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Abstract

This paper aims at building a unified framework to deal with a wide class of
local and nonlocal translation-invariant geometric flows. We introduce a class of
nonlocal generalized mean curvatures and prove the existence and uniqueness for
the level set formulation of the corresponding geometric flows. We then introduce
a class of generalized perimeters, whose first variation is an admissible generalized
curvature. Within this class, we implement a minimizing movements scheme and
we prove that it approximates the viscosity solution of the corresponding level set
PDE. We also describe several examples and applications. Besides recovering and
presenting in a unified way existence, uniqueness, and approximation results for
several geometric motions already studied and scattered in the literature, the theory
developed in this paper also allows us to establish new results.
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1. Introduction

In this paper we present a unified approach to deal with a large class of possibly
nonlocal geometric flows; that is, evolutions of sets t �→ E(t) governed by a law
of the form

V (x, t) = −κ(x, E(t)), (1.1)

where V (x, t) stands for the (outer) normal velocity of the boundary ∂E(t) at x
and the function κ(·, E) will be referred to as a generalized curvature of ∂E , in
analogy with the classical theory.

If the functionκ depends only onhow ∂E looks around x , then theflow is local in
nature. This is of course the case of the classicalmean curvature flow, where κ(·, E)

is nothing but the mean curvature of ∂E , that is the first variation of the standard
perimeter functional at E . On the other hand, for some of the relevant flows that have
been intensively studied in recent years the generalized curvature κ is truly nonlocal
and depends on the global shape of the evolving set E(t) itself. It happens for
instance for fractional mean curvature flows, where the corresponding curvatures
are defined as the first variation of the so-called fractional perimeters. Such flows
represent the natural counterparts in the fractional framework (see [9,10,27,37])
of the classical mean curvature motion. See also [3,5], and [6] for other somewhat
similar nonlocal evolutions, related to dislocation dynamics.

As already made clear by the aforementioned examples, a relevant class of
curvatures is given by those that can be seen as the first variation of some generalized
perimeters; we refer to such a class as variational curvatures. It is important to
observe that when κ is variational, then (1.1) can be interpreted as the gradient flow
of the corresponding perimeter, with respect to a suitable L2-Riemannian structure.
In the case of the classical mean curvature flow, this observation underpins the
minimizing movements algorithm implemented by Almgren–Taylor–Wang in their
pioneering work [1] (see also [30]).

The strong formulation of the motion (1.1), which requires smoothness, faces
the possible formation of singularities in finite time. Thus, the evolution can only be
defined locally in time, which is clearly unsatisfactory from the applications point
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of view. On the other hand, Brakke [8] proposed a weak formulation for motion
by mean curvature that resulted in deep regularity results but had the disadvantage
of producing a lack of uniqueness. These uniqueness issues are often overcome by
the more recent notion of generalized motion that is associated to the so-called level
set approach. Such an approach is based on representing the evolving set as the
zero super-level set of a function u(x, t), which is defined for all times as viscosity
solution to the (degenerate) parabolic partial differential equation

ut (x, t)+ |Du(x, t)|κ(x, {y : u(y, t) > u(x, t)}) = 0. (1.2)

The level-set method was proposed in [32], analytically validated in [23] for the
motion by mean curvature and in [20] for more general local motions. In the case
of the classical mean curvature (and of several different local curvatures) viscosity
solutions to (1.2) with a prescribed initial datum are unique. Note also that (1.2)
prescribes that all the super-level sets of u evolve according to (1.1).

The paper is divided into two parts. The main focus of Part 1 is to develop a
general level set approach for the geometric motions (1.1), while Part 2 is aimed
at implementing a general minimizing movements scheme à la Almgren–Taylor–
Wang for a large class of variational curvature motions, and at exploring the con-
nections between the two approaches. In carrying out the program of Part 1 and
Part 2, we recover and present in a unified way existence, uniqueness, and approx-
imation results for several geometric motions already studied and scattered in the
literature, but we also establish new results (see the end of this Introduction).

We now describe the content of the paper in more detail. In Part 1 we introduce
the class of generalized curvatures we deal with and then we set up the viscosity
theory for the corresponding generalized level set equation (1.2).

To be more specific, a generalized curvature κ is a function defined on the
pairs (x, E), where E is a C2-set with compact boundary and x ∈ ∂E , and such
that κ(x, ·) is monotone non-increasing with respect to the inclusion between sets
touching at x , and continuouswith respect toC2-convergence of sets (for the precise
definition of such a convergence see Section 2.1).1 We also assume the translation
invariance, that is, κ(x, E) = κ(x + y, E + y) for all admissible pairs (x, E) and
for all y ∈ R

N .
In order to fully exploit the second order viscosity solutions formalism, we need

to extend the definition of the right-hand side of (1.2) to non-smooth sets. This is
achieved by considering suitable lower and upper semicontinuous envelopes κ∗ and
κ∗ of κ that are then employed to define viscosity subsolutions and supersolutions,
respectively. The domain of definition of the relaxed curvatures κ∗ and κ∗ is made
up of the elements of the form (x, p, X, E), where E is now any measurable set,
x ∈ ∂E , and (p, X) belongs to the second order super-jet (as far as κ∗ is concerned)
or sub-jet (as far as κ∗ is concerned) of E at x . By construction, κ∗ and κ∗ turn out

1 As is often the case in viscosity solution approaches, we may in fact assume that the
curvature is a priori defined only for smoother sets, and will later on consider also stronger
regularities.



1266 Antonin Chambolle, Massimiliano Morini & Marcello Ponsiglione

to be lower and upper semicontinuous, respectively, with respect to the Hausdorff
convergence of sets and a suitable notion of uniform convergence of super- and
sub-jets (see Definition 2.7).

Remarkably, the above semicontinuity property is weaker than the semicon-
tinuity with respect to the L1-convergence, which is one of the main hypotheses
in the rather general approach developed in [33]. This significantly increases the
class of admissible curvatures we can treat. For instance, the aforementioned frac-
tional curvatures are not semicontinuous with respect to the L1-convergence and
the corresponding L1-relaxation would be useless (equal to −∞ for every closed
set). Let us also notice that κ∗ and κ∗ are defined only on “geometrically meaning-
ful” objects and this represents a further difference from [33], while the relaxation
procedure used to define the semicontinuous envelopes of κ is reminiscent of the
approach of Barles and Souganidis (see [7]) and of Cardaliaguet and co-authors
(see [11–15]).

Section 2 is entirely devoted to setting up the viscosity formalism. The latter
task being accomplished, a general existence theorem for the level set formulation
of (1.1) and for the class of generalized translation invariant curvatures we spec-
ified before is easily obtained through an application of the Perron method (see
Theorem 2.21).

The drawback of such a generality is that the classical strategy to prove the
comparison principle and, in turn, the uniqueness of viscosity solutions may fail.
Uniqueness is the main focus of Section 3, where we provide two different treat-
ments, distinguishing between first order and second order geometric flows.

Roughly speaking, we say that a geometric flow is of first order if the envelopes
κ∗ and κ∗ do not depend on the second derivative variables (see condition (FO) at
the beginning of Section 3.1). Fractionalmean curvaturemotions and the shape flow
generated by the p-capacity in R

N are relevant examples of first order geometric
motions, see below. Uniqueness for such motions follows from the Comparison
Principle provided by Theorem 3.5. Let us mention that the main technical tool
used in the first order uniqueness theory is represented by the well-known Ilmanen
Interposition Lemma (see [11,12,26]).

The uniqueness theory for second order flows is harder and developed in
Section 3.2. In order to understand the source of difficulty, notice that the semicon-
tinuity properties of κ∗ and κ∗ are not sufficient to conclude that the subsolution
and the supersolution inequalities extend to elements of the closure of the par-
abolic super- and sub-jets, respectively. This means that the usual machinery to
establish uniqueness for second order equations, which is based on the celebrated
Ishii’s Lemma (see [21]), cannot be applied. Indeed, Ishii’s Lemma states that if
u is upper semicontinuous, v is lower semicontinuous, and u − v attains a (local)
maximum at (x, t), then there exists at least one element belonging to both the
closure of the parabolic super-jet of u and the closure of the parabolic sub-jet of v

at (x, t). Such a separating element is obtained through a limiting procedure, which
involves regularizations via inf- and sup-convolutions, the Alexandrov theorem on
the almost everywhere second order differentiability of semi-convex functions, and
a perturbation argument due to Jensen [21, Lemma A.3]. Since we lack the proper
semicontinuity properties, we need to avoid “passing to the limit”. Our proof of
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the second order Comparison Principle (see Theorem 3.8) still uses all the afore-
mentioned tools but combines them with some new insight, allowing us to avoid
the limiting procedure. The price we have to pay is a reinforced continuity assump-
tion on κ (see beginning of Section 3.2), which is nevertheless satisfied by all the
relevant examples we have in mind.

In Part 2 of the paper we take on a variational approach to geometric flows based
on the minimizing movements. To this aim, we introduce a class of functionals
referred to as generalized perimeters. More precisely, denoting by M the class of
Lebesgue-measurable sets,we call a generalized perimeter any translation invariant
set function J :M→ [0,+∞], which is insensitive to modifications on negligible
sets, finite on C2-sets with compact boundary, lower semicontinuous with respect
to L1

loc-convergence, and satisfying the following submodularity condition: For any
measurable sets E, F ⊂ R

N ,

J (E ∪ F)+ J (E ∩ F) � J (E)+ J (F). (1.3)

It turns out that the latter condition is a convexity condition in the following sense:
Extend J to L1

loc(R
N ) by enforcing the generalized coarea formula (4.3) (see [37]);

then, J is submodular if and only if the extended functional is convex (see [18]).
A first important consequence of submodularity is that if J admits a first variation
κ , then such a curvature is monotone. More in general, if J is smooth enough, then
its first variation is an admissible generalized curvature.

As mentioned before, the main achievement of Part 2 is the implementation
of a generalized Almgren–Taylor–Wang minimizing movements scheme to approx-
imate geometric motions associated with variational generalized curvatures. We
recall that, given an initial set E0 and a time step h > 0, such a scheme provides a
discrete-in-time evolution obtained by solving iteratively suitable incremental min-
imum problems. The energy to be minimized at each discrete time is the sum of the
generalized perimeter and of a suitable dissipation that penalizes the L2-distance
from the boundary of the set obtained at the previous step. It turns out, once again
due to submodularity, that the discrete evolutions satisfy the comparison princi-
ple. Adopting the point of view introduced in [17], we combine the minimizing
movements scheme with the level set framework. More precisely, given an initial
function u0, we let all its super-level sets evolve according to the discrete scheme.
In light of the discrete comparison principle, the evolving sets are themselves the
super-levels sets of a discrete-in-time evolving function uh(·, t).

We then study the limiting behavior of uh as the time step h ↘ 0 and in one of
the main results of this paper we establish the following general consistency prin-
ciple: For all variational generalized curvatures the discrete evolutions uh provided
by the minimizingmovements scheme converge (up to subsequences) to a viscosity
solution of the level set equation. In particular, under the additional assumption that
guarantees uniqueness, the whole sequence converges (to the unique viscosity solu-
tion). Let us mention that in the case of the mean curvature motion the consistency
between the level set and theminimizingmovements approach has been established
in [17] (see also [22]). From the technical point of view, the convergence analysis
combines several ingredients, among which we mention some careful estimates on
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the speed of propagation of the support of the initial function u0 and a subgradient
inequality involving the generalized curvature, which is crucial in obtaining the
limiting sub(super)-solution property. The subgradient inequality is a consequence
of the analysis developed in Section 4.3 (see (4.9)). Note that since we do not have a
regularity theory for the minimizers of the incremental problems, all our argument
are necessarily variational in nature.

A relevant consequence of our general consistency principle is that the gener-
alized perimeter of the super-level sets for which no fattening occurs during the
evolution is non-increasing in time (note that the no fattening condition is satisfied
by almost all super-level sets). Moreover, we show that a suitable inner regular-
ization of the generalized perimeter J , defined on open sets A as the inf − lim inf
of J along sequences of open sets approximating A from the interior (see Defini-
tion 6.20), is always non-increasing in time (see Section 6.5).

We conclude this introduction by highlighting some relevant examples and
applications of our general theory that are presented in the paper (see Section 5).
Such examples are by no means exhaustive and serve indicating the scope of our
theory:

– Local motions: The theory of local generalized mean curvature motions estab-
lished in [20] fits into our theory as particular case.

– Fractional mean curvatures motions: As mentioned before, these are the first
order geometric flows associated with the so-called fractional perimeters. The
existence and uniqueness of viscosity solutions to the corresponding level set
equation were already established in [27] and are recovered here. On the other
hand, the convergence of the minimizing movements scheme provided by our
theory is new for these motions and furnishes an approximation algorithm that
is alternative to the threshold-dynamics-based one studied in [10].

– Capacity flows: Given 1 < p < N , consider the generalized perimeter that
coincides with the p-capacity in R

N on bounded sets of class C2. It can be
shown that the associated curvature κ(x, E) is given by |DwE (x)|p, where wE

denotes the capacitary potential of E . Thus, the associated geometric motion
is somewhat related to the Hele-Show type flows studied in [13–15] (see also
[11,12]). Our general results yield existence, uniqueness, and approximation
via minimizing movements also for this shape flow, which turns out to be of
first order according to our terminology (see Section 5.5).

– Second order nonlocal motions: Our theory includes all the generalized cur-
vatures treated in [33], that are in addition translation invariant. As already
mentioned, compared to our approach the theory of [33] requires stronger con-
tinuity assumptions on the Hamiltonians and more restrictive growth conditions
that rule out singular behavior of generalized curvatures along shrinking balls.
As a further example, which is not covered by the theory developed in [33] while
fitting into ours, we mention here the generalized perimeter introduced in [2] in
the framework of two-phase Image Segmentation. We will refer to it as regular-
ized pre-Minkowski content of a set since it consists in a suitable regularization
of the Lebesgue measure of the ρ-neighborhood of the essential boundary, for
some fixed ρ > 0. The corresponding geometric motion was studied in [19]. In
the latter work we computed the associated generalized curvature and proved
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convergence of the minimizingmovements scheme to a viscosity solution of the
level set equation, but we were unable to establish uniqueness. The theory of
the present paper allows us to recover the existence and approximation results
of [19] and, in addition, yields the uniqueness of the geometric motion.

A final remark regarding the translation invariance and the continuity assump-
tions on κ is in order. Concerning the former, we believe that it could be removed
at the expense of some additional technical effort but within the main theoretical
framework introduced in this paper. On the other hand, the continuity assumptions
that guarantee the stability property and the comparison principle are of a more
subtle and essential nature. They exclude from our theory some relevant irregular
perimeters, as crystalline perimeters (that also would require a different specific
viscosity level set formulation). It is not clear at the present which is (if any) the
weakest continuity assumption on κ yielding the uniqueness of the geometric flow.
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Part 1. Nonlocal Curvatures

In this part we introduce the class of generalized curvatures we deal with.
Then, we introduce the notion of viscosity solutions for the level set equation of
the geometric flow, and we prove the existence and uniqueness of the solution.

2. Viscosity Solutions: Definition, Properties, Existence

We begin this section by introducing the class of generalized curvatures we will
deal with.

2.1. Axioms of a Nonlocal Curvature

Let C be the class of subsets of RN , which can be obtained as the closure of
an open set with compact C�,β boundary, and letM be the class of all measurable
subsets of RN . Throughout the paper � � 2 and β ∈ [0, 1] will be fixed, the reader
may simply assume � = 2, β = 0.

In this part, we are given for every set E ∈ C a function x �→ κ(x, E) ∈ R

defined for x ∈ ∂E , and referred to as the “curvature” of the set E . This curvature
will satisfy the following axioms:

(A) Monotonicity: If E, F ∈ Cwith E ⊆ F , and if x ∈ ∂F ∩∂E , then κ(x, F) �
κ(x, E);

(B) Translational invariance: for any E ∈ C, x ∈ ∂E , y ∈ R
N , κ(x, E) =

κ(x + y, E + y);
(C) Continuity: If En → E in C and xn ∈ ∂En → x ∈ ∂E , then κ(xn, En) →

κ(x, E).

Here and throughout the paper, by En → E in C we mean that there exists a
sequence of diffeomorphisms {�n} converging to the identity in C�,β , with En =
�n(E).

Axioms (A), (B) and (C) are enough to prove the existence of a generalized
solution of the geometric flow (1.1). By assumption (C), for any ρ > 0 we can
define the quantities

c(ρ) := max
x∈∂Bρ

max
{
κ(x, Bρ),−κ

(
x,RN\Bρ

)}
, (2.1)

c(ρ) := min
x∈∂Bρ

min
{
κ(x, Bρ),−κ

(
x,RN\Bρ

)}
, (2.2)

which are continuous functions of ρ > 0. Assumption (D) below will guarantee
that the curvature flow starting from a bounded set remains bounded at all times.

(D) Curvature of the balls: There exists K > 0 such that

c(ρ) > −K > −∞. (2.3)
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Without assuming (D) most of the results in this paper remain true, except that
the flow starting from a given set with compact boundarywill be defined possibly up
to some time T ∗ < +∞where its boundary becomes unbounded and the framework
of this paper cannot be applied anymore. The time T ∗ can be estimated from c(ρ).
Observe that thanks to the monotonicity axiom (A), the functions ρ �→ c(ρ) and
ρ �→ c(ρ) are nonincreasing.

2.2. Viscosity Solutions

Here we introduce the level set formulation of the geometric evolution problem
V = −κ , where V represents the normal velocity of the boundary of the evolving
sets t �→ Et , and we give a proper notion of viscosity solution. We refer to [25]
for a general introduction of this approach for local geometric evolution problems.
The level set approach consists in solving the following parabolic Cauchy problem

{
∂t u(x, t)+ |Du(x, t)|κ(x, {y : u(y, t) � u(x, t)}) = 0

u(0, ·) = u0.
(2.4)

Here and in the following, D and D2 stand for the spatial gradient and the spatial
Hessian matrix, respectively. Notice that if the superlevel sets of u are not smooth,
the meaning of (2.4) is unclear. For this reason, it is necessary to use a definition
based on appropriate smooth test functions whose level sets curvatures are well
defined. The appropriate setting is of course the framework of viscosity solutions.
Let us first introduce a class of test functions appropriate for this problem.

As in [28] (see also [19]),we introduce a familyF of functions f ∈ C∞([0,∞)),
such that f (0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r in a neighborhood of 0,
f is constant in [M,+∞) for some M > 0 (depending on f ), and

lim
ρ→0+

f ′(ρ) c(ρ) = 0, (2.5)

where c(ρ) is the function introduced in (2.1). We refer to [28, p. 229] for the proof
that the family F is not empty. Note that (2.5) (recall also (2.3)) implies

lim
ρ→0+

f ′(ρ) c( f −1(ρ)) = 0, (2.6)

since f −1(ρ) > ρ for small values of ρ and c is decreasing.
Wefix T > 0 and look for geometric evolutions in the time interval [0, T ]. Since

we will consider the evolution of sets with compact boundaries, it is convenient
to describe such evolving sets as level sets of functions that are spatially constant
outside a compact set. For technical reasons it will be convenient to consider test
functions that are also spatially constant outside a compact set, but with such a
constant value possibly depending on time. More precisely, in the following, with
a small abuse of language, we will say that a function g : RN × A → R, with
A ⊆ [0, T ], is constant outside a compact set if there exists a compact setK ⊆ R

N

such that g(·, t) is constant in (RN\K) for every t ∈ A (with the constant possibly
depending on t).
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Definition 2.1. Let ẑ = (x̂, t̂) ∈ R
N × (0, T ) and let A ⊆ (0, T ) be any open

interval containing t̂ . We will say that ϕ ∈ C0(RN × A) is admissible at the point
ẑ = (x̂, t̂) if it is of class C2 in a neighborhood of ẑ, if it is constant out of a
compact set, and, in case Dϕ(ẑ) = 0, the following holds: there exists f ∈ F and
ω ∈ C∞([0,∞)) with ω′(0) = 0, ω(r) > 0 for r 
= 0 such that

|ϕ(x, t)− ϕ(ẑ)− ϕt (ẑ)(t − t̂)| � f (|x − x̂ |)+ ω(|t − t̂ |)
for all (x, t) in RN × A.

We are now ready to propose the definition of a viscosity sub and supersolution.
The literature contains a multiplicity of formulations based on larger or smaller
families of test functions. Ours and the equivalent definitions we will provide in
Section 2.5 are variants of what can be found in a non-local setting in [6] or [33].

Definition 2.2. An upper semicontinuous function u : RN × [0, T ] → R (in short
u ∈ USC(RN ×[0, T ])), constant outside a compact set, is a viscosity subsolution
of the Cauchy problem (2.4) if u(0, ·) � u0 and for all z := (x, t) ∈ R

N × (0, T )

and allC∞-test functions ϕ such that ϕ is admissible at z and u−ϕ has a maximum
at z (in the domain of definition of ϕ) the following holds:

(i) If Dϕ(z) = 0, then ϕt (z) � 0;
(ii) If the level set {ϕ(·, t) = ϕ(z)} is noncritical, then

ϕt (z)+ |Dϕ(z)| κ (
x, {y : ϕ(y, t) � ϕ(z)}) � 0.

A lower semicontinuous function u (in short u ∈ LSC(RN × [0, T ])), constant
outside a compact set, is a viscosity supersolution of the Cauchy problem (2.4) if
u(0, ·) � u0 and for all z ∈ R

N × (0, T ) and all C∞-test functions ϕ such that ϕ

is admissible at z and u − ϕ has a minimum at z (in the domain of definition of ϕ)
the following holds:

(i) If Dϕ(z) = 0, then ϕt (z) � 0;
(ii) If the level set {ϕ(·, t) = ϕ(z)} is noncritical, then

ϕt (z)+ |Dϕ(z)| κ (
x, {y : ϕ(y, t) � ϕ(z)}) � 0.

Finally, a function u is a viscosity solution of the Cauchy problem (2.4) if its upper
semicontinuous envelope is a subsolution and its lower semicontinuous envelope
is a supersolution of (2.4).

Remark 2.3. As it is standard in the theory of viscosity solutions, the maximum
in Definition 2.2 of subsolutions can be assumed to be strict (and similarly for
supersolutions). Indeed, assume for instance that u is a subsolution, u − ϕ has a
maximum at some (x̄, t̄), with ϕ as in Definition 2.2. We now replace ϕ by

ϕs(x, t) := ϕ(x, t)+ s f (|x − x̄ |)+ |t − t̄ |2,
where s > 0 is sufficiently small and f ∈ F . Then the maximum of u−ϕs at (x̄, t̄)
is strict and we recover the subsolution inequality for ϕ by letting s → 0 and using
the continuity of κ .
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Throughout the paper, we will also use (with a small abuse of terminology)
the terms subsolutions and supersolutions (omitting the locution “of the Cauchy
problem (2.4)”) for functions which do not satisfy the corresponding inequalities
at time zero.

While Definition 2.2 is quite natural, it has the drawback that the family of
possible test functions is too restrictive to be handy. As usual in the viscosity
theory, we will introduce suitable lower and upper semicontinuous extensions of
κ . This will allow us to give definitions equivalent to Definition 2.2, based on less
smooth test functions as in Definition 2.1 (see Definition 2.11), or on the notion of
sub/superjets.

2.3. Convergence of Sets with Uniform Superjet

We denote by M
N×N
sym the set of N × N symmetric matrices.

Definition 2.4. Let E ⊆ R
N , x0 ∈ ∂E , p ∈ R

N , and X ∈ M
N×N
sym . We say that

(p, X) is in the superjet J 2,+
E (x0) of E at x0 if for every δ > 0 there exists a

neighborhood Uδ of x0 such that

(x − x0) · p + 1

2
(X + δ I )(x − x0) · (x − x0) � 0 (2.7)

for every x ∈ E ∩ Uδ . Moreover, we say that (p, X) is in the subjet J 2,−
E (x0) of

E at x0 if (−p,−X) is in the superjet J 2,+
RN \E (x0) of RN\E at x0. Finally, we say

that (p, X) is in the jet J 2
E (x0) of E at x0 if (p, X) ∈ J 2,+

E (x0) ∩ J 2,−
E (x0).

The above definition of sub and superjet of sets is consistent with the classical
notion of sub and superjet of l.s.c. and u.s.c. characteristic functions, respectively.

Remark 2.5. It can be checked that the condition (p, X) ∈ J 2,+
E (x0) is equivalent

to (λp, λX + μ p ⊗ p) ∈ J 2,+
E (x0) for all λ > 0 and for all μ ∈ R. Thus,

(p, X) ∈ J 2,+
E (x0) if and only if (

p
|p| ,

1
|p|πp⊥Xπp⊥) ∈ J 2,+

E (x0), where πp⊥

denotes the projection operator on p⊥ := {v ∈ R
N : p · v = 0}. Note that if

E = {u � u(x0)}, with u of classC2 and Du 
= 0 on ∂E , then, setting p := Du(x0)
and X := D2u(x0),

p
|p| is the inner normal to {u � u(x0)} at x0, while 1

|p|πp⊥Xπp⊥
represents the second fundamental form of ∂{u � u(x0)} at x0.

Let us introduce the notion of uniform superjet.

Definition 2.6. Let En ⊆ R
N and x0 ∈ ∂En . We say that the (pn, Xn)’s are in the

superjetJ 2,+
En

(x0) uniformly, if for every positive δ > 0 there exists a neighborhood
Uδ of x0 (independent of n) such that for all n ∈ N

(x − x0) · pn + 1

2
(Xn + δ I )(x − x0) · (x − x0) � 0 for every x ∈ En ∩Uδ. (2.8)



1274 Antonin Chambolle, Massimiliano Morini & Marcello Ponsiglione

In the following, given a set E ⊂ R
N , Ec := R

N\E denotes its complement. We
also recall that a sequence of closed sets Cn converges to a closed set C in the

Hausdorff metric (Cn
H→ C) if

max

{
sup
x∈Cn

dist(x,C), sup
x∈C

dist(x,Cn)

}
→ 0 as n →∞.

Definition 2.7. We say that (pn, Xn, En) converge to (p, X, E) with uniform su-
perjet at x0 if En → E in the Hausdorff sense, the (pn, Xn)’s are in the superjet
J 2,+
En

(x0) uniformly and (pn, Xn)→ (p, X) as n →∞.
Moreover, we say that (pn, Xn, En) converge to (p, X, E) with uniform subjet

at x0 if (−pn,−Xn, Ec
n) converge to (−p,−X, Ec) with uniform superjet.

2.4. Semicontinuous Extensions of κ

Wenow introduce two suitable lower and upper semicontinuous extensions of κ ,
which will be instrumental in developing the level set formulation of the geometric
flow. This is reminiscent of the approach in [11,12] for evolution of “tubes” by
geometric motions (see also [13–15]). For every F ⊆ R

N with compact boundary
and (p, X) ∈ J 2,+

F (x), we define

κ∗(x, p, X, F) := sup
{
κ(x, E) : E ∈ C , E ⊇ F , (p, X) ∈ J 2,−

E (x)
}

(2.9)

Analogously, for any (p, X) ∈ J 2,−
F (x) we set

κ∗(x, p, X, F) = inf
{
κ(x, E) : E ∈ C , E̊ ⊆ F , (p, X) ∈ J 2,+

E (x)
}

. (2.10)

Here E̊ denotes the interior of E . It is clear that κ∗ only depends on the closure
of F while κ∗ depends on its interior, in practice the first one will be evaluated at
superlevels of u.s.c. functions, while the second one at strict superlevels of l.s.c.
functions.

It follows from the monotonicity property (A) that if E ∈ C and (p, X) ∈
J 2
E (x), thenκ∗(x, p, X, E) = κ∗(x, p, X, E) = κ(x, E).Notice that themonotonic-

ity ofκ clearly extends toκ∗ andκ∗.Moreprecisely,κ∗(x, p, X, E) � κ∗(x, p, X, F)

(resp.κ∗(x, p, X, E) � κ∗(x, p, X, F))whenever E ⊆ F and (p, X) ∈ J 2,+
E (x)∩

J 2,+
F (x) (resp. (p, X) ∈ J 2,−

E (x) ∩ J 2,−
F (x)).

In the next Lemma we show that κ∗ and κ∗ are the l.s.c. and the u.s.c. envelope
of κ with respect to the convergence defined in Definition 2.7, respectively.

Lemma 2.8. Let F ⊆ R
N with compact boundary. Then,

κ∗(x, p, X, F) = inf lim inf
n

κ(x, En)

where the infimum is over all (pn, Xn, En) → (p, X, F) with uniform superjet at
x;

κ∗(x, p, X, F) = sup lim sup
n

κ(x, En)
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where the supremum is over all (pn, Xn, En) → (p, X, F) with uniform subjet at
x.

Proof. Wewill prove the statement only for κ∗, the other case being analogous.We
start by showing that there exists a sequence (p, Xn, En) such that (p, Xn, En)→
(p, X, F) with uniform superjet at x and κ∗(x, p, X, F) = limn κ(x, En). To this
aim, recall that by definition of κ∗(x, p, X, F) for every n ∈ N there exists a set
Ẽn ∈ C, with F ⊆ Ẽn , (p, X) ∈ J 2,−

Ẽn
(x) and 0 � κ∗(x, p, X, F)−κ(x, Ẽn) � 1

n .

By themonotonicity of κ wemay also assume that Ẽn → F in theHausdorffmetric.
Moreover, by the continuity assumption (C) we can suitably modify the sequence
Ẽn so that, in addition to the previous properties, we have (p, X+δn I ) ∈ J 2,−

Ẽn
(x),

∂ Ẽn∩∂F = {x} and 0 � κ∗(x, p, X, F)−κ(x, Ẽn) � 2
n for some suitable δn ↘ 0.

Nowwe construct the sequence En according to the following inductive procedure.
Assume that E1, . . . , En have been defined with the following properties:

(1) F ⊆ En ⊆ En−1 ⊆ · · · ⊆ E1,
(2) Ei ⊆ Ẽi for i = 1, . . . n,
(3) ∂Ei ∩ ∂F = {x} for every i = 1, . . . n
(4) (p, X + δi

2 I ) ∈ J 2
Ei

(x) for every i = 1, . . . n.

Since

X + δn+1
2

I < X + δn

2
I, X + δn+1

2
I < X + δn+1 I,

recalling that (p, X + δn
2 I ) ∈ J 2

En
(x) and (p, X + δn+1 I ) ∈ J 2,−

Ẽn+1
(x) we can

easily construct En+1 ∈ C such that
(
p, X + δn+1

2
I

)
∈ J 2

En+1(x), F ⊆ En+1 ⊆ Ẽn+1, En+1 ⊆ En,

∂En+1 ∩ ∂F = {x}.
The sequence En just constructed still converges to F in the sense of Haus-
dorff. Moreover, since En is monotone decreasing, we have (p, X + δn

2 I, En) →
(p, X, F)with uniform superjet.Note also that since (p, X) ∈ J 2,−

En
(x), by (2.9)we

immediately have κ∗(x, p, X, F) � κ(x, En) for all n. Finally, by themonotonicity
of κ ,

κ∗(x, p, X, F) � lim sup
n

κ(x, En) � lim inf
n

κ(x, En) � lim
n

κ(x, Ẽn)

= κ∗(x, p, X, F).

Now, let (pn, Xn, Fn) → (p, X, F) with uniform superjet at x . Let j ∈ N and
let E j the set constructed above. Notice that, for n large enough, Fn is contained
in x + Rn(E j − x), where Rn is any rotation such that Rn(p) = pn . By the
monotonicity assumption (A) and the continuity assumption (C) on κ we deduce

κ(x, E j ) = lim
n

κ(x, x + Rn(E j − x)) � lim inf
n

κ(x, Fn). (2.11)
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We conclude that

lim inf
n

κ(x, Fn) � lim
j

κ(x, E j ) = κ∗(x, p, X, F).

��

Lemma 2.9. Let ϕn, ϕ ∈ C0(RN ) be constant outside a compact set K (indepen-
dent of n). Assume that ϕn → ϕ uniformly and ϕn → ϕ in C2(B(x, δ)) for some
δ > 0 and x ∈ R

N with Dϕ(x) 
= 0. If xn → x, then

κ∗(x, Dϕ(x), D2ϕ(x), {ϕ � ϕ(x)})
� lim inf

n
κ∗

(
xn, Dϕn(xn), D

2ϕn(xn), {ϕn � ϕn(xn)}
)

(2.12)

and

κ∗
(
x, Dϕ(x), D2ϕ(x), {ϕ > ϕ(x)}

)

� lim sup
n

κ∗(xn, Dϕn(xn), D
2ϕn(xn), {ϕn > ϕn(xn)}). (2.13)

Proof. Up to a subsequence, we can assume that Kn := x − xn + {ϕn � ϕn(xn)}
converge in the sense of Hausdorff to some closed set K̃ contained in K := {ϕ �
ϕ(x)}. Since Dϕ(x) 
= 0, then (Dϕn(xn), D2ϕn(xn),Kn)→ (Dϕ(x), D2ϕ(x), K̃)

with uniform superjet at x . Thus, by Lemma 2.8 and the monotonicity of κ∗ we
may conclude

κ∗
(
x, Dϕ(x), D2ϕ(x),K

)
� κ∗

(
Dϕ(x), D2ϕ(x), K̃

)

� lim inf
n

κ∗
(
x, Dϕn(xn), D

2ϕn(xn),Kn

)
,

which proves (2.12). The proof of (2.13) is identical. ��

Remark 2.10. In [33] a class of nonlocal Hamiltonians H(x, p, X, F) that are
lower semicontinuous with respect to the L1 convergence of sets and the standard
convergence of the other variables is considered. Notice that such Hamiltonians are
also lower semicontinuous with respect to the convergence with uniform superjets
introduced in Definition 2.7. Indeed, if (pn, Xn, Fn) → (p, X, F) with uniform
superjet at x , then one can show that Fn ∪ F → F in L1

loc. Thus,

H(x, p, X, F) � lim inf
n

H(x, pn, Xn, Fn ∪ F) � lim inf
n

H(x, pn, Xn, Fn),

where the last inequality follows from the monotonicity assumption on H with
respect to the set variable.
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2.5. Equivalent Definitions of the Viscosity Solutions

We now can give a second definition of viscosity solutions of (2.4). It is seem-
ingly more restrictive than the previous Definition 2.2, but we will check later on
that it is equivalent.

Definition 2.11. Anupper semicontinuous function u : RN×[0, T ] → R, constant
outside a compact set, is a viscosity subsolution of the Cauchy problem (2.4) if
u(0, ·) � u0, and for all z := (x, t) ∈ R

N × (0, T ) and all ϕ admissible at z, such
that u − ϕ has a maximum at z (in the domain of definition of ϕ) we have

(i) If Dϕ(z) = 0, then ϕt (z) � 0;
(ii) If Dϕ(z) 
= 0, then

ϕt (z)+ |Dϕ(z)| κ∗
(
x, Dϕ(z), D2ϕ(z), {y : ϕ(y, t) � ϕ(z)}

)
� 0. (2.14)

A lower semicontinuous function u : RN×[0, T ] → R, constant outside a compact
set, is a viscosity supersolution of the Cauchy problem (2.4) if u(0, ·) � u0, and
for all z ∈ R

N × (0, T ) and all ϕ admissible at z, such that u − ϕ has a minimum
at z (in the domain of definition of ϕ) we have:

(i) If Dϕ(z) = 0, then ϕt (z) � 0;
(ii) If Dϕ(z) 
= 0, then

ϕt (z)+ |Dϕ(z)| κ∗
(
x, Dϕ(z), D2ϕ(z), {y : ϕ(y, t) > ϕ(z)}

)
� 0.

Finally, a function u is a viscosity solution of the Cauchy problem (2.4) if its upper
semicontinuous envelope is a subsolution and its lower semicontinuous envelope
is a supersolution of (2.4).

Remark 2.12. As in Remark 2.3, the maximum in Definition 2.11 of subsolutions
can be assumed to be strict (and similarly for supersolutions). Assume for instance
that u is a subsolution, u− ϕ has a maximum at some (x̄, t̄), with ϕ admissible at
(x̄, t̄). We replace ϕ by

ϕs(x, t) := ϕ(x, t)+ s f (|y − x |)+ |t − s|2,
with s > 0 and f ∈ F . Then the maximum of u − ϕs at (x̄, t̄) is strict. If
Dϕ(x̄, t̄) 
= 0, we recover the inequality (2.14) for ϕ by letting s → 0 and us-
ing the semicontinuity property of κ∗ provided by Lemma 2.9. If Dϕ(x̄, t̄) = 0,
we still have Dϕs(x̄, t̄) = 0, ϕs is admissible at (x̄, t̄) and ϕs

t (x̄, t̄) = ϕt (x̄, t̄).
Moreover, one can assume without loss of generality that ϕ is smooth. If

Dϕ(x̄, t̄) 
= 0, this follows again by Lemma 2.9 and by standard mollification
arguments. If Dϕ(x̄, t̄) = 0, since ϕ is admissible at z, there are f ∈ F and
ω ∈ C∞(R) with ω′(0) = 0 such that

|ϕ(x, t)− ϕ(x̄, t̄)− ϕt (x, t)(t − t̄)| � f (|x − x̄ |)+ ω(t − t̄).

Then it is enough to replace ϕ by

ψ(x, t) := ϕt (z)(t − t̄)+ f (|x − x̄ |)+ ω(t − t̄).
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Finally, in view of Lemma 2.13 below, one can assume that the superlevel set of ϕ in
Definition 2.11-(ii) is not critical. We have shown, in particular, that Definitions 2.2
and 2.11 are equivalent.

Lemma 2.13. Let Q ∈ C∞(RN ), Q � 0 with equality only for x = 0, Q convex
in B1, and constant in RN\B2.

Let ϕ ∈ C2(RN ), and let x̄ be such that Dϕ(x̄) 
= 0. For every η ∈ R set

ϕη(x) := ϕ(x)+ ηQ(x − x̄).

Then, for almost every η small enough the ϕ(x̄)-level set of ϕη is not critical.

Proof. Let B(x̄, δ) be a neighborhood of x̄ where Dϕ 
= 0. Clearly in B(x̄, δ)
Dϕ + ηDQ(x − x̄) 
= 0 if η is small enough.

Then, in RN\B(x̄, δ/2), we consider the C∞ function

x �→ −ϕ(x)− ϕ(x̄)

Q(x − x̄)
,

and by Sard’s theorem, we know that for almost everywhere η > 0, the level
set η of this function is not critical. This means that for all x 
∈ B(x̄, δ/2) with
ϕ(x)+ ηQ(x − x̄) = ϕ(x̄), one has

0 
= 1

Q2(x − x̄)
(−Dϕ(x)Q(x − x̄)+ DQ(x − x̄)(ϕ(x)− ϕ(x̄)))

= − 1

Q(x − x̄)
(Dϕ(x)+ ηDQ(x − x̄)) ,

so that the ϕ(x̄)-level set of ϕη is not critical. ��
We now introduce the notion of parabolic sub/superjets.

Definition 2.14. Let u : RN × (0, T )→ R be upper semicontinuous at (x, t). We
say that (a, p, X) ∈ R× R

N ×M
N×N
sym is in the parabolic superjet P2,+u(x, t) of

u at (x, t), if

u(y, s) � u(x, t)+ a(s − t)+ p · (y − x)

+ 1

2
X (y − x) · (y − x)+ o(|t − s| + |x − y|2)

for (y, s) in a neighborhood of (x, t). If u is lower semicontinuous at (x, t) we can
define theparabolic subjetP2,−u(x, t)ofu at (x, t) asP2,−u(x, t) := −P2,+(−u)(x, t).

The next lemma provides another equivalent definition of viscosity solutions in
terms of the superlevel sets of u and the corresponding parabolic jets.

Lemma 2.15. Let u be a viscosity subsolution of (2.4) in the sense of Defini-
tion 2.11. Then, for all (x, t) in R

N × (0, T ), if (a, p, X) ∈ P2,+u(x, t), and
p 
= 0, then

a + |p|κ∗
(
x, p, X, {y : u(y, t) � u(x, t)}) � 0. (2.15)

A similar statement holds for supersolutions.
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Proof of Lemma 2.15. By definition of parabolic subjets, given ε > 0, δ > 0,
there exists a neighborhood U of (x, t) in RN × (0, t] where

u(y, s) � u(x, t)+ (a − ε)(s − t) + p · (y − x)

+ 1

2
(X + δ I )(y − x) · (y − x)

with a strict inequality if y 
= x or s < t . Let pε,δ : RN × [0, T ] be a continuous
function such that

pε,δ(y, s) = u(x, t)+ (a − ε)(s − t)+ p · (y − x)

+1

2
(X + δ I )(y − x)) · (y − x)

in U , pε,δ � u in R
N × (0, t], with equality only on (x, t), pε,δ � u + c in

(RN × (0, t])\U for some c > 0, and pε,δ is constant (possibly depending on
time) in (RN\K), where also u is constant. Consider a decreasing sequence ψk

of smooth functions, such that ψk is constant in (RN\K), infk ψk = u, and
ψk � u + 1/k. Such a sequence exists because u is upper-semicontinuous. Let
ϕk := min{ψk, pε,δ}, so that ϕk > u inRN × (0, t], except at (x, t) where equality
holds, and ϕk = pε,δ near (x, t).

For any n ∈ N large enough, the function (y, s) �→ u(y, s) − ϕk(y, s) −
1/[n(t − s)] attains a maximum at a point zn = (yn, sn) ∈ (0, t) × R

N , where
zn → z = (x, t) as n → ∞. Moreover, Dϕk(zn) = p + (X + δ I )(yn − x) 
= 0
for n large.

Hence, by Definition 2.11 of a viscosity subsolution,

ϕk
t (zn) +

1

n(t − sn)2

+
∣∣∣Dϕk(zn)

∣∣∣ κ∗
(
yn, Dϕk(zn), D

2ϕk(zn),
{
ϕk(·, sn) � ϕk(zn)

})
� 0.

Since ∂tϕ
k
t (zn) = a − ε it follows that

a + |Dϕk(zn)| κ∗
(
yn, Dϕk(yn, sn), D

2ϕk(yn, sn),
{
ϕk(·, sn)�ϕk(yn, sn)

})
� ε.

Letting n →∞ and invoking Lemma 2.9 we obtain

a +
∣∣∣Dϕk(x, t)

∣∣∣ κ∗
(
x, Dϕk(x, t), D2ϕk(x, t),

{
ϕk(·, t) � ϕk(x, t)

})
� ε,

that is

a + |p|κ∗
(
x, p, X + δ I,

{
ϕk(·, t) � ϕk(x, t)

})
� ε.

Now, as {ϕk(·, t) � ϕk(x, t)} is a decreasing sequence converging to {u(·, t) �
u(x, t)}), we get that (p, X + δ I, {ϕk(·, t) � ϕk(x, t)})→ (p, X + δ I, {u(·, t) �
u(x, t)}) with uniform superjet, as k →∞. Therefore, by Lemma 2.8 we infer

a + |p|κ∗(x, p, X + δ I, {u(·, t) � u(x, t)}) � ε.
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The conclusion follows by applying once again Lemma 2.8, and after observing
that

(p, X + δ I, {u(·, t) � u(x, t)})→ (p, X, {u(·, t) � u(x, t)})
with a uniform superjet, as δ → 0. ��

In the next lemma we show that equation (2.4) is satisfied in a suitable viscosity
sense also for t = T . To this end, we notice that the notion of admissible test
functionsϕ given inDefinition 2.1 can be extended also at points (x̂ , T ) ∈ R

N×{T }
without any change. This is a classical fact; we adapt here the proof in [28].

Lemma 2.16. Let u ∈ USC(RN × [0, T ]) be a subsolution of (2.4). If ϕ is ad-
missible at (x̂, T ) and u − ϕ has a (one-sided with respect to time) maximum in
R

N × [0, T ] at (x̂, T ), then (i) and (ii) of Definition 2.11 are satisfied at (x̂, T ).
An analogous statement holds for supersolutions.

Proof. First assume that Dϕ(x̂, T ) 
= 0. As usual, we can assume that the max-
imum is strict. For n large enough, the function u(x, t) − ϕ(x, t) − 1/[n(T − t)]
has a maximum at a point zn := (x̂n, tn) ∈ R

N × (0, T ) converging to z := (x̂, T )

as n →∞. Since u is a subsolution in R
N × (0, T ), for n large enough we have

ϕt (zn)+ 1

n(T − tn)2
+ |Dϕ(zn)| κ∗

(
xn, Dϕ(zn), D

2ϕ(zn),
{
ϕ(·, tn) � ϕ(zn)

})
� 0.

Letting n →∞, the conclusion follows from Lemma 2.9.
If now Dϕ(z) = 0, we follow the lines of [28, Proposition 1.3]. Since ϕ is

admissible at z, there are f ∈ F and ω ∈ C∞(R) with ω′(0) = 0 such that

|ϕ(x, t)− ϕ(z)− ϕt (z)(t − T )| � f (|x − x̂ |)+ ω(t − T ).

Set

ψ(x, t) = ϕt (z)(t − T )+ 2 f (|x − x̂ |)+ 2ω(t − T ) ,

ψn(x, t) = ψ(x, t)− 1

n(T − t)
.

(2.16)

We have that u − ψ has a strict maximum at z. Hence for n large enough u − ψn

has a maximum at zn = (x̂n, tn) ∈ R
N ×(0, T ), with zn → z. Asψn is admissible

at zn and u is a subsolution, we have

ϕt (z)+ ω′(tn − T )

+2 f ′(|x̂n − x |)κ∗
(
x̂n, Dψn(x̂n), D

2ψn(x̂n), {ψn(·, tn) � ψn(zn)}
)

� 0

(2.17)

if x̂n 
= x , whileϕt (z)+ω′(tn−T ) � 0 if x̂n = x . Note that {ψn(·, tn) � ψn(zn)} =
R

N\B f −1(|x̂n−x |)(x). Letting n →∞, we get ϕt (z) � 0 thanks to (2.6). Hence, as
claimed, u is a subsolution. ��
Remark 2.17. A similar reasoning shows that the alternative characterization of
sub- and super-solutions provided by Lemma 2.15 holds also at points of the form
(x, T ).
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2.6. Existence of a Viscosity Solution

Let u0 : RN �→ R be a continuous function, constant out of a compact set
K. The existence of a viscosity solution to the Cauchy problem (2.4) follows by
standard arguments once the existence of at least one supersolution and a stability
property for supersolutions are established. We start by establishing a comparison
principle with classical subsolutions and supersolutions.

Lemma 2.18. Let T > 0 be fixed and let u ∈ USC(RN × [0, T ]) be a subsolution
of (2.4). Let ϕ ∈ C2(RN × [0, T ]) be admissible at all points in the sense of
Definition 2.1 and such that ϕ(x, 0) � u0(x) for all x ∈ R

N ,

ϕt (x, t)+ |Dϕ(x, t)|k∗
(
x, Dϕ(x, t), D2ϕ(x, t), {ϕ(·, t) � ϕ(x, t)}

)
� 0

(2.18)
for all (x, t) ∈ R

N ×[0, T ], with |Dϕ(x, t)| 
= 0, and ϕt (x, t) � 0 if |Dϕ(x, t)| =
0. Then, ϕ � u in RN ×[0, T ]. An analogous comparison principle holds between
viscosity supersolutions and classical subsolutions.

Proof. Assume toward a contradiction that there exists δ > 0 and (x, t) ∈ R
N ×

(0, T ) such that (u − ϕ)(x, t) > δt . Then, setting ϕδ(x, t) := ϕ(x, t) + δt , we
have maxRN×[0,T ] u − ϕδ > 0. Let zδ := (xδ, tδ) be a maximum point and note
that necessarily tδ > 0. If Dϕδ(zδ) = 0, recalling the definition of a subsolution
we get the contradiction δ � (ϕδ)t (zδ) � 0. If Dϕδ(zδ) 
= 0, recalling again
Definition 2.11 of subsolution we get

ϕt (zδ)+ δ + |Dϕ(zδ)|κ∗
(
xδ, Dϕ(zδ), D

2ϕ(zδ), {ϕ(·, tδ) � ϕ(zδ)}
)

� 0 ,

which contradicts (2.18). The proof of the second part of the statement is completely
analogous. ��

We now prove a useful confinement condition.

Lemma 2.19. Let R, T > 0 be fixed. There exists a constant R′ > R such that if
u ∈ USC(RN × [0, T ]) is a subsolution of (2.4) with u(x, 0) � C0 for |x | � R,
then

u(x, t) � C0 for |x | > R′ and t ∈ [0, T ].
Analogously, if u ∈ LSC(RN×[0, T ]) is a supersolution of (2.4)with u(x, 0) � C0
for |x | � R, then

u(x, t) � C0 for |x | > R′ and t ∈ [0, T ].
Proof. We start by considering the case where u is a subsolution. We show only
the first part, since the other statement is the same after a change of sign. Let
ψ ∈ C∞([0,+∞)) be such that ψ ′(0) = 0, ψ(s) ≡ C0 for s � 2R, ψ strictly
decreasing in [0, 2R], and ψ(|x |) � u(x, 0) for all x ∈ R

N . We now construct a
test function ϕ, by letting all the superlevel sets of ψ(| · |) expand with constant
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normal velocity equal to K , where K is the constant appearing in (2.3). Precisely,
we set

ϕ(x, t) :=
{

ψ(|x | − Kt) if |x | � 2R + Kt ,

C0 otherwise.
(2.19)

We can always assume thatψ is flat enough nearby the points whereψ ′ = 0, so that
ϕ is admissible (see Definition 2.1). The lemma is proven (with R′ := 2R + KT )
once we show that ϕ � u. To this aim observe that ϕt (x, t) = K |Dϕ(x, t)| � 0
for all (x, t) and

0 = ϕt (x, t)− K |Dϕ(x, t)|
< ϕt (x, t)+ |Dϕ(x, t)|κ∗

(
x, Dϕ(x, t), D2ϕ(x, t), {ϕ(·, t) � ϕ(x, t)}

)

whenever |Dϕ(x, t)| 
= 0. The conclusion follows from Lemma 2.18. ��
It is very easy to show that, as in the classical case, the maximum of two

subsolutions is still a subsolution. In the following we show that the notion of
subsolution is stable also with respect to taking upper relaxed limits.

Proposition 2.20. Let (un)n�1 be a sequence of viscosity subsolutions such that

un = cn in (RN\K)×[0, T ), for some constant cn ∈ R and some compactK ⊆ R
N .

Let, for any z = (x, t),

u∗(z) = lim
r↓0 sup

{
un(ζ ) : |z − ζ | � r , n � 1

r

}
. (2.20)

If u∗(z) < +∞ for all z, then u∗ is a subsolution.

Of course, a symmetric result holds for supersolutions.

Proof. Let A ⊂ (0, T ) be an open interval and let ϕ : RN × A → R be an
admissible test function at z = (x, t) with ϕ(·, s) = C(s) in (RN\K̃)× A for some
compact set K̃ and for all s ∈ A, and such that u − ϕ has a strict maximum at z.
Assume first that Dϕ(z) 
= 0. Let zn be a maximum point of un−ϕ in (K∪K̃)× Ā.
By standard arguments it follows that zn → z. Since for every n

ϕt (zn)+ |Dϕ(zn)| κ∗
(
x, Dϕ(zn), D

2ϕ(zn), {y : ϕ(y, t) � ϕ(zn)}
)

� 0,

by Lemma 2.9 we conclude that

ϕt (z)+ |Dϕ(z)| κ∗
(
x, Dϕ(z), D2ϕ(z), {y : ϕ(y, t) � ϕ(z)}

)
� 0.

If now Dϕ(z) = 0, we follow the lines of [28, Proposition 1.3]. Since ϕ is
admissible at z, there are δ > 0, f ∈ F and ω ∈ C∞(R)with ω′(0) = 0, ω(t) > 0
for t > 0 such that

|ϕ(y, s)− ϕ(z)− ϕt (z)(s − t)| � f (|x − y|)+ ω(s − t)
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for all (y, s) ∈ R
N × A. Set

ψ(y, s) = ϕt (z)(s − t)+ 2 f (|y − x |)+ 2ω(s − t). (2.21)

Note that u − ψ has a unique maximum at z in R
N × A. Let zn = (yn, sn) be a

maximum point of un −ψ in RN × Ā. Then zn → z. If Dψ(zn) = 0, then yn = x
and ψn is admissible at zn thanks to (2.21). We deduce ϕt (z) + ω′(sn − t) � 0.
Otherwise yn 
= x , ψ is still admissible at zn and we have

ϕt (z)+ ω′(sn − t)

+2 f ′(|yn − x |)κ∗(yn, Dψn(yn), D
2ψ(yn), {ψ(·, sn) � ψ(zn)}) � 0. (2.22)

Note that {ψ(·, sn) � ψ(zn)} = R
N\B f −1(|yn−x |)(x). Letting n → ∞, we get

ϕt (z) � 0 thanks to (2.6). Hence, as claimed, u is a subsolution. ��
We now can state a general existence result:

Theorem 2.21. Let u0 : RN → R be a uniformly continuous functionwith u0 = C0
for |x | � R. Let R′ be the constant given by Lemma 2.19. Then, there exists a
viscosity solution u : RN × [0, T ] → R of (2.4) with u = C0 for |x | � R′.

Proof. We sketch the proof of this result which follows from classical arguments
(see [21,28]) and it is based on Perron’s method. Let ϕ be the function defined in
(2.19), and notice that it is a supersolution. Then, we can set

u(x, t) = inf{v(x, t) : v is a supersolution of the Cauchy problem (2.4)}.
(2.23)

The fact that u is bounded from below easily follows by using the smooth barrier
C0 + λ(C0 − ϕ) as in the proof Lemma 2.19. Let u∗, u∗ be the upper and lower
semicontinuous envelopes of u, respectively. The fact that u∗ is a supersolution
follows from Proposition 2.20, observing that for each point z = (x, t) we may
find a suitable sequence of supersolutions (vn)n�1 such that

u∗(z) = lim
r↓0 inf

{
vn(ζ ) : |z − ζ | � r , n � 1

r

}
.

We now prove that u∗(·, 0) � u0 and u∗(·, 0) � u0. We only show the first
inequality, since the second one can be established in an analogous manner.

Fix f ∈ F and for every x̄ ∈ R
N , δ,m, n > 0 set

ϕ
m,n
x̄,δ (x, t) := −m f (|x − x̄ |)− δ − nt.

We can choose f in such a way that ϕ
m,n
x̄,δ is admissible at all points in the sense

of Definition 2.1 for all δ,m, n > 0. Notice that for every fixed δ, if m is large
enough (independent of n) we have ϕ

m,n
x̄,δ � u0. Moreover, for every δ, m, if

|Dϕ
m,n
x̄,δ (x, t)| 
= 0 one has

∣∣∣Dϕ
m,n
x̄,δ (x, t)

∣∣∣ κ
(
x,

{
y : ϕ

m,n
x̄,δ (y, t) � ϕ

m,n
x̄,δ (x, t)

})
� C,
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with C > 0 depending only on m. This is due to the admissibility of f (| · −x̄ |).
Thus, since (ϕ

m,n
x̄,δ )t (x, t) = −n, if n is large enough we have that

(
ϕ
m,n
x̄,δ

)
t
(x, t)+

∣∣∣Dϕ
m,n
x̄,δ (x, t)

∣∣∣ κ
(
x,

{
y : ϕ

m,n
x̄,δ (y, t) � ϕ

m,n
x̄,δ (x, t)

})
< 0 (2.24)

for all (x, t) ∈ R
N×[0, T ],with |Dϕ(x, t)| 
= 0.Therefore there existm(δ), n(δ) >

0 such that

ϕx̄,δ := ϕ
m(δ),n(δ)
x̄,δ

satisfies (2.24) and ϕx̄,δ � u0. By Lemma 2.18 we deduce that any supersolution
of the Cauchy problem (2.4) is greater than or equal to any ϕx̄,δ . In turn, u � ϕx̄,δ

so that also u∗ � ϕx̄,δ for all x̄ ∈ R
N , δ > 0. By the very definition of ϕx̄,δ and by

the arbitrariness of δ we conclude that u∗(·, 0) � u0.
Since u∗(x, 0) � u0(x) and u∗ is a supersolution, it follows from (2.23) that

u � u∗ and thus, in fact,
u = u∗. (2.25)

We now show that u∗ is a subsolution. To this purpose we argue by contradiction,
by assuming that either there exists a function ϕ as in Definition 2.2 and a point
z̄ = (x̄, t̄) such that u∗−ϕ has a strict maximum at z̄, with u∗(z̄) = ϕ(z̄), {ϕ(·, t̄) =
ϕ(x̄, t̄)} is not critical, and

ϕt (z̄)+ |Dϕ(z̄)| κ (
x̄, {y : ϕ(y, t) � ϕ(z̄)}) > 0,

or there exists a test function ϕ and a point of strict maximum z̄ for u∗ − ϕ such
that u∗(z̄) = ϕ(z̄), Dϕ(z̄) = 0, ϕ is admissible at z̄, and ϕt (z̄) > 0.

We start by considering the first case. For all δ > 0 sufficiently small set

uδ := min{u, ϕ − δ}.
Recalling (2.25), we have that uδ is lower semicontinuous. Moreover, the set where
u 
= uδ is contained in any small ball Br (z̄), provided that δ is small enough. We fix
such a small ball (and correspondingly δ) so that Br (z̄) ⊂ R

N × (0, T ), the level
sets {y : ϕ(y, t) = ϕ(x, t)} are not critical for all (x, t) ∈ Br (z̄) , and

ϕt (x, t)+ |Dϕ(x, t)| κ (
x, {y : ϕ(y, t) � ϕ(x, t)}) > 0. (2.26)

We claim that uδ is a supersolution for (2.4). Indeed, clearly uδ(·, 0) � u0. Now
let ψ be a test function as in Definition 2.2 and assume that uδ − ψ attains a
maximum at zδ = (xδ, tδ). Assume first that {y : ψ(y, tδ) = ψ(zδ)} is not critical.
If uδ(zδ) = u(zδ), then zδ is also a maximum for u − ψ . Recalling that u is a
supersolution, we infer

ψt (zδ)+ |Dψ(zδ)| κ
(
xδ, {y : ψ(y, tδ) � ψ(zδ)}

)
� 0.

Otherwise uδ(zδ) = ϕ(zδ)− δ and thus zδ ∈ Br (z̄) and zδ is a maximum point for
ϕ − ψ . In particular, ψt (zδ) = ϕt (zδ), Dψ(zδ) = Dϕ(zδ), and {y : ψ(y, tδ) �
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ψ(zδ)} ⊆ {y : ϕ(y, tδ) � ϕ(zδ)}. Recalling (2.26) and the monotonicity of κ , we
have

ψt (zδ)+ |Dψ(zδ)| κ
(
xδ, {y : ψ(y, tδ) � ψ(zδ)}

)

� ϕt (zδ)+ |Dϕ(zδ)| κ
(
xδ, {y : ϕ(y, tδ) � ϕ(zδ)}

)
> 0.

Note that if Dψ(zδ) = 0, then necessarily uδ(zδ) = u(zδ), zδ is a maximum point
for u−ψ and thus ψt (zδ) � 0, since u is a supersolution. This concludes the proof
of the fact that uδ is a supersolution. Let now zn → z̄ be such that u(zn)→ u∗(z̄).
Thus, for n large enough we have

uδ(zn) � ϕ(zn)− δ < ϕ(z̄)− δ

2
= u∗(z̄)− δ

2
� u(zn) ,

which contradicts the minimality of u.
To treat the case Dϕ(z̄) = 0 one repeats the same construction, but with ϕ

replaced by

ϕ̃(x, t) = ϕ(z̄)+ ϕt (z̄)(t − t̄)+ 2 f (|x − x̄ |)+ 2ω(t − t̄) ,

with f and ω chosen as in (2.21). ��

3. Uniqueness of Viscosity Solutions

In this section we will prove that, under some additional assumptions, (2.4)
admits a unique viscosity solution. In the first subsection, we consider first order
geometric flows, corresponding to the case where the relaxed curvatures κ∗ and
κ∗ depend only on the first order super-jet and sub-jet, respectively. Examples of
relevant first-order flows are given in Section 5.

In the second subsection, we deal with truly second order flows, under an
additional uniform continuity assumption on the nonlocal curvature κ .

Before entering the details of the uniqueness theory, it is convenient to give the
following definition and state an auxiliary lemma.

Definition 3.1. We say that a set valued function F : [0, T ] →M is a subsolution
of the geometric flow (1.1) if χF(t) is a viscosity subsolution of (2.4) in the sense
of Definition 2.11. The definition of supersolutions and solutions of the geometric
flow are analogous.

Lemma 3.2. Let u be a subsolution of (2.4). Then, for every s ∈ R the set function
t → F(t) := {u(·, t) � s} is a subsolution of the geometric flow (1.1), according
with Definition 3.1. The analogous statement holds for supersolutions.

The proof is classical and follows by approximating the Heavyside function
as a supremum of smooth increasing functions Hn , so that χF (x, t) = supn Hn

(u(x, t)− s).
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3.1. Uniqueness for First-Order Flows

Here we consider the case of curvatures, which generate a first order flow.
Namely, we denote by C1,1 the class of sets of RN , which are the closure of an
open set of class C1,1 with compact boundary, and we assume that the following
property holds:

(FO): Let� ∈ C1,1, let x ∈ ∂�, and let (p, X) and (p,Y ) be elements ofJ 2,+
� (x)

and J 2,−
� (x), respectively. Then,

κ∗(x, p, X, �) = κ∗(x, p,Y, �). (3.1)

Note that the above assumption postulates that the semicontinuous extensions κ∗
and κ∗ are independent of the second derivative variables X and Y , at least onC1,1-
sets. Under these circumstances, wemay regard the common value of the quantities
in (3.1) as an extension of the definition of curvature to sets of class C1,1; that is,
for all � ∈ C1,1 we may set

κ(x, �) := κ∗(x, p, X, �) = κ∗(x, p,Y, �)

for any (p, X) ∈ J 2,+
� (x) and (p,Y ) ∈ J 2,−

� (x).

In this situation, the problem becomes similar to the methodology developed
in [12] by Cardaliaguet. In particular, as show the following Lemma 3.3, our exten-
sions κ∗, κ∗ correspond here precisely to the extensions h�, h� found in eqn (6), (7)
of [12] (with h = −κ). For completeness, and also because of slight differences (in
particular, we have no sign restriction on our curvatures), we present here complete
proofs of uniqueness, which rely as in [12] on Ilmanen’s interposition lemma.

Lemma 3.3. Assume that (FO) holds and let F ∈ M. Then, for any (p, X) ∈
J 2,+
F (x) we have

κ∗(x, p, X, F) = sup
{
κ(x, �) : � ∈ C1,1,

F ⊂ �, x ∈ ∂�, and p ⊥ ∂� at x
}

. (3.2)

Analogously, for any (p,Y ) ∈ J 2,−
F (x) we have

κ∗(x, p,Y, F) = inf
{
κ(x, �) : � ∈ C1,1,

�̊ ⊂ F, x ∈ ∂�, and p ⊥ ∂� at x
}

. (3.3)

Proof. We only prove (3.2), the proof of (3.3) being analogous. Denote by
κ(x, p, F) the quantity defined by the right-hand side of (3.2). Clearly, by def-
inition of κ∗ we immediately have that κ∗(x, p, X, F) � κ(x, p, F).

To prove the opposite inequality, fix ε > 0 and let � be a C1,1-set, admissible
for the definition of κ(x, p, F), such that

κ(x, �) � κ(x, p, F)− ε. (3.4)
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Moreover, let A ∈ C, admissible for the definition of κ∗(x, p, X, �) = κ(x, �),
such that

κ(x, A) � κ(x, �)− ε. (3.5)

Since A is also admissible for F , we have

κ∗(x, p, X, F) � κ(x, A) � κ(x, �)− ε � κ(x, p, F)− 2ε, (3.6)

and the conclusion follows from the arbitrariness of ε. ��
We continue with the following lemma, which provides a crucial comparison

property between κ∗ and κ∗.

Lemma 3.4. Assume that condition (FO) above holds and let F, G be a closed
and an open set, respectively, with compact boundaries and such that F ⊂ G. Let
x ∈ ∂F, y ∈ ∂G satisfy

|x − y| = dist(∂F, ∂G). (3.7)

Then, for all (p, X) ∈ J 2,+
F (x) and (p,Y ) ∈ J 2,−

G (y), with p := x − y, we have

κ∗(x, p, X, F) � κ∗(y, p,Y,G).

Proof. Exploiting (3.7), we may apply the Ilmanen Interposition Lemma [26], to
find a set � ∈ C1,1 such that F ⊂ �, � ⊂ G, and [x, y] ∩ ∂� = {ẑ}, with ẑ
satisfying

|x − ẑ| = dist(∂F, ∂�) = |y − ẑ| = dist(∂G, ∂�).

Here [x, y] stands for the segment with endpoints x and y. In particular, F ⊂
� + x − ẑ with x ∈ ∂(� + x − ẑ) and p ⊥ ∂(� + x − ẑ) at x . Analogously
�̊ + y − ẑ ⊂ G, with y ∈ ∂(� + y − ẑ) and p ⊥ ∂(� + y − ẑ) at y. Recalling
(3.2) and (3.3), we may conclude

κ∗(x, p, X, F) � κ(x, � + x − ẑ) = κ(x, � + y − ẑ) � κ∗(y, p,Y,G).

��
Uniqueness of viscosity solutions is a straightforward consequence of the fol-

lowing Comparison Principle, which is the main result of this subsection.

Theorem 3.5. (First Order Comparison Principle) Assume that condition (FO)
holds. Let u ∈ USC(RN × [0, T ]) and v ∈ LSC(RN × [0, T ]), both constant
(spatially) out of a compact set, be a subsolution and a supersolution of (2.4),
respectively. If u(·, 0) � v(·, 0), then u � v in RN × [0, T ].
Proof. Assume by contradiction that there exists z := (x̄, t̄) ∈ R

N × (0, T ] such
that u(z̄)− v(z̄) > 0. Let f ∈ F , α, ε > 0 and set

�(x, t, y, s) := u(x, t)− v(y, s)− α f (|x − y|)− α(t − s)2 − εt − εs.

Notice that � is u.s.c. Let (x̂, t̂, ŷ, ŝ) ∈ R
N × [0, T ] × R

N × [0, T ] be a
maximum point of �. We may choose ε so small that the maximum is strictly
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positive. Moreover, as α →∞ we clearly have |x̂ − ŷ|, |ŝ − t̂ | → 0. Thus, since
�(x, 0, x, 0) � 0, we can choose α so large that ŝ and t̂ are strictly positive. We
consider now two cases.

First case: x̂ = ŷ. Let

ϕ(x, t) := v(ŷ, ŝ)+ α f (|x − ŷ|)+ α(t − ŝ)2 + εt + εŝ. (3.8)

ψ(y, s) := u(x̂, t̂)− α f (|x̂ − y|)− α(t̂ − s)2 − εt̂ − εs. (3.9)

Since u is a subsolution and v is a supersolution we have

0 � ϕt (x̂, t̂) = 2α(t̂ − ŝ)+ ε, 0 � ψt (ŷ, ŝ) = 2α(t̂ − ŝ)− ε,

which yields a contradiction.
Second case: x̂ 
= ŷ. Note that

(
2α(t̂ − ŝ)+ ε, α f ′(| p̂|) p̂

| p̂| , X
)
∈ P2,+u(x̂, t̂),

(
2α(t̂ − ŝ)− ε, α f ′(| p̂|) p̂

| p̂| ,−X

)
∈ P2,−v(ŷ, ŝ),

where p̂ := x̂ − ŷ and X := D2ϕ(x̂, t̂), with ϕ defined in (3.8). Thus, by
Lemma 2.15 and Remark 2.17, we have

2α(t̂ − ŝ)+ ε + κ∗
(
x̂, α f ′(| p̂|) p̂

| p̂| , X, {u(·, t̂) � u(x̂, t̂)}
)

� 0,

2α(t̂ − ŝ)− ε + κ∗
(
ŷ, α f ′(| p̂|) p̂

| p̂| ,−X, {v(·, ŝ) > v(ŷ, ŝ)}
)

� 0.

(3.10)

Observe now that if x ∈ {u(·, t̂) � u(x̂, t̂)} and |y − x | < |ŷ − x̂ |, then
v(ŷ, ŝ)− v(y, ŝ) � u(x̂, t̂)− u(x, t)+ α f (|x − y|)− α f (|x̂ − ŷ|) < 0

so that y ∈ {v(·, ŝ) > v(ŷ, ŝ)}. In other words,
{u(·, t̂) � u(x̂, t̂)} + B(0, |ŷ − x̂ |) ⊂ {v(·, ŝ) > v(ŷ, ŝ)},

which by Lemma 3.4 implies

κ∗
(
x̂, α f ′(| p̂|) p̂

| p̂| , X, {u(·, t̂) � u(x̂, t̂)}
)

� κ∗
(
ŷ, α f ′(| p̂|) p̂

| p̂| ,−X, {v(·, ŝ) > v(ŷ, ŝ)}
)

.

This inequality, combined with (3.10), easily leads to the contradiction 2ε � 0.
This concludes the proof of the theorem. ��
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3.2. Uniqueness for Second-Order Flows

Here we consider general second-order flows. In order to establish uniqueness
wewill need to assume the following reinforced continuity property, which replaces
(C) of Section 2.1:

(C′) Uniform continuity: Given R > 0, there exists a modulus of continuity
ωR such that the following holds. For all E ∈ C, x ∈ ∂E , such that E
has both an internal and external ball condition of radius R at x , and for
all � : RN → R

N diffeomorphism of class C�,β , with �(y) = y for
|y − x | � 1, we have

|κ(x, E)− κ(�(x),�(E))| � ωR(‖�− I d‖C�,β ).

(We can observe that if� is a translation out of B(x, 1), then the estimate still holds
by translational invariance of the curvature.)

We now prove that the uniform continuity property stated in (C′) extends to κ∗
and κ∗.

Lemma 3.6. Assume that (C ′) holds. Then, given R > 0, there exists a modulus of
continuity ωR such that the following holds. For all F ∈M, x ∈ ∂F, with internal
and external ball condition at x of radius R, any (p, X) ∈ J 2,+

F (x) with p 
= 0,
|X |/|p| � 1/R, then for any � : RN → R

N diffeomorphism of class C�,β , we
have

|κ∗(x, p, X, F)− κ∗(�(x), D( f ◦�−1)(�(x)), D2( f ◦�−1)(�(x)),�(F))|
� ωR(‖�− I d‖C�,β )

where f (y) = (y − x) · p + 1
2 X (y − x) · (y − x). The same holds true for κ∗.

Proof. Let E ∈ C with E ⊇ F and (p, X) ∈ J 2,−
E (x). A first remark is that E has

an inner ball condition at x of radius R, since it contains F . Given R′ < R, and
letting BR′ = B(x − R′ p/|p|, R′) be the external ball of radius R′ which touches
∂F at x (only), we observe that wemay find a set E ′ ∈ C such that E ′ ⊆ E\BR′ and
E ′ ⊇ F , and still (since the ball BR′ is also exterior and tangent to the set { f � 0},
thanks to the condition |X |/|p| � 1/R), (p, X) ∈ J 2,−

E ′ (x). By assumption (A)
one has κ(x, E ′) � κ(x, E). By assumption (C′),

κ(x, E ′)− κ(�(x),�(E ′)) � ωR′(‖�− I d‖C�,β ).

Since�(E ′) ∈ C,�(E ′) ⊇ �(F) and (D( f ◦�−1)(�(x)), D2( f ◦�−1)(�(x))) ∈
J 2,−

�(E ′)(�(x)), then

κ∗(�(x), D( f ◦�−1)(�(x)), D2( f ◦�−1)(�(x)),�(F))

� κ(�(x),�(E ′)) � κ(x, E ′)− ωR′(‖�− I d‖C�,β )

� κ(x, E)− ωR′(‖�− I d‖C�,β ).
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Taking the supremum over all suitable sets E , we deduce

κ∗(�(x), D( f ◦�−1)(�(x)), D2( f ◦�−1)(�(x)),�(F))

� κ∗(x, p, X, F)− ωR′(‖�− I d‖C�,β ).

The other inequality in order to conclude the proof (possibly redefining slightly
ωR) follows analogously, switching the role of E with �(E). ��

Now, if (C′) holds, we also deduce a natural comparison property for the cur-
vatures κ∗, κ∗ of sets included in one another with a unique contact point.

Lemma 3.7. Assume (C ′) holds. Let x ∈ R
N , F,G ∈ M with F ⊂ G ∪ {x} and

∂F ∩ ∂G = {x}. Let (p, X) ∈ J 2,+
F (x), (p,Y ) ∈ J 2,−

G (x), with X � Y . Then,

κ∗(x, p, X, F) � κ∗(x, p,Y,G).

Proof. First we observe that if X < Y then one may find X ′,Y ′ with X < X ′ <

Y ′ < Y so that near the contact point x , F lies inside the set {〈p, y − x〉 +〈
X ′(y − x), y − x

〉
/2 � 0}whileG contains {〈p, y − x〉+〈

Y ′(y − x), y − x
〉
/2 >

0}. Then, since x is the unique contact point of ∂F and ∂G, one can build a set
E ∈ C with jet (p, X ′) at x and F ⊆ E , E̊ ⊆ G. It follows, by definition, that

κ∗(x, p, X, F) � κ(x, E) � κ∗(x, p,Y,G).

Now, if X 
< Y , we let F ′ = F∪B where B = B(x+Rp/|p|, R)with R < |p|/|X |
small enough so that x remains the unique point in ∂F ′ ∩∂G. This new set has both
an internal and external ball condition of radius R at x , and one still has (x, p, X) ∈
J 2,+
F ′ (x), moreover since F ⊂ F ′, κ∗(x, p, X, F) � κ∗(x, p, X, F ′). We can find

a diffeomorphism of the form �ε(y) = y + εη(y)p where η : Rd → [0, 1] is a
smooth functionwith support in a neighborhood of x , with η(x) = 0 and D2η(x) =
I , such that the set �ε(F ′) still has x as unique contact point with ∂G. Lemma 3.6
ensures that κ∗(x, p, X, F ′) � κ∗(x, p, Xε,�ε(F ′)) − ωR(ε‖η‖C�,β |p|), where
Xε = X − ε|p|2 I . Since Xε < Y , one has κ∗(x, p, Xε, F ′) � κ∗(x, p,Y,G),
hence

κ∗(x, p, X, F) � κ∗(x, p,Y,G)− ωR(ε‖η‖C�,β |p|)
and sending ε to zero we recover the thesis of the Lemma. ��

As in the previous subsection, uniqueness of viscosity solutions is a straightfor-
ward consequence of the following Comparison Principle, which is the main result
of this subsection.

Theorem 3.8. (Second Order Comparison Principle) Assume (C ′) holds. Let
u ∈ USC(RN × [0, T ]) and v ∈ LSC(RN × [0, T ]), both constant (spatially)
out of a compact set, be a subsolution and a supersolution of (2.4), respectively. If
u(·, 0) � v(·, 0), then u � v in RN × [0, T ].
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Proof. Without loss of generality we can assume u(·, 0) < v(·, 0). Assume by
contradiction that there exists a ∈ R and t ∈ (0, T ] such that F(t) := {u(·, t) � a}
is not contained in G(t) := {v(·, t) > a}.

Notice that, since u(·, 0) < v(·, 0), we have F(0) ⊂ G(0). A first remark is
that we can assume, without loss of generality, that the sets F(t) satisfy an internal
ball condition with some fixed radius r > 0, at all time, while G(t) satisfy an
external ball condition with same radius. Indeed, we can always replace F and G
with, respectively, the sets

F(t)+ B(0, r) =
⋃

|z|�r

(z + F(t)) and {x : B(x, r) ⊂ G(t)}

for some r > 0, which are still, respectively, a sub and a super-solution of (1.1);
moreover if r is small enough, the inclusion F(0) ⊂ G(0) is preserved.

Let f ∈ F ∩ C�,β , and let

uλ
F (x, t) := max

ξ∈RN ,τ∈[t−T,t]
χF(t−τ)(x − ξ)− λ( f (|ξ |)+ τ 2), (3.11)

vλ
G(x, t) := min

ξ∈RN ,τ∈[t−T,t]
χG(t−τ)(x − ξ)+ λ( f (|ξ |)+ τ 2) (3.12)

Since F(0) ⊂ G(0), for λ large enough uλ
F (·, 0) � vλ

G(·, 0). Then, the function
�(x, t, y, s) := uλ

F (x, t)− vλ
G(y, s)− ε(t + s)− λ( f (|x − y|)+ |t − s|2)

is semiconvex, and for ε > 0 small and λ large enough admits a positive maximum
at some (x0, t0, y0, s0) ∈ R

N × [0, T ] × R
N × [0, T ] with t0, s0 > 0.

First case: x0 = y0. Let

ϕ(x, t) := vλ
G(y0, s0)+ λ f (|x − y0|)+ λ(t − s0)

2 + εt + εs0.

ψ(y, s) := uλ
F (x0, t0)− λ f (|x0 − y|)− λ(t0 − s)2 − εt0 − εs.

We observe that by construction, uλ
F is a subsolution and vλ

G is a supersolution on
R

N ×[2/√λ, T ] (we need t � 2/
√

λ to ensure that the max in (3.11) is not reached
at τ = t , observe though that if λ is large enough one will have t0, s0 > 2/

√
λ).

Hence, we have

0 � ϕt (x0, t0) = 2λ(t0 − s0)+ ε, 0 � ψt (y0, s0) = 2λ(t0 − s0)− ε,

which yield a contradiction.
Second case: x0 
= y0. We can always assume (choosing λ large enough) that

f (|x0 − y0|) < 1. Moreover, we have

uλ
F (x0, t0) < 1. (3.13)

Indeed, observe that uλ
F (x, t) = 1 if and only if x ∈ F(t), that Duλ

F (x, t) = 0 on
F(t), and Duλ

F (x0, t0) = Dx f (|x0 − y0|) 
= 0. Thus, x0 can not belong to F(t0).
Let q : [0,+∞] → [0, 1] be a smooth, nondecreasing, function with q(r) = r4

for r < 1/2 and q(r) = 1 for r > 3/2. For ρ > 0, let then
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�ρ(x, t, y, s) := �(x, t, y, s)− ρ[q(|x − x0|)
+ q(|y − y0|)+ q(|t − t0|)+ q(|s − s0|)],

so that (x0, t0, y0, s0) is a strict maximum of �ρ . Let η : RN → R be a smooth
cut-off function, with compact support and equal to one in a neighborhood U of
the origin. For every � := (ζu, hu, ζv, hv) ∈ R

N × R× R
N × R, the function

�ρ(x, t, y, s)− (η(x − x0)(ξu, hu) · (x, t)+ η(y − y0)(ξv, hv) · (y, s))
is maximized at some (x�, t�, y�, s�) such that

(x�, t�, y�, s�)→ (x0, t0, y0, s0) as |�| → 0.

Thus, by Jensen’s Lemma [21, Lemma A.3], we may assume that for every δ > 0
sufficiently small there exists �ρ,δ := (ζ

ρ,δ
u , hρ,δ

u , ζ
ρ,δ
v , hρ,δ

v ), with |�ρ,δ| � δ,
such that the function

�ρ,δ(x, t, y, s) := �ρ(x, t, y, s)

− (
η(x − x0)

(
ξρ,δ
u , hρ,δ

u

) · (x, t)+ η(y − y0)
(
ξρ,δ
v , hρ,δ

v

) · (y, s))

attains a maximum at some zρ,δ := (xρ,δ, tρ,δ, yρ,δ, sρ,δ) where �δ,ρ is twice
differentiable and such that xρ,δ− x0, yρ,δ− y0 ∈ U and tρ,δ, sρ,δ > 0. Moreover,

zρ,δ → (x0, t0, y0, s0) as δ → 0. (3.14)

Notice that since �ρ is twice differentiable at zρ,δ it follows that also uλ
F and vλ

G
are twice differentiable at (xρ,δ, tρ,δ) and (yρ,δ, sρ,δ), respectively.

Let τ
ρ,δ
u , τ

ρ,δ
v ∈ R be the maximizing τ ’s in (3.11), (3.12) corresponding to

the points (xρ,δ, tρ,δ), (yρ,δ, sρ,δ), respectively. Set

ũF (x, t) := max
ξ∈RN

{
χ
F(t−τ

ρ,δ
u )

(x − ξ)− λ f (|ξ |)
}
− λ

(
τρ,δ
u

)2
(3.15)

ṽG(y, s) := min
ξ∈RN

{
χ
G(s−τ

ρ,δ
v )

(y − ξ)+ λ f (|ξ |)
}
+ λ

(
τρ,δ
v

)2
. (3.16)

Observe that by construction,

uλ
F � ũF , vλ

G � ṽG,

uλ
F (xρ,δ, tρ,δ) = ũF (xρ,δ, tρ,δ), vλ

G(yρ,δ, sρ,δ) = ṽG(yρ,δ, sρ,δ). (3.17)

Set now

ûF (x, t) := ũF (x, t)− ρ q(|x − xρ,δ|)
−ρ[q(|x − x0|)+ q(|t − t0|)] − η(x − x0)

(
ξρ,δ
u , hρ,δ

u

) · (x, t),
v̂G(y, s) := ṽG(y, s)+ ρ q(|y − yρ,δ|)

+ρ [q(|y − y0|)+ q(|s − s0|)] + η(y − y0)
(
ξρ,δ
v , hρ,δ

v

) · (y, s).
Then by construction, the function

ûF (x, t)− v̂G(y, s)− ε(t + s)− λ( f (|x − y|)+ |t − s|2).
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has its maximum at zρ,δ , which is now strict with respect to the spatial variables.
Hence if we set

F̂ρ,δ(t) :=
{
ûF (·, t) � ûF (xρ,δ, tρ,δ)

}
, Ĝρ,δ(s) :=

{
v̂G(·, s) > v̂G(yρ,δ, sρ,δ)

}
.

we have F̂ρ,δ(tρ,δ) ⊆ Ĝρ,δ(sρ,δ) and moreover (xρ,δ, yρ,δ) is the only pair of
minimal distance in ∂ F̂ρ,δ(tρ,δ) × ∂Ĝρ,δ(sρ,δ). In addition, we observe that at
the maximum point, |DûF (xρ,δ, tρ,δ)| ≈ |Dũ(xρ,δ, tρ,δ)| = |Duλ

F (xρ,δ, tρ,δ)| ≈
λ f ′(|xρ,δ − yρ,δ|) ≈ λ f ′(|x0 − y0|) 
= 0 up to perturbations which go to zero as
ρ, δ → 0, and that the function ûF is semiconvex, hence F̂ρ,δ(tρ,δ) has an interior
ball condition at xρ,δ with a radius independent on ρ and δ, if small enough. In the
same way, Ĝρ,δ(sρ,δ) has an exterior ball condition at yρ,δ . In turns, F̂ρ,δ(tρ,δ) and
Ĝρ,δ(sρ,δ) satisfy both and internal and external ball condition.

Set

�̆ρ,δ(x, t, y, s) := �ρ,δ(x, t, y, s)+ λ( f (|x − y|)+ |t − s|2)
and

(
ăρ,δ, p̆ρ,δ, X̆ρ,δ

)
:=

(
∂t�̆ρ,δ(zρ,δ), Dx�̆ρ,δ(zρ,δ), D

2
x�̆ρ,δ(zρ,δ)

)
, (3.18)

(
b̆ρ,δ, q̆ρ,δ, Y̆ρ,δ

)
:=

(
∂s�̆ρ,δ(zρ,δ), Dy�̆ρ,δ(zρ,δ), D

2
y�̆ρ,δ(zρ,δ)

)
. (3.19)

Then, recalling (3.17), we observe that the superjet (ăρ,δ, p̆ρ,δ, X̆ρ,δ) of

uλ
F (x, t)− ρ[q(|x − x0|)+ q(|t − t0|)] − η(x − x0)

(
ξρ,δ
u , hρ,δ

u

) · (x, t)
at (xρ,δ, tρ,δ) is also a superjet for ûF (x, t) at the same point, hence, also, for the
function ûF (xρ,δ, tρ,δ)χF̂ρ,δ

(since ûF (x, t) � ûF (xρ,δ, tρ,δ)χF̂ρ,δ(t)
(x)). Hence,

we have (
ăρ,δ, p̆ρ,δ, X̆ρ,δ

)
∈ P2,+

ûF (xρ,δ,tρ,δ)χF̂ρ,δ

(xρ,δ, tρ,δ) (3.20)

and analogously,
(
b̆ρ,δ, q̆ρ,δ, Y̆ρ,δ

)
∈ P2,−

v̂G (yρ,δ,sρ,δ)χĜρ,δ

(yρ,δ, sρ,δ).

Since Dz�ρ,δ(zρ,δ) = 0, we deduce

ăρ,δ − b̆ρ,δ = 2ε, p̆ρ,δ = q̆ρ,δ. (3.21)

Moreover, since D2
x,y�ρ,δ(zρ,δ) � 0, one can check that

X̆ρ,δ � Y̆ρ,δ. (3.22)

By construction, �̆ρ,δ is also semiconvex, so that X̆ρ,δ � −cI , Y̆ρ,δ � cI for a
constant c depending on λ.

Let

cρ,δ(x, t) := ũF (x, t)+ (ûF (xρ,δ, tρ,δ)− ûF (x, t)).



1294 Antonin Chambolle, Massimiliano Morini & Marcello Ponsiglione

Notice that, as δ → 0, ρ → 0, we have cρ,δ → uλ
F (x0, t0) uniformly. In view

of (3.13) we can thus assume that cρ,δ < 1. Observe also that cρ,δ is smooth and
constant away from a neighborhood of (x0, t0), and it converges also in C�,β .

We have F̂ρ,δ(t) = {x : ũF (x, t) � cρ,δ(x, t)}. Thus, by the definition of
ũF , we have that x ∈ F̂ρ,δ(t) if and only if there exists ξ ∈ R

N such that

x ∈ ξ + F(t − τ
ρ,δ
u ), with

χ
ξ+F(t−τ

ρ,δ
u )

(x)− λ f (|ξ |) = 1− λ f (|ξ |) � cρ,δ(x, t) ,

that is,

F̂ρ,δ(t) =
{
x : x ∈ ξ + F

(
t − τρ,δ

u

)

for some ξ ∈ R
N with |ξ | � f −1

(
1− cρ,δ(x, t)

λ

)}
. (3.23)

For ρ, δ small enough, xρ,δ 
∈ F(tρ,δ − τ
ρ,δ
u ) and we can introduce wρ,δ 
= 0

such that xρ,δ + wρ,δ is a projection of xρ,δ on F(tρ,δ − τ
ρ,δ
u ). Precisely, one has

that cρ,δ(xρ,δ, tρ,δ) = uλ
F (xρ,δ, tρ,δ), ξ = −wρ,δ reaches the max in (3.11) (for

x = xρ,δ), and |wρ,δ| = f −1((1− cρ,δ(xρ,δ, tρ,δ))/λ). We then set

�ρ,δ(x) := x − f −1
(
1− cρ,δ(x, tρ,δ)

λ

)
wρ,δ

|wρ,δ| + wρ,δ

which is a C�,β diffeomorphism (being cρ,δ bounded away from 1), which is a
constant (small) translation out of a neighborhood of x0, and converges C�,β to the
identity as δ → 0 and ρ → 0. Observe that �ρ,δ(xρ,δ) = xρ,δ . Then, we let

F̌ρ,δ(t) := �ρ,δ

(
F

(
t − τρ,δ

u

)− wρ,δ

)
. (3.24)

By construction, F̌ρ,δ(tρ,δ) ⊆ F̂ρ,δ(tρ,δ) and xρ,δ ∈ ∂ F̌ρ,δ(tρ,δ) ∩ ∂ F̂ρ,δ(tρ,δ).
Moreover, we recall that F̂ρ,δ(tρ,δ) has an internal ball condition at xρ,δ while
Ĝρ,δ(sρ,δ) satisfies an external ball condition at yρ,δ , with radius bounded away
from 0 uniformly with respect to ρ and δ sufficiently small. Thus, recalling that
F̂ρ,δ(tρ,δ)+(yρ,δ−xρ,δ) ⊆ Ĝρ,δ(sρ,δ) (being yρ,δ the only contact point), we have
that F̂ρ,δ(tρ,δ), and in turn F̌ρ,δ(tρ,δ) satisfies a uniform external ball condition in
xρ,δ . In addition, since we have assumed that F(t) had a uniform internal ball
condition for some radius r > 0, the same holds for F̌ρ,δ(tρ,δ) with a smaller
radius.

Notice that ‖�ρ,δ − I‖C�,β → 0 as ρ, δ → 0. Set

(pρ,δ, Xρ,δ) :=
(
Dx (�̆ρ,δ(·, tρ,δ, yρ,δ, sρ,δ) ◦�ρ,δ)(xδ),

D2
x (�̆ρ,δ(·, tρ,δ, yρ,δ, sρ,δ) ◦�ρ,δ)(xδ)

)
,

By construction (see (3.20)), we have
(
ăρ,δ, pρ,δ, Xρ,δ

) ∈ P2,+
ûF (xρ,δ,tρ,δ)χ

F(t−τ
ρ,δ
u )

(xρ,δ + wρ,δ)
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Since ûF (xρ,δ, tρ,δ)χF(t−τ
ρ,δ
u )

is a subsolution, we have

ăρ,δ + |pρ,δ|κ∗
(
xρ,δ + wρ,δ, pρ,δ, Xρ,δ, F

(
tρ,δ − τρ,δ

u

))
� 0. (3.25)

Note that

pρ,δ → Duλ
F (x0, t0) 
= 0 ,

as ρ, δ → 0, and thus |pρ,δ| is bounded away from zero for ρ and δ sufficiently
small. Since also X̆ρ,δ and hence Xρ,δ is bounded, we can invoke Lemma 3.6 and
deduce that

ăρ,δ + | p̆ρ,δ|κ∗
(
xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)

)
� ω(ρ, δ), (3.26)

where ω(ρ, δ) → 0 as ρ, δ → 0.
Analogously, we also have

ăρ,δ − 2ε + | p̆ρ,δ|κ∗
(
yρ,δ, p̆ρ,δ, Y̆ρ,δ, Ǧρ,δ(sρ,δ)

)
� ω(ρ, δ) (3.27)

for a suitable set Ǧρ,δ(sρ,δ)) such that F̂(tρ,δ)+ (yρ,δ − xρ,δ) ⊆ Ǧρ,δ(sρ,δ)) and
∂(F̌ρ,δ(tρ,δ) + (yρ,δ − xρ,δ)) ∩ ∂Ǧρ,δ(sρ,δ)) = {yρ,δ}. By (3.22) and Lemma 3.7
we get

κ∗
(
xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)

)
� κ∗

(
yρ,δ, p̆ρ,δ, Y̆ρ,δ, Ǧρ,δ(sρ,δ)

)
,

and thus, in particular,

ăρ,δ − 2ε + | p̆ρ,δ|κ∗
(
xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)

)
� 2ω(ρ, δ),

which, together (3.26) gives ε � ω(ρ, δ). This is a contradiction for ρ, δ suffi-
ciently small. ��
Remark 3.9. By the uniqueness property stated inTheorems3.5 and3.8,wededuce
that the evolution of open and closed superlevel sets is intrinsic in the following
sense. Let u0, ũ0 : RN → R be two initial conditions such that {u0(·) > 0} =
{ũ0(·) > 0}. Then, denoting by u and ũ the corresponding geometric evolutions we
have

{u(·, t) > 0} = {ũ(·, t) > 0} for all t ∈ [0, t]
(and the same identity holds for the closed superlevels). Indeed, for any λ � 0 set

Aλ(t) := {u(·, t) > λ}, Ãλ(t) := {ũ(·, t) > λ},
Cλ(t) := {u(·, t) � λ}, C̃λ(t) := {ũ(·, t) � λ},

In view of Lemma 3.2 and of Theorems 3.5 and 3.8, we have that for every λ > 0

C̃λ(t) ⊆ A0(t), Cλ(t) ⊆ Ã0(t).

Thus, we conclude

Ã0(t) =
⋃
λ>0

C̃λ(t) ⊆ A0(t), A0(t) =
⋃
λ>0

Cλ(t) ⊆ Ã0(t).
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Part 2. Variational Nonlocal Curvatures

In this part we further assume the nonlocal curvature to be variational; that
is, we assume that κ is the first variation of a suitable generalized perimeter. The
second part of the paper is organized as follows. In Section 4we introduce a suitable
class of translation invariant generalized perimeters J and we give a rather weak
notion of curvature as a first variation of the perimeter functional with respect to
measurable perturbations of the set shrinking to a point x of the boundary. We also
show how some of the structural assumptions of J translate into properties of the
curvature κ .

In Section 4.3 we study how the weak notion of curvature compares to more
standard ones. Section 5 is devoted to showing some relevant examples of vari-
ational nonlocal curvatures that fit in our abstract framework. Finally, Section 6
contains the main result of this part, namely the fact that the minimizing movement
scheme applied to J converges to the associated nonlocal curvature flow.

4. Generalized Perimeters and Curvatures

Webegin this section by introducing the class of generalized (possibly nonlocal)
perimeters we will be dealing with.

4.1. Generalized Perimeters

We will say that a functional J : M→ [0,+∞] is a generalized perimeter if
it satisfies the following properties:

(i) J (E) < +∞ for every E ∈ C;
(ii) J (∅) = J (RN ) = 0;
(iii) J (E) = J (E ′) if |E E ′| = 0;
(iv) J is L1

loc-l.s.c.: if |(En E) ∩ BR | → 0 for every R > 0, then

J (E) � lim inf
n

J (En);
(v) J is submodular: For any E, F ∈M,

J (E ∪ F)+ J (E ∩ F) � J (E)+ J (F); (4.1)

(vi) J is translational invariant:

J (x + E) = J (E) for all E ∈M, x ∈ R
N . (4.2)

We can extend the functional J to L1
loc(R

N ) enforcing the following generalized
co-area formula:

J (u) :=
∫ +∞

−∞
J ({u > s}) ds for every u ∈ L1

loc(R
N ). (4.3)

It can be shown that, under the assumptions above, J is a convex l.s.c. functional
in L1

loc(R
N ) (see [18]).
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Observe that the following holds true:

Lemma 4.1. Let u ∈ L1
loc(R

N ) and ρ be a nonnegative and compactly supported
mollifier, and let ρε(x) := ρ(x/ε)/εN for ε > 0 small. Then for all ε,

J (ρε ∗ u) � J (u). (4.4)

Moreover, limε→0 J (ρε ∗ u) = J (u).

Proof. The first statement follows from the convexity of J , by approximating ρε∗u
by appropriate finite convex combinations and then passing to the limit thanks to
the lower semicontinuity assumption (iv). The last statement is then an immediate
consequence of (4.4) and once again of assumption (iv). ��

4.2. A Weak Notion of Curvature

We introduce here a definition of the curvature of sets relative to the generalized
perimeter J which will be useful for studying the geometric “gradient flow” of J . It
is based on a sort of local subdifferentiability property. We will show in Section 4.3
that it is implied by more standard definitions based on global variations of the
boundaries of smooth sets.

Definition 4.2. Let E ∈ C and x ∈ ∂E . We set

κ+(x, E) := inf

{
lim inf

n

J (E ∪Wn) − J (E)

|Wn\E | : Wn
H→ {x}, |Wn\E | > 0

}

(4.5)
and

κ−(x, E) := sup

{
lim sup

n

J (E) − J (E\Wn)

|Wn ∩ E | : Wn
H→ {x}, |Wn ∩ E | > 0

}
.

(4.6)
We say that κ(x, E) is the curvature of E at x (associated with the perimeter J ) if
κ+(x, E) = κ−(x, E) =: κ(x, E) ∈ R.

Notice that if J (E) = J (RN\E) it follows that κ+(x, E) = −κ−(x,RN\E),
and therefore κ(x, E) = −κ(x,RN\E) (whenever it exists).

Standing Assumptions of Part 2. Throughout Part 2 we assume that the cur-
vature exists for all sets in C, that is,

κ(x, E) := κ+(x, E) = κ−(x, E) ∈ R for all E ∈ C and all x ∈ ∂E,

and that

κ satisfies axiom (C) of Section 2.1.

The translational invariance (B) follows naturally from the translational invari-
ance of the perimeter J . The monotonicity property (A) stated in Section 2.1 is a
consequence of the submodularity assumption (4.1), as shown in the next lemma.
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Lemma 4.3. Let E, F ∈ C with E ⊆ F, and assume that x ∈ ∂F ∩ ∂E: then
κ(x, F) � κ(x, E).

Proof. First, we observe that we can find sets Fn which converge to F in C, with
Fn ⊇ F and {x} = ∂E ∩ ∂Fn . In particular, κ(x, Fn) → κ(x, F). Then, let ν be
the (outer) normal vector to E and (all of the) Fn at x , and for ε > 0 small let

Eε = E + εν. Let W ε = Eε\F̊n , and observe that W ε H→ {x} as ε → 0, and
|W ε| > 0 if ε > 0 (small). Thanks to (4.1) (applied to Eε and Fn) and (4.2), we
have

J (Fn ∪W ε)− J (Fn) � J (Eε)− J ((Eε)\W ε) = J (E)− J (E\(W ε − εν)).

Then, by the very definition of κ we deduce κ(x, Fn) � κ(x, E). The conclusion
follows noticing that, by the continuity property (C), κ(x, Fn)→ κ(x, F). ��

4.3. First Variation of the Perimeter

Let J be a generalized perimeter. In this subsectionwe compare theweak notion
of curvature given in Definition 4.2 with the more standard one based on the first
variation of the perimeter functional. The latter is in turn related to shape deriv-
atives, a notion which dates back to Hadamard, extensively studied in particular
in [31].

Definition 4.4. We say that κ(x, E), defined for E ∈ C and x ∈ ∂E , is the first
variation of the perimeter J if for every E ∈ C, and any one-parameter family of
diffeomorphisms (�ε)ε of class C�,β both in x and in ε with �0(x) = x , we have

d

dε
J (�ε(E))|ε=0 =

∫

∂E
κ(x, E)ψ(x) · νE (x)dHN−1(x) , (4.7)

where ψ(x) := ∂�ε

∂ε
(x)|ε=0 and νE (x) is the C�−1,β outer normal to the set E at x .

We will show that if such a κ(x, E) is continuous with respect to C�,β pertur-
bations of the sets E , then it is also a curvature in the sense of Definition 4.2. We
start with the following intermediate result.

Proposition 4.5. Let κ(x, E) be a function defined for all E ∈ C and x ∈ ∂E, and
assume that it satisfies the continuity property (C). Then κ(x, E) is a first variation
of J in the sense of Definition 4.4 if and only if for any ϕ ∈ C�,β

c (RN ), and any
t1 < t2 such that Dϕ 
= 0 in the set {t1 � ϕ � t2}, one has

J ({ϕ � t1}) = J ({ϕ � t2})+
∫

{t1<ϕ<t2}
κ(x, {ϕ � ϕ(x)}) dx . (4.8)

Moreover, in this case, one also has that for any set W ∈ M such that {ϕ �
t2} ⊂ W ⊂ {ϕ � t1},

J (W ) � J ({ϕ � t2})+
∫

W\{ϕ�t2}
κ(x, {ϕ � ϕ(x)}) dx . (4.9)
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Observe that in both integrals, the argument κ(x, {ϕ � ϕ(x)}) is a continuous
function of x , thanks to assumption (C).

Proof. Consider the function f (s) := J ({ϕ � s}), for t1 < s < t2. We claim that
if κ is a first variation of J , then

f ′(s) = −
∫

∂{ f�s}
κ(x, {ϕ � s})
|Dϕ(x)| dHN−1(x) (4.10)

for all s ∈ (t1, t2). With this aim, given s ∈ (t1, t2) with t1 < s < t2, we need to
find a family of C�,β diffeomorphisms which transport {ϕ � s} on {ϕ � s+ ε} and
compute its derivative at ε = 0.

If ϕ were smooth (at leastC�+1,β ), a simple way would be to consider a smooth
vector field V (x) which is zero in {ϕ � t2} ∪ {ϕ � t1} and equal to Dϕ/|Dϕ|2 in
a neighborhood of {ϕ = s}. We would then let �ε(x) defined for all x by

{
d�ε(x)

dε
= V (�ε(x)) ε > 0,

�0(x) = x .

In this case for ε small, we would have that ϕ(x) = s implies ϕ(�ε(x)) = s + ε,
since clearly d(ϕ(�ε(x)))/dε = Dϕ(�ε(x)) · V (�ε(x)) = 1 for such x and ε.
Then, (4.10) would follow from (4.7). However, if ϕ is merely C�,β , this construc-
tion builds only a C�−1,β diffeomorphism.

In general the situation is a bit more complex, however it is clear that such a
diffeomorphism exists. A relatively simple construction consists in smoothing ϕ

with a smooth mollifier in order to find a C∞ set Ẽ such that for all ε small enough
(here both positive and nonpositive), the surfaces ∂{ϕ � s + ε} are represented as
C�,β graphs over ∂ Ẽ :

∂{ϕ � s + ε} =
{
x + hε(x)νẼ (x) : x ∈ ∂ Ẽ

}
.

By the implicit function theorem, hε exists and is C�,β (in both ε and x) for ε near
0. Moreover, since ϕ(x + hε(x)νẼ (x)) = s + ε, one checks that for any ε small
and x ∈ ∂ Ẽ ,

∂hε(x)

∂ε
= 1

Dϕ(x + hε(x)νẼ (x)) · νẼ (x)
.

The diffeomorphism�ε(x) is then simply defined, in a neighborhood of the surface
∂ Ẽ , by

�ε(x) = x + (
hε

(
π

∂ Ẽ (x)
)− h0

(
π

∂ Ẽ (x)
))

νẼ

(
π

∂ Ẽ (x)
)
, (4.11)

where π
∂ Ẽ denotes the orthogonal projection onto ∂ Ẽ , which is well-defined and

smooth in a sufficiently small neighborhood of the surface.
Then, one has that for x ∈ ∂{ϕ � s} (which is the graph of h0)

ψ(x) := lim
ε→0

�ε(x)− x

ε
= ∂hε

∂ε |ε=0
(
π

∂ Ẽ (x)
)
νẼ

(
π

∂ Ẽ (x)
) = νẼ (π

∂ Ẽ (x))

Dϕ(x) · νẼ (π
∂ Ẽ (x))



1300 Antonin Chambolle, Massimiliano Morini & Marcello Ponsiglione

and, in turn,

ψ(x) · ν∂{ϕ�s}(x) = −ψ(x) · Dϕ

|Dϕ| (x) = −
1

|Dϕ(x)| .

Hence (4.7) yields

lim
ε→0

J ({ϕ � s + ε})− J ({ϕ � s})
ε

= lim
ε→0

J (�ε({ϕ � s}))− J ({ϕ � s})
ε

= −
∫

∂{ϕ�s}
κ(x, {ϕ � s})
|Dϕ(x)| dHN−1(x),

(4.12)

which shows (4.10). Equation (4.8) follows from (4.10) and the co-area formula
for BV functions.

Conversely, assume now that (4.8) holds for all ϕ ∈ C�,β
c (RN ) and t1 < t2 such

that Dϕ 
= 0 in the set {t1 � ϕ � t2}. We consider a family of diffeomorphism �ε

as in Definition 4.4. We start by showing that (4.7) holds. Write E as E = {ϕ � 1
2 }

for a suitable ϕ ∈ C�,β(RN ), constant out of a compact set and with Dϕ 
= 0 in
{0 � ϕ � 1}. Since �ε(E)�E is contained in the Mε-neighborhood (∂E)Mε of
∂E for some M > 0, if ε > 0 is sufficiently small we may find a diffeomorphism
�̃ε such that �̃ε = I d outside (∂E)2Mε (and in particular out of {|ϕ − 1/2| �
1/4}), �̃ε(E) = �ε(E), and ‖�̃ε − I d‖C�,β → 0 as ε → 0. In particular, by
construction J (�ε(E)) = J (�̃ε(E)). Since �ε(E) = �̃ε(E) = {ϕ ◦ �̃−1ε � 1

2 }
and {ϕ ◦ �̃−1ε � 1} = {ϕ � 1}, by (4.8) we have

J (�ε(E))− J ({ϕ � 1})
=

∫

�̃ε(E)\{ϕ�1}
k

(
x, E

ϕ◦�̃−1ε (x)

)
dx

=
∫

(∂E)2Mε∩�̃ε(E)

(
k

(
x, E

ϕ◦�̃−1ε (x)

)
− κ

(
x, Eϕ(x)

))
dx +

∫

�̃ε(E)\{ϕ�1}
k(x, Eϕ(x))dx

�
∫

(∂E)2Mε

∣∣∣k
(
x, E

ϕ◦�̃−1ε (x)

)
− κ(x, Eϕ(x))

∣∣∣ dx +
∫

�ε(E)\{ϕ�1}
k(x, Eϕ(x))dx .

Since ‖k(x, E
ϕ◦�̃−1ε (x)) − κ(x, Eϕ(x))‖L∞((∂E)2Mε) → 0 as ε → 0, thanks to As-

sumption (C), we have that
∫

(∂E)2Mε

∣∣∣k
(
x, E

ϕ◦�̃−1ε (x)

)
− κ(x, Eϕ(x))

∣∣∣ dx = o(ε).

Therefore

d

dε
J (�ε(E))|ε=0 =

d

dε

(∫

�ε(E)\{ϕ�1}
k(x, Eϕ(x)) dx

)

|ε=0

=
∫

∂E
k(x, Eϕ(x))ψ(x) · νE (x) dHN−1.
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It now remains to prove (4.9).Wefirst consider aC�,β functionψ such thatψ−ϕ

is compactly supported in {t1 < ϕ < t2}. In particular if ε > 0 is small enough,
{t1 < ϕ + ε(ψ − ϕ) < t2} = {t1 < ϕ < t2}. We also introduce ϕ̃ := t1 ∨ (ϕ ∧ t2)
and ψ̃(x) := ψ(x) if t1 < ϕ < t2, ψ̃(x) = ϕ̃(x) ∈ {t1, t2} else. Observe that
thanks to (4.3),

J (ϕ̃) =
∫ t2

t1
J ({ϕ � s}) ds (4.13)

(which is finite thanks to (4.8)), so that (for ε small)

J (ϕ̃ + ε(ψ̃ − ϕ̃))− J (ϕ̃)

ε
=

∫ t2

t1

J ({ϕ + ε(ψ − ϕ) � s})− J ({ϕ � s}))
ε

ds.

Again, for a fixed s ∈ (t1, t2), one can find a family of C�,β -diffeomorphisms
(�ε)ε>0 which transform {ϕ > s} into {ϕ + ε(ψ − ϕ) > s}. One proceeds as
before, but now the implicit function theorem is applied to the function

(x, ε, h) �→ (1− ε)ϕ
(
x + hνẼ (x)

)+ εψ
(
x + hνẼ (x)

)− s.

for x ∈ ∂ Ẽ , ε small enough and h in a suitable neighborhood of 0. The diffeomor-
phisms are defined as in (4.11), and we can compute again the derivative of hε with
respect to ε, for x ∈ ∂ Ẽ :

∂hε(x)

∂ε
= ϕ(x + hε(x)νẼ (x))− ψ(x + hε(x)νẼ (x))

((1− ε)Dϕ(x + hε(x)νẼ (x))+ ε(Dψ(x + hε(x)νẼ (x)))) · νẼ (x)
.

Hence, at ε = 0, for x ∈ ∂{ϕ � s} we have
∂hε

∂ε |ε=0
(
πẼ (x)

) = ϕ(x)− ψ(x)

Dϕ(x) · νẼ (πẼ (x))
.

In turn,

ψ(x) = lim
ε→0

�ε(x)− x

ε
= ∂hε

∂ε |ε=0
(
π

∂ Ẽ (x)
)
νẼ

(
π

∂ Ẽ (x)
)

= (ϕ(x)− ψ(x))νẼ (π
∂ Ẽ (x))

Dϕ(x) · νẼ (πẼ (x))

and

ψ(x) · ν∂{ϕ�s}(x) =
ψ(x)− ϕ(x)

|Dϕ(x)| .

Using (4.7), we infer

lim
ε→0

J ({ϕ + ε(ψ − ϕ) � s})− J ({ϕ � s}))
ε

=
∫

∂{ϕ�s}
ψ(x)− ϕ(x)

|Dϕ(x)| κ(x, Eϕ(x)) dHN−1(x).
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Notice that more generally, if ε is small enough, one obtains that

lim
ε′→ε

J ({ϕ + ε′(ψ − ϕ) � s})− J ({ϕ + ε(ψ − ϕ) � s}))
ε′ − ε

=
∫

∂{ϕ+ε(ψ−ϕ)�s}
ψ(x)− ϕ(x)

|(1− ε)Dϕ(x)+ εDψ(x)|κ(x, {ϕ + ε(ψ − ϕ) � s}) dHN−1(x).

Denoting Es,ε the sets {ϕ+ε(ψ−ϕ) � s} andobserving that they are continuous
in C as ε varies, we see that, thanks to assumption (C), this derivative is continuous
with respect to ε (small) and in particular,

J ({ϕ + ε(ψ − ϕ) � s})− J ({ϕ � s}))
ε

= 1

ε

∫ ε

0

∫

∂Es,t

ψ(x)− ϕ(x)

|(1− t)Dϕ(x)+ t Dψ(x)|κ(x, Es,t ) dHN−1(x)dt (4.14)

Another observation is that the range of the ε for which this is true can be taken to
be the same for all s ∈ [t1, t2], since it depends on C2 bounds for the boundaries
∂{ϕ � s} (more precisely, on their largest curvature) and forψ . Hence, if ε is small
enough, integrating (4.14) for s between t1 and t2 and using the co-area formula
for BV functions, we obtain that

J (ϕ̃ + ε(ψ̃ − ϕ̃))− J (ϕ̃)

ε

=
∫

{t1<ϕ<t2}
(ψ(x)− ϕ(x))

(
1

ε

∫ ε

0
κ(x, E(1−t)ϕ(x)+tψ(x),t ) dt

)
dx

In the limit, using the continuity assumption (C) of κ again, we conclude that

lim
ε→0

J (ϕ̃ + ε(ψ̃ − ϕ̃))− J (ϕ̃)

ε
=

∫

{t1<ϕ<t2}
(ψ(x)− ϕ(x))κ(x, Eϕ(x)) dx .

The convexity of J in turn implies that J (ϕ̃+ε(ψ̃− ϕ̃))− J (ϕ̃) � ε(J (ψ̃)− J (ϕ̃))

and it follows

J (ψ̃) � J (ϕ̃)+
∫

{t1<ϕ<t2}
(ψ(x)− ϕ(x))κ(x, Eϕ(x)) dx . (4.15)

Finally, notice that ifψ−ϕ only vanishes on {ϕ � t1}∪{ϕ � t2}, instead of having
compact support in {t1 < ϕ < t2}, then (4.15) still holds, since by our assumptions
one can find t ′1 < t1, t ′2 > t2 such that |∇ϕ| > 0 in {t ′1 < ϕ < t ′2}.

Consider now W as in Proposition 4.5. Without loss of generality (possibly
replacing t1 with a smaller value and t2 with a larger value) we may assume that
∂W ⊂ {s1 < ϕ < s2}, where t1 < s1 < s2 < t2. Introducing a mollifier as in
Lemma 4.1, we can approximate ψ = t1+ (t2− t1)χW with a sequence of smooth
functions ψn such that ψn − ϕ is supported in {t1 � ϕ � t2}, and limn J (ψn) =
J (ψ) = (t2 − t1)J (W ).



Nonlocal Curvature Flows 1303

It follows from (4.15) that

J (ψn) � J (ϕ̃)+
∫

{t1<ϕ<t2}
(ψn(x)− ϕ(x))κ(x, Eϕ(x)) dx,

and in the limit we obtain that

(t2 − t1)J (W ) � J (ϕ̃)+
∫

{t1<ϕ<t2}
(ψ(x)− ϕ(x))κ(x, Eϕ(x)) dx,

where we recall thatψ = t1+ (t2− t1)χW . We can conclude using (4.8) and (4.13),
or observing that this inequality also implies that

(t2 − t1)J (W ) � J (gn(ϕ))+
∫

{t1<ϕ<t2}
(ψ(x)− gn(ϕ(x)))κ(x, Eϕ(x)) dx .

where gn : R → [0, 1] is a smooth, nondecreasing approximation of t1 + (t2 −
t1)χ{t�t2}. Passing to the limit, we obtain (4.9). ��
Corollary 4.6. Let κ be a first variation of J in the sense of Definition 4.4, and
assume it satisfies assumption (C). Then, it is also the curvature in the sense of
Definition 4.2.

Proof. We need to prove that (4.5) and (4.6) hold with κ+ = κ− = κ . To this

purpose, fix x ∈ ∂E and let {Wn} ⊂M with |Wn ∩ E | > 0 and Wn
H→ {x}.

We can as before assume that E is the level set 1/2 of aC�,β functionϕ, constant
out of a compact set, such that Dϕ 
= 0 in {0 � ϕ � 1}. Since

J (E) = J ({ϕ � 1})+
∫

{1/2<ϕ<1}
κ(x, Eϕ(x)) dx

and

J (E\Wn) � J ({ϕ � 1})+
∫

(E\Wn)\{ϕ�1}
κ(x, Eϕ(x)) dx,

by (4.8) and (4.9) respectively, it follows that

J (E)− J (E\Wn) �
∫

Wn∩E
κ(x, Eϕ(x)) dx

for n sufficiently large. Dividing both sides by |Wn ∩ E | and letting n →∞, using
also the continuity property of κ we conclude κ− � κ . The opposite inequality
easily follows by (4.7), choosing a sequence ηn of smooth cut-off functions whose
support concentrates around x and which are 1 in a neighborhood of x , defining
�ε,n : y �→ y− εηn(y)νE (x), and settingWn := �εn ,n(E)\E , where εn is chosen
through a standard diagonal argument. The proof that κ+ = κ is analogous. ��
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5. Examples of Perimeters and Their Curvature

In this part we present some examples of generalized perimeters and corre-
sponding curvatures that fit into our theory. We will consider here, unless otherwise
stated, that � = 2, β = 0.

5.1. The Euclidean Perimeter

Let J be the Euclidean perimeter. More precisely, let J be its lower semi-
continuous extension to measurable sets introduced by Caccioppoli and De Giorgi.
Then, J satisfies all the assumptions (i)–(vi).Moreover, let κ be the standardEuclid-
ean curvature, that is, the sum of the principal curvatures of ∂E at x . It is standard
that it is the first variation of the perimeter in the sense of Definition 4.4, hence by
Propositions 4.5 we deduce that the Euclidean curvature κ is also the curvature of
J in the sense of Definition 4.2.

Clearly, the Euclidean perimeter is also uniformly continuous with respect to
C2 inner variations of sets, namely it satisfies the continuity assumption (C′). More
in general, any local curvature κ(x, E) that depends continuously on the normal
and on the second fundamental form of E at x fits with our theory. For such
local and possibly anisotropic curvatures, we recover the well known existence and
uniqueness of a viscosity solution to the geometric flows.

5.2. The Fractional Mean Curvature Flow

Fix α ∈ (0, 1
2 ). We consider the fractional perimeter defined as

J (E) := (1− α)

∫

RN×RN

|χE (x)− χE (y)|
|x − y|N+2α dxdy,

for all E ∈ M. Notice that J (E) < +∞ if and only if χE ∈ Hα(RN ). In this
case, J (E) = [χE ]2Hα , where [χE ]Hα denotes the Gagliardo seminorm of χE in
the fractional Sobolev space Hα(RN ).

Since the work in [9], this nonlocal perimeter has attracted much attention; we
refer the interested reader to [37]. It is easy to check that J satisfies all the properties
(i)–(vi), so that it fits with our notion of generalized perimeters. Here we only note
that for u ∈ L1

loc(R
N ) we have

∫ +∞

−∞
(1− α)

∫

RN×RN

|χ{u>s}(x)− χ{u>s}(y)|
|x − y|N+2α dxdy ds

= (1− α)

∫

RN×RN

∫ +∞

−∞
|χ{u>s}(x)− χ{u>s}(y)|

|x − y|N+2α ds dxdy

= (1− α)

∫

RN×RN

|u(x)− u(y)|
|x − y|N+2α dxdy.

We have shown, in particular, that the extension of J by the generalized coarea
formula (4.3) is convex and thus J is submodular.
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A notion of curvature corresponding to J has been introduced in [10,27]: let

ρ(x) := 1/|x |N+2α, ρδ(x) =
(
1− χB(0,δ)(x)

)
ρ(x).

Then, for every E ∈ C set

κδ(x, E) = −2(1− α)

∫

RN

(
χE (y)− χRN \E (y)

)
ρδ(x − y) dy,

κ(x, E) := lim
δ→0

κδ(x, E).

The curvature κ is well defined for all smooth sets, it is the first variation of the
perimeter J and it is continuous with respect toC2 convergence. By Proposition 4.5
we deduce that κ satisfies (4.8) and (4.9). In particular, κ is the curvature of J
according with Definition 4.2.

Indeed κ(x, E) iswell defined for any setwhich satisfies an internal and external
ball condition at x (see [10,27]). In particular, κ is well defined for any E ∈ C1,1.
This suggests that κ is a first order curvature. Let us show that this is the case.

Proposition 5.1. Let � ∈ C1,1, let x ∈ ∂�, and let (p, X) and (p,Y ) be elements
of J 2,+

� (x) and J 2,−
� (x), respectively. Then,

κ∗(x, p, X, �) = κ∗(x, p,Y, �) = κ(x, �). (5.1)

In particular, the curvature κ satisfies the first order curvature assumption (FO).

Proof. By Lemma 2.8 there exists a sequence (pn, Xn, En) → (p, X, �) with
uniform superjet at x , with En ∈ C, such that

κ(x, En)→ κ∗(x, p, X, �). (5.2)

Moreover, we can always assume that En → E in L1 (see Remark 2.10). Since
� ∈ C1,1, there exists r > 0 such that Br (x + r p

|p| ) ⊂ �. Set

Ẽn := En ∪ Br

(
x + r

pn
|pn|

)
.

Clearly, (pn, Xn, Ẽn) still converge to (p, X, �)with uniform superjet at x . By the
lower semicontinuity and monotonicity properties of κ we have

κ∗(x, p, X, �) � lim inf
n

κ(x, Ẽn) � lim inf
n

κ(x, En) = κ∗(x, p, X, �). (5.3)

Moreover, since Ẽn → � in L1 and Ẽn satisfy a uniform internal and external ball
condition at x , it is easy to see (see for instance [27]) that κ(x, Ẽn) → κ(x, E),

which together with (5.3) proves that κ∗(x, p, X, �) = κ(x, �). The proof for
κ∗(x, p,Y, �) is identical. ��

Once proved that κ is a first order curvature, in view of Theorem 3.5 we re-
cover the existence and uniqueness of a viscosity solution to the geometric flow,
already proved in [27]. Instead, the convergence of the corresponding minimizing
movement scheme studied in Section 6 is completely new for this class of nonlocal
perimeters and furnishes an approximation algorithm which is alternative to the
threshold-dynamics-based one studied in [10].
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Remark 5.2. It can be proved that in fact κ satisfies also the uniform continuity
assumption (C′). Thus, uniqueness could also be deduced from the second order
theory of Section 3.2, but of course the “first order” point of view ismore convenient
and straightforward in this case. Notice however that the second order theory
will also yield existence and uniqueness for a geometric flow associated with any
combination (sum) of this curvature and another second-order curvature, such as
the classical Euclidean curvature.

We conclude this part giving a self contained proof of (4.8) and (4.9), which,
in view of Proposition 4.6, yield that κ is the first variation of J .

Let

Jδ(E) := (1− α)

∫

RN×RN
|χE (x)− χE (y)|ρδ(x − y) dxdy.

Wewill first show that Jδ , κδ satisfy (4.8) and (4.9). LetW be a boundedmeasurable
set. Then,

∫

W
κδ(x, Eϕ(x)) dx

= −2(1− α)

∫

RN×RN
χW (x)(χEϕ(x) (y)− χ

RN \Eϕ(x)
(y))ρδ(x − y) dydx

= −(1− α)

∫

RN×RN
(χW (x)− χW (y))(χEϕ(x) (y)− χ

RN \Eϕ(x)
(y))ρδ(x − y) dydx

�
∫

RN×RN
|χW (x)− χW (y)|ρδ(x − y) dydx, (5.4)

with equality if and only if W = Es for some s ∈ (0, 1).
On the other hand, it is easy to show that, as δ → 0, the following limits hold:

(i) For every E ∈M, Jδ(E)→ J (E),
(ii) Let ϕ : RN → (0, 1) be such that Es := {ϕ � s} are bounded and belong

to C for every s ∈ (0, 1) and D2ϕ is negative definite on {ϕ = 1}. Then,
κδ(x, Eϕ(x))→ κ(x, Eϕ(x)) in L1

loc(R
N ).

This implies that also J , κ satisfies (4.9) and (4.8).

5.3. General Two Body Interaction Perimeters

More generally one may consider a class of integral nonlocal perimeters of the
form (see [6,27])

JK (E) :=
∫

E

∫

RN \E
K (x − y) dxdy , (5.5)

where the (possibly singular) nonnegative kernel K satisfies:

(i) K ∈ L1(RN\B(0, δ)) for all δ > 0;
(ii) for all r > 0 and e ∈ S

N−1 we have that K ∈ L1({z ∈ R
N : r |z · e| �

|z − (z · e)e|2}).
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The associated nonlocal curvature

κ(x, E) := −2
∫

RN
(χE (y)− χRN \E (y))K (x − y) dy

is well defined in the principal value sense provided that E satisfies both an inner
and an outer ball condition at the point x ∈ ∂E . One can also check that these cur-
vatures are covered by both the first order and second order theories of generalized
curvatures.

5.4. The Flow Generated by the Regularized Pre-Minkowski Content

Let ρ > 0 be fixed, and consider the measure of the ρ-neighborhood of the
boundary of E , that is,

Mρ(E) := |(∂E)ρ | = |(∪x∈∂E Bρ(x))|. (5.6)

We refer to Mρ as the pre-Minkowski content of ∂E , since as ρ → 0, |(∂E)ρ |/2ρ
approximates the Minkowski content, which coincides with the standard perimeter
on smooth sets.

An issue with definition (5.6) is that it depends on the choice of the represen-
tative within the Lebesgue equivalence class of the set E . For this reason, one may
introduce the following variant:

Jρ(E) = 1

2ρ

∫

RN
oscB(x,ρ)(χE ) dx (5.7)

where oscA(u) denotes the essential oscillation of the measurable function u over a
measurable set A, defined by oscA(u) = ess supA u − ess inf A u. One checks that
Jρ(E) coincides with the measure of the ρ-neighborhood of the essential boundary
of E . Moreover, Jρ(E) = inf{Mρ(E ′) : |E E ′| = 0}, where E E ′ denotes the
symmetric difference (E\E ′) ∪ (E ′\E).

In [19] we have proved that the functional (5.7) is a generalized perimeter, we
have introduced the corresponding curvature, and studied the geometric flow. Let
us introduce a notion of curvature corresponding to Jρ ; let E ∈ C, and denote by
νE (x) the outer normal unit vector to ∂E at x .

For x ∈ ∂E , set

κρ(x, E) = κout
ρ (x, E) + κ in

ρ (x, E), (5.8)

where

κout
ρ (x, E) =

⎧⎨
⎩

1

2ρ
det(I + ρDνE (x)) if dist(x + ρνE (x), E) = ρ ,

0 otherwise,
(5.9)

κ in
ρ (x, E) =

⎧⎨
⎩
− 1

2ρ
det(I − ρDνE (x)) if dist(x − ρνE (x), Ec) = ρ ,

0 otherwise.
(5.10)
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These quantities correspond to the variation of the volume of the strips {0 < dE <

ρ} (for κout
ρ ) and {−ρ < dE < 0} (for κ in

ρ ) when the boundary is infinitesimally
modified at x , and their sum is a natural candidate for the curvature associated to
the energy Eρ . Indeed, in [19] we have proved that κρ(x, E) is the first variation of
Jρ (in the classical sense (4.7)) whenever E ∈ C is such that the points at distance ρ

from ∂E admit a unique projection on ∂E (indeed such condition can be weakened
a little). In order to have a well defined curvature for all E ∈ C, one can consider
the following regularization of Jρ :

J f (E) =
∫

RN
f (dE (x)) dx =

∫ ρ

0
(−2s f ′(s))Js(E) ds,

where dE is the signed distance from ∂E and f : R → R+ is even, smooth and
decreasing in R+, with support in [−ρ, ρ]. Such a regularization was considered
also in [2] for numerical purposes.

The corresponding curvature κ f is

κ f (x, E) = κout
f (x, E)+ κ in

f (x, E), (5.11)

where

κout
f (x, E) =

∫ ρ

0
(−2s f ′(s))κout

s (x, E) ds,

κ in
f (x, E) =

∫ ρ

0
(−2s f ′(s))κ in

s (x, E) ds.

Let r in be themaximal r ∈ [0, ρ] such that E satisfies the internal ball condition
with radius r at x , and let rout be defined analogously. Clearly, r in, rout and the
second fundamental form at x are uniformly continuous with respect to smooth
inner variations. We immediately deduce that κ f satisfies the uniform continuity
assumption (C′).

In [19] we have proved that κ f (x, E) is the curvature corresponding to J f ,
according to both Definitions 4.4 and 4.2, and we have studied the correspond-
ing curvature flow through the minimizing movements method. As a consequence
of the analysis of this paper, namely by the Comparison Principle provided by
Theorem 3.8, we get the new result that such a geometric evolution is indeed
unique.

5.5. The Shape Flow Generated by p-Capacity

In this subsection we show that the shape flow of bounded sets generated by
the p-capacity fits into our general framework. Notice that the case p = 2 yields
an evolution that is similar to the Hele-Show type flow considered in [13].

To this aim, given 1 < p < N , we consider the following relaxed p-capacity
of a set E ∈M defined by

Capp(E) := inf

{∫

RN
|Dw|p dx : w ∈ K p and w � 1 almost everywhere in E

}
,

(5.12)
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where K p stands for the subspace of functions w of L p∗(RN ) such that Dw ∈
L p(RN ). Note that the above definition departs from the standard one in which the
condition w � 1 almost everywhere in E is replaced by E ⊂ ˚{w � 1}. It may be
thought as a sort of L1-lower semicontinuous envelope of the standard p-capacity,
having the property of being insensitive to negligible sets and thus independent of
the Lebesgue representative of E . Clearly the two definitions coincide on open sets
and it is not difficult to check that they also agree on all closed sets F such that

F = F̊ , with |∂F | = 0, in particular on all sets in C.
Formula (5.12) does not provide yet a generalized perimeter. Indeed,Capp(R

N )

= +∞ and, more in general, if E ∈ C, then Capp(E) < +∞ if and only if
Capp(R

N\E) = +∞. Thus, the requirements (i) and (ii) stated at the beginning of
Section 4.1 are not fulfilled. On the other hand, properties (iii) and (vi) are evident,
the lower-semicontinuity (iv) follows in a standard way, while the submodularity
property (v) can be proven as in the case of the standard capacity (see [24, Theorem
2-(vii) of Section 4.7]). Since our focus will be on the evolution of bounded sets,
we will build a generalized perimeter Jp, by enforcing the following properties:

(a) Jp(E) = Capp(E) for all bounded sets E ∈M;
(b) Jp(E) = Jp(RN\E) for all E ∈M.

This is achieved by setting

Jp(E) := min{Capp(E),Capp(R
N\E)} (5.13)

for all E ∈M. It follows immediately from the definition and from the properties
of Capp(·) recalled above that Jp satisfies (i)–(iv) of Section 4.1 and the translation
invariance (vi). It only remains to check the submodularity property (v). To this
aim, let us consider the case of two sets E , F ∈M such that Capp(E) < +∞ and
Capp(R

N\F) < +∞. As Capp(R
N\E) = Capp(F) = +∞, we have Jp(E) =

Capp(E) and Jp(F) = Capp(R
N\F). Moreover, since Capp(E ∩ F) � Capp(E),

we also have Jp(E ∩ F) = Capp(E ∩ F), while the fact that Capp(E ∪ F) �
Capp(F) = +∞ implies Jp(E ∪ F) = Capp(R

N\(E ∪ F)). Thus, in this case the
submodularity inequality is equivalent to

Capp(R
N\(E ∪ F))+ Capp(E ∩ F) � Capp(E)+ Capp(R

N\F),

which is obviously true since Capp(R
N\(E ∪ F)) � Capp(R

N\F) and Capp(E ∩
F) � Capp(E) by the non-decreasing monotonicity of the set function Capp(·).
Since all the remaining cases are either trivial or reduce the submodularity of
Capp(·), also property (v) is established for Jp, which is therefore a generalized
perimeter.

By a standard application of the Direct Method of the Calculus of Variations
one may also check the existence of a unique capacitary potential wE associated
with any set E , that is, of a unique solution to the problem (5.12), whenever
Capp(E) < +∞. The Euler-Lagrange conditions for (5.12) easily yield that wE is
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super p-harmonic in R
N , in fact it is determined as the unique solution wE ∈ K p

to
⎧⎨
⎩
−

∫

RN
|DwE |p−2DwE Dϕ dx � 0 for all ϕ ∈ K p , with ϕ � 0 almost everywhere on E .

wE = 1 almost everywhere in E .
(5.14)

Denoting by E (0) the set of points with vanishing density with respect to E , it
follows in particular that wE is p-harmonic in the interior of E (0).

In order to identify the nonlocal curvature corresponding to Jp(·), we exploit
the theory developed in Section 4.3. Let E ∈ C and bounded, and let (�ε)ε be a
one-parameter family of diffeomorphisms from R

N onto itself of class C2 both in
ε and x and such that �0(x) = x for all x ∈ R

N . Denote ψ(x) := ∂�ε(x)
∂ε |ε=0 . Then

by the Hadamard formulae (see for instance [34]) one has

d

dε

Jp(�ε(E))|ε=0 =
d

dε

Capp(�ε(E))|ε=0 =
d

dε

∫

RN \�ε(E)

|Dw�ε(E)|p dx|ε=0

=
∫

∂E
|DwE |p(x)ψ(x) · νE (x) dHN−1(x) , (5.15)

where, as usual, νE denotes the outer unit normal to E . Motivated by the above
formula and recalling that Jp(E) = Capp(R

N\E) for E ∈ C and unbounded, for
every E ∈ C and x ∈ ∂E we set

κp(x, E) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|DwE (x)|p =
∣∣∣∣
∂wE

∂ν
(x)

∣∣∣∣
p

if E is bounded,

−|DwRN \E (x)|p = −
∣∣∣∣
∂wRN \E

∂ν
(x)

∣∣∣∣
p

if E is unbounded.

(5.16)
Recalling thatwE is p-harmonic on Ec and satisfies the Dirichlet conditionwE = 1
on ∂E , the well-established regularity theory for the p-Laplacian (see for instance
[29]) yields that wE is of class C1,α up to the boundary for all α ∈ (0, 1), with the
C0,α-norm of DwE depending only on its L p-norm and the C0,α-norm of ∂E . In
fact, whenever En → E in C1,α and x ∈ ∂E ∩ ∂En we have

∂wEn

∂ν
(x)→ ∂wE

∂ν
(x) (5.17)

as n →∞. In particular, it follows that the nonlocal curvature κp defined in (5.16)
satisfies the continuity property (C) of Section 2.1.

In turn, by Corollary 4.6 the set function (5.16) is the curvature associated with
Jp in the sense of Definition 4.2. Lemma 4.3 now implies that the monotonicity
property (A) stated in Section 2.1 holds for κp.

Since the translation invariance of κp is evident, we have shown that (5.16) satis-
fies axioms (A), (B), and (C) of Section 2.1. We recall that these axioms are enough
to guarantee the convergence (up to subsequences) of the minimizing movements
scheme studied in Section 6 to a viscosity solution of the corresponding level set
equation.
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It remains to investigate the uniqueness. Instead of establishing the reinforced
continuity property (C′), we check that the nonlocal perimeter Jp generates a “first-
order” flow and we apply the theory of Section 3.1. To this aim, denote by (κp)∗
and (κp)

∗ the lower and the upper semicontinuous extensions of κp provided by
formulas (2.9) and (2.10), respectively. Note that, as a straightforward consequence
of the definition and of (2.10), we have

(κp)∗(x, p, X, E) = −(κp)
∗(x,−p,−X,RN\E) (5.18)

for E ∈M, x ∈ ∂E , and (p, X) ∈ J 2,+
E (x).

We are now in a position to prove that condition (FO) of Section 3.1 is satisfied.
Uniqueness will then follow by applying the Comparison Principle provided by
Theorem 3.5.

Lemma 5.3. Let � ⊂ R
N belong to C1,1. Let x ∈ ∂� and let (p, X) and (p,Y )

be elements of J 2,+
� (x) and J 2,−

� (x), respectively. Then,

(κp)∗(x, p, X, �) = (κp)
∗(x, p,Y, �).

Proof. In light of (5.18), it is enough to consider the case of a bounded set � of
class C1,1. Let w� be the associated capacitary potential. The conclusion of the
lemma will be achieved by showing that

(κp)∗(x, p, X, �) =
∣∣∣∣
∂w�

∂ν
(x)

∣∣∣∣
p

= (κp)
∗(x, p,Y, �). (5.19)

To this aim, let E ⊇ � be a bounded set of C admissible for the Definition 2.9 of
(κp)∗(x, p, X, �), and letwE be the corresponding capacitary potential. Recall that
by (5.14), we have that wE is super p-harmonic in RN\�, while w� is p-harmonic
in the same set. Since wE = w� = 1 on ∂�, by the Maximum Principle we infer
that 1 � wE � w� in RN\�. In turn,

κp(x, E) =
∣∣∣∣
∂wE

∂ν
(x)

∣∣∣∣
p

�
∣∣∣∣
∂w�

∂ν
(x)

∣∣∣∣
p

and therefore we may conclude that

(κp)∗(x, p, X, �) �
∣∣∣∣
∂w�

∂ν
(x)

∣∣∣∣
p

. (5.20)

To show the opposite inequality, fix δ > 0 and construct a sequence of sets (�n)n ⊂
C1,1 with the following properties:

(i) � ⊂ �̊n ∪ {x}, with ∂�n ∩ ∂� = {x};
(ii) (p, X + δ I ) ∈ J 2

�n
(x) for all n ∈ N;

(iii) �n → � in the C1,α-sense, for all α ∈ (0, 1).
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Such a sequence can be constructed in many different ways: one possibility is to
consider the 1

n -level sets of the signed distance function from � and modify them
in the proximity to x in order to fulfill conditions (i) and (ii). By (5.17), for any
given small ε > 0 we may fix n̄ such that

∣∣∣∣
∂w�n̄

∂ν
(x)

∣∣∣∣
p

�
∣∣∣∣
∂w�

∂ν
(x)

∣∣∣∣
p

− ε. (5.21)

Recall now that from the proof of Lemma 2.8, we may construct a decreasing
sequence of sets (En)n ⊂ C such that

(a) En ↘ � in the Hausdorff sense;
(b) (p, X + δn I ) ∈ J 2

En
(x) for some δn ↘ 0;

(c) κp(x, En) = | ∂wEn
∂ν

(x)|p → (κp)∗(x, p, X, �).

Taking into account (i) and (ii) above, it follows from (a) and (b) that En ⊂ �n̄ for
n large enough. For all such n’s, by the Maximum Principle as in the first part of
the proof, we have

∣∣∣∣
∂wEn

∂ν
(x)

∣∣∣∣
p

�
∣∣∣∣
∂w�n̄

∂ν
(x)

∣∣∣∣
p

�
∣∣∣∣
∂w�

∂ν
(x)

∣∣∣∣
p

− ε ,

where in the last inequality we have used (5.21). By (c), passing to the limit in the
left-hand side of the above formula and by the arbitrariness of ε, we deduce

(κp)∗(x, p, X, �) �
∣∣∣∣
∂w�

∂ν
(x)

∣∣∣∣
p

,

which, together with (5.20), establishes the first equality in (5.19). The second
equality can be proven in a completely analogous fashion. ��

6. The Minimizing Movements Approximation

In this section we implement the minimizing movements scheme to solve and
approximate the nonlocal κ-curvature flow, in the spirit of [1,30]. We extend the
approach of [17] (see also [19]) to our general framework.

6.1. The Time-Discrete Scheme for Bounded Sets

We start by introducing the incremental minimum problem. To this purpose,
given a bounded set E 
= ∅, we let

dE (x) = dist(x, E)− dist(x,RN\E) (6.1)

be the signed distance function to ∂E . Fix a time step h > 0 and consider the
problem

min

{
J (F) + 1

h

∫

F
dE (x) dx : F ∈M

}
. (6.2)
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Note that ∫

F
dE (x) dx −

∫

E
dE (x) dx =

∫

E�F
dist(x, ∂E) dx

so that (6.2) is equivalent to

min

{
J (F) + 1

h

∫

E�F
dist(x, ∂E) dx : F ∈M

}
.

Proposition 6.1. The problem (6.2) admits a minimal and a maximal solution.

Proof. Since the functional J extended to L1
loc according to (4.3) is convex, it is

easy to check that the minimization problem

min
u∈L∞(RN ;[0,1])

J (u) + 1

h

∫

RN
u(x)dE (x) dx (6.3)

admits a solution. Then, observe that

J (u) + 1

h

∫

RN
u(x)dE (x) dx =

∫ 1

0

(
J ({u > s}) + 1

h

∫

{u>s}
dE (x) dx

)
ds ,

(6.4)
from which we easily deduces that for almost everywhere s ∈ [0, 1], {u > s} is a
solution to (6.2). Let now E1 and E2 be two solutions to (6.2). Then again by (6.4)
their characteristic functions and in turn, by convexity, 12 (χE1 + χE2) are solutions
to (6.3). Since almost all their superlevel sets are solutions to (6.2), we deduce,
in particular, that E1 ∩ E2 and E1 ∪ E2 are solutions to (6.2). Finally let En be a
sequence of solutions to (6.2) such that

|En| → m := inf{|E | : E is a solution to (6.2)}.
Then, Fk := ∩kn=1En is a decreasing sequence of solutions such that |Fk | → m.
Thus, by semicontinuity, their L1-limit E := ∩∞n=1En is the minimal solution. The
existence of a maximal solution can be proven analogously. ��

For any bounded set E 
= ∅ we let T+h E and T−h E denote the maximal and the
minimal solution of (6.2), respectively. We also set T±h ∅ := ∅. We will mainly use
minimal solutions, and write ThE := T−h E . This choice corresponds to consider
open superlevels in our level set approach (see Proposition 6.12). It is convenient
to fix a precise representative for T±h E . To this purpose, we will identify any
measurable set with the representative given by the set of Lebesgue points of the
characteristic function.

Lemma 6.2. If E ⊆ E ′, then T±h E ⊆ T±h E ′.

Proof. The proof is classical and we just sketch it. We first assume that E ⊂⊂ E ′,
so that dE > dE ′ everywhere. We compare the energy (6.2) of T±h E with the one
of T±h E ∩ T±h E ′, and the energy (6.2) (with E replaced by E ′) of T±h E ′ with
the one of T±h E ∪ T±h E ′. We sum both inequalities and use (4.1) to deduce that
T±h E ⊆ T±h E ′.
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Nowwe conclude the proof by a perturbation argument. For ε > 0 let Fε be the
minimal solution of (6.2) with dE replaced by dE+ε. Arguing as before, we deduce
that Fε are increasing in ε and Fε ⊆ T−h E ′. Therefore Fε → F0 := ∪εFε in L1

loc. By
lower semicontinuity it follows that F0 is a solution, and thus T

−
h E ⊆ F0 ⊆ T−h E ′.

The inclusion T+h E ⊆ T+h E ′ can be proven similarly. ��
Remark 6.3. Let f be a measurable function such that f − := − f ∧ 0 ∈ L1(RN ).
Then one can argue as in Proposition 6.1 to prove that the minimum problem

min

{
J (F)+

∫

F
f dx : F ∈M

}

admits a minimal and a maximal solution, denoted by E−f and E+f respectively.
Moreover, arguing exactly as in the proof of Lemma 6.2, one can show that if
f1, f2 are measurable functions with f −1 , f −2 ∈ L1(RN ) and f1 � f2 almost
everywhere, then

E±f2 ⊆ E±f1 .

Lemma 6.4. If E + BR ⊆ E ′, then (T±h E)+ BR ⊆ T±h E ′.

Proof. By Lemma 6.2 for every z ∈ BR we have T±h (E + z) ⊆ T±h E ′. By trans-
lation invariance we conclude

(T±h E)+ BR =
⋃
z∈BR

(T±h E)+ z =
⋃
z∈BR

T±h (E + z) ⊆ T±h E ′.

��
Lemma 6.5. For any R > 0 we have T±h (BR) ⊆ BCR, where C depends only on
the dimension N.

Proof. By Lemma 6.4 we have

T±h (BR)+ BR ⊆ T±h (B2R). (6.5)

Let c > 1, and assume there exists x ∈ T±h (BR)\BcR . Since in particular
x ∈ T±h (BR), by (6.5) we have B(x, R) ⊆ T±h (B2R). Hence

0 > J (T±h (B2R)) + 1

h

∫

T±h (B2R)

|y| − 2R dy

� 1

h

(∫

B(x,R)

|y| − 2R dy +
∫

T±h (B2R)\B(x,R)

|y| − 2R dy

)

� 1

h

(∫

B(x,R)

|y| − 2R dy +
∫

B2R
|y| − 2R dy

)

� 1

h

(∫

BR

(c − 2)R − |y| dy +
∫

B2R
|y| − 2R dy

)

which is positive if c is large enough (depending only on the dimension), a contra-
diction. ��
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Next lemma provides a more refined estimate.

Lemma 6.6. Let C > 1 be such that the statement of Lemma 6.5 holds, and let c,
c be as in (2.2). Then, the following holds.

(i) Let R > 0. Then, for every h > 0 such that R − hc(CR) > 0 we have
T±h BR ⊆ BR−hc(CR).

(ii) Let R0 > 0 and σ > 1 be fixed. Then, for h > 0 small enough (depending on
R0 and σ ), we have T±h BR ⊇ BR−hc(R/σ) for all R � R0.

Proof. First, we know from the previous result that T±h BR ⊆ BCR .
Proof of (i). We can always assume T±h BR 
= ∅. Let ρ̄ = sup{ρ ∈ [0,CR] :
|T±h BR\Bρ | > 0}. Let x̄ ∈ ∂Bρ̄ such that |T±h BR ∩ B(x̄, ε)| > 0 for any ε > 0,
and let ρ > ρ̄. Let τ ∈ R

N be such that B(−τ, ρ) ⊃ Bρ̄ and ∂B(−τ, ρ) is tangent
to ∂Bρ̄ at x̄ ; that is, τ = (ρ/ρ̄ − 1)x̄ .

We let for ε > 0 small Bε = B(−(1 + ε)τ, ρ) and W ε = T±h BR\Bε. Notice
that by construction W ε has positive measure and converges to x̄ in the Hausdorff
sense as ε → 0. By submodularity we have

J
(
Bε ∩ T±h BR

)+ J
(
Bε ∪ T±h BR

)
� J (Bε)+ J

(
T±h BR

)
. (6.6)

By (6.6) and using the minimality of T±h BR we have

J (B(−τ, ρ) ∪ (W ε + ετ))− J (B(−τ, ρ)) = J (Bε ∪W ε)− J (Bε)

� J (T±h BR)− J (Bε ∩ T±h BR) � −1

h

∫

W ε

|x | − R dx .

Dividing the previous inequality by |W ε| and passing to the limit as ε → 0, in view
of the very definition (4.5) of κ we get

κ(B(−τ, ρ)) � 1

h
(R − |x̄ |) = 1

h
(R − ρ̄).

Recalling the definition of c and the fact that it is a continuous decreasing function,
we deduce the thesis by sending ρ → ρ̄.
Proof of (ii). Assume x0 is such that

ρ̄ = max
{
ρ > 0 : ∣∣B(x0, ρ)\T±h BR

∣∣ = 0
} ∈]0, 2CR].

As in the proof of (i), we can find x̄ ∈ ∂B(x0, ρ̄) such that |B(x̄, ε)\T±h BR | > 0 for
any ε > 0, we fix ρ < ρ̄ and set τ = (1−ρ/ρ̄)(x̄− x0), so that {x̄} = ∂B(x0, ρ̄)∩
∂B(x0+ τ, ρ). We let Bε = B(x0+ (1+ ε)τ, ρ) and define W ε = Bε\T±h BR . By
submodularity we have

J
(
Bε ∩ T±h BR

)+ J
(
Bε ∪ T±h BR

)
� J (Bε)+ J

(
T±h BR

)
.

Using the minimality of T±h (BR) we deduce

J (Bε\W ε)− J (Bε) � J
(
T±h BR

)− J
(
Bε ∪ T±h BR

)
� 1

h

∫

Wε

|x | − R dx .
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Dividing the previous inequality by |W ε| and passing to the limit as ε → 0, in view
of the very definition of κ (4.6) we get

−κ(x̄, Bε) � 1

h
(|x̄ | − R).

It follows that |x̄ | � R − hc(ρ̄).
Now, let C be the constant of Lemma 6.5, and choose h so small that

J (BR0/8C )+ 1

h

∫

BR0/8C

|x | − R

4C
dx � J (BR0/8C )− R0

8Ch
|BR0/(8C)| < 0,

so that T±h BR/4C 
= ∅. Note that BR/4C + B3R/4 ⊆ BR . Thus, by Lemma 6.4
T±h (BR/4C ) + B3R/4 ⊆ T±h BR . In particular, if x0 ∈ T±h BR/(4C) it follows that
B(x0,

3R
4 ) ⊆ T±h BR . By the first part of the proof of (ii), we find that B(x0, |x̄ −

x0|) ⊆ T±h BR for some x̄ with |x̄ | � R − hc(3R/4). Hence, recalling also that,
thanks to Lemma 6.5 x0 ∈ T±h BR/(4C) ⊆ BR/4 , we obtain that BR/4 ⊆ T±h BR ,
provided that h is small enough. We can now use again the previous analysis with
x0 = 0, ρ̄ � R/4 and we deduce that if h is small enough, BR−hc(R/4) ⊆ T±h BR .
Applying once again the first part of the proof with x0 = 0 and ρ̄ � R − hc(R/4)
we conclude that, if h is small enough, BR−hc(R/σ) ⊆ BR−hc(R−hc(R/4)) ⊆ T±h BR .

��

6.2. The Time Discrete Scheme for Unbounded Sets

Here we show how to extend the time discrete scheme to the case of unbounded
sets with bounded complement. To this purpose, we introduce the perimeter J̃
defined as

J̃ (E) := J (RN\E) for all E ∈M.

Note that J̃ satisfies all the structural assumptions of generalized perimeters. Let κ̃
be the corresponding curvature.Then, it is easy to see that κ̃(x, E) = −κ(x,RN\E),
and thus

max
x∈∂Bρ

max{κ̃(x, Bρ),−κ̃(x,RN\Bρ)} = c(ρ)

min
x∈∂Bρ

min{κ̃(x, Bρ),−κ̃(x,RN\Bρ)} = c(ρ),
(6.7)

where c(ρ), c(ρ) are the functions defined in (2.1) and (2.2).
For every bounded set F we denote by T̃±h (F) the maximal and the minimal

solution to problem (6.2), according to Proposition 6.1 with J replaced by J̃ .
Finally, for every E ⊆ R

N such that F := R
N\E is bounded we set

T±h E := R
N\T̃∓h (RN\E). (6.8)

As in the case of bounded sets, we let ThE := T−h E .
Taking into account also (6.7), one can easily check that Lemmas 6.5 and 6.6

translate into the following statements:
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Lemma 6.7. For any R > 0 we have RN\BCR ⊆ T±h (RN\BR), where C depends
only on the dimension N.

Lemma 6.8. Let C > 1 be such that the statement of Lemma 6.5 holds, and let c,
c be as in (2.2). Then, the following holds:

(i) Let R > 0. Then, RN\BR−hc(CR) ⊆ T±h (RN\BR) for every h > 0 such that
R − hc(CR) > 0;

(ii) Let R0 > 0 and σ > 1 be fixed. Then, for h > 0 small enough (depending on
R0 and σ ), we have T±h (RN\BR) ⊆ R

N\BR−hc(R/σ) for all R � R0.

Remark 6.9. A consequence of Lemmas 6.5, 6.7 is that Th BR ⊆ BR+hK and
R

N\BR+hK ⊆ Th(RN\BR) for any h > 0 and any R > 0, where K is defined in
(2.3). In particular, iterating these estimates, we deduce that T [t/h]h BR ⊆ BR+t K
and RN\BR+t K ⊆ T [t/h]h (RN\BR). In the limit as h → 0, we will get an estimate
for the extinction time of balls in the superlevels of our level set function (see
Proposition 6.15).

Note now that by Lemma 6.2 (applied to J̃ in place of J ) and (6.8) if E1, E2
are unbounded sets with compact boundary, then

E1 ⊆ E2 &⇒ T±h E1 ⊆ T±h E2.

It remains to consider the case of E1 bounded and E2 unbounded.

Lemma 6.10. Let E1 ∈ M be bounded and let E2 ∈ M be unbounded, with
compact boundary, and such that E1 ⊆ E2. Then, T

±
h E1 ⊆ T±h E2.

Proof. Choose R > 0 so large that E1,RN\E2 ⊆ BR and note that by Lemmas 6.2
and 6.5 (applied to J̃ in place of J ) we get

R
N\T+h E2 = T̃−(RN\E2) ⊆ T̃−BR ⊆ BCR (6.9)

for some C > 0 depending only on N . Recall that T̃−h (RN\E2) is the minimal
solution of

min

{
J (RN\F)+ 1

h

∫

F
dRN \E2

dx : F ∈M

}
.

Considering the change of variable F̃ := R
N\F and using that dRN \E2

= −dE2 ,

we easily infer that T+h E2 = R
N\T̃−h (RN\E2) is the maximal solution of

min

{
J (F̃)− 1

h

∫

RN \F̃
dE2 dx : F̃ ∈M

}

= min

{
J (F̃)+ 1

h

∫

BCR

dE2 dx −
1

h

∫

RN \F̃
dE2 dx : F̃ ∈M

}
− 1

h

∫

BCR

dE2 dx .

Note now that
∫

F̃
dE2χBCR dx =

∫

BCR

dE2 dx −
∫

RN \F̃
dE2 dx



1318 Antonin Chambolle, Massimiliano Morini & Marcello Ponsiglione

for every F̃ withRN\F̃ ⊆ BCR . It follows, also by (6.9), that T
+
h E2 is the maximal

solution of

min

{
J (F̃)+ 1

h

∫

F̃
dE2χBCR dx : F̃ ∈M ,RN\F̃ ⊆ BCR

}
. (6.10)

By the same reasoning, one can show that T−h E2 is the minimal solution of (6.10).
Observing that dE2χBCR � dE1 and that T

±
h E1∪T±h E2, T

±
h E1∩T±h E2 are admis-

sible competitors for (6.10), one can argue exactly as in the proof of Lemma 6.2 to
conclude that T±h E1 ⊆ T±h E2. ��

6.3. The Level-Set Approach

Given any bounded uniformly continuous function u : RN → R, constant
outside a compact set, we introduce a transformation of u which is defined by
applying Th to all the superlevel sets of u. This is standard and has been done in a
similar geometric setting in many papers (see [16,22]).

To this purpose, notice that all the superlevels of u are either bounded or with
bounded complement, and that for any couple of levels s > s′ ∈ R we have
{u > s} ⊆ {u > s′}. Thus, in view of Lemma 6.2we have Th{u > s} ⊆ Th{u > s′}.

Letω : R+ → R+ an increasing, continuousmodulus of continuity for u. Since

{u > s} + Bω−1(s−s′) ⊆ {u > s′},
by Lemma 6.4 we deduce that

Th{u > s} + Bω−1(s−s′) ⊆ Th{u > s′}.
It follows that the sets Th{u > s} are themselves the level sets {v > s} of a
uniformly continuous function v =: Thu, with the same modulus of continuity.
More precisely, we set Thu(x) := sup{λ ∈ R : x ∈ Th{u > λ}}. Notice that, by
Lemmas 6.5 and 6.7, also Thu is constant out of a compact set. Moreover, if u � u′,
then Thu � Thu′. In the two following propositions, equality between sets must be
understood up to negligible sets.

Proposition 6.11. For every λ ∈ R we have

Th({u > λ})) = T−h ({u > λ})) = {Thu > λ}.
Analogously,

T+h ({u � λ})) = {Thu � λ}.
Proof. For every δ � 0 set

Eδ := Th({u > λ+ δ}), Aδ := {Thu > λ+ δ}.
We have to prove that E0 = A0. First, notice that by the very definition of Thu, for
every δ � 0

Aδ ⊆ Eδ (6.11)
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so that in particular A0 ⊆ E0. To prove the reverse inclusion, observe that

d{u>λ+δ} → d{u>λ} (6.12)

uniformly as δ → 0. Moreover, Aδ ↗ A0 in L1
loc as δ → 0. By (6.12) and by

the lower semicontinuity of J , it easily follows that A0 is a solution of (6.2) with
E replaced by {u > λ} (or of (6.10) in the unbounded case, with E2 replaced by
{u > λ}). Moreover, by (6.11) it is the minimal one, that is, it coincides with E0.
The similar proof of the second statement is left to the interested reader. ��

Given a continuous function u0 constant outside of a bounded set, define

uh(x, t) = T [t/h]h (u0)(x) (6.13)

for every h > 0, t � 0, where [·] denotes the integer part.
Proposition 6.11 applied to uh(·, (k − 1)h) yields the following:

Proposition 6.12. For every h, k > 0 and for every λ ∈ R we have

T−h ({uh(·, (k − 1)h) > λ}) = {uh(·, kh) > λ}
and

T+h ({uh(·, (k − 1)h) � λ}) = {uh(·, kh) � λ}.
We have seen that for all t , uh(·, t) is uniformly continuous (with the same

modulus ω as u0). Let us now study the regularity in time of this function.

Lemma 6.13. For any ε > 0, there exists τ > 0 and h0 > 0 (depending on ε) such
that for all |t − t ′| � τ and h � h0 we have |uh(·, t)− uh(·, t ′)| < ε.

Proof. Let ε > 0 and let R0 := ω−1(ε/2)/2. Since ω is a modulus of continuity
for uh it readily follows that for every x

B(x, ω−1(ε/2)) ⊆ {uh(·, t) > uh(x, t)− ε}. (6.14)

We only treat the case where {uh(·, t) > uh(x, t)− ε} is bounded, the other being
analogous. Let τ := R0/c(R0/4). By part (ii) of Lemma 6.6, and using that c is a
monotone decreasing function, there exists h0 depending on R0 such that

B(x, R0) ⊆ B(x, ω−1(ε/2)− nhc(R0/4)) ⊆ T n
h B(x, ω−1(ε/2)) (6.15)

as long as ω−1(ε/2)− nhc(R0/4) � R0, that is, as long as nh � τ .
Now, let t ′ > t such that t ′ − t � τ , and let n := [(t ′ − t)/h]. Since nh � τ ,

by (6.14), (6.15), Lemma 6.2, and Proposition 6.12 we have

{uh(·, t ′) > uh(x, t
′)− ε} = {uh(·, t + nh) > uh(t, x)− ε}

= T n
h {uh(·, t) > uh(x, t)− ε} ⊇ T n

h B(x, ω−1(ε/2)) ⊇ B(x, R0).

In particular, uh(x, t ′) > uh(x, t)− ε. In order to show

uh(x, t
′) < uh(x, t)+ ε
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we proceed in a similar way. Precisely, we observe that

B(x, ω−1(ε/2)) ⊆ {uh(·, t) < uh(x, t)+ ε},
that is,

{uh(·, t) � uh(x, t)+ ε} ⊆ R
N\B(x, ω−1(ε/2)).

We then proceed as in the first part of the proof, but now using Lemma 6.7 instead
of Lemma 6.5 and Lemma 6.10 instead of Lemma 6.2. ��

6.4. Convergence Analysis

In this subsection we show that any limit of the discrete evolutions is a viscosity
solution. Recalling Lemma 6.13 and the uniform continuity in space of uh , by a
straightforward variant ofAscoli–Arzelà’s Theoremwe deduce the precompactness
of uh . Moreover, in view of Remark 6.9 we deduce also that the limit u is constant
out of a compact set. Summarizing, the following proposition holds.

Proposition 6.14. Let T > 0. Up to a subsequence, uh converges uniformly on
R

N × [0, T ] as h → 0 to a function u(x, t), which is bounded and uniformly
continuous, and constant out of a compact set.

For every r > 0, set
ĉ(r) := max{1, c(r)}. (6.16)

Given r0 > 0, let r(t) be the solution of the following ODE
{
ṙ(t) = −ĉ(r(t));
r(0) = r0

(6.17)

Notice that (6.17) admits a unique solution r(t) until some extinction time T ∗(r0)
with r(T ∗) = 0.

Proposition 6.15. Let u(x, t) be the function given by Proposition 6.14, let λ ∈ R,
and let B(x0, r0) ⊂ {u(·, t0) > λ}. Then, B(x0, r(t− t0)) ⊂ {u(·, t) > λ} for every
t � T ∗(r0) + t0, where r(t) is the solution of the ODE (6.17) and T ∗(r0) is its
extinction time. The same statement holds by replacing the superlevel of u with its
sublevel.

Proof. We only treat the case of {u(·, t) > λ} bounded, since the other one is
analogous. By assumption, if R0 < r0, for h small enough B(x0, R0) ⊂ {uh(·, t0) >

λ}. Let σ > 1 and R0 be defined recursively by Rn+1 = Rn − hc(Rn/σ). By
Lemmas 6.2, 6.6, and 6.12 one has that B(x0, R[(t−t0)/h]+1) ⊂ {uh(·, t) > λ} for
t � t0, as long as R[(t−t0)/h]+1 > 0. Let also rσ be the unique solution of ṙσ (t) =
−ĉ(rσ (t)/σ ) with initial value rσ (0) = R0. One observes that if rσ (nh) � Rn ,
then

rσ ((n + 1)h) � Rn −
∫ (n+1)h

nh
ĉ

(
rσ (s)

σ

)
ds

� Rn −
∫ (n+1)h

nh
ĉ

(
Rn

σ

)
ds � Rn −

∫ (n+1)h

nh
c

(
Rn

σ

)
ds = Rn+1
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since ĉ is nondecreasing. As a consequence, B(x0, rσ (h[(t−t0)/h]+h) ⊂ {uh(·, t)
> λ} for t � t0 as long as the radius is positive. We conclude sending h → 0, then
R0 → r0 and σ → 1. The proof of the last part of the proposition is very similar.
One observes that by Lemmas 6.10, 6.8, and 6.12,we have (with the same definition
of Rn) {uh(·, t) > λ} ⊂ R

N\B(x0, R[(t−t0)/h]+1), that is B(x0, R[(t−t0)/h]+1) ⊂
{uh(·, t) � λ} for t � t0, as long as R[(t−t0)/h]+1 > 0. The conclusion then follows
as before. ��
We are now in a position to state and prove the main result of this section.

Theorem 6.16. The function u provided by Proposition 6.14 is a viscosity solution
of the Cauchy problem (2.4) in the sense of Definition 2.11.

Remark 6.17. We observe that this holds under assumptions (C) and (D) on the
curvature. If in addition (C′) holds, then the limit flow is unique and one also
deduces that the whole family (uh)h>0 converges uniformly as h → 0.

Proof. We denote by uhk a subsequence of uh converging to u. Let us prove that
u is a subsolution (the proof that it is a supersolution is identical). Let (x̄, t̄) ∈
R

N × (0, T ). Let ϕ be a C�,β admissible test function at (x̄, t̄), and assume that
(x̄, t̄) is a maximum point of u − ϕ. We need to show that

∂ϕ

∂t
(x̄, t̄)+ |Dϕ(x̄, t̄)|κ∗(x̄, Dϕ(x̄, t̄), D2ϕ(x̄, t̄), {ϕ(·, t̄) � ϕ(x̄, t̄)}) � 0.

(6.18)
Step 1. Let us first assume that Dϕ(x̄, t̄) 
= 0. By Remark 2.12 we can assume that
this is a strict maximum point and that ϕ is smooth.

If the maximum is strict, then by standard methods we can find (xk, tk) →
(x̄, t̄) such that uhk − ϕ has a maximum at (xk, tk). Moreover, for k large enough,
Dϕ(xk, tk) 
= 0. We have that for all (x, t),

uhk (x, t) � ϕ(x, t) + ck (6.19)

where ck := [uhk (xk, tk)− ϕ(xk, tk)], with equality if (x, t) = (xk, tk).
Let η > 0 and set

ϕ
η
hk

(x) = ϕ(x, tk) + ck + η

2
Q(x − xk) , (6.20)

where Q is as in Lemma 2.13 and Q(z) = |z|2 for |z| sufficiently small. Then, for
all x ∈ R

N ,

uhk (x, tk) � ϕ
η
hk

(x)

with equality if and only if x = xk . We set lk := uhk (xk, tk) = ϕ
η
hk

(xk).

By Lemma 2.13, we can assume that η is such that the superlevel sets {ϕη
hk

� lk}
are not critical for all k. Let ε > 0 and set

Wε :=
{
x ∈ R

N : uhk (x, tk) � lk − ε
} ∖ {

x ∈ R
N : ϕ

η
hk

(x) � lk
}

.
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It is easy to see that for ε > 0 sufficiently small |Wε| > 0, and converges to {xk}
in the Hausdorff sense as ε → 0. Now, if {uhk (·, tk) � lk − ε} is bounded, by
minimality we have

J ({uhk (·, tk) � lk − ε}) + 1

hk

∫

{uhk (·,tk )�lk−ε}
d{uhk (·,tk−hk)�lk−ε}(x) dx

� J ({uhk (·, tk) � lk − ε} ∩ {ϕη
hk

� lk})
+ 1

hk

∫

{uhk (·,tk )�lk−ε}∩{ϕη
hk

�lk }
d{uhk (·,tk−hk )�lk−ε}(x) dx . (6.21)

Adding to both sides the term J ({uhk (·, tk) � lk− ε}∪ {ϕη
hk

� lk}) and using (4.1),
we obtain

J
({

ϕ
η
hk

� lk
}
∪Wε

)
− J

({
ϕ

η
hk

� lk
})

+ 1

hk

∫

Wε

d{uhk (·,tk−hk )�lk−ε}(x) dx � 0.

By (6.19), {uhk (·, tk − hk) � lk − ε} ⊆ {ϕ(·, tk − hk) � lk − ck − ε}, so that we
also have

J
({

ϕ
η
hk

� lk
}
∪Wε

)
− J

({
ϕ

η
hk

� lk
})

+ 1

hk

∫

Wε

d{ϕ(·,tk−hk )�lk−ck−ε}(x) dx � 0. (6.22)

If instead {uhk (·, tk) � lk − ε} is unbounded, then inequality (6.21) must be
replaced by

J ({uhk (·, tk) � lk − ε}) + 1

hk

∫

{uhk (·,tk )�lk−ε}∩BR

d{uhk (·,tk−hk )�lk−ε}(x) dx

� J ({uhk (·, tk) � lk − ε} ∩ {ϕη
hk

� lk})
+ 1

hk

∫

{uhk (·,tk )�lk−ε}∩{ϕη
hk

�lk }∩BR

d{uhk (·,tk−hk )�lk−ε}(x) dx ,

for R sufficiently large, see (6.10). Then, arguing as before, one obtains again
(6.22).

Notice that for z ∈ Wε we have

lk − ε < ϕ(z, tk)+ ck + η

2
Q(z − xk) < lk . (6.23)

Since, in turn, ϕ(z, tk)+ ck � lk − ε it follows that η
2Q(z − xk) < ε and thus, for

ε small enough,
Wε ⊆ BC

√
ε(xk). (6.24)

Moreover, for every z ∈ Wε

ϕ(z, tk−hk) = ϕ(z, tk)−hk∂tϕ(z, tk)+h2k

∫ 1

0
(1−s)∂2t tϕ(z, tk−shk) ds. (6.25)
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Let y be a point of minimal distance from z such that ϕ(y, tk − hk) = lk − ck − ε.
Then, |z − y| = |d{ϕ(·,tk−hk )�lk−ck−ε}(z)|, and

(z − y) · Dϕ(y, tk − hk) = ±|z − y||Dϕ(y, tk − hk)|, (6.26)

with a ‘+’ if ϕ(z, tk − hk) > lk − ck − ε and a ‘−’ else, so that the sign is opposite
to the sign of d{ϕ(·,tk−hk )�lk−ck−ε}(z). Hence,

ϕ(z, tk − hk) = ϕ(y, tk − hk)+ (z − y) · Dϕ(y, tk − hk)

+
∫ 1

0
(1− s)(D2ϕ(y + s(z − y), tk − hk)(z − y)) · (z − y) ds

= lk − ck − ε − d{ϕ(·,tk−hk )�lk−ck−ε}(z)|Dϕ(y, tk − hk)|

+
∫ 1

0
(1− s)(D2ϕ(y + s(z − y), tk − hk)(z − y)) · (z − y) ds.

(6.27)

By (6.23) we deduce in particular ϕ(x, tk) + ck < lk , that is,

−ϕ(x, tk) � ck − lk . (6.28)

Combining (6.28), (6.25), and (6.27), we deduce

d{ϕ(·,tk−hk )�lk−ck−ε}(z)|Dϕ(y, tk − hk)|

� −ε + hk∂tϕ(z, tk) − h2k

∫ 1

0
(1− s)∂2t tϕ(z, tk − shk) ds

+
∫ 1

0
(1− s)(D2ϕ(y + s(z − y), tk − hk)(z − y)) · (z − y) ds.

Note that, in view of (6.23), |ϕ(z, tk) − ϕ(y, tk)| � ε + Chk = O(hk), provided
that ε << hk are small enough. In turn, by (6.26) as |Dϕ(y, tk − hk)| is bounded
away from zero, we have |z − y| = O(hk) and, using also (6.24), we deduce

1

hk
d{ϕ(·,tk−hk)�lk−ck−ε}(z) �

∂tϕ(z, tk)− ε
hk
+ O(hk)

|Dϕ(y, tk − hk)|
= ∂tϕ(xk, tk)+ O(

√
ε)− ε

hk
+ O(hk)

|Dϕ(xk, tk)| + O(
√

ε)+ O(hk)
. (6.29)

We now focus on the term

J ({ϕη
hk

� lk} ∪Wε)− J ({ϕη
hk

� lk})
of inequality (6.22). Thanks to (4.5), if ε is small enough we know that

J ({ϕη
hk

� lk} ∪Wε)− J ({ϕη
hk

� lk}) � |Wε|(κ(xk, {ϕη
hk

� ϕ
η
hk

(xk)})− oε(1)) ,

(6.30)

recalling that ϕη
hk

(xk) is not a critical value of ϕ
η
hk
.
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Using therefore (6.22), (6.29) and (6.30), dividing by |Wε| and sending ε → 0,
we deduce that (for almost everywhere η > 0 small)

∂tϕ(xk, tk)+ O(hk)

|Dϕ(xk, tk)| + O(hk)
+ κ

(
xk,

{
ϕ

η
hk

� ϕ
η
hk

(xk)
})

� 0.

Letting simultaneously η → 0 and k → ∞ and using Lemma 2.9 we de-
duce (6.18).

Step 2. Now we consider the case Dϕ(z̄) = 0 and we show that ϕt (z̄) � 0. Let
ψn be defined as in (2.16) and let zn = (xn, tn) be a sequence of maximizers of
u−ψn , such that xn → x̄ and tn → t̄−. If xn 
= x̄ for a (not relabeled) subsequence,
then (for large n) Dψn(xn, tn) 
= 0 and (6.18) holds for ψn at zn . Passing to the
limit and using the properties of f (where f is the function appearing in (2.16)),
we deduce that ∂ϕ

∂t (z̄) � 0 (see (2.17) for the details).
We therefore assume that zn = (x̄, tn) for all n sufficiently large. Set bn := t̄−tn

and set
rn := f −1(anbn) , (6.31)

where an → 0 is chosen so that the extinction time T ∗(rn) of the solution of (6.17)
with r0 replaced by rn , satisfies T ∗(rn) � 2bn for n large enough. To show that
such a choice for an is possible, set

g(t) = sup
0�s�t

ĉ( f −1(s)) f ′( f −1(s)),

and notice that g(t) � ĉ(t) for t small, it is non decreasing in t , and g(t) → 0 as
t → 0 thanks to (2.6). We have

T ∗(rn)
bn

� 1

bn

∫ rn

rn/2

1

ĉ(r)
= 1

bn

∫ f −1(anbn)

f −1(anbn/2)

1

ĉ(r)

= an
2
−
∫ anbn

anbn/2

1

ĉ( f −1(s)) f ′( f −1(s))
ds � an

2

1

g(bn)
= 2. (6.32)

where the last equality holds if we choose an = 4g(bn)→ 0.
By definition of ψn , we have that

B(x̄, rn) ⊂
{
ψn(·, tn) � ψn(x̄, tn)+ 2 f (rn)

}

⊂ {
u(·, tn) � u(x̄, tn)+ 2 f (rn)

}
.

Note that the last inclusion follows from the maximality of u − ψn at zn and the
fact that u(zn) = ψn(zn). By (6.32) and Proposition 6.15,

x̄ ∈ {
u(·, t̄) � u(x̄, tn)+ 2 f (rn)

}
.

Thus, using also the maximality of u − ϕ at z̄, and recalling (6.31), we have

ϕ(x̄, tn)− ϕ(z̄)

−bn � u(x̄, tn)− u(x̄, t̄)

−bn � 2 f (rn)

−bn = −2an .

Passing to the limit, we conclude that ∂tϕ(z̄) � 0. ��
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6.5. Perimeter Descent

In this part we address the problem of the perimeter descent for variational
curvature flows. The results refer to any viscosity solution u : RN × [0, T ] →
R to (2.4), where k is the first variation of a generalized perimeter in the sense
of Definition 4.4. Throughout this subsection we also assume that the additional
conditions stated in Sections 3.1 and 3.2 hold, so that such a solution is unique and
coincides with the one built through the minimizing movements.

First, we generalize to our setting a fact that is well known in the context of
the mean curvature flow: whenever there is no fattening, the perimeter decreases in
time.

Proposition 6.18. Let 0 � t1 � t2 � T , let λ ∈ R and assume that |{u(·, t2) =
λ}| = 0. Then,

J ({u(·, t2) > λ}) � J ({u(·, t1) > λ}).
Proof. Set ũ0 := d{u(·,t1)>λ}, and let ũ : [0, T − t1] → R be the viscosity solution
of (2.4) with initial condition ũ0. By Remark 3.9, we get

{ũ(·, t) > λ} = {u(·, t + t1) > λ}
for every t ∈ [0, T − t1]. Let now ũh be the approximate solution defined in (6.13).
Then, by Proposition 6.12 we have

J ({ũh(·, t2 − t1)) > λ} � J ({ũh(·, 0)) > λ}.
Since ũh → ũ pointwise (indeed, uniformly) and since

|{ũ(·, t2 − t1) = λ}| = |{u(·, t2) = λ}| = 0,

we easily deduce that

{ũh(·, t2 − t1)) > λ} → {ũ(·, t2 − t1)) > λ} = {u(·, t2)) > λ}
in measure, as h →∞. By the lower semicontinuity of J we conclude

J ({u(·, t2)) > λ}) � lim inf
h

J ({ũh(·, t2 − t1)) > λ}
� J ({ũh(·, 0)) > λ} = J ({u(·, t1)) > λ}. (6.33)

��
Remark 6.19. A natural issue is to understand under which circumstances the as-
sumption of Proposition 6.18 is satisfied. To our knowledge, there is no general
result in this direction, not even for the canonical mean curvature flow. On the other
hand, if the initial set E0 is starshaped, one can build u0 such that all its superlevels
are homothetic to E0. In view of the homogeneity properties of the mean curvature
and of the geometric evolution equation (2.4), all the superlevels evolve staying
homothetic to each other. As a consequence, superlevels are never flat, and in turn
the perimeter decreases along the flow. This is the case whenever a generalized
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curvature is homogeneous with respect to dilations, that is there exists α > 0 such
that κ(x, l E) = l−ακ(x, E) for every l > 0 and E ∈ C. For the mean curvature
flow (and in fact for more general local evolutions), this was already observed and
used in [4,35,36].

Finally, we introduce a relaxed perimeter, defined on open sets, that always
decreases along the flow.

Definition 6.20. For every open set A ⊂ R
N with compact boundary set J̃ (A) :=

inf lim inf J (An) where the infimum is taken among all sequences of open sets An

with Ān ∈ C, Ān ⊂ A and R
N\An → R

N\A in the Hausdorff sense.

Remark 6.21. By the lower semicontinuity property of J , we have J̃ (A) � J (A)

for every open set A with compact boundary. The converse inequality is in general
false. For instance let J be the standard perimeter and let A := B1\{xy = 0}. Then,
J (A) = J (B1), while it is easy to see that J̃ (A) = J (B)+ 4. It is well known (see
[23]) that if u0 = dA, then the level-set {u(·, t) = 0} is fat for every positive time.
Moreover,

lim
t→0

J ({u(·, t) > 0}) = J̃ (A).

In particular, the perimeter J (instantaneously) increases along the geometric flow.
The example somewhat motivates Definition 6.20. As we will see, the relaxed
perimeter J̃ instead is always non increasing.

Remark 6.22. Clearly, in Definition 6.20 we can always assume that, whenever
A is bounded, An are compactly contained in An+1 for every n (and a similar con-
dition for unbounded sets). Moreover, we can remove the regularity assumption
on An without affecting the notion of J̃ . Indeed, let Ĵ be defined as in Defini-
tion 6.20, but without the requirement of the C�,β -regularity. Clearly Ĵ � J̃ . To
prove the converse inequality, consider an optimal sequence of open sets Ân such
that J ( Ân)→ Ĵ (A). It is enough to regularize each An in order to have an optimal
sequence Ãn for J̃ . This can be easily done in view of Lemma 4.1. The details are
left to the reader.

We now state and proof a simple lemma that clarifies the role of Definition 6.20
in the viscosity approach to geometric flows.

Lemma 6.23. Let A ⊂ R
N be an open set with compact boundary, and let Ān ∈ C

with Ān ⊆ An+1 ⊆ Ān+1 ⊆ A for every n, and ∪∞n=1An = A.
Then, there exists a one-Lipschitz function uA and a sequence λn → 0 such

that

(1) A = {uA > 0};
(2) An = {uA > λn};
(3) uA = dAn + λn in a neighborhood of ∂An.
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Proof. For every n ∈ N we set

λn :=
+∞∑
i=n

dist(∂Ai , ∂Ai+1).

We now define the function uA by setting for every i ∈ N:

uA |Ai+1\Ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dAi + λi in {0 � dAi � dist(∂Ai , ∂Ai+1)/2} ,
dAi+1 + λi+1 in {−dist(∂Ai , ∂Ai+1)/2 � dAi+1 � 0} ,
λi + λi+1

2
elsewhere in Ai+1\Ai .

It is now easy to check that the function uA has all the required properties. ��
Proposition 6.24. The relaxed perimeter J̃ decreases along the geometric flow.
More precisely, for every λ ∈ R the function t → J̃ ({u(·, t) > λ}) is not increasing.
Proof. To ease notations, we will assume λ = 0. Let 0 � t1 � t2 � T . We have
to prove that

J̃ ({u(·, t2) > 0}) � J̃ ({u(·, t1) > 0}).
Let (An) be an optimal sequence for Definition 6.20 with A := {u(·, t1) > 0)}.
Clearly, we may assume that Ān ⊂ An+1 for every n. Moreover, let λn , uA be
as in Lemma 6.23. By property 3) of Lemma 6.23, we have that the function
λ �→ {uA > λ} is continuous from a neighborhood of each λn to C. In particular,
the function λ �→ J ({uA(·) > λ)}) is continuous at each λn . Notice that all except
countably many levels of uA have null measure. Therefore, there exists a sequence
λ̃n → 0 such that

(i) |{uA(·) = λ̃n)}| = 0 for every n;
(ii) J ({uA(·) > λ̃n})→ J̃ (A) as n →∞.

Let ũ : [0, T − t1] → R be the solution to (2.4) with initial condition uA. By
Proposition 6.18 we have

J ({ũ(·, t2 − t1) > λ̃n}) � J ({ũ(·, 0) > λ̃n}).
Letting n →∞, by (ii) and by the very definition of J̃ we get

J̃ ({u(·, t2) > 0}) = J̃ ({ũ(·, t2 − t1) > 0}) � J̃ ({ũ(·, 0) > 0}) = J̃ ({u(·, t1) > 0}),
where the first equality follows by Remark 3.9. ��
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