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Abstract

We establish well-posedness for the family of thin-film equations

{
ht + (hnhxxx )x = 0 in {h > 0},
h = 0, |hx | = 1 on ∂{h > 0} (1)

with n ∈ (0, 14
5 )\{1, 2}. The model (1) with n ∈ (0, 3] has been used to describe

the evolution of a capillary driven thin liquid droplet on a solid substrate in terms
of its height profile h � 0. The family of thin-film equations (1) provides a model
problem to investigate contact line propagation in fluid dynamics under relaxed
slip conditions. The parabolicity of the fourth order parabolic problem degenerates
at the free boundary, which leads to a loss of regularity at the moving contact
point. Our solutions are regular in terms of the two variables d(x) and d(x)3−n ,
where d(x) is the distance to the free boundary. The main technical difficulty in the
analysis of (1) is related to the loss of regularity at the contact points.
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1. Introduction

In this paper, we establish well-posedness for the family of thin-film equations

ht + (hnhxxx )x = 0 in {h > 0} (2)

for the range of parameters n ∈ (0, 14
5 )\{1, 2} and with boundary conditions

h = 0, |hx | = 1, on ∂{h > 0}. (3)

The model (2)–(3) is a fourth order parabolic evolution problem, defined on the
free domain {h > 0}. In the case n ∈ (0, 3], this model has been used to describe
the evolution of a capillary driven thin liquid droplet on a solid substrate in terms
of its height profile h � 0, see Fig. 1. It can be derived from Navier–Stokes
equations in the regime of lubrication approximation, see for example [20,26,40].
The parameter n represents the slip condition imposed at the liquid-solid interface.
In particular, n = 3 corresponds to the no slip condition, while n = 2 is related
to Navier slip; more general slip conditions corresponding to n ∈ (0, 3) have also
been considered, see [5,10,26,36]. The condition (3) of a fixed non-zero contact
angle is a consequence of Young’s Law in the so called partial wetting regime, see
for example [14,39]. We only consider the situation when the contact angle is 45◦,
however all the results in this paper can be easily adapted to the situation when the
contact angle takes another non-zero value.
Contact point movement in fluid dynamics is an ongoing challenge from the mod-
elling as well as the analytical view point, see for example [19,41,42]. Huh and
Scriven have discovered that movement of the contact for a viscous fluid leads to
infinite dissipation if the no slip condition is assumed (this is the so called no slip
paradox) [29]. This singularity of the dissipation can be regularized by allowing for
slip at the liquid-solid interface. The correct regularization of the no-slip paradox
is still disputed, see for example [14,19]. The family of thin-film equations (2)
provide a model problem to investigate contact point propagation under relaxed
slip conditions. Indeed, formal calculation suggests that if n � 3, then the contact
point stays fixed for solutions of (2)–(3). On the other hand, if n = 0, then (2) turns
into a linear parabolic fourth order equation with infinite speed of propagation of
the contact line. This is the motivation to investigate well-posedness and regularity
for solutions of (2) in the range n ∈ (0, 3).
In order to see which generic behaviour for solutions of (2)–(3) can be expected
at the contact point, let us first discuss the behaviour of travelling wave solutions.
With the ansatz h(t, x) = hTW(x − σ t), (2) implies

hn−1
TW (y)h′′′

TW(y) = σ for y > 0 (4)

Fig. 1. Sketch of liquid droplet spreading on solid substrate. In our model, the contact angle
θ is constant and determined by Young’s Law
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with hTW(0) = 0, h′
TW(0) = 1. A power series ansatz for the solution of (4) yields

hTW(y) = y +

⎧⎪⎨
⎪⎩

σ

(4 − n)(3 − n)(2 − n)
y4−n + l.o.t. for n ∈ (0, 3)\{2},

σ

2
y2 ln y + l.o.t. for n = 2.

(5)

In particular, the expansion (5) indicates that solutions of (2)–(3) generically are
not smooth at the contact point. Indeed, if σ �= 0 then solutions of (5) can only
be smooth for n = 1. Also note that the velocity is not determined by the leading
order term in (5). Consequently, the evolution can include both propagation as well
as recession of the contact point. This is different from the situation of the related
second order equation, the porousmedia equation, where the support of the solution
can only propagate, see for example [15]. The application of a power series ansatz
on (4) for n � 3 shows that the linear term in the expansion can only be the leading
order term of the expansion at the contact point if the velocity σ is zero. This
suggests that movement of the contact point can only occur if n < 3 for solutions
that satisfy the boundary condition (3).
Note that the evolution in (2)–(3) can be understood as a gradient flow with energy
given by the total interfacial energy between liquid, air and solid. The decrease of
interfacial energy by viscous dissipation is described by the formula

d

dt

(∫
R

h2x dx + L 1{h > 0}
)

= −
∫
R

hnh2xxx dx � 0, (6)

which is valid for any sufficiently regular solution of (2), see also [13] for a more
detailed view on the energetics of the thin-film equation in the partial wetting
regime. Indeed, in the regime of lubrication approximation, the left hand side of
(6) describes the net interfacial energy of air, liquid and solid in the lubrication
approximation regime, while the term on the right hand side of (6) is the viscous
dissipation.
There exists a well-developed theory for the existence, but not uniqueness, of weak
solutions for (2) in the range n ∈ (0, 3). Most of this theory is concerned with the
case of complete wetting when the boundary condition (3) is replaced by a zero
contact angle condition at the free boundary, that is h = hx = 0. The existence of
weak solutions in the complete wetting regime in the case of one space dimension
has been shown in [6,9,11], for the higher dimensional case and further references
see [12,16,28]. The existence of weak solutions for (2) with boundary condition
(3) has been proved for n = 1 in [37]. The existence of weak solutions for general
mobility n ∈ (0, 3) using a different method has been addressed in [13]. However,
the uniqueness of weak solutions is an open problem. Moreover, the notion of a
weak solution is not strong enough to state (2) explicitly as a free boundary problem
since neither boundary condition nor the speed of the free boundary are well-
defined in the solution space. For this reason, the position of the free boundary is
only implicitly given in the definition of weak solutions. However, some qualitative
properties of weak solutions have been shown such as a weak notion for finite speed
of propagation [7,8,27,30] and the existence of a waiting time [17,25].
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The existence and uniqueness of classical solutions for (2) have previously been
known only for n = 1 and n = 2. Well-posedness for (2) in the case of complete
wetting and for n = 1 has been derived in [24]. For initial data near the stationary
solution and in the situation of complete wetting, the authors show long-time exis-
tence of solutions. Moreover, smoothness of the solutions for all positive times is
shown. Well-posedness in weighted Hölder spaces has been shown in [23] using a
different proof based on Safonov’s method. A well-posedness result for n = 1 in
the case of partial wetting is included in [32,33]. Note that there is also related work
for the second order porous media equation, see [2–4,18,34]. The arguments used
for the porous media equation, however, rely strongly on the maximum principle
which does not hold for (2).
The first well-posedness result for solutions of (2) with singular expansions has
been given in [31]. In this paper, the author proves well-posedness for (2) with
n = 2 in a function space which allows for the logarithmic expansions in (5). The
result is obtained by a decomposition of the solution into a part which captures the
logarithmic singular expansion and a homogeneous remainder. The homogeneous
part is analyzed using the tool of Mellin transform. The case of complete wetting
with n = 2 is addressed in [21,22]. The first paper is concerned with the analysis of
source type solutions. Using a sophisticated shooting argument, the authors are able
to show analyticity for a source type solution with singular expansion at the moving
contact point. The result in [21] is a corresponding well-posedness theory. The
methods used in [21] differ from the ones used in [31]. In particular, themethods are
based on the real space formulation rather than the Mellin transform. Furthermore,
in [21], a systematic analysis for coercivity and ellipticity for degenerate linear
operators is developed. Note that a decomposition of functions into a homogeneous
part and a polynomial remainder has been used in the analysis of elliptic equations
on non-smooth domains, see for example [32,33,35]. A related decomposition has
been applied in the analysis of the porous media equation in by Angenent [3,4].
In this paper, we show well-posedness in a class of solutions which are not regular
in x , but instead regular as a function of the two variables d(x) and d(x)3−n , where
d(x) is the distance to the free boundary. For this, we adapt and extend the methods
used in [31] to the general equation of type (2) in the range n ∈ (0, 14

5 ). There
are some differences with respect to the case n = 2. First, note that the solution in
(5) has a different expansion at the contact point for n = 2 and in particular, the
function is regular as a function of log d(x). On the other hand, the solutions of
the problem considered in this paper cannot be expressed as a regular function of a
single variable (5). Also the treatment of the nonlinear operator is more involved,
sincewe have to dealwith a generalmobility,while the nonlinear operator is bilinear
in [31]. One particular issue is the loss of regularity for n → 3 and the loss of control
on the velocity for n → 0. It would be interesting to extend the estimates to the full
range n ∈ (0, 3). However, with the L2-based approach we used, an extension of
the arguments to the case n ∈ [ 145 , 3) is not straightforward. This is related to the
fact that the nonlinear operator gets more singular in this regime and no dissipative
estimate is available which is compatible with the singular expansions of type (5).
In the course of the analysis, we also derive corresponding interpolation inequalities
which might be of more general interest.
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The structure of the paper is as follows. In Section 2, we transform the equation onto
a fixed domain. In Section 3, we introduce the norms and spaces for the solution.
In Section 4, we state the main results of the paper. The proofs of these results are
given in the following Sections 6–10. In the appendix, we give some results about
the consistency of the expansion of the solution at the free boundary.

2. Reformulation on Fixed Domain

We first consider the situation when h has a single free boundary, that is

supp h = [s(t),∞). (7)

We first reformulate the model such that the support of the fluid is fixed in the new
coordinates. We follow an approach which has been used for example in [2,24,31],
using a reference frame that moves with the contact point: We introduce x̂ by

x̂ = x − s(t). (8)

Expressed in terms of the new variable x̂ , (2) turns into

ht − ṡ(t)hx̂ + (hnhx̂ x̂ x̂ )x̂ = 0 for x̂ ∈ (0,∞). (9)

For better readability, we omit the hats on top of the coordinates in the sequel.
Note that other transformations have been used as well to fix the free boundary, in
particular, a Van Mises transformation has been used for the related porous media
equation, see [18,34], while volumetric coordinates have been used in [21].
For a fourth order parabolic evolution equation with free boundary, one would
usually expect three boundary conditions: two boundary conditions since it is a
fourth order equation, and one additional boundary condition which describes the
velocity of the free boundary. Interestingly, two boundary conditions are sufficient
for equation (2) since the velocity of the free boundary is implicitly determined
by (2)–(3). Indeed, taking the limit x → 0 in (9) and in view of (3), the speed of
propagation can be expressed in terms of the profile as

ṡ(t) = lim
x→0

(hnhxxx )x . (10)

By application of l’Hôspital’s rule and in view of (3), this implies

ṡ(t) = lim
x→0

hn−1hxxx = lim
x→0

xn−1hxxx . (11)

Inserting (11) into (9), we hence arrive at the following model

⎧⎪⎨
⎪⎩
ht − hx (x

n−1hxxx )|x=0 + (hnhxxx )x = 0 for x ∈ (0,∞),

h = 0, hx = 1 for x = 0,

h = hin, for t = 0,

(12)
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where here and in the sequel we use the notation ·|x=0 for the trace operator at
x = 0. We first consider the situation, where the wetted region approximates a
cone, in particular hx → 1 for x → ∞. We introduce the new dependent variable

f (t, x) = hx (t, x) − 1. (13)

Derivating (12) in x , we get

ft − fx
(
xn−1 fxx

)
|x=0

+ (hn fxx)xx = 0. (14)

In terms of f , the model (12), hence can be expressed as⎧⎪⎨
⎪⎩

ft + A f = N ( f ) for x ∈ (0,∞),

f = 0 for x = 0,

f = fin for t = 0,

(15)

where the linear operator A and the nonlinear operator N ( f, f ) are given by

A f = (
xn fxx

)
xx , (16)

N ( f, f̃ ) =
(
(xn − hn) f̃x x

)
xx

+ fx
(
xn−1 f̃x x

)
|x=0

(17)

with h = x + ∫ x0 f dx̃ . We use the notation N ( f ) := N ( f, f ). The analysis in this
paper relies on the dissipative structure of (15). The energy estimate (6) in terms
of f takes the form

d

dt

∫ ∞

0
f 2 dx +

∫ ∞

0
hn f 2xx dx = 0. (18)

Indeed, (18) follows by using f as a test function on (14) and integration by parts.
Note that the second term in (6), related to the interfacial energy between liquid
and solid is not seen in this dissipation relation. Indeed, this term is related to the
size of the support of the droplet which is infinite in the situation of (18).
We next consider the situation,where the initial profile represents a “single droplet”.
More precisely, we assume that supp hin is compact and simply connected. Further-
more,we assume that hin > 0 in the interior of the support. By the scaling invariance
(50) of the model, it is enough to consider the case when supp hin = (0, 1). We
apply a local variant of the transformation (8). The following coordinate transform
has been for example used by Angenent [2] for the 1-d porous medium equation,
see also [23] for an analogous transformation. We define M(t) as the center of the
wetted region and D(t) as its diameter, that is

M(t) := 1

2
(s+(t) + s−(t)), D(t) := s+(t) − s−(t). (19)

The time-dependent footprint (s−(t), s+(t)) of the droplet is then transformed onto
a fixed set by the coordinate transformation

x̂ = 1

D(t)
(x − M(t)) + 1

2
, t̂ = t, ĥ(t̂, x̂) = 1

D(t)
h(t, x). (20)
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In particular, we have ht = Ḋĥ + Dĥt̂ + Dĥx̂ (
x−M
D )t and (hnhxxx )x =

Dn−3(ĥn ĥ x̂ x̂ x̂ )x̂ . It follows that, in the new variables, equation (2) is transformed
onto the fixed domain (t̂, x̂) ∈ (0,∞) × (0, 1) and takes the form

L (ĥ) := (Dĥ)t̂ − (x̂∂t̂ s+ + (1 − x̂)∂t̂ s−
)
ĥ x̂ + Dn−3

(
ĥn ĥ x̂ x̂ x̂

)
x̂

= 0. (21)

The corresponding boundary conditions are

ĥ = 0, |∂x̂ ĥ| = 1 for x̂ = 0, 1. (22)

We will skip the hats in our notation in the sequel.

3. Spaces

By (5), solutions of (2) are singular at the moving contact points. In particular, by
(5), we expect that h − (x − s(t)) � (x − s(t))4−n and thus f � (x − s(t))3−n =
(x − s(t))α near the contact point x = s(t), where for n ∈ (0, 3)\{1, 2} we define

α := 3 − n ∈ (0, 3)\{1, 2}. (23)

Note that the power xα is also an element of the kernel of A. Indeed, one can
calculate that the kernel of A for n ∈ (0, 3)\{1, 2} is given by

kern A = span〈xα−1, 1, xα, x〉. (24)

The four dimensional space kern A is hence spanned by the two regular functions 1
and x (which are smooth up to the boundary) and by the two singular functions xα

and xα−1. In particular, repeated action of ∂x on either xα or xα−1 eventually leads
to a blow up of the derivated function at x = 0 which leads to some technical issues
in the analysis of (2). The power series ansatz (5) suggests that solutions of the
nonlinear equation (2) have a certain power series expansion in the two variables x
and xα at the moving contact point. In the following, we define norms and spaces
which allow for such expansions at the contact point, see the appendix for more
details.

3.1. Weighted Sobolev Spaces

We will use weighted Sobolev spaces: Let n ∈ (0, 3), � ∈ N0 and let ε ∈ R with
ε + �n

2 > −1. We then define for f, g ∈ C∞
c ([0,∞))

〈 f, g〉H�
:=
∫ ∞

0
x

�n
2 +ε(∂�

x f )(∂
�
x g) dx and [ f ]H�

:= 〈 f, f 〉1/2H�
. (25)

The corresponding norms for k ∈ N0 are defined by

‖ f ‖Hk :=
(

k∑
�=0

[ f ]2H�

)1/2

. (26)



1090 H. Knüpfer

We define Hk as the completion of C∞
c ([0,∞)) with respect to the norm ‖ · ‖Hk .

Furthermore, H̊k is the completion ofC∞
c ((0,∞))with respect to the norm ‖ ·‖Hk .

In Lemma5.4,wewill show that, under certain assumptions on ε, H̊k is the subspace
of functions f ∈ Hk which satisfy f = o(xδk ) near x = 0. Note that for ε = 0
the homogeneous [·]H0 -norm, which coincides with the L2-norm, represents the
physical energy of the model, cf. (18).
Most of the results in this paper hold in the case ε = 0. We have chosen to work
with more general weights for a number of reasons. One reason is that there is a
failure of the elliptic estimates and Hardy’s inequality for a certain discrete set of
values n ∈ (0, 3) if ε = 0. This is analogous to a similar phenomenon for elliptic
equations on singular domains where there is a loss of regularity for certain angles.
The second reason is that we can use ε to extend the range of values n where the
estimates apply. Indeed, with the assumption ε = 0, with our methods we could
only prove well-posedness in the set n ∈ (0, 5

2 )\E for some finite set E . With the
introduction of ε we are able to extend our results to the larger set n ∈ (0, 14

5 ). We
will impose certain conditions on ε, which are stated in Section 3.3.
For n > 1

2 , we also need to use homogeneous norms of type (36), related to the
negative index −2: For n ∈ (0, 3), we say that f ∈ H−2, if

[ f ]H−2
:=
(∫ ∞

0
x−n+εF2 dx,

)1/2

< ∞ (27)

for some F with Fxx = f . The inner product 〈 f, g〉H−2 is defined correspondingly.
The definition of norms and spaces can be generalized to the case of compact
domains.We consider the particular caseΩ := (0, 1). Suppose that f, g ∈ C∞(Ω).
With the notation d(x) := dist(x, ∂Ω), the local variant of (25) is

〈 f, g〉H�(Ω) :=
∫

Ω

d(x)
�n
2 +ε(∂�

x f )(∂
�
x g) dx . (28)

The corresponding norms [·]Hk (Ω) and ‖·‖Hk (Ω) are defined analogously.As before,
the corresponding spaces are defined by completion. Most of our analysis will,
however, be concerned with the global setting (25)–(26).
It is convenient to write the homogeneous norms in the form

[ f ]2H�
=

�∑
j=0

∫ ∞

0
|x−δ�+ j (∂

j
x f )|2 dx

x
, (29)

where δ� is given by

δ� := �

4
(4 − n) − ε + 1

2
. (30)

The parameter δ� characterizes the behaviour of the homogeneous norm [·]H�
under

rescaling. Indeed, with the change of coordinates f̃ (λx) = f (x), we have

[ f ]H�
= λδ�

[
f̃
]
H�

. (31)
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Let k ∈ N and suppose that (44) holds. Then for any f ∈ H̊k , we have

‖x−γ+ j∂
j
x f ‖L∞((0,∞)) � C‖ f ‖Hk ∀0 � j � k − 1 and γ ∈ [δ j , δk]. (32)

Estimate (32) follows from Lemma 5.4.

3.2. Weighted Sobolev Spaces with Singular Expansion

In view of (5), solutions of (15) are, generally, not regular at the boundary and in
particular f (t, ·) �∈ Hk . In the following, we hence define a larger class of spaces
Xk , where expansions of type (36) are possible.
We first specify the type of power series expansions in x and xα which can appear
at the contact point. The space of power series expansions is defined by

P :=
⎧⎨
⎩p =

∑
i, j∈Z

ai j x
i+ jα : |ai j | is summable

⎫⎬
⎭ (33)

and for coefficients ai j ∈ R and with x � 0. We define the corresponding norm by

‖p‖2P :=
∑
i, j∈Z

|ai j |2. (34)

This norm is finite for p ∈ P since �1 ⊂ �2. Notice that the space P , equipped
with the norm (34) is not complete. Our reason to choose the space P (instead
of the larger space of polynomials which are bounded in the �2-norm) is that for
polynomials in P , we have absolute convergence of the power series and hence
the order of summation does not change the sum. We set

IX := {α, 1} ∪ {
i + jα : i, j ∈ Z, i + j � 3, i � 0, j � 1

}
,

IY := {
i + jα : i, j ∈ Z, i + j � 1, i � −1, j � 0

}
,

(35)

see also Fig. 2. We define the subspaces PX ,PY of P withPX ⊂ PY by

PX :=
⎧⎨
⎩

∑
i+ jα∈IX

ai j x
i+ jα : ai j = 0 for i, j �∈ IX

⎫⎬
⎭ ,

PY :=
⎧⎨
⎩
∑

i+ jα∈IY
ai j x

i+ jα : ai j = 0 for i, j �∈ IY

⎫⎬
⎭ .

(36)

We also define PX,δk , respectively PY,δk , as the subspace of PX , respectively
PY,δk , where only powers of order δk or less appear, that is with the extra condition
that i + jα � δk . The choice of these spaces is motivated by the structure of the
linear and nonlinear operator, cf. (16) and (17). We will show that the solution
satisfies f (t, ·) − p(t) ∈ Ck([0,∞)) for some p(t) ∈ PX for all t > 0 and for
sufficiently regular initial data. The space PY is used to describe analogously the
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Fig. 2. The two sets illustrate the monomials xi+ jα included into the spaces PX (solid
boundary) and PY (dotted boundary). The four elements in the kernel of A are marked by
solid circles

expansion of N ( f ). Some facts about the relation of PX , PY and the operator
(15) are given in the appendix.
From (32) it follows that for any f ∈ Hk , the expansion of f at the contact point
is defined up to an order of xδk . The corresponding subspaces of PX and PY are
denoted by PX,δk , respectively PY,δk . We call the orthogonal projection pδk of
p on the space PX,δk the expansion of f of order δk . Note that by (32), pδk is
well-defined for f ∈ Xk .
For k � 0, we define the space DX as the set

DX =
{

f ∈ C∞((0,∞)) : ∃p ∈ PX s.t. lim
x→0

∂k( f − p)(x) = 0 ∀k ∈ N

and ∃R > 0 s.t. supp f ∈ [0, R)]
}
.

(37)

For f ∈ DX , k ∈ N0, we define the norm ‖ f ‖Xk by

‖ f ‖2Xk
:=

k∑
j=0

[ f ]2X j
, where [ f ]Xk

:= [
f − pδ j

]
Hj

(38)

and where pδ j ∈ PX,δ j is the expansion of f of order δ j . The corresponding
space Xk , is the completion of DX with respect to (38). For g ∈ DY , k ∈ N0, we
correspondingly define

‖g‖2Yk :=
k∑
j=0

[g]2Y j
, where [g]Yk := [

g − pδ j

]
Hj

, (39)
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where pδ j ∈ PY,δ j is the expansion of g of order δ j . The spaces DY , Yk are
defined analogously. Note that Xk and Yk are Hilbert spaces. Related norms have
been used for example in [21,31]. Let pδk ∈ PX be the expansion of f of order
δk . In Proposition 5.5, we show that all coefficients of pδk are estimated by ‖ f ‖Xk ,
that is

‖pδk‖P � Cn‖ f ‖Xk . (40)

A short calculation yields that the norm (38) can be estimated by

cnk(‖ f − ζ pδk‖Hk + ‖pδk‖P ) � ‖ f ‖Xk � Cnk(‖ f − ζ pδk‖Hk + ‖pδk‖P ),(41)

where ζ ∈ C∞
c ([0,∞)) is any fixed universal cut-off function with

ζ(x) = 1 for x � 1
4 , ζ(x) = 0 for x � 1

2 , ζx (x) � 0 for x � 0. (42)

The estimate (41) shows that the expression

‖ f − ζ pδk‖Hk + ‖pδk‖P (43)

provides an equivalent way to define the norm ‖ · ‖Xk . The form (43) has been used
in [31], the version (38) of the norm is used in [21]. The subtraction of regular
polynomial expansions has been used in the theory of elliptic equations on non
smooth domains, for some introduction and references, see for example [35]. In
the following we will use both representations of the norm. The corresponding
statements also hold for the space Yk and its norm.

3.3. Conditions on ε

For given k ∈ N0, we will assume that ε satisfies the following four conditions.
The first condition is

δ0, . . . , δk �∈ N0 ∪ {α − 1, α}, (44)

where the (ε-dependent) numbers δ� are defined in (30). This condition avoids
critical scalings in the application ofHardy’s inequality (Lemma5.1) and the elliptic
estimates for the linear part of the operator (Lemma 6.3). The second condition
ensures coercivity of the linearized parabolic evolution operator (Lemma 6.2):
(
n ∈

(
0,

5

2

)
and ε ∈ [0, ε0)

)
or

(
n ∈

[
5

2
, 3

)
and ε ∈

[
0,

3 − n

2

))
,

(45)

where ε0 ∈ (0, 1
4 ) is the constant from Lemma 6.2. The next condition ensures that

the ‖ ·‖H2 -norm is strong enough to formulate the condition f (0) = 0. This is used
in the proof of Lemma 7.1. The condition is:

ε < 3 − n. (46)



1094 H. Knüpfer

The last condition is related to the nonlinearity of the model:

ε > 4n − 11. (47)

This condition ensures that N ( f ) is locally L2 integrable in terms of the measure
xεdx , related to our base norm [·]H0 . We need this property to test the equation.
It can be easily checked that for n ∈ (0, 14

5 ) there is always a non-empty interval
of parameters ε which satisfy the conditions (44)–(47). Indeed, for n ∈ (0, 5

2 ),
conditions (45)–(47) are satisfied for all ε ∈ [0,min{ε0, 3 − n}). For n ∈ [ 52 , 14

5 ),
conditions (45)–(47) are satisfied for all ε ∈ (max{0, 4n−11

2 }, 3−n
2 ). Furthermore,

(44) holds for all but a finite number of values for ε for any given n ∈ (0, 3) and
k ∈ N. Also, the two conditions (46) and (47) cannot be both satisfied if n � 14

5 .

3.4. Discussion on the Spaces and Their Relation to the Model

We shortly discuss the differences of the spaces Hk and Xk and their relation to the
model (2)–(3). Let n ∈ (0, 3)\{1, 2}, k ∈ N, and suppose that ε satisfies (44)–(47).
By (74) and by (44), it follows that xβζ ∈ Hk for β �∈ Z is equivalent to β > δk
where ζ is the cut-off function from (42). By (30),

δ0 = −1

2
(1 + ε), δ1 = 1

4
(2 − n − 2ε), δ2 = 1

2
(3 − n − ε). (48)

By (45)–(46), we have δ0 < 0, 0 < δ2 < 3 − n and therefore

X2 = { f ∈ H2 : f (0) = 0}. (49)

In particular, the trace of f at x = 0 is well-defined in Hk , H̊k and Xk for k � 2.
By the definition of the spaces, for k � 2, we have f (0) = 0 for all f ∈ Xk or
f ∈ H̊k , but generally not for functions f ∈ Hk .
We next discuss the relation of the norms to the nonlinear operator: the non-

linearity of (15) is characterized by its scaling invariance and by the expansion of
the nonlinearity N ( f ). Observe that equation (15) is invariant with respect to the
scaling

(x, t, f ) �→
(
λx, λ4−nt, f

)
. (50)

By (31), the only homogeneous norm [ f ]Hk
, k ∈ R, which is formally scaling

invariant under the rescaling (50) of x and f is [·]Hkcrit
, where

kcrit = 2 + 2ε

4 − n
∈
(
1

4
, 2

)
. (51)

Note that it is possible to define homogeneous norms of type [·]Hk for general k ∈ R

in terms of the Mellin transform, see Section 6. In this paper, we will, however,
only use norms with integer indices. Note that x2α−1 is the most singular expansion
of Y0 for large n (and also the most singular expansion which generically appears
in N ( f )). Indeed, (47) is equivalent to 2α − 1 > δ0. It follows that

Y0 = H0. (52)
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3.5. Norms in Space and Time

Since the considered model is a boundary value problem, we need to consider
parabolic norms where the maximal number of space and time derivatives are
coupled. For f ∈ C∞([0,∞),DX ) and for k � 0, we define

‖ f ‖2T Xk
:=

∑
2�4i+ j�k

[
∂ it ( f − pδ j )

]2
L2(Hj )

+
∑

0�4i+ j�k−2

[
∂ it ( f − pδ j )

]2
C0(Hj )

,

(53)

where i, j ∈ N0 and where pδ j ∈ PX is the expansion of f of order δ j . For

g ∈ C∞([0,∞),DY ), k � 0 and n ∈ (0, 5
2 ], we correspondingly define

‖g‖2TYk :=
∑

0�4i+ j�k

[
∂ it (g − qδ j )

]2
L2(Hj )

+
∑

0�4i+ j�k−2

[
∂ it (g − qδ j )

]2
C0(Hj )

,

(54)

where i, j ∈ N0 and where qδ j is the expansion of g of order δ j . For n ∈ ( 52 , 3),
we also include the homogeneous norm (27) with negative index, that is we set

‖g‖2TYk := right hand side of (54) +
∑

0�4i−2�k

[
∂ it g
]2
L2(H−2)

. (55)

The reason for including the norms with negative indices into the definition of the
norm for large values of n is the following: if f ∈ T Xk+2 is the solution of (2), then
in general the power x2α−1 is included in the expansion of N ( f ), cf. Lemma 10.1.
We hence need to control the coefficient in front of the expansion x2α−1 by the
norm ‖g‖TYk . However, for n ∈ ( 52 , 3), we have 2α − 1 = 5 − 2n < δ0. This is
the reason why we need to include the homogeneous norm [·]H−2 into the norm
‖·‖TYk . On the other hand, in general, the only control, we have on f for x → ∞ is

f (xk) � Cx
− 1

2
k for some sequence xk → ∞ since X2 ⊂ L2(0,∞). In particular,

we might have ‖N ( f )‖H−2 = ∞ for n ∈ (0, 5
2 ). This is the reason, why we cannot

include the norms with negative index for small values of n, see also Lemma 8.3
for more details. Note also that we include the supremum norms into the definition
of ‖ · ‖Xk because we do not have a trace estimate in these norms. Note also that
the second sum is empty for both (53) and (54) for k < 2.
The spaces T Xk+2 are defined by completion of C∞

c ([0,∞),DX ) with respect to
the norms ‖ · ‖T Xk+2 , correspondingly the spaces TYk−2 are defined by completion
of C∞

c ([0,∞),DY ) with respect to the norm ‖ · ‖TYk−2 . Let T > 0, Ω ⊂ R and let
QT = (0, T )×Ω . The corresponding spaces T Xk+2(QT ) and norms ‖·‖T Xk+2(QT )

(respectively TYk−2(QT ) and norms ‖ ·‖TYk−2(QT )) are defined analogously where
the interval of integration in time is (0, T ) and where we use (28) instead of (25).
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3.6. Compatibility Conditions

In order to have higher regularity of the solution, we need to impose compatibility
conditions for the initial data. For fin ∈ Xk , g ∈ T Xk−2, consider first a solution
f ∈ T Xk+2 of the linear equation

⎧⎨
⎩

ft + A f = g for (x, t) ∈ (0,∞)2,

f = 0 for x = 0,
f = fin for t = 0.

(56)

Recall that the condition f = 0 for x = 0 is included in the definition of the space
T Xk+2. Derivating (56) in time and inductively using (56), we get

∂
j
t f = (−A) j f +

j−1∑
i=0

(−A)i∂
j−i−1
t g. (57)

Since f = 0 at x = 0, we also have ∂
j
t f|x=0 = 0, for all j ∈ N0 such that this

expression is well-defined. By evaluating (57) at t = x = 0, it hence follows that
any solution f ∈ T Xk+2 of the parabolic equation (56), the initial data and right
hand side necessarily satisfies (−A) j fin + ∑ j−1

i=0 (∂ it (−A) j−1−i g)|t=0 = 0 at
x = 0, for all j ∈ N0 such that the identity is well-defined. More generally, since
f ∈ T Xk we have ∂ tj f ∈ C0(Xk−4 j ) and hence

(−A) j fin +
⎛
⎝ j−1∑

i=0

(−A)i∂
j−i−1
t g

⎞
⎠

|t=0

∈ Xk−4 j for 0 � 2 + 4 j � k. (58)

We call (58) the compatibility conditions up to order k for the linear problem
with initial data fin and right hand side g. With the identification g := N ( f ), the
conditions (58) can also be interpreted as compatibility conditions for the nonlinear
equation (15). Indeed, by repeated use of (15), all time derivatives of gwhich appear
in (58) can be replaced by space derivatives. The ( j = 1, k = 6)-compatibility
condition for the nonlinear equation is for example N ( fin)−A fin ∈ X2, the ( j = 2,
k = 10)-compatibility condition is N ′( f )(N ( fin)−A fin)−AN ( fin)+A2 fin ∈ X2.
We formalize this observation as follows: For any smooth Q : R → R, we define
DA−N Q( f ) by Q′( f )(N ( f ) − A f ). This inductively defines D i

A−N N ( fin) for
i ∈ N. The compatibility condition for the nonlinear operator is then given by

(−A) j fin +
j−1∑
i=0

(
(−A)iD

j−i−1
A−N N ( fin)

)
|t=0

∈ Xk−4 j for 0 � 2 + 4 j � k.

(59)

With this understanding, we will refer to (59) as the compatibility condition of
order k for the nonlinear problem (15) with initial data fin.
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4. Main Results

Weestablishwell-posedness for themodel (2) in certain classes ofweightedSobolev
spaces. In particular, we show long-time existence for initial datawhich are a pertur-
bation of the stationary solution. We also show short-time existence for compactly
supported initial data.
Our first result establishes the existence and uniqueness of classical solutions for
n ∈ (0, 14

5 )\{1, 2} for initial data in H2. The result holds in a scale of weighted
Sobolev spaces, represented by the parameter ε.

Theorem 4.1. (Well-posedness) Let n ∈ (0, 14
5 )\{1, 2} and suppose that ε satisfies

(44)–(47) for k = 4. Then there is δ > 0 (depending on n, ε) such that for any
fin ∈ H2 with fin(0) = 0 and ‖ fin‖H2 � δ, there is a unique solution f ∈ T X4
of (15). Furthermore, there is C < ∞ (depending on n, ε) such that

‖ f ‖T X4 � C‖ fin‖H2 . (60)

Note that no compatibility condition needs to be assumed for Theorem 4.1. Let
us also remark that well-posedness in the partial wetting case for n = 1 has been
established in [32]. The solutions in this case are smooth and in particular, well-
posedness in this case holds for regular Sobolev spaces. Well-posedness for n = 2
has been shown in [31]. In this case the solutions have a logarithmic expansion
at the moving contact point. Together with these results, Theorems (4.1) hence
establishes well-posedness for (2) in the range of parameters n ∈ (0, 14

5 ).
The second result addresses the case of initial data with higher regularity:

Theorem 4.2. (Higher regularity) Let n ∈ (0, 14
5 )\{1, 2}, k � 2 and suppose that ε

satisfies (44)–(47). There is δ > 0 (depending on n, ε, k) such that for any fin ∈ Xk

with ‖ fin‖Xk � δ and such that the compatibility conditions (59) are satisfied up
to order k, there is a unique solution f ∈ T Xk+2 of (15). Furthermore, there is
C < ∞ (depending on n, ε, k) such that

‖ f ‖T Xk+2 � C‖ fin‖Xk . (61)

Indeed, one would expect that the solution becomes analytic as a function of the
two variables x and xα for positive times. Our next result shows that the solution
indeed gains regularity (viewed as a function of two variables):

Corollary 4.3. (Smoothing) Suppose that the assumptions of Theorem 4.1 hold.
Then for all k ∈ N, there is T < ∞ and C < ∞ (both depending on n, ε, k) such
that the solution f of Theorem 4.1 satisfies

‖ f ‖T Xk+2([T,∞)×(0,∞)) � C‖ fin‖X2 . (62)

The results of Theorem 4.2 can be rephrased in terms of the profile h:

Corollary 4.4. Suppose that the assumptions of Theorem 4.2 hold. Let f be the
solution from Theorem 4.2 and let h = x + ∫ x0 f .



1098 H. Knüpfer

1. The function h solves the thin-film equation (2). The profile h has an expansion
up to order δk + 1. It has the form
h(x − s(t), t) = x +

∑
i+ jα−1∈(δ2,δk )∩IX

ci+ jα(t)xi+ jα + o(xδk ) (63)

= x+c1+α(t)x1+α+c1+2α(t)x1+2α+· · ·+c2+α(t)x2+α + · · ·
for some time-dependent coefficients ci j (t) and where α := 3−n. The position
of the contact point s(t) is given as the solution of the ordinary differential
equation

ṡ(t) = α(α − 1)cα(t) (64)

with s(0) = 0. In particular, the speed of propagation is finite.
2. The function h can be written in the form h(t, x) = H(t, x, xα) for some

function H(t, x, y). For any m > 0 there exists T > 0 such that H(t, ·, ·) ∈
Cm([0,∞)2) for all t > T .

We also have short-time existence, uniqueness and regularity for (2) in the case of
initial data in the form of a single droplet:

Theorem 4.5. (Droplet case) Let n ∈ (0, 14
5 )\{1, 2}, k � 2, Ω = (0, 1) and

suppose that ε satisfies (44)–(47). Suppose that hin ∈ H1(Ω)with hin > 0 in (0, 1)
and with hin = 0, |hin,x| = 1 on ∂Ω . Suppose that f0 := [hin − 1

2 x(1 − x)]x ∈
Xk(Ω) satisfies the corresponding compatibility condition to (59). Then there exists
τ > 0 and a unique short–time solution h of (21)–(22) with initial data hin in the
time interval [0, τ ] and such that f := [h − 1

2 (1 − x2)]x ∈ T Xk+2([0, τ ] × Ω).
Furthermore, we have

‖ f ‖T Xk+2([0,τ ]×Ω) � C‖ fin‖Xk (Ω),

where C < ∞ depends on n, ε, k. The solution depends continuously on the initial
data.

Notation In the following, we do not explicitly differentiate in the notation if a
constant depends on the parameters k, n, ε, that is we write C = Cnkε. Throughout
the paper, we also use the notation α = 3 − n.

5. Some Interpolation Inequalities

In this section, we state and prove some basic estimates which are useful when
working with the weighted spaces Hk and Xk .
We first recall Hardy’s inequality for L2-norms and L∞-norms:

Lemma 5.1. (Hardy’s inequalities) Let γ �= 0 and suppose that xγ+1 fx ∈
L2((0,∞), dx

x ). If γ < 0, then c := limx→0 f (x) is well-defined. If γ > 0,
then c := limx→∞ f (x) is well-defined. In both cases, we have∫ ∞

0
|xγ ( f − c)|2 dx

x
� 1

γ 2

∫ ∞

0
|xγ+1 fx |2 dx

x
, (65)

sup
x∈(0,∞)

|xγ ( f − c)|2 � 4

γ

∫ ∞

0
|xγ+1 fx |2 dx

x
. (66)
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Proof. We sketch the proof for the case γ < 0, the argument for γ > 0 proceeds
analogously, see for example the related proof in the appendix of [24]. In order to
see that the limit limx→0 f (x) exists, we note that for any 0 < y < z < 1, we have

| f (z) − f (y)| �
∫ z

y
|x fx | dx

x
�
(∫ z

y
|xγ fx |2 dx

x

)1/2 (∫ z

0
|x−γ |2 dx

x

)1/2

,

which implies that f (xk) is a Cauchy sequence for every sequence xk → 0. By
replacing f by f −c,wemayhence assumewithout loss of generality that f (0) = 0.
Estimates (65)–(66) then follow by integration by parts and application of Cauchy–
Schwarz. ��

The next two lemmas yield control of the asymptotic expansion of type PX in
terms of weighted L2-estimates. The first lemma is a multiplicative variant of a
corresponding lemma in [21]:

Lemma 5.2. Let γ1 < γ2. Then for any β ∈ [γ1, γ2], there is Cβ < ∞ (depending
on β), such that for any λ ∈ R we have

λ2 � Cβ

(∫ ∞

0

∣∣∣∣ 1

xγ1
f

∣∣∣∣
2 dx

x

) γ2−β

γ2−γ1
(∫ ∞

0

∣∣∣∣ 1

xγ2
( f − λxβ)

∣∣∣∣
2 dx

x

) β−γ1
γ2−γ1

(67)

for any f : (0,∞) → R such that the right hand side of (67) is well-defined and
finite.

Proof. For all R > 0, we have

λ2 � Cβ R
−2β

∫ 2R

R
|λxβ |2 dx

x

� Cβ R
−2β

∫ 2R

R
| f |2 dx

x
+ Cβ R

−2β
∫ 2R

R
|λxβ − f |2 dx

x
(68)

� Cβ R
2(γ1−β)

∫ ∞

0

∣∣∣∣ 1

xγ1
f

∣∣∣∣
2 dx

x
+ Cβ R

2(γ2−β)

∫ ∞

0
| 1

xγ2
( f − λxβ)|2 dx

x
.

Estimate (67) follows by minimizing the right hand side of (68) in R, that is with

R :=
(∫ ∞

0

∣∣∣∣ 1

xγ1
f

∣∣∣∣
2 dx

x

) 1
2(γ2−γ1)

(∫ ∞

0

∣∣∣∣ 1

xγ2
( f − λxβ)

∣∣∣∣
2 dx

x

) −1
2(γ2−γ1)

.

��

The next lemma provides a general interpolation result of polynomially weighted
L2-norms:



1100 H. Knüpfer

Lemma 5.3. Let γ1 < γ2 < γ3. Then for any β1 ∈ (γ1, γ2) and β2 ∈ (γ2, γ2),
there exists a constant C < ∞, which only depends on β2 − γ2 and γ3 − β2 such
that for any λ1, λ2 ∈ R, we have

∫ ∞

0

∣∣∣∣ 1

xγ2
( f − λ1x

β1)

∣∣∣∣
2 dx

x
(69)

� C

(∫ ∞

0

∣∣∣∣ 1

xγ1
f

∣∣∣∣
2 dx

x

) γ3−γ2
γ3−γ1

(∫ ∞

0

∣∣∣∣ 1

xγ3

(
f − λ1x

β1 − λ2x
β2
)∣∣∣∣
2 dx

x

) γ2−γ1
γ3−γ1

for any f : (0,∞) → R such that the right hand side of (67) is well-defined and
finite.

Proof. For R > 0 to be fixed later, we apply the decomposition

∫ ∞

0

∣∣∣∣ 1

xγ2
( f − λ1x

β1)

∣∣∣∣
2 dx

x
=
∫ R

0

∣∣∣∣ 1

xγ2
( f − λ1x

β1)

∣∣∣∣
2 dx

x

+
∫ ∞

R

∣∣∣∣ 1

xγ2
( f − λ1x

β1)

∣∣∣∣
2 dx

x
. (70)

The first term on the right hand side of (70) is estimated by

∫ R

0

∣∣∣∣ 1

xγ2

(
f − λ1x

β1
)∣∣∣∣
2 dx

x
� 2

∫ R

0

∣∣∣∣ 1

xγ2

(
f − λ1x

β1 − λ2x
β2
)∣∣∣∣
2 dx

x

+ 2
∫ R

0

∣∣λ2xβ2−γ2
∣∣2 dx

x

� 2R2(γ3−γ2)

∫ R

0

∣∣∣∣ 1

xγ3

(
f −λ1x

β1−λ2x
β2
)∣∣∣∣
2 dx

x
+ λ22

β2 − γ2
R2(β2−γ2),

(71)

where in order to get the last estimate we used that xγ3−γ2 < Rγ3−γ2 for x < R
and γ3 > γ2. The second term on the right hand side of (70) is similarly estimated
by

∫ ∞

R

∣∣∣∣ 1

xγ2

(
f − λ1x

β1
)∣∣∣∣
2 dx

x
� 2

∫ ∞

R

∣∣∣∣ 1

xγ2
f

∣∣∣∣
2 dx

x
+ 2

∫ ∞

R

∣∣λ1xβ1−γ2
∣∣2 dx

x

� 2R2(γ1−γ2)

∫ ∞

R

∣∣∣∣ 1

xγ1
f

∣∣∣∣
2 dx

x
+ λ21

γ2−β1
R2(β1−γ2),

(72)

where in order to get the last estimate we used that xγ1−γ2 < Rγ1−γ2 for R < x
and γ1 < γ2. We introduce the notation [ f ]2γ = ∫∞

0 | 1
γ
f |2 dx

x . Furthermore, we

set f0 = f − λ1xβ1 and f00 = f − λ1xβ1 − λ2xβ2 . With this notation, (70), (71)
and (72) imply

[ f0]γ2 � C
(
Rγ1−γ2 [ f ]γ1 + λ1R

β1−γ2 + Rγ3−γ2 [ f00]γ3 + λ2R
β2−γ2

)
.
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We apply Lemma 5.2 twice to obtain

[ f0]γ2 � C

(
Rγ1−γ2 [ f ]γ1 + Rβ1−γ2 [ f ]

γ2−β1
γ2−γ1
γ1 [ f0]

β1−γ1
γ2−γ1
γ2

+Rγ3−γ2 [ f00]γ3 + Rβ2−γ2 [ f0]
γ3−β2
γ3−γ2
γ2 [ f00]

β2−γ2
γ3−γ2
γ3

)
.

Two times application of Young’s inequality then yields

[ f0]γ2 � C
(
Rγ1−γ2 [ f ]γ1 + Rγ3−γ2 [ f00]γ3

)
. (73)

Estimate (69) follows by minimizing the right hand side of (73) in R. ��
We next apply the above inequalities to the weighted spaces, used in this paper.
We will frequently use our assumption (44) on ε which excludes the critical case
γ = 0 in the Hardy inequality (Lemma 5.1). We first consider the space H̊k .
Multiple application of Hardy’s inequality yields:

Lemma 5.4. Let n ∈ (0, 3), k ∈ N0, and suppose that ε > 0 satisfies (44). Then
we have for any f ∈ H̊k ,∫ ∞

0
|x−γ+ j∂

j
x f |2 dx

x
� C‖ f ‖2Hk

, ∀0 � j � k and γ ∈ [δ j , δk], (74)

sup
x∈(0,∞)

|x−γ+ j∂
j
x f |2 � C‖ f ‖2Hk

, ∀0 � j � k − 1 and γ ∈ [δ j , δk]. (75)

The constants C < ∞ in the estimates depend on k, j , ε, γ .

Proof. The assertion follows by repeated application of Hardy’s inequalities (65)
and (66). Note that the assumption (44) excludes the critical case for Hardy’s
inequality. ��
The previous estimates can be applied to obtain information on the coefficients in
the expansion for functions in Xk :

Proposition 5.5. Let n ∈ (0, 3), k ∈ N0 and suppose that ε satisfies (44). Let
f ∈ Xk and for γ ∈ (0,∞), let pγ =∑β∈[δ2,γ ]∩IX cβxβ be the expansion of f of
order γ . Then for all 0 � j � i � k and for all β ∈ [δi , δk], we have
(∫ ∞

0

∣∣∣∣ 1xβ

(
x j∂

j
x ( f − pβ)

)∣∣∣∣
2 dx

x

)1/2

� C
[
f − pδi

] δk−β

δk−δi
Hi

[
f − pδk

] β−δi
δk−δi
Hk

.

(76)

Furthermore, if j � i − 1, then we have

sup
x∈(0,∞)

∣∣∣∣ 1xβ

(
x j∂

j
x ( f − pβ)

)∣∣∣∣ � C
[
f − pδi

] δk−β

δk−δi
Hi

[
f − pδk

] β−δi
δk−δi
Hk

. (77)
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Moreover, for all β ∈ [δi , δk] ∩ IX we have

|cβ | � C
[
f − pδi

] δk−β

δk−δi
Hi

[
f − pδk

] β−δi
δk−δi
Hk

. (78)

The constants C < ∞ in the estimates depend on j , i , k, β. Note that the right
hand sides in (76)–(78) are estimated by above by C‖ f ‖Xk .

Proof. Note that the critical scaling of the Hardy inequalities is excluded by the
condition (44). An application of Hardy’s inequalities hence yields∫ ∞

0

∣∣∣∣ 1δk
(
x j∂

j
x ( f − pδk )

)∣∣∣∣
2 dx

x
� C

[
f − pdk

]2
Hk

∀0 � j � k, (79)

sup
x∈(0,∞)

∣∣∣∣ 1δk
(
x j∂

j
x ( f − pδk )

)∣∣∣∣
2

� C
[
f − pdk

]2
Hk

∀0 � j � k − 1. (80)

Indeed, consider F := f − pdk . To see (80), we then have to show for all 0 � j � k,
∫ ∞

0

∣∣∣∣ 1δk
(
x j∂

j
x F
)∣∣∣∣

2 dx

x
� C

∫ ∞

0

∣∣∣∣ 1δk
(
xk∂kx F

)∣∣∣∣
2 dx

x
. (81)

This estimate follows from Hardy’s inequality (65), since limx→0 ∂ ix F = 0 for
i = 1, . . ., k. The estimate (80) follows similarly from (66). By repeated application
of Hardy’s inequality (79), the right hand sides of (76)–(77) are estimated by below
by [

f − pδi

]β−δi
Hi

[
f − pδk

]δk−β

Hk

� c

(∫ ∞

0

∣∣∣∣ 1xδi

(
x j∂

j
x ( f − pδi )

)∣∣∣∣
2 dx

x

) β−δi
2

(∫ ∞

0

∣∣∣∣ 1

xδk

(
x j∂

j
x ( f − pδk )

)∣∣∣∣
2 dx

x

) δk−β

2

for some constant c > 0 (depending k, i, δk, δi ). The L2 estimates in (76) then
follows by application of Lemma 5.2 on F := ∂

j
x f . Estimate (77) follows anal-

ogously by application of (66). Estimate (78) follows from (76) with j = 0 and
Lemma 5.2. ��
The next result provides point-wise bounds of f up to order k −1 for any f ∈ Xk :

Lemma 5.6. Let n ∈ (0, 3), k ∈ N0 and suppose that (44) holds. Let f ∈ Xk and
let pδk be the expansion of order δk of f . Then we have for all 0 � j � k−1, there
is C < ∞ (depending on n,ε,k) such that∣∣∣∂ j

x ( f (x) − pδk (x))
∣∣∣ � Cxδk− j‖ f ‖Xk for x ∈ (0,∞). (82)

Furthermore, for any R > 0, there is CR < ∞ (depending on n,ε,k,R) such that
for all 0 � j � k − 1, we have∣∣∣∂ j

x f (x)
∣∣∣ � CRx

δ j− j‖ f ‖Xk for x ∈ (R,∞). (83)
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Proof. Estimate (82) follows directly (77) with β = δk where we note that the
right hand side of (77) is estimated by C‖ f ‖Xk . By (77), for every R ∈ (0,∞)

there is CR < ∞ such that

|∂ j
x pδ j (x)| � CRx

δ j− j‖ f ‖Xk for x ∈ (R,∞). (84)

Estimate (83) follows from (82) with k = j , (84) and the triangle inequality. ��
The next lemma will be used for the estimate of the nonlinear operator. In contrary
to Lemma 5.6, the estimates in Lemma 5.7 hold for derivatives up to order j = k.

Lemma 5.7. Let n ∈ (0, 3), k ∈ N0 and suppose that ε satisfies (44). Suppose that
f ∈ Xk and let F : (0,∞) → R be given by

F(x) := 1

x

∫ x

0
f (x̃) dx̃ . (85)

Then F ∈ Xk and

‖F‖Xk + ‖xFx‖Xk � C‖ f ‖Xk . (86)

Moreover, for all 0 � j � k, we have∣∣∣∂ j
x (F − Pδk )(x)

∣∣∣ � Cxδk− j‖ f ‖Xk for x ∈ (0,∞), (87)

where Pδk ∈ P is the expansion of F of order δk and where the constants C < ∞
depend on n, ε, k. Furthermore, for CR < ∞, depending on n, ε, k, R, we have∣∣∣∂ j

x F(x)
∣∣∣ � CRx

δ j− j‖ f ‖Xk for x ∈ (R,∞). (88)

Proof. The expansion Pδk of F of order δk is given by

Pδk (x) = 1

x

∫ x

0
pδk (x̃) dx̃,

where pδk is the expansion of f of order δk . In particular, the coefficients of Pδk are
controlled by the corresponding coefficients of pδk and ‖Pδk‖P � C‖pδk‖P �
C‖ f ‖k . For 0 � j � k, we decompose f = f0 + pδ j and F = F0 + Pδ j , in

particular F0 = 1
x

∫ x
0 f0 and hence xF0x = f0 − F0. By Hardy’s inequality, we

thus have ∫ ∞

0

∣∣∣x−δ j+ j∂
j
x (xF0x )

∣∣∣2 dx

x
� 2

∫ ∞

0

∣∣∣x−δ j+ j∂
j
x f0
∣∣∣2 dx

x

+ 2
∫ ∞

0

∣∣∣x−δ j+ j∂
j
x F0
∣∣∣2 dx

x
(65)
� C

∫ ∞

0

∣∣∣x−δ j+ j∂
j
x f0
∣∣∣2 dx

x
.

This shows that (86) holds. The estimates (87) and (88) then follow similarly from
the corresponding estimates (82) and (83) using Hardy’s inequality. ��
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Proposition 5.5 allows to control the speed of the contact point:

Corollary 5.8. Let n ∈ (0, 3) and suppose that ε satisfies (44)–(46) for k = 4.
Then ∣∣∣(xn−1 fxx )|x=0

∣∣∣ � C [ f ]
2

5−n
H2

[ f − p4]
3−n
5−n
H4

for all f ∈ X4. (89)

Proof. Indeed, (xn−1 fxx )|x=0 = (x2−α fxx )|x=0 = cα where cα is the coefficient
in the expansion of f corresponding to the power xα with α = 3−n. By (45)–(46),
we have in particular α > −ε and ε < 1 and hence α ∈ (δ2, δ4). The estimate (89)
then follows from (78). ��

6. Coercivity and Elliptic Estimates

In this section, we investigate the elliptic operator A,

A f = (xn fxx )xx ,

viewed as an operator A : X4 → X0. Recall that H0 = L2((0,∞)), if ε = 0.
We first observe that—for ε = 0—the operator A is symmetric and coercive with
respect to L2:

Lemma 6.1. (Symmetry for ε = 0) Let n ∈ (0, 3) and let ε = 0. Then

〈A f, g〉H0 = 〈 f, g〉H2 = 〈 f, Ag〉H0 ∀ f, g ∈ X4. (90)

Proof. Integrating by parts yields

〈A f, g〉H0 =
∫ ∞

0
(xn fxx )xx g =

∫ ∞

0
xn fxx gxx = 〈 f, g〉H2 , (91)

which yields the first identity in (90). The second identity follows by symmetry.
The boundary terms in the above integration by parts vanish for all f ∈ X4 as can
be checked easily. ��
The next lemma addresses coercivity of A:

Lemma 6.2. (Coercivity) Let n ∈ (0, 3). Then there is 0 < ε0<
1
4 such that for all

ε ∈ (−ε0, ε0) satisfying (44) for k = 2, we have

c [ f ]2H2
� 〈A f, f 〉H0 � C [ f ]2H2

∀ f ∈ X4. (92)

If n ∈ [ 52 , 3), then (92) also holds for all ε ∈ [0, 3 − n) satisfying (44) for k = 2.

Proof. Integrating by parts, we get

〈A f, f 〉H0 =
∫ ∞

0
xε(xn fxx )xx f dx =

∫ ∞

0
xn fxx (x

ε f )xx dx

=
∫ ∞

0
xn+ε f 2xx + 2εxn+ε−1 fx fxx + ε(ε − 1)xn+ε−2 f fxx dx .
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Again integrating by parts, we have

2ε
∫ ∞

0
xn+ε−1 fx fxx dx = −ε(n + ε − 1)

∫ ∞

0
xn+ε−2 f 2x dx

∫ ∞

0
xn+ε−2 f fxx dx=−

∫ ∞

0
xn+ε−2 f 2x dx− |!(n+ε−2)

∫ ∞

0
xn+ε−3 f fx dx

= −
∫ ∞

0
xn+ε−2 f 2x dx

+ 1

2
(n + ε − 2)(n + ε − 3)

∫ ∞

0
xn+ε−4 f 2 dx .

This implies

〈A f, f 〉H0 =
∫ ∞

0
xn+ε f 2xx dx + ε(2 − n − 2ε)

∫ ∞

0
xn+ε−2 f 2x dx (93)

+ 1

2
ε(ε − 1)(n + ε − 2)(n + ε − 3)

∫ ∞

0
xn+ε−4 f 2 dx . (94)

The upper bound follows by Hardy’s inequality and the Cauchy–Schwarz inequal-
ity. In order to obtain the corresponding lower bound, we note that by Hardy’s
inequality (65) and for ε ∈ (−ε0, ε0) with ε0 > 0 sufficiently small, the second
integral in line (93) and the integral in line (94) can be estimated by a fraction of
the integral on the right hand side of (93).
We next consider the case when n ∈ [ 52 , 3) and ε ∈ (0, 3−n

2 ). In this case, the
term in line (94) is positive, the second term on the right hand side of line (93) is
negative. By Hardy’s inequality, we have

ε(2 − n − 2ε)
∫ ∞

0
xn+ε−2 f 2x dx

(65)
� 4ε(2 − n − 2ε)

(n + ε − 1)2

∫ ∞

0
xn+ε f 2xx dx .

By (93)–(94) and by application of Hardy’s inequality, it is hence enough to show

4ε(n + 2ε − 2) < (n + ε − 1)2 for n ∈
[
5

2
, 3

)
, ε ∈

[
0,

3 − n

2

)
. (95)

Indeed, (95) is equivalent to 7ε2+2ε(n−3) < (n−1)2. It is easy to check that this
inequality is satisfied for all ε ∈ [0, 3 − n). This estimate and the above estimates
are not optimal, but sufficient for our proof. This concludes the proof of the lower
bound in (92). ��
Recall that the Mellin transform of a function f ∈ C∞

c ((0,∞)) is defined by

f̂ (λ) =
∫ ∞

0
x−λ f (x)

dx

x
. (96)

Notice that theMellin transform of f equals the Laplace transform of f ◦Φ : R →
R, where Φ(u) = eu . The properties of the Laplace transform hence transfer to the
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Mellin transform via the change of variables x = eu , ∂x = e−u∂u . For β ∈ R we,
for example, have

x̂β f (λ) = f̂ (λ − β), ∂̂x f (λ) = (λ + 1) f̂ (λ + 1), (97)

as long as one of the two sides of the identity (97) is well-defined. For f ∈ L1(Rn),
the strip of convergence of the Mellin transform is defined as the (maximal) set of
form S := (γ1, γ2) × R ⊂ C, γ1, γ2 ∈ R such that the integral (96) converges
absolutely for all λ ∈ S . In particular, f̂ is analytic in S as a function of λ.
Suppose that f has the strip of convergence S = (γ1, γ2) × R. Then for any
β ∈ (γ1, γ2) and with the notation x = eu , the function f can be recovered from
f̂ by application of the inverse Mellin transform:

f (x) =
∫

�λ=β

xλ f̂ (λ) d�(λ). (98)

Note that the right hand side of (98) does not depend on the choice of β ∈ (β1, β2)

since eλu f̂ (λ) is analytic inS as a function of λ.
Plancherel’s identity for the Mellin states that for all β ∈ R, we have

∫ ∞

0
|xβ f |2 dx

x
=
∫

�λ=−β

| f̂ |2 d�(λ). (99)

In view of Plancherel’s identity, theMellin transform iswell-defined (by continuous
extension of the linear operator defined in (96)) for all λ ∈ C such that the left hand
side of (99) is finite for β := �λ. In this case, we say that the Mellin transform is
well defined on the line �λ = β.
By Hardy’s inequality (65), the Mellin transform of any f with [ f ]Hk

< ∞ is
hence well-defined and L2( dxx )-integrable on the line �λ = δk and

[ f ]2Hk
=
∫

�λ=δk

|(λ − (k − 1)) · . . . · (λ − 1)λ f̂ |2 d�(λ).

In view of the assumption (44), we have in particular

c
∫

�λ=δk

|λk f̂ |2 d�(λ) � [ f ]2Hk
� C

∫
�λ=δk

|λk f̂ |2 d�(λ) (100)

for some constants c > 0, C < ∞, which only depend on n, k, ε. If f ∈ Hk ,
then (δ0, δk) × R is contained in the strip of absolute convergence. Indeed, for
β ∈ (δ0, δk), we have

∫ ∞

0
x−β | f | dx

x
�
(∫ ∞

0
|(x−δ0 + x−δk ) f |2 dx

x

)1/2

(101)

×
(∫ ∞

0

∣∣∣∣min{xδ0 , xδk }
xβ

∣∣∣∣
2
dx

x

)1/2
(65)
� C‖ f ‖Hk .
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By (97), for any f ∈ C∞
c ((0,∞)), we have

Â f (λ − 1 − α) =: pA(λ) f̂ (λ), (102)

where α = 3 − n and where the Mellin multiplier pA(λ) is given by

pA(λ) := λ(λ − 1)(λ − α)(λ − (α − 1)). (103)

Elliptic regularity of the operator A in the spaces Xk is stated in the next lemma.
We use the Mellin transform to obtain elliptic regularity. Alternatively, it is also
possible to obtain elliptic estimates for polynomially weighted operators using real
space methods. Such an approach is used for example in [21,22].

Lemma 6.3. (Elliptic regularity) Let n ∈ (0, 3)\{1, 2}, k ∈ N0, and suppose that
ε satisfies (44) for k + 4. Suppose that g ∈ Yk and let q be the expansion of g of
order δk . Then the general solution of A f = g is given by f = f0 + p + w, where
f0 ∈ H̊k , where p ∈ PX ∩ (kern A)⊥ solves Ap = q and where w ∈ kern A.
Furthermore,

c [g − q]Hk
� [ f − p]Hk+4

� C [g − q]Hk
, (104)

where c > 0, C < ∞ depend on k.

Proof. We set g0 = g − q. If q∗ = xβ with β ∈ IY , then p∗ = Cβxβ+1+α solves
Ap∗ = q∗ for some explicitly given constant Cβ �= 0. Therefore, for q ∈ PY ,
there is precisely one p0 ∈ PX , orthogonal to kern A, such that Ap = q. If q is
an expansion of order δk , then p is an expansion of order δk+4. It hence remains
to find a special solution of the equation A f0 = g0. Since [g0]Hk

< ∞, the Mellin
transform ĝ0 is well-defined on the line �λ = δk . Hence, ĝ0(· − 1 − α) is well-
defined on the line �λ = δk+4, since δk+4 − δk = 1 + α. The application of the
Mellin transform on A f0 = g0 yields

f̂0(λ)
(102)= ĝ0(λ − 1 − α)

λ(λ − 1)(λ − α)(λ − (α − 1))
for �λ = δk+4, (105)

which defines f̂0 on the line �λ = δk+4. The function f0 can be recovered by the
inverse Mellin transform:

f0(x) :=
∫

�λ=δk+4

xλ f̂0(λ) d�(λ). (106)

Indeed, the such defined function f0 satisfies A f0 = g0. Furthermore, f := f0 + p
satisfies A f = g. By (105) and in view of (44), this implies

c|ĝ0(λ − 1 − α)| � |λ4 f̂0(λ)| � C |ĝ0(λ − 1 − α)| for �λ = δk+4 (107)

for constants c > 0, C < ∞, which depend on n, k, ε. By Plancherel’s identity
(100) and by (44), we have

[ f0]
2
Hk+4

(100)
� C

∫
�λ=δk+4

∣∣∣λk+4 f̂0
∣∣∣2 d�(λ)

(107)
� C

∫
�λ=δk

|λk ĝ0|2 d�(λ)
(100)
� C [g0]

2
Hk

. (108)
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The argument for the reverse estimate follows analogously using the first estimate
in (107). This yields (104) and hence concludes the proof. Since the equation is
a fourth order ODE, the solution space is four-dimensional, the above method
provides all solutions. ��

7. The Degenerate Parabolic Operator

Before we address the degenerate parabolic equation, we first consider the corre-
sponding resolvent equation. We hence consider for given g ∈ Xk−2, fin ∈ Xk ,
k ∈ N0, the resolvent equation⎧⎨

⎩
f + A f = fin + g for x ∈ (0,∞),

f (0) = 0,
limx→0(xn fxx ) = 0.

(109)

We will derive the existence, uniqueness and regularity of solutions for (109).
With this result, we then establish the corresponding statements for the parabolic
equation. Note that both boundary conditions in (109) are also included in the
definition of the spaces Xk for sufficiently large k ∈ N0.
The next lemma is concerned with the existence, uniqueness and regularity of
solutions for the resolvent equation (109):

Lemma 7.1. (Resolvent equation) Let n ∈ (0, 3)\{1, 2} and suppose that ε satisfies
(44)–(46) for k = 4. Let fin ∈ H2 with fin(0) = 0 and let g ∈ H0. Then there is a
unique solution f ∈ X4 of (109). It satisfies

c [ f − fin]
2
H0

+ [ f ]2H2
+ c [ f − p4]

2
H4

� [ fin]
2
H2

+ C [g]2H0
, (110)

where p4 =∑β∈[δ2,δ4]∩IX cβxβ is the generalized expansion of f of order δ4.

Proof. We say that f ∈ X2 is a weak solution of (109) if∫ ∞

0
xε f ϕ dx +

∫ ∞

0
xn fxx (x

εϕ)xx dx =
∫ ∞

0
xε( fin + g)ϕ dx (111)

for all ϕ ∈ X2, where we recall (49), that is X2 = { f ∈ H2 : f (0) = 0}. Existence
of a weak solution follows by the Lemma of Lax-Milgram: Indeed, by Lemma 6.2,
the bilinear form b : X2 × X2 → R, defined by the left hand side of (111), is
continuous and coercive with respect to the norm ‖ · ‖H2 . Furthermore, X2 ⊂ H2
is a Hilbert space with respect to the norm ‖ · ‖H2 and H0 is a subspace of the dual
space of X2. Application of Lax–Milgram’s Lemma, then yields a unique weak
solution f ∈ X2 of (111). By ODE theory, this solution is also a classical solution
of (109).
We next show that f satisfies the second boundary condition in (109). Since A f =
f − g ∈ H0 and by Lemma 6.3, we have ( f − c∗xα−1ζ ) ∈ X4 for some c∗ ∈ R,
where ζ is the cut-off function from (42) and where α = 3 − n. By the definition
of X4, we have

lim
x→0

(xn fxx ) = c∗(α − 1)(α − 2), (112)
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where the assumption (44) ensures that (α−1)(α−2) �= 0. Hence, f ∈ X4 and the
second boundary condition in (109) follow, if c∗ = 0. If n > 1+ ε, or equivalently
α − 1 < δ2, then ζ xα−1 �∈ H2 for any cut-off function ζ satisfying (42). On the
other hand, we have f ∈ X2 ⊂ H2. Therefore, it follows that c∗ = 0 if n > 1 + ε.
In the following, we assume that n � 1 + ε. We need to show that c∗ = 0. For
this, we will use that the second boundary condition in (109) holds as a natural
boundary condition for (111). Indeed, let f̃ be the weak solution (111) for ε = 0.
By Lemma 6.3, we have f̃0 := f̃ − c∗xα−1 with f̃0ζ ∈ X4,ε=0 for some c̃∗ ∈ R.
We choose a test function ϕ ∈ C∞

c ([0,∞)). Since f̃ is a classical solution of the
resolvent equation in (0,∞), integration by parts yields

0 =
∫ ∞

0
f̃ g dx +

∫ ∞

0
xn f̃xxϕxx dx −

∫ ∞

0
( f̃in + g)ϕ dx (113)

= lim
x→0

(
(xn f̃xx )xϕ

)
− lim

x→0

(
xn f̃xxϕx

)
= c̃∗(α − 1)(α − 2)(ϕ(0) − ϕx (0)),

(114)

and hence c̃∗ = 0 with the choice ϕ(0) = 0, ϕx (0) = 1. In particular, f̃ satisfies
the natural boundary condition limx→0 xn f̃xx = 0 and we have f̃ ∈ X4,ε=0.
Since X4,ε=0 ⊂ H2, it follows that f̃ ∈ H2. By the uniqueness of weak solutions
in H2, we obtain f̃ = f and c∗ = c̃∗ = 0. In particular, f ∈ X4 satisfies (109).
It remains to show that (110) holds. Indeed, since f ∈ X4, we have, in particular,
A f ∈ H0. In order to get (110), we use A f as a test function in (109), which yields

〈 f, A f 〉H0 + 〈A f, A f 〉H0 = 〈g, A f 〉H0 + 〈 fin, A f 〉H0 . (115)

By Lemmas 6.2 and 6.3, this implies

[ f ]2H2
+ c [ f − p4]

2
H4

� [g]H0
[ f − p4]H4

+ [ fin]H2
[ f ]H2

.

Young’s inequality yields

[ f ]2H2
+ c [ f − p4]

2
H4

� [ fin]
2
H2

+ C [g]2H0
. (116)

The term [ f − fin]H0
is estimated using the equation together with (116). ��

Remark 7.2. (Self-adjointness for ε = 0) If ε = 0 satisfies (44)–(46) for k = 4,
then the above results show that A : X4 → L2 is self-adjoint for α ∈ (0, 7

4 )\{1, 2}
and ε = 0. Indeed, A is symmetric (Lemma 6.1) and closed (which follows from
Lemma6.3). Lemma7.1 implies that−1 is in the resolvent set of A. Self-adjointness
of A then follows [38, p. 137]. The self-adjointness of the operator for ε = 0 will
not be used in the sequel.

We next show well-posedness for the linear parabolic equation:

Proposition 7.3. (Parabolic equation) Let n ∈ (0, 3)\{1, 2} and suppose that ε

satisfies (44)–(46) for k = 4. Suppose that fin ∈ H2 with fin(0) = 0 and let
g ∈ TY0. Then there is a unique solution f ∈ T X4 of⎧⎨

⎩
ft + A f = g for (t, x) ∈ (0,∞)2,
f = 0 for x = 0,
f = fin for t = 0.

(117)
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It satisfies

‖ f ‖T X4 � C
(‖ fin‖H2 + ‖g‖L2(H0)

)
. (118)

Proof. Our argument is based on Lemma 7.1 together with a time-discretization
argument. We set f (0) = fin ∈ H2 and g( j) := 1

τ

∫ ( j+1)τ
jτ g dt for j ∈ N0, where

τ > 0 represents the time step size. We then define f ( j+1) ∈ X4 recursively for
any j ∈ N0 as solution of the resolvent equation

f ( j+1) + τ A f ( j+1) = f ( j) + τg( j) for x ∈ (0,∞) (119)

with f ( j+1)(0) = 0. Equation (119) is equivalent to (109) by the change of variables

x �→ τ
1

1+α x and g �→ τg. Correspondingly, by Lemma 7.1 we get a solution of
(119) which satisfies the following rescaled version of estimate (110):

cτ

[
1

τ
( f ( j+1) − f ( j))

]2
H0

+
[
f ( j+1)

]2
H2

+ cτ
[
f ( j+1) − p( j+1)

4

]2
H4

�
[
f ( j)
]2
H2

+ Cτ
[
g( j+1)

]2
H0

, (120)

where p( j+1)
4 is the generalized expansion of f ( j+1) of order δ4. We define f h ∈

T X4 as follows. We first set ( f h)|t=t j := f j where t j = jh and for any j ∈ N0.
For t ∈ (t j , t j+1), we define f h as the linear interpolation between ( f h)|t=t j and
( f h)|t=t j+1 . Taking the sum over (120), f h satisfies the estimate

c
∫ T

0

[
∂t f

h
]2
H0

dt + sup
t

[
f h
]2
H2

+ c
∫ T

0

[
f h − ph4

]2
X4

dt

� [ fin]
2
H2

+ C
∫ T

0

[
gh
]2
H0

dt. (121)

In the limit τ → 0, we have uniform convergence of f h to a solution f ∈ T X4 of
(117) which satisfies the corresponding estimate to (121), that is

c [∂t f ]
2
L2(H0)

+ [ f ]C0(H2)
+ c[ f − p4]2L2(X4)

� [ fin]
2
H2

+ C[g]2L2(Y0)
. (122)

The estimate (118) follows, thus concluding the proof of Proposition 7.3. We refer
to for example [24] for a more detailed version of a similar argument. ��
Higher regularity in space and time is achieved by considering the corresponding
equation to (117) which is derivated k-times in time. For a Cauchy problem (and
some boundary value problems), the usual way to obtain higher regularity would be
to apply the operator A on both sides of the equation (117). However, our solution
space Xk is not closed under application of the operator A, that is AXk+4 �⊆ Xk

in general. In fact, we only have AXk+4 ⊆ Yk . Note that the choice of spaces
is dictated by the nonlinearity of the model and not well-adapted for the linear
operator.
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Proposition 7.4. (Parabolic equation—higher regularity) Let n ∈ (0, 3) \{1, 2},
k � 2 and suppose that ε satisfies (44)–(46). Suppose that fin ∈ Xk and g ∈ TYk−2
satisfy the compatibility condition (58). Then there is a unique solution f ∈ T Xk+2
of (117). It satisfies

‖ f ‖T Xk+2 � ‖ fin‖Xk + C‖g‖TYk−2 + ‖ f ‖L2
t L2

x (QT ). (123)

Proof. We first show the assertion for the case k = 6. In particular, we have
fin ∈ X6, g ∈ L2(Y4) ∩ C0(Y2) and gt ∈ L2(Y0). Recall that Y0 = H0, (52). Let
f (1) be the solution of the formally in time derivated equation

⎧⎨
⎩

∂t f (1) + A f (1) = ∂t g for (x, t) ∈ (0,∞)2,

f (1) = 0 for x = 0,
f (1)
|t=0 = f (1)

in := g|t=0 − A fin for t = 0.
(124)

By the compatibility condition (58), we have f (1)
in = g|t=0 − A fin =0 at x = 0 and

f (1)
in ∈ H2. Also note that ∂t g ∈ TY0. By Proposition 7.3, we hence get a solution
f (1) ∈ T X4 of (124) which satisfies

‖ f (1)
t ‖L2(H0)

+ ‖ f (1)‖C0(H2)
+ ‖ f (1)‖L2(X4)

� C
(
‖ f (1)

in ‖H2 + ‖gt‖L2(Y0)

)

� C
(‖ fin‖X6 + ‖g‖TY4

)
. (125)

By a straightforward calculation, it follows that the time–integrated function fin +∫ t
0 f (1)dt̃ ∈ L2(X4) is a solution of (117). By uniqueness, we hence get f (1) = ft
and in particular ft ∈ L2(X4). Hence

‖ ft t‖L2(H0)
+ ‖ ft‖C0(H2)

+ ‖ ft‖L2(X4)

(125)
� C

(‖ fin‖X6 + ‖g‖TY4
)
. (126)

By (117), we have A f = g − ft ∈ L2(Y4) ∩ C0(Y2). By Lemma 6.3, this yields
f ∈ L2(X8) ∩ C0(X6) and the corresponding estimates. Together with (126), this
implies

‖ f ‖T X8 � C
(‖ f0‖X6 + ‖g‖TY4

)
.

Bootstrapping this argument eventually yields the assertion of the lemma for all
k ∈ 2+4N0. Now suppose that k ∈ Nwith k � 2 and fin, g satisfy the compatibility
conditions (58) of order k. Let K be the smallest integer K � k with K ∈ 2+ 4N.
We approximate the initial data fin and the right hand side g in terms of ‖ · ‖XK

(respectively ‖·‖T XK−2 ) by functions in XK (respectively in T XK−2) which satisfy
the compatibility conditions up to order k + 2. The existence of a solution for the
approximated data together with the corresponding estimates then follows from the
arguments above. In the limit, we obtain that the original problem has a solution in
the space f ∈ Xk+2 together with the corresponding estimates. ��
As a consequence of the linear theory, we obtain the following extension lemma
for functions in Xk :
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Lemma 7.5. (Extension Lemma) Let n ∈ (0, 3) \{1, 2}, j0 ∈ N0, let k = 2 + 4 j0
and suppose that ε satisfies (44)–(46). Suppose that ϕ j ∈ Xk−4 j for j = 0, . . . , j0.
Then there is w ∈ T Xk+2 such that

∂
j
t w|t=0 = ϕ j and ‖w‖T Xk+2 � C

j0∑
j=0

‖ϕ j‖Xk−4 j . (127)

Proof. Let pϕ j ,δk−4 j ∈ PX be the expansion of the function ϕ j up to order δk−4 j

and let ϕ(1)
j := pϕ j ,δk−4 j ζ for some smooth cut-off function ζ as in (42). We define

w(1)(t, x) = ζ(t)
j0∑
j=0

t j

j !ϕ
(1)
j (x). (128)

Then w(1) satisfies ∂
j
t w

(1)
|t=0 = ϕ

(1)
j and the estimate in (127) with w replaced by

w(1). It hence remains to prove the assertion of the lemma with ϕ j replaced by

ϕ
(0)
j := ϕ j − ϕ

(1)
j ∈ H̊k−4 j .

We proceed by induction in j0. If j0 = 0 (and k = 2), then w ∈ T X4 is given
as the solution of (117) with initial data ϕ

(0)
0 ∈ X2 and right hand side g = 0.

Now, suppose that j0 � 1 and that the assertion of the lemma holds for j0 − 1.
Since ϕ

(0)
j ∈ H̊k−4 j , we have ϕ

(0)
j+1 − Aϕ

(0)
j ∈ H̊k−4 j−4 ⊂ X(k−4)−4 j for j =

0, . . . , j0 − 1. Hence, by the induction assumption there is g ∈ T Xk−2 such that
for j = 0, . . . , j0 − 1, we have

∂
j
t g|t=0 = ϕ

(0)
j+1 + Aϕ

(0)
j and ‖g‖T Xk−2 � C

j0−1∑
j=0

‖ϕ(0)
j+1 − Aϕ

(0)
j ‖Xk−4 j

� C
j0∑
j=1

‖ϕ j‖Xk−4 j .

Then we define w ∈ T Xk+2 as the solution of

⎧⎨
⎩

∂tw + Aw = g for (x, t) ∈ (0,∞)2,

w = 0 for x = 0,
w = ϕ

(0)
0 for t = 0.

(129)

The choice of g is such that the compatibility conditions are satisfied for this evo-
lution problem and such that the solution w of (129) satisfies the initial conditions
in (127). By the parabolic estimate in Proposition 7.4, f also satisfies the estimates
in (127). ��
Remark 7.6. Using the parabolic estimates in [24] and [31] one easily gets a cor-
responding extension lemma for the case n = 1, n = 2 in the spaces used in these
papers.
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8. Nonlinear Estimates

In this section, we estimate the nonlinear operator N ( f ). We recall that

N ( f, f̃ )
(17)= ((xn − hn) f̃x x )xx + fx (x

n−1 f̃x x )|x=0, (130)

where h = x + ∫ x0 f dx̃ and N ( f ) = N ( f, f ). With the definition

F(x) := 1

x

∫ x

0
f dx̃ = h − x

x
, (131)

that is h
x = 1 + F , the operator N can be written in the form

N ( f, f̃ )
(130)=

(
xn
(
1 −

(
h

x

)n)
f̃x x + (h − x)(xn−1 f̃x x )|x=0

)
xx

=
(
xn(1 − (1 + F)n) f̃x x+xF(xn−1 f̃x x )|x=0

)
xx

. (132)

By the generalized binomial theorem [1, 3.6.9] for every n > 0 and X ∈ (−1, 1),
we have

(1 + X)n =
∞∑
r=0

(
n
r

)
Xr , where cnr :=

r∏
j=1

n − j + 1

j
; (133)

the series (133) converges absolutely and uniformly for X ∈ (−λ, λ) with λ ∈
(−1, 1). By Lemma 5.4 and Lemma 5.7, we have

‖F‖L∞((0,∞)) < C‖ f ‖H2 � C‖ f ‖Xk <
1

2
, (134)

for k � 2 and if ‖ f ‖Xk is sufficiently small. In this case, the binomial formula
(133) can be point-wise applied to (132) and we obtain,
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N ( f, f̃ )
(132)=

(
xn f̃xx

∞∑
r=1

cnr F
r − (xn−1 f̃x x )|x=0xF

)

xx

(135)

=
(
xn f̃xx

∞∑
r=2

cnr F
r + xn F

(
n f̃xx − (xn−1 f̃x x )|x=0x

1−n
))

xx

,

since cn1 = n. Correspondingly, we use the decomposition

N ( f, f̃ ) = N1( f, f̃ ) + N2( f, f̃ ), (136)

where

N1( f, f̃ ) :=
(
xn

∞∑
r=2

cnr F
r f̃xx

)

xx

, (137)

N2( f, f̃ ) :=
(
xn F

(
f̃x x −

(
xn−1 f̃x x

)
|x=0

x1−n
))

xx
. (138)

Note that N1 is a highly nonlinear, local operator, while N2 is bilinear and nonlo-
cal. If ‖F‖L∞((0,∞)) < 1 and F ∈ Ck((0,∞)), then also

∑
r ∂kx (F

r ) converges
uniformly for all x ∈ (0,∞). Therefore, summation and differentiation can be
exchanged if (134) holds and if F is sufficiently regular.
We will need the following auxiliary estimate:

Lemma 8.1. Let n ∈ (0, 3), k ∈ N0 and suppose that ε satisfies (44)–(46). Let
f ∈ Xk and let F be defined by (131). Let pδk ∈ PX be the expansion of f of
order δk and let Pδk = 1

x

∫ x
0 pδk be the corresponding expansion for F. Then there

is a universal constant c0 > 0 such that if ‖ f ‖Xk � c0, the following holds: for all
0 � j � k, we have

∣∣∣∣∣∂ j
x

( ∞∑
r=2

Fr − Pr
δk

)
(x)

∣∣∣∣∣ � Cxδk− j‖ f ‖Xk for x ∈ (0,∞). (139)

Furthermore, for all R ∈ (0,∞) there is a constant CR < ∞, depending on k and
R, such that

∣∣∣∣∣∂ j
x

( ∞∑
r=2

Fr

)
(x)

∣∣∣∣∣ � CRx
δ j− j‖ f ‖Xk for x ∈ (R,∞). (140)

Proof. By definition, all coefficients of Pδk are controlled by ‖F‖Xk . By (134), we
have ‖F‖L∞ < 1

2 if we choose c0 sufficiently small. Then the series
∑∞

r=2 F
r (x)

is well-defined for all x ∈ (0,∞). We first give the argument for (140). By (88),
we get for j = 0

∞∑
r=2

|F(x)|r � C |F(x)|
(88)
� CRx

δ0‖ f ‖Xk for x ∈ (R,∞). (141)
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This yields (88) for j = 0. For 1 � j � k, we calculate

∣∣∣∂ j
x (Fr )(x)

∣∣∣ � C |F(x)|max{0,r− j}
j∑

m=1

∑
(i1,...,im )

∣∣∣(∂ i1x F) . . . (∂ imx F)(x)
∣∣∣ , (142)

with the second sum being taken over all multiindices (i1, . . . , im) ∈ N
m
0 with

i1 + · · · + im = j . In view of (88), we get for j � 1

∑
i1+···+im= j

∣∣∣(∂ i1x F . . . ∂ imx F)(x)
∣∣∣ (88)

� CR

j∑
m=1

x (δi1−i1)+···+(δim−im )‖ f ‖Xk

(30)= CR xδ j− j− 1
2 (m−1)(ε+1)‖ f ‖Xk for x ∈ (R,∞),

wherewe have used that ‖ f ‖Xk � c0 < 1 for c0 sufficiently small. By (45), we have

in particular ε � −1 and hence xδ j− j− 1
2 (m−1)(ε+1) � CRxδ j− j for x ∈ (R,∞).

Taking the sum over r = 2 to infinity of (142), we hence obtain

∂
j
x

( ∞∑
r=2

|F(x)|r
)

� CRx
δ j− j‖ f ‖Xk

∞∑
r=2

|F(x)|max{0,r− j} � CRx
δ j− j‖ f ‖Xk

for x ∈ (R,∞).

This concludes the proof of (140). For the estimate of (139), we note that |F(x)|,
|pF (x)|, |(F − pF )(x)| � Cxδk for all x ∈ (0,∞) and hence

∣∣∣∣∣
∞∑
r=2

(
Fr − prF

)
(x)

∣∣∣∣∣
(133)
� Cxδk‖ f ‖Xk , (143)

The corresponding estimate for higher derivatives follows by using an analogous
calculation as in (142). ��
For notational convenience, we use the notation

‖ f ‖Xk,2 :=
⎛
⎝ k∑

j=2

[
f − pδ j

]2
Hj

⎞
⎠

1
2

. (144)

for the semi-norm, where the homogeneous norms are included for indices from
j = 2: We next collect some estimates of the nonlinear operator N ( f, f̃ ):

Lemma 8.2. (Basic nonlinear estimate) Let n ∈ (0, 3)\{1, 2}, k � 2 and suppose
that ε satisfies (44)–(47). Then there is a constant c0 > 0 such that for any f ∈ Xk,
f̃ ∈ Xk+2 with ‖ f ‖Xk � c0, we have N ( f, f̃ ) ∈ Yk−2 and

∥∥∥N ( f, f̃ )
∥∥∥
Yk−2

� C
(
‖ f ‖Xk‖ f̃ ‖Xk+2,2 + ‖ f̃ ‖Xk‖ f ‖Xk+2,2

)
. (145)



1116 H. Knüpfer

Proof. It suffices to show for any j ∈ N with 2 � j � k,
[
N ( f, f̃ ) − qδ j−2

]
Hj−2

� C
(
‖ f ‖X j ‖ f̃ ‖X j+2,2 + ‖ f̃ ‖X j ‖ f ‖X j+2,2

)
=: R,

(146)

where qδ j−2 is the generalized expansion of N ( f, f̃ ) of order δ j−2. Here, and in the
remainder of the proof, we denote byR any multiple by a constant depending only
on n, ε, k of the right hand side of (146). By Lemma 10.1, we have qδ j−2 ∈ PY

and ‖qδ j−2‖P � R. Let ζ be the cut-off function defined in (42). We have

[
N ( f, f̃ ) − qδ j−2

]
Hj−2

�
[
ζ(N ( f, f̃ ) − qδ j−2)

]
Hj−2

+
[
(1 − ζ )N ( f, f̃ )

]
Hj−2

+ [(1 − ζ )qδ j−2

]
Hj−2

�
[
ζ(N ( f, f̃ ) − qδ j−2)

]
Hj−2

+
[
(1 − ζ )N ( f, f̃ )

]
Hj−2

+ R. (147)

We use Lemma 10.1 to replace the expansion qδ j−2 in (147) by another expansion
which better reflects the nonlinear structure of the operator and at the same time
agrees with qδ j−2 up to an order of δ j−2. Let ζ2(x) := ζ( x2 ); in particular, ζ2ζ = ζ .
We decompose

f̃ = f̃0 + ζ2
∑

β∈[δ2,δ j+2]∩IX

c̃β̃x
β̃ , (148)

where c̃β̃ are the coefficients of the expansion of f̃ . In particular, we have f̃0 =
o(xδ j+2) for small x . For any β̃ ∈ (δ2, δ j+2) ∩ IX , let pβ be the expansion of f of
order β, where β ∈ (δ2, δ j+2) is the “dual exponent” of β̃, given by

β := δ2 + δ j+2 − β̃ ∈ (δ2, δ j+2). (149)

By Lemma 10.1, we then have
∥∥∥N (pβ, c̃β̃x

β̃
)∥∥∥P � R

and furthermore

qδ j−2 =
∑

β̃∈[δ2,δ j+2]∩IX

N
(
pβ, c̃β̃x

β̃
)

+ o(xδ j−2). (150)

In view of (147) and since N is linear in the second argument, we thus obtain

[
ζ
(
N ( f, f̃ ) − qδ j−2

)]
Hj−2

(150)
�

[
ζN ( f, f̃0)

]
Hj−2

+
∑

β̃∈[δ2,δ j+2]∩IX

[
ζN
(
f, c̃β̃x

β̃
)

− N
(
pβ, c̃β̃x

β̃
)]

Hj−2
+ R. (151)
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By (147) and (151), we hence get
[
N ( f, f̃ ) − qδ j−2

]
Hj−2

� I1 + I2 + I3 + R, (152)

where

I1 :=
[
(1 − ζ )N ( f, f̃ )

]
Hj−2

, I2 :=
[
ζN ( f, f̃0)

]
Hj−2

, (153)

I3 :=
∑

β̃∈[δ2,δ j+2]∩IX

[
ζN ( f, c̃β̃x

β̃ ) − N (pβ, c̃β̃x
β̃ )
]
Hj−2

.

It remains to estimate the terms I1, I2, and I3.
Estimate of I1: In order to estimate the homogeneous norm [·]Hj−2 in I1, j − 2
derivatives need to be applied. By application of the Leibniz rule, some of these
derivatives are applied on the cut-off function ζ . It is easy to see that in this case,
the resulting terms is of lower order an can be estimates easily. Indeed, since ζx
is supported in (1, 2), we have 1 � x � 2 in this interval and in particular hence
all weights are equivalent in the sense that xα � Cα,βxβ for all x ∈ (1, 2) and all
α, β ∈ R. Also recall that, 1 − ζ is supported in (1,∞). It is therefore enough to
show the estimate [

N ( f, f̃ )
]
Hj−2

� R. (154)

with the additional assumptions f, f̃ ∈ Hj+2 and supp f, f̃ ∈ [1,∞). The estimate
for I1 follows easily.
We use the decomposition (137)–(138). We get

[
N1( f, f̃ )

]2
Hj−2

(137)=
∫ ∞

1

∣∣∣∣∣x−δ j−2+ j−2∂
j
x

(
xn

∞∑
r=2

Fr f̃xx

)∣∣∣∣∣
2
dx

x
(155)

� C
∫ ∞

1

∣∣∣x(δi−δ j−2+n−4)+( j−i−n+2)∂
j−i
x (xn f̃xx )

∣∣∣2 dx

x

×
j∑

i=0

sup
x∈(1,∞)

∣∣∣∣∣x−δi+i∂ ix

( ∞∑
r=2

Fr

)∣∣∣∣∣
2

.

We calculate

δi − δ j−2 + n − 4 = δ j − δ j+2 = − 1
4 ( j + 2 − i)(4 − n)

= −δ j+2−i − 1
2 (ε + 1) < −δ j+2−i .

Since supp f , supp f̃ ⊂ (1,∞), by Hardy’s inequality (65) and by (140), we thus
get

[
N1( f, f̃ )

]2
Hj−2

� C
[
f̃
]2
Hj+2−i

j∑
i=0

sup
x∈(1,∞)

|x−δi+i∂ ix

( ∞∑
r=2

Fr

)
|2
(140)
� R.
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For the estimate of N2( f, f̃ ), we decompose

[
N2( f, f̃ )

]2
Hj−2

(138)
�
∫ ∞

1

∣∣∣x−δ j−2+( j−2)∂
j
x

(
xn F f̃xx

)∣∣∣2 dx

x
(156)

+
(
xn−1 f̃x x

)2
|x=0

∫ ∞

1

∣∣∣x−δ j−2+( j−2)∂
j
x (xF))

∣∣∣2 dx

x
. (157)

The term on the right hand side of line (156) is estimated analogously as before
using (88) instead of (140). By (89) and by application of Hardy’s inequality, we
furthermore get

(xn−1 f̃x x )
2|x=0

∫ ∞

1

∣∣∣x−δ j−2+( j−2)∂
j
x (xF))

∣∣∣2 dx

x
(65)
� C‖ f̃ ‖2X j+2,2

∫ ∞

1

∣∣∣x−δ j−2+( j−2)∂
j−1
x f

∣∣∣2 dx

x
(78)
� C‖ f̃ ‖2X j+2,2

‖ f ‖2X j−1
� R,

since 1 � xα for x ∈ (1,∞) and α > 0. This concludes the estimate of I1.
Estimate of I2: As in step 1, we can neglect terms where the derivative is applied
to the cut-off functions, since this yields lower order terms. Hence, we will show
the estimate [

N ( f, f̃0)
]
Hj−2

� R. (158)

with the additional assumption that supp f0 ⊂ [0, 2]; the asserted estimate for I2
then follows easily. We use the decomposition (137)–(138). Note that N2( f, f̃0) =
0 so that it remains to show the estimate for N1. We have

[
N1( f, f̃0)

]2
Hj−2

=
∫ ∞

0

∣∣∣∣∣x−δ j−2+( j−2)∂
j
x

(
xn

∞∑
r=2

Fr f̃0xx

)∣∣∣∣∣
2
dx

x
(159)

� C
j∑

i=0

∫ ∞

0

∣∣∣∣∣x−δ j−2+( j−2)∂ ix

( ∞∑
r=2

Fr

)
∂
j−i
x (xn f̃0xx )

∣∣∣∣∣
2
dx

x
. (160)

By Lemma 8.1, by Hardy’s inequality and since δ j+2 − δ j−2 = 4 − n, we get

[N1( f, f0)]
2
Hj−2

(87)
� C‖ f ‖2Hj

j∑
i=0

∫ ∞

0

∣∣∣x−δ j−2+( j−2)−i∂
j−i
x (xn f̃0xx )

∣∣∣2 dx

x

(65)
� C‖ f ‖2Hj

∫ ∞

0

∣∣∣x−δ j+2+( j+2)∂
j+2
x f̃0

∣∣∣2 dx

x
(65)
� C‖ f ‖2Hj

‖ f ‖2X j+2,2
� R.

This concludes the proof of (158).
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Estimate of I3: As in the previous steps, we will show the corresponding estimate
without the cut-off function, using an additional assumption on the support of the
considered functions. Under the assumption that supp(F − Pδ j ) ⊂ [0, 2), we claim
that for every β̃ ∈ [δ2, δ j+2] ∩ IX ,

[
N
(
f, c̃β̃x

β̃
)

− N
(
pβ, c̃β̃x

β̃
)]

Hj−2
� R. (161)

We present the estimate for N1, the estimate for N2 proceeds similarly.
Let Pβ = 1

x

∫ x
0 pβ be the expansion of F of order β. We have

[
N1

(
f, c̃β̃x

β̃
)

− N1

(
pβ, c̃β̃x

β̃
)]2

Hj−2

� C
j∑

i=0

∫ 2

0

∣∣∣∣∣xi−β∂ ix

∞∑
r=0

(
Fr − Pr

β

)∣∣∣∣∣
2

×
∣∣∣x−δ j−2+ j−2+β−i∂

j−i
x

(
xn
(
c̃β̃x

β̃
)
xx

)∣∣∣2 dx

x
.

By application of Lemma 8.1, we obtain

[
N1

(
f, c̃β̃x

β̃
)
−N1

(
pβ, c̃β̃x

β̃
)]2

Hj−2
(87)� R

∫ 2

0

∣∣∣x−δ j−2+( j−2)+β+n+β̃− j−2
∣∣∣2 dx

x

(149)= R

∫ 2

0

∣∣∣xδ j+2−δ j−2+δ2+n−4
∣∣∣2 dx

x
= R

∫ 2

0
|xδ2 |2 dx

x

(66)
� R,

since δ j+2 − δ j−2 = 4 − n and δ2 > 0. This concludes the estimate of I3. ��
We next give a corresponding estimate for the nonlinear operator in terms of the
H−2-norm. This estimate is needed if n ∈ ( 52 , 3), see also (55).

Lemma 8.3. (Nonlinear estimate by [·]H−2 -norm) Let n ∈ ( 52 ,
14
5 ) and suppose

that ε satisfies the assumptions (44)–(47) for k = 4. Then there is a constant c > 0
such that if ‖ f ‖H2 � c, then

[
N ( f, f̃ )

]
H−2

� C‖ f ‖H2‖ f̃ ‖X4,2 for all f ∈ H2, f̃ ∈ X4. (162)

Proof. We define

G(x) := (xn − hn) f̃x x + xF
(
xn−1 f̃x x

)
|x=0

, (163)

where F is given by (131). In particular, we have Gxx = N ( f, f̃ ). By Lemma 5.4,
we have h � x‖ f ‖H2 and hence

∫ ∞

0

1

xn

∣∣∣(hn − xn) f̃x x
∣∣∣ dx � C‖ f ‖2H2

∫ ∞

0
xn f̃ 2xx dx � C‖ f ‖2H2

[
f̃
]2
H2

.
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Similarly, using (89), we get
∫ ∞

0

1

xn

∣∣∣xF(xn−1 f̃x x )|x=0

∣∣∣2 dx
(65)
� C

(
xn−1 f̃x x

)2
|x=0

∫ ∞

0
x−n f 2 dx

(65)
� C

(
xn−1 f̃x x

)2
|x=0

∫ 2

0

∣∣∣x −n+1
2 +2 fxx

∣∣∣2 dx

x

(89),(76)
� C‖ f̃ ‖2X4,2

‖ f ‖2H2
,

since − n−1
2 > −δ2, thus concluding the proof of (162). ��

For the fix-point argument, we also need an estimate for the difference:

Lemma 8.4. (Nonlinear estimate for differences) Suppose that the assumptions of
Lemma 8.2 hold. Then there is a constant c0 > 0 such that for any f, f̃ ∈ Xk+2
with ‖ f ‖Xk , ‖ f̃ ‖Xk � c0, we have N ( f, f̃ ) ∈ Yk−2 and∥∥∥N ( f ) − N ( f̃ )

∥∥∥
Yk−2

(164)

� C
(
‖ f ‖Xk + ‖ f̃ ‖Xk

)
‖ f − f̃ ‖Xk+2,2

+ C‖ f − f̃ ‖Xk

(
‖ f ‖Xk+2,2 + ‖ f̃ ‖Xk+2,2

)
.

Proof. Since the argument proceeds similarly as in the proof of Lemma 8.2, we
only present the main ideas of the proof. Since N is linear in the second argument,
we have∥∥∥N ( f ) − N ( f̃ )

∥∥∥
Yk−2

�
∥∥∥N ( f, f ) − N ( f̃ , f )

∥∥∥
Yk−2

+
∥∥∥N ( f̃ , f − f̃ )

∥∥∥
Yk−2

.

(165)

The second term on the right hand side of (165) is estimated by Lemma 8.2.
In order to estimate the first term, we use the decomposition (137)–(138). Since
N2 is bilinear, the corresponding estimate follows directly from the argument in
Lemma 8.2. It hence remains to estimate

I := [N1( f, f ) − N1( f̃ , f )]Yk−2 (166)

for any j ∈ Nwith 2 � j � k. Let qδ j−2 be the generalized expansion of N ( f, f )−
N ( f̃ , f ) of order δ j−2. Then

I =
[
N1( f, f ) − N1( f̃ , f ) − qδ j−2

]
Hj−2

. (167)

We decompose f̃ as in (148) and for given β̃, we define β by (149). Let pβ be the
expansion of f of order β. Let F be defined by (131) and let Pβ = 1

x

∫ x
0 pβ be the

corresponding expansion of F . Analogously, for given f̃ , we define p̃β , F̃ and P̃β .
We then have

qδ j−2(x) −
∑

β̃∈[δ2,δ j+2]∩IX

( ∞∑
r=2

(
Pr

β (x) − P̃r
β (x)

) (
c̃β̃x

β̃
)
xx

)

xx

= o(xδ j−2),

(168)
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for x � 2 and c0 sufficiently small, cf. (150) and the proof of Lemma 10.1. By
(133), the above expansions have the difference Pβ − P̃β in at least one factor. The
estimate of (167) then proceeds analogously to the corresponding argument in the
proof of Lemma 8.2. ��
We also need the corresponding estimate in space-time norms:

Proposition 8.5. (Nonlinear estimate in space-time norms) Suppose that the
assumptions of Lemma 8.2 hold. Let 0 < T � ∞ and let QT = (0, T ) × (0,∞).
Then there is a constant c0 > 0 such that if f, f̃ ∈ T Xk+2(QT ) satisfy
‖ f ‖T Xk+2(QT ), ‖ f̃ ‖T Xk+2(QT ) � c0, then N ( f, f̃ ) ∈ TYk−2(QT ) and

‖N ( f, f ) − N ( f̃ , f̃ )‖TYk−2(QT ) � C‖ f − f̃ ‖T Xk+2(QT )

×
(
‖ f̃ ‖T Xk+2(QT ) + ‖ f̃ ‖T Xk+2(QT )

)
. (169)

Proof. We will show the estimate

‖N ( f, f̃ )‖TYk−2 � C‖ f ‖T Xk+2‖ f̃ ‖T Xk+2 . (170)

The proof for (169) is a straightforward extension of this estimate using the argu-
ments in the proof of Lemma 8.4. In order to prove (169), it is enough to show for
all �, i, j ∈ N0 with 0 � � � k and i + j � �,∥∥∥∂ it N ( f̃ , f )

∥∥∥
Y j−2

�
∑

i1+i2=i

(
‖∂ i1t f ‖X�−i1

‖∂ i−i1
t f̃ ‖X�+2−(i−i1),2 + ‖∂ i1t f ‖X�+2−i1

‖∂ i2t f̃ ‖X�−i2,2

)
.

Indeed, estimate (170) follows by integrating the square of (171) in time, application
of the Cauchy–Schwarz inequality (with L2/L∞) and taking the sum over �, i, j . It
remains to show the estimate (171). In the following, byR we denote any multiple
(by a constant only depending on n, ε, k) of the right hand side of (171).
Let qδ j ∈ PY be the expansion of N ( f, f̃ ) of order δ j and let h := x + ∫ x0 f dx̂ .
We then have

[∂ it N ( f, f̃ )]2Y j−2

(39)=
∫ ∞

0
x−δ j+ j

∣∣∣∂ it ∂ j−2
x

((
(hn − xn) f̃x x

)
xx

−qδ j

)∣∣∣2 dx

x
� R.

(171)

We will show the argument in the case qδ j = 0. The extension to the general case
follows by a straightforward adaption of the methods in the proof of Lemma 8.2.
Inequality (171) for i = 0 follows from Lemma 8.4. It hence remains to prove the
inequality for 0 < i � � and 4 j � � − i . If all the time derivatives in (171) are
applied to f̃ , then by Lemma 8.2 with f̃ replaced by ∂ it f̃ , we get∫ ∞

0
x−δ j+ j

∣∣∣∂ j
x

(
(hn − xn)∂ it f̃xx

)∣∣∣2 dx

x

� C
(
‖ f ‖2X j+2,2

‖∂ it f ‖2X j
+ ‖ f ‖2X j

‖∂ it f ‖2X j+2,2

)
� R.
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We next consider the case when at least one time derivative falls on the factor
hn − xn . We then have to estimate terms of the form

∫ ∞

0
x−δ j+ j

∣∣∣hn− j−i+q
0 Π

q
m=1∂

im
t ∂

jm
x ϕm

∣∣∣2 dx

x
� R, (172)

where ϕ j ∈ { f0, f̃0} and where∑q
m=1 im = i ,

∑q
m=1 jm = j with 0 � j1 � j2 �

· · · � jq . The estimate of the terms in (172) follows by similar arguments as in the
proof of Lemma 8.2. ��

9. Localization

In this section, we collect some results which will are helpful for the proof of Theo-
rem4.5. Indeed, this Theoremcan be obtained by a localization of the corresponding
estimates in the proof of Theorem 4.1.
The first ingredient in the proof is the following extension lemma:

Lemma 9.1. (Extension lemma) Let n ∈ (0, 3)\{1, 2}, k = 2 + 4 j0, j ∈ N0 and
suppose that ε satisfies (44)–(46). Suppose that ϕ j ∈ X2+k−4 j for j = 2, . . . , k
and suppose that hin(x) := 1

2 (1 − x2) + ∫ x−1 ϕ0 dx satisfies h > 0 and (22). Then

there is w ∈ T Xk+2(Q) such that h(t, x) := 1
2 (1 − x2) + ∫ x−1 w(t, x̃) dx̃ satisfies

(22) and such that

∂
j
t w|t=0 = ϕ j , and ‖w‖T Xk+2 � C

j0∑
j=0

‖ϕ j‖X2+k−4 j . (173)

If
∫∞
0 ϕ1 dx = 0, then

∫∞
0 w dx = ∫∞

0 ϕ0 dx for all t > 0.

Proof. Let ζ1 be a smooth cut-off function with supp ζ1 ∈ [−1, 1
2 and let ζ2 :=

1−ζ1. By Lemma 7.5, there is an extensionw1 satisfying (173) where the functions
ϕ j are replaced by ϕ

(1)
j ζ1. Correspondingly, there is an extension w2 satisfying

(173) where the functions ϕ j are replaced by ϕ
(1)
j ζ2. Note that ‖ϕ(i)

j ‖X2+k−4 j �
C‖ϕ j‖X2+k−4 j , i = 1, 2. It follows that w := w1 + w2 satisfies (173). Clearly, ��

The idea is to apply the implicit function theorem on the linearization δL (w) of
L (h) aroundw. In order to apply this theorem,we need to showmaximal regularity
of δL (w) and continuous differentiability of L in a neighborhood of w. This is
the content of the next proposition:

Proposition 9.2. Let n ∈ (0, 14
5 )\{1, 2}, let k � 2 and suppose that ε satisfies

(44)–(47). Suppose that hin : Ω → R is positive in Ω and satisfies (22) with
hin ∈ Xk(Ω) and let w be the extension of hin from Lemma 9.1. Then for τ

sufficiently small, we have
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1. For any fin ∈ Xk(Ω)and g ∈ TYk−2(Qt ) such that (22)and the corresponding
compatibility condition to (58) are satisfied for fin and g there exists a unique
f ∈ T Xk+2(Qt ) such that

δL (w) f = g in Qτ and f |t=0 = fin in Ω,

where Qτ = [0, τ ] × Ω . Furthermore

‖ f ‖T Xk+2(Qτ ) � C
(‖g‖TYk−2(Qτ ) + ‖ fin‖Xk (Ω)

)
,

where C depends on k and ‖hin‖Xk (Ω).
2. There is an δ > 0, such that L : T Xk+2(Qτ ) → TYk−2(Qτ ) is continuously

differentiable for all w̃ in Xτ with ‖w − w̃‖T Xk+2(Qτ ) < δ.

The proof of these statements follows by a localization of the global results on
existence and uniqueness in Theorem 4.1. We refer the reader to the analogous
localization arguments in [18,23,31] for further details. The general scheme applied
in these papers also applies here.

10. Proof of the Theorems

In this section, we give the proof of the Theorems 4.1, 4.2 and 4.5 and of the
Corollaries 4.3 and 4.4. We use fix-point arguments, similarly as in [31]. In order
to apply the fixed point argument in the case of higher regularity, it is necessary to
ensure that the compatibility conditions are satisfied in each step of the argument.
In the fix-point in the proof of Theorem 2.2 in [31], we have missed this aspect.
The argument in Theorem 4.2 closes this gap for the corresponding proof in [31].

Proof of Theorem 4.1. The proof of Theorem 4.1 follows by application of a con-
traction argument. Let fin ∈ Xk with ‖ fin‖Xk � δ, where δ will be fixed later. For
η > 0 to be fixed later, we define the complete metric space

E := { f ∈ T X4 : f|t=0 = fin and ‖ f ‖T X4 � η}. (174)

Indeed, for any f ∈ T X4 with k � 2, the trace of f at t = 0 is controlled as an L2-
function. Furthermore, E is not empty since the solution f (0) of the linear parabolic
problem (117) with right hand side g = 0 and initial data fin, with ‖ fin‖Xk � δ, is
an element of E for δ = δ(η) sufficiently small. For f ∈ E , we define S( f ) as the
solution of ⎧⎨

⎩
∂t S( f ) + AS( f ) = N ( f ) for (x, t) ∈ (0,∞)2,

S( f ) = 0 for x = 0,
S( f ) = fin for t = 0.

(175)

Let f1, f2 ∈ E and let f := f1 − f2. In particular, S( f1)− S( f2) solves (117) with
right hand side N ( f1) − N ( f2) and vanishing initial data. By (118) it satisfies

‖S( f1) − S( f2)‖T X4 � C‖N ( f1) − N ( f2)‖TY0 . (176)
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By Proposition 8.5, we hence get

‖S( f1) − S( f2)‖T X4 � C‖N ( f1) − N ( f2)‖TY0
(169)
� C‖ f1 − f2‖T X4

(‖ f1‖T X4 + ‖ f2‖T X4

)
� Cη‖ f1 − f2‖T X4 .

Hence, S is a contraction if η > 0 is sufficiently small. Similarly, by (118) and
(169), we get

‖S( f )‖T X4 � ‖ fin‖X2 + C‖N ( f )‖TY0
(169)
� C

(
δ + η2

)
, (177)

and hence S(E) ⊆ E for δ := η2 and for η > 0 sufficiently small. The above
estimates show that S : E → E is a contraction operator. By Banach’s fixed point
theorem, we thus obtain the existence of a unique f ∈ E with S( f ) = f . By (175),
S( f ) solves the nonlinear equation. By (178) and for η sufficiently small, we get

‖ f ‖T X4 � ‖ fin‖X2 + C‖ f ‖2T X4
� ‖ fin‖X2 + 1

2
‖ f ‖T X4 (178)

which yields (60). This concludes the proof of Theorem 4.1. ��
Proof of Theorem 4.2. Let fin ∈ Xk with ‖ fin‖Xk � δ, where δ > 0 will be fixed
later and suppose that fin satisfies the compatibility conditions. By Lemma 7.5
there is an extension w ∈ T Xk+2 (in particular w|x=0 = 0) with w|t=0 = fin,

∂
j
t w|t=0 =

(
∂
j−1
t (N (w) − Aw)

)
|t=0

for 0 � 2 + 4 j � k (179)

and ‖w‖T Xk+2 � C‖ fin‖Xk . For this, we choose w as in the extension Lemma 7.5,
where the functions ϕ( j) are inductively defined by ϕ(0) = fin and by (179) with
∂
j−1
t w|t=0 replaced by ϕ( j−1). By the compatibility conditions, we have ϕ( j) ∈
Xk−4 j for 0 � 2 + 4 j � k so that the extension lemma is applicable. Similarly to
(174), we define

E := { f ∈ T Xk+2 : ‖ f ‖T Xk+2 � η, ∂
j
t f|t=0 = 0 for j = 0, . . . , k}. (180)

For f ∈ E , we define S( f ) ∈ T Xk+2 by F =: w + S( f ) where F is the solution
of ⎧⎪⎨

⎪⎩
Ft + AF = N (w + f ) for x ∈ (0,∞),

F = 0 for x = 0,

F = fin for t = 0.

(181)

The extension w is constructed such that the compatibility conditions (58) are
satisfied up to order k for fin and N (w + f ). Indeed by the definition of E , we
have (∂

j
t N (w + f ) − ∂

j
t N (w))|x=0 = 0 and ∂

j
t N (w + f ) − ∂

j
t N (w) ∈ Hk−4 j .

The compatibility conditions then follow inductively from (179). By the parabolic
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estimate in Proposition 7.4, we hence get a unique solution w + S( f ) and the
estimate

‖w + S( f )‖T Xk+2 � C(‖ fin‖Xk + ‖N (w + f )‖TYk−2). (182)

By Proposition 8.5, for all f, f̃ ∈ E , we have

‖N (w + S( f )) − N (w + S( f̃ ))‖TYk−2(QT )

� C‖ f − f̃ ‖T Xk+2(QT )(‖w + f̃ ‖T Xk+2(QT ) + ‖w + f̃ ‖T Xk+2(QT )).

(183)

Taking j − 1 derivatives of (181) in time and evaluating the result at x = 0, we get
(
∂
j
t S( f )

)
|x=0

= ∂
j−1
t (N (w + f ) − Aw − wt )|x=0 −

(
∂
j−1
t AS( f )

)
|x=0

(179)= −A
(
∂
j−1
t S( f )

)
|x=0

. (184)

From (184), we obtain inductively that ∂
j
t S( f ) = 0 for 0 � 2 + 4 j � k. Anal-

ogously as in the proof of Theorem 4.1, it then follows that the operator S is a
contraction operator in E if δ is chosen sufficiently small. By Banach’s fixed point
argument hence there is a unique f ∈ E such that F := w + f satisfies (181). In
particular F solves (15) and satisfies (61). ��
Proof of Corollary 4.3. By Theorem 4.1 there exists a solution satisfying (60).
We argue by induction. Let k ∈ N, k � 4 and δk > 0 be the constant from the
assumptions of Theorem 4.2. For the induction argument, we assume there is tk > 0
such that the compatibility conditions hold up to order k at t = tk and

f|t=tk ∈ Xk and ‖ f|t=tk‖Xk � δk . (185)

By Theorem 4.1, this assumption holds true for k = 2. By Theorem 4.2, we then
have f ∈ T Xk+2([tk,∞) × R+) and ‖ f ‖T Xk+2([tk ,∞)×R+) � Cδk . By Fubini’s
theorem it follows that there is a time tk+2 > tk which depends on tk , δk , δk+2
and Ck+2 (the constants in the assumptions of Theorem 4.1 and in (60)) such
that f|t=tk+2 ∈ Xk+2 and ‖ f|t=tk+2‖Xk+2 � δk+2. In particular, the compatibility
condition (59) up to order k + 2 hold at t = tk+2, see also the discussion next to
(59). The statement of Corollary 4.3 then follows by induction. ��
Proof of Corollary 4.4. Clearly, h is a solution of (2) if f is a solution of (15).
By Theorem 4.1, the solution f satisfies f (t, ·) ∈ Xk for every t > 0. By Propo-
sition 5.5 and by definition (38) of the norm, for every t > 0 there is an expansion
p ∈ PX of order δk such that

| f (x) − p(x)| � Cxδk‖ f ‖C0(Xk )
� Cxδk‖ fin‖Xk (186)

for all x ∈ (0,∞). This implies that h has the expansion of type (63). The estimate
(64), then follows from (11). The second statement of the corollary follows from
Corollary 4.3. This concludes the proof of Corollary 4.4. ��
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Proof of Theorem 4.5. The proof of Theorem 4.5 is based on Proposition 9.2.
Using this proposition, Theorem 4.5 follows by application of the inverse function
theorem. We refer to similar arguments, as, for example, [23,32], and keep the
details brief. We linearize L at an appropriately constructed extension w. We
then show boundedness and differentiability for L and invertibility and maximal
regularity for its linearization δL (w) at w. Suppose that fin ∈ Xk+1/2 satisfies the
compatibility conditions up to order k.
We first construct the extension w ∈ T Xk+1(Qτ ) such that with w|t=0 = fin,

∂
j
t L (w)|t=0 = 0 for 0 � 2 + 4 j � k (187)

and ‖w‖T Xk+2(Qτ ) � C‖ fin‖Xk . The existence of such a function w follows from
the extension Lemma 9.1 since the compatibility conditions hold, see also the
argument in the proof of Theorem 4.2. Let δL (w) be the linearization ofL around
w. We define the operator

M : T Xk+2(Qτ ) → Xk(Ω) × TYk−2(Qτ ) with M ( f ) := ( f|t=0,L f ).

By Proposition 9.2, the operator M is bounded, continuously differentiable near
w. Furthermore, δM (w) is invertible with bounded inverse for τ small enough.
We define ϕ := L (w) ∈ TYk−2(Qτ ), that is M (w) = ( fin, ϕ). By the inverse
mapping theorem there is a neighborhoodU ofw and a neighborhoodV of ( fin, ϕ)

such that M : U → V is a diffeomorphism. By (187) we have ∂
j
t ϕ|t=0 = 0 for

0 � 2 + 4 j � k. It follows that ‖ϕ‖T Xk (Qτ ) → 0 for τ → 0. Hence, there
is τ̃ ∈ (0, τ ) and ϕ̃ ∈ TYk−2(Qτ ) with ϕ̃ = 0 for t ∈ (0, τ̃ ) and such that
( fin, ϕ̃) ∈ V . Hence, there is f ∈ U with M ( f ) = ( fin, ϕ̃). In particular, the
function f solves f = fin at t = 0 andL ( f ) = 0 for t ∈ (0, τ̃ ). Correspondingly,
h(x) = x(1 − x) + ∫ x0 f (x ′)dx ′ solves (21) for t ∈ (0, τ̃ ). ��

Appendix

In the appendix, we investigate how the operators ∂t + A and N act on expansions
of type PX . We first consider the nonlinear operator N :

Lemma 10.1. Let n ∈ (0, 3)\{1, 2}. Let f, f̃ ∈ PX , where

f =
∑
β∈IX

fβx
β and f̃ =

∑
β̃∈IX

f̃β̃x
β̃ for some fβ, f̃β̃ ∈ R. (188)

Then there is a constant c0 > 0 such that if ‖ f ‖P � c0, then g := N ( f, f̃ ) ∈ PY

is well-defined for x ∈ (0, 2). With the notation g =∑β∈IY gβxβ , we furthermore
have

|gγ | � C
∑

β+β̃�δk+4

| fβ || f̃β̃ | ∀γ ∈ PY with γ � δk . (189)
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Proof of Lemma 10.1 We use the decomposition N = N1 + N2 given in (137),
(138). By (134), N2 is well-defined for x ∈ (0, 2) if c0 is sufficiently small. We
first argue that g ∈ PY . By Lemma 5.7, we have F ∈ PX , where F is defined in
(131). We calculate,

F(x) = f1+α

2
x + fα

α + 1
xα +

∑
i+ j�3,i�0, j�1

fi+ jα

i + 1 + jα
xi+ jα,

f̃x x (x) = α(α − 1) f̃αx
α−2 +

∑
i+ j�1,i�0,�1

f̃i+ jαx
i+ jα.

(190)

In the sequel, by γi j we denote constants which depend only on the coefficients fβ
with β � i + jα. By γ̃i j we denote constants which depend on the coefficients f̃β̃
with β̃ � i + jα. By γ̄i j we denote constants which depend on sums of products
of coefficients fβ and f̃β for β + β̃ � i + jα. We have,

∞∑
r=2

cnr F
r =

∑
i+ j�2,i�0, j�0

γi j x
i+ jα, (191)

where cnr are the binomial coefficients, cf. (137). The sum in (191) converges
absolutely for c0 sufficiently small and by (86). From the definition (137) of N1,
we hence get

N1( f, f̃ )
(137)=

(
x3−α

( ∞∑
r=2

cnk F
r

)
f̃x x

)

xx

(190)=
⎛
⎝x3−α

∑
i+ j�2,i�0, j�0

γi j x
i+ jα

⎞
⎠
⎛
⎝ ∑

i+ j�−1,i�−2, j�1

γ̃i j x
i+ jα

⎞
⎠

xx

=
∑

i+ j�1,i�−1, j�0

γ̄i j x
i+ jα. (192)

From the definition (138) of N2, we get

N2( f, f̃ )
(138)=

(
x3−αF

(
f̃ − f̃01x

α
)
xx

)
xx

(190)=
⎛
⎝x3−α

⎛
⎝ ∑

i+ j�1,i�0, j�0

γi j x
i+ jα

⎞
⎠
⎛
⎝ ∑

i+ j�1,i�0, j�1

γ̃i j x
i+ jα

⎞
⎠
⎞
⎠

xx

=
∑

i+ j�2,i�1, j�0

γ̄i j x
i+ jα. (193)

Equations (192) and (193) yield N ( f, f̃ ) ∈ PY . The estimate (189) is a conse-
quence of the scaling invariance of the operator and can be read off easily from the
argument below. ��
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The following lemma demonstrates how solutions of the ∂t + A can be constructed
in the space of generalized expansions. It is not used in the proof of the main
theorems:

Lemma 10.2. Let Pfin ∈ PX,δk , g ∈ L2(PY,δk−2) such that (58) holds for fin =
Pfin and g = Pg. Then there exists Pf ∈ L2(PX,δk+2), a solution of

∂t P f + APf = Pg, Πk Pf |t=0 = Pfin , (194)

where Πk is the orthogonal projection onto PX,δk . Let n ∈ (0, 14
5 )\{1, 2}. Further-

more, for any given cut-off function ζ ∈ C∞
c ([0,∞)), with ζ = 1 in [0, 1] and

ζ = 0 in [2,∞), we have

‖ζ Pf ‖T Xk+2 � C
(‖ζ Pfin‖Xk+2 + ‖ζ Pg‖TYk−2

)
, (195)

where C only depends on ζ .

Proof. Let us assume that g and f are given by

f (t) =
∑

β∈[δ2,δk+2]∩∈IX
cβ(t)xi+ jα, g(t) =

∑
β∈[δ2,δk−2]∩IY

dβ(t)xi+ jα. (196)

The coefficients of fin are correspondingly denoted by cβ(0). Let Δ := 1 + α.
Equality (194) then takes the form

d

dt
cβ(t) + Mβ+Δcβ+Δ(t) = dβ(t), i � 0, (197)

for β ∈ IY and with Mβ+Δ �= 0. Let β ∈ IY such that with β − Δ �∈ IY and let
c̃i := cβ+iΔ, d̃i := dβ+iΔ, M̃i := Mβ+iΔ. Then we get the chain of ODEs

d

dt
c̃i (t) + M̃i+1c̃i+1(t) = d̃i (t) for i ∈ N0. c̃i (0) = c̃i,in. (198)

It is enough to find the solution for a system of type (198). Since f∈ ∈ PX , we
have c̃0,in = 0, cf. Fig. 2. We choose c̃0(t) = 0. The solution can be inductively
calculated by M̃ j+1c̃ j+1 = d̃ j − d

dt c̃ j . The estimate (195) follows. Note that the
compatibility condition (58) implies c2i (t) = c2i,in for all i � 0. This solves (198)
and hence (197). The estimate follows easily using the equation. ��
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