
Digital Object Identifier (DOI) 10.1007/s00205-015-0879-5
Arch. Rational Mech. Anal. 218 (2015) 1239–1262

Macroscopic Description of Microscopically
Strongly Inhomogenous Systems: A

Mathematical Basis for the Synthesis of Higher
Gradients Metamaterials

A. Carcaterra, F. dell’Isola, R. Esposito & M. Pulvirenti

Communicated by C. Dafermos

Abstract

We consider the time evolution of a one dimensional n-gradient continuum.
Our aim is to construct and analyze discrete approximations in terms of physically
realizable mechanical systems, referred to as microscopic because they are living
on a smaller space scale. We validate our construction by proving a convergence
theorem of the microscopic system to the given continuum, as the scale parameter
goes to zero.

1. Introduction

Continua with exotic behaviors are attracting increasing attention because of
their technological applications (see for example [1,11,19,24,26,29] and references
therein). In this paper we address what, in a sense, is an inverse problem: given a
continuum model we seek for those mechanical systems which, at a certain length
scale, behave as specified by the chosen continuummodel. The aim is to understand
the microscopic properties of such systems to obtain information on how to realize
(synthesize) them, at least in principle.

Tobemore precise,we are interested in ametamaterialwhich, roughly speaking,
is an array of elementary individuals, much smaller than the typical macroscopic
size, arranged in periodic structures and exhibiting unusual macroscopic behavior.

In our mathematical analysis we want to consider such a continuous system
as described by a partial differential equation generated by a Lagrangian which
summarizes all the macroscopic properties we may desire. Then we discretize
this system and manage to identify such a discretization as a real conservative
mechanical model. In other words we start with macroscopic behavior and describe
onepossiblemicroscopic interactionwhich realizes it at amacroscopic level. Finally
we give a mathematical foundation to this procedure by proving a convergence
result.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-015-0879-5&domain=pdf


1240 A. Carcaterra et al.

From a mathematical point of view, we underline once more that this is an
inverse problem, compared to the one (largely unsolved) formulated by D. Hilbert
in his famous speach in 1900 at ICM in Paris (see [15]) in which he encouraged
attempts to prove rigorously the transition from particle systems to fluid dynamics
(Hilbert’s 6-th problem). However it is worth stressing that we are working in the
framework of continuum mechanics, but our microscopic elements, even if small
in macro units, are large compared with molecular scales.

We conclude this introduction by spending somemore time discussingmetama-
terials, collocating them in the framework of generalized continua, with a particular
emphasis on the pioneering work of G. Piola (see [2,9,25]).

The rest of the paper is organized as follows. In Section 2 we introduce con-
tinuous and discrete Lagrangians and discuss the identification problem, namely
we specify the mechanical systems outlined by the discretization procedure. In
Section 3 we formulate and solve the associated convergence problem.

We remark that our work concerns one-dimensional systems only. This is of
course a severe limitation, but, on the other hand, it is a natural setting to start with.

1.1. Mechanical Metamaterials

By suitably rephrasingEngheta andZiolkowski [11] andZouhdi et al. [29],
metamaterials are materials which are first theoretically conceived and then engi-
neered to have properties very unlikely to be found in nature.

They are obtained by suitably assembling multiple individual elements con-
structed with already available microscopic materials, but usually arranged in
(quasi-)periodic sub-structures. Indeed the properties of metamaterials do not de-
pend only on those of their component materials, but also on the topology of their
connections and the nature of their mutual interaction forces. In literature there is
currently specified a particular class of metamaterials, so called mechanical meta-
materials, those in which the particular properties which are “designed” for the
newly synthesized material are purely mechanical. The present paper deals exactly
with such a class.

We explicitly remark here that in the present paper we use the adjective “mi-
croscopic” or “micro-” meaning all those length scales which are (much) smaller
than the scale at which continuum mechanics is applicable. In particular we do not
attach any value in SI units to each considered length scale.

The particular shape, geometry, size, orientation and arrangement of the ele-
mentary individual elements can affect, for instance, the propagation of waves of
light or sound in a not-already-observedmanner. In this way one can create material
properties which cannot be found in conventional materials.

Particularly promising are those micro-structures which present high-contrast
inmicroscopic properties. These structures, once homogenized, have been shown to
produce generalized continua (see for example [1,5,26]). These micro-structures,
although remaining quasi-periodical, are conceived so that some of the physical
properties which are characterizing their behavior are diverging when the size of
the representative elementary volume tends to zero, while simultaneously some
others are vanishing in this limit.
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To give a hint of the possible applications of newly designed metamaterials we
list here some among the papers which are more relevant to our results, especially
in the perspective of their extension to two dimensional and three dimensional
systems. In [18] it is shown how to synthesize a composite medium exhibiting
negative effective bulk modulus, negative effective mass density (see also [5]),
or both properties. In [16] materials with negative Poisson’s ratio (auxetics) were
designed, and they were fabricated in 1999 (see Xu et al. [28] ). One of the most
famous examples of such materials is the Goretex whose negative Poisson ratio
opened unexpected possibilities regarding things like vascular surgery.

The damping effects can be also suitably designed using special selection of
the material microstructure as reported in [3,4], or acoustic and optical effects such
as negative refraction, lensing and cloaking [6,21].

All described materials can be modeled at a micro-level as finite dimensional
Lagrangian systems and their effective properties are all obtained via a kind of
homogenization procedure.

1.2. Generalized Continua

In the first half of the nineteenth century the design of structures became an
intellectual activity based on the rigorous application of predictive mathematical
models. These models were formulated by means of a precise postulation process
and originated a series of problems or exercises directly motivated by the engi-
neering applications, which were solved by means of the use of the then newly
developed techniques of mathematical analysis.

The model describing the mechanical behaviour of materials introduced by
Cauchy—although very accurate for a large class of phenomena—cannot be applied
to all materials in every physical condition.

More general models were formulated by Gabrio Piola in the same years, but
only recently they were considered in engineering for applications.

In some formulations of continuum mechanics, the possibility of the depen-
dence of deformation energy on higher gradients of displacement is rejected, due
to an apparent (see [7]) incompatibility with the second principle of thermodynam-
ics ([10,14]).On the other hand, physicists, for instanceLandau andLifshitz [17],
always considered this dependence as admissible, as they are accustomed to basing
the postulation of physical theories on the principle of least action or on the principle
of virtual works, which is exactly the same starting point as that of Piola [25].

Actually, when introducing Piola continua, the true conceptual frame settled
by Cauchy, Navier and Poisson is to be drastically modified. The concept of stress
becomes secondary and the main role is played by deformation measures together
with action and dissipation functionals. The Euler–Lagrange equation obtained in
this more encompassing modeling process cannot be regarded anymore as coincid-
ing with the balance of force unless one generalizes the concept of force. This can
be done by introducing generalized actions as the dual quantities in the work of the
gradients of displacements (see for example [8,12,13,20,22,23,27]).

Actually the same concept of contact interaction has to be completely modified,
and the crucial point of determining the correct boundary conditions which can be
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assigned in generalized continua theory has been addressed only very recently (see
for example [8]), following the original ideas by Piola [25].

2. Microscopic and Macroscopic Descriptions

Inwhat followswewill consider two length scales, l and L , with l � L .Wewill
call microscopic or micro the description at the length scale l, while macroscopic
or macro will be the attribute relative to the description which is suitable at the
length scale L .

We assume that themost suitablemicro-description at micro-scale is “discrete”,
that is based on the model “material particle” (as done by Poisson, Navier and in
someworks by Piola), while the description which has to be used at the macro-level
is that of a continuum, as introduced, for example, by Lagrange, Cauchy or again
Piola.

We remark however that we will not limit our attention to systems which verify
the assumptions put forward by Cauchy and Navier. We will consider, actually,
those continua which have been considered by Piola (and then by many others,
including Toupin, Green, Rivlin and Mindlin), that is, the so called higher gradient
continua.

To quantify the above considerations we will introduce, in the sequel, a small
parameter ε > 0 indicating the ratio between typical micro and macro scales,
possibly to be sent to zero to outline a suitable asymptotic behavior.

2.1. The Basic Macroscopic Continuous Model

Let I = (0, L) ⊂ R be a finite interval assumed as a reference configuration
of the considered one-dimensional continuum. We label each element of the con-
tinuum with the coordinate x ∈ I of its placement in the reference configuration.
The actual configuration of the continuum is described by the displacement field
u = u(x, t) which represents the horizontal displacement at time t of the element
x from its position in the reference configuration.

Fixing an integer n ≥ 1, for such a system we introduce the Lagrangian

L(u, u̇) = 1

2

∫
I
|u̇(x)|2 −

∫
I
�

(
u(x), Du(x), . . . , Dnu(x)

)
. (2.1)

Here, Dku is the k-th x-derivative of u and

R
n+1 � ξ = (ξ0, . . . , ξn) �→ �(ξ) ∈ R (2.2)

is a function whose properties will be specified later on.
Note that �(u, Du, . . . , Dnu) is the potential energy density corresponding to

the displacement u and describes the constitutive properties of the medium under
investigation.

The action on the time interval (0, T ) is consequently defined as

A =
∫ T

0
L (u( · , t), u̇( · , t)) , (2.3)

where u̇(x, t) = ∂t u(x, t) is the time derivative.
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To deduce the Euler–Lagrange equations from the stationary action principle,
we have first to specify the kinematic boundary condition for our problem. In the
sequel we shall assume either

- periodic boundary conditions. Namely the reference configuration is C, a circle
of radius L

2π (the points 0 and L are identified), or
- Dirichlet boundary conditions. Namely u and its first n − 1 derivatives vanish

at 0 and L .

With the above boundary conditions, no boundary terms appear when perform-
ing the integrations by parts needed to obtain the equation of the motion (2.4)
below.

Note also that the maximal order of the spatial derivatives appearing in the
equation of motion (2.4) is 2n.

The equation of motion, as a consequence of the stationary action principle and
the boundary conditions, is (with D0u = u)

ü = −
n∑

α=0

(−1)α Dα∂ξα�
(
u, Du, . . . , Dnu

)
. (2.4)

We could also include, in the present context, a given external potential with a
very minor effort. We avoid doing so for notational simplicity.

Now we specify � by assuming that

�(ξ) = 1

2
(ξ , Qξ) + R(ξ), (2.5)

that is, the quadratic part of � is a quadratic form in terms of the displacement and
its derivatives, contained in the vector ξ . Q = {Qα,β}n

α,β=0 is a symmetric (without
loss of generality) constant matrix with Qn,n 	= 0.

On the non-linear part R we shall do suitable assumptions later on. We start by
requiring that

R(0) = 0, R(ξ) = O
(
|ξ |3

)
; (2.6)

namely, the quadratic part of the interaction is fully expressed by the matrix Q.
The fact that � is not dependant explicitly on x is a consequence of the macro-

scopic homogeneity of the continuum (although it may be strongly inhomogeneous
at microscopic scales). This implies that Q is constant.

As a first step we show that, in contrast with the fairly general nature of the
model, the quadratic part can be considerably simplified. Indeed, symmetrizing,
integrating by parts and using the periodic or Dirichlet boundary conditions, we
get:

U .= 1

2

n∑
α,β=0

Qα,β

∫
I

Dαu Dβu

= 1

4

2n∑
γ = 0

∑
α,β≥0:
α+β=γ

Qα,β

∫
I

u Dγ u
[
(−1)α + (−1)β

]
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= 1

4

n∑
γ=0

∑
α,β≥0:

α+β=2γ

Qα,β

[
(−1)α + (−1)β

]
(−1)γ

∫
I
|Dγ u|2

= 1

2

n∑
γ=0

Aγ

∫
I
|Dγ u|2, (2.7)

where

Aγ = 1

2

∑
α,β≥0:

α+β=2γ

Qα,β

[
(−1)α + (−1)β

]
(−1)γ . (2.8)

Note that in the first step in (2.7) we have used the symmetry of Qα,β and in
the second step we used that (−1)α + (−1)β = 0 if α + β is odd. In the third step
we have again integrated by parts.

As a consequence of this analysis, without loss of generality, we can assume �

of the form

� = 1

2

n∑
α=0

Aα|ξα|2 + R(ξ), (2.9)

with An 	= 0 and the equations of motion are

ü = −
n∑

α=0

(−1)α Aα
αu −
n∑

α=0

(−1)α Dα∂ξαR
(
u, Du, . . . , Dnu

)
, (2.10)

where 
 = D2 denotes the Laplacian. Note that in the linear part only even
derivatives are allowed.

2.2. Formal Discretization

In view of the construction of the mechanical (microscopic) systemwith a finite
number of degrees of freedom, we introduce a finite lattice of mesh ε in I . The
lattice points are {0, ε, 2ε . . . , kε, . . . Nε} with the obvious condition Nε = L .
When considering periodic boundary conditions we clearly identify 0 with εN .

We associate to each lattice point amicroscopic particle of unitarymass labelled
by the index i ∈ {0, . . . , N } and denote by ui the displacement of the particle i from
the reference position iε. The array uε = {ui }N

i=0 is the discretized displacement
field.

The discretized Lagrangian takes the form

Lε(uε, u̇ε) = 1

2

N∑
i=0

εu̇2
i − U (uε), (2.11)

where

U (uε) =
N∑

i=0

ε

[
1

2

n∑
α=0

Aα

∣∣(Dα
ε uε)i

∣∣2 + R((Dεuε)i )

]
, (2.12)
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where (Dεuε)i = {(Dα
ε uε)i }n

α=0,

Dα
ε u =

⎧⎨
⎩



α
2
ε uε, α even,

D+
ε 


α−1
2

ε uε, α odd.
(2.13)

Here D+
ε and D−

ε , defined as

(
D+uε

)
i = ui+1 − ui

ε
, (D−uε)i = ui − ui−1

ε
, (2.14)

are the right and left discrete derivatives respectively and 
ε, defined by

(
εuε)i = (
D+

ε D−
ε uε

)
i = (

D−
ε D+

ε uε

)
i = 1

ε2
(ui+1 + ui−1 − 2ui ) , (2.15)

is the discrete Laplacian.
To complete the above definitions we need to define the discrete derivatives at

the boundary. For periodic boundary conditions it is enough to use the following
convention: for any k ∈ Z,

uN+k = uk . (2.16)

For the Dirichlet boundary condition, we have to think of the first and last n
particles frozen in their reference position. Hence we assume the constraints

ui = 0, i ∈ {0, . . . , n − 1} ∪ {N − n + 1, . . . , N }. (2.17)

The equations of motion are

üi = Fi , Fi = − ∂U

∂ui
, (2.18)

with the index i running from 1 to N in the periodic case and on the set of i’s for
which ui is not constrained in the Dirichlet case. We notice that the choice of the
right derivative (as well as any other possible discretization) is arbitrary. The only
restriction that we have is the mechanical realizability (in principle) of this system.
We are going to discuss this point in the next subsection.

We finally remark that Fi depends on u j , with |i − j | ≤ n. However this is
an almost local contribution because n is fixed and those u j ’s influencing ui are at
macroscopic distance O(ε).

2.3. Realizable Syntheses

The aim of this subsection is to show that, at least in the simplest case of linear
forces, the above introduced discrete system corresponds to a system of particles
interacting via two-body forces of range not larger than n. Therefore, it can be
realized by suitably assembling mechanical elements.
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Let us consider the linear system introduced in (2.4) with R = 0 and its discrete
counterpart (2.18). It can be checked that

Fi = −
n∑

k=0

(−1)k Ak

k
εuε(xi ). (2.19)

Therefore, the force acting on the particle i is expressed as a linear combination of
discrete derivatives up to the order 2n.

We want to show that Fi can be interpreted as the result of the action of a
system of linear pairwise forces with suitable range. More precisely, we want to
find ε-dependent coefficients ki, j such that

Fi =
∑

j

ki, j (u j − ui ) (2.20)

and hence

U (u1, . . . , uN ) = 1

2

N∑
i, j=1

ki, j (ui − u j )
2. (2.21)

We prove below that for any p,

(
pu)i =
∑

j

K p
i, j (u j − ui ), (2.22)

with K p
i, j other suitable constants. Once (2.22) is proved, we can conclude that

(2.20) holds with

ki, j =
n∑

p=0

(−1)p Ap K p
i, j . (2.23)

Note that the constants ki, j are not necessarily all positive even if the Aα are
all positive.

The constants K p
i, j are given by the recursive Equation (2.28) below. It implies

that, for any p, K p
i, j vanishes for |i − j | > p, thus ki, j = 0 if |i − j | > n. Moreover,

in the periodic case, K p
i, j depends only on the difference i − j and is symmetric in

the exchange i ↔ j and hence the action–reaction principle is satisfied.
We prove (2.22) by recurrence.
For p = 1, we have

(
εu)i = ε−2(ui+1 + ui−1 − 2ui ) = ε−2(ui+1 − ui ) + ε−2(ui−1 − ui ). (2.24)

Thus (2.22) is verified with

K 1
i,i+1 = K 1

i,i−1 = ε−2 and K 1
i, j = 0 otherwise. (2.25)

Suppose now that (2.22) is true for p = � − 1:(

�−1

ε u
)

i
=

∑
j

K �−1
i, j [u j − ui ].
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Then,(

�

εu
)

i
=

(

�−1

ε 
εu
)

i
=

∑
j

K �−1
i, j

[
(
εu) j − (
εu)i

]

=
∑

j

K �−1
i, j

[
ε−2(u j+1 − u j ) + ε−2(u j−1 − u j ) − ε−2(ui+1 − ui ) − ε−2(ui−1 − ui )

]

=
∑

j

K �−1
i, j

[
ε−2(u j+1 − ui ) − ε−2(u j − ui ) + ε−2(u j−1 − ui ) − ε−2(u j − ui )

−ε−2(ui+1 − ui ) − ε−2(ui−1 − ui )
]
. (2.26)

Using the change of index j +1 → j in the first term and j −1 → j in the second,
we have(


�
εu

)
i
=

∑
j

K �−1
i, j−1ε

−2(u j − ui ) − K �−1
i, j ε−2(u j − ui ) + K �−1

i, j+1ε
−2(u j − ui )

−ε−2K �−1
i, j (u j − ui ) − ε−2K �−1

i, j (ui+1 − ui )−ε−2K �−1
i, j (ui−1 − ui )].

(2.27)

Thus, (2.22) is verified with the following recursive definition of K �
i, j :

K �
i, j = ε−2

[
K �−1

i, j−1 + K �−1
i, j+1 − 2K �−1

i, j − (δi+1, j + δi−1, j )
∑

j ′
K �−1

i, j ′
]
, (2.28)

for � > 1 and K 1
i, j given by (2.25).

Equations (2.28) and (2.23) definitely solve the posed problem of identifying
the topology of the microstructure connections, since they provide the coefficients
ki, j only in terms of the coefficients Ap that characterize the continuous formulation
of the macroscopic description of the elastic problem.

3. A Rigorous Result of Convergence

In this section we prove a convergence result of the discrete model introduced
in the previous section to the prescribed continuous systems in the limit as the
scale parameter goes to 0. We show the convergence of the solution of the discrete
system to the continuous one in the energy norm of the system. To clarify the
argument without the use of cumbersome notation, we present first a paradigmatic
case for which we discuss both periodic and Dirichlet boundary conditions. The
more general case is considered in Section 3.2 where we give the convergence proof
only in the periodic case although the argument can be straightforwardly extended
to the Dirichlet boundary conditions as well.

For the reader’s conveniencewe rewrite the Lagrangianwe are going to consider
in this Section, namely:

L(u, u̇) = 1

2

∫
I
dx |u̇(x, t)|2

−1

2

n∑
α=1

Aα

∫
I
dx |Dαu|2(x, t))2 −

∫
I

R
(

u, Du, D2u . . .
)

. (3.1)
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As we shall see later on, we will consider only nonlinear terms R depending on u
and the first derivative only.

3.1. The 
2 Case-Dynamic Euler–Bernoulli Beam: “Elastica”

3.1.1. Periodic Boundary Conditions We consider the Lagrangian (3.1) with
A0 = A1 = 0 and A2 = 1. Moreover we focus on the linear case R = 0. Thus we
have the following linear initial value problem in the circle, C:

ü = −∂4u

∂x4
:= −
2u, (3.2)

u(x, 0) = u0(x), u̇(x, 0) = v0(x). (3.3)

It is well known that there exists a unique classical solution as the initial data are
assumed to be sufficiently smooth.

More precisely, we assume that

u0 ∈ Hs, v0 ∈ Hr with s ≥ 6, r ≥ 4, (3.4)

where Hs denotes the Sobolev space endowed with norm

‖u‖Hs =
s∑

�=0

∥∥∥D�u
∥∥∥2
2
,

and ‖ · ‖p is the L p(C)-norm.
In this way, by using the well known energy method, we can prove the propa-

gation (in time) of the Hs regularity for u and u̇, yielding, in particular, u ∈ C5(C)

(as consequence of the obvious inequality ‖u‖∞ ≤ C‖u‖H1 ).
Next we consider the mechanical system of N particles, with coordinates ui ,

i = 1, . . . N , whose Lagrangian is given by (2.11) again with A0 = A1 = 0,
A2 = 1 and R = 0. The equations of motion are explicitly

üi = 1

ε4
(−ui+2 + 4ui+1 − 6ui − ui−2 + 4ui−1) i = 1 . . . N , (3.5)

with the convention uN+k = uk for any k ∈ Z.
We want to compare the solutions of (3.2) with the corresponding ones of (3.5).

To do this we first set

uε(x, t) = ui (t) if x ∈ [iε, (i + 1)ε), i ∈ {1, . . . , N }. (3.6)

In otherwordswe introduce a function uε which is the step, left continuous, function
(constant in the lattice interval) taking the value of the nearest left point of the lattice.
Problem (3.5) is rephrased accordingly:

üε(x, t) = −
2
εuε(x, t) x ∈ C, (3.7)

where


εu(x) = D+
ε D−

ε u(x) (3.8)
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D±u(x) = ±1

ε
(u(x ± ε) − u(x)). (3.9)

Notice that the Lagrangian (2.11), with A0 = A1 = 0, A2 = 1 and R = 0, has the
following continuous representation:

L(uε, u̇ε) =
∫
C
dx

[1
2

u̇ε(x, t)2 − 1

2
(
εuε(x, t))2

]
. (3.10)

We suppose that, at the initial time, uε, u̇ε are approximating u, u̇ in the sense
that

uε(x, 0) = u0(iε), u̇ε(x, 0) = v0(iε) if x ∈ [iε, (i + 1)ε). (3.11)

Note that, by the conservation of the energy, we have

E[u(t)] := 1

2

∫
C
dx

[
|u̇(t)|2 + |
u(t)|2

]
= E[u(0)], (3.12)

as well as

Eε[uε(t)] := 1

2

∫
C
dx

[
|u̇ε(t)|2 + |
εuε(t)|2

]
= Eε[uε(0)]. (3.13)

Next we introduce the following function which controls the deviation of uε

from u:

Wε(t) = 1

2

∫
C
dx

[
(uε(x, t) − u(x, t))2 + (u̇ε(x, t) − u̇(x, t))2

+[
ε(uε(x, t) − u(x, t))]2
]
. (3.14)

Computing the time derivative and using the equation of motion we get

Ẇε(t) =
∫
C
dx(u̇ε(x, t) − u̇(x, t))(uε(x, t) − u(x, t) + üε(x, t) − ü(x, t))

+
∫
C
dx
ε(uε(x, t) − u(x, t))
ε(u̇ε(x, t) − u̇(x, t))

=
∫
C
dx(u̇ε(x, t) − u̇(x, t))(uε(x, t) − u(x, t))

−
∫
C
dx(u̇ε(x, t) − u̇(x, t))
2

ε(uε(x, t) − u(x, t))
]

(3.15)

+
∫
C
dx(u̇ε(x, t) − u̇(x, t))(
2u(x, t) − 
2

εu(x, t))

+
∫
C
dx
ε(uε(x, t) − u(x, t))
ε(u̇ε(x, t) − u̇(x, t)).

Now consider the following discrete integration by parts formula, namely∫
C

f (x)D±
ε g(x) = −

∫
C

D∓
ε f (x)g(x), (3.16)

valid for any couple of bounded functions f and g.
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If we apply the above formula twice we conclude that the second and fourth
terms in (3.15) cancel each other. On the other hand the first term is bounded by

1

2

∫
C
dx |u̇ − u̇ε|2 + |u − uε|2 ≤ W.

The third term is bounded by

1

2

∫
C
dx(u̇ε(x, t) − u̇(x, t))2 + 1

2

∫
C

|(
2 − 
2
ε)u(x, t)|2.

Now the first term of the expression above is bounded by W . The second one, by
the regularity of u and its derivatives up to the fifth order, is bounded, uniformly in
x ∈ C and in t in any bounded interval, by a constant ωε vanishing as ε → 0. Here
and in the rest of the paper ωε ∈ R denotes such a generic infinitesimal constant.
In conclusion, by the Gronwall lemma,

Wε(t) ≤ Wε(0)e
2t + ωεte2t (3.17)

so that Wε(t) is vanishing, because Wε(0) → 0 by the regularity of u and the
assumptions on initial data.

We summarize the above discussion in the following:

Theorem 3.1. Suppose that u0 and v0 satisfy (3.4). Let u(t) be the solution to (3.2)
and uε(t) be the step function defined by (3.6) with ui (t), i = 1, . . . , N, solutions
to (3.5) with initial data ui (0) = u0(iε) and u̇i (0) = v0(iε). Then, for any t ∈ R,

lim
ε→0

Wε(t) = 0.

3.1.2. Dirichlet Boundary Conditions For the Dirichlet boundary conditions
we replace the circle C with the interval I = [0, L]. The Equation (3.2) is well
posed with the boundary conditions

u(0, t) = u′(0, t) = u(L , t) = u′(L , t) = 0. (3.18)

Remark. Several other boundary conditions may have an interest in engineering
applications and a physicalmeaning. For instance the conditions u(0) = u′′(0) = 0,
u(L) = u′′(L) = 0, characterize a beam with pivots applied at its endpoints, while
the conditions which we consider here are relative to clamped-clamped beams. We
do not consider in this paper the other possible boundary conditions, as the focus
of this paper is different.

Again, by using the energy method, we can construct a solution with Hs regu-
larity, by assuming

u0 ∈ H2
0 ∩ Hs, v0 ∈ H2

0 ∩ Hr with s ≥ 6, r ≥ 4. (3.19)

Here H2
0 (introduced to take into account the boundary conditions) is defined as the

space of the H2 functions vanishing in 0 and L , together with their first derivative.
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The corresponding discrete system is constituted by N − 3 particles with coor-
dinates ui , i = 2, . . . , N − 2 and

u0 = u1 = uN−1 = uN = 0 (3.20)

are the constraints corresponding to the Dirichlet boundary conditions.
With this position, the explicit equations of motion are

üi = 1

ε4
(−ui+2 + 4ui+1 − 6ui − ui−2 + 4ui−1) i = 2 . . . N − 2. (3.21)

As before, we introduce the left continuous step function

uε(x, t) = ui (t) if x ∈ [iε, (i + 1)ε), i ∈ {0, . . . , N − 1}, (3.22)

but we find it convenient to think of it as a function on R extended with value 0
outside I . Then (3.21) can be rewritten similarly to (3.7) as

üε(x, t) = −
2
εuε(x, t) x ∈ Iε = (2ε, L − ε). (3.23)

Note that the values of ui are frozen for i = 0, 1, N − 1, N , so that uε = 0 in
I c
ε = I − Iε. We also think of the solution u of the continuous equation as extended
with value 0 outside of I .

Next we introduce the function Wε(t) as

Wε(t) = 1

2

∫
R

dx(u̇ε(x, t)−u̇(x, t))2+ 1

2

∫
R

dx[
ε(uε(x, t)−u(x, t))]2. (3.24)

Note that this function differs from the one defined by integrating on I instead ofR
because 
ε is non-local. It is actually larger and hence provides a stronger control
of the convergence. Now we compute again the time derivative of W , as before,
and we get

Ẇε(t) =
∫
R

dx(u̇ε(x, t) − u̇(x, t))(üε(x, t) − ü(x, t))

+
∫
R

dx
ε(uε(x, t) − u(x, t))
ε(u̇ε(x, t) − u̇(x, t)). (3.25)

By twice using the discrete integration by parts formula
∫
R

dx f D±
ε g = −

∫
R

gD∓
ε f,

valid for any couple of bounded compactly supported functions f and g, the second
term becomes, as before∫

R

dx(u̇ε(x, t) − u̇(x, t))
2
ε(uε(x, t) − u(x, t)).

As for the the first term, we need to use the equations of motion (3.2) for u and
(3.23) for uε. Note that the last ones hold only in Iε. Thus, using that üε = 0 in
R − Iε, the first term becomes
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−
∫

Iε
dx(u̇ε(x, t) − u̇(x, t))(
2

εuε(x, t)

−
2u(x, t)) −
∫
R−Iε

(u̇ε(x, t) − u̇(x, t))(−
2u(x, t))

= −
∫
R

dx(u̇ε(x, t) − u̇(x, t))(
2
εuε(x, t) − 
2u(x, t))

+
∫
R−Iε

(u̇ε(x, t) − u̇(x, t))
2
εuε(x, t)). (3.26)

By adding and subtracting the term
∫
R
dx(u̇ε(x, t) − u̇(x, t))(
2

εuε(x, t) − 
2
εu

(x, t)) the above term becomes

−
∫
R

dx(u̇ε(x, t) − u̇(x, t))(
2
εuε(x, t) − 
2

εu(x, t))

−
∫
R

dx(u̇ε(x, t) − u̇(x, t))(
2
εu(x, t) − 
2u(x, t))

+
∫
R−Iε

(u̇ε(x, t) − u̇(x, t))
2
εuε(x, t)). (3.27)

Putting together all these terms we conclude that

Ẇ = −
∫
R

dx(u̇ε(x, t) − u̇(x, t))
(

2

εu(x, t) − 
2u(x, t)
)

+
∫
R−Iε

(u̇ε(x, t) − u̇(x, t))
2
εuε(x, t)). (3.28)

The first term in the right hand side of (3.28) goes to 0 as in the periodic case,
by the regularity u. The second term is the novelty of the Dirichlet case. In or-
der to estimate it, note that u̇ε = 0 outside of Iε, hence we need to estimate∫
R−Iε

u̇(x, t)
2
εuε(x, t)).

By the boundary conditions on u (u = 0 and u′ = 0 in 0 and L for any t) we
have the result that (by our assumptions |
u̇(x, t)| is bounded)

|u̇(x, t)| ≤ 1

2
sup
x∈I

|
u̇(x, t)|ε2 x ∈ I c
ε . (3.29)

Furthermore,


2
εuε(x) = ε−2(
εuε(x + ε) + 
εuε(x − ε) − 2
εuε(x)).

Rewriting the total energy (3.13) in a more explicit form,

E[uε] = 1

2

N−2∑
i=2

ε|u̇ε(εi)|2 + 1

2

N∑
i=1

ε|
εuε(iε)|2, (3.30)

and we obtain, at any time and for any x in Iε,

|
εuε(x)| ≤
√
2E0√
ε

, (3.31)
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where E0 = E(u(0)) is the energy of the initial data. Hence,

sup
x∈I

∣∣∣
2
εuε(x)

∣∣∣ ≤ 4
√
2E0ε

− 5
2 . (3.32)

Combining (3.29) and (3.32) and using the fact that the integration is restricted to
the set I − Iε, whose measure is 4ε (reminding the reader that u̇ = 0 outside I),
we conclude that ∣∣∣∣

∫
R−Iε

u̇(x, t)
2
εuε(x, t))

∣∣∣∣ ≤ C
√

ε.

The rest of the argument proceeds as before and we conclude that Wε(t) → 0.
We summarize the above discussion in the following:

Theorem 3.2. Suppose that u0 and v0 satisfy (3.19). Let u(t) be the classical solu-
tion to (3.2) with boundary conditions (3.18) and initial values (3.3) and uε(t) be
the step function defined by (3.22) with ui (t), i = 2, . . . , N −2, solutions to (3.21)
with initial data ui (0) = u0(iε) and u̇i (0) = v0(iε). Then, for any t ∈ R,

lim
ε→0

Wε(t) = 0.

3.2. A n-th Gradient Case

Nowwe extend the previous argument to the more general setup corresponding
to the Lagrangian (3.1), restricting the discussion to the simpler case of periodic
boundary conditions. The Dirichlet boundary conditions can be handled as in the
previous subsection but we avoid here unnecessary complications.

We assume the following conditions:

1.

A0 > 0, An > 0, Aα ≥ 0, α = 1, . . . , n − 1 (3.33)

2. We have already supposed that R(0) = 0 and R(ξ) = O(|ξ |3). In addition we
assume that, for n = 1, R depends only on u and, for n ≥ 2, R depends only
on u and Du. Moreover we assume R ∈ C2n+2(R2).

Remark 3.1. The positivity assumptions on the Aα’s with α = 1, . . . , n − 1, can
be relaxed. In fact, let us define, for some ε0 > 0,

κ = sup
ε∈(0,ε0)

sup
u:‖Dεu‖2≤1

‖u‖22
‖Dεu‖22

, (3.34)

with the supremum on u taken on all u with 0 average. Then it is enough to assume

n−1∑
α=1:Aα<0

|Aα|κn−α ≤ 1

2
An (3.35)

to make the argument of the proof still work. This remark allows us to consider,
for instance, the case ü = (−
2 − γ
)u, with γ sufficiently small, excluded by
(3.33).
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Remark 3.2. The assumption on R concerning its dependence on u and Du only,
is restrictive. We do not expect any surprise in assuming an explicit dependence on
some higher derivatives. However, as we shall see in the course of the proof, more
general assumptions would complicate the algebraic manipulations in dealing with
the discrete derivatives in a consistent way.

As regards the initial data we assume

u0 ∈ H2n+2, v0 ∈ Hn+2, (3.36)

and, as before, the Hs regularity is propagated. Clearly u ∈ C2n+1(C).
The explicit equation is

ü +
n∑

α=0

(−1)α Aα
αu + ∂ξ0 R(u, Du) − D[∂ξ1 R(u, Du)] = 0. (3.37)

Note that, thanks to the energy conservation,

E[u] =
∫
C
dx

[
1

2

{
u̇2 +

n∑
α=0

Aα|Dαu|2
}

+ R(u, Du)

]
= E[u(0)], (3.38)

and we get immediately an a priori bound on the L2 norm of u, u̇ and Dnu:

1

2

∫
C
dx

[
|u̇|2 + A0|u|2 + An|Dnu|2

]
≤ E[u(0)]. (3.39)

Now we remind the reader of the discrete counterpart of the above setup, which
corresponds to the discrete Lagrangian (2.11). Using the discontinuous function

uε(x, t) = ui (t) if x ∈ [iε, (i + 1)ε), (3.40)

as in the previous section, the discrete Lagrangian can be written as

Lε =
∫
C
dx

[
1

2
|u̇ε(x, t)|2− 1

2

n∑
α=0

Aα

∣∣Dα
ε uε(x, t)

∣∣2−R
(
uε(x, t), D+

ε uε(x, t)
)]

.

(3.41)

We can write the associated equations of motion in terms of uε as

üε +
n∑

α=0

(−1)α Aα
α
ε uε + ∂ξ0 R

(
uε, D+

ε u
) − D−

ε

[
∂ξ1 R(uε, D+

ε uε)
] = 0.

(3.42)

Also for the discrete system the energy conservation holds. Thus we have that

Eε[uε] =
∫
C
dx

[
1

2

{
u̇2

ε +
n∑

α=0

Aα

∣∣Dα
ε u

∣∣2
}

+ R
(
uε, D+

ε uε

)
,

]
(3.43)



Microscopic Description of Microscopically Strongly Inhomogenous. . . 1255

is conserved, and hence, using that R ≥ 0, we have the inequality

1

2

∫
C
dx

[
|u̇ε|2 + A0|uε|2 + An

∣∣Dn
ε uε

∣∣2] ≤ Eε[uε(0)]. (3.44)

Since A0 > 0 and An > 0, the existence, globally in time, for the solution to the
discrete system follows from this bound.

We start by proving the convergence of the discrere system to the continuous
one in the linear case, namely when R = 0,

ü +
n∑

α=0

(−1)α Aα
αu = 0. (3.45)

Similarly, the discrete system becomes

üε +
n∑

α=0

(−1)α Aα
α
ε uε = 0. (3.46)

We introduce

Wε(t) = 1

2

∫
C
dx

{
|u(x, t) − uε(x, t)|2 + |u̇(x, t) − u̇ε(x, t)|2

}

+
∫
C
dx

n∑
α=0

Aα

∣∣Dα
ε [u(x, t) − uε(x, t)]∣∣2 . (3.47)

The time derivative of W is:

d

dt
Wε

=
∫
C
dx

{
(u̇ − u̇ε)(u − uε + ü − üε) +

n∑
α=0

Aα Dα
ε (u̇ − u̇ε)Dα

ε (u − uε)

}

=
∫
C
dx(u̇ − u̇ε)

{
(u − uε + ü − üε) +

n∑
α=0

(−1)α Aα
α
ε (u − uε)

}

=
∫
C
dx(u̇ − u̇ε)

{
(u − uε) +

n∑
α=0

(−1)α Aα

[

α

ε uε − 
αu − 
α
ε uε + 
α

ε u
]}

=
∫
C
dx(u̇ − u̇ε)

{
u − uε +

n∑
α=0

(−1)α Aα

(

α

ε u − 
αu
)}

.

In the second step we have integrated by parts α times, in the third we have used
the equations of motion. The last step follows by canceling two equal terms with
opposite sign.

Hence the linear case goes exactly as in previous subsection, because |
α
ε u −


αu| ≤ ωε for α ≤ n and u ∈ C2n+1(C).
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We summarize the results for the linear case in the following:

Theorem 3.3. Assume that R = 0 and suppose that u0 and v0 satisfy (3.36). Let
u(t) be the classical solution to (3.37) and uε(t) be the step function defined by
(3.6) with ui (t), i = 1, . . . , N, solutions to (3.45) with initial data ui (0) = u0(iε)
and u̇i (0) = v0(iε).

Then, for any t ∈ [0, T ],
‖u(t) − uε(t)‖ε → 0, as ε → 0,

where ‖ · ‖ε is the ε-dependent norm defined by

‖u‖2ε =
∫
C
dx

{
|u̇|2 + |u|2 +

n∑
k=1

∣∣∣Dk
ε u

∣∣∣2
}

. (3.48)

Next we consider the nonlinear case. Now the equations of motion are (3.37)
and (3.42) for the continuous and discrete systems respectively. Defining Wε by
(3.47), by the same computation, we have, again using the summation by parts
formula,

d

dt
Wε =

∫
C
dx(u̇ − u̇ε)

{
(u − uε + ü − üε

}
+

n∑
α=0

Aα Dα
ε (u̇ − u̇ε)(Dα

ε (u − uε)

=
∫
C
dx(u̇ − u̇ε)

{
(u − uε + ü − üε) +

n∑
α=0

(−1)α Aα
α
ε (u − uε)

}

=
∫
C
dx(u̇ − u̇ε)

{
(u − uε) +

n∑
α=0

(−1)α Aα

[

α

ε uε − 
αu − 
α
ε uε + 
α

ε u
]

+
[

− ∂ξ0 R(u, Du) + D∂ξ1 R(u, Du) + ∂ξ0 R
(
uε, D+

ε uε

) − D−
ε ∂ξ1 R

(
uε, D+

ε uε

) ]}

=
∫
C
dx(u̇ − u̇ε)

{
u − uε +

n∑
α=0

(−1)α Aα

(

α

ε u − 
αu
)

+
[
−∂ξ0 R(u, Du)+D∂ξ1 R(u, Du)+∂ξ0 R

(
uε, D+

ε uε

)−D−
ε ∂ξ1 R

(
uε, D+

ε uε

) ]}
.

(3.49)

To control the non-linear terms we proceed by estimating:

T1 = ∂ξ0 R(u, Du) − ∂ξ0 R
(
uε, D+

ε uε

) = T 1
1 + T 2

1 (3.50)

and

T2 = D−
ε

[
∂ξ1 R

(
uε, D+

ε uε

)] − D
[
∂ξ1 R(u, Du)

] = T 1
2 + T 2

2 (3.51)

where

T 1
1 = ∂ξ0 R(u, Du) − ∂ξ0 R

(
u, D+

ε u
)
, (3.52)

T 2
1 = ∂ξ0 R(u, D+

ε u) − ∂ξ0 R
(
uε, D+

ε uε

)
, (3.53)

T 1
2 = D−

ε

[
∂ξ1 R

(
u, D+

ε u
)] − D

[
∂ξ1 R(u, Du)

]
, (3.54)
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and

T 2
2 = D−

ε

[
∂ξ1 R(uε, D+

ε uε)
] − D−

ε

[
∂ξ1 R

(
u, D+

ε u
)]

. (3.55)

The bound (3.39) and Poincaré inequality imply that the L∞ norms of u, Du
and D±

ε u are bounded uniformly in ε. Thus, by the local Lipschitz continuity of
∂ξ0 R, we have ∣∣∣T 1

1

∣∣∣ ≤ C
∣∣Du − D+

ε u
∣∣ ≤ ωε,

by the regularity of u. Thus, by the energy bounds (3.39) and (3.44) we get∣∣∣∣
∫
C
dx(u̇ − u̇ε)T

1
1

∣∣∣∣ ≤ C [E(u(0)) + Eε(uε(0))]
1
2 ωε.

To control T 2
1 we need L∞ bounds for uε and Dεuε. They follow from the

conservation of the energy for the discrete system by means of the following:

Lemma 1. Let f be a step function on C left continuous in the points iε. Suppose
that

‖ f ‖2H1
ε

=
∫
C
dx

(
| f |2 + ∣∣D+

ε f
∣∣2)

is bounded. Then

‖ f ‖∞ ≤ C‖ f ‖H1
ε
.

Proof. Let x0 = i0ε be any point such that | f (x0)|2 ≤ 1
|C|

∫
C dx | f |2. Note that

such a point does exist otherwise we would obtain a contradiction (
∫
C dx | f |2 >∫

C dx | f |2). For x = (i0 + k)ε we have

f 2(x) = f 2(x0) +
k−1∑
h=0

[
f 2(x0 + (h + 1)ε) − f 2(x0 + hε)

]
.

Since∣∣∣ f 2(x + ε) − f 2(x)

∣∣∣ = |[ f (x + ε) + f (x)][ f (x + ε) − f (x)]

= ε[ f (x + ε) + f (x)]D+
ε f | ≤ 1

2
ε[ f (x + ε) + f (x)]2 + 1

2
ε
∣∣D+

ε f
∣∣2 ,

we conclude that∣∣∣ f 2(x)

∣∣∣ ≤
(

1

|C| + 1

) ∫
C
dx | f |2 + 1

2

∫
C
dx

∣∣D+
ε f

∣∣2 ≤
(

1

|C| + 1

)
‖ f ‖2H1

ε
.

��
Lemma 1 and the energy bound (3.44) imply that the L∞ norms of uε and D+

ε uε

are bounded uniformly in ε. Thus we can use the Lipschitz continuity of ∂ξ0 R to
get: ∣∣∣∣

∫
C
dx(u̇ − u̇ε)T

2
1

∣∣∣∣ ≤ K Wε,
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with K the Lipschitz constant of ∂ξ0 R in the ball of radius
max{‖u‖∞, ‖Du‖∞, ‖uε‖∞, ‖Dεuε‖∞}.

The bound of T2, involving discrete derivatives, requires the following chain
rule formula for the discrete derivative of a composite function:

Lemma 2. If f has continuous first derivative f ′, then for any function g and for
any x there exist λε,x ∈ (0, 1) such that

D±
ε f (g(x)) = f ′(ζε(x))D±

ε g(x), with ζε(x) = g(x) + ελε,x D±
ε g(x).

Proof. By the mean value theorem, for D+
ε we have

D+
ε f (g(x)) = ε−1[ f (g(x + ε) − f (g(x)]

= ε−1
∫ g(x+ε)

g(x)

dz f ′(z) = ε−1[g(x + ε) − g(x)] f ′(ζ )

for a suitable ζ in the interval with extremes g(x) and g(x + ε): ζ = g(x) +
λε,x [g(x + ε) − g(x)] = g(x) + ελε,x D+

ε g(x) for some λε,x ∈ (0, 1). In the same
way the statement for D−

ε follows. ��
By the chain rule,

T 1
2 = ∂2ξ0,ξ1 R

(
ζε(x), D+

ε u
)

D−
ε u − ∂2ξ0,ξ1 R(u, Du)Du

+ ∂2
ξ21

R(u, ηε(x))
εu − ∂2ξ1 R(u, Du)
u,

where

ζε(x) = u(x) + ελε,x D−
ε u(x)

and

ηε(x) = Dεu(x) + εμε,x
εu(x),

with λε,x ∈ (0, 1), με,x ∈ (0, 1). However,

∂2ξ0,ξ1 R
(
ζε(x), D+

ε u
)

D−
ε u − ∂2ξ0,ξ1 R(u, Du)Du

= ∂2ξ0,ξ1 R(u, Du)
[
D−

ε u − Du
] + D−

ε u
[
∂2ξ0,ξ1 R(ζε(x), D+

ε u) − ∂2ξ0,ξ1 R(u, Du)
]
.

The smoothness of u and Dεu and the Lipschitz continuity of ∂2ξ0,ξ1 R yield

∣∣∂2ξ0,ξ1 R(ζε(x), D+
ε u) − ∂2ξ0,ξ1 R(u, Du)

∣∣ ≤ C |D+
ε u − Du|) ≤ ωε,

so this term also goes to 0 by the regularity of u.
Similarly,

∂2
ξ21

R(u, ηε(x))
εu − ∂2
ξ21

R(u, Du)
u

= ∂2
ξ21

R(u, Du)[
εu − 
u] +
[
∂2
ξ21

R(u, ηε(x)) − ∂2
ξ21

R(u, Du)
]

εu.
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The first part goes to 0 by the regularity of u. By the boundedness of u, Du, D±
ε u

and 
εu, we can use the Lipschitz continuity of ∂2
ξ21

R to get the bound

∣∣∣∂2
ξ21

R(u(x), ηε(x), ) − ∂2
ξ21

R(u(x), Du(x))

∣∣∣ ≤ K |ηε(x) − Du(x)|.

Since ηε(x) − Du(x) = D+
ε u(x) − Du(x) + εμε,x
εu(x),

|ηε(x) − Du(x)| ≤ ∣∣D+
ε u(x) − Du(x)

∣∣ + εμε,x |
εu(x)|,
and hence ∣∣∣∂2

ξ21
R(u(x), ηε(x)) − ∂2

ξ21
R(u(x), Du(x))

∣∣∣ |
εu(x)|
≤ (∣∣D+

ε u(x) − Du(x)
∣∣ + εμε,x |
εu(x)|) |
εu(x)|.

However,

|
εu(x)| ≤ |(
ε − 
)u(x)| + |
u(x)|.
By the propagation of the initial regularity, ‖
u(·, t)‖∞ is bounded for any t ∈
(0, T ). Therefore∣∣∣∂2

ξ21
R(u(x), ηε(x))
εu(x) − ∂2

ξ21
R(u(x), Du(x))

∣∣∣ |
εu(x)| ≤ ωε.

As for the term T 2
2 , we use again the chain rule:

T 2
2 = D−

ε

[
∂ξ1 R(uε, D+

ε uε)
] − D−

ε

[
∂ξ1 R(u, D+

ε u)
]

= ∂2ξ0,ξ1 R
(
ζε(x), D+

ε uε

)
D−

ε uε − ∂2ξ0,ξ1 R
(
ζ̃ε(x), D+

ε u
)

D−
ε u +

+ ∂2
ξ21

R(uε, ηε(x))
εuε − ∂2
ξ21

R(u, η̃ε(x))
εu,

where

ζε(x) = uε(x) + ελε,x D−
ε uε(x), ζ̃ε(x) = u(x) + ελε,x D−

ε u(x)

ηε(x) = D+
ε uε(x) + εμε,x
εuε(x), η̃ε(x) = D+

ε u(x) + εμε,x
εu(x).

We use the energy bound and Lemma 1 to get the boundedness of ζε and D±
ε uε

and thus the Lipschitz continuity of ∂2ξ0,ξ1 R, so that
∣∣∣∂2ξ0,ξ1 R

(
ζε, D+

ε uε

)
D−

ε uε − ∂2ξ0,ξ1 R
(
ζ̃ε, D+

ε u
)

D−
ε u

∣∣∣
≤

∣∣∣∂2ξ0,ξ1 R
(
ζ̃ε, D+

ε u
)∣∣∣ ∣∣D−

ε uε − D−
ε u

∣∣ + K |D−
ε uε||ζε(x) − ζ̃ε(x)|.

However, ∣∣∣ζε(x) − ζ̃ε(x)

∣∣∣ = |uε(x) − u(x)| + ε
( ∣∣D−

ε uε

∣∣ + ∣∣D−
ε u

∣∣ ).

so that ∫
C

|dx |u̇ − u̇ε|
∣∣D+

ε

[
∂ξ1 R

(
uε, D+

ε uε

)] − Dε

[
∂ξ1 R

(
u, D+

ε u
)]∣∣



1260 A. Carcaterra et al.

≤ CWε + 1

2
ε2(E[u(0)] + Eε[uε(0)]).

The term ∂2
ξ21

R(uε, ηε(x))
εuε −∂2
ξ21

R(u, η̃ε(x))
εu is more delicate because,

in order to use Lipschitz continuity, we need to bound ηε(x) and hence the supre-
mum of 
εuε. However Lemma 1 and energy conservation are not enough when
n = 2, but we need really to bound ε
εuε and we can take advantage of this extra
ε. Indeed, by the energy conservation and the positivity assumptions on R and A,

εAn,n
(
Dn

ε uε(x)
)2 ≤ C,

and hence

‖Dn
ε uε| ≤ C√

ε
, (3.56)

implying that |ηε,x | ≤ C (if n > 2 we get a better estimate). Thus we have∣∣∣∂21 R(uε, ηε)
εuε − ∂21 R(u, η̃ε)
εu
∣∣∣ ≤

∣∣∣∂2
ξ21

R (u, η̃ε(x))

∣∣∣ |
εu − 
εuε|
+

∣∣∣∂2
ξ21

R(u, η̃ε(x)) − ∂2
ξ21

R(u, ηε(x))

∣∣∣ |
εuε|
+

∣∣∣∂2
ξ21

R(uε, ηε(x))

∣∣∣ − ∂2
ξ21

R(u, ηε(x))||
εuε|.
However, by (3.56),

|ηε(x) − η̃ε(x)| = ∣∣D−
ε (uε(x) − u(x))

∣∣ + ε(|
εuε| + |
εu|) ≤ ωε.

Therefore, by the Cauchy–Schwartz inequality and conservation of energy, we
obtain that∫

C
dx |u̇ − u̇ε|

∣∣∂2
ξ21

R(uε, ηε)
εuε − ∂2
ξ21

R(u, η̃ε)
εu
∣∣ ≤ CW + ωε.

Collecting all the terms, we conclude that there are constant C > 0 such that

d

dt
Wε ≤ CWε + ωε,

and hence, by the Gronwall lemma,

|Wε(t)| ≤ |Wε(0)|eCt + teCtωε as ε → 0.

We summarize the results in the following:

Theorem 3.4. Suppose that u0 and v0 satisfy (3.36). Let u(t) be the solution to
(3.37) and uε(t) be the step function defined by (3.6) with ui (t), i = 1, . . . , N,
solutions to (3.45) with initial data ui (0) = u0(iε) and u̇i (0) = v0(iε). Then for
any t > 0,

‖u(t) − uε(t)‖ → 0, as ε → 0,

in the norm defined in (3.48).
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