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Abstract

In this paper, we consider two systems modelling the evolution of a rigid body
in an incompressible fluid in a bounded domain of the plane. The first system
corresponds to an inviscid fluid driven by the Euler equation whereas the other one
corresponds to a viscous fluid driven by the Navier–Stokes system. In both cases
we investigate the uniqueness of weak solutions, à la Yudovich for the Euler case,
à la Leray for the Navier–Stokes case, as long as no collision occurs.

1. Introduction

In this paper, we consider two systems modelling the evolution of a rigid body
in an incompressible fluid in dimension two. The two cases correspond respectively
to the inviscid case, where the fluid is driven by the Euler equation, and the viscous
case, where it is driven by the Navier–Stokes system. In both cases we investigate
the uniqueness of weak solutions (à la Yudovich for the Euler case, à la Leray for
the Navier–Stokes case).

To model the body-fluid systems, we introduce the following objects. Let � a
smooth connected bounded open set in R

2, and S0 smooth closed connected and
simply connected subset of �. We consider the motion in the domain � of a solid
occupying at time t the domain S(t) ⊂ �, where S(0) = S0.

The motion of this solid is rigid, so that S(t) is obtained by a rigid movement
(that is a translation and a rotation) from its initial position S0. The group of rigid
transformations of the plane is the special Euclidean group, denoted by SE(2). We
will denote m > 0 and J > 0 respectively the mass and the inertia of the body and
h(t) the position of its center of mass at time t . We also introduce

�(t) := h′(t),

the velocity of the center of mass and
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r(t) := θ ′(t),
the angular velocity of the body. The angle θ measures the rotation between S(t)
and S0. Accordingly, the solid velocity is given by

uS(t, x) := �(t) + r(t)(x − h(t))⊥. (1)

A way to represent the rigid motion from S0 to S(t) is to introduce the rotation
matrix

Q(t) :=
[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
.

Then the position τ(t, x) ∈ S(t) at the time t of the point fixed to the body with an
initial position x is

τ(t, x) := h(t) + Q(t)(x − h(0)),

so that

S(t) = τ(t)(S0).

We denote
h(0) = h0, h′(0) = �0, θ(0) = 0, r(0) = r0, (2)

the initial values of the solid data.
Let us stress here that, given some initial data, it suffices to know (�, r) to

deduce all the other objects above, since to (�, r) ∈ C0([0, T ];R2 × R) we can
associate (h�,r , θ�,r ) ∈ C1([0, T ];R2 × R) by

h�,r (t) = h0 +
∫ t

0
�, θ�,r (t) =

∫ t

0
r, (3)

the velocity
u�,r
S (t, x) := �(t) + r(t)(x − h�,r (t))⊥, (4)

and

Q�,r (t) :=
[
cos θ�,r (t) − sin θ�,r (t)
sin θ�,r (t) cos θ�,r (t)

]
. (5)

We also deduce the rigid displacement and the position of the solid, let us say τ �,r (t)
and S�,r (t) defined by

τ �,r (t) : x �→ Q�,r (t)[x−h0]+h�,r (t) ∈ SE(2), and S�,r (t) = τ �,r (t)S0. (6)

Then we define the fluid domain as

F�,r (t) := �\S�,r (t). (7)

We may omit the dependence on (�, r) when there is no ambiguity on the various
objects defined above.

In the rest of the domain, that is in the open set

F(t) := �\S(t),

there evolves a planar fluid driven by the Euler or the Navier–Stokes equations. We
denote correspondingly

F0 := �\S0,
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the initial fluid domain. We will consider for each t the velocity field u = u(t, x) ∈
R
2 and the pressure field p = p(t, x) ∈ R in F(t). The fluid will be supposed in

both cases to be homogeneous of density 1, in order to simplify the equations (and
without loss of generality). We denote

u|t=0 = u0 (8)

the initial value of the fluid velocity field.
Now to be more specific on the systems under view, we distinguish between

the two cases.

1.1. The Euler Case

In this case, the fluid equation is the incompressible Euler equation and the body
evolves according to Newton’s law, under the influence of the pressure alone. The
boundary conditions correspond to the impermeability of the boundary and involve
the normal component of the velocity. The complete system driving the dynamics
reads

∂u

∂t
+ (u · ∇)u + ∇ p = 0 for x ∈ F(t), (9)

div u = 0 for x ∈ F(t), (10)

u · n = uS · n for x ∈ ∂S(t), (11)

u · n = 0 for x ∈ ∂�, (12)

mh′′(t) =
∫

∂S(t)
p n dσ, (13)

J θ ′′(t) =
∫

∂S(t)
p (x − h(t))⊥ · n dσ. (14)

When x = (x1, x2) the notation x⊥ stands for

x⊥ := (−x2, x1),

n denotes the unit outward normal on ∂F(t), dσ denotes the integration element
on the boundary ∂S(t) of the body.

For this system, one can prove the existence of a solution “à la Yudovich”
[32] on a time interval limited only by the possible encounter of the solid and the
boundary ∂�. The main assumption is that the initial vorticity

ω0 := curl u0,

is bounded in �.

Theorem 1. For any u0 ∈ C0(F0;R2), (�0, r0) ∈ R
2 × R, such that:

div u0 = 0 in F0, u0 ·n = (�0+r0(x −h0)
⊥) ·n on ∂S0, u0 ·n = 0 on ∂�,

(15)
and

ω0 := curl u0 ∈ L∞(F0), (16)
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there exists T > 0 and a solution

(�, r, u) ∈ C1([0, T ];R2 × R) × [L∞(0, T ;LL(F(t))) ∩ C0([0, T ];
W 1,q(F(t)))],∀q ∈ [1,+∞),

of (9)–(14). Moreover, if T < +∞ is maximal, then

dist(S(t), ∂�) → 0 as t → T −. (17)

Several comments are in order here.
First the notation LL(F(t)) refers to the space of log-Lipschitz functions on

F(t), that is the set of functions f ∈ L∞(F(t)) such that

‖ f ‖LL(F(t)) := ‖ f ‖L∞(F(t)) + sup
x =y

| f (x) − f (y)|
|x − y|(1 + ln− |x − y|) < +∞. (18)

For a functional space X of functions depending on the variable x , the notation
L∞(0, T ; X (F(t)))orC([0, T ]; X (F(t))) stands for the space of functions defined
for each t in the fluid domain F(t), and which can be extended to functions in
L∞(0, T ; X (R2)) or C([0, T ]; X (R2)) respectively. In the same spirit, we will
make the abuse of notations [0, T ] × F(t) for ∪t∈[0,T ]{t} × F(t).

The other remark is that the pressure p is uniquely defined, up to a function
depending only on time, by (�, r, u) as a function of L∞(0, T ; H1(F(t))) (see
Corollary 2). In particular this gives a sense to the right hand sides of (13)–(14).

In the case when � = R
2, the equivalent of Theorem 1 (together with the

uniqueness in this particular case), was proven in [13]. In this particular situation,
one can make a rigid change of variable to write the system inF0, which simplifies
the analysis.

We provide in the Appendix a proof of Theorem 1 in the case considered here
where the system occupies a bounded domain.

The first main result of this paper is the following.

Theorem 2. The above solution is unique in its class.

1.2. The Navier–Stokes Case

We now turn to the case of a viscous fluid.
In this case, the fluid equation is the incompressible Navier–Stokes equation

and the body evolves according to Newton’s law, under the influence of the whole
Cauchy stress tensor. The boundary conditions are the usual no-slip conditions for
the velocity field. The complete system driving the dynamics reads

∂u

∂t
+ (u · ∇)u − 	u + ∇ p = 0 for x ∈ F(t), (19)

div u = 0 for x ∈ F(t), (20)

u = uS for x ∈ ∂S(t), (21)

u = 0 for x ∈ ∂�, (22)
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mh′′(t) = −
∫

∂S(t)
Tn dσ, (23)

J θ ′′(t) = −
∫

∂S(t)
Tn · (x − h(t))⊥ dσ, (24)

where the same notations for x , dσ and h are used as in the previous paragraph,
and where

T(u, p) := −p Id+2Du with Du := 1

2
(∇u + ∇uT ).

For this system, one can prove the existence of a weak solution “à la Leray” [24,25],
for which the main assumption is that the initial velocity u0 is square-integrable.
To define more precisely what we mean by a weak solution of (19)–(24), let us
define a velocity field globally on � by setting

u(t, x) := u(t, x) for x ∈ F(t) and u(t, x) := uS(t, x) for x ∈ S(t), (25)

where uS is given by (1). We will say that u is compatible with (�, r) when u(t, ·)
belongs to H1(�) for almost every t and (25) holds withF(t) = F�,r (t) and uS is
given by (1). Similarly, for the initial data, we define a velocity field u0 by setting

u0(x) := u0(x) for x ∈ F0 and u0(x) := �0 + r0(x − h0)
⊥ for x ∈ S0.

Now to define the notion of weak solutions that we consider, it will be useful to
introduce the density inside the solid at initial time t = 0 as the function ρS0(x),
for x ∈ S0. Accordingly, the mass and the inertia of the solid satisfy

m =
∫
S0

ρS0(x) dx and J =
∫
S0

ρS0(x)|x − h0|2 dx .

We extend this initial density as a function on the whole domain � by setting

ρ0(x) = ρS0 in S0 and ρ0(x) = 1 in F0. (26)

Given a rigid movement (�, r), we define the solid density as:

ρS(t, x) = ρS0((τ
�,r (t, ·))−1(x)) in S�,r (t) and ρS(t)(x) = 0 in F�,r (t),

(27)
and the density ρ(t, x) in [0, T ] × � as

ρ(t, x) = ρS(t, x) in S�,r (t) and ρ(x) = 1 in F�,r (t). (28)

Definition 1. (See [1,3,6,18,27]) For any u0 ∈ L2(F0;R2) and (�0, r0) ∈ R
2 ×R

satisfying (15), we say that

(�, r, u) ∈ C0([0, T ];R2 × R) × [C(0, T ; L2(�)) ∩ L2(0, T ; H1(�))]
is a weak solution of (19)–(24) with the initial data (2)–(8) if u is divergence free,

u is compatible with (�, r), (29)
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and for any divergence free vector field φ ∈ C∞
c ([0, T ] × �;R2) such that

Dφ(t, x) = 0 when t ∈ [0, T ] and x ∈ S�,r (t), there holds, when ρ is given
by (28):

∫
�

ρ0u0 ·φ|t=0 −
∫

�

(ρu ·φ)|t=T +
∫

(0,T )×�

ρu · ∂φ

∂t
+ (u ⊗ u − 2Du) : Dφ = 0.

(30)
We will also say that (�, r, u) ∈ C0([0, T ];R2 × R) × [L∞(0, T ; L2(F�,r (t))) ∩
L2(0, T ; H1(F�,r (t)))] is a solution when (�, r, u) with u defined by (25) is a
solution.

Now we have the following existence theorem of weak solutions.

Theorem 3. (See [1,3,6,18,27]) For any u0 ∈ L2(F0;R2) and (�0, r0) ∈ R
2 × R

satisfying (15), for any T > 0, there exists a weak solution

(�, r, u) ∈ C0([0, T ];R2 × R) × [C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�))],

of (19)–(24) with the initial data (2)–(8). Moreover, for any t ∈ [0, T ],
1

2

∫
�

ρ(t, ·)|u(t, ·)|2 dx + 2
∫

(0,t)×�

ρ(s, x) Du(s, x) : Du(s, x) dx ds

= 1

2

∫
�

ρ0(x)|u0(x)|2 dx . (31)

Remark 1. The proof of the existence of such weak solutions can be found in [21,
27]. Note in particular that the function ρS defined by ρS(t, x) = ρ0((τ

�,r (t, ·))−1

(x)) in S�,r (t) and ρS(t, x) = 0 in F�,r (t) is a weak solution of

{
∂tρS + div (ρSu) = 0 in (0, T ) × �,

ρS(0, ·) = ρS0 in S0 and ρS(0, ·) = 0 in F0,
(32)

and hence the unique solution of this system (see [5, Corollary II.1]).
We notice that the notion of weak solutions can be slightly different. In partic-

ular, [3] does not express the solid movement by (29) or ρ by (28), but as follows.
The solid density ρS is obtained as the solution of (32) and then the compatibility
condition in [3] reads: u(t, ·) belongs to H1(�) for almost every t and

ρS Du = 0.

Due to the lack of regularity of u, we do not know if this compatibility condition
is sufficient to ensure (29) (see also the discussion in [8, Section 3]).

Remark 2. The energy identity (31) belongs to the folklore in the subject and can
be proved proceeding as in the case of a fluid alone, see for instance [26, p. 87].
The strong continuity in time of u in L2(�) is then a direct consequence of (31).
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Let us add a few words on previous references. In the case when � = R
2, one

can again use a rigid change of variables to prove the existence and uniqueness of
such solutions cf. [23,28,31]. In the case considered here where � is bounded, this
is no longer possible; we refer here to [1,3,18,27] which establish the existence of
solutions “à la Leray” as stated in Theorem 3.

Let us also mention the recent works [6,7] which establish the existence of
solutions “à la Leray” in three dimensions and the papers [4,17,30] where the
existence and uniqueness of strong solutions for short times were studied, including
in the three-dimensional case.

The second main result of this paper states that the solution given by Theorem
3 is unique as long as there is no collision.

Theorem 4. Let T > 0 and (�, r, u) be as in Theorem 3. Assume that for any
t ∈ [0, T ], dist(S(t), ∂�)) > 0. Let (�̃, r̃ , ũ) be another weak solution of (19)–
(24) on [0, T ] with the same initial data. Then (�̃, r̃ , ũ) = (�, r, u).

This result extends the one in [30] where it was assumed in addition that the
initial fluid velocity is in the Sobolev space H1. Therein it was mentioned that
“uniqueness of weak solutions is an open question, even in the two-dimensional
case”. This issue was also mentioned recently in the conclusion of the paper [2].
Theorem 4 therefore brings an answer to this issue, as long as there is no collision.

It is not known in general whether or not a collision may happen. However
the possibility of a collision is excluded in some particular cases by the results in
[19,20], see also the recent work [11] about the influence of the boundary regularity.
On the other hand the results of [21,29] prove that such weak solutions cannot be
unique if a collision occurs.

1.3. Structure of the Paper

To simplify the notations and without loss of generality, we will suppose that

h0 = 0.

The paper is organized as follows. In Section 2 we establish a preliminary result
on a class of changes of variables associated to a rigid motion. This result will be
useful for the proof of Theorem 2 and for the one of Theorem 4 as well. Then we
proceed with the proofs of these theorems respectively in Sections 3 and 4. The
structure of these sections is quite the same: we will start by giving some a-priori
estimates satisfied by any solution, respectively in the Sections 3.1 and 4.1, and
then we prove the uniqueness, in the Sections 3.2 and 4.2. Finally, in the Appendix,
we prove Theorem 1.

2. A Basic Lemma

Given A ⊂ R
2 and δ > 0, we denote

Vδ(A) := {x ∈ R
2/ dist(x, A) � δ}.

We rely on the following proposition.
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Proposition 1. Let � and S0 be fixed as previously. There exist a compact neigh-
borhood U of Id in SE(2), δ > 0 and  ∈ C∞(U ; Diff(�)) such that [Id] = Id
and that for all τ ∈ U,

[τ ] is volume-preserving, (33)

[τ ](x) = τ(x) on Vδ(S0) and [τ ](x) = x on Vδ(∂�) ∩ �. (34)

Above, Diff(�) denotes the set of C∞-diffeomorphisms of �.

Proof. The proof is similar to [14, Lemma 1]. First we use that the exponential
map exp : se(2) → SE(2) is locally a diffeomorphism near the origin of se(2), say
on a neighborhood U ⊂ SE(2) of IdR2 . Here se(2) is the Lie algebra associated to
the Lie group SE(2). This exponential map on the space se(2) ∼ R

2 × R can be
represented as the map which associates to (�, r) ∈ R

2 × R the value at time 1 of
the solution τ(t) of following ODE in SE(2):

d

dt
τ(t, x) = �+r (τ (t, x)−τ(t, 0))⊥ = �+r (τ (t, x)−t�)⊥ with τ(0, ·) = IdR2 .

(35)
Reducing U if necessary, we find U as a compact neighborhood of Id in SE(2)
on which ln is a diffeomorphism, which contains all the intermediary states τ(t, ·)
leading to τ(1) = τ when τ ∈ U and for which holds for some δ > 0

max
{
|τ(x)−x |, x ∈S0, τ ∈U

}
�δ and max

{
dist(τ (S0), ∂�), τ ∈ U

}
�3δ.

Now given τ ∈ U , we associate (�, r) := ln(τ ) and the corresponding time-
dependent τ(t, x). Let φ(t, x) a smooth function equal, for each t ∈ [0, 1], to 1
in Vδ(τ (t,S0)) and to 0 outside of V2δ(τ (t,S0)). We define the following time-
dependent vector field on R

2:

Vτ (t, x) := ∇⊥
(

φ(x)

(
x⊥ · � + |x − t�|2

2
r

))
.

Note that

Vτ (t, x) = � + r (x − t�)⊥ in Vδ(S0) and Vτ (t, x) = 0 in Vδ(∂�). (36)

We define  ∈ Diff(�) as the value at t = 1 of the flow associated to V , that is

[τ ] := γ (1, ·),
where γ (t, x) the solution of the ODE:

d

dt
γ (t, x) = V (t, γ (t, x)) with γ (0, ·) = Id� .

It is straightforward to see that γ is a smooth function of V and hence that  is a
smooth function of τ . Also, Equation (34) follows from (36). Finally (33) follows
from div V = 0. ��
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We have the next corollary, where we consider SE(2) ⊂ R
3 so that we can use

theR3 norm on the elements of SE(2). When we consider a time-dependent family
of rigid motions (τ (t))t∈[0,T ], we will write τt := τ(t, ·).
Corollary 1. Reducing U if necessary one has for some C > 0:

∀τ, τ̃ ∈ U, ‖[τ ] ◦ {[τ̃ ]}−1 − Id ‖C2(�) � C‖τ − τ̃‖R3, (37)

and if τt , τ̃t ∈ C1([0, T ];SE(2)), then for all t0 ∈ [0, T ],∥∥∥∥∥
[
d

dt

(
[τt ] ◦ {[τ̃t ]}−1

)]
t=t0

∥∥∥∥∥
C1(�)

� C
(
‖τ̃ ′

t0‖R3 ‖τt0−τ̃t0‖R3+‖τ ′
t0−τ̃ ′

t0‖R3

)
.

(38)

Let us emphasize that {[τ̃t ]}−1 denotes the inverse of [τ̃t ] with respect to
the variable x .

Proof. Reducing U if necessary, one has uniformly for τ ∈ U that

‖[τ ] − Id ‖C2(�) � 1

2
,

so that we have a uniform bound on ‖{[τ ]}−1‖C2(�), and (37) follows from the
fact that  is uniformly Lipschitz on U . In the same way, we have

∀τ, τ̃ ∈ U, ‖∂x[τ ] − ∂x[τ̃ ]‖C1(�;R2×2) � C‖τ − τ̃‖R3 . (39)

On the other side, denoting

g(t, x) := [τt ](x), h(t, x) := {[τt ]}−1(x), g̃(t, x) := [τ̃t ](x) and

h̃(t, x) := {[τ̃t ]}−1(x),

we have
d

dt

(
[τt ] ◦ {[τ̃t ]}−1(x)

)
= ∂t g(t, h̃(t, x)) + (

∂x g(t, h̃(t, x))
)
∂t h̃(t, x).

Since
∂t g̃(t, h̃(t, x)) + (

∂x g̃(t, h̃(t, x))
)
∂t h̃(t, x) = 0, (40)

we have
d

dt

(
[τt ] ◦ {[τ̃t ]}−1(x)

)
= ∂t g(t, h̃(t, x)) − ∂t g̃(t, h̃(t, x))

+ {
∂x g(t, h̃(t, x))) − ∂x g̃(t, h̃(t, x))

}
∂t h̃(t, x).

(41)

Concerning the first term in the right hand side of (41), we use

∂t g(t, y) = [d(τt ) · τ ′
t ](y) and ∂t g̃(t, y) = [d(τ̃t ) · τ̃ ′

t ](y), (42)

and the regularity of . Concerning the second one, we use (39) to estimate the
term between brackets and (40) and (42) to estimate ∂t h̃. Our claim (38) follows.

Remark 3. Clearly we could have put any Ck(�) norm on the left hand sides of
(37) and (38).
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3. Proof of Theorem 2

In this section, we consider the inviscid case and prove Theorem 2.

3.1. A Priori Estimates

We begin by giving a priori estimates on a solution given by Theorem 1. We
suppose that ∂� has g + 1 connected components �1, . . . , �g+1; we suppose that
�g+1 is the outer one. We add to this list �0 = �0(t) = ∂S(t). We denote t the
tangent to ∂� and ∂S(t) and define

γ i
0 :=

∫
�i

u0 · t dσ for i = 1, . . . , g and γ0 :=
∫

∂S0

u0 · t dσ,

and we let

γ := |γ0| +
g∑

i=1

|γ i
0 |.

We have the following a priori estimates on any solution of the system in the sense
of Theorem 1.

Proposition 2. Let (�, r, u) a solution of the system in the sense of Theorem 1 in the
time interval [0, T ]. Then one has the following a priori estimates: for all t ∈ [0, T ]
and q ∈ [1,+∞],

‖ curl u(t, ·)‖Lq (F(t)) = ‖ curl u0‖Lq (F0),

∀i = 1, . . . , g,

∫
�i

u(t, ·) · t dσ = γ i
0 and

∫
∂S(t)

u(t, ·) · t dσ = γ0,

‖u(t, ·)‖2L2(F(t)) + m|�(t)|2 + J |r(t)|2 = ‖u0‖2L2(F0)
+ m|�0|2 + J |r0|2.

Moreover, for δ > 0, there is a constant C > 0 such that for all T such that
dist(S(t), ∂�) � δ on [0, T ], one has for all t ∈ [0, T ] and q ∈ [2,∞),

‖u(t, ·)‖W 1,q (F(t)) � Cq
(‖ω0‖Lq (F0) + |�0| + |r0| + γ

)
. (43)

Proof. Given such a solution (�, r, u), the vorticity ω(t, x) := curl u(t, x) satisfies
the transport equation

∂tω + (u · ∇)ω = 0 in F(t). (44)

Due to the log-Lipschitz regularity of u, one can associate a unique flow � =
�(t, s, x), and by the uniqueness of the solutions of (44) at this level of regularity,
one has ω(t, x) = ω0(�(0, t, x)). Since � is volume-preserving (as follows from
div u = 0), we obtain the claim on ‖ curl u‖Lq (F(t)). The second conservation is
Kelvin’s theorem, and the third one the conservation of energy.

Estimate (43) is classical in the case of a fluid alone, and is central in the
argument ofYudovich [32].Here,weonly need to prove that the constant appearing
in the elliptic estimate for the div /curl system does not depend on the position of
the solid, as long as it stays distant from the boundary. Precisely, we prove the
following.
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Lemma 1. For any R > 0, there exists C > 0 such that if S = τ(S0) for τ ∈ SE(2)
satisfies

S ⊂ � and dist(S, ∂�) � R, (45)

then any u : F → R
2 verifies, for all q � 2:

‖u‖W 1,q (F) � Cq
(
‖ curl u‖Lq (F) + ‖ div u‖Lq (F)

)

+C

(
‖u · n‖W 1−1/q,q (∂F) +

g∑
i=0

∣∣∣∣
∫

�i

u · t dσ
∣∣∣∣
)

, (46)

where �0 := ∂S and F := �\S.

Above we take as a convention that

‖ f ‖W 1−1/q,q (∂F) := inf
{‖ f ‖W 1,q (F), f ∈ W 1,q(F) and f |∂F = f

}
. (47)

That this norm is equivalent to the usual one (for fixed q), comes from the trace
theorem and the existence of a continuous extension operator W 1−1/q,q(∂F) →
W 1,q(F).

Once Lemma 1 is established, Equation (43) is a consequence of the previous
conservations. ��

Note that the equivalent of Lemma 1 in the framework of Hölder spaces is
known (see for example [15, Lemma 5]):

Lemma 2. In the context of Lemma 1, for λ ∈ N and α ∈ (0, 1), there exists a
constant C > 0 independent of τ such that

‖u‖Cλ+1,α(F) � C

(
‖ div u‖Cλ,α(F) + ‖ curl u‖Cλ,α(F) + ‖u · n‖Cλ+1,α(∂�∪∂S)

+
g∑

i=0

∣∣∣∣
∫

�i

u · t dσ
∣∣∣∣
)

. (48)

Proof of Lemma 1. As we explained this is standard in a fixed domain (see in
particular [12,32]). Note in particular that it is elementary to reduce to the case
where

u · n = 0 on ∂� ∪ ∂S and
∫

�i

u · t dσ = 0 for all i = 0, . . . , g,

by using the convention (47) and the following functions Hi := ∇⊥ψi , for 1 �
i � g, where ψi satisfies

⎧⎨
⎩

−	ψi = 0 for x ∈ F ,

ψi = 1 on �i ,

ψi = 0 on (∂� ∪ ∂S)\�i ,
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so that

curl Hi = div Hi = 0 in �\F ,

Hi · n = 0 on ∂� ∪ ∂S and
∫

� j

Hi · t dσ = δi j for 1 � j � g.

For these functions Hi , we have suitable estimates by using Lemma 2.
We notice that the set of τ ∈ SE(2) such that S = τ(S0) satisfies (45) is

compact. Hence by a straightforward compactness argument, and since such a
constant C > 0 is well-defined for any fixed configuration Ŝ = τ̂ (S0) satisfying
(45), we see thatwe only need to prove that, given such a fixed configuration Ŝ , there
exists a constantC > 0 for which (46) is valid wheneverS = τ(Ŝ), when τ belongs
to some arbitrarily small neighborhood of IdR2 . Now given a fixed configuration
Ŝ , we introduce δ > 0 and ε ∈ (0, δ) such that for any τ ∈ SE(2), ‖τ − Id ‖ � ε

one has for S := τ(Ŝ):

dist(S, ∂�) � 4δ and Vδ(∂Ŝ) is a tubular neighborhood of ∂Ŝ.

We introduce ϕ a cutoff function in C∞
0 (R2) such that

ϕ = 1 on V2δ(Ŝ) and ϕ = 0 on R
2\V3δ(Ŝ).

Now we introduce u1 ∈ W 1,q
loc (R2\S) and u2 ∈ W 1,q(�) as the solutions of

the following elliptic systems:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl u1 = ϕ curl u in R2\S,

div u1 = ϕ div u in R2\S,

u1 · n = 0 on ∂S,∫
∂S u1 · t dσ = 0,
lim|x |→+∞ u1(x) = 0,

⎧⎪⎪⎨
⎪⎪⎩

curl u2 = (1 − ϕ) curl u in �,

div u2 = (1 − ϕ) div u in �,

u2 · n = −u1 · n on ∂�,∫
∂�i

u2 · t dσ = 0, i = 1, . . . , g.

(49)
Note that the compatibility condition

−
∫

∂�

u1 · n dσ =
∫

�

(1 − ϕ) div u dx,

comes from ∫
�

(1 − ϕ) div u dx =
∫
F

(1 − ϕ) div u dx,

and the use of the divergence theorem:∫
F
div u dx = 0 and

∫
F

ϕ div udx =
∫
F
div u1dx =

∫
∂�

u1 · n dσ +
∫
∂S

u1 · n dσ.

Moreover, by using Stokes’ formula (in the interior of �i of in S), the fact that
the outer component of ∂� is �g+1 and considering the supports of ϕ and 1 − ϕ,
one sees that

∀i = 1, . . . , g,

∫
�i

u1 · t dσ =
∫

∂S
u2 · t dσ = 0.
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Using the fact that inequality (46) is true for a fixed geometry and that the
problem satisfied by u1 is invariant under rigid movements, we deduce that there
exists a constant C > 0 independent of τ (satisfying ‖τ − Id ‖ � ε) and for which

‖u1‖W 1,q (R2\S) � Cq
(‖ curl u‖Lq (F) + ‖ div u‖Lq (F)

)
(50)

and

‖u2‖W 1,q (�) � Cq
(‖ curl u‖Lq (F)+‖ div u‖Lq (F)

)+C1‖u1·n‖W 1−1/q,q (∂�). (51)

As a consequence, the right hand sides of (50) and (51) can be estimated by the
right hand side of (46).

Now we introduce w : F → R as the solution of⎧⎪⎪⎨
⎪⎪⎩

curlw = div w = 0 in F ,

w · n = −u2 · n on ∂S,

w · n = 0 on ∂�,∫
�i

w · t dσ = 0, i = 0, . . . , g.

Note that the compatibility condition between div w and w · n is satisfied because,
relying on the support of ϕ, one has∫

∂S
u2 · n dσ =

∫
S
(1 − ϕ) div u dx = 0.

We observe that u2 is harmonic in Vδ(∂S). It follows from standard properties of
harmonic functions that for some C > 0 independent of τ small and q � 2 one has
(given α ∈ (0, 1)):

‖u2|∂S‖C1,α(∂S) � C‖u2‖L2(Vδ(∂S)).

It follows thatw ∈ C1,α(F) andusingLemma2wededuce that for someC, C ′, C ′′ >

0 independent of τ small:

‖w‖W 1,q (F) � C‖w‖C1,α(F) � C ′‖u2‖L2(F) � C ′′‖u2‖W 1,q (F).

The conclusion follows since by the uniqueness of the solutions of the div /curl
system:

⎧⎪⎪⎨
⎪⎪⎩

curl v = 0 in F ,

div v = 0 in F ,

v · n = 0 on ∂� ∪ ∂S,∫
�i

v · t dσ = 0, i = 0, . . . , g,

�⇒ v = 0,

one has:

u = u1 + u2 + w.

Gathering the estimates above, we get the conclusion.

We have the following consequence of Proposition 2.
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Corollary 2. Under the assumptions of Proposition2 (including thatdist(S(t), ∂�)

� δ on [0, T ]), we have for some constant C = C(‖ω0‖L∞(F0)+|�0|+|r0|+γ ) > 0
that uniformly in [0, T ]:

‖u(t)‖H1(F(t)) + ‖∂t u‖L2(F(t)) + ‖∇ p‖L2(F(t)) � C. (52)

Proof of Corollary 2. The estimate of ‖u(t)‖H1(F(t)) is a direct consequence of
Proposition 2.

Also, by Proposition 2, we have that

‖u‖W 1,4(F(t)) � C
(‖ω0‖L∞(F0) + |�0| + |r0| + γ

)
. (53)

Now we use the decomposition of ∇ p (see for example [15, Lemma 3]):

∇ p = ∇μ − ∇
(

(�i )i=1,2,3 ·
[
�

r

]′)
, (54)

where the functions �i = �i (t, x) (known as the Kirchhoff potentials) and the
function μ = μ(t, x) are the solutions of the following problems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	�i = 0 for x ∈ F(t),
∂�i

∂n
= Ki for x ∈ ∂S(t),

∂�i

∂n
= 0 for x ∈ ∂�,

where Ki :=
{

ni if i = 1, 2,
(x − h(t))⊥ · n if i = 3,

(55)
and

⎧⎨
⎩

−	μ = tr(∇u · ∇u) for x ∈ F(t),
∂μ
∂n = ∇2ρ {u − uS , u − uS} − n · (r (2u − uS − �)⊥

)
for x ∈ ∂S(t),

∂μ
∂n = −∇2ρ(u, u) for x ∈ ∂�,

where uS = uS(t, x) is given by (1) and where ρ = ρ(t, x) is the signed distance
to ∂� ∪ ∂S(t) (which we define in a neighborhood of ∂� ∪ ∂S(t)), chosen to be
negative inside F . The function ρ is constant in time near ∂�, and is transported
by the solid movement near ∂S(t).

Note that the fact the compatibility condition between 	μ and ∂
∂n μ is satisfied

thanks to

tr(∇u · ∇u) = div ((u · ∇)u), ∇ρ = n on ∂� ∪ ∂S,

(11) and (12).
Moreover, using Green’s theorem, Equation (55) and (54), we obtain that the

equations for the solid, that is (13)–(14), can be recast as follows (see also [15,
Lemma 4]):

M
[
�

r

]′
=

[∫
F(t)

∇μ · ∇�i dx
]

i∈{1,2,3}
, (56)
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where

M := M1 + M2, M1 :=
[

m Id2 0
0 J

]
and

M2 := [∫
F(t) ∇�i · ∇� j dx

]
i, j∈{1,2,3} . (57)

Note that the matrix M2 is symmetric and nonnegative, as a Gram matrix.
Now from Lemma 2, we deduce the boundedness in Cλ,α of the functions ∇�i

independently of the time. By using Lemma 1 and (53), we obtain that

‖∇μ‖L2(F(t)) � C
(‖ω0‖L∞(F0) + |�0| + |r0| + γ

)
. (58)

Hence with (56) we deduce the boundedness of (�′, r ′), which together with
(54) and (58), gives the claim on ∇ p. The claim on ∂t u follows by using (9).

3.2. Uniqueness: Proof of Theorem 2

We now turn to the core of the proof of Theorem 2.
Consider (�1, r1, u1) and (�2, r2, u2) two solutions in the sense of Theorem 1

defined on some time interval [0, T ]. We associate correspondingly h1 and h2, S1
and S2, etc. By a standard connectedness argument, it is sufficient to prove the
uniqueness on an arbitrary small time interval [0, T̃ ], so that we allow ourselves to
choose T > 0 small. We let τ1 and τ2 in C2([0, T ];SE(2)) the corresponding rigid
movements associated to these solutions. For each t ∈ [0, T ] we introduce ϕt and
ψt in Diff(�) by

ϕt := [τ2(t)] ◦ {[τ1(t)]}−1, ψt := ϕ−1
t ,

where  is defined in Proposition 1; we have chosen T > 0 small enough so that
τ1(t) and τ2(t) belong to U for all t in [0, T ]. It is easily seen that ϕt is volume
preserving and sends F1(t) into F2(t). Now we define

ũ2(t, x) := [dϕt (x)]−1 · u2(t, ϕt (x)), x ∈ F1(t), (59)

the pullback of u2 by ϕt , which is a solenoidal vector field on F1(t), due to
div u2(t, ·) = 0 and the fact that ϕt is volume preserving (see for example [22,
Proposition 2.4]). We also define

p̃2(t, x) := p2(t, ϕt (x)), x ∈ F1(t), and �̃2 := d(τ1◦τ−1
2 )·�2 = Q1·Q−1

2 ·�2.
(60)

Obviously,

u2(t, x) = dϕt (ψt (x)) · ũ2(t, ψt (x)) and p2(t, x) = p̃2(t, ψt (x)) in F2(t).

Now to write the equation satisfied by ũ2, we compute the partial derivatives
of u2 in terms of those of ũ2. For convenience, we simplify the notations below
as follows: an exponent i designates the i th component of a vector; we drop the
index 2 in u2, ũ2, p2, p̃2 and the index t in ϕt and ψt . Moreover we use Einstein’s
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repeated indices convention and omit to write the variables with the following rules
(which include the case where α is void so that there is no partial derivative):

∂αu = ∂αu(t, x), ∂α ũ = ∂α ũ(t, ψt (x)), ∂α p = ∂α p(t, x),

∂α p̃ = ∂α p̃(t, ψt (x)), ∂αϕ = ∂αϕ(t, ψt (x)), ∂αψ = ∂αψ(t, x). (61)

From

ui = ∂kϕ
i ũk,

we deduce

∂t u
i = ∂kϕ

i ∂t ũ
k + ∂kϕ

i ∂l ũ
k ∂tψ

l + (∂t∂kϕ
i )ũk + ∂2klϕ

i ∂tψ
l ũk,

∂ j u
i = ∂kϕ

i ∂l ũ
k ∂ jψ

l + (∂2lkϕ
i ) ∂ jψ

l ũk,

∂i p = ∂k p̃ ∂iψ
k .

It follows that

(u · ∇)ui = u j ∂ j u
i

= u j (∂kϕ
i ∂l ũ

k∂ jψ
l + (∂2lkϕ

i ) ∂ jψ
l ũk)

= ∂mϕ j ũm(∂kϕ
i ∂l ũ

k∂ jψ
l + (∂2lkϕ

i ) ∂ jψ
l ũk)

= ∂kϕ
i ũl ∂l ũ

k + ũl(∂2lkϕ
i ) ũk,

where we used that

∂mϕ j ∂ jψ
l = δml .

Hence the equation of ũ reads

0 = ∂t ũ
i + ũ j ∂ j ũ

i + ∂i p̃

+ (∂kϕ
i − δik)∂t ũ

k + ∂kϕ
i ∂l ũ

k (∂tψ
l) + (∂k∂tϕ

i )ũk + (∂2klϕ
i ) (∂tψ

l) ũk

+ ũl ∂l ũ
k(∂kϕ

i − δik) + ũl(∂2lkϕ
i ) ũk + ∂k p̃ (∂iψ

k − δik).

In the above equation, all the factors between parentheses are small (in L∞
norm) whenever ‖ϕt − Id ‖C2(�) + ‖∂tϕt‖C1(�) is small.

Now we define

û(t, x) := u1(t, x) − ũ2(t, x) and p̂(t, x) := p1(t, x) − p̃2(t, x) in F1(t),
(62)

ĥ := h1 − h2, θ̂ := θ1 − θ2, �̂ := �1 − �̃2 and r̂ := r1 − r2. (63)

We deduce that

∂t û + (u1 · ∇)û + (û · ∇)ũ2 + ∇ p̂ = f̃ in F1(t), (64)

with

f̃ i = (∂kϕ
i − δik)∂t ũ

k
2 + ∂kϕ

i ∂l ũ
k
2 (∂tψ

l) + (∂k∂tϕ
i )ũk

2 + (∂2klϕ
i ) (∂tψ

l) ũk
2

+ ũl
2 ∂l ũ

k
2(∂kϕ

i − δik) + (∂2lkϕ
i ) ũl ũk + ∂k p̃2 (∂iψ

k − δik). (65)
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Now we proceed by an energy estimate. Multiplying (64) by û and integrating over
F1(t), we deduce∫
F1(t)

(∂t û+(u1·∇)û)·û dx+
∫
F1(t)

û·(û·∇)ũ2 dx+
∫
F1(t)

û·∇ p̂ dx=
∫
F1(t)

û· f̃ dx .

(66)
Concerning the first term on the left hand side, using that F1(t) is transported

by the flow associated to u1, we infer that
∫
F1(t)

(∂t û + (u1 · ∇)û) · û dx = d

dt

∫
F1(t)

|û|2
2

dx .

For what concerns the second term in (66), we use Proposition 2: there exists a
constant C > 0 such that for any q ∈ [2,∞) one has

‖∇ũ2‖Lq (F1(t)) � Cq
(‖ω0‖L∞(F0) + |�0| + |r0| + γ

)
.

It follows that for some C0 = C(‖ω0‖L∞(F0) + |�0| + |r0| + γ ), one has
∣∣∣∣
∫
F1(t)

û · (û · ∇)ũ2 dx

∣∣∣∣ � ‖∇ũ2‖Lq ‖û2‖Lq′ � C0q ‖û2‖
2
q′
L2 .

Let us turn to the third term in (66). We first note that, due to (33) and (34), one
has div û = 0 in F1(t), u1 · n = ũ2 · n = 0 on ∂�, and

ũ2(t, x) · n1(t, x) = (u2 · n2)(t, τ2 ◦ τ−1
1 (x))

= (�̃2+r2(x−h1(t))
⊥) · n1(t, x) on ∂S1(t),

where ni is the normal on ∂Si (t), i = 1, 2. It follows that

∫
F1(t)

û · ∇ p̂ dx =
∫

∂S1(t)
p̂(û · n1) dσ

=
∫

∂S1(t)
p̂(�̂ + r̂(x − h1(t))

⊥) · n1 dσ

=
(

�̂

r̂

)
·
∫

∂S1(t)
p̂

(
n1

(x − h1(t))⊥ · n1

)
dσ

=
(

�̂

r̂

)
·
(

m�̂′ + mr̂ �̃⊥
2

J r̂ ′
)

= 1

2

d

dt

(
m|�̂|2 + J |r̂ |2) − mr̂ �̂ · �̃⊥

2 .

(67)

We used that

m�̃′
2 =

∫
∂S1(t)

p̃2n1 dσ + mr̂ �̃⊥
2 , J r̃ ′

2 =
∫

∂S1(t)
p̃2(x − h1(t))

⊥ · n1 dσ.

We estimate the last term in (67) by

|mr̂ �̂ · �̃⊥
2 | � C(�0, r0, u0)[|�̂|2 + |r̂ |2]. (68)
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Concerning the right hand side in (66), we see that∣∣∣∣
∫
F1(t)

û · f̃ dx

∣∣∣∣ � C‖û(t)‖L2(F1(t))

[
‖ϕt − Id ‖C2(�) + ‖∂tϕt‖C1(�)

]

×
(
1 + ‖∂t ũ2(t)‖L2(F1(t)) + ‖ũ2(t)‖2H1(F1(t))

+ ‖∇ p̃2(t)‖L2(F1(t))

)
. (69)

Using Corollaries 1 and 2 we obtain∣∣∣∣
∫
F1(t)

û · f̃ dx

∣∣∣∣�C(, �0, r0, u0) ‖û(t)‖L2(F1(t))

(‖(ĥ, θ̂ )(t)‖R3+‖(�̂, r̂)(t)‖R3
)
.

Summing up, we obtain that for any q ∈ [2,∞):

d

dt

(
‖û‖2L2(F1(t))

+ |�̂|2 + |r̂ |2
)

� C0

(
q‖û‖

2
q′
L2(F1(t))

+ ‖û‖2L2(F1(t))
+ |�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2

)
.

Concerning the solid movement, we have

|ĥ′| = |�1 − �2| � |�1 − �̃2| + |�2 − �̃2| � C(|�̂| + |θ̂ |), (70)

so

d

dt

(
|ĥ|2 + |θ̂ |2

)
� C

(|�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2).
Hence we obtain that

d

dt

(
‖û‖2L2(F1(t))

+ |�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2
)

� C1

(
q‖û‖

2
q′
L2(F1(t))

+ |�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2
)

� C1q
(
‖û‖2L2(F1(t))

+ |�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2
) 1

q′
,

by considering T sufficiently small so that the parenthesis in the right hand side is

not larger than 1. Since the unique solution of y′ = N y
1
q′ with y(0) = ε > 0 and

N > 0 is given by

y(t) =
[

Nt

q
+ ε

1
q

]q

,

a comparison argument proves that

‖û‖2L2 + |�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2 � (C1t)q ,

and we conclude that ĥ = 0, θ̂ = 0 and û = 0 for t < 1/C1 by letting q → +∞.
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4. Proof of Theorem 4

We now turn to the viscous system.

4.1. A Priori Estimates

We begin by giving a priori estimates on a solution given by Theorem 3. There-
fore we assume in the sequel that (�, r, u) is a solution as given by Theorem 3 on
[0, T ], T > 0. Let us callF(t) and S(t) the corresponding fluid and solid domains,
h, θ the associated center of mass and angle, and u given by (25). We also introduce

ρ(t, x) = ρS(t, x) := ρS0((τ
�,r (t, ·))−1(x)) in S(t) and

ρ(t, x) = ρF = 1 in F(t), (71)

and

uS(t, x) := �(t) + r(t)(x − h(t))⊥.

We will also use, for T > 0, the notation

FT := ∪t∈(0,T ){t} × F(t).

Moreover we assume that dist(S(t), ∂�) > 0 on [0, T ].
The first a priori estimate is the following.

Lemma 3. There holds

((u · ∇)u, u) ∈ L
4
3 (FT ,R4).

Proof. The proof is left to the reader as it follows classically from the boundedness
of �, from the Hölder inequality and from Sobolev embeddings.

The second a priori estimate uses the smoothing effect induced by the viscosity.

Proposition 3. There holds

tu ∈ L
4
3 (0, T ; W 2, 43 (F(t))), (t∂t u, t∇ p) ∈ L

4
3 (FT ;R4).

The proof of Proposition 3 is rather lengthy. Therefore we first give a sketch of
proof before to go into the details.

Sketch of proof of Proposition 3. The proof relies in a crucial way on the follow-
ing auxiliary system with unknown (l, r, v):

∂v

∂t
− 	v + ∇q = g for x ∈ F(t), (72)

div v = 0 for x ∈ F(t), (73)

v = vS for x ∈ ∂S(t), (74)

v = 0 for x ∈ ∂�, (75)

ml′(t) = −
∫

∂S(t)
T(v, q)n dσ + mg1, (76)

J r′(t) = −
∫

∂S(t)
T(v, q)n · (x − h(t))⊥ dσ + J g2, (77)

vS(t, x) := l + r(x − h(t))⊥, (78)
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where g, g1 and g2 are some source terms and where the fluid and solid domains
F(t) and S(t) are prescribed and therefore not unknown. Actually, F(t) and S(t)
are associated to the solution (�, r, u) above. We keep the notation

h(t) =
∫ t

0
� and uS(t, x) := �(t) + r(t)(x − h(t))⊥.

Let us now explain how this system enters into the game. We define

v := tu, q := tp, l := t�, and r := tr. (79)

From the equations (19)–(24) we infer that (l, r, v) is a solution of (72)–(78),
in a weak sense which will be given in Definition 2, with vanishing initial data and
with, as source terms,

g := u − t (u · ∇)u ∈ L
4
3 (FT ;R2) and (g1, g2) := (�, r) ∈ L

4
3 (0, T ;R2 × R).

(80)
The regularity of g follows from Lemma 3. Then we have the following result

about the existence of regular solutions to the system (72)–(78).

Lemma 4. There exists a unique solution of (72)–(77) on [0, T ] with vanishing
initial data which satisfies

v ∈ L
4
3 (0, T ; W 2, 43 (F(t))), (∂tv,∇q) ∈ L

4
3 (FT ;R4),

(l, r) ∈ W 1, 43 ((0, T );R3). (81)

Lemma 4 is an adaptation of [10, Theorem 2.4]. We will briefly explain how to
modify the analysis in [10] in order to prove Lemma 4.

Finally we will prove a result of uniqueness for weak solutions of the system
(72)–(78) so that (l, r, v) will also satisfy the estimates given by Lemma 4, which
achieves the proof of Proposition 3.

The rest of Section 4.1 is devoted to the completion of the proof of Proposition 3.

4.1.1. Notion of Weak Solutions of the Auxiliary System Similarly to the def-
inition of u in (25), we introduce the vector field g defined on � and associated to
g, g1 and g2 by

g(t, x) := g(t, x) for x ∈ F(t) and

g(t, x) := g1(t) + g2(t)(x − h(t))⊥ for x ∈ S(t).

Definition 2. Given g ∈ L
4
3 (FT ), (g1, g2) ∈ L

4
3 (0, T ;R2 × R), we say that

(l, r, v) ∈ C([0, T ];R2×R)×[C([0, T ]; L2(F(t)))∩L2(0, T ; H1(F(t)))] (82)

is a weak solution of (72)–(78) with vanishing initial data and with source term
(g, g1, g2) if defining v by

v(t, x) := v(t, x) for x ∈ F(t) and v(t, x) := vS(t, x) for x ∈ S(t), (83)

where vS is given by (78), one has:
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• the vector field v belongs to L2(0, T ; H1(�)) and is divergence free,
• for any divergence free vector field φ ∈ C∞

c ([0, T ]×�;R2) such that Dφ(t, x)

= 0 when t ∈ [0, T ] and x ∈ S(t), there holds:

−
∫

�

(ρv · φ)|t=T +
∫

(0,T )×�

(
ρv · ∂φ

∂t
− 2Dv : Dφ

)

+
∫ T

0

∫
∂S(t)

(φ · v)(uS · n) dσ dt

= −
∫

(0,T )×�

ρg · φ +
∫ T

0
mrφ l · �⊥. (84)

Let us justify this definition by proving the following result.

Lemma 5. If (l, r, v) is a classical solution of (72)–(78) with vanishing initial
data and with source term (g, g1, g2) then it is a weak solution in the sense of
Definition 2.

Proof. We introduce φ as above. In particular, one can describe φ in S(t) as:

φ(t, x) = �φ(t) + rφ(t)(x − h(t))⊥ for any x ∈ S(t).

We multiply the Equation (72) by φ(t, ·) and integrate over F(t). This yields
∫
F(t)

φ ·
(
∂tv − 	v + ∇q

)
=

∫
F(t)

φ · g.

Now we observe that

d

dt

∫
F(t)

φ · v =
∫
F(t)

(∂tφ) · v +
∫
F(t)

φ · (∂tv) +
∫

∂S(t)
(φ · v)(uS · n).

and∫
F(t)

(
− 	v + ∇q

)
· φ = 2

∫
F(t)

Dv : Dφ −
∫

∂S(t)
(T(v, q)n) · φ dσ

= 2
∫

�

Dv : Dφ + m(l′ − g1) · �φ + J (r′ − g2)rφ,

thanks to (76)–(77).
Hence we get, after integrating in time, using ρ = 1 in the fluid and v(0, ·) = 0:

∫
F(T )

ρ(T, ·)v(T, ·) · φ(T, ·) dx −
∫ T

0

∫
F(t)

ρ(∂tφ) · v dx dt

−
∫ T

0

∫
∂S(t)

(φ · v)(uS · n) dσ dt

+ 2
∫

(0,T )×�

Dv : Dφ+
∫ T

0

[
m(l′ − g1) · �φ+J (r′ − g2)rφ

]=
∫ T

0

∫
F(t)

φ · g.
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Now using∫
S(t)

ρS(t, x)(x − h(t)) dx = 0, m =
∫
S(t)

ρS(t, x) dx,

J =
∫
S(t)

ρS(t, x)|x − h(t)|2 dx, (85)

we deduce

mg1(t) · �φ(t) + J g2(t) rφ(t) =
∫
S(t)

ρ(t, x)φ(t, x) · g(t, x) dx .

On another side, we see that in S(t):

∂tφ(t, x) = �′
φ(t) + r ′

φ(t)(x − h(t))⊥ − rφ(t) �⊥(t).

Using an integration by parts in time and (85), we deduce
∫ T

0

[
ml′ · �φ + J r′ rφ

]
dt = −

∫ T

0

[
m l · �′

φ + J r r ′
φ

] + m l(T ) · �φ(T )

+J r(T ) rφ(T )

= −
∫ T

0

∫
S(t)

ρS v · (∂tφ) dx dt +
∫ T

0
m rφ l · �⊥

+
∫
S(T )

ρ(T, ·)v(T, ·) · φ(T, ·) dx .

Adding the equalities above, we easily obtain (84).

Let us now prove that (l, r, v) given by (79) is a weak solution of the auxiliary
system. ��
Lemma 6. Let (�, r, u) a solution of (19)–(24) as given by Theorem 3, such that
dist(S(t), ∂�) > 0 on [0, T ]. Then (l, r, v) given by (79) is a weak solution in the
sense of Definition 2 with source terms given by (80).

Proof. First we easily verify that (l, r, v) satisfies (82) and that v defined by (83)
belongs to L2(0, T ; H1(�)) and is divergence free. Therefore it only remains to
verify (84).

We consider a divergence free vector field φ ∈ C∞
c ([0, T ] × �;R2) such that

Dφ(t, x) = 0 when t ∈ [0, T ] and x ∈ S(t). We first apply Definition 1 to the test
function tφ (instead of φ). This yields:

−
∫

�

(ρ v · φ)|t=T +
∫

(0,T )×�

ρ u · φ +
∫

(0,T )×�

ρ v · ∂φ

∂t

+
∫ T

0
t
∫
F(t)

u ⊗ u : Dφ − 2
∫

(0,T )×�

Dv : Dφ = 0. (86)

Then we use an integration by parts to get∫
F(t)

u ⊗ u : Dφ = −
∫
F(t)

(
(u · ∇)u

) · φ +
∫

∂S(t)
(φ · u)(uS · n) dσ.



Uniqueness Results for Weak Solutions 929

Hence the sum of the second and of the fourth term of (86) can be recast as
follows: ∫

(0,T )×�

ρ u · φ +
∫ T

0
t
∫
F(t)

u ⊗ u : Dφ =
∫

(0,T )×�

ρ g · φ

+
∫ T

0

∫
∂S(t)

(φ · v)(uS · n) dσ dt.

Then it only suffices to observe that the last term of (84) vanishes when (l, r, v)

is given by (79) to conclude the proof.

4.1.2. Proof of Lemma 4 We now turn to the proof of Lemma 4 which is an
adaptation of [10, Theorem 2.4]. Therefore we only highlight the differences with
the claim of [10, Theorem 2.4]. Actually [10, Theorem 2.4] is given for the three-
dimensional case but also holds true for the two-dimensional case with the same
proof. Also, another difference is that [10, Theorem 2.4] deals with the “Navier–
Stokes +Solid” system.However their proofworks aswell for the system (72)–(77).
It is also interesting to mention that the proof of [10, Theorem 2.4] uses the same
kind of change of variables thatwe introduce in Proposition 1. Thanks to this change
of variable we are led to consider the following system:

∂ṽ

∂t
− 	ṽ + ∇q̃ = g̃ for x ∈ F0, (87)

div ṽ = 0 for x ∈ F0, (88)

ṽ = ṽS for x ∈ ∂S0, (89)

ṽ = 0 for x ∈ ∂�, (90)

m l̃′(t) = −
∫

∂S0

T(ṽ, q̃)n dσ + g̃1, (91)

J r̃′(t) = −
∫

∂S0

T(ṽ, q̃)n · (x − h(t))⊥ dσ + g̃2, (92)

where g̃ ∈ L
4
3 ((0, T ) × F0;R2) and (g̃1, g̃2) ∈ L

4
3 (0, T ;R2 × R),

ṽS := l̃ + r̃(x − h(t))⊥,

and with vanishing initial data.
This system appears when we use the change of variable

ṽ(t, x) := [dϕt (x)]−1 · v(t, ϕt (x)), x ∈ F(t) and l̃ := [dϕt (x)]−1 · l, r̃ = r,

where ϕt = [τ �,r (t)],  being defined in Proposition 1, and when we put the
error terms resulting from the change of variable in the right hand side as in (64).
Then one can look for a solution of the original system by a fixed point scheme.

For the system (87)–(92) the maximal regularity result [10, Theorem 4.1] can
be straightforwardly adapted into:

Lemma 7. Let q ∈ (1,+∞) and T > 0. For all g̃ in Lq((0, T ) × F0;R2), for all
(g̃1, g̃2) in Lq((0, T );R3), there exists a unique solution of (87)–(92) on [0, T ]
with vanishing initial data satisfying
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ṽ ∈ Lq(0, T ; W 2,q(F0)), (∂t ṽ,∇q̃) ∈ Lq((0, T ) × F0;R4),

(l̃, r̃) ∈ W 1,q((0, T );R3). (93)

The proof of this lemma combines maximal regularity of the Stokes problem
with inhomogeneous Dirichlet boundary conditions and some added mass effects,
cf. [10, Section 4] and the book of Galdi [9]. Then Lemma 4 can be deduced from
Lemmas 3 and 7 (with q = 4

3 ) using the same fixed point procedure as in [10,
Sections 5–7]. One gets a solution for small time T , and a solution defined on a
larger time interval by gluing together such pieces of solutions.

4.1.3. Uniqueness for the Auxiliary System Our next step toward the proof of
Proposition 3 is the following uniqueness result for weak solutions of the auxiliary
system.

Lemma 8. Let g ∈ L
4
3 (FT ), (g1, g2) ∈ L

4
3 ((0, T );R3), (l1, r1, v1) and (l2, r2, v2)

two weak solutions in the sense of Definition 2 of (72)–(78) with vanishing initial
data and with source terms g, g1, g2. Then (l1, r1, v1) = (l2, r2, v2).

Proof of Lemma 8. We introduce v1 and v2 by (83). We define

v̂(t, x) := v1(t, x) − v2(t, x) in �, l̂ := l1 − l2 and r̂ := r1 − r2,

so that

v̂ = l̂ + r̂(x − h)⊥ in S(t).

We introduce a test function φ as in Definition 2, apply (84) to (l1, r1, v1) and
(l2, r2, v2) and make the difference of the two. We obtain

−
∫

�

(ρv̂ · φ)|t=T +
∫

(0,T )×�

(
ρv̂ · ∂φ

∂t
− 2Dv̂ : Dφ

)

+
∫ T

0

∫
∂S(t)

(φ · v̂)(uS · n) dσ dt =
∫ T

0
mrφ l̂ · �⊥. (94)

Now after a standard regularization procedure, we can take φ = v̂ in (94). We
infer

−1

2

∫
�

ρ|v̂(T, ·)|2−2
∫

(0,T )×�

|Dv̂|2+
∫ T

0

∫
∂S(t)

|v̂|2(uS ·n) dσ dt =
∫ T

0
m r̂ l̂·�⊥.

(95)
Using the boundary conditions on v̂ and the boundedness of (�, r), one easily

sees that ∣∣∣∣
∫ T

0

∫
∂S(t)

|v̂|2(uS · n) dσ dt

∣∣∣∣ � C
∫ T

0

(|l̂(t)|2 + |r̂(t)|2) dt.

Also, ∣∣∣∣
∫ T

0
m r̂ l̂ · �⊥

∣∣∣∣ � C
∫ T

0

(|l̂(t)|2 + |r̂(t)|2) dt.
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Hence

m|l̂(T )|2 + J |r̂(T )|2 + ‖v̂(T )‖2L2(F(T ))
� C

∫ T

0
|(l̂, r̂)(t)|2 dt.

So Gronwall’s lemma finishes the proof. ��
4.1.4. End of the Proof of Proposition 3 Let us now complete the proof of
Proposition 3.

According to Lemma 6, (l, r, v) given by (79) is a weak solution of the auxiliary
system in the sense of Definition 2 with source terms given by (80). On the other
hand Lemma 8 provides a strong solution of the same system. According to Lemma
5 this strong solution is also a weak solution. Let us stress in particular that the
regularity in (93) with q = 4

3 implies the regularity in (82). According to Lemma
8, these two weak solutions are equal. Therefore (l, r, v) given by (79) satisfy (93)
with q = 4

3 , which implies Proposition 3.

4.2. Uniqueness: Proof of Theorem 4

We now turn to the core of the proof of Theorem 4.
We consider (�1, r1, u1) and (�2, r2, u2) two solutions in the sense of Theorem

3 in [0, T ]. By the usual connectedness argument, we can suppose T arbitrarily
small. In particular we consider T > 0 small enough so that no collision occurs in
the time interval [0, T ] for both solutions.

Then we perform the same change of variable than in Section 2, that is, we
define ũ2 by (59), and p̃2, �̃2 by (60). Then, dropping temporarily the index 2 in
u2, ũ2, p2, p̃2 and the index t in ϕt and ψt , using the notations (61) and Einstein’s
repeated indices convention, we obtain:

∂2j jv
i = ∂ jψ

m(∂2mkϕ
i ) ∂l ṽ

k ∂ jψ
l + ∂kϕ

i ∂ jψ
m ∂2ml ṽ

k ∂ jψ
l + ∂kϕ

i ∂l ṽ
k(∂2j jψ

l)

+ ∂ jψ
m(∂3mlkϕ

i ) ∂ jψ
l ṽk + (∂2lkϕ

i ) ∂2j jψ
l ṽk + (∂2lkϕ

i ) ∂ jψ
l ∂ jψ

m ∂m ṽk .

Hence we obtain the following equation for ũ2:

0 = ∂t ũ
i + ũ j ∂ j ũ

i + ∂i p̃ − 	ũi

+ (∂kϕ
i − δik)∂t ũ

k + ∂kϕ
i ∂l ũ

k (∂tψ
l) + (∂k∂tϕ

i )ũk + (∂2klϕ
i ) (∂tψ

l) ũk

+ ũl ∂l ũ
k(∂kϕ

i − δik) + (∂2lkϕ
i ) ũl ũk + ∂k p̃ (∂iψ

k − δik)

− ∂ jψ
m(∂2mkϕ

i ) ∂l ũ
k ∂ jψ

l − (∂kϕ
i∂ jψ

m∂ jψ
l − δikδ jmδ jl)∂

2
ml ũ

k

− ∂kϕ
i ∂l ũ

k(∂2j jψ
l)

− ∂ jψ
m(∂3mlkϕ

i ) ∂ jψ
l ũk − (∂2lkϕ

i ) ∂2j jψ
l ũk − (∂2lkϕ

i ) ∂ jψ
l ∂ jψ

m ∂mũk .

Once again, all the factors between parentheses in the above equation are small (in
C1 norm) whenever ‖ϕt − Id ‖C3(�) + ‖∂tϕt‖C1(�) is small.

Now, with the same notations (62)–(63) as in Section 2, we obtain the following
equation:

∂t û + (u1 · ∇)û + (û · ∇)ũ2 + ∇ p̂ − 	û = f̃ in F1(t), (96)
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with the i th component of f̃ given by

f̃ i = (∂kϕ
i − δik)∂t ũ

k
2 + ∂kϕ

i ∂l ũ
k
2 (∂tψ

l) + (∂k∂tϕ
i )ũk

2 + (∂2klϕ
i ) (∂tψ

l) ũk
2

+ũl
2 ∂l ũ

k
2(∂kϕ

i − δik) + (∂2lkϕ
i ) ũl

2 ũk
2 + ∂k p̃2 (∂iψ

k − δik)

−∂ jψ
m(∂2mkϕ

i ) ∂l ũ
k
2 ∂ jψ

l − (∂kϕ
i∂ jψ

m∂ jψ
l

−δikδ jmδ jl)∂
2
ml ũ

k
2 − ∂kϕ

i ∂l ũ
k
2(∂

2
j ψ

l)

−∂ jψ
m(∂3mlkϕ

i ) ∂ jψ
l ũk

2 − (∂2lkϕ
i ) ∂2j jψ

l ũk
2 − (∂2lkϕ

i ) ∂ jψ
l ∂ jψ

m ∂mũk
2.

On the other hand, the boundary conditions (21)–(22) become

ũ2 = �̃2(t) + r2(t)(x − h1(t))
⊥ for x ∈ ∂S1(t),

ũ2 = 0 for x ∈ ∂�.

The solid Equations (23)–(24) for the second solid are now recast as (writing
again n1 for the normal on ∂S1):

m�̃′
2 = −

∫
∂S1(t)

T(ũ2, p̃2)n1 dσ + mr̂ �̃⊥
2 ,

J r ′
2(t) = −

∫
∂S1(t)

T(ũ2, p̃2)n1 · (x − h1(t))
⊥ dσ.

Observe that the quantities above make sense for almost every t > 0 thanks to
Proposition 3.

Now we define �̂, r̂ and û, p̂, ĥ, θ̂ as in (62)–(63). Taking the difference of the
equations of �̃2 and r2 with the equations for the first solid we obtain:

û = �̂(t) + r̂(t)(x − h1(t))
⊥ for x ∈ ∂S1(t), (97)

û = 0 for x ∈ ∂�, (98)

m�̂′ = −
∫

∂S1(t)
T(û, p̂)n1 dσ + mr̂ �̃⊥

2 , (99)

J r̂ ′(t) = −
∫

∂S1(t)
T(û, p̂)n1 · (x − h1(t))

⊥ dσ. (100)

Now we proceed by an energy estimate. Multiplying (96) by û and integrating
overF1(t), we deduce that for almost every positive t (using the regularity provided
by Proposition 3):∫

F1(t)
(∂t û + (u1 · ∇)û) · û dx +

∫
F1(t)

û · (û · ∇)ũ2 dx +
∫
F1(t)

û · ∇ p̂ dx

−
∫
F1(t)

û · 	û dx =
∫
F1(t)

û · f̃ dx . (101)

Proceeding as in Section 2, we have∫
F1(t)

(∂t û + (u1 · ∇)û) · û dx = d

dt

∫
F1(t)

|û|2
2

dx,

∫
F1(t)

û · ∇ p̂ dx =
(

�̂

r̂

)
·
∫

∂S1(t)
p̂

(
n1

(x − h1(t))⊥ · n1

)
dσ.
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For the third and fourth term in (101), we have

−
∫
F1(t)

û · 	û dx = 2
∫
F1(t)

Dû : Dû dx −
∫

∂S1(t)
(Dû · n1) · û dσ

= 2
∫
F1(t)

Dû : Dû dx −
(

�̂

r̂

)

·
∫

∂S1(t)

(
Dû · n1

(x − h1(t))⊥ · (Dû · n1)

)
dσ,

thanks to (97)–(98).
Thus∫
F1(t)

û · ∇ p̂ dx −
∫
F1(t)

û · 	û dx

= 2
∫
F1(t)

Dû : Dû dx −
(

�̂

r̂

)
·
∫

∂S1(t)

(
T(û, p̂)n1

(x − h1(t))⊥ · T(û, p̂)n1

)
dσ,

= 2
∫
F1(t)

Dû : Dû dx + 1

2

d

dt

(
m|�̂|2 + J |r̂ |2) − mr̂ �̂ · �̃⊥

2 , (102)

thanks to (99)–(100). The last term in the right hand side of (102) is estimated as
in (68).

Now for the second term in (101), we will use the following lemma.

Lemma 9. There exists C > 0 such that for any t ∈ (0, T ), for any w ∈ H1(F1(t))
vanishing on ∂� and any ε > 0,

‖w‖L4(F1(t)) � C

ε
‖w‖L2(F1(t)) + ε‖∇w‖L2(F1(t)).

Proof of Lemma 9. A classical interpolation argument gives that for any t ∈
(0, T ), for any w ∈ H1(F1(t)),

‖w‖L4(F1(t)) � C‖w‖1/2
L2(F1(t))

‖w‖1/2
H1(F1(t))

.

Since the Poincaré inequality holds for w ∈ H1(F1(t)) vanishing on ∂�, we
deduce that for such w,

‖w‖L4(F1(t)) � C‖w‖1/2
L2(F1(t))

‖∇w‖1/2
L2(F1(t))

. (103)

We deduce the claim. ��
It follows that we can estimate the second term in (101) by∣∣∣∣

∫
F1(t)

û · (û · ∇)ũ2 dx

∣∣∣∣ � ‖∇ũ2‖L2 ‖û‖2L4 � C‖∇ũ2‖2L2‖û‖2L2 + 1

4
‖∇û‖2L2 ,

where the norms above are over F1(t).
Let us now turn to the estimate of the right hand side in (101). The estimate is

given in the following lemma.
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Lemma 10. For some constant C > 0 depending on the geometry only and defining
the function B ∈ L1(0, T ) by

B(t) := ‖ũ2‖L∞(0,T ;L2(F1(t)))(1 + ‖∇ũ2(t, ·)‖L2(F1(t)))

+ ‖ũ2‖1/2L∞(0,T ;L2(F1(t)))
‖∇ũ2(t)‖1/2L2(F1(t))

‖t∇ũ2(t)‖L4(F1(t))

+ (‖t∂t ũ2‖L4/3(F1(t)) + ‖t ũ2‖W 2,4/3(F1(t)) + ‖t∇ p̃2‖L4/3(F1(t))

)4/3
,

one has the following estimate on the right hand side:
∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃ dx dt

∣∣∣∣ � 1

4

∫ T

0

∫
F1(t)

|∇û|2 dx dt

+ C
∫ T

0
B(t)

[
max

τ∈[0,t] ‖û(τ, ·)‖2L2(F1(t))
+ max[0,t] |(ĥ, θ̂ , �̂, r̂)|2

]
dt. (104)

Proof of Lemma 10. In what follows, C > 0 denotes various positive constants
depending on the geometry and which can change from line to line. We cut f̃ into
pieces which are to be estimated separately. Precisely, we denote

f̃ = f̃1 + f̃2 + f̃3 + f̃4 + f̃5,

with

f̃1 := (∂k∂tϕ
i )ũk

2 + (∂2klϕ
i ) (∂tψ

l) ũk
2

−
∑

j

[
∂ jψ

m(∂3mlkϕ
i ) ∂ jψ

l ũk
2 + (∂2lkϕ

i ) ∂2j jψ
l ũk

2

]
,

f̃2 :=∂kϕ
i ∂l ũ

k
2 (∂tψ

l)

−
∑

j

[
∂ jψ

m(∂2mkϕ
i ) ∂l ũ

k
2 ∂ jψ

l +∂kϕ
i ∂l ũ

k
2(∂

2
j ψ

l)+(∂2lkϕ
i ) ∂ jψ

l ∂ jψ
m ∂mũk

2

]
,

f̃3 := (∂2lkϕ
i ) ũl

2 ũk
2,

f̃4 := ũl
2 ∂l ũ

k
2(∂kϕ

i − δik),

f̃5 := (∂kϕ
i − δik)∂t ũ

k
2 + ∂k p̃2 (∂iψ

k − δik) −
∑

j

(∂kϕ
i∂ jψ

m∂ jψ
l − δikδ jmδ jl)∂

2
ml ũ

k
2.

• Concerning f̃1, using Corollary 1 we deduce that

∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃1 dx dt

∣∣∣∣ � C‖ũ2‖L∞(0,T ;L2(F1(t)))

×
∫ T

0
max

τ∈[0,t] ‖û(τ, ·)‖L2(F1(t)) max[0,t] |(ĥ, θ̂ , �̂, r̂)| dt

� C‖ũ2‖L∞(0,T ;L2(F1(t)))

×
∫ T

0

(
max

τ∈[0,t] ‖û(τ, ·)‖2L2(F1(t))
+max[0,t] |(ĥ, θ̂ , �̂, r̂)|2

)
dt.
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• Concerning f̃2, using Corollary 1 one has for almost every t :∣∣∣∣
∫
F1(t)

û · f̃2 dx

∣∣∣∣ � C‖∇ũ2(t, ·)‖L2(F1(t))|(ĥ, θ̂ )(t)| ‖û‖L2(F1(t)).

We fix

B1(t) := ‖∇ũ2(t, ·)‖L2(F1(t)) ∈ L2(0, T ) ⊂ L1(0, T ),

and have∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃2 dx dt

∣∣∣∣ � C
∫ T

0
B1(t)

(
max

τ∈[0,t] ‖û(τ, ·)‖2L2(F1(t))

+max[0,t] |(ĥ, θ̂ )|2
)

dt.

• Concerning f̃3: one has for almost every t > 0, using (103):∣∣∣∣
∫
F1(t)

û · f̃3 dx

∣∣∣∣ � C‖ũ2(t, ·)‖2L4(F1(t))
|(ĥ, θ̂ )(t)| ‖û‖L2(F1(t))

� C‖ũ2(t, ·)‖L2(F1(t))‖∇ũ2(t, ·)‖L2(F1(t))|(ĥ, θ̂ )(t)|
‖û‖L2(F1(t)).

Using again the function B1, we have∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃3 dx dt

∣∣∣∣ � C‖ũ2‖L∞(0,T ;L2(F1(t)))

×
∫ T

0
B1(t)

(
max

τ∈[0,t] ‖û(τ, ·)‖2L2(F1(t))

+max[0,t] |(ĥ, θ̂ )|2
)

dt.

• Concerning f̃4: we first note that thanks to Proposition 3, we have

t∇ũ2 ∈ L4/3(0, T ; W 1,4/3(F1(t))) ↪→ L4/3(0, T ; L4(F1(t))).

On another side we infer from Corollary 1 that for some constant one has∥∥∥∥1t (∂kϕ
i
t − δik)

∥∥∥∥
C3(�)

� C‖(�̂, r̂)‖L∞(0,t). (105)

Using (103) and (105) we deduce that∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃4 dx dt

∣∣∣∣
� C

∫ T

0
‖ũ2(t)‖L4(F1(t))‖t∇ũ2(t)‖L4(F1(t))‖(�̂, r̂)‖L∞(0,t)

‖û(t, ·)‖L2(F1(t)) dt

� C
∫ T

0
‖ũ2(t)‖1/2L2(F1(t))

‖∇ũ2(t)‖1/2L2(F1(t))
‖t∇ũ2(t)‖L4(F1(t))

‖(�̂, r̂)‖L∞(0,t)‖û(t, ·)‖L2(F1(t)) dt.



936 Olivier Glass & Franck Sueur

We introduce

B2(t) := ‖∇ũ2(t)‖1/2L2(F1(t))
‖t∇ũ2(t)‖L4(F1(t)) ∈ L1(0, T ),

as a product L4(0, T ) × L4/3(0, T ), and deduce
∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃4 dx dt

∣∣∣∣ � C‖ũ2‖1/2L∞(0,T ;L2(F1(t)))

∫ T

0
B2(t)

[
‖(�̂, r̂)‖2L∞(0,t)

+‖û(t, ·)‖2L2(F1(t))

]
dt.

• Concerning f̃5: we use again (105) and we introduce

b(t) := ‖t∂t ũ2(t)‖L4/3(F1(t)) + ‖t ũ2(t)‖W 2,4/3(F1(t)) + ‖t∇ p̃2(t)‖L4/3(F1(t)),

which belongs to L4/3(0, T ) thanks to Proposition 3. One deduces that
∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃5 dx dt

∣∣∣∣ � C
∫ T

0
b(t)‖(�̂, r̂)‖L∞(0,t)‖û(t, ·)‖L4(F1(t)) dt.

Hence, with 2bμν � b2αμ2 + b2(1−α)ν2 for μ, ν ∈ R, b � 0 and α ∈ (0, 1),
we deduce that∣∣∣∣

∫ T

0

∫
F1(t)

û · f̃5 dx dt

∣∣∣∣ � C1

∫ t

0
b(t)2/3‖û(t, ·)‖2L4(F1(t))

dt

+C
∫ t

0
b(t)4/3‖(�̂, r̂)‖2L∞(0,t) dt.

We specify the constant C1 for later use. For the first term, one writes

∫ T

0
b(t)2/3‖û(t, ·)‖2L4(F1(t))

dt � C
∫ T

0
b(t)2/3‖û(t, ·)‖L2(F1(t))‖∇û(t, ·)‖L2(F1(t)) dt

� C
∫ T

0
b(t)4/3‖û(t, ·)‖2L2(F1(t))

dt

+ 1

4C1

∫ T

0
‖∇û(t, ·)‖2L2(F1(t))

dt.

So one has

∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃5 dx dt

∣∣∣∣ � 1

4

∫ T

0
‖∇û(t, ·)‖2L2(F1(t))

dt

+C
∫ T

0
B3(t)

[
‖û(t, ·)‖2L2(F1(t))

+‖(�̂, r̂)‖2L∞(0,t)

]
dt,

with B3 := b(t)4/3 ∈ L1(0, T ).

Summing up all the estimates above, we deduce (104). ��
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Back to the proof of Theorem 3.
We extend û(t, ·) inside F1(t) by �̂ + r̂(x − h1(t)). We obtain that û(t, ·) is a

L2(0, T ; H1(�)) divergence free vector field, vanishing on ∂�. Therefore∫
F1(t)

|∇û|2 dx �
∫

�

|∇û|2 dx = 2
∫

�

|Dû|2 dx = 2
∫
F1(t)

|Dû|2 dx .

Now we take into account the vanishing initial condition for (�̂, r̂ , û) to deduce
that for any T > 0 sufficiently small,

m|�̂(T )|2 + J |r̂(T )|2 + ‖û(T )‖2L2(F1(T ))

� C
∫ T

0
B(t)

[
max

τ∈[0,t] ‖û(τ, ·)‖2L2(F1(t))
+ max[0,t] |(ĥ, θ̂ , �̂, r̂)(t)|2

]
dt.

Proceeding as in (70) we get

d

dt

(
|ĥ|2 + |θ̂ |2

)
� C

(|�̂|2 + |r̂ |2 + |ĥ|2 + |θ̂ |2).
Hence using B(t) ∈ L1 and Gronwall’s lemma concludes the proof.

Appendix. Proof of Theorem 1

In this Appendix, we will use the letter η for the fluid flow and τ for the solid
flow.

To (�, r) ∈ C0([0, T ];R2 ×R) we can associate h�,r , θ�,r , u�,r
S , τ �,r and F�,r

by (3)–(7). We also introduce

ϕ�,r := (τ�,r ),

where  was defined in Lemma 1. We can ensure that τ �,r belongs to the set U of
definition of  by choosing T suitably small.

We may omit the dependence on (�, r) on the above objects when there is no
ambiguity.

As in Section 3.1 we suppose that ∂� has g + 1 connected components
�1, . . . , �g+1 and that�g+1 is the outer one; andwedenote by�0 = �0(t) = ∂S(t),
by t the tangent to ∂� and ∂S(t) and we define

γ i
0 :=

∫
�i

u0 · t dσ for i = 1, . . . , g and γ0 :=
∫

∂S0

u0 · t dσ.

We will use the following variant of Lemma 1.

Lemma 11. For any R > 0, there exists C > 0 such that if S = τ(S0) for
τ ∈ SE(2) satisfies (45) then any u : �\S → R

2 satisfying

div u = 0 in �\S, u · n = 0 on ∂� and u · n = (� + r x⊥) · n on ∂S,

where (�, r) ∈ R
2 × R, verifies (setting again �0 := ∂S):

‖u‖LL(�\S) � C

(
‖ curl u‖L∞(�\S) +

g∑
i=0

∣∣∣∣
∫

�i

u · t dσ
∣∣∣∣ + |�| + |r |

)
. (106)
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Proof. It is a direct consequence of Lemma 1 and Morrey’s estimates. It can also
be established directly by following the lines of the proof of Lemma 1. ��

4.3. With a Prescribed Solid Movement

We first prove the following result, which concerns the Euler system with a
prescribed solid movement of S(t) inside �, and gives the existence of a solution
as long as no collision occurs.

Proposition 4. Let T > 0 and a regular closed connected subset S0 ⊂ � and
define F0 := �\S0. Consider (�, r) ∈ C0([0, T ];R2 × R) such that

for any t ∈ [0, T ], dist
(
τ �,r (t)[S0], ∂�

)
> 0. (107)

Consider u0 ∈ C0(F0;R2) satisfying (15) and (16). Then the problem (9)–(12)
[with S(t) := τ �,r (S0) and F(t) := �\S(t)] admits a unique solution

u ∈ L∞(0, T ;LL(F(t))) ∩ C0([0, T ]; W 1,q(F(t)))], ∀q ∈ [1,+∞).

Proof of Proposition 4. We use Schauder’s fixed point theorem in order to prove
the existence part. Let (�, r) be fixed so that (107) holds. We deduce τ(t), ϕ(t),
S(t) and F(t) as previously. We will also use, for T > 0, the notation

FT := ∪t∈(0,T ){t} × F(t).

We let

C := {w ∈ L∞((0, T ) × F0)/‖w‖L∞((0,T )×F0) � ‖ω0‖L∞(F0)}.
We endow C with the L∞(0, T ; L3(F0)) topology. Note that C is closed and

convex.
Now we define T = T �,r : C → C as follows. Given w ∈ C, we define

ω : FT → R
2 by

ω(t, x) = w(ϕ(t)−1(x)), (108)

which belongs to L∞(0, T ; L∞(F(t))).
Next we define u : FT → R

2 by the following system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

curl u = ω in FT ,

div u = 0 in FT ,

u · n = 0 on [0, T ] × ∂�,

u(t, x) · n = uS(t, x) · n for t ∈ [0, T ] and x ∈ ∂S(t),∫
�i

u · t dσ = γ i
0 for all i = 1 . . . g,∫

∂S(t) u · t dσ = γ0,

(109)

with uS defined in (4). According to Lemma 11, u belongs to L∞(0, T ;LL(F(t))).
Consequently we can define the flow η(t, x) associated to u in a unique way.

This flow sends, for each t , F0 to F(t). Finally, we let

T (w) := ω0 ◦ η(t, ·)−1 ◦ ϕ(t). (110)
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It is trivial that T (C) ⊂ C. It remains to prove that T is continuous and that
T (C) is relatively compact in L∞((0, T ); L3(F0)).

Let us begin with the continuity. We consider (wn) ∈ CN converging to w ∈ C
for the L∞(0, T ; L3(F0)) norm. We associate un and ηn corresponding to wn in
the above construction, and accordingly u and η corresponding to w. Using (109),
Sobolev imbeddings and Lemma 1, it is not difficult to see that the velocities un

converge to the velocity u in L∞(0, T, L∞(F(t))). Also, from Lemma 11 we
deduce that for some C > 0,

‖u‖L∞(0,T ;LL(F(t))), ‖un‖L∞(0,T ;LL(F(t))) � C.

This involves the uniform convergence of η−1
n to η−1. The convergence of ϕn

to ϕ comes from the continuity of . From this we can deduce that

T (wn) −→ T (w) in L∞((0, T ); L3(F0)).

Indeed, ifω0 ∈ C0(F0), this can be straightforwardly deduced from the uniform
continuity of ω0 and (110). The general case can be inferred by using the density
of C0(F0) in L∞(F0) for the L3(F0) topology.

Now let us prove the relative compactness of T (C) in L∞(0, T ; L3(F0)). This
is a consequence of the following lemma.

Lemma 12. Let C > 0, α ∈ (0, 1) and ω0 ∈ L∞(F0). Then the set

A(ω0) := {ω0 ◦ ψ(t, x) for ψ ∈ Cα([0, T ] × F0;F0) such that ‖ψ‖Cα � C

and ψ is measure-preserving},
is relatively compact in L∞(0, T ; L3(F0)).

Proof of Lemma 12. We prove the total boundedness of A(ω0). Let us be given
ε > 0. There exists ω1 ∈ C0(F0) such that

‖ω1 − ω0‖L3(F0)
� ε.

Due to the continuity of ω1, it is a direct consequence of Ascoli’s theorem that
A(ω1) is relatively compact in C0([0, T ] × F0), and hence in L∞(0, T ; L3(F0)).
We deduce the existence of ψ1, . . . , ψN as above such that

A(ω1) ⊂ B(ω1 ◦ ψ1; ε) ∪ · · · ∪ B(ω1 ◦ ψN ; ε),

where the balls are considered in the space L∞(0, T ; L3(F0)). One sees that

A(ω0) ⊂ B(ω1 ◦ ψ1; 2ε) ∪ · · · ∪ B(ω1 ◦ ψN ; 2ε),
which concludes the proof of the lemma. ��
Back to the proof of Proposition 4. Using again Lemma 11, we see that we have
uniform log-Lipschitz estimates on the velocities u asw ∈ C. This implies uniform
Hölder estimates on the flows η that we constructed for w ∈ C. So we conclude by
Lemma 12 that T (C) is relatively compact.

Hencewe deduce by Schauder’s fixed point theorem that T admits a fixed point.
One checks easily that the corresponding u fulfills the claims.

Finally, the uniqueness is proved exactly as in Yudovich’s original setting for
the fluid alone; alternatively, one can use the proof of uniqueness established in
Section 3.2 with (�1, r1) = (�2, r2). ��
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4.4. Continuous Dependence on the Solid Movement

Nowwe prove that the solution constructed in Section 4.3 depends continuously
on the solid movement (�, r).

Precisely, given T > 0 and (�, r) as in Section 4.3, we denote u�,r the unique
corresponding solution u given by Proposition 4, and ω�,r := curl u�,r the corre-
sponding vorticity. We associate then

ũ�,r := u�,r ◦ ϕ�,r and ω̃�,r := ω�,r ◦ ϕ�,r .

We have the following proposition.

Proposition 5. Let T > 0, (�n, rn) ∈ C0([0, T ];R2×R)N and (�, r) ∈ C0([0, T ];
R
2 × R) such that (�n, rn) and (�, r) satisfy (107) and

(�n, rn) −→ (�, r) in C0([0, T ];R2 × R) as n → +∞.

Then
ũ�n ,rn −→ ũ�,r in C0([0, T ] × F0) as n → +∞. (111)

Proof of Proposition 5. Following Section 4.3, we see that (ũ�n ,rn ) is relatively
compact in C0([0, T ] × F0). Also, the sequence (ω̃�n ,rn ) is weakly-∗ relatively
compact in L∞((0, T )×F0). To prove (111), it is hence sufficient to prove that the
unique limit point of the sequence (ũ�n ,rn , ω̃�n ,rn ) in the space C0([0, T ] × F0) ×
[L∞((0, T ) × F0) − w∗] is (ũ�,r , ω̃�,r ).

Now consider a converging subsequence of (ũ�n ,rn , ω̃�n ,rn ). For notational con-
venience, we still denote this subsequence (ũn, ω̃n), and call (ũ, ω̃) the limit.We as-
sociate the functionswn , ηn ,w, η corresponding to (�n, rn, ũn, ω̃n) and (�, r, ũ, ω̃)

as in Section 4.3.
By uniqueness in Proposition 4, to prove

(ũ, ω̃) = (ũ�,r , ω̃�,r ),

is it sufficient to prove that (ũ, ω̃) corresponds to a solution of Proposition 4 with
prescribed solid movement (�, r). For that, we observe that the relation

wn(t, ·) = ω0 ◦ ηn(t, ·)−1 ◦ ϕ�n ,rn (t)

passes to the L∞((0, T ) × F0) weak-∗ limit (or to the L∞(0, T ; L p(F0)) one,
p ∈ [1,∞)) since ũ�n ,rn converges uniformly to ũ, so the corresponding flows
converge uniformly (using again the uniform log-Lipschitz estimates). So we infer

w(t, ·) = ω0 ◦ η(t, ·)−1 ◦ ϕ�,r (t).

On the other side, it is not difficult to pass to the limit in (109), so that in particular

curl
(

ũ ◦ (ϕ�,r (t, ·)−1)
)

= w(t, ·) ◦ (ϕ�,r (t, ·)−1).

Hence we deduce that (ũ, ω̃) is indeed a solution of Proposition 4 with solid
movement (�, r). The convergence (111) follows. ��
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4.5. Endgame

Let us now proceed to the proof of Theorem 1. Once again we are going to use
Schauder’s fixed point theorem.

Let d := d (S0, ∂�) > 0 and C > 0. We introduce

D := {(�, r) ∈ C0([0, T ];R3)/‖(�, r)‖C0([0,T ];R3) � C},
where T > 0 is chosen such that CT (1 + diam(S0)) � d

3 . Observe that this
condition yields in particular that τ �,r satisfies

dist
(
τ �,r (t)(S0), ∂�

)
� d

3
for any t ∈ [0, T ]. (112)

Note that D is closed and convex.
Now we construct an operatorA on D in the following way. To (�, r) ∈ D, we

associate, as in Section 4.3, Q(t), S(t),F(t) and u as the fixed point of the operator
T �,r . We also consider the Kirchhoff potentials �i as in (55) and the mass matrix
M as in (57). Then, we define A(�, r) := (�̃, r̃), where for any t ∈ [0, T ],

[
�̃

r̃

]
(t) =

[
�0
r0

]
+

∫ t

0
M−1(s)

([∫
F(s)

u · [(u · ∇)∇�i ] dx
]

i∈{1,2,3}

− [
Bi (s)

]
i∈{1,2,3}

)
ds,

with

Bi (s) :=
[
�

r

]
·
∫

∂S(s)
(u · ∇�i )

[
n

(x − h(s))⊥ · n

]
dσ.

Due to the boundedness of ‖∇�i‖C1,α ,M−1 under the condition (112) and the
one of ‖u‖∞, shrinking T if necessary, we have that A(D) ⊂ D.

Now, let us prove thatA has a fixed point inD. ThatA(D) is relatively compact
inC0([0, T ];R3) follows fromAscoli’s theorem.ThatA is continuous follows from
Proposition 5 and the convergence for all t , under the assumptions of Proposition 5:

�
�n ,rn
i ◦ ϕ�n ,rn −→ �

�,r
i ◦ ϕ�,r in C2(F0) as n → +∞.

This convergence can be deduced from the compactness of the sequence
(∇�

�n ,rn
i ) inC1(F0) (due to Lemma 2) and the fact that��,r ◦ϕ�n ,rn ◦(ϕ�,r )−1 con-

verges to a function satisfying the correct system (55) in the limit (use for instance
the computations of Section 3.2). Thereforewe can applySchauder’s theoremwhich
proves the existence of a fixed point.

To see that a fixed point of the operatorA corresponds to a solution of (1)–(14)
it is sufficient to observe that, thanks to an integration by parts, the solid equations
can be recast as

M
[
�

r

]′
=

[∫
F(t)

u · [(u · ∇)∇�i ] dx
]

i∈{1,2,3}
− [

Bi
]

i∈{1,2,3} .
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Observe that this reformulation is slightly different from (56) and is obtained by
using (9) and an integration by parts instead of (54). This establishes the existence
part of Theorem 1.

Finally, that the lifetime can be uniquely limited by a possible encounter of the
body with the boundary follows by contraposition, as a positive distance allows to
extend the solution for a while, according to the previous arguments.

Remark 4. Mixing the techniques of [16] and the ones of [15], one could prove
some results about the regularity in time of the flows associated to the solutions
given by Theorem 1.More precisely, consider a solution (�, r, u) given by Theorem
1, then the corresponding fluid velocity field u is log-Lipschitz in the x-variable;
consequently there exists a unique flow map η continuous from R × F0 to F(t)
such that

η(t, x) = x +
∫ t

0
u(s, η(s, x)) ds.

Moreover there exists c > 0 such that for any t , the vector field η(t, ·) lies in
the Hölder space

C0,exp(−c|t |‖ω0‖L∞(F0))(F0).

If one assumes that the boundaries ∂S0 and ∂� are Ck+1,ν , with k ∈ N and ν ∈
(0, 1), then the flow (τ, η) areCk from [0, T ] to SE(2)×C0,exp(−cT ‖ω0‖L∞(F0))(F0).
If one assumes that the boundaries ∂S0 and ∂� are Gevrey of order M � 1, then the
flow (τ, η) are Gevrey of order M +2 from [0, T ] to SE(2)×C0,exp(−cT ‖ω0‖L∞(F0))

(F0). In particular, in the case where M = 1, we see that when the boundaries are
real-analytic, then the flows (τ, η) belong to the Gevrey space G3.
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