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Abstract

We investigate isoperimetric upper bounds for sums of consecutive Steklov
eigenvalues of planar domains. The normalization involves the perimeter and scale-
invariant geometric factors whichmeasure deviation of the domain from roundness.
We prove sharp upper bounds for both starlike and simply connected domains for
a large collection of spectral functionals including partial sums of the zeta function
and heat trace. The proofs rely on a special class of quasiconformal mappings.

1. Introduction and Results

Steklov eigenvalues of planar domains describe the frequencies of vibration
of a membrane with mass concentrated at the boundary. Mathematically, we let
Ω ⊂ R

2 be a bounded planar domain with Lipschitz boundary Σ = ∂Ω . The
Steklov eigenvalue problem is to determine the real numbers σ for which a nonzero
harmonic function exists having a normal derivative equal to σ times the value on
the boundary: {

Δu = 0 in Ω,
∂u
∂n = σqu on Σ,

where q ∈ L∞(Σ) is a positive weight function. The spectrum is discrete [2] and
is given by a sequence of eigenvalues

0 = σ0 < σ1 � σ2 � · · · ↗ ∞
that grows asymptotically like σ j ∼ jπ/

∫
Σ
q ds if Σ and q are smooth. The

corresponding eigenfunctions form an orthonormal basis of L2(Σ). For these basic
properties of the Steklov spectrum see the recent survey [17] and the references
therein. When we want to emphasize the dependence of the eigenvalue on the
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domain and the weight, we will write σ j (Ω, q). In the unweighted case (q ≡ 1),
we write simply σ j (Ω). Readers are encouraged to assume q ≡ 1 for simplicity,
since that case already contains the essential ideas.

The Steklov spectrum can rarely be computed explicitly. Even for the square
the spectrum was completely determined only recently [17]. This lack of examples
makes it especially interesting to obtain good estimates on Steklov eigenvalues, as
we will do in this paper.We study sums of consecutive Steklov eigenvalues, asking:

how large can the sum σ1 + · · · + σ j be?

Eigenvalue sum inequalities generate zeta function and heat trace inequalities via
majorization—see Corollary 1 below and its proof. In general, the sum of the
first j eigenvalues represents the energy for filling the lowest j quantum states
when at most one particle can occupy each state (the Pauli exclusion principle).
Motivated by this physical interpretation, and in an attempt to prove a summed
version of the Pólya conjecture, the eigenvalue sums of the Laplacian have been
studied extensively throughBerezin–Li–Yau inequalities [19,35], giving results that
are asymptotically sharp as j → ∞. In a different direction, geometrically sharp
inequalities for Laplace eigenvalue sums (with fixed index j) were developed on
starlike domains by the second and third authors [32,33]. The biLaplacian was
treated too [41].

We discover significantly stronger results for the Steklov case. Indeed, we will
handle not just starlike domains but the more general class of simply connected
domains. The key new idea in the paper is the introduction of quasiconformal
mappings to obtain sharp eigenvalue estimates. Specifically, we transplant trial
functions from the disk to a simply connected domain through a quasiconformal
mappingwhose complex dilatation depends only on the angular variable. In the past,
conformal mappings were used for this purpose: by Pólya–Schiffer [39], Pólya–
Szegö [40] andLaugesen–Morpurgo [31] for the Laplacian; andDittmar [7–9],
Hersch–Payne [23], Weinstock [44] for the Steklov problem. Quasiconformal
maps give considerably more flexibility.

Further, the “angular uniformization” step in our method enables us to work
with sums of eigenvalues rather than sums of reciprocals as earlier authors did; this
improvement yields heat trace inequalities and more (see Corollary 2). We obtain
smaller (hence better) constants in the Steklov situation than the original Laplacian
case would predict, due to our use of an optimal stretch of the disk: the map r 	→ r t

in Section 4. Consequently one reduces from an arithmetic mean of two constants
to a geometric mean, for example from (1 + γ 2)/2 to γ in Corollary 2 below.

Historically, Steklov introduced the eigenvalue problem in 1902 [42]. It can be
interpreted also in terms of sloshing of a liquid [29,37]. In the unweighted case,
the Steklov spectrum coincides with that of the Dirichlet-to-Neumann operator
f 	→ ∂n(H f ), where H f is the unique harmonic extension of f from ∂Ω into
the interior of Ω . This Dirichlet-to-Neumann operator arises in numerous inverse
problems [43].
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Spectrum of the Disk

The unweighted Steklov spectrum (q ≡ 1) of the unit disk D is well known to
be 0, 1, 1, 2, 2, 3, 3, . . .. That is,

σ j (D) =
⌈
j

2

⌉
, j � 0. (1)

Each positive eigenvalue σ = k has multiplicity 2, with eigenfunctions

u = rk cos(kθ), u = rk sin(kθ), (2)

that are harmonic on the disk and satisfy ∂u
∂r = ku on the unit circle.

Quasiconformal Mappings of the Disk, and the Main Result

Recall the Wirtinger derivatives

∂ f = 1

2
( fx − i fy), ∂ f = 1

2
( fx + i fy).

A homeomorphism f of the unit diskD onto a planar domain Ω is quasiconformal
if f is absolutely continuous on lines and

∂ f = μ∂ f almost everywhere in D

for some μ ∈ L∞(D) with ‖μ‖L∞(D) < 1. Recall that ∂ f = μ∂ f is known as the
Beltrami equation, and μ is called the complex dilatation. For more information
on quasiconformal mappings, see the book of Lehto and Virtanen [34, Chapter
IV].

A simplifying assumption in this paper is that:

the complex dilatationμ depends only on the angular variable θ.

This assumption fails in general, but it does hold for conformal mappings, where
μ ≡ 0, and for certain starlike mappings (see Example 2). Under this angular
assumption we define

a0(θ) = |e2iθ − μ(eiθ )|2
1 − |μ(eiθ )|2 , a1(θ) = |e2iθ + μ(eiθ )|2

1 − |μ(eiθ )|2 . (3)

Then let

g0 = 1

2π

∫ 2π

0
a0(θ) dθ, g1 =

1
2π

∫ 2π
0 a1(θ)p(θ)2 dθ(
1
2π

∫ 2π
0 p(θ) dθ

)2 , (4)

where the weight function

p(θ) = q( f (eiθ ))|∂θ f (e
iθ )|
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on the unit circle has been defined by requiring it to push forward under f to the
weight q on Σ . (We assume f : ∂D → ∂Ω is absolutely continuous, so that the
last formula makes sense almost everywhere) Assuming p ∈ L2[0, 2π ], we have
g1 < ∞. Clearly p has total mass∫ 2π

0
p dθ =

∫
Σ

q ds = L(Σ, q),

which is the q-weighted length of the boundary Σ .

Lemma 1. Under the assumptions above, one has g0g1 � 1.
Equality statement: assuming theBeltrami equationholds also on the unit circle,

one has that g0g1 = 1 if and only if e−2iθμ ∈ (−1, 1) and |∂r f |(q ◦ f ) = constant
almost everywhere on the unit circle.

The lemma is proved in Section 4.
For example, if f is conformal on the closed disk then μ ≡ 0 and |∂r f | =

| f ′| = |∂θ f | on the unit circle, so that the equality condition reduces to saying that
q is the conformal pushforward of a constant weight.

Denote the geometric mean of the quantities g0 and g1 by

g = √
g0g1 � 1, (5)

where g � 1 by Lemma 1. Notice g depends on both the mapping f and weight
q. Write R+ = (0,∞) for the positive half-axis. Now we come to the main result,
proved in Section 4.

Theorem 1. (Estimating the Steklov eigenvalues) Assume f : D → Ω is a quasi-
conformal mapping from the disk to a bounded planar domain, and that f extends
to a homeomorphism of the closures with f : ∂D → ∂Ω being absolutely contin-
uous. Suppose the complex dilatation μ depends only on the angular variable θ ,
that q ∈ L∞(Σ) is a positive weight function on Σ , and that p ∈ L2[0, 2π ].

Then for each n ∈ N and every concave increasing function C : R+ → R,

n∑
j=1

C
(
σ j (Ω, q)L(Σ, q)

)
�

n∑
j=1

C

(
2πg

⌈
j

2

⌉)

with equality if Ω is a disk, q ≡ const. and f is a complex linear map of D onto
Ω .

Equality statement for the first nonzero eigenvalue: if σ1(Ω, q)L(Σ, q) = 2πg
then (Ω, q) is conformally equivalent to (D, pc) for some constant weight function
pc, and equality holds in Lemma 1. If also q ≡ 1, then Ω is a disk.

For the first eigenvalue, an old result of Weinstock [44] says

σ1(Ω, q)L(Σ, q) � 2π, (6)

which is stronger than Theorem 1 for n = 1 since Weinstock does not need the fac-
tor g � 1. The theorem is new for n � 2. In Section 2 we will compare with results
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in the literature, especially the work of Hersch–Payne–Schiffer [24]. Note the
sufficient condition for equality in the theorem can be improved using conformal in-
variance of harmonic functions—see the sufficient condition for Corollary 2 below.

Special choices of the concave function C in the preceding theorem yield:

Corollary 1. Each of the following spectral quantities on Ω with weight q attains
its maximum when Ω is a disk and q is constant:

(σ s
1 + · · · + σ s

n )1/s L/g, n
√

σ1 · · · σn L/g,

where 0 < s � 1. Further, for s < 0 < t the quantities

n∑
j=1

(σ j L/g)s and
n∑
j=1

exp(−tσ j L/g)

are minimal when Ω is a disk and q is constant.

The last two quantities are partial sums of the spectral zeta function and heat trace,
respectively, where we have normalized the eigenvalues with L/g.

Simply Connected Domains and Conformal Mapping

Assume Ω is a simply connected, bounded planar domain with piecewise
smooth boundary. The Riemann mapping theorem provides a conformal diffeo-
morphism

f : D → Ω.

Because the boundary ∂Ω is piecewise smooth, the map f extends to a homeo-
morphism of D onto Ω with f : ∂D → ∂Ω being smooth except at finitely many
points. Then |∂θ f | = | f ′| on the unit circle, and so the boundary densities are
related by

p = (q ◦ f )| f ′|.
We will need the geometric quantity

γ (Ω, q) =

{(
1
2π

∫ 2π
0 p(θ)2 dθ

)2 −
∣∣∣ 1
2π

∫ 2π
0 p(θ)2eiθ dθ

∣∣∣2}1/4
1
2π

∫ 2π
0 p(θ) dθ

. (7)

Lemma 4 shows that the expression on the right side of (7) depends only on Ω and
q, and not on the choice of conformal map f through which the weight function p
was defined. The lemma will further show that

γ (Ω, q) � 1.

Obviously γ (Ω, q) = 1 if p is constant, by (7).
Unfortunately, γ could equal +∞ or be undefined. For example, when q is

constant and Σ contains a corner with interior angle απ , the conformal map f
behaves locally like (z− eiθ0)α , and so p2 ∼ | f ′|2 is nonintegrable along the circle
if α � 1/2. In particular, this happens when Σ has a right angle (α = 1/2). To
avoid the problem, we will simply assume p ∈ L2[0, 2π ], so that γ is finite.
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Corollary 2. (Simply connected planar domains) AssumeΩ is a simply connected,
bounded planar domain with piecewise smooth boundary, and consider weights q
and p with 0 < q ∈ L∞(Σ) and p ∈ L2[0, 2π ], as discussed above. Then for
each n ∈ N and every concave increasing function C : R+ → R,

n∑
j=1

C
(
σ j (Ω, q)L(Σ, q)

)
�

n∑
j=1

C

(
2πγ (Ω, q)

⌈
j

2

⌉)

with equality when (Ω, q) is conformally equivalent to (D, pc) for some constant
weight function pc (in which case γ (Ω, q) = 1).

Equality statement for the first nonzero eigenvalue: if σ1(Ω, q)L(Σ, q) =
2πγ (Ω, q) then (Ω, q) is conformally equivalent to (D, pc) for some constant
weight function pc. If in addition q ≡ 1, then Ω is a disk.

The corollary is deduced from Theorem 1 in Section 5. The analogue of Corollary 1
holds too, with g replaced by γ (Ω, q) and with the maximum/minimum attained
when (Ω, q) is conformally equivalent to (D, pc) for some constantweight function
pc. Note that Corollary 1 covers finite sums of the reciprocals of the eigenvalues.
This case, for simply connected domains, was already considered by Hersch,
Payne and Schiffer [24, Section 7]. Their lower bounds are stronger than the
corresponding cases of our results, because they do not need the factor g, but on
the other hand their results do not apply to sums or products of eigenvalues.

We illustrate Corollary 2 with several examples in Section 8.

Starlike Domains

A domain in the complex plane is starlike if it can be expressed in the form

Ω = {reiθ : θ ∈ [0, 2π ], 0 � r < R(θ)}
for some positive, 2π -periodic function R called the radius function of Ω . We
assume R is Lipschitz continuous. By abusing notation, we write

q(θ) = q(R(θ)eiθ )

for the weight function on Σ = ∂Ω .

Lemma 2. (Geometric quantities) For the starlike case above, the geometric quan-
tities g0, g1 defined in (4) are

g0(Ω) = 1 + 1

2π

∫ 2π

0
(log R)′(θ)2 dθ, (8)

g1(Ω, q) =
1
2π

∫ 2π
0

(
R(θ)2 + R′(θ)2

)
q(θ)2 dθ(

1
2π

∫ 2π
0

√
R(θ)2 + R′(θ)2 q(θ) dθ

)2 , (9)

and in this case

g0 � 1, g1 � 1.

Further, g0 = 1 if and only if R is constant, which means Ω is a disk centered at
the origin.
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These formulas for g0 and g1 are scale invariant (homogeneous with respect to
the radius function R). The equality statement for g1 is more complicated, and we
discuss it after the proof of the lemma in Section 6.

Formula (8) for the starlike case implies that g0 − 1 controls the deviation of
the domain from a disk in a quantitative sense: indeed, log R is Hölder continuous
with

|(log R)(θ1) − (log R)(θ2)| �
√
2π(g0 − 1) |θ1 − θ2|1/2.

Thus if g0 is close to 1 then the boundary curve is uniformly close to being circular.
Now we state our result for starlike domains. Here

g = √
g0g1

is the geometric average of the two quantities given in (8) and (9).

Corollary 3. (Starlike planar domains) Assume Ω is a starlike planar domain with
Lipschitz continuous radius function, and positive weight function q ∈ L∞(Σ).

Then for each n ∈ N and every concave increasing function C : R+ → R,

n∑
j=1

C
(
σ j (Ω, q)L(Σ, q)

)
�

n∑
j=1

C

(
2πg(Ω, q)

⌈
j

2

⌉)

with equality when Ω is a disk centered at the origin and q ≡ const.
Equality statement for the first nonzero eigenvalue: if σ1(Ω, q)L(Σ, q) =

2πg(Ω, q) then Ω is a disk centered at the origin and q ≡ const.

We show in Section 6 how to obtain the corollary from Theorem 1. Of course,
the analogue of Corollary 1 (more general spectral functionals) holds for starlike
domains too.

The examples in Section 8 illustrate the conformal and starlike methods.

2. Related Work in the Literature, and Comparison with the
Hersch–Payne–Schiffer Result

Prior Work

This paper proves sharp upper bounds on Steklov eigenvalue sums, under nor-
malization by the perimeter and the additional geometric quantity g or γ .

The first geometric upper bound for Steklov eigenvalues is that of Wein-
stock [44], who proved that among simply connected planar domains of given
perimeter,σ1 ismaximal on adisk. Someyears afterward,Hersch–Payne–Schiffer
[24] used a subtle complex analytic method to get bounds on sums of reciprocal
eigenvalues and on each individual eigenvalue σ j . Their bound on σ j was recently
shown to be sharp [15]. Later in this section, we compare our work with that of
Hersch, Payne and Schiffer.

Uniformization theory enables these results to be generalized to compact Rie-
mann surfaces with boundary, a setting in which the upper bounds involve also the
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number of boundary components and the genus [12,16]. In dimension � 3, addi-
tional geometric upper bounds have been obtained, as follows. Brock [4] considered
domains with fixed volume rather than fixed perimeter, in R

n , and proved that the
ball minimizes the sum of reciprocals

∑n
j=1 σ−1

j . On compact manifolds, an upper
bounds for σ1 was given by Fraser–Schoen [12], in terms of the volume and a
quantity which they called the relative conformal volume. For domains, methods
from metric geometry were used by Colbois et al. [6] to bound each individual
eigenvalue σ j in terms of the perimeter and volume of the domain, and this work
was recently improved by Hassannezhad [20]. For compact hypersurfaces with
boundary, Ilias–Makhoul [25] proved upper bounds for σ1 in terms of various
mean curvatures of the boundary.

Lower bounds must involve some geometric restrictions, since the minimum
of each eigenvalue σ j among domains of fixed perimeter or fixed volume is easily
seen to be zero, by a “pinching” construction [15, Section 2.2]. Payne showed
that σ1 is bounded below by the minimum curvature of the boundary, on a convex
plane domain [38]. Kuttler–Sigillito [28] considered planar starlike domains
and gave a bound in terms of the radius function and its derivative (see Section 6).
One should also mention a recent paper of Jammes [26], where a lower bound in
the spirit of the classical Cheeger inequality is proved for the first nonzero Steklov
eigenvalue. See also [11].

Regarding other eigenvalue functionals,Dittmar [8] proved that among simply
connected planar domains with given conformal radius, the disk minimizes the infi-
nite sum of reciprocals of all squares,

∑∞
j=1 σ−2

j .Henrot–Philippin–Safoui [22]
proved that among convex domains of fixed measure in Rn , the product of the first
n nonzero Steklov eigenvalues is maximal for a ball. Their method is based on
an isoperimetric inequality for moment of inertia. Edward [10] proved for simply
connected domains Ω of perimeter 2π that the relative sum of squares is minimal
for the unit disk:

∑
j (σ j (Ω)2 − σ j (D)2) � 0.

Incidentally, to justify the interpretation of the Steklov problem in terms of
a membrane whose mass is concentrated at the boundary, one may compare the
Rayleigh quotient (16) for the Steklov problemwith the usual Rayleigh quotient for
the Neumann Laplacian. For spectral convergence results as the mass concentrates
onto the boundary, see recent work of Lamberti and Provenzano [30].

The literature on the spectral geometry of the Steklov problem is expanding
rapidly, and so we had to omit many papers here. We refer to [14,17] for recent
surveys.

Comparison with Hersch–Payne–Schiffer Result

For simply connected planar domains, the Hersch–Payne–Schiffer (HPS) in-
equality [24] states that each individual Steklov eigenvalue is bounded according
to

σ j L � 2π j. (10)

Taking j = 1 recoversWeinstock’s inequality (6). Equality in (10) is approached by
a sequence of domains tending to a disjoint union of identical disks, as Girouard
and Polterovich [14] later showed. Summing the HPS inequality leads to
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n∑
j=1

σ j L � 2π
n∑
j=1

j = πn(n + 1). (11)

This “summed HPS” bound is not expected to be sharp, since the original HPS
inequality (10) has a different optimizing domain for each j . Thus one can hope
that our estimates in Corollary 2 and Corollary 3 improve on the summed HPS
bound.

To compare, notice Corollary 2 implies that
n∑
j=1

σ j L � 2πγ

n∑
j=1

⌈
j

2

⌉
= π

2
γ

{
n(n + 2) if n is even,

(n + 1)2 if n is odd.
(12)

Thus our bound (12) improves on the HPS sum inequality (11) if the geometric
factor γ satisfies

γ < 2
n + 1

n + 2
(n even)

or

γ < 2
n

n + 1
(n odd).

In particular, our bound improves on the HPS sum inequality for all n � 2 if
γ < 3/2, and improves on it for all large n if γ < 2. For n = 1 the HPS–Weinstock
bound is always better, since it does not involve the factor γ � 1. For a starlike
domain one obtains the same criteria except with g instead of γ , by Corollary 3.

Thus for domains close to a disk in the sense that γ and g are close to 1, our
bounds are better by a factor of between 3/2 and 2. Section 8 providesmore detailed
information for some example domains, which are not necessarily close to a disk.

How Our Method Differs from that of Hersch–Payne–Schiffer

Our trial function method is related to that of Hersch, Payne and Schiffer
[24] for the “conformal” case (Corollary 2), except with a crucial interchange in
the order of operations. They proceed as follows: take a Steklov eigenfunction on
the unit circle, pre-compose with a uniformization of the circle to push p forward
to a constant density, harmonically extend this composition to the unit disk, and
pre-compose the resulting harmonic function with a conformal map from Ω to the
disk, thus obtaining a harmonic trial function onΩ . Note the harmonic extension is
performed after the uniformization step. In contrast, in this paper the harmonic ex-
tension is carried out before the uniformization step. In other words, we uniformize
the Steklov eigenfunction on the whole disk, not just on the circle; see Section 4
and Section 5 for details.

Both methods preserve length measure on the boundary and hence preserve
orthogonality of trial functions (see [24, p. 101]), but our harmonic extension is
easier to work with since it is explicit (cos kθ extends harmonically to rk cos kθ )
and does not get tangled up with the uniformizing map. Further, the method of
Hersch et al. relies very much on conformal invariance of the Dirichlet integral,
whereas our approach can handle non-invariance of the Dirichlet integral due to
certain quasiconformal maps (see Section 4).
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3. Open Problems

Our theoremsmaximize Steklov eigenvalue sumswith the help of the geometric
factor γ or g. What can one say in the absence of that factor, in other words, if one
normalizes solely by perimeter?

For the first eigenvalue, Weinstock’s theorem (6) says σ1L is maximal for the
disk among all simply connected domains. For the second eigenvalue, maximality
of σ2L for the double-disk (in a limiting sense) was proved byHersch, Payne and
Schiffer [24, formula (3′′)] and Girouard and Polterovich [14, §1.3].

We ask:

what domain maximizes (σ1 + σ2)L?

The maximizer is certainly not the disk, since an ellipse can give a larger value (see
Table 2 later in the paper, which shows “ρ2 > 1” for certain ellipses). Thus the
disk does not maximize the arithmetic mean 1

2 (σ1 + σ2)L . Interestingly, the disk
does maximize the harmonic mean of those first two eigenvalues among simply
connected domains, by Hersch and Payne’s extension of Weinstock’s method
[23,44]. The disk evenmaximizes the geometricmean

√
σ1σ2L byHersch, Payne

and Schiffer [24, formula (1)].
Numerical investigations suggest that the extremizer for (σ1 + σ2)L must be

somewhat elongated, possibly stadium-like. We remark on a qualitative similarity
with the optimal shape for the second Dirichlet eigenvalue, investigated byBucur–
Buttazzo–Henrot [5] and Henrot–Oudet [21], which is stadium-like but not
a stadium.

More generally, one would like to identify the domain that maximizes the sum
(σ1 + · · · + σn)L . As a first step in that direction, we computed numerically the
value of this normalized eigenvalue sum on an equilateral triangle and found it to
be smaller than the corresponding sum on a disk. We do not know how to prove
even this special comparison between equilateral triangles and disks!

See the examples in Section 8 for more information on eigenvalue sums.

Higher Dimensions

We have not extended our conformal and quasiconformal mapping results to
higher dimensions, because the Dirichlet integral fails to transform nicely under
such maps. The starlike special case can be extended to higher dimensions, but the
resulting geometric quantity is considerably more complicated than in 2 dimen-
sions, and so we omit these results.

Geometric Factors

One would like a quantitative estimate showing that the quantity g controls the
deviation of the domain from the disk, meaning that if g is close to 1 then (Ω, p)
must be close in some quantitative sense to a disk with constant weight function,
after a suitable conformal mapping. In the starlike case the argument is direct, as
explained after Lemma 2, but we have not obtained an analogous estimate in the
conformal case or the general case (for the factor γ in (7) or g in (5)).
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4. Quasiconformal Mapping and Angular Uniformization—Proof of
Theorem 1

We establish some lemmas and then prove the theorem.

Proof. (Proof of Lemma 1) Notice that

a0a1 =
( |e4iθ − μ2|

1 − |μ|2
)2

� 1,

by the triangle inequality. An application of Cauchy–Schwarz now gives g0g1 � 1.
If g0g1 = 1, then the preceding argument implies that a0a1 = 1 almost every-

where (using here that p > 0). Hence the equality condition for the triangle inequal-
ity requires that arg(μ2) = 4θ almost everywhere, which implies μ = ±|μ|e2iθ .
Thus e−2iθμ is real, and it lies between −1 and 1, by assumption on μ.

Further, the equality condition for Cauchy–Schwarz implies c
√
a0 = √

a1 p2

almost everywhere for some constant c > 0. Since a0a1 = 1 we deduce ca0 = p
almost everywhere, which says

c
(1 − e−2iθμ)2

1 − (e−2iθμ)2
= (q ◦ f )|∂θ f |,

where we used that e−2iθμ ∈ (−1, 1). After employing the polar identities

∂θ f = ireiθ (1 − e−2iθμ)∂ f, ∂r f = eiθ (1 + e−2iθμ)∂ f,

in this last equation (and putting r = 1), we obtain the condition (q ◦ f )|∂r f | = c.
Reversing the argument shows that the necessary conditions for equality are

also sufficient.

Next we need a transformation property of the Dirichlet integral under a quasi-
conformal mapping.

Lemma 3. Suppose f : D → Ω is a quasiconformal mapping from the disk to a
planar domain Ω , and that the complex dilatation μ depends only on the angular
variable θ . Given a real-valued function h ∈ H1 ∩ L∞

loc(D), the Dirichlet integral
of h ◦ f −1 on Ω can be evaluated over the disk in the following polar form:∫

Ω

|∇(h ◦ f −1)|2 dA =
∫
D

{
a0h

2
r + a1

h2θ
r2

+ a2hr
hθ

r

}
rdrdθ (13)

where a0 and a1 were defined in (3), and

a2 = 2 Im (e2iθ + μ(eiθ ))(e2iθ − μ(eiθ ))

1 − |μ(eiθ )|2 . (14)

Note that a0, a1, a2 are all bounded, since by definition the complex dilatation
of a quasiconformal map satisfies ‖μ‖L∞(D) < 1. We have assumed in this lemma
that μ depends only on θ , but that is simply to remain consistent with the rest of
the paper; in fact, the lemma and its proof hold without that assumption.
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Proof. First assume h ∈ C1(D). We will show

|∇(h ◦ f −1)|2 ◦ f =
∣∣∣∣− fr

hθ

r
+ fθ

r
hr

∣∣∣∣
2 /

J ( f )2 (15)

almost everywhere in D, where J ( f ) denotes the Jacobian determinant of f . (We
may differentiate pointwise, since quasiconformal mappings are differentiable al-
most everywhere) Indeed, by the chain rule,

|∇(h ◦ f −1)|2 ◦ f =
∣∣∣(∇h)D( f −1) ◦ f

∣∣∣2
=
∣∣∣(∇h)(Df )−1

∣∣∣2
=
∣∣∣∣(hx hy

) ( cy −by
−cx bx

)∣∣∣∣
2/

J ( f )2

where we have written f = b + ic so that f has Jacobian matrix

Df =
(
bx by
cx cy

)
.

The last formula can be rewritten as

|∇(h ◦ f −1)|2 ◦ f = ∣∣(−hy, hx ) · (bx + icx , by + icy)
∣∣2 /J ( f )2

= |(∇h)U · ∇ f |2/J ( f )2

where U = (
0 1−1 0

)
represents rotation by π/2. Expressing the last two gradient

vectors in polar coordinates, we have

|∇(h ◦ f −1)|2 ◦ f =
∣∣∣(−r−1hθer + hreθ ) · ( frer + r−1 fθeθ )

∣∣∣2 /J ( f )2,

where er and eθ are the unit vectors in the radial and angular directions. Now (15)
follows immediately.

To prove formula (13), we multiply (15) by J ( f ) and integrate over D to find

∫
Ω

|∇(h ◦ f −1)|2 dA =
∫
D

∣∣∣∣− fr
hθ

r
+ fθ

r
hr

∣∣∣∣2 /J ( f ) dA

=
∫
D

{∣∣∣∣ fθr
∣∣∣∣2 h2r + | fr |2

h2θ
r2

− 2Re

(
fr

fθ
r

)
hr

hθ

r

}/
J ( f ) dA.

Note the Jacobian determinant can be expressed in terms of Wirtinger derivatives
as

J ( f ) = |∂ f |2 − |∂ f |2,
while the polar derivatives can be expressed as

fr = eiθ ∂ f + e−iθ ∂ f,
fθ
ir

= eiθ ∂ f − e−iθ ∂ f.
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Substituting these expressions, we find∫
Ω

|∇(h ◦ f −1)|2 dA

=
∫
D

⎧⎨
⎩ |e2iθ ∂ f − ∂ f |2

|∂ f |2 − |∂ f |2 h2r + |e2iθ ∂ f + ∂ f |2
|∂ f |2 − |∂ f |2

h2θ
r2

−
2Re

(
fr

fθ
r

)
|∂ f |2 − |∂ f |2 hr

hθ

r

⎫⎬
⎭ dA.

The coefficients of h2r and h2θ /r
2 equal a0 and a1, respectively, after dividing

the top and bottom lines by |∂ f |2, and similarly the coefficient of the mixed term
equals a2. That completes the proof of (13), when h ∈ C1(D) and the gradient
∇(h ◦ f −1) is evaluated pointwise almost everywhere This pointwise gradient is
also the weak gradient, since quasiconformal mappings are absolutely continuous
on lines, and so (13) holds also in terms of weak derivatives. Hence in particular
∇(h ◦ f −1) ∈ L2(Ω).

To extend (13) to the general case of h ∈ H1 ∩ L∞
loc(D), one argues using the

density of C1(D) in the Sobolev space. Local boundedness of h in the disk is used
to insure local integrability of h ◦ f −1 in Ω , so that the weak derivative may be
defined.

Now we can prove the main result.

Proof. (Proof of Theorem 1) The Steklov spectrum on Ω has Rayleigh quotient

Ray[v] =
∫
Ω

|∇v|2 dA∫
Σ

v2q ds
, v ∈ H1(Ω). (16)

The bulk of the proof consists of computing and averaging this Rayleigh quotient
for a family of trial functions that we transplant from the disk to Ω via the given
map f . Then at the end we put this result into a Rayleigh principle and hence
estimate the Steklov eigenvalue sums on Ω .

Theweight function p on the circleS1 has totalmass L = ∫ 2π
0 p dθ = L(Σ, q).

We “uniformize” the weight function by means of the map

Θ(θ) = 2π

L

∫ θ

0
p(η) dη,

with the point being that Θ(θ) increases continuously from 0 to 2π as θ increases
from 0 to 2π . In other words, 2πL p dθ pushes forward under the mapΘ to arclength
measure on the circle. Note that Θ ′ = 2πp/L .

Consider a function u ∈ C1(D) that is not identically zero on the unit circle.
Take an arbitrary t > 0, φ ∈ [0, 2π ], and fix a choice of ± sign. Let a function h
in polar coordinates be given by

h(r, θ) = u(r t , φ ± Θ(θ)),

and define a trial function on Ω by

vt,φ,± = h ◦ f −1.
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(Note how u transforms to h by radial stretching, rotation, possibly reflection, and
angular uniformization, and then f −1 carries the function from the disk to Ω .)

Obviously vt,φ,± is continuous and bounded on Ω , since h is continuous and
bounded on D and f is a homeomorphism of D onto Ω . We want to show

vt,φ,± ∈ H1(Ω) (17)

so that this function is a valid trial function. It suffices to show h ∈ H1(D), because
then Lemma 3 applies. First notice hr ∈ L2(D) because boundedness of ur implies

∫
D

h2r dA � (const.)
∫ 1

0
(tr t−1)2 rdr < ∞.

Second, r−1hθ ∈ L2(D) because boundedness of r−1uθ implies

∫
D

r−2h2θ dA � (const.)
∫ 1

0
(r−1+t )2 rdr

∫ 2π

0
Θ ′(θ)2 dθ

� (const.)
∫ 2π

0
p(θ)2 dθ < ∞

since p ∈ L2[0, 2π ] by hypothesis. This finishes the proof of (17).
Now we may compute

Ray[vt,φ,±] =
∫
Ω

|∇(h ◦ f −1)|2 dA∫
Σ

(h ◦ f −1)2q ds

=
∫
D

{
a0(θ)h2r + a1(θ)r−2h2θ + a2(θ, r)r−1hθhr

}
rdrdθ∫

S1
h2 p dθ

(18)

by Lemma 3 and recalling that μ, a0, a1 depend only on θ , by the hypotheses of
Theorem 1. Upon substituting the definition of h, we find the denominator equals

∫
S1

h2 p dθ =
∫ 2π

0
u(1, φ ± Θ(θ))2

L

2π
Θ ′(θ) dθ

= L

2π

∫ 2π

0
u(1, φ ± Θ)2 dΘ

= L

2π

∫ 2π

0
u(1,Θ)2 dΘ.

Similarly, the numerator equals

∫
D

(
a0(θ)ur (r

t , φ ± Θ(θ))2t2r2t−2 + a1(θ)r−2uθ (r
t , φ ± Θ(θ))2Θ ′(θ)2

±a2(θ, r)r−1uθ (r
t , φ ± Θ(θ))Θ ′(θ)ur (r

t , φ ± Θ(θ))tr t−1
)
rdrdθ,
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which simplifies by the change of variable r 	→ r1/t to give∫
D

(
ta0(θ)ur (r, φ ± Θ(θ))2 + 1

t
a1(θ)Θ ′(θ)2r−2uθ (r, φ ± Θ(θ))2

± a2(θ, r1/t )Θ ′(θ)r−1uθ (r, φ ± Θ(θ))ur (r, φ ± Θ(θ))
)
rdrdθ.

By averaging this last expression with respect to φ ∈ [0, 2π ], we can separate
the φ- and θ -integrals and hence obtain from (18) and the definition of g0 and g1
in (4) that

1

2π

∫ 2π

0
Ray[vt,φ,±] dφ =

∫
D

(
tg0ur (r, φ)2 + 1

t g1r
−2uφ(r, φ)2

)
rdrdφ

L
2π

∫ 2π
0 u(1, φ)2 dφ

±
1
2π

∫ 2π
0
∫ 2π
0
∫ 1
0 a2(θ, r1/t )Θ ′(θ)ur (r, φ)uφ(r, φ) drdφdθ

L
2π

∫ 2π
0 u(1, φ)2 dφ

.

The last term cancels if we average over the choice of ± sign, and so

1

2

∑
±

1

2π

∫ 2π

0
Ray[vt,φ,±] dφ = 2π

L

∫
D

(
tg0ur (r, φ)2 + 1

t g1r
−2uφ(r, φ)2

)
rdrdφ∫ 2π

0 u(1, φ)2 dφ
.

Making the particular choice t = √
g1/g0 gives

tg0 = 1

t
g1 = √

g0g1 = g,

and so the coefficients in the last formula agree and the numerator reduces to g
times the Dirichlet integral of u. Thus

1

2

∑
±

1

2π

∫ 2π

0
Ray[vt,φ,±] dφ = 2πg

L
Ray[u]. (19)

Now we apply the above formulas to prove the Theorem. Recall that the sum
of the first n nonzero Steklov eigenvalues is characterized by a Rayleigh–Poincaré
Variational Principle [3, p. 98]:

σ1 + · · · + σn = min
{
Ray[v1] + · · · + Ray[vn] : vi ∈ H1(Ω) are pairwise

orthogonal in L2(Σ, q ds) with mean value zero with respect to q ds
}
.

Thus in order to get an upper bound on the eigenvalue sum, we need trial functions
v1, . . . , vn satisfying the desired orthogonality properties.

We start by taking eigenfunctions u1, u2, u3, . . . for the Steklov problem on
the unit disk (having constant weight 1 on the unit circle), with corresponding
eigenvalues σ j (D), j = 1, 2, 3, . . . as in (2). Note that u1, . . . , un ∈ C1(D) and
these functions are pairwise orthogonal in L2(S1) and havemean value zero overS1.
Then we construct trial functions v

t,φ,±
1 , . . . , v

t,φ,±
n by following the method in the



918 A. Girouard, R. S. Laugesen, & B. A. Siudeja

proof above. These trial functions belong to H1(Ω), and are pairwise orthogonal
in L2(Σ, q ds) because∫

Σ

v
t,φ,±
l vt,φ,±

m q ds

=
∫
S1

hlhm p dθ recalling that f pushes p dθ forward to q ds

=
∫ 2π

0
ul(1, φ ± Θ(θ))um(1, φ ± Θ(θ))

L

2π
Θ ′(θ) dθ

= L

2π

∫ 2π

0
ul(1, φ ± Θ)um(1, φ ± Θ) dΘ by changing variable

= 0

if l �= m, by the pairwise orthogonality ofu1, . . . , un .A similar calculation confirms
that each trial function v

t,φ,±
l has mean value zero with respect to q ds.

Inserting these trial functions into the Rayleigh–Poincaré Variational Principle
implies that

n∑
j=1

σ j (Ω, q) �
n∑
j=1

Ray
[
v
t,φ,±
j

]
. (20)

The left side of this inequality is independent of the angle φ ∈ [0, 2π ] and of the
choice of ± sign that we made in constructing the trial functions. Hence we may
average over those quantities, obtaining with the help of (19) that

n∑
j=1

σ j (Ω, q) �
n∑
j=1

1

2

∑
±

1

2π

∫ 2π

0
Ray

[
v
t,φ,±
j

]
dφ

=
n∑
j=1

2πg

L
σ j (D).

Recall that σ j (D) = � j/2� by (1). Thus multiplying the last equation by L proves
the Theorem in the special case where C is the identity function. This special
case implies the Theorem for arbitrary concave increasing C , thanks to Hardy–
Littlewood–Pólya majorization [18, §3.17]. (For more references on majorization,
see [32, Appendix A].)

Equality holds in the theorem if Ω is a disk of radius R with q ≡ const.
and f maps D to Ω by a complex linear map (dilation, rotation and translation),
because in that case we compute g = 1 while the eigenfunction rk cos(kθ) on Ω

has eigenvalue σ = k/Rq. Multiplying this eigenvalue by the weighted perimeter
L = 2πRq yields 2πk, which is the quantity appearing on the right side of the
inequality in the theorem.

Proof. (Equality statement for the smallest positive eigenvalue) Assume that
σ1(Ω, q)L(Σ, q) = 2πg. Since g � 1 by Lemma 1, we conclude g = 1 by
Weinstock’s inequality (6). That is, equality holds in Lemma 1.
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Further, Weinstock’s equality statement [44, (4.6)] provides a conformal map
from the unit disk to Ω that pushes a constant weight forward to q. If in addition
q ≡ 1, then Ω is a disk by the argument at the end of Section 5.

Let us now sketch a direct proof for the equality statement in the theorem, a
proof that relies on our method rather than Weinstock’s (although still using that
g = 1 by his result). Enforcing equality in the proof of Theorem 1 shows that
equality must hold in (20) when n = 1, for each choice of first eigenfunction u1 on
the unit disk and each choice of φ,±. Fix φ = 0 and choose the “+” sign. Define
a homeomorphism Φ : Ω → D by

Φ = α ◦ f −1

where α : D → D is the angular uniformization map α : (r, θ) 	→ (r t ,Θ(θ)).
The trial function in the proof above is vt,0,+ = u1 ◦ Φ. Its Rayleigh quotient
equals σ1(Ω, q), by equality in (20), and so the trial function must be a Steklov
eigenfunction corresponding to σ1. If we choose u1 = r cos θ = x1, then the
trial function u1 ◦ Φ is simply the first component of the map Φ. Choosing u1 =
r sin θ = x2 gives the second component of Φ. Hence the components of Φ are
Steklov eigenfunctions, and so are harmonic functions.

We will show Φ satisfies the Cauchy–Riemann equation. Since both compo-
nents of Φ are Steklov eigenfunctions for σ1, we have the boundary condition

∂Φ

∂n
= σ1qΦ on Σ .

Also, our construction guarantees that Φ pushes the density q on Σ forward to the
constant density L/2π on the unit circle, meaning q ds = (L/2π) dθ . That is,∣∣∣∣∂Φ

∂s

∣∣∣∣ = 2π

L
q = σ1q,

where we use that σ1 = 2πg/L by hypothesis and g = 1. The tangent vector
∂Φ/∂s at location Φ on the unit circle points in the counterclockwise direction,
since Φ is sense-preserving, and so

∂Φ

∂s
= iΦ

∣∣∣∣∂Φ

∂s

∣∣∣∣ = iΦσ1q = i
∂Φ

∂n

by the Steklov boundary condition above. Consequently Φ satisfies the Cauchy–
Riemann equation ∂Φ/∂x2 = i ∂Φ/∂x1 on the boundary Σ . Harmonicity of Φ

and the maximum principle now guarantee the validity of the Cauchy–Riemann
equation throughout the domain Ω , as desired. Thus the homeomorphism Φ is an
analytic function and hence a conformal map.

This proof sketch for the equality statement is not quite rigorous, since we
have not justified that Φ possesses a normal derivative at the boundary or that
the Steklov boundary condition holds pointwise. One can avoid these technical
concerns by working with the weak form of the Steklov eigenfunction equation.
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Remark. If the complex dilatation μ depends on both r and θ then one can still get
a result from the proof of Theorem 1, by substituting the trigonometric formula
u = rk cos kθ or rk sin kθ for the disk eigenfunction. The quantities g0 and g1
then involve integration over the unit disk of a0 and a1 p2, respectively, multiplied
by 2kr2k−2r drdθ . Hence the values of g0 and g1 depend on k and thus on the
index j of the eigenvalue, which makes the resulting eigenvalue estimates more
complicated. For this reason we assume in the theorem that μ depends only on θ .

Proof. (Proof of Corollary 1) By applying Theorem 1 with the concave increasing
function C(a) = as , where 0 < s � 1, we obtain maximality of (σ s

1 + · · · +
σ s
n )1/s L/g for the disk with constant weight. Then the limiting case s ↓ 0 suggests

we take C(a) = log a, which yields maximality of the disk for the functional

n∑
j=1

log(σ j L/g) = n log
(

n
√

σ1 · · · σn L/g
)
.

When s < 0 we can choose the concave increasing function C(a) = −as , which
leads to minimality of the disk for

∑n
j=1(σ j L/g)s . Lastly, for t > 0 we take

C(a) = −e−ta , to get minimality of the disk for
∑n

j=1 exp(−tσ j L/g).

5. Simply Connected Domains—Proof of Corollary 2

Example 1. (Simply connected domain Ω) Let f : D → Ω be a conformal map-
ping, where Ω is bounded with piecewise smooth boundary. Then ∂ f ≡ 0 because
f is analytic, and so μ ≡ 0. Thus μ is obviously independent of r . The definitions
(3) and (14) give

a0 = 1, a1 = 1, a2 = 0,

which is to be expected from conformal invariance of the Dirichlet integral (cf.
(13)). The associated geometric quantities in (4) are then

g0 = 1, g1 = γ1(p)
def=

1
2π

∫ 2π
0 p(θ)2 dθ(

1
2π

∫ 2π
0 p(θ) dθ

)2 � 1.

��
This last example and Theorem 1 together imply the inequality in Corollary 2,

although with a bigger (that is, worse) geometric factor than we are aiming for,
namely g = √

g0g1 = √
γ1(p). To reduce this g to γ we call on part (i) of

Lemma 4 below, which exploits the freedom to precompose our conformal map
with a Möbius automorphism of the disk. To verify the sufficient condition for
equality in the corollary, note γ1(pc) = 1 and hence γ∗(Ω, q) = 1 by the definition
below, so that γ (Ω, q) = 1 by Lemma 4(i); now use conformal invariance of the
Steklov problem to show equality holds in the corollary. Lastly, to prove the equality
statement for Corollary 2, one argues as follows: ifσ1(Ω, q)L(Σ, q) = 2πγ (Ω, q)
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thenWeinstock’s inequality (6) forcesγ (Ω, q) = 1, and soLemma4part (iii) yields
the desired equality statement. Alternatively, we could use the equality statement
in Theorem 1.

To state the lemma, we minimize γ1 over all choices of conformal map: let

γ∗(Ω, q) = inf
{
γ1( p̃) : p̃ arises from q via a conformal map f̃ : D → Ω

}
.

Since γ1 � 1 we know γ∗(Ω, q) � 1. The next lemma records some useful
properties of the conformal geometric factor γ�.

Lemma 4. (i)
√

γ∗(Ω, q) = γ (Ω, q), where the latter quantity was defined in
(7).

(ii) The infimum defining γ∗(Ω, q) is attained for precisely one conformal map
f̃ (up to pre-rotations of the disk D), namely the map such that the measure
p̃ 2dθ on the unit circle has center of mass at the origin:

∫ 2π

0
eiθ p̃(θ)2 dθ = 0.

In particular, if Ω and q have k-fold rotational symmetry for some k � 2 then
the infimum defining γ∗(Ω, q) is attained when f̃ (0) = 0.

(iii) If γ∗(Ω, q) = 1 then (Ω, q) is conformally equivalent to (D, pc) for some
constant weight function pc. In the unweighted case (q ≡ 1), if γ∗(Ω, 1) = 1
then Ω is a disk.

Proof. (Proof of Lemma 4) Part (i). The original conformal map f : D → Ω can
be related to any other conformal map f̃ : D → Ω by

f (z) = f̃ (eiφM(z))

for some φ ∈ R and a Möbius automorphism of the disk of the form

M(z) = z + ζ

1 + zζ
, |z| � 1,

where ζ ∈ D is some given point. Write w = eiφM(z). The measure p̃ |dw|
associated with f̃ is the push forward of p |dz| under z 	→ w, and so

p̃(w) = p(z)

∣∣∣∣ dzdw
∣∣∣∣

when |z| = |w| = 1; note here we identify p(θ) with p(z) when z = eiθ , and so
on. Hence ∫

S1
p̃(w) |dw| =

∫
S1

p(z) |dz|



922 A. Girouard, R. S. Laugesen, & B. A. Siudeja

and ∫
S1

p̃(w)2 |dw| =
∫
S1

p(z)2
1

|dw/dz| |dz|

=
∫
S1

p(z)2
|1 + ζ z|2
1 − |ζ |2 |dz|

= A + 2Re(ζ B) + |ζ |2A
1 − |ζ |2 (21)

where

A =
∫
S1

p(z)2 |dz|, B =
∫
S1

p(z)2z |dz|.

Thus to evaluate the infimum γ∗(Ω, q), we must minimize expression (21) with
respect to the choice of ζ ∈ D.

Clearly we should choose arg ζ in (21) such that ζ B = −|ζ B| � 0. Then (21)
can be written as

h(t) = A
1 − 2|c|t + t2

1 − t2
= A

(
1 + |c|
1 + t

+ 1 − |c|
1 − t

− 1

)
,

where t = |ζ | < 1 and c = B/A so that |c| � 1. In fact, |c| < 1 since |B| < A
(which holds because the density p cannot concentrate at a single point). Note that
h is strictly convex for 0 < t < 1, with h′(0) = −2|c|A � 0 and h(t) → ∞ as
t → 1. Hence h has a unique minimum point tmin ∈ [0, 1), which we can determine
by setting h′(t) = 0 and solving to find

tmin = |c|
1 +√1 − |c|2 .

Hence the minimizing point ζ is

ζmin = −c

1 +√1 − |c|2

(noting that ζminB � 0 as required). The minimum value of the expression (21)
equals

h(tmin) =
√
A2 − |B|2

and thus

γ∗(Ω, q) = min
p̃

γ1( p̃) =
1
2π

√
A2 − |B|2( 1

2π

∫
S1

p(z) |dz|)2 = γ (Ω, q)2,

by recalling the definition (7) of γ (Ω, q).
Part (ii). The task in this part of the lemma is to show that

∫
S1

w p̃(w)2 |dw| = 0
for precisely one value of ζ ∈ D, and that this value is the minimizing value ζmin
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found in Part (i). Then the optimal conformal map f̃ is unique, up to pre-rotation
by the angle φ.

So consider an arbitrary ζ ∈ D and compute (as in the proof of Part (i)) that∫
S1

w p̃(w)2 |dw| =
∫
S1

p(z)2
w

|dw/dz| |dz|

=
∫
S1

p(z)2
(z + ζ )(1 + ζ z)

1 − |ζ |2 |dz| eiφ

= B + 2Aζ + Bζ 2

1 − |ζ |2 eiφ.

The numerator of this last expression vanishes if and only if ζ = ζmin, as desired.
(The quadratic has a second root, when B �= 0, but that root lies outside the unit
disk whereas ζ must lie inside the disk.)

Suppose now that Ω and q are invariant under rotation of the plane by angle
2π/k, for some k � 2. If we choose the conformal map f̃ to map the origin
to the origin, then f̃ commutes with rotation by angle 2π/k (meaning f̃ (w) =
e−2π i/k f̃ (e2π i/kw) for all w ∈ D). Hence p̃ is invariant under rotation by angle
2π/k, and so

∫
S1

w p̃(w)2 |dw| = 0. Thus the infimumdefining γ∗(Ω, q) is attained
when f̃ (0) = 0.

Part (iii). Suppose γ∗(Ω, q) = 1 and that p̃ is the weight that achieves the
infimum for γ∗. Then by definition of γ∗,

1
2π

∫ 2π
0 p̃(θ)2 dθ(

1
2π

∫ 2π
0 p̃(θ) dθ

)2 = γ1( p̃) = γ∗(Ω, q) = 1,

and so from the equality conditions in Cauchy–Schwarz we deduce that p̃ is con-
stant. Thus (Ω, q) is conformally equivalent to (D, const).

Now suppose q ≡ 1 and γ∗(Ω, 1) = 1. Then by the case we just proved,
we know (Ω, 1) is conformally equivalent to (D, const). Let f : D → Ω be
the conformal equivalence. Then since a constant weight on S

1 pushes forward to
q ≡ 1, we find | f ′| is constant on the unit circle. Hence | f ′| is constant on the unit
disk by themaximum principle applied to the harmonic function log | f ′|. Therefore
f ′ itself is constant, and so f is linear and Ω is a disk.

6. Starlike Planar Domains—Proof of Corollary 3

Example 2. (Starlike domain Ω , with radius function R) Let f : D → Ω be the
stretch homeomorphism defined in polar coordinates by f (reiθ ) = R(θ)reiθ . Then

∂ f = eiθ

2
( fr + i fθ /r) = e2iθ i R′(θ)/2,

∂ f = e−iθ

2
( fr − i fθ /r) = (2R(θ) − i R′(θ))/2,
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and so the complex dilatation is

μ = ∂ f

∂ f
= e2iθ

i R′(θ)

2R(θ) − i R′(θ)
. (22)

Notice μ depends only on θ , and that ‖μ‖L∞(D) < 1 since R is bounded be-
low away from 0 and R′ is bounded above (recalling R is Lipschitz). Thus f is
quasiconformal.

After substituting μ into the definitions in (3) and (14), we find

a0 = 1 + (log R)′(θ)2, a1 = 1, a2 = −2(log R)′(θ).

Alternatively, one can verify directly that theDirichlet integral transforms according
to (13) using these formulas for a0, a1, a2, by inserting the starlike stretch mapping
f into the left side of (13) and evaluating in polar coordinates.

To compute p one needs the formula for arclength density along Σ , which in
polar coordinates says:

ds

dθ
= |∂θ f (e

iθ )| =
√
R(θ)2 + R′(θ)2.

Then the geometric quantities g0 and g1 are found to equal the formulas (8) and
(9), which proves Lemma 2. Obviously g0 � 1 with equality if and only if R is
constant, and by Cauchy–Schwarz, g1 � 1 with equality if R is constant.

Remark on the equality case in Lemma 2 for g1(Ω, 1). Consider the unweighted
case q ≡ 1. If g1 = 1 then R2 + (R′)2 = const. by definition (9) and Cauchy–
Schwarz. This condition certainly holds for the constant function R, but there are
also other solutions. The hippopede with δ = 0 (two tangent circles) provides a
different solution, although not simply connected; see Section 8.3. Take a union of
two such hippopedes, the second one rotated by 90◦, to get a flower-shaped starlike
domain with g1 = 1. More generally, take at least three points on the unit disk
centered at the origin, in such a way that their convex hull contains the origin. The
union of the unit disks centered at the chosen points is a piecewise smooth, starlike
domain with g1 = 1. ��

The inequality in Corollary 3 now follows from Theorem 1 and the above
Example 2.

Suppose equality holds in the theorem for σ1. Then Weinstock’s inequality (6)
forces g(Ω, q) = 1. In particular, g0(Ω) = 1 in (8), forcing R to be constant.
Therefore Ω is a centered disk, and so g1(Ω, q) = 1 in (9); now Cauchy–Schwarz
gives that q is constant. Alternatively, to complete the equality statement one may
use the equality statement of Lemma 1 provided the Beltrami equation is assumed
to hold on the unit circle: if g = 1 then e−2iθμ is real and so R′ ≡ 0 by (22), and
also (q ◦ f )|∂r f | = (q ◦ f )R is constant; hence both R and q are constant.

Remark 1. The same starlike stretch mapping f as above was used by Kuttler
and Sigillito [28] to find lower bounds for Steklov eigenvalues. They pulled Ω

back to a disk, as we do, and got a distorted Rayleigh quotient. They used the
minimum value of the distortion factor in order to estimate the Rayleigh quotient
from below, and hence obtained a lower bound on eigenvalues. In contrast, our
method averages the distortion factor and hence obtains upper bounds.
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Let us add some remarks about the existence of an optimal choice of origin, for
minimizing the quantities g0 and g1 appearing in the starlike result.

The Lipschitz kernel of Ω is the set Ωker of all points in Ω with respect to
which Ω is starlike with Lipschitz radius function. Clearly this kernel is an open
set (although that would be false if we dropped the Lipschitz assumption, by the
example of a slit disk).

Lemma 5. (Minimizing the geometric quantities through an optimal choice of ori-
gin) Assume Ω is starlike with Lipschitz radius function, and that q ≡ 1.

(i) Then the quantities g0 and g1 given in (8) and (9), with q ≡ 1, are strictly
convex when regarded as functions of an origin point in Ωker.

(ii) IfΩ has k-fold rotational symmetry about a point inΩker, for some k � 2, then
g0 and g1 are minimized when the origin is taken at that center of symmetry.

(iii) If Ω is convex then a choice of origin exists in Ω that minimizes g = √
g0g1.

Proof. (Proof of Lemma 5) Part (i). First we modify our notation to emphasize the
dependence of g0 and g1 on the origin point ω ∈ Ωker with respect to which the
radius function Rw is defined:

g0(ω) = 1 + 1

2π

∫ 2π

0
(log Rω)′(θ)2 dθ,

g1(ω) =
1
2π

∫ 2π
0

(
Rω(θ)2 + R′

w(θ)2
)
dθ(

1
2π

∫ 2π
0

√
Rω(θ)2 + R′

ω(θ)2 dθ
)2 .

Here the domain Ω is fixed and q ≡ 1.
The denominator of g1(ω) equals the boundary length L(Σ) divided by 2π ,

which is obviously independent of the choice of origin ω. Thus the task is to prove
strict convexity of the numerator term, which is∫ 2π

0

(
Rω(θ)2 + R′

w(θ)2
)
dθ =

∫ 2π

0

(
ds

dθ

)2

dθ

where angle θ is measured around the origin at ω,

=
∫

Σ

ds

dθ
ds

=
∫

Σ

|x − ω|2
(x − ω) · N (x)

ds(x), (23)

where the last formula for ds/dθ follows from a simple geometric analysis (see for
example [32, proof of Lemma 10.2]).

Since an integral of convex functions is convex, for convexity it suffices to fix
x ∈ Σ and prove convexity of the last integrand as a function of ω ∈ Ωker. We
might as well assume x = 0 (by translating the domain) and that N (x) = (−1, 0)
points in the negative horizontal direction (by rotating the domain). Then the task
is to prove convexity of the function

K (ω) = |ω|2
ω1

= ω1 + ω2
2

ω1
,



926 A. Girouard, R. S. Laugesen, & B. A. Siudeja

where ω = (ω1, ω2) and we note that ω1 > 0 by starlikeness of the domain. The
Hessian matrix is

D2K = 2

ω3
1

(
ω2
2 −ω1ω2

−ω1ω2 ω2
1

)
,

which is nonnegative definite. Hence K is convex.
We must still justify that the integral (23) is strictly convex as a function of

ω. The Hessian matrix of K has one zero eigenvalue, whose eigenvector (null
direction) is ω itself. Relaying that information back to formula (23), we see that
the Hessian of the integrand (the second derivative matrix with respect to ω) has
null direction x − ω. Thus the second directional derivative of (23) at point ω in
an arbitrary direction y is positive, because y cannot be parallel to x − ω for all
x ∈ Σ .

Turning now to g0(ω), we observe that

2πg0(ω) =
∫ 2π

0

(
Rω(θ)2 + R′

w(θ)2
)

/Rω(θ)2 dθ =
∫

Σ

1

(x − ω) · N (x)
ds,

and so after the same reductions as above, the question reduces to convexity of
1/ω1 in the right half plane, which is obvious. For the strictness of the convexity
one argues in a similar fashion to above (details left to the reader).

In fact, convexity of g0(ω)was proved already byAissen [1, Section 5, Theorem
3], as a corollary of strict subharmonicity of g0.

Part (ii). Notice g0 and g1 must have critical points when the origin ω sits at
the center of symmetry, by the convexity in Part (i). The strictness of the convexity
then implies that these critical points are global minima.

Part (iii). Suppose Ω is convex, so that it is starlike with respect to any choice
of origin inside the domain. We know g1(ω) � 1, and so to show existence of a
minimizing ω, we need only show g0(ω) blows up as ω approaches the boundary
curve Σ . This fact was proved by Aissen [1, Theorem 2], and since his argument
is short, we present a version of it here. Let ω0 ∈ Σ . Then by Fatou’s Lemma,

lim inf
ω→ω0

2πg0(ω) �
∫

Σ

1

(x − ω0) · N (x)
ds(x)

�
∫

Σ

1

|x − ω0| ds(x)

�
∫

Σ

1

|s| ds,

where we have chosen to measure arclength s on Σ starting from the point ω0 (at
which s = 0). The last integral diverges, and so g0 blows up as ω approaches Σ .

7. Remarks on Composite Transformations

So far we have described two methods of generating quasiconformal maps for
which the complex dilatation μ is purely angular, namely, conformal maps and
starlike maps. Can we profit from composing such maps?
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In Lemma 4 we pre-composed a conformal map with a Möbius transformation
to find the best possible conformal map. Let us indicate one way to extend this
optimization procedure to the quasiconformal case. Let f : D → Ω be conformal,
ψ : D → Ω be quasiconformal with purely angularμ (for example a starlike map),
and M be a Möbius automorphism of the disk. Define

Ψ = f ◦ M ◦ f −1 ◦ ψ.

Then one easily checks that μΨ = μψ . Therefore a0(Ψ ) = a0(ψ) and a1(Ψ ) =
a1(ψ). With F = f ◦ M ◦ f −1 (automorphism of Ω) we have

pΨ (θ) = |∂θΨ (eiθ )| = |∂Ψ ||e2iθ − μψ | = |F ′ ◦ ψ |pψ(θ).

The presence of M in the formula for F allows for an origin-optimization reminis-
cent of the one from Lemma 4. (In fact, ifψ = f then we reduce back to that case.)
This approach can be used to optimize the choice of origin for a starlike domain,
and while the optimizationmight be theoretically difficult, it should remain feasible
numerically.

Another use of composite maps would be to pull back a Steklov problem from a
non-starlike domain to a starlike one through a conformal transformation, and then
estimate the eigenvalues on that starlike domain using Corollary 3. This two-step
procedure might yield a better estimate than a direct application of our conformal
result Corollary 2.

8. Examples

How sharp are our theorems when compared with the summed Hersch–Payne–
Schiffer bound (11)? Or compared with the actual Steklov eigenvalues? To gain in-
tuition on these questions, we will investigate families of regular polygons, ellipses
and hippopedes, applying both our conformal mapping and starlike approaches.

Take the weight to be constant, q ≡ 1, throughout this section.
We determined (in Section 2) conditions on g and γ under which our estimates

on Steklov eigenvalue sums are stronger than the summedHPS bound
∑n

j=1 σ j L �
πn(n + 1). For the sake of simplicity, we will concentrate on the sum of the first
two eigenvalues, n = 2. In that case our bounds are better than the summed HPS
inequality whenever

g � 3

2
or γ � 3

2
.

For larger n, the quantities g and γ are allowed to be even larger.
We also want to compare our bounds with the numerically computed values of

(σ1+σ2)L and longer eigenvalue sums, computed using the Finite ElementMethod
with piecewise linear or quadratic conforming elements. Nonconvex domains (for
example hippopedes in Section 8.3) are rather challenging due to re-entrant cor-
ners in the polygonal approximating domain. Further, the boundary approximation
introduces errors even for convex domains. To get more accurate results we used
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an adaptive mesh refinement method (see Garau–Morin [13]), based on resid-
ual errors, and also a boundary snapping mechanism. We chose FEniCS [36] to
implement the numerical scheme. The scheme is based on similar ones used for
mixed Steklov eigenvalue problems by Kuznetsov et al. [29] and Kulczycki–
Kwaśnicki–Siudeja [27].

For the numerical comparisons, we define the ratio

ρn = ρn(Ω) =
∑n

j=1 σ j (Ω)L(Σ)∑n
j=1 σ j (D) · 2π ,

ρmax = max
n

ρn .

In particular,

ρ2 = (σ1 + σ2)L

4π
.

Notice ρ2(D) = 1 (in fact, ρn(D) = 1). By our estimate (12) for the conformal
method, and its analogue for the starlike method, we have

ρ2 � ρmax � γ and ρ2 � ρmax � g.

If ρ2 is close to γ or g, for a specific domain, then we conclude that our theorems
provide a good estimate on the sum of the first two Steklov eigenvalues, and sim-
ilarly for ρmax with the sum of arbitrary length. It seems that ρmax = ρ2 in many
cases. But somewhat surprisingly, it seems the maximal value ρmax may occur for
an arbitrarily large value of n.

8.1. Regular Polygons

For the regular N -gon centered at the origin, we collect values of ρmax, g and
γ in Table 1. We also indicate which n-values give ρmax. (These results will be
explained below.)

The starlike approach performs better in each case (since g < γ ), and both the
starlike and conformal mapping approaches improve on the summed HPS bounds
for all n � 2 (since g, γ < 3/2) except that the conformal method gives no result
for equilaterals or squares (N = 3, 4). Lastly, we see γ and g are nearly 1 for
N � 8, which is to be expected since the N -gon is almost circular.

Now we explain how to compute g and γ .

Starlike Method Due to symmetry of the regular polygons, we only need to define
the radius function on (0, π/N ) and multiply all integrals by 2N . The regular
polygon with inscribed circle of radius 1 is given by

R(θ) = sec θ.

Hence

(log R)′ = tan θ,

R2 + (R′)2 = sec4 θ.
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Table 1. Regular polygon centered at the origin with N sides: values of the ratio ρmax and
constants g and γ

N 3 4 5 6 8 10

ρmax 1n = ∞ 1.0013n = 9 1.0097n = 7 1.0061n = 9 1.0016n = 13 1.0012n = 15

g 1.4142 1.1547 1.0844 1.0541 1.0282 1.0174
γ ∞ ∞ 1.3096 1.1374 1.0527 1.0281

The starlike method gives better results than summed HPS bounds, since g < 3/2 in each
case. The conformal method also gives reasonable bounds for 5 sides and higher, since
γ < 3/2 in those cases. On equilateral triangles ρmax seems to equal 1, attained in the limit
as n → ∞ (see the open problem in Section 3)

Therefore (8) and (9) for regular polygons give

g0 = 1 + 2N

2π

∫ π/N

0
tan2 θ dθ = N

π
tan(π/N ) = L2

4π A
,

g1 =
2N
2π

∫ π/N
0 sec4 θ dθ(

2N
2π

∫ π/N
0 sec2 θ dθ

)2 = π

N

(
1

3
tan
( π

N

)
+ cot

( π

N

))
.

Note that g0 equals the isoperimetric ratio for the domain. This fact was observed
already by Aisssen [1, Section 3], for any polygon with an inscribed circle.

The equations above yield

g = √
g0g1 =

√
1 + 1

3
tan2

π

N
= 1 + π2

6N 2 + 7π4

72N 4 + O

(
1

N 6

)
(24)

from which the values in Table 1 are computed. The formula confirms our expec-
tation that g should approach 1 as the number of sides increases to infinity.

Conformal Method The Schwarz–Christoffel map provides a conformal map f
of the unit disk to a regular N -gon, with the origin mapping to the center. The map
is defined through its derivative

f ′(z) = 1

N

√(
1−zN
2

)2 .

Hence

p(θ) = 1

N

√∣∣∣ 1−ei Nθ

2

∣∣∣2
= 1

N
√
sin2(Nθ/2)

.

Due to rotational symmetry of the regular polygon,
∫ 2π
0 eiθ p(θ)2 dθ = 0. Therefore

γ (Ω, 1)2 = γ1(p) (see Lemma 4).
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Symmetry again enables us to reduce integrals to the range θ ∈ (0, π/N ), and
the substitution t = sin2(Nθ/2) then shows that

1

2π

∫ 2π

0
p(θ) dθ = 1

π
B

(
1

2
− 1

N
,
1

2

)
,

where B(a, b) is the beta function. Similarly

1

2π

∫ 2π

0
p(θ)2 dθ = 1

π
B

(
1

2
− 2

N
,
1

2

)
.

This last integral diverges for N = 3, 4, and hence the conformal method fails
to give a finite bound for equilateral triangles and squares. In fact, the Schwarz–
Christoffel map for any domain with an interior angle of π/2 or smaller will give
a weight p that does not belong to L2, and so γ1 is infinite in such cases.

Rewriting the beta function using gamma functions, one can show from (7) that

γ (Ω, 1) = √
γ1(p) = Γ (1 − 4/N )1/2Γ (1 − 1/N )2

Γ (1 − 2/N )2
.

The values of γ in Table 1 follow directly. Further, with the help of the series
expansion of Γ (1 + z) we obtain the expansion

γ (Ω, 1) = 1 + π2

6N 2 + 6ζ(3)

N 3 + 103π4

360N 4 + O

(
1

N 6

)
, (25)

where ζ is the Riemann zeta function. Comparing (24) and (25), we see the starlike
and conformal methods agree up to the second order. The starlike method is better
due to the absence of the cubic term.

8.2. Ellipses

Ellipses are another natural family of examples. We will apply the starlike
method but not the conformal method, since the conformal map from a disk to the
interior of an ellipse is rather complicated (involving incomplete elliptic integrals).

Starlike Method Consider an ellipse centered at the origin with longer semiaxis
of length 1 along the horizontal axis and with eccentricity ε. The perimeter can be
expressed using the complete elliptic integral of the second kind, giving L = 4E(ε).
The radius function of the ellipse is

R(θ) =
√
1 − ε2√

1 − ε2 cos2(θ)
(26)

and hence one can compute

g0 = 1 + 1

2π

∫ 2π

0
(log R)′(θ)2 dθ = 1 − ε2/2√

1 − ε2
,

g1 =
1
2π

∫ 2π
0

(
R2 + (R′)2

)
dθ

(L/2π)2
= 1 − ε2 + ε4/8√

1 − ε2

π2

4E(ε)2
.

(27)
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Table 2. Ellipse centered at the origin with eccentricity ε, giving values of the ratio ρmax
and constant g

ε2 0 1/4 1/2 3/4 (2:1 ell.) 8/9 (3:1 ell.) 99/100 (10:1 ell.)

ρmax 1 1.0058n = 2 1.0340n = 2 1.1311n = 2 1.0896n = 6 1.1566n = 14

g 1 1.0065 1.0382 1.1607 1.4448 3.9995

The starlike method gives better results than summed HPS bounds on most ellipses, since
g < 3/2 when ε2 � 8/9. When the eccentricity is large the starlike method is worse for
each n than summed HPS, since g > 2 when ε2 � 0.95

δ2 = 1/100
δ2 = 1/16
δ2 = 1/9
δ2 = 1/4
δ2 = 1/2
δ2 = 3/4

δ2 = 1 (disk)

Fig. 1. Hippopedes for various choices of δ. For small δ the curve looks like two circles,
while for δ = 1 it is a single circle. The hippopede is convex when δ2 � 1/2.

Hence

g = √
g0g1 = 1 + 5

64
ε4 + 5

64
ε6 + O(ε8).

See Table 2 for values of g and ρmax for a few values of the eccentricity. For
moderate eccentricity we get quite accurate results (meaning g is close to ρmax,
which equals ρ2). From the table one can also compare our results to the summed
HPS bounds, finding that except for highly eccentric ellipses, our bounds are better.

8.3. Hippopedes

Now we invert ellipses with respect to the unit circle centered at the origin,
obtaining the family of curves called hippopedes. The family includes stadium-like
sets and two slightly overlapping “almost-circles”. See Fig. 1. Note these curves
are 2-fold symmetric, and so the optimal origin for g is at the center of the domain
by Lemma 5(ii). Table 3 summarizes our findings, based on formulas for g and γ

developed below.

Starlike Method Let

δ =
√
1 − ε2
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Table 3. Hippopedes centered at the origin, giving values of the ratio ρ2 and the constants
g and γ

δ2 1/100 1/16 1/9 1/4 1/2 3/4 1

ρmax = ρ2 1.1176 1.1016 1.0924 1.0692 1.0281 1.0056 1
g 2.2751 1.4909 1.3214 1.1378 1.0366 1.0064 1
γ 2.3733 1.6078 1.4302 1.2112 1.0627 1.0115 1

The starlike and conformalmethods both give better results than summedHPS for hippopedes
with δ2 � 1/9, since g, γ < 3/2 in those cases. Both methods are worse than HPS for all n
when δ is small, since then g, γ > 2. See Section 8.3

where ε is the eccentricity of the ellipse. The hippopede has radius function

R(θ) =
√
1 − (1 − δ2) cos2 θ =

√
sin2 θ + δ2 cos2 θ,

as one sees by taking the reciprocal in (26) and then multiplying by δ (which is a
harmless rescaling). Hence

R(θ)2 + R′(θ)2 = sin2 θ + δ4 cos2 θ

sin2 θ + δ2 cos2 θ
� 1.

Note that R2 + (R′)2 = 1 for δ = 0 (two touching disks) and also for δ = 1 (one
larger disk). Hence L = 2π in these extreme cases, while in general L � 2π .

The first geometric quantity can be evaluated as

g0 = 1

2π

∫ 2π

0

R(θ)2 + R′(θ)2

R(θ)2
dθ = 1 + δ2

2δ
,

which equals the value found for the ellipse in (27), of course, since (log 1/R)′ =
−(log R)′ and the negative sign disappears after squaring. For the second geometric
quantity we have

g1 =
1
2π

∫ 2π
0

(
R(θ)2 + R′(θ)2

)
dθ

(L/2π)2
= 1 − δ + δ2

(L/2π)2
.

Note that g1 = 1 for two touching disks (δ = 0) and for a single disk (δ = 1).

Conformal Method The inversion of the hippopede in the unit circle is an ellipse
centered at the origin with semiaxes a = 1/δ (evaluate at θ = 0) and b = 1
(evaluate at θ = π/2). The Zhukovsky mapping takes the unit disk to the exterior
of an ellipse, and the reciprocal of that mapping provides a conformal map onto
the hippopede:

f (z) = 1
a−b
2 z + a+b

2
1
z

= 2δz

1 + δ + (1 − δ)z2
.

Take the derivative and square to find

p(θ)2 = | f ′(eiθ )|2 = δ2
δ2 cos2 θ + sin2 θ

(cos2 θ + δ2 sin2 θ)2
.
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Since
∫ 2π
0 p(θ)2eiθ dθ = 0, we have

γ (Ω, 1)2 = γ1(p) =
1
2π

∫ 2π
0 p(θ)2dθ

(L/2π)2
= 1 + δ4

2δ

(
2π

L

)2

.

Hence

γ (Ω, 1) =
√
1 + δ4

2δ

2π

L

g = √
g0g1 =

√
1 + δ2

2δ
(1 − δ + δ2)

2π

L
.

It is easy to check that g < γ for all δ.
Note that g and γ both blow up as the hippopede approaches two touching disks

(δ → 0), and hence the summed HPS bound is certainly better than ours for small
δ. This fact should not be surprising, since the HPS result for the second eigenvalue
is optimal for the double-disk.

8.4. Other Computable Examples

The alert reader will notice that the starlike method outperforms the conformal
one in all three examples so far, namely regular polygons, ellipses, and hippopedes.
On the other hand, the conformal method should be preferred over the starlike
method in two circumstances:

(i) when the domain is not starlike with respect to any choice of origin (for then the
starlike method does not apply) for example the exponential map f (z) = eπ z

takes the unit disk to a domain that wraps around the origin and touches the
real axis at −1;

(ii) when the domain is starlike but does not possess an explicit radius function R(θ)

(for then the starlike method will be difficult to apply in practice) for example
the conformal map f (z) = z + czN+1/(N + 1) takes the disk to an “N -fold
limaçon” when 0 < c < 1, and this domain does not possess an explicit polar
representation when N � 3, so far as we are aware.
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