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Abstract

We prove analogues of the Lieb–Thirring and Hardy–Lieb–Thirring inequali-
ties for many-body quantum systems with fractional kinetic operators and homo-
geneous interaction potentials, where no anti-symmetry on the wave functions is
assumed. These many-body inequalities imply interesting one-body interpolation
inequalities, and we show that the corresponding one- and many-body inequalities
are actually equivalent in certain cases.

1. Introduction

The uncertainty principle and the exclusion principle are two of themost impor-
tant concepts of quantum mechanics. In 1975, Lieb and Thirring [32,33] gave
an elegant combination of these principles in a semi-classical lower bound on
the kinetic energy of fermionic systems. They showed that there exists a constant
CLT > 0 depending only on the dimension d � 1 such that the inequality〈

�,

N∑
i=1

−�i�

〉
� CLT

∫
Rd

ρ�(x)1+2/d dx (1)

holds true for every function � ∈ H1((Rd)N ) and for all N ∈ N, provided that �
is normalized and anti-symmetric, namely ‖�‖L2(Rd N ) = 1 and

�(x1, . . . , xi , . . . , x j , . . . , xN ) = −�(x1, . . . , x j , . . . , xi , . . . , xN ), ∀i �= j.
(2)

The left hand side of (1) is the expectation value of the kinetic energy operator for
N particles, and for every N -body wave function � ∈ L2((Rd)N ), its one-body
density is defined by
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ρ�(x) :=
N∑

j=1

∫
Rd(N−1)

|�(x1, . . . , x j−1, x, x j+1, . . . , xN )|2
∏
i �= j

dxi .

Note that
∫

Q ρ� can be interpreted as the expected number of particles to be found

on a subset Q ⊂ R
d in the probability distribution given by |�|2. In particular,∫

Rd ρ� = N .
The Lieb–Thirring inequality can be seen as a many-body generalization of the

Gagliardo–Nirenberg inequality(∫
Rd

|∇u(x)|2dx

)(∫
Rd

|u(x)|2dx

)2/d

� CGN

∫
Rd

|u(x)|2(1+2/d)dx, (3)

for u ∈ H1(Rd). Note that for d � 3, the Gagliardo–Nirenberg inequality (3) is a
consequence of Sobolev’s inequality

‖∇u‖L2(Rd ) � CS‖u‖L2d/(d−2)(Rd ) (4)

and the Hölder interpolation inequality for L p-spaces. Moreover, Sobolev’s
inequality can actually be obtained from Hardy’s inequality

‖∇u‖2L2(Rd )
� (d − 2)2

4

∫
Rd

|u(x)|2
|x |2 dx, d > 2 (5)

by a symmetric-decreasing rearrangement argument (see, for example, [16, Sec. 4]).
All of the inequalities (3)–(5) are quantitative formulations of the uncertainty

principle. On the other hand, the anti-symmetry (2), which is crucial for the Lieb–
Thirring inequality (1) to hold, corresponds to Pauli’s exclusion principle for fermi-
ons. In fact, inequality (1) fails to apply to the product wave function

�(x1, x2, . . . , xN ) = u(x1)u(x2) · · · u(xN ) =: u⊗N (x1, x2, . . . , xN ),

which is a typical state of bosons.1 In this case ρu⊗N (x) = N |u(x)|2 and we only
have the weaker inequality〈

u⊗N ,
( N∑

i=1

−�i

)
u⊗N

〉
� C N−2/d

∫
Rd

ρu⊗N (x)1+2/ddx, (6)

which is, however, equivalent to the Gagliardo–Nirenberg inequality (3).
The discovery ofLieb andThirring goes back to the stability ofmatter problem

(see [30] for a pedagogical introduction to this subject). It is often straightforward
to derive the finiteness of the ground state energy of quantum systems from a for-
mulation of the uncertainty principle such as (3), (4) or (5). However, the fact that
the energy does not diverge faster than proportionally to the number of particles—
that is, stability in a thermodynamic sense—is much more subtle and for this the
exclusion principle is crucial. It was Dyson and Lenard [9,26] who first proved

1 In general, bosonic wave functions satisfy (2) with a plus instead of a minus sign.
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thermodynamic stability for fermionic Coulomb systems, and their proof is based
on a local formulation of the exclusion principle, which is a relatively weak con-
sequence of (2). Later Lieb and Thirring [32] gave a much shorter proof of the
stability of matter using their more powerful inequality (1).

Recently, Lundholm and Solovej [37] realized that the local exclusion prin-
ciple in the original work of Dyson and Lenard [9,26], when combined with
local formulations of the uncertainty principle, actually implies the Lieb–Thirring
inequality (1). From this point of view, they derived Lieb–Thirring inequalities for
anyons, two-dimensional particles which do not satisfy the full anti-symmetry (2)
but still fulfill a fractional exclusion. The same approach was also employed to
prove Lieb–Thirring inequalities for fractional statistics particles in one dimension
by the same authors [38], as well as for fermions with certain point interactions by
Frank and Seiringer [17].

Following the spirit of [37], Lundholm, Portmann and Solovej [36] found
that Lieb-Thirring type inequalities still hold true for particles without any symme-
try assumptions—and therefore in particular for bosons—provided that the exclu-
sion principle is replaced by a sufficiently strong repulsive interaction between par-
ticles. For example, they proved that there exists a constant C > 0 depending only
on the dimension d � 1 such that for every normalized function � ∈ H1((Rd)N )

and all N ∈ N,〈
�,

⎛
⎝ N∑

i=1

−�i +
∑

1�i< j�N

1

|xi − x j |2

⎞
⎠�

〉
� C

∫
R3

ρ�(x)1+2/d dx . (7)

The appearance of the inverse-square interaction in (7) is natural as it makes all
terms in the inequality scale in the same way.

The aims of our paper are threefold.

• Wegeneralize the Lieb–Thirring inequality (7) to the fractional kinetic operator
(−�)s for an arbitrary power s > 0, with matching interaction |x − y|−2s .
The non-local property of (−�)s for non-integer s makes the inequality more
involved. Nevertheless, the fermionic analogue of this inequality (without the
interaction term) has been known for a long time in the context of relativistic
stability [8]. For the interacting bosonic version we will follow the strategy of
[36], using local uncertainty and exclusion, but we also develop several new
tools. In particular, we will introduce a new covering lemma which provides
an elegant way to combine the local uncertainty and exclusion into a single
bound.

• We prove a stronger version of the Lieb–Thirring inequality (7) with the kinetic
operator replaced by (−�)s − Cd,s |x |−2s and with the interaction |x − y|−2s ,
for all 0 < s < d/2. Here Cd,s is the optimal constant in the Hardy inequality
[21]

(−�)s − Cd,s |x |−2s � 0.

Our result can be seen as a bosonic analogue to the Hardy–Lieb–Thirring
inequality for fermions found by Ekholm, Frank, Lieb and Seiringer [11,
14,15].
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• Just as the Lieb–Thirring inequality (1) implies the one-body interpolation
inequality (3), the same will be shown to be true for these generalized many-
body inequalities. For instance, our bosonic Hardy–Lieb–Thirring inequality
implies the one-body interpolation inequality

〈
u,
(
(−�)s − Cd,s |x |−2s

)
u
〉1−2s/d

(∫∫
Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s

dxdy

)2s/d

� C
∫
Rd

|u(x)|2(1+2s/d) dx,

for u ∈ Hs(Rd) and 0 < s < d/2. Moreover, we prove the equivalence
between the (bosonic)Lieb–Thirring/Hardy–Lieb–Thirring inequalities and the
corresponding one-body interpolation inequalities when 0 < s � 1. Since one-
body interpolation inequalities have been studied actively for a long time, we
believe that this equivalence could inspire many new directions to the many-
body theory.

In the next section our results will be presented in detail and an outline of the rest
of the paper given.

2. Main results

2.1. Fractional Lieb–Thirring Inequality

Our first aim of the present paper is to generalize (7) to the fractional kinetic
operator (−�)s for an arbitrary power s > 0, and with a matching interaction
|x − y|−2s . The operator (−�)s is defined as the multiplication operator |p|2s in
Fourier space, namely

[
(−�)s f

]∧
(p) = |p|2s f̂ (p), f̂ (p) := 1

(2π)d/2

∫
Rd

f (x)e−i p·x dx .

The associated space Hs(Rd) is a Hilbert space with norm

‖u‖2Hs (Rd )
:= ‖u‖2L2(Rd )

+ ‖u‖2
Ḣ s (Rd )

, ‖u‖2
Ḣ s (Rd )

:= 〈u, (−�)su〉,
and the addition of a positive interaction potential is to be understood as the sum
of non-negative forms.

Our first result is the following

Theorem 1. (Fractional Lieb-Thirring inequality). For all d � 1 and s > 0, there
exists a constant C > 0 depending only on d and s such that for all N ∈ N and for
every L2-normalized function � ∈ Hs(Rd N ),

〈
�,

⎛
⎝ N∑

i=1

(−�i )
s +

∑
1�i< j�N

1

|xi − x j |2s

⎞
⎠�

〉
� C

∫
Rd

ρ�(x)1+2s/d dx . (8)
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Since our result holdswithout restrictions on the symmetry of thewave function,
and therefore in particular also for bosons, we consider it as a bosonic analogue to
the fermionic inequality

〈
�,

N∑
i=1

(−�i )
s�

〉
� C

∫
Rd

ρ�(x)1+2s/d dx, (9)

which holds for wave functions � satisfying the anti-symmetry (2), where the
constant C > 0 is independent of N and �.2 The original motivation for such a
fermionic fractional Lieb-Thirring inequality has been its usefulness in the context
of stability of relativistic matter (see [8] and the recent review [30]). Our inequality
(8) for s = 1/2 and d = 3 is relevant to the physical situation of relativistic
particles (which could be identical bosons, or even distinguishable) with Coulomb
interaction.

Remark 1. Note thatwhen 2s � d, anywave function in the quadratic formdomain
of the operator on the left hand side of (8) must vanish on the diagonal set

�� :=
{
(xi )

N
i=1 ∈ (Rd)N : xi = x j for some i �= j

}
.

When d = s = 1, it is well known [18] that any symmetric wave function vanishing
on the diagonal set is equal to an anti-symmetric wave function up to multiplication
by an appropriate sign function, and hence (8) boils down to a consequence of (9)
in this particular case. In a higher dimension, this correspondence between bosonic
and fermionic wave functions is not available and it is interesting to ask if a Lieb-
Thirring inequality of the form (9) holds true for all wave functions vanishing on
the diagonal set (without the anti-symmetry assumption). We refer to Section 3.5
for a detailed discussion.

Remark 2. We have for simplicity fixed the interaction strength in (8) to unity. One
may consider adding a coupling parameter λ > 0 to the interaction term and study
the inequality

〈
�,

⎛
⎝ N∑

i=1

(−�i )
s +

∑
1�i< j�N

λ

|xi − x j |2s

⎞
⎠�

〉
� C(λ)

∫
Rd

ρ�(x)1+2s/d dx

(10)
for all N � 2 and all normalized wave functions � ∈ Hs(Rd N ), with a constant
C(λ) independent of N and �. It is clear that C(λ) > 0 for all λ, s > 0 and d � 1.
However, since the parameter λ cannot be removed by scaling, it is interesting to
ask for the behavior of the optimal constant of (10) in the limits λ → 0 and λ → ∞.
This issue will be thoroughly discussed in Section 3.5.

2 Throughout our paper,C denotes a generic positive constant. TwoC’s in different places
may refer to two different constants.
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Remark 3. When 0 < s � 1 we can also replace the one-body kinetic operator
(−�)s by |i∇ + A(x)|2s with A ∈ L2

loc(R
d ;Rd) being a magnetic vector potential.

By virtue of the diamagnetic inequality (see for example [14, Eq. (2.3)])

〈u, |i∇ + A|2su〉 � 〈|u|, (−�)s |u|〉 (11)

the inequalities (8)-(9)-(10) hold with the same constants (independent of A).

When s /∈ N, the Lieb–Thirring inequality (8) cannot be obtained from a
straightforward modification of the proof of (7) in [36]. The non-local property
of (−�)s complicates the local uncertainty principle and a fractional interpolation
inequality on cubes is required.Wewill follow the strategy in [36], but several tech-
nical adjustments are presented. The details are provided in Section 3. We believe
that our presentation here provides a unified framework for proving Lieb–Thirring
inequalities by means of local formulations of the uncertainty and exclusion princi-
ples, and can be used to simplify many parts of the previous works [17,36–38]. For
comparison, we also make a note about fermions and weaker exclusion principles
in Section 3.6.

2.2. Hardy–Lieb–Thirring inequality

Recall that for every 0 < s < d/2 we have the Hardy inequality [21]

(−�)s − Cd,s |x |−2s � 0 on L2(Rd),

where the sharp constant is

Cd,s := 22s
(

�((d + 2s)/4)

�((d − 2s)/4)

)2

.3

We will prove the following improvement of Theorem 1 when 0 < s < d/2.

Theorem 2. (Hardy–Lieb–Thirring inequality). For all d � 1 and 0 < s < d/2,
there exists a constant C > 0 depending only on d and s such that for every
(L2-normalized) function � ∈ Hs(Rd N ) and for all N ∈ N, we have

〈
�,

⎛
⎝ N∑

i=1

(
(−�i )

s − Cd,s

|xi |2s

)
+

∑
1�i< j�N

1

|xi − x j |2s

⎞
⎠�

〉

� C
∫
Rd

ρ�(x)1+2s/d dx . (12)

For s = 1/2 and d = 3, the operator in (12) can be interpreted as the Hamil-
tonian of a system of N equally charged relativistic particles (bosons, fermions
or distinguishable) moving around a static ‘nucleus’ of opposite charge located at
x = 0, where all particles interact via Coulomb forces.

3 The case s � d/2 requires additional boundary conditions at x = 0 and will not be
treated here. See [49], and [10] for corresponding fermionic Lieb-Thirring inequalities.
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Our result (12) can be considered as the interacting bosonic analogue to the
following Hardy–Lieb–Thirring inequality for fermions:〈

�,

N∑
i=1

(
(−�i )

s − Cd,s

|xi |2s

)
�

〉
� C

∫
Rd

ρ�(x)1+2s/ddx, (13)

which holds for every wave function� satisfying the anti-symmetry (2). The bound
(13) was proved for s = 1 by Ekholm and Frank [11], for 0 < s � 1 by Frank,
Lieb and Seiringer [14], and for 0 < s < d/2 by Frank [15]. In fact, (13) is dually
equivalent to a lower bound on the sum of negative eigenvalues of the one-body
operator (−�)s − Cd,s |x |−2s + V (x) and such a bound was proved in [11,14,15].
Unfortunately this duality argument (which has been the traditional route to proving
Lieb-Thirring inequalities) does not apply in our interacting bosonic case.

Remark 4. Themotivation for (13) was critical stability of relativistic matter in the
presence of magnetic fields. In both (12) and (13) we can, for 0 < s � 1, replace
(−�)s with a magnetic operator |i∇ + A(x)|2s ; cf. Remark 3.

The proof of (13) in [15] is based on the following powerful improvement of
Hardy’s inequality: for every d � 1 and 0 < t < s < d/2, there exists a constant
C > 0 depending only on d, s, t such that

(−�)s − Cd,s

|x |2s
� C�s−t (−�)t − �s on L2(Rd), ∀� > 0. (14)

Note that by taking the expectation against a function u and optimizing over � > 0,
we can see that (14) is equivalent to the interpolation inequality〈

u,

(
(−�)s − Cd,s

|x |2s

)
u

〉t/s (∫
Rd

|u|2
)1−t/s

� C〈u, (−�)t u〉. (15)

By Sobolev’s embedding (see, for example, [6,28] for the sharp constant)

〈u, (−�)t u〉 � C‖u‖2Lq (Rd )
, q = 2d

d − 2t
, 0 < t < d/2, (16)

the bound (15) implies the Gagliardo–Nirenberg type inequality〈
u,

(
(−�)s − Cd,s

|x |2s

)
u

〉t/s (∫
Rd

|u|2
)1−t/s

� C‖u‖2Lq (Rd )
, q = 2d

d − 2t
.

(17)

The bound (14) was first proved for s = 1/2, d = 3 by Solovej, Sørensen and
Spitzer [44, Lemma 11] and was generalized to the full case 0 < s < d/2 by
Frank [15, Theorem 1.2].

In fact, (14) is also a key ingredient of our proof of (12). The overall strategy is
similar to the proof of the fractional Lieb–Thirring inequality (8). However, since
the system is not translation invariant anymore, the local uncertainty becomesmuch
more involved. We need to introduce a partition of unity and use (15) and (17) to
control the localization error caused by the non-local operator (−�)s . The details
will be provided in Section 4.
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2.3. Interpolation Inequalities

Let us concentrate again on the case 0 < s < d/2. By applying the Lieb–
Thirring inequality in Theorem 1 to the product wave function � = u⊗N with
‖u‖L2(Rd ) = 1, we obtain

N 〈u, (−�)su〉 + N (N − 1)

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s

dxdy

� C N 1+2s/d
∫
Rd

|u(x)|2(1+2s/d) dx . (18)

Since the inequality holds for all N ∈ N, it then follows that

μ〈u, (−�)su〉 + μ2

2

∫∫
Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s

dxdy

� Cμ1+2s/d
∫
Rd

|u(x)|2(1+2s/d)dx (19)

for all μ � 1 (possibly with a smaller constant). On the other hand, by using
Sobolev’s embedding (16) and Hölder’s interpolation inequality for L p-spaces, we
get

〈u, (−�)su〉 � C‖u‖2L2d/(d−2s) � C

∫
Rd |u|2(1+2s/d)

(
∫
Rd |u|2)2s/d

= C
∫
Rd

|u|2(1+2s/d) (20)

which implies (19) when 0 < μ < 1. Thus (19) holds for allμ > 0, and optimizing
over μ gives the interpolation inequality

〈u, (−�)su〉1−2s/d
( ∫∫

Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s

dxdy
)2s/d

� C
∫
Rd

|u(x)|2(1+2s/d) dx (21)

for u ∈ Hs(Rd), ‖u‖L2 = 1. Note that in (21) the normalization ‖u‖L2 = 1 can
be dropped by scaling.

The interpolation inequality (21) was first proved for the case s = 1/2, d = 3
byBellazzini,Ozawa andVisciglia [4], and was then generalized to the general
case 0 < s < d/2 by Bellazzini, Frank and Visciglia [3]. The proofs in [3,4]
use fractional calculus on the whole space and are very different from our approach
using the Lieb–Thirring inequality.

Remark 5. The inequality (21) is an end-point case of a series of interpolation
inequalities in [3]. The existence of optimizer in this case is open. If a minimizer
exists, by formally analyzing the Euler–Lagrange equationwe expect that it belongs
to L2+ε(Rd) for any ε > 0 small, but not L2(Rd). Thus (21) can be interpreted as
an energy bound for systems of infinitely many particles.
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Remark 6. Note that, when s � d/2, one has

∫∫
Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s

dxdy = +∞

for all u �= 0 since |x |−2s is not locally integrable. Therefore, the interpolation
inequality (21) is trivial in this case. However, the Lieb–Thirring inequality (8) is
non-trivial for all s > 0 because the wave function � may vanish on the diagonal
set (see Remark 1).

In principle, the implication of a one-body inequality from a many-body
inequality is not surprising. However, in the following result we show that the
reverse implication also holds true under certain conditions.

Theorem 3. For 0 < s < d/2 and s � 1, the Lieb–Thirring inequality (8) is
equivalent to the one-body interpolation inequality (21).

As we explained above, the implication of (21) from (8) works for all 0 <

s < d/2. The implication of (8) from (21) is more subtle and we obtain it from
fractional versions of the Hoffmann-Ostenhof inequality [22], which requires
0 < s � 1, and a generalized version of the Lieb–Oxford inequality [27,29] for
homogeneous potentials. We will provide these details in Section 5.

Remark 7. Unfortunately, we cannot offer an exact relation between the optimal
constants in (8) and (21). On the other hand, from (18) it is obvious that the optimal
constant in (8) is not bigger than the optimal constant C1 in the inequality

〈 f, (−�)s f 〉 + 1

2

∫∫
Rd×Rd

| f (x)|2| f (y)|2
|x − y|2s

dxdy � C1

∫
Rd

| f (x)|2(1+2s/d) dx .

for all f ∈ Hs(Rd) (not necessarily normalized), which is related to the optimal
constant C in (21) by the exact formula

C1

C
= inf

t>0

(
1 + t

2

)
t−2s/d =

(
1 − 2s

d

)−1+2s/d ( d

4s

)2s/d

.

By the sameproof as that ofTheorem3,wealsoobtain the following equivalence
for the Hardy–Lieb–Thirring inequality (12):

Theorem 4. For 0 < s < d/2 and s � 1, the Hardy–Lieb–Thirring inequality (12)
is equivalent to the one-body interpolation inequality

〈
u,
(
(−�)s − Cd,s |x |−2s

)
u
〉1−2s/d

(∫∫
Rd×Rd

|u(x)|2|u(y)|2
|x − y|2s

dxdy

)2s/d

� C
∫
Rd

|u(x)|2(1+2s/d) dx . (22)
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The interpolation inequality (22) seems to be new. Note that the implication of
(22) from (12) holds for all 0 < s < d/2 (by exactly the same argument as above),
and hence (22) is also valid in this maximal range. There might be some way to
prove (22) directly (as in the proof of (21) in [3,4]), but we have not found such a
proof yet.

Finally, we mention that our approach in this paper can be used to prove many
other interpolation inequalities which do not really come frommany-body quantum
theory. For example, we have

Theorem 5. (Isoperimetric inequality with non-local term). For any d � 2 and
1/2 � s < d/2 there exists a constant C > 0 depending only on d and s, such that
for all functions u ∈ W 1,2s(Rd) we have

(∫
Rd

|∇u|2sdx

)1−2s/d (∫∫
Rd×Rd

|u(x)|2s |u(y)|2s

|x − y|2s
dxdy

)2s/d

� C
∫
Rd

|u|2s(1+2s/d) dx . (23)

This inequality seems to be new and it could be useful in the context of isoperi-
metric inequalities with competing non-local term; see [25, Lemma 7.1], [24,
Lemma 5.2] and [39, Lemma B.1] for relevant results. The proof of Theorem 5
will be given in Section 5.

3. Fractional Lieb–Thirring Inequality

In this section we prove the fractional Lieb–Thirring inequality (8). We shall
follow the overall strategy in [36], where we localize the interaction and kinetic
energies into disjoint cubes, but we also introduce several new tools.

3.1. Local Exclusion

The following result is a simplified version of the local exclusion principle in
[36, Theorem 2 and Section 4.2].

Lemma 6. (Local exclusion). For all d � 1, s > 0, for every normalized function
� ∈ L2(Rd N ) and for an arbitrary collection of disjoint cubes Q’s in R

d , one has

〈
�,

∑
1�i< j�N

1

|xi − x j |2s
�

〉
�
∑

Q

1

2ds |Q|2s/d

[( ∫
Q

ρ�

)2−∫
Q

ρ�

]
+

. (24)

Proof. The following argument goes back to Lieb’s work on the indirect energy
[27]. Since the interactions between different cubes are positive and |x − y| �√

d|Q|1/d for all x, y ∈ Q, we have
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∑
1�i< j�N

1

|xi − x j |2s
�
∑

Q

∑
1�i< j�N

1Q(xi )1Q(x j )

|xi − x j |2s

�
∑

Q

1

ds |Q|2s/d

∑
1�i< j�N

1Q(xi )1Q(x j )

=
∑

Q

1

2ds |Q|2s/d

⎡
⎣
(

N∑
i=1

1Q(xi )

)2

−
N∑

i=1

1Q(xi )

⎤
⎦

+
.

Taking the expectation against � and using the Cauchy-Schwarz inequality〈
�,
( N∑

i=1

1Q(xi )
)2

�

〉
�
〈
�,

N∑
i=1

1Q(xi )�

〉2
=
(∫

Q
ρ�

)2

,

we obtain the desired estimate. ��

3.2. Local Uncertainty

Now we localize the kinetic energy into disjoint cubes Q’s. For every s > 0
we can write s = m + σ with m ∈ {0, 1, 2, . . . } and 0 � σ < 1. Then for any
one-body function u ∈ Hs(Rd) we have

〈u, (−�)su〉 =
∫
Rd

|p|2s |̂u(p)|2dp =
∫
Rd

|p|2σ
( d∑

i=1

pi
2
)m |̂u(p)|2dp

=
∑

|α|=m

m!
α!
∫
Rd

|p|2σ
d∏

i=1

p2αi
i |û(p)|2dp

=
∑

|α|=m

m!
α! 〈Dαu, (−�)σ Dαu〉.

The last sum is taken over multi-indices α = (α1, . . . , αd) ∈ {0, 1, 2, . . . }d with

|α| =
d∑

i=1

αi , α! =
d∏

i=1

(αi !) and Dα =
d∏

i=1

∂αi

∂
αi
ri

.

Here we denoted by p = (p1, p2, . . . , pd) ∈ R
d and r = (r1, . . . , rd) ∈ R

d , the
variables in the Fourier space and the configuration space, respectively.

If s = m, we have

〈u, (−�)su〉 =
∑

|α|=m

m!
α!
∫
Rd

|Dαu| �
∑

|α|=m

m!
α!
∑

Q

∫
Q

|Dαu| (25)

for disjoint cubes Q’s. On the other hand, if m < s < m + 1, then using the
quadratic form representation4 (see, for example, [14, Lemma 3.1])

4 Note that this formula only holds for 0 < σ < 1.
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〈 f, (−�)σ f 〉 = cd,σ

∫
Rd

∫
Rd

| f (x) − f (y)|2
|x − y|d+2σ dxdy, (26)

where

cd,σ := 22σ−1

πd/2

�((d + 2σ)/2)

|�(−σ)| ,

we have

〈u, (−�)su〉 = cd,σ

∑
|α|=m

m!
α!
∫
Rd×Rd

|Dαu(x) − Dαu(y)|2
|x − y|d+2σ dxdy

� cd,σ

∑
|α|=m

m!
α!
∑

Q

∫
Q×Q

|Dαu(x) − Dαu(y)|2
|x − y|d+2σ dxdy (27)

for disjoint cubes Q’s. It is convenient to combine (27) and (27) into a single
formula

〈u, (−�)su〉 �
∑

Q

‖u‖2
Ḣ s (Q)

, (28)

where the semi-norm ‖u‖2
Ḣ s (Q)

of u ∈ L2(Q) on a cube Q is defined by

‖u‖2
Ḣ s (Q)

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
|α|=m

m!
α!
∫

Q |Dαu|2, if s = m,

cd,σ

∑
|α|=m

m!
α!
∫∫

Q×Q
|Dαu(x)−Dαu(y)|2

|x − y|d+2σ dxdy, if 0 < σ < 1.

The following estimate plays an essential role in our proof.

Lemma 7. (Local uncertainty). For every d � 1, s > 0, cube Q ⊂ R
d and

u ∈ L2(Q), one has

‖u‖2
Ḣ s (Q)

� 1

C

∫
Q |u|2(1+2s/d)( ∫

Q |u|2
)2s/d

− C

|Q|2s/d

∫
Q

|u|2 (29)

for a constant C > 0 independent of Q and u.

Before proving Lemma 7, let us clarify a technical point concerning the Sobolev
space Hs(Q) = W s,2(Q), whose intrinsic norm can be defined by (see for example
[1, Section 7.36 and Theorem 7.48])

‖u‖2Hs (Q) := ‖u‖2
Ḣ s (Q)

+
∑

|α|�m

∫
Q

|Dαu|2.
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Here recall that s = m + σ with m ∈ {0, 1, 2, . . . } and 0 � σ < 1. By Poincaré’s
inequality for Ḣσ (Q) (see, for example, [23, Lemma 2.2]) and the elementary
inequality |a − b|2 � 1

2 |a|2 − |b|2 for a, b ∈ C, we have

C ‖u‖2
Ḣ s (Q)

�
∑

|α|=m

∥∥∥Dαu − 1

|Q|
∫

Q
Dαu

∥∥∥2
L2(Q)

� 1

2
‖Dαu‖2L2(Q)

−
∣∣∣∫Q Dαu

∣∣∣2
|Q| .

From the latter estimate and Sobolev’s embedding, it is straightforward to obtain
the following equivalence of norms

‖u‖2Hs (Q) � ‖u‖2
Ḣ s (Q)

+
∫

Q
|u|2 � CQ‖u‖2Hs (Q), (30)

for a constant CQ > 0 depending only on the the cube Q. Now we provide

Proof of Lemma 7. By translating and dilating, that is, replacing u(x) by u(λ(x −
x0)) for λ > 0 and x0 ∈ R

d , it suffices to consider the unit cube Q = [0, 1]d . Then,
thanks to (30), it remains to prove the fractional Gagliardo–Nirenberg inequality

‖u‖θ
Hs (Q)‖u‖1−θ

L2(Q)
� C‖u‖Lq (Q), q = 2 + 4s

d
, θ = d

d + 2s
(31)

for a constant C > 0 independent of u. Since the (unit) cube Q is regular, we
may apply the extension theorem to Hs(Q) (see [1, Theorem 7.41] or [48, The-
orem 4.2.3]) and obtain for any function u ∈ Hs(Q) a function U ∈ Hs(Rd)

satisfying

U |Q = u, ‖U‖2L2(Rd )
� C‖u‖L2(Q), ‖U‖Hs (Rd ) � C‖u‖Hs (Q),

where C > 0 depends only on d and s. We will show that

‖U‖θ

Ḣ s (Rd )
‖U‖1−θ

L2(Rd )
� C‖U‖Lq (Rd ), q = 2 + 4s

d
, θ = d

d + 2s
, (32)

and (31) follows immediately. By Sobolev’s embedding (16)

‖U‖Ḣ θs (Rd ) � C‖U‖Lq (Rd ), q = 2 + 4s

d
= 2d

d − 2θs
,

the estimate (32) follows from the following interpolation inequality

‖U‖θ

Ḣ s (Rd )
‖U‖1−θ

L2(Rd )
� ‖U‖Ḣ θs (Rd ), ∀θ ∈ (0, 1), (33)

which is in turn a simple consequence of Hölder’s inequality

(∫
Rd

p2s |Û (p)|2dp

)θ (∫
Rd

|Û (p)|2dp

)1−θ

�
∫
Rd

p2θs |Û (p)|2dp.

��
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Remark 8. Note that to the semi-norm ‖ · ‖Ḣ s (�) there is a naturally associated

operator, which for s = 1 coincides with −�N
� , the Neumann Laplacian on � ⊆

R
d . It is a relevant question whether for 0 < s < 1 and bounded domains � this

operator coincides with (−�N
� )s (defined using the spectral theorem), something

that was shown in [13] to be false in the case of the Dirichlet Laplacian −�D
� (see

also [19,40,42] for related results). In any case, the analogue of (29) for (−�
N /D
� )s

can be proved using the method in [41].

We will need the following many-body version of Lemma 7.

Lemma 8. (Many-body version of local uncertainty). For any L2-normalized func-
tion � ∈ Hs(Rd N ) and for an arbitrary collection of disjoint cubes Q’s, the kinetic
energy satisfies the estimate〈

�,

N∑
i=1

(−�i )
s�

〉
�
∑

Q

⎡
⎢⎣ 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d
− C

|Q|2s/d

∫
Q

ρ�

⎤
⎥⎦ , (34)

where C is the same constant as in Lemma 7.

Proof. Let γ
(1)
� be the one-body density matrix of � (see [30, Section 3.1.5]),

which is a non-negative trace class operator on L2(Rd) with kernel

γ
(1)
� (x, y) :=

N∑
j=1

∫
Rd(N−1)

�(x1, . . . , x j−1, x, x j+1, . . . , xN )×

× �(x1, . . . , x j−1, y, x j+1, . . . , xN )
∏
i �= j

dxi . (35)

Since γ
(1)
� is trace class, we can write

γ
(1)
� (x, y) =

∑
n�1

un(x)un(y),

where un ∈ L2(Rd) are not necessarily normalized. Then ρ� = ∑
n�1 |un|2 and〈

�,

N∑
i=1

(−�i )
s�

〉
= Tr

[
(−�)sγ

(1)
�

]

=
∑
n�1

〈un, (−�)sun〉 �
∑
n�1

∑
Q

‖un‖2
Ḣ s (Q)

, (36)

where we have used (28) in the last estimate. On the other hand, from the local
uncertainty (29) we have(∫

Q
|un|2

) 2s
d+2s

(
‖un‖2

Ḣ s (Q)
+ C

|Q|2s/d

∫
Q

|un|2
) d

d+2s

� C−d/(d+2s)‖|un|2‖L1+2s/d (Q)

for all n � 1. Therefore, by Hölder’s inequality (for sums) and the triangle inequal-
ity we get
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(∫
Q

ρ�

) 2s
d+2s

⎛
⎝∑

n�1

‖un‖2
Ḣ s (Q)

+ C

|Q|2s/d

∫
Q

ρ�

⎞
⎠

d
d+2s

=
⎛
⎝∑

n�1

∫
Q

|un|2
⎞
⎠

2s
d+2s

⎛
⎝∑

n�1

[
‖un‖2

Ḣ s (Q)
+ C

|Q|2s/d

∫
Q

|un|2
]⎞⎠

d
d+2s

�
∑
n�1

(∫
Q

|un|2
) 2s

d+2s
(

‖un‖2
Ḣ s (Q)

+ C

|Q|2s/d

∫
Q

|un|2
) d

d+2s

�
∑
n�1

C− d
d+2s ‖|un|2‖L1+2s/d (Q) � C− d

d+2s
∥∥∑

n�1

|un|2∥∥L1+2s/d (Q)

= C− d
d+2s

∥∥ρ�

∥∥
L1+2s/d (Q)

,

which is equivalent to

∑
n�1

‖un‖2
Ḣ s (Q)

� 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d
− C

|Q|2s/d

∫
Q

ρ�.

The latter estimate and (36) imply the desired inequality (34). ��
Remark 9. By using the interpolation inequality (20) and the same argument of
the proof of Lemma 8 (in this case one can work on the whole Rd and no partition
of cubes is needed), we obtain the following generalization of (6):〈

�,

N∑
i=1

(−�i )
s�

〉
� C N−2s/d

∫
Rd

ρ
1+2s/d
� (37)

for all normalized functions � ∈ Hs(Rd N ) and for a constant C > 0 depending
only on d and s. When 0 < s � 1, (37) can also be proved using the Hoffmann–
Ostenhof inequality in Lemma 15 and Sobolev’s embedding. We will use (37) to
obtain the Lieb–Thirring inequality (8) when N is small.

3.3. A Covering Lemma

To combine the local uncertainty and exclusion principles, we need a nice
choice of the partition of cubes Q’s. The following result is inspired by the work of
Lundholm and Solovej [37, Theorem 11]. In fact, a similar result can be obtained
by following their construction.However, our construction below is simpler to apply
and results in improved constants.

Lemma 9. (Covering lemma). Let Q0 be a cube in R
d and let � > 0. Let 0 � f ∈

L1(Q0) satisfy
∫

Q0
f � � > 0. Then Q0 can be divided into disjoint sub-cubes

Q’s such that:
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• For all Q, ∫
Q

f < �.

• For all α > 0 and integer k � 2

∑
Q

1

|Q|α
[(∫

Q
f

)2

− �

a

∫
Q

f

]
� 0, (38)

where

a := kd

2

⎛
⎝1 +

√
1 + 1 − k−d

kdα − 1

⎞
⎠ .

• If k = 3, then the center of Q0 coincides with the center of exactly one sub-
cube Q, and the distance from every other sub-cube Q to the center of Q0 is
not smaller than |Q|1/d/2.

Note that the simplest choice is k = 2 and it is sufficient for the proof of the
Lieb-Thirring inequality (8). However the case k = 3 will be more useful for the
proof of the Hardy-Lieb-Thirring inequality (12) in Section 4.

Proof. First, we divide Q0 into kd disjoint sub-cubes with 1/k of the original side
length. For every sub-cube, if the integral of f over it is less than�, thenwewill not
divide it further; otherwise we divide this sub-cube into kd disjoint smaller cubes
with 1/k of the side length, and then iterate the process. Since f is integrable, the
procedure must stop after finitely many steps and we obtain a division of Q0 into
finitely many sub-cubes Q’s.

It is obvious that for every sub-cube Q one has
∫

Q f < � and |Q| =
k−�(Q)d |Q0| for some level �(Q) ∈ {0, 1, 2, . . . }. By viewing the sub-cubes as
the leaves of a full kd -ary tree corresponding to the above division (cf. Figure 1),
we can distribute all sub-cubes into disjoint groups {Fi } such that in each group
Fi :

Q0

F1

F2

F3

Fig. 1. Example of a division of Q0 (in d = 2) with k = 3
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• There are exactly kd smallest sub-cubes within Fi .
• The integral of f over the union of these kd smallest sub-cubes is greater than

�.
• There are at most (kd − 1) sub-cubes of every other volume.

Nowwe consider each groupFi . Letmi = infQ∈Fi |Q| denote theminimal volume
occuring in the group. By the Cauchy–Schwarz inequality we have

∑
Q∈Fi ,|Q|=mi

1

|Q|α
[(∫

Q
f

)2

− �

a

∫
Q

f

]

� 1

mα
i

⎡
⎢⎣ 1

kd

⎛
⎝ ∑

Q∈Fi ,|Q|=mi

∫
Q

f

⎞
⎠

2

− �

a

∑
Q∈Fi ,|Q|=mi

∫
Q

f

⎤
⎥⎦

� 1

mα
i

(
�2

kd
− �2

a

)
. (39)

Here in the last inequality we have used the lower bound

∑
Q∈Fi ,|Q|=mi

∫
Q

f � � >
kd�

2a

and that the function t �→ t2/kd − (�/a)t is increasing when t � kd�/(2a). On
the other hand, using the obvious lower bound( ∫

Q
f
)2 − �

a

∫
Q

f � − �2

4a2 ,

we find that

∑
Q∈Fi ,|Q|>mi

1

|Q|α
[(∫

Q
f

)2

− �

a

∫
Q

f

]
� − �2

4a2

∑
Q∈Fi ,|Q|>mi

1

|Q|α

� − �2

4a2

∑
j�1

kd − 1

(kd j mi )α
= − �2

4a2

kd − 1

(kdα − 1)mα
i
. (40)

Here in the second inequality we have used the fact that in Fi , each sub-cube has
volume kd j mi for some j ∈ {0, 1, 2, . . .} and there are at most (kd − 1) sub-cubes
of every volume larger than mi . Adding (39) and (40), we find that

∑
Q∈Fi

1

|Q|α
[(∫

Q
f

)2

− �

a

∫
Q

f

]
� �2

mα
i

(
1

kd
− 1

a
− kd − 1

4a2(kdα − 1)

)
= 0,

where the last identity follows from the choice of a. Since the latter inequality holds
true for every group Fi , the conclusion follows immediately.

For k = 3 (or any odd integer) there is at each level in the above division
exactly one cube Q with its center at the center of Q0, and the statement follows
by iteration. ��
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3.4. Proof of the Lieb–Thirring Inequality

Now we are able to give a proof of the Lieb–Thirring inequality (8).

Proof of Theorem 1. By a standard approximation argument we can assume that
ρ� is supported in a finite cube Q0 ⊂ R

d . For every� �
∫
Rd ρ� = N , by applying

the Covering Lemma 9 with f = ρ�, k = 2 and α = 2s/d, we can divide Q0 into
disjoint sub-cubes Q’s such that

∫
Q ρ� � � for all Q and

∑
Q

1

|Q|2s/d

[(∫
Q

ρ�

)2

− �

a

∫
Q

ρ�

]
� 0, (41)

with

a := 2d

2

⎛
⎝1 +

√
1 + 1 − 2−d

2dα − 1

⎞
⎠ .

Next, from Lemma 6, Lemma 8 and (41), it follows that

〈
�,

⎛
⎜⎝ N∑

i=1

(−�i )
s +

∑
1�i< j�N

1

|xi − x j |2s

⎞
⎟⎠�

〉

�
∑
Q

⎡
⎢⎣ 1

C

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d
− C

|Q|2s/d

∫
Q

ρ� + 1

2ds |Q|2s/d

((∫
Q

ρ�

)2 −
∫

Q
ρ�

)⎤⎥⎦

� 1

C�2s/d

∫
Rd

ρ
1+2s/d
� +

(
�

a
− 2dsC − 1

)∑
Q

1

2ds |Q|2s/d

∫
Q

ρ�, (42)

for every 0 < � � N and for some constant C > 0 depending only on d � 1 and
s > 0. Here in the last inequality in (42) we have used

∫
Q ρ� � � for all cubes

Q’s.
Finally, using (42) for � = (2dsC + 1)a =: �0 if N > �0, and using (37) if

N � �0, we find that

〈
�,

⎛
⎝ N∑

i=1

(−�i )
s +

∑
1�i< j�N

1

|xi − x j |2s

⎞
⎠�

〉
� C

∫
Rd

ρ
1+2s/d
�

for a constant C > 0 depending only on d and s. The proof is complete. ��

Remark 10. Note that, in the case that a coupling parameter λ > 0 is introduced
as in (10), a straightforward adaptation of (42) yields C(λ) = C for λ � 1 and
C(λ) ∼ λ2s/d for λ < 1.
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Remark 11. (Explicit constant). It is possible to derive an explicit constantC in (8).
Let us consider for example the case s = 1 and d = 3. By the Hoffmann–Ostenhof
inequality (see Lemma 15) and Sobolev’s inequality,〈

�,

N∑
i=1

−�i�

〉
� 〈√ρ�, (−�)

√
ρ� 〉 � CS

(∫
R3

ρ3
�

)1/3

� CS

∫
R3 ρ

5/3
�(∫

R3 ρ�

)2/3 .

Moreover, combining theHoffmann–Ostenhof inequality and the Poincaré-Sobolev
inequality

‖∇u‖2L2(Q)
� CP

∥∥∥∥u − 1

|Q|
∫

Q
u

∥∥∥∥
2

L6(Q)

as in [17], we get〈
�,

N∑
i=1

−�i�

〉
� 〈√ρ�, (−�)

√
ρ� 〉 �

∑
Q

∥∥∇√
ρ�

∥∥2
L2(Q)

� CP

∑
Q

∥∥∥∥√ρ� − |Q|−1
∫

Q

√
ρ�

∥∥∥∥
2

L6(Q)

�
∑

Q

[
CP(1 − ε)

(∫
Q

ρ
5/3
�

)(∫
Q

ρ�

)−2/3

− CP(ε
−1 − 1)

1

|Q|2/3
∫

Q
ρ�

]

for any ε ∈ (0, 1). From these kinetic lower bounds, following the above proof of
Theorem 1, we find that (8) holds true with

C = min{(1 − ε)CP, CS}
�

2/3
0

, �0 = a(1 + 6CP(ε
−1 − 1)).

Here we can take

CS = 3

4
(2π2)2/3, CP = 27

16(1 + 32/3)2(2π)4/3
and a = 4 +

√
186

3

(the sharp value of CS can be inferred from [2,47] and the value of CP is obtained
by following [17, Lemma 1] but it may not be optimal). Then optimizing over
0 < ε < 1 shows that (8) holds true with

C = 0.002384.

Although this explicit constant is far from optimal, it is already a significant
improvement over [36].

3.5. Coupling Parameter and Optimal Constant

Let us here consider the behavior of the optimal constant of (10) as a function
of the coupling parameter λ,
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CBLT(λ) := inf
N�2

inf
�∈Hs

d,N‖�‖2=1

〈
�,
(∑N

i=1(−�i )
s + λWs

)
�
〉

∫
Rd ρ

1+2s/d
�

, λ � 0,

where � is in the form domain

Hs
d,N :=

{
� ∈ Hs(Rd N ) :

∫
Rd N

Ws |�|2 < ∞
}

, Ws(x) :=
∑

1�i< j�N

1

|xi − x j |2s
.

Note that the parameter λ cannot be removed by scaling and we are interested
in the behavior of the optimal constant of (10) in the limits λ → 0 and λ → ∞.
We have

Proposition 10. The optimal constant CBLT(λ) is monotone increasing and con-
cave as a function of λ, and satisfies the following:

(i) For all λ > 0, any d � 1 and all s > 0 we have

0 < Cd,s min{1, λ2s/d} � CBLT(λ) ≤ CGN,

where Cd,s > 0 is a constant independent of λ and CGN is the optimal
constant of the one-body fractional Gagliardo–Nirenberg inequality,

CGN := inf
u∈Hs (Rd )
‖u‖2=1

〈u, (−�)su〉∫
Rd |u|2(1+2s/d)

. (43)

(ii) We have, for all d � 1 and any s > 0,

lim
λ→0

CBLT(λ) = CBLT(0).

Moreover, for 2s < d we have CBLT(λ) ∼ λ2s/d as λ → 0, and in particular
CBLT(0) = 0.

In addition, we believe the following to be true:

Conjecture. The optimal constant CBLT(λ) also satisfies:

(iii) CBLT(0) > 0 for 2s > d.
(iv) For all d � 1 and any s > 0 we have

lim
λ→∞ CBLT(λ) = CGN.

The proof of Proposition 10 will be given below. For 2s < d, the limit λ → 0
corresponds to the situation of non-interacting bosons, and by taking the trial wave
functions � = u⊗N one can see immediately that CBLT(λ) → 0. However, for
2s � d the situation is more difficult because any wave function in Hs

d,N must
vanish on the diagonal set

�� = {(xi )
N
i=1 ∈ (Rd)N : xi = x j for some i �= j}

and in particular the trial wave functions u⊗N are not allowed.
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When d = s = 1, the operator in (10) is that of the Calogero-Sutherland model
[5,46], and the limit λ → 0 on the space L2

sym of symmetric wave functions is

actually equivalent to non-interacting fermions. In fact,H1
1,N ∩ L2

sym = H1
0 (RN \

��) ∩ L2
sym (see [38, Theorem 2]) and it is well known [18] that any such wave

function vanishing on the diagonal set is equal to an anti-symmetric wave function
up to multiplication by an appropriate sign function. Therefore, CBLT(0) is exactly
the optimal constant CLT of the fermionic Lieb–Thirring inequality (1), which is
conjectured [33] to be CGN = π2/4.

When d = 1 and s = 2, the condition of anti-symmetry is however not strong
enough to ensure that the wave function is in the quadratic form domain H2

1,N ,
which can be seen readily by taking the two-body state �(x1, x2) = C(x1 −
x2)e−|x1|2−|x2|2 /∈ H2

1,2. In this case we expect CBLT(0) > CLT because of the more
restricted domain.

For d � 2 the situation is yetmore difficult. Because of the connectedness of the
configuration space (Rd)N \ �� there is no simple boson-fermion correspondence
for functions vanishing on��, for any s > 0. Furthermore, if s−d/2 ∈ {0, 1, 2, . . .},
then the interaction operator Ws cannot be controlled by the kinetic operator∑

i (−�i )
s by means of the Hardy inequality (see [43,49]), which makes it dif-

ficult to compare Hs
d,N with Hs

0 (Rd N \ ��). It is an interesting open question to
determine the complete behavior of CBLT(0) in the general case 2s � d. We expect
CBLT(0) > 0 for 2s > d because in this case Hs

0 (Rd N \ ��) �= Hs(Rd N ) (by
Sobolev embedding), and a smooth vanishing condition for � on �� should imply
a non-trivial local exclusion principle. In the critical case 2s = d it may happen
that CBLT(0) = 0, as can be seen for d = 2, s = 1 using the ground state of a gas
of hard disks in a dilute limit [35].

On the other hand, in the limit λ → ∞ of strong interaction, we expect the
inter-particle distance to go to infinity, and hence the optimal constant should tend
to the one-body constant CGN of (43). It seems that proving this would require a
concentration-compactness method for many-body systems which is not available
to us at the moment. We also notice that in the physically most interesting case
d = 3 and s = 1, the conjectured optimal constant in the fermionic Lieb–Thirring
inequality (1) [33] is strictly smaller than CGN.

Proof of Proposition 10. We first note that λ �→ CBLT(λ) is the infimum of
monotone increasing affine functions (denoting T̂ := ∑N

i=1(−�i )
s)

λ �→ 〈�, T̂ �〉∫
Rd ρ

1+2s/d
�

+ λ
〈�, Ws�〉∫
Rd ρ

1+2s/d
�

,

and is hence monotone increasing and concave.
Proof of (i). From Remark 10 we obviously have

CBLT(λ) � Cd,s min{1, λ2s/d} > 0,

so it remains to prove that CBLT(λ) � CGN. Following [38, Theorem 19], we take
a sequence of trial states
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�N ,R(x) := 1√
N !

∑
σ∈SN

uσ(1)(x1) · · · uσ(N )(xN ) ∈ Hs
d,N ∩ L2

sym,

with

ui (x) := u R(x − Ryi ),

where u R ∈ C∞
0 (B(0, R/3)) is a minimizing sequence of L2-normalized functions

for (43) (s.t. both numerator and denominator remain finite), and yi are N disjoint
points inRd , with |yi − y j | > 1 for i �= j . Since the supports of the ui ’s are disjoint,
one readily computes that

CBLT(λ) ≤ N
〈
u R, (−�)su R

〉+ λC N 2R−2s

N
∫
Rd |u R |2(1+2s/d)

, (44)

and the right hand side of (44) converges to CGN in the limit R → ∞. Note that
we could also have taken �N ,R as an anti-symmetric state (a Slater determinant).
Proof of (ii).Wewill first show that for anyd � 0 and all s > 0, limλ→0 CBLT(λ) =
CBLT(0), with

CBLT(0) := inf
N�2

inf
�∈Hs

d,N‖�‖2=1

〈�, T̂ �〉∫
Rd ρ

1+2s/d
�

. (45)

To do so, we first pick a minimizing sequence (�Nk )k∈N for (45) (with each �Nk ∈
Hs

d,Nk
and normalized). Next, we have

0 � CBLT(λ) − CBLT(0) �

〈
�Nk , (T̂ + λWs)�Nk

〉
∫
Rd ρ

1+2s/d
�Nk

− CBLT(0)

= λ

〈
�Nk , Ws�Nk

〉
∫
Rd ρ

1+2s/d
�Nk

+ 〈�Nk , T̂ �Nk 〉∫
Rd ρ

1+2s/d
�Nk

− CBLT(0). (46)

Given any ε > 0, the last term of (46) is clearly less than ε for k ∈ N sufficiently
large, while the first term remains bounded. With such k fixed, we then choose
λ < ε(

∫
Rd ρ

1+2s/d
�Nk

)/
〈
�Nk , Ws�Nk

〉
, so that CBLT(λ) − CBLT(0) < 2ε.

In the case 2s < d we have CBLT(λ) ∼ λ2s/d as λ → 0, which can be seen by
taking a bosonic trial state � = u⊗N ∈ Hs

d,N and letting N ∼ λ−1. ��

3.6. A Note About Fermions and Weaker Exclusion

In this subsection we explain how to adapt our above proof of Theorem 1 to
show the fermionic inequality (9)〈

�,

N∑
i=1

(−�i )
s�

〉
� C

∫
Rd

ρ�(x)1+2s/d dx
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for all d � 1 and s > 0, where the wave function� satisfies the anti-symmetry (2).
In this case the kinetic energy not only contributes to a local uncertainty principle
as in Lemma 8, but also to a local exclusion principle of the following weaker form:

Lemma 11. (Local exclusion for fermions). For any d � 1, s > 0 there is a
constant C > 0 depending only on d and s such that for all N ∈ N, for every
L2-normalized function � ∈ Hs(Rd N ) satisfying the anti-symmetry (2), and for
an arbitrary collection of disjoint cubes Q’s in R

d ,〈
�,

N∑
i=1

(−�i )
s�

〉
�
∑

Q

C

|Q|2s/d

[∫
Q

ρ�(x) dx − q

]
+

, (47)

where q := #{multi-indices α : 0 � |α| < s}.
Proof. First, consider one-body functions u ∈ Hs(Q) where s = m + σ, m ∈
N, σ ∈ [0, 1). In the case that 0 < σ < 1, we have the fractional Poincaré
inequality (see, for example, [23, Lemma 2.2])

‖u‖2
Ḣ s (Q)

� C

|Q|2σ/d

∑
|α|=m

∥∥∥∥Dαu − 1

|Q|
∫

Q
Dαu

∥∥∥∥
2

L2(Q)

,

while for |α| = m we have (by iteration of Poincaré’s inequality)

‖Dαu‖2L2(Q)
� C

|Q|2m/d
‖u‖2L2(Q)

, if
∫

Q
Dβu = 0 for all 0 � |β| < m.

Note that
∫

Q Dαu = 〈1, Tαu〉 = 〈T ∗
α 1, u〉, where the operator u �→ Tα(u) :=

Dαu, |α| � m, is relatively bounded with respect to the form domain Hs(Q).
Hencewe can treat these orthogonality conditions by considering theq-dimensional
subspace Vs := span{T ∗

α 1 : 0 � |α| < s}. On Hs(Q) ∩ V⊥
s we then have

‖u‖2
Ḣ s (Q)

� C

|Q|2s/d
‖u‖2L2(Q)

,

and in general, by taking out the projection onto Vs ,

(−�)s |Hs (Q) � C

|Q|2s/d
(1 − PVs ).

Now we proceed as in Lemma 8, although because of the anti-symmetry of �,
the one-body functions un all have norm less than unity (again, see for example
[30]). We then obtain

〈
�,

N∑
i=1

(−�i )
s�

〉
�
∑
n�1

∑
Q

‖un‖2
Ḣ s (Q)

�
∑

Q

C

|Q|2s/d

⎡
⎣∑

n�1

‖un‖2L2(Q)
− q

⎤
⎦

+
,

which proves the lemma. ��
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We note that the Covering Lemma 9 can be also adapted to apply to the weaker
form of the exclusion principle. This could be useful not only for fermions but also
in situations when other types of interactions are present (cf. [17,36–38]).

Lemma 12. (Covering lemma with weaker exclusion). Let Q0 be a cube in R
d and

let 0 � f ∈ L1(Q0) satisfy
∫

Q0
f � � > 0. Then Q0 can be divided into disjoint

sub-cubes Q’s such that

• For all Q, ∫
Q

f < �.

• For all α > 0, q � 0 and integer k � 2,

∑
Q

1

|Q|α
([∫

Q
f − q

]
+

− b
∫

Q
f

)
� 0, (48)

where

b :=
(
1 − qkd

�

)
kdα − 1

kdα + kd − 2
.

• If k = 3, then the center of Q0 coincides with exactly one sub-cube Q, and the
distance from every other sub-cube Q to the center of Q0 is not smaller than
|Q|1/d/2.

Proof. We proceed with the same division procedure as in the proof of Lemma 9.
Instead of (39) we have

∑
Q∈Fi ,|Q|=mi

1

|Q|α
([∫

Q
f − q

]
+

− b
∫

Q
f

)
� 1

mα
i

(
(1 − b)� − qkd

)
, (49)

and instead of (40) we have

∑
Q∈Fi ,|Q|>mi

1

|Q|α
([∫

Q
f − q

]
+

− b
∫

Q
f

)

� −b�
∑

Q∈Fi ,|Q|>mi

1

|Q|α

� −b�
∑
j�1

kd − 1

(kd j mi )α
= −b�

mα
i

kd − 1

kdα − 1
. (50)

Hence,

∑
Q∈Fi

1

|Q|α
([∫

Q
f −q

]
+

− b
∫

Q
f

)
� 1

mα
i

(
� − qkd − b�

(
1 + kd − 1

kdα − 1

))
,

from which the lemma follows. ��



Fractional Hardy–Lieb–Thirring and Related Inequalities 1367

From the local uncertainty in Lemma 8, the local exclusion in Lemma 11 and
the Covering Lemma 12, one can prove the fermionic Lieb–Thirring inequality (9)
by proceeding similarly as in the proof of Theorem 1. The details are left to the
reader.

Remark 12. From Lemma 6 and the elementary inequality (a2 − a)+ � (a −
1)+, a � 0, we obtain the following analogue of (47) for pair-interactions:〈

�,
∑

1�i< j�N

1

|xi − x j |2s
�

〉
�
∑

Q

1

2ds |Q|2s/d

[∫
Q

ρ� − 1

]
+

(51)

for every normalized function � ∈ L2(Rd N ). In our proofs of the Lieb–Thirring
inequality (8) and the Hardy–Lieb–Thirring inequality (12) presented later, we can
certainly use (51) instead of (24) (we then obtain similar inequalities but with worse
constants).

4. Hardy–Lieb–Thirring Inequality

In this section we prove Theorem 2. We will need to strengthen the local uncer-
tainty principle in Section 3 to account for the Hardy term, and to do this we also
need a localization method for fractional kinetic energy.

4.1. Local Uncertainty for Centered Cubes

The following local uncertainty principle is crucial for our proof.

Lemma 13. (Local uncertainty for centered cubes). For every cube Q ⊂ R
d cen-

tered at 0, we have

‖u‖2
Ḣ s (Q)

− Cd,s

∫
Q

|u(x)|2
|x |2s

dx � 1

C

∫
Q |u|2(1+2s/d)( ∫

Q |u|2
)2s/d

− C

|Q|2s/d

∫
Q

|u|2 (52)

for a constant C > 0 depending only on d � 1 and s > 0.

Note that this local uncertainty principle is significantly stronger than the one
in Lemma 7 because the left side of (52) can even be negative. Our strategy is to
replace u by χu where χ is a smooth function supported in a neighborhood of the
origin, and then apply the Hardy inequality with remainder term for χu ∈ Hs(Rd).
To implement the localization procedure, we also need the following lemma which
controls the error terms.

Lemma 14. (A fractional IMS localization formula). Let � be a bounded open
domain in R

d with d � 1. Let χ, η : Rd → [0, 1] be two smooth functions such
that χ(x)2+η(x)2 ≡ 1 and χ is supported in a compact subset of �. Then for every
s > 0, there exists t ∈ [0, s) and a constant C > 0 such that for every u ∈ Hs(�),∣∣∣‖u‖2

Ḣ s (�)
− ‖χu‖2

Ḣ s (�)
− ‖ηu‖2

Ḣ s (�)

∣∣∣ � C
(
‖χu‖2Ht (�) + ‖ηu‖2Ht (�)

)
. (53)
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Remark 13. It will be clear from the proof of Lemma 14 (provided below) that if
s ∈ N then t = s − 1, and if s = m + σ with m ∈ {0, 1, 2, . . . } and 0 < σ < 1
then we can take t = s − ε for any 0 < ε < min{σ, 1 − σ }.

Note that such a localization bound is well known when 0 < s � 1. In the
simplest case s = 1, thanks to the IMS formula (cf. [7, Theorem 3.2])

|∇u|2 = |∇(χu)|2 + |∇(ηu)|2 − (|∇χ |2 + |∇η|2)|u|2,
we obtain the estimate (53) (with t = 0) immediately:∣∣∣‖u‖2

Ḣ1(�)
− ‖χu‖2

Ḣ1(�)
− ‖ηu‖2

Ḣ1(�)

∣∣∣ =
∫

�

(|∇χ |2 + |∇η|2)|u|2 � C
∫

�

|u|2.
When 0 < s < 1, the estimate∣∣∣‖u‖2

Ḣ s (�)
− ‖χu‖2

Ḣ s (�)
− ‖ηu‖2

Ḣ s (�)

∣∣∣ � C
∫

�

|u|2

follows from the representation (26)

‖u‖2
Ḣ s (�)

= cd,s

∫∫
�×�

|u(x) − u(y)|2
|x − y|d+2s

dxdy

and the elementary identity (which goes back to a suggestion of Michael Loss and
was used in [34])

|χ(x)u(x) − χ(y)u(y)|2 + |η(x)u(x) − η(y)u(y)|2 − |u(x) − u(y)|2
=
[
(χ(x) − χ(y))2 + (η(x) − η(y))2

]
�[u(x)u(y)]. (54)

However, the proof of (53) for s > 1 is rather involved and we defer it to the next
subsection. In the following, we will give a proof of Lemma 13 using Lemma 14.

Proof of Lemma 13. Since the inequality (52) that we wish to prove is dilation
invariant, we can assume without loss of generality that |Q| = 1. Let χ, η : Rd →
[0, 1] be two smooth functions such that χ2(x) + η2(x) ≡ 1, χ(x) ≡ 1 when
|x | � 1/4 and χ(x) ≡ 0 when |x | � 1/3. By using η2|u|2/|x |2s � 32sη2|u|2 and
Lemma 14 we obtain for some t ∈ [0, s)

‖u‖2
Ḣ s (Q)

− Cd,s

∫
Q

|u|2
|x |2s

dx � ‖χu‖2
Ḣ s (Q)

− Cd,s

∫
Q

|χu|2
|x |2s

dx

+ ‖ηu‖2
Ḣ s (Q)

− C1‖χu‖2Ht (Q) − C1‖ηu‖2Ht (Q)

(55)

for some constant C1 > 0 depending only on d, s, t (and χ ).
Since χ has compact support, χu can be considered as a function in Hs(Rd).

Therefore, by theGagliardo-Nirenberg type inequality (17) (there taking t = s/(1+
2s/d)),

1

2

(
‖χu‖2

Ḣ s (Rd )
− Cd,s

∫
Rd

|χu|2
|x |2s

dx

)
� 1

C

∫ |χu|2(1+2s/d)( ∫ |χu|2
)2s/d

. (56)

Moreover, by using the improved Hardy inequality (14) and the norm-equivalence
(30), we find
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(
‖χu‖2

Ḣ s (Rd )
− Cd,s

∫
Rd

|χu|2
|x |2s

dx

)t/s

‖χu‖2(1−t/s)
L2(Rd )

� 1

C
‖χu‖2

Ḣ t (Rd )
� 1

C
‖χu‖2Ht (Rd )

− C‖χu‖2L2(Rd )
,

which by Young’s inequality implies that

1

2

(
‖χu‖2

Ḣ s (Rd )
− Cd,s

∫
Rd

|χu|2
|x |2s

dx

)
� C1‖χu‖2Ht (Rd )

− C‖χu‖2L2(Rd )
, (57)

with C1 as in (55) and a (large) constant C > 0 depending only on d, s, t .
For the function ηu, by the local uncertainty in Lemma 7,

1

2
‖ηu‖2

Ḣ s (Q)
� 1

C

∫
Q |ηu|2(1+2s/d)( ∫

Q |ηu|2
)2s/d

− C‖ηu‖2L2(Q)
. (58)

By using the extension and interpolation arguments as in the proof of Lemma 7,
we obtain

‖ηu‖t/s
Hs (Q)‖ηu‖1−t/s

L2(Q)
� C‖ηu‖Ht (Q),

which, together with the norm-equivalence (30), gives the estimate

1

2
‖ηu‖2

Ḣ s (Q)
� C1‖ηu‖2Ht (Q) − C‖ηu‖2L2(Q)

(59)

for a (large) constant C > 0 depending only on d, s, t .
By summing inequalities (55)–(59), using

‖χu‖2L2(Q)
+ ‖ηu‖2L2(Q)

= ‖u‖2L2(Q)

and estimating the denominators, we arrive at

‖u‖2
Ḣ s (Q)

−Cd,s

∫
Q

|u|2
|x |2s

dx � 1

C

∫
Q

(
|χu|2(1+2s/d)+|ηu|2(1+2s/d)

)
( ∫

Q |u|2
)2s/d

−C‖u‖2L2(Q)

for a (large) constant C > 0 depending only on d, s. The final conclusion then
follows from the elementary inequality

χ2p + η2p � 2

(
χ2 + η2

2

)p

= 21−p, p = 1 + 2s

d
> 1.

��

4.2. Proof of the Fractional IMS Localization Formula

Proof of Lemma 14. Step 1.We start with the case s = m ∈ N. Recall that in our
conventions
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‖u‖2
Ḣm (�)

=
∑

|α|=m

m!
α!
∫

�

|Dαu|2.

Let us consider an arbitrary multi-index α with |α| = m. Using

Dα(χu) = χ Dαu +
∑
β<α

α!
β!(α − β)! Dα−βχ Dβu (60)

and a similar formula for Dα(ηu), we find that

|Dα(χu)|2 + |Dα(ηu)|2 = (χ2 + η2)|Dαu|2

+
∣∣∣∣∣∣
∑
β<α

α!
β!(α − β)! Dα−βχ Dβu

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑
β<α

α!
β!(α − β)! Dα−βηDβu

∣∣∣∣∣∣
2

+ 2�
∑
β<α

α!
β!(α − β)! (χ Dα−βχ + ηDα−βη)Dαu Dβu. (61)

Here, for two multi-indices α = (α1, . . . , αd) and β = (β1, . . . , βd), the notation
β < α means β � α, namely β j � α j for all 1 � j � d, and β �= α. The first
term of the right side of (61) is nothing but |Dαu|2 since χ2 + η2 = 1. The next
two terms can be bounded using the Cauchy–Schwarz inequality∣∣∣∣∣∣
∑
β<α

α!
β!(α − β)! Dα−βχ Dβu

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑
β<α

α!
β!(α − β)! Dα−βηDβu

∣∣∣∣∣∣
2

�C
∑
β<α

|Dβu|2.

Therefore, by integrating (61) and using the triangle inequality we get∣∣∣‖χu‖2
Ḣm (�)

+ ‖ηu‖2
Ḣm (�)

− ‖u‖2
Ḣm (�)

∣∣∣ � C‖u‖2Hm−1(�)

+ 2
∑

|α|=m

∑
β<α

α!
β!(α − β)!

∣∣∣∣
∫∫

�×�

(χ Dα−βχ + ηDα−βη)Dαu Dβu

∣∣∣∣ . (62)

Now we estimate the last term of (62). For every α with |α| = m, we can find
0 � α′ < α and 1 � j � d such that Dα = ∂ j Dα′

. Note that χ Dα−βχ +ηDα−βη

has support in a compact subset of �, so by using integration by parts with respect
to the j-th coordinate we find that∫

�

(χ Dα−βχ + ηDα−βη)Dαu Dβu

= −
∫

�

Dα′
u∂ j

(
(χ Dα−βχ + ηDα−βη)Dβu

)
= −

∫
�

Dα′
u
(
∂ j (χ Dα−βχ + ηDα−βη)Dβu+(χ Dα−βχ+ηDα−βη)∂ j Dβu

)
.

Therefore, when |β| � m − 2, by the Cauchy–Schwarz inequality we can estimate∣∣∣∣
∫

�

(χ Dα−βχ + ηDα−βη)Dαu Dβu

∣∣∣∣ � C‖u‖2Hm−1(�)
.



Fractional Hardy–Lieb–Thirring and Related Inequalities 1371

On the other hand, if β < α and |β| = m − 1 = |α| − 1, then Dα−β = ∂k for some
1 � k � d, and hence

χ Dα−βχ + ηDα−βη = 1

2
∂k

(
χ2 + η2

)
= 0.

Summarizing, (62) can be simplified to∣∣∣‖χu‖2
Ḣm (�)

+ ‖ηu‖2
Ḣm (�)

− ‖u‖2
Ḣm (�)

∣∣∣ � C‖u‖2Hm−1(�)
. (63)

Since ‖u‖2
Hm−1(�)

� ∑
0�n�m−1 ‖u‖2

Ḣn(�)
, we can continue estimating the right

side of (63) by induction and finally arrive at∣∣∣‖χu‖2
Ḣm (�)

+ ‖ηu‖2
Ḣm (�)

− ‖u‖2
Ḣm (�)

∣∣∣ � C
(
‖χu‖2Hm−1(�)

+ ‖ηu‖2Hm−1(�)

)
.

This ends the proof when s = m ∈ N.
Step 2. Now we consider the case when s = m + σ with m ∈ N and 0 < σ < 1.
Let us start by considering

‖χu‖2
Ḣ s (�)

= cd,σ

∑
|α|=m

m!
α!
∫∫

�×�

|Dα(χu)(x) − Dα(χu)(y)|2
|x − y|d+2σ dxdy.

We will always denote by α an arbitrary multi-index with |α| = m. Using (60) and
the identity |a + b|2 = |a|2 + 2�((a + b)b) − |b|2 (with complex numbers a and
b), we have

|Dα(χu)(x) − Dα(χu)(y)|2

=
∣∣∣χ(x)Dαu(x) − χ(y)Dαu(y)

+
∑
β<α

α!
β!(α − β)!

(
Dα−βχ(x)Dβu(x) − Dα−βχ(y)Dβu(y)

) ∣∣∣2
= |χ(x)Dαu(x) − χ(y)Dαu(y)|2

−
∣∣∣∑
β<α

α!
β!(α − β)!

(
Dα−βχ(x)Dβu(x) − Dα−βχ(y)Dβu(y)

) ∣∣∣2

+ 2�
∑
β<α

α!
β!(α − β)!

(
Dα(χu)(x) − Dα(χu)(y)

)
×

×
(

Dα−βχ(x)Dβu(x) − Dα−βχ(y)Dβu(y)
)
. (64)

Now we estimate the right side of (64) with the help of the Cauchy–Schwarz
inequality. We have∣∣Dα−βχ(x)Dβu(x) − Dα−βχ(y)Dβu(y)

∣∣2
= ∣∣Dα−βχ(x)(Dβu(x) − Dβu(y)) + (Dα−βχ(x) − Dα−βχ(y))Dβu(y)

∣∣2
≤ 2|Dα−βχ(x)|2|Dβu(x) − Dβu(y)|2
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+ 2|Dα−βχ(x) − Dα−βχ(y)|2|Dβu(y)|2

≤ C
(
|Dβu(x) − Dβu(y)|2 + |x − y|2|Dβu(y)|2

)
for the second term and∣∣∣2(Dα(χu)(x) − Dα(χu)(y)

)(
Dα−βχ(x)Dβu(x) − Dα−βχ(y)Dβu(y)

)∣∣∣
≤ |x − y|2ε|Dα(χu)(x) − Dα(χu)(y)|2

+ |x − y|−2ε
∣∣Dα−βχ(x)Dβu(x) − Dα−βχ(y)Dβu(y)

∣∣2
≤ |x − y|2ε|Dα(χu)(x) − Dα(χu)(y)|2

+ C |x − y|−2ε
(
|Dβu(x) − Dβu(y)|2 + |x − y|2|Dβu(y)|2

)
for the third term. Here we are choosing 0 < ε < min{σ, 1 − σ }. When inserting
these estimates into (64) we find∣∣∣|Dα(χu)(x) − Dα(χu)(y)|2 − |χ(x)Dαu(x) − χ(y)Dαu(y)|2

∣∣∣
� C |x − y|2ε|Dα(χu)(x) − Dα(χu)(y)|2

+ C
∑
β<α

(1 + |x − y|−2ε)
(
|Dβu(x) − Dβu(y)|2 + |x − y|2|Dβu(y)|2

)
.

Integrating second part of the above inequality against the weight |x − y|−(d+2σ)

leads to∫∫
�×�

∣∣|Dα(χu)(x) − Dα(χu)(y)|2 − |χ(x)Dαu(x) − χ(y)Dαu(y)|2∣∣
|x − y|d+2σ dxdy

≤
∫∫

�×�

|Dα(χu)(x) − Dα(χu)(y)|2
|x − y|d+2(σ−ε)

dxdy

+ C
∑
β<α

∫∫
�×�

(1 + |x − y|−2ε)
(|Dβu(x) − Dβu(y)|2 + |x − y|2|Dβu(y)|2)

|x − y|d+2σ dxdy

≤ C‖Dα(χu)‖2
Ḣσ−ε(�)

+ C‖u‖2Hm (�),

where we also estimated difference quotients involving Dβu in terms of Dα′
u, |α′|

= m. Combining the above with a similar inequality for Dα(ηu), we find that

∫∫
�×�

∣∣|Dα(χu)(x) − Dα(χu)(y)|2 − |χ(x)Dαu(x) − χ(y)Dαu(y)|2∣∣
|x − y|d+2σ dxdy

+
∫∫

�×�

∣∣|Dα(ηu)(x)−Dα(ηu)(y)|2 − |η(x)Dαu(x) − η(y)Dαu(y)|2∣∣
|x − y|d+2σ dxdy

≤ C‖Dα(χu)‖2
Ḣσ−ε(�)

+ C‖Dα(ηu)‖2
Ḣσ−ε(�)

+ C‖u‖2Hm (�). (65)
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On the other hand, note that as in (54),∣∣∣|χ(x)Dαu(x) − χ(y)Dαu(y)|2 + |η(x)Dαu(x) − η(y)Dαu(y)|2

− |Dαu(x) − Dαu(y)|2
∣∣∣

=
∣∣∣((χ(x) − χ(y))2 + (η(x) − η(y))2

)
�Dαu(x)Dαu(y)

∣∣∣
≤ C |x − y|2

(
|Dαu(x)|2 + |Dαu(y)|2

)
.

Integrating the latter inequality against the weight |x − y|−(d+2σ) we get∣∣∣∣
∫∫

�×�

|χ(x)Dαu(x)−χ(y)Dαu(y)|2+|η(x)Dαu(x) − η(y)Dαu(y)|2
|x − y|d+2σ dxdy

−
∫∫

�×�

|Dαu(x) − Dαu(y)|2
|x − y|d+2σ dxdy

∣∣∣∣ � C
∫

�

|Dαu|2. (66)

From (65) to (66) and the triangle inequality, it follows that∣∣∣∣
∫∫

�×�

|Dα(χu)(x) − Dα(χu)(y)|2 + |Dα(ηu)(x) − Dα(ηu)(y)|2
|x − y|d+2σ dxdy

−
∫∫

�×�

|Dαu(x) − Dαu(y)|2
|x − y|d+2σ dxdy

∣∣∣∣
≤ C‖Dα(χu)‖2

Ḣσ−ε(�)
+ C‖Dα(ηu)‖2

Ḣσ−ε(�)
+ C‖u‖2Hm (�)

for all |α| = m. By taking the sum over all α’s with |α| = m, we get∣∣∣‖χu‖2
Ḣ s (�)

+ ‖ηu‖2
Ḣ s (�)

− ‖u‖2
Ḣ s (�)

∣∣∣
� C

(
‖χu‖2

Ḣ s−ε(�)
+ ‖ηu‖2

Ḣ s−ε(�)
+ ‖u‖2Hm (�)

)
.

Combining this with the estimate

‖u‖2Hm (�) � C(‖χu‖2Hm (�) + ‖ηu‖2Hm (�)),

which follows from the integer case in Step 1, we can conclude that∣∣∣‖χu‖2
Ḣ s (�)

+ ‖ηu‖2
Ḣ s (�)

− ‖u‖2
Ḣ s (�)

∣∣∣ ≤ C
(
‖χu‖2

Ḣ s−ε(�)
+ ‖ηu‖2

Ḣ s−ε(�)

)
.

This is the desired inequality. ��

4.3. Proof of the Hardy–Lieb–Thirring Inequality

Proof of Theorem 2. By a standard approximation argument we can assume that
ρ� is supported in a finite cube Q0 ⊂ R

d which centers at 0. Let an arbitrary
0 < � � N . By Lemma 9 with f = ρ�, k = 3 and α = 2s/d, there exists a
division of Q0 into disjoint sub-cubes Q’s such that

∫
Q ρ� � � and
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∑
Q

1

|Q|α
[(∫

Q
f

)2

− �

b

∫
Q

f

]
� 0, (67)

with

b := 3d

2

⎛
⎝1 +

√
1 + 1 − 3−d

3dα − 1

⎞
⎠ .

Moreover, for every sub-cube Q we have either that Q centers at 0 or that
inf x∈Q |x | � |Q|1/d/2.

Now we claim that there exists a constant C1 > 0 depending only on d � 1
and s > 0 such that for every sub-cube Q and for every function u ∈ Hs(Q) we
have the uncertainty relation

‖u‖Ḣ s (Q) − Cd,s

∫
Q

|u(x)|2
|x |2s

dx � 1

C1

∫
Q |u|2(1+2s/d)( ∫

Q |u|2
)2s/d

− C1

|Q|2s/d

∫
Q

|u|2. (68)

In fact, if Q centers at 0, then (68) is covered by Lemma 13. On the other hand, if
0 /∈ Q, then using |x | � |Q|1/d/2 we have∫

Q

|u|2
|x |2s

dx � 22s

|Q|2s/d

∫
Q

|u(x)|2dx

and (68) is covered by Lemma 7. Using (68) and arguing in exactly the same way
as in the proof of Lemma 8, we obtain the many-body estimate

〈
�,

N∑
i=1

(
(−�i )

s −Cd,s |x |−2s
)
�

〉
�
∑

Q

⎡
⎢⎣ 1

C1

∫
Q ρ

1+2s/d
�( ∫

Q ρ�

)2s/d
− C1

|Q|2s/d

∫
Q

ρ�

⎤
⎥⎦

� 1

C1�2s/d

∫
Rd

ρ
1+2s/d
� −

∑
Q

C1

|Q|2s/d

∫
Q

ρ�.

(69)

Here in the last inequality of (69) we have used the bound
∫

Q ρ� � � for all Q.
Combining (69), Lemma 6 and (67), we find that〈

�,

⎛
⎝ N∑

i=1

(
(−�i )

s − Cd,s |x |−2s
)

+
∑

1�i< j�N

1

|xi − x j |2s

⎞
⎠�

〉

� 1

C1�2s/d

∫
Rd

ρ
1+2s/d
� +

∑
Q

1

2ds |Q|2s

((∫
Q

ρ�

)2 − (2dsC1 + 1)
∫

Q
ρ�

)

� 1

C1�2s/d

∫
Rd

ρ
1+2s/d
� +

(
�

b
− 2dsC1 − 1

)∑
Q

1

2ds |Q|2s

∫
Q

ρ� (70)

for all 0 < � � N .
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On the other hand, using the interpolation inequality (17) with

q = 2d

d − 2t
= 2

(
1 + 2s

d

)
, that is t = ds

d + 2s
,

and the same argument of the proof of Lemma 8, we obtain the following strength-
ened version of (37):〈

�,

N∑
i=1

(
(−�i )

s − Cd,s |x |2s
)
�

〉
� C N−2s/d

∫
Rd

ρ
1+2s/d
� , (71)

for a constant C > 0 depending only on d and s.
Finally, using (70) with � = (2dsC1 + 1)b =: �0 if N > �0, and using (71)

if N � �0, we find the desired inequality. ��
Remark 14. Also in this case it is possible to add a coupling parameter λ > 0 as in
(10), and a straightforward adaptation of (70) yields for the corresponding constant
C(λ) ∼ min{1, λ2s/d}.

5. Interpolation Inequalities

5.1. Equivalence for the Lieb–Thirring Inequality

In this subsection, we provide a proof of Theorem 3, that is the equivalence
of the Lieb-Thirring inequality (8) and the one-body interpolation inequality (21).
The implication of (21) from (8) was already explained in Section 2.3 and it holds
for all 0 < s < d/2. In the following, we show that the interpolation inequality
(21) implies the Lieb–Thirring inequality (8) when 0 < s < d/2 and s � 1.

We will use the Hoffmann–Ostenhof and Lieb–Oxford inequalities, which
reduce the kinetic and interaction energies of a many-body state to those of its
density.

Lemma 15. (Hoffmann–Ostenhof inequality). For every 0 < s � 1 and every
normalized function � ∈ L2((Rd)N ), one has〈

�,

N∑
i=1

(−�i )
s�

〉
� 〈√ρ�, (−�)s√ρ�〉. (72)

The non-relativistic case s = 1 of (72) was first discovered by M. & T.
Hoffman-Ostenhof [22]. In fact, (72) is equivalent to the one-body inequality
〈u, (−�)su〉 � 〈|u|, (−�)s |u|〉 [cf. the diamagnetic inequality (11)] and it is false
when s > 1. See for example [30, Lemma 8.4] for a proof of (72) and further
discussions.

Lemma 16. (Lieb–Oxford inequality for homogeneous potentials). For every 0 <

γ < d and for every normalized function � ∈ L2((Rd)N ), one has
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〈
�,

∑
1�i< j�N

1

|xi − x j |γ �

〉
� 1

2

∫∫
ρ�(x)ρ�(y)

|x − y|γ dxdy − CLO

∫
ρ
1+γ /d
�

(73)

for a constant CLO > 0 depending only on d and γ .

The case γ = 1 and d = 3 of (73) was first studied in [27,29]. The case γ = 1
and d = 2 was proved in [31, Lemma 5.3]. A proof of Lemma 16 following the
strategy in [31] is provided in Appendix A.

We are now in a position to complete the proof of equivalence.

Proof of Theorem 3. Weprove that (21) implies (8)when 0 < s < d/2 and s � 1.
By the Hoffmann–Ostenhof inequality (72) and the Lieb–Oxford inequality (73),
one has

〈
�,

⎛
⎝ N∑

i=1

(−�i )
s +

∑
1�i< j�N

1

|xi − x j |2s

⎞
⎠�

〉

� 〈√ρ�, (−�)s√ρ�〉 + ε

2

∫∫
Rd×Rd

ρ�(x)ρ�(y)

|x − y|2s
dxdy − εCLO

∫
Rd

ρ
1+2s/d
�

for every ε ∈ (0, 1]. On the other hand, by using Young’s inequality and the
interpolation inequality (21) with u = √

ρ� , we obtain

(
1 − 2s

d

)
〈√ρ�, (−�)s√ρ�〉 + ε

2s

d

∫∫
Rd×Rd

ρ�(x)ρ�(y)

|x − y|2s
dxdy

� ε2s/d〈√ρ�, (−�)s√ρ�〉1−2s/d
(∫∫

Rd×Rd

ρ�(x)ρ�(y)

|x − y|2s
dxdy

)2s/d

� Cε2s/d
∫

ρ
1+2s/d
�

for a constant C > 0 depending only on d and s. Thus

〈
�,

⎛
⎝ N∑

i=1

(−�i )
s +

∑
1�i< j�N

1

|xi − x j |2s

⎞
⎠�

〉
�
(

Cε2s/d − CLOε
) ∫

ρ
1+2s/d
�

for all ε ∈ (0, 1]. As 2s/d < 1, we can choose ε > 0 small enough such that

Cε2s/d − CLOε > 0.

Then the Lieb–Thirring inequality (8) follows. ��
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5.2. Isoperimetric Inequality with Non-Local Term

In the following we show how to use our local approach to Lieb–Thirring
inequalities to prove the one-body interpolation inequality in Theorem 5.

Proof of Theorem 5. By a standard approximation argument, we can assume that
u is supported in a finite cube Q0 ⊂ R

d . Let f (x) := |u(x)|2s . For an arbitrary
0 < � �

∫
Rd f , we divide Q0 into disjoint sub-cubes Q’s by applying Covering

Lemma 9with k = 2 and α = 2s/d. Thus we have
∫

Q f � � for all cubes Q’s and

∑
Q

1

|Q|α
[(∫

Q
f

)2

− �

a

∫
Q

f

]
� 0, a := 2d

2

⎛
⎝1 +

√
1 + 1 − 2−d

22s − 1

⎞
⎠ .

(74)

Similarly to the proof of Lemma 6, by ignoring the interaction energy between
different cubes and using |x − y| �

√
d|Q|1/d for x, y ∈ Q, we have∫∫

Rd×Rd

f (x) f (y)

|x − y|2s
�
∑

Q

∫∫
Q×Q

f (x) f (y)

|x − y|2s
�
∑

Q

1

ds |Q|2s/d

(∫
Q

f

)2

.

(75)

On the other hand, by the Sobolev inequality (recall that 1 � 2s < d)

‖u‖W 1,2s (Q) � C‖u‖Lq (Q), q = 2sd

d − 2s
> 2s, (76)

we have

‖u‖2s
W 1,2s (Q)

� C‖ f ‖
L

d
d−2s (Q)

� C

∫
Q f 1+2s/d(∫

Q f
)2s/d

.

Hence,∫
Rd

|∇u|2s +
∑

Q

1

|Q|2s/d

∫
Q

|u|2s =
∑

Q

(∫
Q

|∇u|2s + 1

|Q|2s/d

∫
Q

|u|2s
)

�
∑

Q

21−2s‖u‖2s
W 1,2s (Q)

� C
∑

Q

∫
Q |u|2s(1+2s/d)(∫

Q f
)2s/d

,

and, combining with (75) and (74),∫
Rd

|∇u|2sdx +
∫∫

Rd×Rd

|u(x)|2s |u(y)|2s

|x − y|2s
dxdy

� C1

�2s/d

∫
Rd

|u|2s(1+2s/d) +
∑

Q

1

|Q|2s/d

(
1

ds

(∫
Q

f

)2

−
∫

Q
f

)

� C1

�2s/d

∫
Rd

|u|2s(1+2s/d) +
(

�

dsa
− 1

)∑
Q

1

|Q|2s/d

∫
Q

f.
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Thus, if
∫
Rd f � dsa, then we can simply choose � = dsa and conclude that

∫
Rd

|∇u|2s +
∫∫

Rd×Rd

|u(x)|2s |u(y)|2s

|x − y|2s
dxdy � C1

(dsa)2s/d

∫
Rd

|u|2s(1+2s/d).

On the other hand, if
∫
Rd f � dsa, then using Sobolev’s inequality

‖∇u‖L2s (Rd ) � C2‖u‖L2sd/(d−2s)(Rd ), ∀u ∈ W 1,2s(Rd) (77)

and with Hölder’s inequality we have

∫
Rd

|∇u|2s �C2‖ f ‖Ld/(d−2s)(Rd ) �C2

∫
Rd f 1+2s/d( ∫
Rd f

)2s/d
� C2

(dsa)2s/d

∫
Rd

|u|2s(1+2s/d).

In summary, it always holds that

∫
Rd

|∇u|2sdx+
∫∫

Rd×Rd

|u(x)|2s |u(y)|2s

|x − y|2s
dxdy � min{C1, C2}

(dsa)2s/d

∫
Rd

|u|2s(1+2s/d).

(78)

By proceeding as for the Lieb–Thirring inequality in Section 2.3, that is rescal-
ing u �→ μu and optimizing over μ > 0, we obtain the interpolation inequality
(23). ��
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Appendix A. Lieb–Oxford Inequality for Homogeneous Potentials

In this appendix we prove Lemma 16. Note that the argument in the original papers
[27,29] uses Newton’s theorem and hence only works with the standard Coulomb
interaction. The following proof is based on the strategy of Lieb, Solovej and
Yngvason [31, Lemma 5.3].

Proof of Lemma 16. We start with the Fefferman–de la Llave representation

1

|x − y|γ = cd,γ

∫ ∞

0

∫
Rd

1BR (x − u)1BR (y − u)du
dR

Rd+γ+1 ,
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where BR = B(0, R) is the closed ball inRd and cd,γ is a constant depending only
on d and γ (see [12] for Coulomb potential, [28, Theorem 9.8] for homogeneous
potentials and [20, Theorem 1] for more general cases). Consequently,∫∫

Rd×Rd

ρ�(x)ρ�(y)

|x − y|γ dxdy =
∫ ∞

0

∫
Rd

fR(u)2du
dR

Rd+γ+1 , (79)

where

fR := ρ� ∗ 1BR

and 〈
�,

∑
1�i< j�n

1

|xi − x j |γ �

〉
= cd,γ

∫ ∞

0

∫
Rd

gR(u)du
dR

Rd+γ+1 (80)

where

gR(u) :=
〈
�,

∑
1�i< j�N

1BR (xi − u)1BR (x j − u)�

〉
.

Using the Cauchy–Schwarz inequality we find that

gR(u) = 1

2

〈
�,
( N∑

i=1

1BR (xi − u)
)2

�

〉
− 1

2

〈
�,

N∑
i=1

1BR (xi − u)�

〉

� 1

2

〈
�,

N∑
i=1

1BR (xi − u)�

〉2
− 1

2

〈
�,

N∑
i=1

1BR (xi − u)�

〉

= 1

2
f 2R(u) − 1

2
fR(u).

Combining with the obvious inequality gR(u) � 0 we get

gR(u) � 1

2
f 2R(u) − 1

2
min{ fR(u), f 2R(u)}.

Inserting the latter inequality into (80) and using (79), we conclude that〈
�,

∑
1�i< j�n

1

|xi − x j |γ �

〉
� 1

2

∫∫
Rd×Rd

ρ�(x)ρ�(y)

|x − y|2 dxdy (81)

− cd,γ

2

∫ ∞

0

∫
Rd

min{ fR(u), f 2R(u)}du
dR

Rd+γ+1 .

To estimate the second term of the right side, we introduce the Hardy–Littlewood
maximal function of ρ� :

ρ∗(u) := sup
R>0

1

|B(0, R)|
∫

|x−u|�R
ρ�(x)dx = |B1|−1 sup

R>0

fR(u)

Rd
.
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Using fR(u) � |B1|Rdρ∗(u), we find that∫ ∞

0
min{ f 2R(u), fR(u)} dR

Rd+γ+1 �
∫ R∗

0
f 2R(u)

dR

Rd+γ+1 +
∫ ∞

R∗
fR(u)

dR

Rd+γ+1

�
∫ R∗

0

(
|B1|Rdρ∗(u)

)2 dR

Rd+γ+1 +
∫ ∞

R∗
|B1|Rdρ∗(u)

dR

Rd+γ+1

= |B1|2
d − γ

Rd−γ∗ (ρ∗(u))2 + |B1|
γ

R−γ∗ ρ∗(u)

for all u ∈ R
d and for all R∗ > 0. Choosing R∗ = (|B1|ρ∗(u))−1/d , we get∫ ∞

0
min{ f 2R(u), fR(u)} dR

Rd+γ+1 � d

γ (d − γ )
|B1|1+γ /d(ρ∗(u))1+γ /d

for all u ∈ R
d . Finally, by the maximal inequality (see, for example [45, p.58])∫

Rd
(ρ∗(u))1+γ /ddu � Md,γ

∫
Rd

ρ�(u)1+γ /ddu,

where Md,γ is a constant depending only on d and γ , we conclude from (81) that〈
�,

∑
1�i< j�n

1

|xi − x j |γ �

〉

� 1

2

∫∫
Rd×Rd

ρ�(x)ρ�(y)

|x − y|γ dxdy − dcd,γ Md,γ

2γ (d − γ )
|B1|1+γ /d

∫
Rd

ρ
1+γ /d
� .

This is the desired inequality. ��
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