ [0, T ] and any f ∈ C∞
c (R). We assert that the sequence {S̃ n

t ( f ); t ∈
[0, T ]}n∈N is relatively compact in C ([0, T ];H−k). According to Proposition 5.1,
we have to prove two properties, namely equicontinuity and uniform boundedness
of {S̃ n

t ( f	); t ∈ [0, T ]}n∈N for each 	 ∈ N0. Boundedness follows at once from
the a priori bound (4.4). Looking at (5.47), in order to show equicontinuity, it
is enough to show that S n

t (L f	) is uniformly bounded in t and n. But this is
again an easy consequence of the a priori bound (4.4) and the discussion after
Lemma 5.8. Therefore, the sequence {S̃ n

t ; t ∈ [0, T ]}n∈N is relatively compact in
C ([0, T ];H−k) for any k > 1

2 . In particular, it has at least one limit point {S̃t ; t ∈
[0, T ]}. Since this topology is stronger than the topology of L2([0, T ];H−k), this
limit has to be {St ; t ∈ [0, T ]}. Therefore, we have proved that {St ; t ∈ [0, T ]} is
continuous.

Let f : [0, T ]×R → Rbe a smooth function of compact support (in [0, T ]×R).
The estimate (5.46) and the continuity of {St ; t ∈ [0, T ]} allows us to show the
following extension of (5.44):

ST ( fT ) = S0( f0) +
∫ T

0
St
(
(∂t + L) ft

)
dt. (5.48)

What (5.46) is saying is that {St ; t ∈ [0, T ]} is a weak solution of (2.13), as
defined in (2.1) of [12]. In Section 8.1 of that paper, it is shown that there exists
a unique solution of (5.48). This uniqueness result shows that the limit process
{St ; t ∈ [0, T ]} is unique. Now we are close to finish the proof of Theorem
2.1. In fact, we have shown that the sequence {S n

t ; t ∈ [0, T ]}n∈N is relatively
compact with respect to the weak topology in L2([0, T ];H−k) for any k > 19

24 , and
that this sequence has exactly one limit point. Therefore, the sequence {S n

t ; t ∈
[0, T ]}n∈N, actually, converges to that unique limit point, which we called {St ; t ∈
[0, T ]}. The convergence also holds for any fixed time t ∈ [0, T ]Q, with respect
to the weak topology of H−k . Since T is arbitrary, this last convergence holds
for any t ∈ [0,∞). In particular, S n

t ( f ) converges to St ( f ), as n → ∞, for
any f ∈ C∞

c (R). But this is exactly what (2.12) says. Therefore, Theorem 2.1 is
proved.

Warning: In the sequel, we denote by C, c, . . . some positive constants. Some-
times, in order to precise that the constant C depends specifically on a parameter
a we write C(a). The constants can change from line to line and, nevertheless, be
denoted by the same letter.
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Appendix A. Computations Involving the Generator L

Let f : Z → R be a function of finite support, and let E ( f ) : � → R be
defined as

E ( f ) =
∑
x∈Z

f (x)η(x)2.

A simple computation shows that

SE ( f ) =
∑
x∈Z

� f (x)η2(x),

where � f (x) = f (x+1) + f (x−1) − 2 f (x) is the discrete Laplacian on Z. On
the other hand

AE ( f ) = −2
∑
x∈Z

∇ f (x)η(x)η(x+1),

where ∇ f (x) = f (x+1) − f (x) is the discrete right-derivative in Z.
Let f : Z2 → R be a symmetric function of finite support, and let Q( f ) :

� → R be defined as

Q( f ) =
∑
x,y∈Z
x �=y

η(x)η(y) f (x, y).

Define � f : Z2 → R as

� f (x, y) = f (x+1, y) + f (x−1, y) + f (x, y+1) + f (x, y−1) − 4 f (x, y)

(A.1)

for any x, y ∈ Z and A f : Z2 → R by

A f (x, y) = f (x−1, y) + f (x, y−1) − f (x+1, y) − f (x, y+1) (A.2)

for any x, y ∈ Z. Notice that� f is the discrete Laplacian on the latticeZ2 andA f
is a possible definition of the discrete derivative of f in the direction (−2,−2).
Notice that we are using the same symbol � for the one-dimensional and two-
dimensional, discrete Laplacian. From the context it will be clear which operator
we will be using. We have that

SQ( f ) =
∑

|x−y|≥2

f (x, y)
[
η(y)�η(x) + η(x)�η(y)

]

+ 2
∑
x∈Z

f (x, x+1)
[
(η(x−1) − η(x))η(x+1)

+ (η(x+2) − η(x+1))η(x)
]

=
∑
x,y∈Z

� f (x, y)η(x)η(y) − 2
∑
x∈Z

f (x, x)η(x)�η(x)

− 2
∑
x∈Z

f (x, x+1)
[
η(x+1)�η(x) + η(x)�η(x+1)

]

+ 2
∑
x∈Z

f (x, x+1)
[
η(x+1)η(x−1) + η(x+2)η(x) − 2η(x)η(x+1)

]
.

(A.3)



524 Cédric Bernardin, Patrícia Gonçalves & Milton Jara

Grouping terms involving η(x)2 and η(x)η(x+1) together we get that

SQ( f ) =
∑
x,y∈Z
x �=y

(� f )(x, y)η(x)η(y)

+2
∑
x∈Z

{[
f (x, x+1) − f (x, x)

]+

+[ f (x, x+1) − f (x+1, x+1)
]}

η(x)η(x+1)

= Q(� f ) + 2
∑
x∈Z

{[
f (x, x+1) − f (x, x)

]+

+[ f (x, x+1) − f (x+1, x+1)
]}

η(x)η(x+1). (A.4)

Similarly, we have that

AQ( f ) =
∑
x,y∈Z
x �=y

A f (x, y)η(x)η(y)

+ 2
∑
x∈Z

{
η(x)2

[
f (x−1, x) − f (x, x+1)

]

− η(x)η(x+1)
[
f (x, x) − f (x+1, x+1)

]}

= Q(A f )

+ 2
∑
x∈Z

{
η(x)2

[
f (x−1, x) − f (x, x+1)

]

− η(x)η(x+1)
[
f (x, x) − f (x+1, x+1)

]}
. (A.5)

It follows that

LQ( f ) = Q((� + A ) f ) + D( f ), (A.6)

where the diagonal term D( f ) is given by

D( f ) = 2
∑
x∈Z

(
η(x)2 − 1

β

)(
f (x−1, x) − f (x, x+1)

)

+ 4
∑
x∈Z

η(x)η(x+1)
(
f (x, x+1) − f (x, x)

)
. (A.7)

The normalization constant 1
β
can be added for free because f (x, x+1) − f (x−

1, x) is a mean-zero function. The diagonal term will be of capital importance, in
particular the term involving η(x)2. Notice that the operators f �→ Q( f ), f �→
LQ( f ) are continuous maps from 	2(Z2) to L2(μβ). Therefore, an approximation
procedure shows that the identities above hold true for any f ∈ 	2(Z2).
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Appendix B. Tools of Fourier Analysis

Let d ≥ 1 and let x · y denote the usual scalar product in Rd between x and y.
The Fourier transform of a function g : 1

nZ
d → R is defined by

ĝn(k) = 1
nd

∑

x∈Zd

g( xn )e
2iπk·x

n , k ∈ R
d .

The function ĝn is n-periodic in all the directions of Rd . We have the following
Parseval–Plancherel identity between the 	2-norm of g, weighted by the natural
mesh, and the L2([− n

2 , n
2 ]d)-norm of its Fourier transform:

‖g‖22,n := 1
nd

∑

x∈Zd

|g( xn )|2 =
∫

[− n
2 ,

n
2 ]d

|̂gn(k)|2 dk := ‖ĝn‖22. (B.1)

The function g can be recovered from the knowledge of its Fourier transform
by the inverse Fourier transform of ĝn:

g( xn ) =
∫

[− n
2 ,

n
2 ]d

ĝn(k) e
− 2iπx ·k

n dk. (B.2)

For any p ≥ 1 let [(∇n)
p] denote the p-th iteration of the operator ∇n .

Lemma B.1. Let f : 1
nZ → R and p ≥ 1 be such that

1

n

∑
x∈Z

∣∣[(∇n)
p] f ( xn

)∣∣ < +∞. (B.3)

There exists a universal constant C := C(p) independent of f and n such that for
any |y| ≤ 1/2,

| f̂n(yn)| ≤ C

np| sin(πy)|p
∣∣∣∣∣
1

n

∑
x∈Z

[(∇n)
p] f ( xn

)
e2iπyx

∣∣∣∣∣ .

In particular, if f is in the Schwartz space S (R), then for any p ≥ 1, there exists
a constant C := C(p, f ) such that for any |y| ≤ 1/2,

| f̂n(yn)| ≤ C

1 + (n|y|)p .

Proof. For the first claim it is sufficient to show that

1

n

∑
x∈Z

f
( x
n

)
e2iπyx = − eiπy

2 i n sin(πy)

1

n

∑
x∈Z

∇n f
( x
n

)
e2iπyx . (B.4)

Then we iterate this p times. To prove (B.4), we perform a discrete integration by
parts. Let us define for any x ∈ Z

Dx = eiπyx sin(π(x + 1)y)

sin(πy)
, D̃x = eiπyx sin(π(1 − x)y)

sin(πy)
.
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Observe that for any x ∈ Z, Dx + D̃x+1 = 1 and that

Dx =
x∑

k=0

e2iπky, x ≥ 0,

D̃x =
0∑

k=x

e2iπkx , x ≤ 0.

Then we write

1

n

∑

x∈Z
f
( x
n
)
e2iπyx = 1

n

∑
x≥1

f
( x
n
)
(Dx − Dx−1) + 1

n

∑
x≤−1

f
( x
n
)
(D̃x − D̃x+1) + f (0)

n

= − 1

n2

∑
x≥0

∇n f
( x
n
)
Dx + 1

n2

∑
x≤−1

∇n f
( x−1

n
)
D̃x − f (−1/n)

n

= − 1

n2

∑

x∈Z
∇n f

( x
n
)
Dx + 1

n2

∑
x≤−1

∇n f
( x
n
)
(D̃x+1 + Dx ) − f (0)

n

= − 1

n2

∑

x∈Z
∇n f

( x
n
)
Dx

+ 1

n2

∑
x≤−1

∇n f
( x
n
)− f (0)

n

= − 1

n2

∑

x∈Z
∇n f

( x
n
)
Dx ,

where the last equality is due to the fact that we have a telescopic sum. Using the
explicit expression of Dx and again a telescopic argument we get (B.4).

Now, for the second claim, we observe that if f ∈ S (R), the assumption
(B.3) is satisfied. Moreover, for any |y| ≤ 1/2, | f̂n(yn)| ≤ C for a constant C
independent of n and y. By using the first claim proved above we deduce that there
exists a constant C := C(p, f ) such that

| f̂n(yn)| ≤ C inf

{
1,

1

n p| sin(πy)|p
}

≤ C ′

1 + (n|y|)p .

We notice that from the previous estimate we also get that

| f̂n(yn)|2 ≤ C ′

1 + (n|y|)p ,

which will be useful in what follows. ��

Appendix C. Some Computations Involving Trigonometric Polynomials

The Fourier transform of the function �nh for a given, summable function
h : 1

nZ
2 → R is given by:
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̂(�nh)n(k, 	) = 1

n2
∑
x,y∈Z

�nh
( x
n ,

y
n

)
e
2π i(kx+	y)

n

= n2
(
e
2π ik
n + e− 2π ik

n + e
2π i	
n + e− 2π i	

n − 4

)
ĥn(k, 	)

= −n2�
( k
n , 	

n

)̂
hn(k, 	),

(C.1)

where
�
( k
n , 	

n

) = −(e 2π ik
n + e− 2π ik

n + e
2π i	
n + e− 2π i	

n − 4
)

= 4
[
sin2

(
πk
n

)+ sin2
(

π	
n

)]
.

(C.2)

Similarly, the Fourier transform of Anh is given by

̂(Anh)n(k, 	) = i n �
( k
n , 	

n

)̂
hn(k, 	), (C.3)

where

i �
( k
n , 	

n

) = e
2π ik
n + e

2π i	
n − e− 2π ik

n − e− 2π i	
n

= 2 i
(
sin
( 2πk

n

)+ sin
( 2π	

n

))
.

(C.4)

Notice in particular that �( kn , 	
n ) is a real number. Let us now compute the Fourier

transform of the function gn = ∇n f ⊗ δ defined in (4.10):

ĝn(k, 	) = 1

n2
∑
x,y∈Z

[∇n f ⊗ δ
]( x

n ,
y
n

)
e
2iπ(kx+	y)

n

= − in

2
�
( k
n , 	

n

)
f̂n(k + 	).

(C.5)

Several times we will use the following elementary change of variable property.

Lemma C.1. Let F : R2 → C be a n-periodic function in each direction of R2.
Then we have that∫∫

[− n
2 ,

n
2 ]2

F(k, 	) dkd	 =
∫∫

[− n
2 ,

n
2 ]2

F(ξ − 	, 	) dξd	.

Proof. Let us write χ(x, y) = 1{x,y−x∈[−1/2,1/2]}. We have that
∫∫

[− n
2 ,

n
2 ]2

F(k, 	) dkd	 =
∫ n

−n

{∫
F(u − 	, 	)χ

(
	
n , u

n

)
d	

}
du

=
∫ 0

−n

{∫ u+n/2

−n/2
F(u − 	, 	)d	

}
du +

∫ n

0

{∫ n/2

u−n/2
F(u − 	, 	)d	

}
du

=
∫ n

0

{∫ u−n/2

−n/2
F(u − 	, 	)d	

}
du +

∫ n

0

{∫ n/2

u−n/2
F(u − 	, 	)d	

}
du

=
∫ n

0

{∫ n/2

−n/2
F(u − 	, 	)d	

}
du

=
∫ n/2

−n/2

{∫ n/2

−n/2
F(u − 	, 	)d	

}
du.

��
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Appendix D. Proof of Lemma 5.6

Let hn : 1
nZ

2 → R be the unique solution in 	2( 1nZ
2) of (5.23). Observe that

hn is a symmetric function. The Fourier transform of hn is not difficult to compute
by using Appendix C. In fact, we have that

ĥn(k, 	) = 1

2
√
n

i �
( k
n , 	

n

)

�
( k
n , 	

n

)− i �
( k
n , 	

n

) f̂n(k + 	). (D.1)

Our aim will be to study the behavior of hn , as n → ∞, and in particular to prove
Lemma 5.6.

Appendix D.1. Proof of (5.24)

Observe first that

i �
(

ξ−	
n , 	

n

)
= e

2iπ	
n

(
1 − e− 2iπξ

n

)
− e− 2iπ	

n

(
1 − e

2iπξ
n

)
(D.2)

so that

�
(

ξ−	
n , 	

n

)2 ≤ 4
∣∣∣1 − e

2iπξ
n
∣∣∣
2 = 16 sin2

(
πξ
n

)
. (D.3)

Then, by Plancherel–Parseval’s relation and by using Lemma C.1 we have that

‖hn‖22,n =
∫∫

[
− n
2 ,

n
2

]2 |̂hn(k, 	)|2dkd	

= 1

4n

∫∫
[
− n
2 ,

n
2

]2
�
( k
n , 	

n

)2 | f̂n(k + 	)|2
�
( k
n , 	

n

)2 + �
( k
n , 	

n

)2 dkd	

≤ 1

n

∫ n/2

−n/2

∣∣1 − e
2iπξ
n
∣∣2∣∣ f̂n(ξ)

∣∣2
[∫ n/2

−n/2

d	

�
(

ξ−	
n ,

	
n

)2 + �
(

ξ−	
n ,

	
n

)2
]

dξ

= 4n
∫ 1/2

−1/2
sin2(πy)| f̂n(ny)|2W (y)dy,

where for the last equality we performed the changes of variables y = ξ
n and x = 	

n .
The function W is defined by

W (y) =
∫ 1/2

−1/2

dx

�(y − x, x)2 + �(y − x, x)2
. (D.4)

Since by Lemma F.5 we have that W (y) ≤ C |y|−3/2 on [− 1
2 ,

1
2 ], we get, by

using the second part of Lemma B.1 with p = 3 and the elementary inequality
sin2(πy) ≤ (πy)2, that

∫∫

[− n
2 ,

n
2 ]2

|̂hn(k, 	)|2dkd	 ≤ C ′n
∫ 1/2

−1/2

|y|1/2
1 + (n|y|)3dy = O(n−1/2).
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Appendix D.2. Proof of (5.25)

We denote by G the 1-periodic function defined by

G(y) = 1

4

∫ 1/2

−1/2

�(y − z, z)2

�(y − z, z) − i �(y − z, z)
dz. (D.5)

As y → 0, the function G is equivalent (in a sense defined below) to the function
G0 given by

G0(y) = |πy|3/2
2

(1 + i sgn(y)). (D.6)

In fact, we show in Lemma F.1 that there exists a constant C > 0 such that for any
|y| ≤ 1/2

|G(y) − G0(y)| ≤ C |y|2. (D.7)

We denote by F f the (continuous) Fourier transform of f , defined by

F f (y) =
∫ +∞

−∞
f (t) e2iπ t y dt (D.8)

and by q := q( f ) : R → R the function defined by

q(x) =
∫ ∞

−∞
e−2iπxyG0(y)F f (y)dy (D.9)

which coincides with − 1
4L f (x).

Let qn : 1
nZ → R the function defined by

qn
( x
n ) = Dnhn

( x
n ). (D.10)

Lemma D.1. We have

lim
n→+∞

1

n

∑
x∈Z

[
q
( x
n

)− qn
( x
n

)]2 = 0. (D.11)

Proof. Since ĥn is a symmetric function we have

q̂n(ξ) =
∑
x∈Z

e
2iπξ x

n
[
hn
( x
n , x+1

n

)− hn
( x−1

n , x
n

)]

=
∑
x∈Z

e
2iπξ x

n

∫∫
[
− n
2 ,

n
2

]2 e
− 2iπ(k+	)x

n
[
e− 2iπ	

n − e
2iπ	
n
]
ĥn(k, 	) dkd	

= 1

2

∑
x∈Z

e
2iπξ x

n

∫∫
[
− n
2 ,

n
2

]2 e
− 2iπ(k+	)x

n
[
e− 2iπ	

n − e
2iπ	
n
]
ĥn(k, 	) dkd	

+ 1

2

∑
x∈Z

e
2iπξ x

n

∫∫
[
− n
2 ,

n
2

]2 e
− 2iπ(k+	)x

n
[
e− 2iπk

n − e
2iπk
n
]
ĥn(k, 	) dkd	

= − i

2

∑
x∈Z

e
2iπξ x

n

∫∫
[
− n
2 ,

n
2

]2 e
− 2iπ(k+	)x

n �
( k
n , 	

n

)̂
hn(k, 	) dkd	.
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We use now Lemma C.1 and the inverse Fourier transform relation to get

q̂n(ξ) = − in

2

∫ n/2

−n/2
�
(

ξ−	
n , 	

n

)̂
hn(ξ − 	, 	) d	.

By the explicit expression (D.1) of ĥn we obtain that

q̂n(ξ) =
√
n

4

[∫ n/2

−n/2

�
(

ξ−	
n , 	

n

)2
�
(

ξ−	
n , 	

n

)− i�
(

ξ−	
n , 	

n

) d	
]

f̂n(ξ).

Again by the inverse Fourier transform we get that

qn
( x
n

) =
∫ n/2

−n/2
e− 2iπξ x

n n3/2G
(

ξ
n

)
f̂n(ξ) dξ.

Then we have

q
( x
n

)− qn
( x
n

) =
∫

|ξ |≥n/2
e− 2iπξ x

n G0(ξ) F f (ξ) dξ

+
∫

|ξ |≤n/2
e− 2iπξ x

n G0(ξ)
[
F f (ξ) − f̂n(ξ)

]
dξ

+n3/2
∫

|ξ |≤n/2
e− 2iπξ x

n (G0 − G)
(

ξ
n

)
f̂n(ξ) dξ. (D.12)

Above we have used the fact that n3/2G0
(

ξ
n ) = G0(ξ). Then we use the triangular

inequality and Plancherel’s theorem in the two last terms of the right hand side to
get

1

n

∑
x∈Z

[
q
( x
n

)− qn
( x
n

)]2 ≤ 1

n

∑
x∈Z

∣∣∣∣
∫

|ξ |≥n/2
e− 2iπξ x

n G0(ξ) (F f )(ξ) dξ

∣∣∣∣
2

+
∫

|ξ |≤n/2

∣∣G0(ξ)
[
F f (ξ) − f̂n(ξ)

] ∣∣2 dξ

+n3
∫

|ξ |≤n/2

∣∣∣(G0 − G)
(

ξ
n

)
f̂n(ξ)

∣∣∣
2
dξ

= (I ) + (I I ) + (I I I ). (D.13)

The contribution of the term (I ) is estimated by performing an integration by parts
and using the fact that the Fourier transformF f of f is in the Schwartz space and
that G0 and G ′

0 grow at most polynomially:

(I ) ≤ C

n

∑
x∈Z

n2

|x |2
{∣∣(G0 F f )(± n

2 )
∣∣2 +

∣∣∣∣
∫

|ξ |≥n/2

∣∣ d
dξ [G0 F f ](ξ)

∣∣ dξ
∣∣∣∣
2
}

.

(D.14)
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Then one can get that (I ) ≤ Cpn−p for any p ≥ 1 with a suitable constant
Cp > 0. Therefore (I ) gives a trivial contribution in (D.13). The term (I I ) in
(D.13) can be bounded above by a constant times

∫ n/2

−n/2
|ξ |3|F f (ξ) − f̂n(ξ)

∣∣2dξ (D.15)

because |G0(ξ)| ≤ C |ξ |3/2 for any ξ . Let 0 < A < n/2 and write

∫ n/2

−n/2
|ξ |3|F f (ξ) − f̂n(ξ)

∣∣2dξ =
∫

|ξ |≤A
|ξ |3∣∣F f (ξ) − f̂n(ξ)

∣∣2dξ

+
∫

A≤|ξ |≤n/2
|ξ |3∣∣F f (ξ) − f̂n(ξ)

∣∣2dξ.

(D.16)

Now, performing a change of variables ξ = y
n and using the fact that f is in the

Schwartz space and Lemma B.1, the second term on the right hand side of (D.16)
is bounded above by

C
∫

|ξ |≥A
|ξ |3 ∣∣F f (ξ)

∣∣2dξ + Cn4
∫
A
n ≤|y|≤1/2

|y|3
1 + |ny|p dy

≤ C
∫

|ξ |≥A
|ξ |3 ∣∣F f (ξ)

∣∣2dξ + C
∫ ∞

A

z3

1 + z p
dz := ε(A),

where p is bigger than 4 and C is independent of n and A. Observe that ε(A) → 0,
as A → ∞. It follows that the left hand side of (D.16) is bounded above by

∫

|ξ |≤A
|ξ |3∣∣F f (ξ) − f̂n(ξ)

∣∣2dξ + ε(A).

We first take the limit n → ∞ and use the dominated convergence theorem for the
first term of the expression above and then we take the limit as A → ∞.

The contribution of (I I I ) is estimated by using (D.7) which gives

(I I I ) ≤ C

n

∫

|ξ |≤n/2
|ξ |4| | f̂n(ξ)|2 dξ = Cn4

∫ 1/2

−1/2
|z|4| f̂n(nz)|2dz

which goes to 0, as n → ∞, by Lemma B.1 applied with p = 2. ��

Appendix E. Proof of Lemma 5.7

Let wn be defined by

wn
( x
n

) = hn
( x
n , x+1

n

)− hn
( x
n , x

n

)
(E.1)
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and observe that

1√
n
D̃nhn

( x
n ,

y
n

) = n3/2

⎧
⎪⎨
⎪⎩

wn
( x
n

)
, y = x + 1,

wn
( x−1

n

)
, y = x − 1,

0, otherwise.

Now, since

̂̃Dnhn(k, l) =
∑
x∈Z

{
wn
( x
n

)
e
2π i(kx+	(x+1))

n + wn
( x
n

)
e
2iπ(k(x+1)+	x)

n
}

=n
{
e
2iπ	
n + e

2iπk
n
}
ŵn(k + 	)

andusing the computations ofAppendixC, it is easy to see that theFourier transform
v̂n is given by

v̂n(k, 	) = −1

n

e
2iπk
n + e

2iπ	
n

�
( k
n , 	

n

)− i �
( k
n , 	

n

) ŵn(k + 	). (E.2)

By using Lemma C.1, we have that the Fourier transform of wn is given by

ŵn(ξ) = 1

n

∑
x∈Z

e
2iπξ x

n

∫∫

[− n
2 ,

n
2 ]2

ĥn(k, 	)e
− 2iπ(k+	)x

n
{
e− 2iπ	

n − 1
}
dkd	

= 1

n

∑
x∈Z

e
2iπξ x

n

∫ n/2

−n/2
e− 2iπux

n

{∫ n/2

−n/2
ĥn(u − 	, 	)

{
e− 2iπ	

n − 1
}
d	

}
du

=
∫ n/2

−n/2
ĥn(ξ − 	, 	)

{
e− 2iπ	

n − 1
}
d	.

(E.3)

In the last line we used the inverse Fourier transform. By (D.1) we get

ŵn(ξ) = − 1

2
√
n

f̂n(ξ)

∫ n/2

−n/2

(
1 − e− 2iπ	

n
)
i �
(

ξ−	
n ,

	
n

)

�
(

ξ−	
n ,

	
n

)− i �
(

ξ−	
n ,

	
n

) d	

= −
√
n

2
I
(

ξ
n

)
f̂n(ξ)

(E.4)

where the function I is defined by

I (y) =
∫ 1/2

−1/2

(1 − e−2iπx ) i �(y − x, x)

�(y − x, x) − i�(y − x, x)
dx . (E.5)
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Appendix E.1. Proof of (5.30)

By Plancherel–Parseval’s relation and Lemma C.1 we have

‖vn‖22,n =
∫∫

[− n
2 ,

n
2 ]2

|̂vn(k, 	)|2dkd	

= 1

n2

∫ n/2

−n/2
|ŵn(ξ)|2

∫ n/2

−n/2

∣∣∣∣∣∣
e
2iπ(ξ−	)

n + e
2iπ	
n

�
(

ξ−	
n ,

	
n

)− i�
(

ξ−	
n ,

	
n

)
∣∣∣∣∣∣

2

d	dξ

≤ C

n

∫ n/2

−n/2
|ŵn(ξ)|2W ( ξ

n

)
dξ

= C

4

∫ n/2

−n/2

∣∣ f̂n(ξ)
∣∣2∣∣ I ( ξ

n

)∣∣2W ( ξ
n

)
dξ

= Cn

4

∫ 1/2

−1/2
| f̂n(ny)|2| I

(
y
)|2W (y)dξ,

where in the third inequality we used the Cauchy–Schwarz inequality, in the penul-
timate inequality we used (E.4) and in the last equality we used a change of vari-
ables. Recall that the function W is defined by (D.4). By Lemma F.5, Lemma F.2
and Lemma B.1, we get that

‖vn‖22,n ≤ Cn
∫ 1/2

−1/2
| f̂n(ny)|2| sin(πy)|3/2dy

≤ C
∫ 1/2

−1/2

|y|3/2
1 + |ny|pdy = C

n3/2

∫ n/2

−n/2

|z|3/2
1 + |z|pdz,

which goes to 0 as soon as p is chosen bigger than 3.

Appendix E.2. Proof of (5.31)

Notice that

D̂nvn(ξ) =
∑
x∈Z

{
vn
( x
n , x+1

n

)− vn
( x−1

n , x
n

)}
e
2iπξ
n

=
∑
x∈Z

vn
( x
n , x+1

n

)
e
2iπξ x

n
(
1 − e

2iπξ
n
)

=
∑
x∈Z

e
2iπξ x

n
(
1 − e

2iπξ
n
) ∫∫

[− n
2 ,

n
2 ]2

v̂n(k, 	)e
− 2iπ(kx+	(x+1))

n dkd	

=
∑
x∈Z

e
2iπξ x

n
(
1 − e

2iπξ
n
) ∫∫

[− n
2 ,

n
2 ]2

v̂n(k, 	)e
− 2iπ(kx+	(x+1))

n dkd	.

(E.6)
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Now, by Lemma C.1 we get

D̂nvn(ξ) =
∑
x∈Z

e
2iπξ x

n
(
1 − e

2iπξ
n
) ∫∫

[− n
2 ,

n
2 ]2

v̂n(m − 	, 	)e− 2iπ	
n e− 2iπmx

n dmd	

= n
(
1 − e

2iπξ
n
) ∫ n

2

− n
2

v̂n(ξ − 	, 	)e− 2iπ	
n d	

= −(1 − e
2iπξ
n
)
ŵn(ξ)

∫ n
2

− n
2

1 + e
2iπ(ξ−2	)

n

�
(

ξ−	
n ,

	
n

)+ i�
(

ξ−	
n ,

	
n

)d	

= −n
(
1 − e

2iπξ
n
)
ŵn(ξ)J

(
ξ
n

)
,

(E.7)

where in the penultimate equality we used (E.2) and in last equality we performed
a change of variables. Above, J is given by

J (y) =
∫ 1/2

−1/2

1 + e2iπ(y−2x)

�(y − x, x) − i�(y − x, x)
dx . (E.8)

Now, by using (E.4) we get, finally, that

D̂nvn(ξ) = n3/2

2

(
1 − e

2iπξ
n
)
f̂n(ξ)I

(
ξ
n

)
J
(

ξ
n

)
, (E.9)

where I is defined by (E.5).
By Plancherel-Parseval’s relation we have to prove that

n3
∫ n/2

−n/2
sin2

(
π

ξ
n

)∣∣ f̂n(ξ)
∣∣2∣∣I ( ξ

n

)∣∣2∣∣J( ξ
n

)∣∣2dξ

= n4
∫ 1/2

−1/2
sin2(πy)|I (y)|2|J (y)|2| f̂n(ny)|2dy (E.10)

vanishes, as n → ∞. By LemmaB.1, Lemma F.2 and Lemma F.3, this is equivalent
to show that the following term goes to 0, as n → ∞:

n4
∫ 1/2

−1/2

|y|4
1 + |ny|pdy = 1

n

∫ n/2

−n/2

|z|4
1 + |z|pdz.

But for p bigger than 5, this term goes to 0, as n → ∞.

Appendix E.3. Proof of (5.32)

Let θn : 1
nZ → R be defined by

θn
( x
n

) = vn
( x
n , x+1

n

)− vn
( x
n , x

n

)
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and observe that

1√
n
D̃nvn

( x
n ,

y
n

) = n3/2

⎧
⎪⎨
⎪⎩

θn
( x
n

)
, y = x + 1,

θn
( x−1

n

)
, y = x − 1,

0, otherwise.

Now, doing similar computations as above we have that

θ̂n(ξ) = 1

n

∑
x∈Z

{
vn
( x
n , x+1

n

)− vn
( x
n , x

n

)}
e
2iπξ
n

= 1

n

∑
x∈Z

e
2iπξ x

n

∫∫

[− n
2 ,

n
2 ]2

v̂n(k, 	)
{
e− 2iπ(kx+	(x+1))

n − e
2iπ(k+	)x

n
}
dkd	

= 1

n

∑
x∈Z

e
2iπξ x

n

∫∫

[− n
2 ,

n
2 ]2

v̂n(m − 	, 	)e− 2iπmx
n {e− 2iπ	

n − 1}dkd	

=
∫ n

2

− n
2

v̂n(ξ − 	, 	){e− 2iπ	
n − 1}d	.

(E.11)

Performing a change of variables and using (E.2) and (E.4) we get that

θ̂n(ξ) = √
n f̂n(ξ)I

(
ξ
n

)
K
(

ξ
n

)
,

where I is defined by (E.5) and K is given by

K (y) =
∫ 1/2

−1/2

(e−2iπx − 1)(e2iπ(y−x) + e2iπx )

�(y − x, x) − i�(y − x, x)
dx . (E.12)

We need to show that
lim
n→∞ n2‖θn‖22,n = 0.

By Plancherel-Parseval’s relation, this is equivalent to prove that

lim
n→∞ n3

∫ n/2

−n/2

∣∣ f̂n(ξ)
∣∣2∣∣I ( ξ

n

)∣∣2∣∣K ( ξ
n

)∣∣2 dξ = 0.

By using the change of variables y = ξ/n, Lemma B.1, Lemma F.2 and Lemma
F.4, we have

n3
∫ n/2

−n/2

∣∣ f̂n(ξ)
∣∣2∣∣I ( ξ

n

)∣∣2∣∣K ( ξ
n

)∣∣2 dξ ≤

≤ Cn4
∫ 1/2

−1/2

|y|4
1 + |ny|pdy = C

n

∫ n/2

−n/2

|z|4
1 + |z|pdz

which goes to 0, as n → ∞, for p bigger than 5.
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Appendix F. Asymptotics of Few Integrals

Lemma F.1. Recall that G and G0 are defined by (D.5) and (D.6). There exists a
constant C > 0 such that for any |y| ≤ 1/2

|G(y) − G0(y)| ≤ C |y|2. (F.1)

Proof. We compute the function G by using the residue theorem. For any y ∈
[−1/2, 1/2]we denote byw := w(y) the complex numberw = e2iπy . By denoting
z = e2iπx , x ∈ [−1/2, 1/2], we have that

�(y − x, x) = 4 − z(w−1 + 1) − z−1(w + 1),

i �(y − x, x) = z(1 − w−1) + z−1(w − 1).

We denote by C the unit circle positively oriented. Then, we have

G(y) = 1

16iπ

∮

C
fw(z)dz (F.2)

where the meromorphic function fw is defined by

fw(z) = [(w − 1) + z2(1 − w−1)]2
z2(z2 − 2z + w)

. (F.3)

The poles of fw are 0 and z−, z+ which are the two solutions of z2 −2z+w. Since

1 − w = 2| sin(πy)|eiπ [y− 1
2 sgn(y)],

we have that

z± = 1 ±√
2| sin(πy)| e iπ2 [y− 1

2 sgn(y)]. (F.4)

Observe that |z−| < 1 and |z+| > 1. By the residue theorem, we have
∮

C
fw(z)dz = 2π i

[
Res( fw, 0) + Res( fw, z−)

]
, (F.5)

whereRes( fw, a) denotes the value of the residue of fw at the pole a. An elementary
computation shows that

Res( fw, 0) = 2(w − 1)2

w2 ,

Res( fw, z−) = lim
z→z−

(z − z−) fw(z) = 1

z− − z+
[(w − 1) + (1 − w−1)z2−]2

z2−
.

By using the fact that z2− = 2z− − w, we obtain that

Res( fw, 0) + Res( fw, z−) = 2(w − 1)2

w2

[
1 + 2

z− − z+

]

= 2(w − 1)2

w2

[
1 − 1√

2| sin(πy)|e
− iπ

2 [y− 1
2 sgn(y)]

]
.

(F.6)
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Finally, we have

G(y) = 1

4

(e2iπy − 1)2

e4iπy

[
1 − 1√

2| sin(πy)|e
− iπ

2 [y− 1
2 sgn(y)]

]

= 1

2
|πy|3/2[1 + i sgn(y)] + O(|y|2).

(F.7)

��
Lemma F.2. The function I defined by (E.5) satisfies, for any y ∈ R,

|I (y)| ≤ C | sin(πy)|3/2,

where C is a positive constant independent of y.

Proof. We compute I by using the residue theorem. For any y ∈ [− 1
2 ,

1
2 ] we

denote by w := w(y) the complex number w = e2iπy . Then, we have

I (y) = − 1

4iπ

w − 1

w

∮

C
fw(z)dz, (F.8)

where the meromorphic function fw is defined by

fw(z) = (z − 1)(z2 + w)

z2(z − z+)(z − z−)
(F.9)

with z± defined by (F.4).We recall that |z−| < 1 and |z+| > 1 so that by the residue
theorem we have

I (y) = −w − 1

2w

[
Res( fw, 0) + Res( fw, z−)

]
.

A simple computation shows that

Res( fw, 0) = 1 − 2/w, Res( fw, z−) = 1/z−.

It follows that

I (y) = −w − 1

2w

[ 1

z−
+ 1 − 2

w

]
.

Replacing w and z− by their explicit values we get the result. ��
Lemma F.3. The 1-periodic function J defined by (E.8) satisfies, for any y ∈ R,

|J (y)| ≤ C | sin(πy)|−1/2, (F.10)

where C is a positive constant independent of y.
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Proof. We compute J by using the residue theorem. For any y ∈ [− 1
2 ,

1
2 ] we

denote by w := w(y) the complex number w = e2iπy . Then, we have

J (y) = − 1

4iπ

∮

C
fw(z)dz, (F.11)

where the meromorphic function fw is defined by

fw(z) = (z2 + w)

z2(z − z+)(z − z−)
(F.12)

with z± defined by (F.4). By the residue theorem, we get

J (y) = −1

2

[
Res( fw, 0) + Res( fw, z−)

]
.

A simple computation shows that

Res( fw, 0) = −w

2
, Res( fw, z−) = 2

z−(z− − z+)
.

By using the explicit expressions for w, z±, we get the result. ��
Lemma F.4. The 1-periodic function K defined by (E.12) satisfies, for any y ∈ R,

|K (y)| ≤ C | sin(πy)|1/2, (F.13)

where C is a positive constant independent of y.

Proof. We compute K by using the residue theorem. For any y ∈ [− 1
2 ,

1
2 ] we

denote by w := w(y) the complex number w = e2iπy . Then, we have

K (y) = 1

4iπ

∮

C
fw(z)dz (F.14)

where the meromorphic function fw is defined by

fw(z) = (z − 1)(z2 + w)

z2(z − z+)(z − z−)
(F.15)

with z± defined by (F.4). Recalling (F.8), we see that

K (y) = − w

w − 1
I (y),

and by Lemma F.2 the result follows. ��
Lemma F.5. The 1-periodic function W defined by (D.4) is such that

W (y) = O(|y|−3/2)

on [− 1
2 ,

1
2 ].
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Proof. It is possible to compute W by using the residue theorem and get the esti-
mate. Since we need only an upper bound we bypass the computations and give a
rough argument. On [− 1

2 ,
1
2 ], if y is not close to 0, say |y| ≥ δ with 0 < δ < 1/2,

then the integral is bounded above by a constant C(δ) < ∞. If |y| ≤ δ, then
we split the integral into two integrals according to |x | ≤ cδ or |x | ≥ cδ with
0 < c < 1/(2δ) a constant. We have

∫

|x |≥cδ

dx

�(y − x, x)2 + �(y − x, x)2
≤
∫

|x |≥cδ

dx

16 sin4(πx)
≤ C(δ).

It remains then to show that if |y| ≤ δ, then
∫

|x |≤cδ

dx

�(y − x, x)2 + �(y − x, x)2
≤ C(δ)|y|−3/2.

Since |x |, |y| are small, a Taylor expansion can be used to estimate the behavior of
the previous integral. It is straightforward that it behaves like

∫

|x |≤cδ

dx

x4 + y2
= O(|y|−3/2).

��

Appendix G. Estimates Involving Hermite Functions

In this Appendix we prove (5.17). For simplicity, assume 	 = 2m. Let M ≥ 1
and let Im be defined by

Im =
∫ ∞

M√
2

x2me− x2
2 dx .

By successive integration by parts, we have

Im = ( M√
2

)2m−1
e−M2/4 + (2m − 1)Im−1

= · · · = (2m)!
m!

{
e−M2/4

m−1∑
k=0

1
2k

(m−k)!
(2m−(2k+1))!

( M√
2

)2m−(2k+1) + I1
2m

}

= (2m)!
2mm!

{
e−M2/4

√
2

M

m∑
k=1

k!
(2k+1)!M

2k + I1

}

≤ C
(2m)!
2mm!

{
e−M2/4mM2m−1 + e−M2/2

}

≤ C ′ (2m)!
2mm! mM2m−1e−M2/4.

We start now with the following representation of the Hermite polynomials:

H	(x) = 	!
�	/2�∑
j=0

(−1) j x	−2 j

2 j j !(	 − 2 j)! . (G.1)
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For |x | ≥ 1, |x |	−2 j ≤ |x |	 and therefore we have that
∣∣H	(x)

∣∣ ≤ 	!x	. It follows
that
∫ ∞

M

∣∣H2m(x)
∣∣e− x2

4 dx ≤ 2m(2m)!√2 Im ≤ C
(2m)!2
m! mM2m−1e−M2/4. (G.2)

By Stirling’s formula, we conclude that

lim
m→+∞

∫

|x |≥m
1+δ
2

| f2m(x)| dx = 0,

uniformly inm. Moreover, by Cauchy-Schwarz’s inequality, since
∫

f2m(x)2 dx =
1, we have ∫

|x |≤m
1+δ
2

| f2m(x)| dx ≤ √
2m

1+δ
4 .

Since δ is arbitrary, (5.17) is proved for 	 even. For 	 odd, the computations are
similar.
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