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Abstract

We derive the effective energy density of thin membranes of liquid crystal
elastomers as the �-limit of a widely used bulk model. These membranes can
display fine-scale features both due to wrinkling that one expects in thin elastic
membranes and due to oscillations in the nematic director that one expects in liquid
crystal elastomers. We provide an explicit characterization of the effective energy
density of membranes and the effective state of stress as a function of the planar
deformation gradient. We also provide a characterization of the fine-scale features.
We show the existence of four regimes: one where wrinkling and microstructure
reduces the effectivemembrane energy and stress to zero, a secondwhere wrinkling
leads to uniaxial tension, a third where nematic oscillations lead to equi-biaxial
tension and a fourth with no fine scale features and biaxial tension. Importantly, we
find a region where one has shear strain but no shear stress and all the fine-scale
features are in-plane with no wrinkling.
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1. Introduction

Liquid crystal elastomers are rubber-like solids that display unusual mechanical
properties like soft elasticity and develop fine-scale microstructure under deforma-
tion. This material consists of cross-linked polymer chains where rigid rod-like
elements (mesogens) are either incorporated into the main chain or are pendent
from them. These mesogens have temperature-dependent interaction which results
in phases of orientational and positional order [15,33]. We refer to two phases: a
high temperature isotropic phase, where thermal fluctuations thwart any attempt at
order, and a nematic phase, where the mesogens have a characteristic orientation
but no positional order. This average orientation of the mesogens in the nematic
phase is represented by a director.

Nematic-elastic coupling is a key feature of these materials [22,32]. The
isotropic to nematic phase transformation is accompanied by a very significant dis-
tortion of the solid: typically elongation along the director and contraction trans-
verse to it. Further, the director can rotate relative to the polymer matrix. This
novel mechanism induces a degeneracy in the low energy states associated with
the entropic elasticity of the polymer network, whereby the material has a non-
trivial set of nearly stress-free shape changing configurations. This degeneracy can
lead to fine-scale microstructure like stripe domains where the director alternates
between two orientations in alternating stripes. Together, all of this gives rise to
soft-elasticity [33].

A theory of nematic elastomers, and specifically the entropic elasticity asso-
ciated with it, was formulated in Warner et al. [32], and was used to show the
emergence of stripe domains and soft-elasticity. Mathematically, the energy func-
tional is not weakly lower-semicontinuous, resulting in the possible non-existence
ofminimizers; brieflyminimizing sequences develop rapid oscillations that result in
lower energy than its weak limit. These rapid oscillations are interpreted as the fine-
scale microstructure in the material.DeSimone andDolzmann [14] computed the
relaxation wherein the energy density is replaced with an effective energy density
that accounts for all possible microstructures. The effective energy does indeed
show soft elasticity, and can be used as by Conti et al. [9] to explain complex
deformation patterns in clamped stretch experiments on nematic elastomer sheets
[21].

Experiments on nematic elastomers, like the one highlighted, have largely been
performed on thin sheets or membranes. These structures typically have instabili-
ties such as wrinkling, and consequently membranes of usual elastic materials are
unable to sustain compression and the state of stress is limited to uniaxial and biaxial
tension. Thus elastic membranes have been described heuristically by theories like
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the tension field theory of Mansfield [25], and such theories have been obtained
systematically from three-dimensional theories [23,26,28].

The goal of this work is to derive an effective theory of thin membranes of
liquid crystal elastomers that accounts not only for the formation of fine-scale
microstructure but also instabilities like wrinkling. An important insight that results
from this is the possible states of stress in these materials. We find that like usual
elastic membranes, membranes of liquid crystal elastomers are also incapable of
sustaining compression, and the state of stress is limited to uniaxial and biaxial
tension. Importantly, due to the ability of these materials to form microstructure,
there is a large range of deformation gradients involving unequal stretch where the
state of stress is purely equi-biaxial. Consequently, a membrane of this material
has zero shear stress even when subjected to a shear deformation within a certain
range.

We start with a three dimensional variational model of liquid crystal elastomers,
derive the effective behavior of a membrane—a domain where one dimension is
small compared to the other two—as the�-limit of a suitably normalized functional
as the ratio of these dimension goes to zero followingLeDret andRaoult [23] and
others [5,10,29]. Our variational model is based on aHelmholtz free energy density
that has two contributions. The first contribution captures the elasticity associated
with the polymer matrix. Developed by Bladon, Terentjev andWarner [6,33],
it is a generalization of the classical neo-Hookean model to account for the local
anisotropy due to the director. The second contribution, following Frank [16],
penalizes the spatial non-uniformity of directors, and has been widely used in the
study of liquid crystals. In the context of liquid crystal elastomers, this penalizes
domainwalls—narrow regions that separate domains of uniform director. The com-
petition between entropic elasticity and Frank elasticity, precisely the square-root
of the ratio of the moduli κ of the Frank elasticity to μ of the entropic elasticity—
introduces a length-scale. It turns out (example [33]) that

√
κ/μ ∼ 10–100 nm.

Note that the thickness h of a realistic membrane is on the order of 1–100 μm
depending on the application. Thus, one has two small parameters, and one needs
to study the joint limit as both

√
κ/μ and h go to zero, but at possibly different

rates. We do so by setting κ = κh and studying the limit h → 0.
We find in Theorem 4.1 that the �-limit and thus the resulting theory is inde-

pendent of the ratio κh/h. This is similar to the result of Shu [29] in the context of
membranes of materials undergoing martensitic phase transitions. In other words,
the length-scale on which the material can form microstructure does not affect the
membrane limit as long as it is small compared to the lateral extent of the mem-
brane. Consequently, the �-limit we obtain coincides with the result of Conti and
Dolzmann [10] who studied the case κ = 0. In fact, our proof draws extensively
from their work. Specifically, their result provides a lower bound and our recovery
sequence is adapted from theirs.

The �-limit is characterized by an energy per unit area that depends only on
the tangential gradient of the deformation. It is obtained from the density of the
entropic elasticity by minimizing out the normal component followed by relax-
ation or quasi-convexification. We compute this by obtaining upper and lower
bounds, and provide an explicit formula in Theorem 5.1 (also shown schematically
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Fig. 1. The effective energy of nematic elastomer membranes. λM is the largest principal
stretch and δ is the areal stretch. The energy is zero in the region marked L

in Fig. 1). It is characterized by four regions depending on the in-plane stretch: S is
a solid region where there is no relaxation,L is a liquid region where wrinkling and
microstructure formation drive the effective energy to zero,W is a wrinkling region
where wrinkling relaxes the energy andM is a microstructure region where stripe
domains relax the energy. The techniques employed here are in the same spirit as
those employed by DeSimone and Dolzmann [14] in three dimensional nematic
elastomers.

We also study the oscillations related to the relaxation by characterizing the
gradient Young measures associated with the minimizing sequences in Theorem
6.1.We show that the oscillations in the regionM are necessarily planar oscillations
of the nematic director and involve no out of plane deformation while those in the
region W are characterized by uniform nematic director and wrinkling.

Weuse the characterization of the gradientYoungmeasure to define the effective
state of stress, and show that this coincides with the derivative of the effective or
relaxed energy in Theorem 7.1. The Cauchy stress is given in (7.7): it is general
biaxial tension in S, zero in L, uniaxial tension in W and equi-biaxial tension
in M. As described above, the unique attributes of liquid crystal elastomers give
rise to this region of equi-biaxial tension compared to membranes of usual elastic
materials.

This paper is organized in the following manner. In Section 2, we fix some
notation and comment on background results which are used throughout the paper.
In Section 3, we describe our model for nematic elastomers, a model which incor-
porates the entropic elasticity of the polymer matrix and an elastic penalty on the
spatial gradient of the director. In Section 4, we derive our effective theory for
nematic elastomer membranes based on a notion of �-convergence. In Section 5,
we provide an explicit formula for the energy density in our effective theory. In
Section 6, we characterize the microstructure in the aforementioned regions M
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and W . Finally, in Section 7, we conclude with a notion of stress in this effective
theory and its physical implications.

2. Preliminaries

Wegather here the notation and some background resultswhichwe use through-
out the paper. We denote withRn the n dimensional Euclidian space endowed with
the usual scalar product u · v = uT v and norm |u| = √

uT u. The unit sphere in Rn

is denoted by S
n−1 and it is defined as the set of all vectors u ∈ R

n with |u| = 1.
The space of m × n matrices with real entries is labeled with R

m×n . When m > 1
we denote with O(n) the orthogonal group of the matrices F ∈ R

n×n for which
FFT = FT F = I , where I is the identity in R

n×n and with SO(n) the rotation
group of the matrices F ∈ O(n) with det F = 1. Letting now F ∈ R

m×n , adjs(F)

stands for the matrix of all s × s minors of F , 2 � s � min{m, n}. In the case
m = 3, n = 2, if

F =
⎛
⎝

f11 f12
f21 f22
f31 f32

⎞
⎠ , then adj2(F) :=

⎛
⎝

( f21 f32 − f22 f31)
−( f11 f32 − f12 f31)
( f11 f22 − f12 f21)

⎞
⎠ .

If u : R2 → R
3 is a smoothmap, then adj2 ∇u is normal to the surfacewith equation

{u(x) : x ∈ R
2}. Letting F ∈ R

3×2, Q ∈ SO(3), R ∈ O(2) by Proposition 5.66
[11] it follows that

| adj2(F)| = | adj2(QFR)|. (2.1)

Later in this paper we label the norm of adj2(F), with F a 3 × 2 matrix, with
δ = δ(F) := | adj2(F)|. Furthermore, we simply write adj ≡ adj2 both when
dealing with the adjugate of 3 × 3 and 3 × 2 matrices.

Finally, we state a version of the polar decomposition theorem: given any
F ∈ R

3×2 and any rectangular Cartesian basis, there exist λ1 � λ2 � 0, Q ∈
SO(3), R ∈ O(2) such that

F = QDR (2.2)

for

D =
⎛
⎝

λ1 0
0 λ2
0 0

⎞
⎠ . (2.3)

In fact, λ1, λ2 are the principal values of F .
We now recall some concepts in calculus of variations (cf. [11]). We say that

f : Rm×n → R ∪ {+∞} is polyconvex if there exists a convex function g which
depends on the vector M(F) of all the minors of F such that f (F) = g(M(F)). In
the case m = 3, n = 2 then f (F) = g(F, adj(F)) with g : R9 → R ∪ {+∞}. We
say that f : Rm×n → R ∪ {+∞} is quasiconvex if, at every F ∈ R

m×n , we haveˆ
(0,1)n

f (F) dx �
ˆ

(0,1)n
f (F + ∇u) dx
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for every u ∈ W 1,∞
0 ((0, 1)n,Rm). Note that the foregoing inequality holds for

every D open and bounded subset of Rn with |∂D| = 0 [3]. Finally, f : Rm×n →
R ∪ {+∞} is rank-one convex if t → f (F + t R) is a convex function for all
F, R ∈ R

m×n with rank(R) = 1.
If a function f : Rm×n → R ∪ {+∞} is not quasiconvex, we define f qc the

quasiconvex envelope of f as

f qc := sup{h � f, h quasiconvex}.
Analogously, we define f c, f pc, f rc as the convex, polyconvex and rank-one con-
vex envelopes respectively of f . In the general case of extended-value functions,
convexity implies polyconvexity and polyconvexity implies both rank-one convex-
ity and quasiconvexity, but quasiconvexity alone does not imply rank-one convexity.
Therefore, if f : Rm×n → R ∪ {+∞}, we have

f pc � f qc, f pc � f rc. (2.4)

On the other hand, in the case of a real-valued functions, quasiconvexity implies
rank-one convexity and hence, if f : Rm×n → R, we have

f c � f pc � f qc � f rc. (2.5)

We give an alternative representation formula for the rank-one convex envelope of
a function f : Rm×n → R ∪ {+∞}

f rc(F) := inf
{ K∑

i

λi f (Fi ) :
K∑
i

λi Fi = F, (λi , Fi ) satisfy HK

}

with λi � 0 and
∑K

i λi = 1. Family (λi , Fi ) satisfies a compatibility condition
here labelled with HK and defined in [11, Sec. 5.2.5]. In the same spirit we define
semiconvex hulls of a compact set K ⊂ R

m×n . The set

Kpc =
{
F ∈ R

m×n : f (F) � sup
X∈K

f (X) for all f : Rm×n → R polyconvex
}

is the polyconvex hull of K. The quasiconvex hull Kqc and the rank-one convex
hull Krc are defined analogously. The lamination convex hull Klc of K is defined

Klc =
{
F ∈ R

m×n : f (F) � sup
X∈K

f (X) for all

f : Rm×n → R ∪ {+∞} rank-one convex
}
.

Equivalently, Klc can be defined by successively adding rank-one segments (see
[14]), that is

Klc =
∞⋃
i=0

K(i)
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where K0 = K and

K(i+1) = K(i) ∪ {F = λF1 + (1 − λ)F2 : F1, F2 ∈ K(i),

rank(F1 − F2) � 1, λ ∈ [0, 1]}.
The relations between the different notions of convexity imply the inclusions (see
[14])

Klc ⊆ Krc ⊆ Kqc ⊆ Kpc.

We refer the interested reader to [11] and [24] for a discussion of all the different
notions of convexity and their relations.

Finally, we introduce the notion of a gradient Young measure that character-
izes the statistics of the fine-scale oscillations in the gradients weakly converging
sequences (cf. [24]). We define a homogenous H1 gradient’s Young measure to
be a probability measure that satisfies Jensen’s inequality for every quasiconvex
function f : R3×2 → R whose norm can be bounded by a quadratic function. Let
M denote the space of signed Radon measures on R3×2 with the finite mass paring

〈μ, f 〉 =
ˆ
R3×2

f (G̃) dμ(G̃).

Then the space of homogenous H1 gradient Young measures is given by

Mqc :={ν ∈ M : ||ν|| = 1, 〈ν, f 〉 � f (〈ν, id〉)
∀ f : R3×2 → R quasiconvex with | f (G̃)| � C(|G̃|2 + 1)

}
. (2.6)

3. Model of Nematic Elastomers

Consider a nematic elastomer occupying a region 	 in its reference configura-
tion, and assume that it is in its stress-free isotropic state in this configuration. Let
y : 	 → R

3 describe the deformation and n : 	 → S
2 describe the director field.

We denote ∇u to be the reference gradient of some field u : 	 → R
3 and ∇yu

to be the spatial gradient of u. It follows ∇yu = ∇u(F)−1 where F = ∇ y is the
deformation gradient.

We take the Helmholtz free energy density of the nematic elastomer to be the
sum of two contributions:

W = We + Wn

where the We describes the entropic elasticity of the underlying polymer chains of
the nematic elastomer and Wn describes the elasticity of the nematic mesogens.

Following Bladon, Terentjev and Warner in [6,33], we take the entropic
elasticity to be of the form

We(F, n) =
{μ

2

(
Tr(FT 
−1F) − 3

)
if det F = 1, |n| = 1,

+∞ else,
(3.1)
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where

 = r−1/3(I + (r − 1)n ⊗ n) (3.2)

is the step-length tensor. Hereμ > 0 is the shear modulus of rubber and r � 1 is the
(non-dimensional) backbone anisotropy parameter. Note that for r = 1 the energy
reduces to that of a neo-Hookean material. As most nematic rubbers are nearly
incompressible [33], we prescribe We to be a finite only for volume-preserving
deformations. We can substitute for 
 and write

We(F, n) =
⎧⎨
⎩

μ

2

(
r1/3

(
|F |2 − r − 1

r
|FT n|2

)
− 3

)
if det F = 1, |n| = 1,

+∞ else.

(3.3)

For future use, we define a purely elastic energy by taking the infimum over
directors. Following DeSimone and Dolzmann [14],

W3D(F) := inf
n∈S2

We(F, n) =
{
W0(F) if det F = 1,

+∞ else,
(3.4)

where

W0(F) = μ

2

(
r1/3

(
|F |2 − r − 1

r
λ2M (F)

)
− 3

)
. (3.5)

Here λM (F) is the largest eigenvalue of (FT F)1/2. Energy density W3D(F) is not
quasiconvex and the quasiconvex envelope Wqc

3D has been computed in [14].
Following Oseen, Zocker and Frank, (see for example, [15]), we take the elas-

ticity of the nematic mesogens to be of the form

Wn = 1

2
κ1(div n)2 + 1

2
κ2(n · curl n)2 + 1

2
κ3(n × curl n)2 (3.6)

where div n and curl n are the spatial divergence and curl of the director respectively,
and κ1 > 0, κ2 > 0, κ3 > 0 are known as the splay, twist and bend moduli
respectively. Notice that this is a non-negative quadratic form in n and∇yn. It turns
out that these moduli are very close to each other and one can introduce an equal
modulus approximation

Wn
eq = κ

2
|∇yn|2 = κ

2
|(∇n)F−1|2 (3.7)

where the second equality holds formally. Importantly, from a mathematical point
of view, any given Wn of the form (3.6) can be bounded from above and below by
equal moduli approximations, and therefore all the results we prove for the equal
modulus approximation hold for the more general form. Finally, since we assume
incompressibility or det F = 1, F−1 = adj F so that

Wn
eq = κ

2
|(∇n)(adj F)|2. (3.8)
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Putting these together, the Helmholtz free energy of our nematic elastomer,
F : H1(	,R3) × W 1,1(	,S2) → R ∪ {+∞}, is given by

F(y, n) :=
{´

	

(
We(∇ y, n) + κ

2 |(∇n)(adj∇ y)|2) dx if (y, n) ∈ A,

+∞ else ,
(3.9)

where for definiteness, the set of admissible fields is

A := {(y, n) ∈ H1(	,R3) × W 1,1(	,S2) : (∇n)(adj∇ y) ∈ L2(	,R3×3)}.

The ambient space for deformations y ∈ H1(	,R3) is optimal since for F ∈ R
3×3

satisfying det F = 1, We satisfies the growth and coercivity

1

c
|F |2 − c � We(F, n) � c(|F |2 + 1) (3.10)

independent of n ∈ S
2. Here c � 1 depends on r and μ. The ambient space for the

director field, n ∈ W 1,1(	,S2), may not be optimal. Nevertheless, consider the
following:

Remark 3.1. Fonseca and Gangbo [17] showed the lower-semicontinuity of

ˆ
	

|(∇n)(∇ y)−1|2dx

in the space

βp,q = {(n, y) ∈ W 1,p(	,S2) × W 1,q(	,R3) :
det∇ y(x) = 1 almost everywhere x ∈ 	},

where 2 < p < +∞ and 4 < q � +∞ such that (1/p) + (2/q) = (1/2), (see
Theorem 4.1, [17]). The existence of minimizers in βp,q follows from this result.
However, notice that this is more regularity than we assume. In fact, the existence
of minimizers inA is not clear. However, this does not affect �-convergence or the
membrane limit.

Barchiesi and DeSimone [4] showed well-posedness for an energy similar to
(3.9) where n was taken as a mapping from the deformed configuration y(	), and
it was assumed We(F, n) � c(|F |3 − 1).

4. Membrane Theory

In this section, we derive a theory for nematic elastomer membranes whose
three dimensional free energy satisfies (3.9).
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4.1. Framework

We consider a nematic elastomer membrane of small thickness h which has
a flat stress-free isotropic reference configuration 	h := {(x ′, x3) ∈ R

3 : x ′ ∈
ω, x3 ∈ (−h/2, h/2)}. We assume that ω is a bounded Lipschitz domain in R

2.
Let ỹ : 	h → R

3 describe the deformation and ñ : 	h → S
2 describe the director

field so that Fh(ỹ, ñ) is the Helmholtz free energy in (3.9) now parameterized by
the thickness of the membrane in its reference configuration. We assume κ/2 = κh ,
κh � 0 and κh → 0 as h → 0.

To take the limit as h → 0, we follow the theory of�-convergence in a topolog-
ical space endowed with the weak topology. The general theory can be found in [7]
and [12]. In order to deal with sequences on a fixed domain, we change variables
via

z′ = (z1, z2) = (x1, x2) = x ′, z3 = 1

h
x3, x ∈ 	h

and set 	 := ω × (−1/2, 1/2). To each deformation ỹ : 	h → R
3 and director

field ñ : 	h → S
2 , we associate respectively a deformation y : 	 → R

3 and
director field n : 	 → S

2 such that

y(z(x)) = ỹ(x) and n(z(x)) = ñ(x), x ∈ 	h . (4.1)

We set Ĩh(y, n) := Fh(ỹ, ñ)/h, and following the change of variables above
observe

Ĩh(y, n) =
{´

	

(
We(∇h y, n) + κh

h2
|(∇n)(adj∇ y)|2

)
dz if (y, n) ∈ A,

+∞ else
(4.2)

where ∇h y = (∇′y|(1/h)∂3y) with ∇′ the in-plane gradient. We also use the
identity (∇hn)(adj∇h y) = (1/h)(∇n)(adj∇ y).

Finally, we take our membrane theory to be the �-limit as h → 0 of the
functional defined on H1(	,R3),

Ih(y) := inf
n∈W 1,1(	,S2)

Ĩh(y, n). (4.3)

4.2. The Membrane Limit

Theorem 4.1. Let Ih be as in (4.3) with κh � 0 and κh → 0 as h → 0. Then in
the weak topology of H1(	,R3), Ih is equicoercive and �-converges to

J (y) =
{´

ω
Wqc

2D(∇′y)dz′ if ∂3y = 0 almost everywhere,

+∞ otherwise .
(4.4)

Here

W2D(F̃) := inf
c∈R3

W3D(F̃ |c) (4.5)
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for W3D given in (3.4) and Wqc
2D is the quasiconvex envelope of W2D,

Wqc
2D(F̃) = inf

{ˆ
(0,1)2

W2D(F̃ + ∇′φ)dz′ : φ ∈ W 1,∞
0 ((0, 1)2,R3)

}
.

Equivalently:

(i) for every sequence {yh} ⊂ H1(	,R3) such that Ih(yh) � C < +∞, there
exists a y ∈ H1(	,R3) independent of z3 such that up to a subsequence

yh −
 

	

yhdz ⇀ y in H1(	,R3);

(ii) for every {yh} ⊂ H1(	,R3) such that yh ⇀ y in H1(	,R3),

lim inf
h→0

Ih(yh) � J (y);

(iii) for any y ∈ H1(	,R3), there exists a sequence {yh} ⊂ H1(	,R3) such that
yh ⇀ y in H1(	,R3) and

lim sup
h→0

Ih(yh) � J (y).

The result for the case κh = 0 was provded by Conti and Dolzmann [10]
(Theorem 3.1 there).

Theorem 4.2. (Conti and Dolzmann [10]) In the weak topology of H1(	,R3),
the functional

Ih
e (y) :=

ˆ
	

W3D(∇h y)dz

is equicoercive and �-converges to J given in (4.4).

Remark 4.3. A different dimension reduction theory for hyperelastic incompress-
ible materials was developed by Trabelsi [30,31] under similar assumptions.
Trabelsi shows that the membrane energy density (integrand of J ) is given by
((W2D)rc)qc. From the proof of Theorem 5.1 below, it follows that Wrc

2D = Wqc
2D

(and hence (Wrc
2D)qc = Wqc

2D). Thus the two limits agree.

Remark 4.4. We remark on some general properties of the purely elastic portion
of our nematic elastomer energy density. W0 : R3×3 → R in (3.5) is Lipschitz
continuous, W0 + 3μ/2 is non-negative, and there exists a constant c such that

1

c
|F |2 − c � W0(F) � c(|F |2 + 1). (4.6)

The energy W2D in (4.5) is given by

W2D(F̃) =
{
minc∈R3 W3D(F̃ |c) if rank F̃ = 2,

+∞ else ,
(4.7)
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and satisfies

1

c

(
|F̃ |2 + 1

δ(F̃)2

)
− c � W2D(F̃) � c

(
|F̃ |2 + 1

δ(F̃)2
+ 1

)
(4.8)

with δ(F̃) = | adj(F̃)|. The effective energy densityWqc
2D is quasiconvex, Lipschitz

continuous on bounded sets and its definition does not depend on the choice of the
domain ω, as long as it is open, bounded and |∂ω| = 0. Furthermore, there exists
(Lemma 3.1, [10]) a constant c′ such that

1

c′ |F̃ |2 − c′ � Wqc
2D(F̃) � c′|F̃ |2 + c′. (4.9)

Proof of Theorem 4.1. Note that trivially,

Ih(y) �
ˆ

	

inf
n∈S2

We(∇h y, n)dz = Ih
e (y). (4.10)

Therefore, the compactness and lower bound (Properties (i) and (ii) in Theorem
4.1) follow from Theorem 4.2. It remains to show Property (iii). This is done in
Proposition 4.6. ��

Before we proceed, we note that the fact that the �-limit is independent of
κh/h is similar to the following result of Shu [29]. He also provides some heuristic
insight. Since the membrane limit optimizes the energy density over the third col-
umn of the deformation gradient, there is little to be gained by oscillations parallel
to the thickness. Consequently, penalizing these oscillations with κh does not affect
the �-limit.

Theorem 4.5. (Shu [29]) Let κh → 0 as h → 0, and W : 	 → R be continuous
and bounded from above and below by |F |p ± c respectively for some c. Then, in
the weak topology of W 1,p, the functional

ˆ
	

{κh |∇h∇h y|2 + W (∇h y)} dz,

�-converges to

{´
ω
{Wqc

2D(∇′y)}dz′ i f ∂3y = 0 almost everywhere,

∞ else,

where W2D(F̃) := infc∈R3 W3D(F̃ |c).
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4.3. Construction of Recovery Sequence

It remains to construct a recovery sequence to prove J is the �-limit to Ih .

Proposition 4.6. For every y ∈ H1(	,R3) independent of z3, there exists a
sequence {(yh, nh)} ⊂ C∞(	̄,R3) × C1(	̄,S2) such that yh ⇀ y in H1(	,R3)

and

lim sup
h→0

Ĩh(yh, nh) � J (y). (4.11)

Our construction also draws heavily from Conti and Dolzmann [10]. The
main difference is that we need additional regularity for our recovery sequence nh .
We summarize the Conti–Dolzmann construction in two lemmas. The first lemma
regards the construction of a sequence to go from the energy density W2D to Wqc

2D
onω. For our analysis, the important observation is that in the limit the deformation
gradient is constant on an increasingly large subset ofω. The second lemma regards
the extension of smooth maps on ω to incompressible deformations on 	h .

Lemma 4.7. (Conti and Dolzmann [10]) For any y ∈ H1(ω,R3), there exists
a sequence {y j } ⊂ C∞(ω̄,R3) such that rank∇ y j = 2 everywhere, y j ⇀ y in
H1(ω,R3) as j → ∞, and

lim sup
j→∞

ˆ
ω

W2D(∇′y j )dx ′ �
ˆ

ω

Wqc
2D(∇′y) dx ′. (4.12)

Moreover, the sequence has the following properties:

(i) for each j ∈ N, y j is defined on a triangulation T j of ω which is the set of at

most countably many disjoint open triangle T j
i whose union up to a null set

is equal to ω, and � j is the jump set given by

� j := ∂ω ∪
⋃
i

∂T j
i ;

(ii) there is a sequence of boundary layers {η j } such that η j > 0 and η j → 0 as
j → ∞, and the set �η j is defined to be

�η j := {x ′ ∈ ω : dist(x ′, � j ) < η j };

(iii) if T j
i \ �η j is nonempty, then ∇′y j is a constant on this set and we set

F̃ j
i := ∇ y j (x

′), x ′ ∈ T j
i \ �η j ; (4.13)

(iv) adj∇′y j is bounded away from zero in the sense that for some ε j > 0 suffi-
ciently small, the inequality

| adj∇′y j | � ε j > 0,

holds everywhere.
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Lemma 4.8. (Conti and Dolzmann [10]) Let w, ν ∈ C∞(ω̄,R3) satisfy

det(∇′w|ν) = 1 in ω.

Then there exists an h0 > 0 and an extension v ∈ C∞(ω̄×(−h0, h0),R3) such that
v(x ′, 0) = w(x ′) and det∇v = 1 everywhere. Moreover, for all x3 ∈ (−h0, h0)
the pointwise bound

|∇v(x) − (∇′w|ν)(x ′)| � C |x3|

holds, where C can depend on w and ν.

We construct a recovery sequence and thereby prove Proposition 4.6 in 4 parts.
In Part 1, we take a sequence of smooth maps y j as in Lemma 4.7 and show that
we can construct a sequence of smooth vector fields c j such that det(∇′y j |c j ) = 1
in ω. In Part 2, we use Lemma 4.8 to extend y j appropriately to a deformation on
	, i.e y h

j . In Part 3, we construct a sequence of C1 director fields n h
j on 	 which

enables passage from We to W2D . Finally, in Part 4 we show that we can take an
appropriate diagonal sequence h j → 0 as j → ∞ which proves Proposition 4.6.

Proof of Proposition 4.6. Let y ∈ H1(	,R3) independent of z3. Then y is
bounded in H1(ω,R3) (with abuse of notation). By Lemma 4.7, we find a sequence
{y j } ⊂ C∞(ω̄,R3) such that rank∇′y j = 2 everywhere, y j ⇀ y in H1(ω,R3),
the energy is bounded in the sense of (4.12), and the sequence satisfies properties
(i)–(iv) from the lemma.
Part 1. We define the smooth vector field c j on the triangulation T j for y j in

Lemma 4.7 (i). On each nonempty T j
i \ �η j there exists a constant F̃

j
i defined in

Lemma 4.7 (iii), and it is full rank. Then by (4.7), W3D(F̃ j
i |c) has a minimizer for

c ∈ R
3. Motivated by this observation, we let

c j
i := arg min

c∈R3
W3D(F̃ j

i |c), (4.14)

which via (3.4) implies

det(F̃ j
i |c j

i ) = 1. (4.15)

Consider the vector field,

c j
0 := adj∇′y j

| adj∇′y j |2 . (4.16)

This is well-defined given Lemma 4.7 (iv). Moreover, since y j is smooth, c j
0 ∈

C∞(ω̄,R3). Further, since det(F̃ |c) = (adj F̃)T c, we have

det(∇′y j |c j
0 ) = 1 in ω. (4.17)
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Let c j ∈ C∞(ω̄,R3) be given by

c j :=
{
c j
0 + ψi

(
c j
i − c j

0

)
on each T j

i \ �η j with nonempty open subsets,

c j
0 otherwise on ω.

(4.18)

Here ψi ∈ C∞
0 (T j

i \ �η j , [0, 1]) is a cutoff function which equals 1 at least on

the entirety of the subset T j
i \ �2η j . Notice that when c j = c j

0 , the determinant
constraint is satisfied trivially by (4.17). Conversely, combining (4.15) and (4.17),

det(∇′y j |c j ) = (adj∇′y j )T
(
c j
0 + ψi

(
c j
i − c j

0

))

= det(∇′y j |c j
0 ) + ψi

(
det(F̃ j

i |c j
i ) − det(∇′y j |c j

0 )
)

= 1 on each T j
i \ �η j with nonempty open subsets ,

since ∇′y j = F̃ j
i on this set. We then conclude det(∇′y j |c j ) = 1 in ω, and this

completes Part 1.
Part 2 Fix j ∈ N. From Part 1 we have y j , c j ∈ C∞(ω̄,R3) satisfying

det(∇′y j |c j ) = 1 in ω. Hence, there exists an h j
0 > 0 and a v ∈ C∞(ω̄ ×

(−h j
0 , h j

0 )) such that the properties of Lemma 4.8 hold replacing w with y j and

ν with c j . Let h ∈ (0, h j
0 ) and ỹ h

j ∈ C∞(	̄h,R
3) be the restriction of v to 	h .

Further, let y h
j ∈ C∞(	̄,R3) be associated to ỹ h

j using (4.1). From Lemma 4.8,

we conclude y h
j (z′, 0) = y j (z′), det∇h y h

j (z) = 1 and

|∇h y
h
j (z) − (∇′y j |c j )(z′)| � C jh|z3| � C jh, z ∈ 	. (4.19)

Here C j is a constant depending on y j and c j , and the second inequality above
follows since z3 ∈ (−1/2, 1/2). From these properties we conclude as h → 0,

y h
j → y j in H1(	,R3) and

1

h
∂3y

h
j → c j in L2(	,R3). (4.20)

This concludes Part 2.
Part 3 As in Part 2, we keep j ∈ N fixed. From Lemma 4.7(i) we have that⋃

i T
j

i = ω (up to a set of zero measure), though this union can be countably
infinite. From herein, we choose a finite collection of N ( j) triangles so that

ˆ
ω\∪N ( j)

i=1 T j
i

{
W2D(∇′y j ) + 1

}
dz′ � 1

j
. (4.21)

Then for each of the N ( j) triangles for which the set T j
i \ �η j is nonempty, let

n j
i := arg min

n∈S2
We(F̃ j

i |c j
i , n). (4.22)
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Further, let q j be the piecewise constant function on R2 given by

q j (z
′) :=

{
n j
i if i ∈ {1, . . . , N ( j)}, T j

i \ �η j is nonempty, and z′ ∈ T j
i ,

q otherwise in R2.

(4.23)

Here q is a fixed vector in S
2. Then q j maps to S

2, but it is not in C1. To correct
this, we employ the approach used by DeSimone in [13] (see Assertion 1).

Observe by construction the range of q j is finite. Hence, there exists an s j ∈ S
2

and a closed ball Bε(s j ) of radius ε > 0 centered at s j such that (range q j ) ∩
Bε(s j ) = ∅. Then the stereographic projection πs j with the projection point as s j
maps the range of q j to a bounded subset of R2. Let ψη j be a standard mollifier
with η j as in Lemma 4.7(ii), and consider the composition

ñ j := π−1
s j ◦ (ψη j ∗ (πs j ◦ q j

))
.

This composition is well-defined since the range of q j is outside a neighborhood
of the projection point s j . Further, ñ j maps to S2 using the definition of the inverse
of the stereographic projection. Moreover, π−1

s j is differentiable and its argument

ψη j ∗ (πs j ◦ q j ) is smooth. Hence, ñ j ∈ C1(R2,S2).
Let n j ∈ C1(ω̄,S2) be the restriction of ñ j to the closure of ω. Further, let

n h
j ∈ C1(	̄,S2) be the extension of n j to 	 via n h

j (z) := n j (z′) for each z ∈ 	.

As a final remark for this part, observe for i ∈ {1, . . . , N ( j)} and z′ ∈ T j
i \ �2η j ,

n h
j (z) = n j (z

′) = π−1
s j ◦ (ψη j ∗ (πs j ◦ q j

))
(z′)

= π−1
s j ◦

(ˆ
R2

ψη j (z
′ − ξ)(πs j ◦ q j )(ξ) dξ

)

= π−1
s j ◦

(
(πs j ◦ q j )

ˆ
Bη j (z

′)
ψη j (z

′ − ξ) dξ

)

= π−1
s j ◦ (πs j ◦ q j ) = n j

i , (4.24)

since Bη j (z
′)∩∂T j

i = ∅ and soq j is constant on Bη j (z
′), see (4.23). This completes

Part 3.
Part 4 From Parts 1–3, we have for each j ∈ N the functions y h

j ∈ C∞(	̄,R3) and

n h
j ∈ C1(	̄,S2) parameterized by h ∈ (0, h j

0 ). It remains to bound the functional

Ih appropriately and take the lim sup. For the bounding arguments, C shall refer
to positive constant independent of h and j which may change from line to line.
From (3.1), when We is finite, it satisfies a Lipschitz condition

|We(F, n) − We(G, n)| � |
−1/2|2 (|F | + |G|) |F − G|
� C (|F | + |G|) |F − G|.
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As asserted above, |
−1/2| is uniformly bounded for n ∈ S
2. Then since for every

z ∈ 	, det(∇h y h
j )(z) = 1, det(∇′y j |c j )(z′) = 1 and n h

j (z) = n j (z′) ∈ S
2,

ˆ
	

We(∇h y
h
j , n h

j ) dz �
ˆ

ω

We(∇′y j |c j , n j ) dz
′ +

ˆ
	

|We(∇h y
h
j , n h

j )

− We(∇′y j |c j , n h
j )| dz

�
ˆ

ω

We(∇′y j |c j , n j ) dz
′ + E1

h, j . (4.25)

Here E1
h, j is the estimate obtained from the Lipschitz condition and an application

of Hölder’s inequality,

E1
h, j :=C

(
‖∇h y

h
j ‖L2(	,R3)+‖(∇′y j |c j )‖L2(	,R3)

)
‖∇h y

h
j −(∇′y j |c j )‖L2(	,R3).

(4.26)

We now focus on the first term in the upper bound (4.25). For i ∈ {1, . . . , N ( j)}
and z′ ∈ T j

i \ �2η j , observe

We(∇′y j (z′)|c j (z′), n j (z
′)) = We(F̃ j

i |c j
i , n j

i ) by (4.13), (4.18) and (4.24);
= min

n∈S2
We(F̃ j

i |c j
i , n) by (4.22);

= min
c∈R3

W3D(F̃ j
i |c) by (3.4) and (4.14);

= W2D(F̃ j
i ) = W2D(∇′y j (z′)) by (4.7).

Then, ˆ
ω

We(∇′y j |c j , n j ) dz
′ �

ˆ
(∪N ( j)

i=1 T j
i )\�2η j

W2D(∇′y j )dz′

+
ˆ

ω\∪N ( j)
i=1 T j

i

We(∇′y j |c j , n j ) dz
′

+
ˆ

�2η j

W e(∇′y j |c j , n j ) dz
′, (4.27)

using our result for We and since each integrand is nonnegative.
We bound We(∇′y j |c j , n j ) in (4.27). To obtain this bound notice |c j

0 |2 =
1/| adj∇′y j |2 from (4.16). Further, using the coercivity condition of W0 in (4.6),

the definition of c j
i in (4.14), and the growth in (4.8),

|c j
i |2 � W0(F̃

j
i |c j

i ) = W2D(F̃ j
i ) � c

(
|F̃ j

i |2 + 1

| adj F̃ j
i |2

+ 1

)
.

Following these observations, we notice on the sets T j
i \ �η j , ∇ y j = F̃ j

i by
definition [see Lemma 4.7 (iii)] and therefore,

|c j |2 � 2(|c j
0 |2 + |c j

i |2) � C

(
|∇′y j |2 + 1

| adj∇′y j |2 + 1

)
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since c j is as in (4.18). On the exceptional sets, by definition c j = c j
0 , and the right

side above is still an upper bound to |c j |2. Hence everywhere in ω,

We(∇′y j |c j , n j ) � c
(
|∇′y j |2 + |c j |2 + 1

)

� C

(
|∇′y j |2 + 1

| adj∇′y j |2 + 1

)

� C
(
W2D(∇′y j ) + 1

)
,

using the growth in (3.10), the bound above and the coercivity in (4.8). This implies
the bound ˆ

ω

We(∇′y j |c j , n j ) dz
′ �

ˆ
ω

W2D(∇′y j ) dz′ + E2
j , (4.28)

where recalling (4.27) and (4.21), the remainder E2
j is given by

E2
j := C

(ˆ
�2η j

{
W2D(∇′y j ) + 1

}
dz′ + 1

j

)
. (4.29)

To recap, from (4.25) and (4.28), the entropic part of the energy is bounded
above by the estimate

ˆ
	

We(∇h y
h
j , n h

j ) �
ˆ

ω

W2D(∇′y j ) dz′ + E1
h, j + E2

j . (4.30)

It remains to bound the elasticity of the nematic mesogens.
Consider the second term of Ĩh in (4.2). Our deformations and director fields

have sufficient regularity, so

κh

h2

ˆ
	

|(∇n h
j )(adj∇ y h

j )|2 dz = κh

ˆ
	

|(∇′n j |0)(adj∇h y
h
j )|2 dz. (4.31)

Here, we used the identity (1/h)(∇n)(adj∇ y) = (∇hn)(∇h y) and the definition
n h
j (z) := n j (z′). We bound the integrand by a constant independent of h. To do

this, we first consider the pointwise estimate in (4.19). An application of the reverse
triangle inequality on this bound yields for small h the pointwise estimate

|∂1y h
j (z)|2 + |∂2y h

j (z)|2 + 1

h2
|∂3y h

j (z)|2 = |∇h y
h
j (z)|2

�
(
C jh + |(∇′y j |c j )(z′)|

)2
� (M̃ j/3)

1/2, z ∈ 	. (4.32)

Here M̃ j is a constant which depends only on y j and c j . Then F = ( f1| f2| f3) ∈
R
3×3 satisfies

| adj F |2 = | cof F |2 = |( f2 × f3| f3 × f1| f1 × f2)|2
= | f2 × f3|2 + | f3 × f1|2 + | f1 × f2|2
� | f2|2| f3|2 + | f3|2| f1|2 + | f1|2| f2|2,
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and so we can bound from above (4.31),

κh

ˆ
	

|(∇′n j |0)(adj∇h y)|2 dz � κh

ˆ
	

|∇′n j |2| adj∇h y
h
j |2 dz

� κh

ˆ
	

|∇′n j |2
(

1

h2
|∂2y h

j |2|∂3y h
j |2 + 1

h2
|∂3y h

j |2|∂1y h
j |2 + |∂1y j |2|∂2y j |2

)
dz.

Applying the bound in (4.32) to this estimate, we conclude as desired

κh

h2

ˆ
	

|(adj∇n h
j )(∇ y h

j )|2 dz � κh M̃ j

ˆ
	

|∇′n j |2 dz =: κhM j . (4.33)

Here Mj is a constant depending only on y j , c j and n j .
To complete the proof of Proposition 4.6, it remains to show that in the limit as

h → 0, the energy is bounded as in (4.11). From (4.30) and (4.33),

Ĩh(y h
j , n h

j ) �
ˆ

ω

W2D(∇′y j ) dz′ + E1
h, j + E2

j + κhM j . (4.34)

We now fix j ∈ N and take the limit as h → 0. Notice from (4.20), ‖∇h y h
j −

(∇′y j |c j )‖L2 → 0 as h → 0. This implies ‖∇h y h
j ‖L2 � C j for some constant C j

independent of h. With these two observations, we conclude E1
h, j → 0 as h → 0,

see (4.26). Further, since κh → 0 as h → 0, κhM j → 0 since Mj is independent
of h. Collecting these results and combining with (4.34),

lim sup
h→0

Ĩh(y h
j , n h

j ) � lim sup
h→0

(ˆ
ω

W2D(∇′y j )dz′ + E1
h, j + E2

j + κhM j

)

=
ˆ

ω

W2D(∇′y j )dz′ + E2
j .

Finally, using (4.12), the fact that |�2η j | → 0 as j → ∞ [η j → 0, see Lemma 4.7
(ii)), and (4.29)] we conclude

lim sup
j→∞

lim sup
h→0

Ĩh(y h
j , n h

j ) � lim sup
j→∞

(ˆ
ω

W2D(∇′y j )dz′ + E2
j

)

�
ˆ

ω

Wqc
2D(∇′y) dz′.

We now choose a diagonal sequence h j → 0 as j → ∞ so that this estimate is
satisfied and yh j ⇀ y in H1(	,R3). This completes the proof. ��

5. Effective Energy of Nematic Elastomer Membranes

In this section,we provide an explicit formula for the effective energy of nematic
elastomer membranes.
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5.1. Effective Energy

Theorem 5.1. Let We as in (3.3). For any F̃ ∈ R
3×2, let

W2D(F̃) = inf
c∈R3,n∈S2

We((F̃ |c), n). (5.1)

Then, the effective energy of the nematic membrane Wqc
2D ≡ Wmem is given by

Wmem(F̃) = μ

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if (λM , δ) ∈ L,

r1/3
(
2δ(F̃)

r1/2
+ 1

δ(F̃)2

)
− 3 if (λM , δ) ∈ M,

r1/3
(

λM (F̃)2

r + 2
λM (F̃)

)
− 3 if (λM , δ) ∈ W,

r1/3
(

λM (F̃)2

r + δ(F̃)2

λM (F̃)2
+ 1

δ(F̃)2

)
− 3 if (λM , δ) ∈ S.

(5.2)

Here, 0 � λm(F̃) � λM (F̃) are the singular values of F̃ (that is, the eigenvalues

of (F̃T F̃)1/2), δ(F̃) = λm(F̃)λM (F̃) =
√
det F̃T F̃ and

L := {(λM , δ) : λ2M � δ, λM � r1/3, δ � r1/6}, (5.3)

W := {(λM , δ) : λM > r1/3, δ < λ
1/2
M }, (5.4)

M := {(λM , δ) : δ > r1/6, r−1/2λ2M < δ � λ2M }, (5.5)

S := {(λM , δ) : λ
1/2
M � δ � r−1/2λ2M }. (5.6)

Remark 5.2. Some care needs to be taken when dealing with extended real-valued
quasiconvex functions. Indeed, the fact that a function f : R3×2 → R ∪ {+∞} is
quasiconvex (according to the defintion of Section 2 of this paper) does not imply
that the associated functional

´
ω
f (∇′y′)dx ′ is sequentially weak∗ lower semi-

continuous on W 1,∞(ω,R3) [3]. In the current situation, thanks to Remark 4.4,
the relaxed energy density has polynomial growth and therefore weak lower semi-
ncontinuity is true for the relaxed functional. Alternatively, we refer the interested
readers to Ball and James [1] where a more restrictive definition of quasicon-
vexity for extended real value functions is presented. This definition guarantees
weak lower semicontinuity of functionals associated to extended real value inte-
grand functions. It is an easy computation to show that both the approach pursued
in what follows and the relaxation technique based on the alternative definition of
quasiconvex envelope give the same results for the functionals considered in this
paper.

Proof of Theorem 5.1. Recall that the quasiconvex envelope of an extended value
function is not in general bounded from above by the rank-one convex envelope.
However, we show that this bound is true forW2D . By Remark 4.4,Wqc

2D is a finite-
valued, a quasiconvex function and Wqc

2D = (Wqc
2D)qc. Therefore, if we substitute

f = Wqc
2D in (2.5) we obtain

(
Wqc

2D

)pc �
(
Wqc

2D

)qc �
(
Wqc

2D

)rc
. (5.7)
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Then, by (2.4) we conclude

W pc
2D ≡ (

W pc
2D

)pc �
(
Wqc

2D

)pc �
(
Wqc

2D

)qc �
(
Wqc

2D

)rc � Wrc
2D (5.8)

and recover the classical inequality

(W2D)pc � (W2D)qc � (W2D)rc. (5.9)

We show in Lemma 5.3 and Lemma 5.4 thatWmem � W pc
2D .We show in Lemma

5.5 that Wrc
2D � Wmem . Combining these with (5.9),

Wmem � W pc
2D � Wqc

2D � Wrc
2D � Wmem, (5.10)

and the result follows. ��

5.2. Step 1: A formula for W2D

Lemma 5.3. For W2D defined in (5.1),

W2D(F̃) =
{
mini∈{1,...,3} ϕi (λM (F̃), δ(F̃)), if rank F̃ = 2

+∞ otherwise
(5.11)

where

min
i∈{1,...,3} ϕi (λM , δ) =

⎧⎪⎨
⎪⎩

ϕ1(λM , δ) if λMδ � r1/2, δ � λ2M
ϕ2(λM , δ) if λMδ � r−1/2, δ � λ2M
ϕ3(λM , δ) if λMδ ∈ (r−1/2, r1/2), δ � λ2M

(5.12)

with

ϕ1(λM , δ) := μ

2

{
r1/3

[λ2M
r

+ δ2

λ2M
+ 1

δ2

]
− 3

}
, (5.13)

ϕ2(λM , δ) := μ

2

{
r1/3

[
λ2M + δ2

λ2M
+ 1

rδ2

]
− 3

}
, (5.14)

ϕ3(λM , δ) :=
⎧⎨
⎩

μ
2

{
r1/3

[
δ2

λ2M
+ 2 λM

r1/2δ

]
− 3

}
if λMδ ∈ (r−1/2, r1/2),

+∞ otherwise .
(5.15)

Proof. The proof is an explicit calculation. To begin, if rank F̃ �= 2, then
det(F̃ |c) = 0 for every c ∈ R

3. This impliesWe(F̃ |c, n) = +∞ for every c ∈ R
3.

Then W2D(F̃) = +∞. Thus for the remainder of this section, we restrict our
attention to the case that rank F̃ = 2.

Let f F̃,n(c) := W0(F̃ |c, n) and gF̃ (c) := cT adj F̃−1.Then, infc∈R3 We(F̃ |c, n)

is equivalent to the optimization

inf
c∈R3

{
f F̃,n(c) : gF̃ (c) = 0

}
.
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Here f F̃,n is a convex, differentiable function and gF̃ is an affine equality constraint.
It follows that c0 is a global minimizer of this optimization if and only if there exists
a λ ∈ R such that ∇ f F̃,n(c0)+λ∇gF̃ (c0) = 0 (see for instance [8], Section 5.5.3).
Solving this equation, we obtain

c0 = 
 adj F̃

|
1/2 adj F̃ |2
for 
 defined in (3.2).

Let W̃ (F̃, n) := W0(F̃ |c0, n). Since c0 is a globalminimizer for the constrained
optimization above, W̃ (F̃, n) = infc∈R3 We(F̃ |c, n). Then from (5.1), it follows
that infn∈S2 W̃ (F̃, n) = W2D(F̃). For this optimization, we simplify the analysis
through a change of variables. We write F̃ = QDR for Q ∈ SO(3), R ∈ O(2)
and D a diagonal matrix as in (2.2) with λM � λm > 0 as the singular values. We
can say λm > 0 since rank F̃ = 2. Additionally, we set n = Qm, and impose the
S
2 constraint via m2

3 = 1 − m2
1 − m2

2. Then by direct substitution,

W̃ (QDR, Qm) = μ

2

{
r1/3

[
γ λ2M − ξ2(λ

2
M − λ2m) + 1

r(γ − 1)λ2Mλ2m

]
− 3

}

=: ϕ̃(λM , λm, γ, ξ2),

where

γ = ξ1 + ξ2, ξi (mi ) = 1 − αm2
i , i = 1, 2, α = r − 1

r
.

Here α ∈ [0, 1) since r � 1. Further, we let δ = λMλm , and set

ϕ(λM , δ, γ, ξ2) := ϕ̃(λM , δ/λM , γ, ξ2)

= μ

2

{
r1/3

[
γ λ2M − ξ2

(
λ2M −

(
δ

λM

)2
)

+ 1

r(γ − 1)δ2

]
− 3

}
.

(5.16)

Note that the constraint λM � λm > 0 implies λ2M � δ > 0.
W̃ is dependent on only four constrained variables. Consider the closed set

B := {
(γ, ξ2) : γ − ξ2 � 1, ξ2 ∈ [1 − α, 1] and γ ∈ [2 − α, 2]} .

B combined with the constraint λ2M � δ > 0 give the admissible set for ϕ. Hence,
we have

W2D(F̃) = inf
n∈S2

W̃ (F̃, n)

= inf
γ,ξ2

{
ϕ(λM (F̃), δ(F̃), γ, ξ2) : λ2M � δ > 0, (γ, ξ2) ∈ B

}
.

Observe that

inf
ξ2

{
ϕ(λM , δ, γ, ξ2) : λ2M � δ > 0, (γ, ξ2) ∈ B

}
= ϕ(λM , δ, γ, 1)

=: ϕ0(λM , δ, γ )
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by (5.16) since the second term in the brackets is non-positive. Then,

W2D(F̃) = inf
γ

{
ϕ0(λM (F̃), δ(F̃), γ ) : λ2M � δ > 0, γ ∈ [2 − α, 2]

}
,

where

ϕ0(λM , δ, γ ) = μ

2

{
r1/3

[
(γ − 1)λ2M +

(
δ

λM

)2

+ 1

r(γ − 1)δ2

]
− 3

}
.

ϕ0 is a continuous function on this constrained set (which is moreover bounded
in γ ). It is also differentiable for γ in the open domain (2 − α, 2). It follows that
the infimum is attained. Further, γ̄ minimizes ϕ0 only if it is on the boundary, i.e
γ̄ = 2−α or γ̄ = 2, or it is a critical point, that is ∂γ ϕ0(γ̄ ) = 0 and γ̄ ∈ (2−α, 2).

We proceed case by case. Letting γ̄ = 2 − α, observe ϕ0(λM , δ, 2 − α) =
ϕ1(λM , δ) in (5.13). For the other boundary γ̄ = 2, we obtain ϕ0(λM , δ, 2) =
ϕ2(λM , δ) in (5.14). Finally, in computing the critical point ∂γ ϕ0(γ̄ ) = 0, we
obtain

γ̄ = r−1/2

λMδ
+ 1.

Direct substitution ϕ0(λM , δ, γ̄ ) yields the equation given for the finite portion of
ϕ3 in (5.15). Recalling that γ̄ must lie in the domain (2 − α, 2), we set ϕ3 = +∞
if γ̄ does not lie in this set. This is the full result in (5.11).

To complete the proof we compute the minimum in (5.11) thus yielding (5.12).
First, observe that

ϕ1 − ϕ3 = μ

2
r1/3

(
r−1/2λM − 1

δ

)2
� 0 �⇒ ϕ3 � ϕ1,

ϕ2 − ϕ3 = μ

2
r1/3

(
λM − r−1/2

δ

)2
� 0 �⇒ ϕ3 � ϕ2,

thus proving (5.12) in the region λMδ ∈ (r−1/2, r1/2). To complete the computation
in the remaining regions observe that

ϕ1 − ϕ2 = μ

2
r1/3

(
1 − 1

r

)(1
δ

+ λM

)(1
δ

− λM

)
,

yielding ϕ1 � ϕ2 if δ � λ−1
M and ϕ2 � ϕ1 if δ � λ−1

M . Therefore we have

min
1,...,3

ϕi (λM , δ) = ϕ1 if λMδ � r1/2, δ � λ2M

and

min
1,...,3

ϕi (λM , δ) = ϕ2 if λMδ � r−1/2, δ � λ2M

as required. ��
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5.3. Step 2: Upper Bound or Wmem � W pc
2D

Lemma 5.4. LetWmem be as in (5.2) andW2D as in (5.1). Then, for each F̃ ∈ R
3×2,

Wmem(F̃) � W pc
2D(F̃). (5.17)

Proof. We prove this in two parts. In Part 1, we prove that Wmem is polyconvex
and in Part 2 we prove that Wmem � W2D . The result follows.
Part 1. We now show thatWmem is polyconvex. First, observe from (5.2) that there
exists a function ψ : R2+ → R (here by R+ we denote the set of all non-negative
real numbers) such that

Wmem(F̃) = ψ(λM (F̃), δ(F̃)). (5.18)

It also follows by verification (also see Proposition 2 ofDeSimone andDolzmann
[14]) that ψ is convex and ψ is non-decreasing in each argument (that is, ψ(s, t)
in nondecreasing in s for fixed t and nondecreasing in t for fixed s. We then notice
that λM (F̃) = supm∈S1 |F̃m| is convex in F̃ . Further, δ(F̃) = | adj F̃ | is convex in
adj F̃ . Since the composition of convex function with a non-decreasing and convex
function results in a convex function,we conclude that there exists a convex function
g : R3×2 × R

3 → R such that

ψ(λM (F̃), δ(F̃)) = g(F̃, adj F̃).

Combining with (5.18), we conclude that

Wmem(F̃) = g(F̃, adj F̃) (5.19)

for convex g. By definition of polyconvexity, Wmem is polyconvex.
Part 2. We now show that Wmem � W2D . We show by explicit calculation in the
Appendix A that

Wmem(F̃) � ϕi (λm(F̃), δ(F̃)), i = 1, . . . , 3.

It follows from (5.11) that

Wmem(F̃) � min
i∈{1,...,3} ϕi (λm(F̃), δ(F̃)) = W2D(F̃).

��

5.4. Step 3: Lower Bound or Wrc
2D � Wmem

Lemma 5.5. LetWmem be as in (5.2) andW2D as in (5.1). Then, for each F̃ ∈ R
3×2,

Wrc
2D(F̃) � Wmem(F̃). (5.20)

The proof makes repeated use of lamination. We collect the calculations in the
following proposition.
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Proposition 5.6. Let q, d ∈ R with q > 0, q2 � d and define

K := {
G̃ ∈ R

3×2 : λM (G̃) = q, δ(G̃) = d
}
,

Mw := {
G̃ ∈ R

3×2 : λM (G̃) = q, δ(G̃) ∈ [0, d]},
Ms := {

G̃ ∈ R
3×2 : λM (G̃) ∈ [d1/2, q], δ(G̃) = d

}
.

Then, for d > 0 Mw ⊂ K(1) and for d � 0 Ms ⊂ K(1).

Proof. We begin with Mw. Let G̃ ∈ Mw with λM (G̃) = q, δ(G̃) = δ̄ ∈ [0, d].
Using the polar decomposition theorem, we can take

G̃ =
⎛
⎝
q 0

0 δ̄
q

0 0

⎞
⎠ .

Define

G̃± =
⎛
⎝
q 0
0 ± d

q
0 0

⎞
⎠ ; θ = 1

2

(
1 + δ̄

d

)
.

Note that G̃± ∈ K, θ ∈ [0, 1] since δ̄ � d, rank (G̃+ − G̃−) = 1 and G̃ =
θ G̃+ + (1 − θ)G̃−. Therefore, Mw ⊂ K(1).

The proof of Ms ⊂ K(1) is similar (also see [14, Theorem 3.1]). Again, using
the polar decomposition theorem, we can take G̃ ∈ Ms as a diagonal matrix. First,
let us assume c �= 0 and

√
d � c � q which corresponds to c � d/c and define

G̃± :=
⎛
⎝
c ±ξ

0 d
c

0 0

⎞
⎠ . (5.21)

Note that δ(G̃±) = d. Further, the eigenvalues of (G̃±)T G̃± are

1

2

(
ξ2 + d2

c2
+ c2

)
±
√
1

4

(
ξ2 + d2

c2
+ c2

)2

− d2,

so the choice

ξ2 = d2

q2
+ q2 − d2

c2
− c2 = 1

q2

[
q2 − d2

c2

][
q2 − c2

]
� 0

makes λM (G̃±) = q. Therefore, G̃± ∈ K. Further, G̃ = 1
2 G̃

+ + 1
2 G̃

− and rank
(G̃+ − G̃−) � 1. For the case G̃ ∈ Ms such that G̃ = 0, replace the diagonal
entries in (5.21) with 0 and repeat the argument. Therefore, Ms ⊂ K(1). ��
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(a) (b)
Fig. 2. a Idea of the proof of Lemma 5.5. b level curves of W2D in the space (λM , δ). The
web version of this article contains the above plot figures in color

Proof of Lemma 5.5. We show that

Wrc
2D(F̃) � Wmem(F̃) (5.22)

region by region. In the region S, note W2D = Wmem and the result follows.
Now, let F̃ ∈ W with q = λM (F̃) � r1/3 and d = δ(F̃) � q1/2. This

corresponds to the point A in Fig. 2. Let

K̃ = {
G̃ ∈ R

3×2 : λM (G̃) = q, δ(G̃) = q1/2
}
.

This set corresponds to the point B in Fig. 2a. ByProposition 5.6,we have F̃ ∈ K̃(1).
Therefore, there exists λ ∈ [0, 1] and G̃1, G̃2 ∈ K̃ with rank(G̃1 − G̃2) � 1 such
that

Wrc
2D(F̃) � λWrc

2D(G̃1) + (1 − λ)Wrc
2D(G̃2)

� λW2D(G̃1) + (1 − λ)W2D(G̃2)

= μ

2

[
r1/3

(q2
r

+ 2

q

)
− 3

]

= Wmem(F̃).

Above, the first two inequalities follow from the fact Wrc
2D is rank-one convex

and Wrc
2D � W2D . The following two equalities are by explicit verification of the

formula.
Now, let F̃ ∈ M with d = δ(F̃) � r1/6 and q = λM (F̃) ∈ [d1/2, r1/4d1/2].

This corresponds to the point C in Fig. 2a. Let

K̃ = {
G̃ ∈ R

3×2 : λM (G̃) = r1/4d1/2, δ(G̃) = d
}
.

This set corresponds to the point D in Fig. 2a. Therefore, by Proposition 5.6, we
have F̃ ∈ K̃(1). Therefore, arguing as before, Wrc

2D(F̃) � Wmem(F̃).
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Finally, let F̃ ∈ L with q = λM (F̃) � r1/3 and d = δ(F̃) � min{q2, r1/6}.
This corresponds to the point P in Fig. 2a. Let

K̃ = {
G̃ ∈ R

3×2 : λM (G̃) = r1/3, δ(G̃) = d
}

and

K = {
G̃ ∈ R

3×2 : λM (G̃) = r1/3, δ(G̃) = r1/6
}
.

These sets correspond to the points Q and Z in Fig. 2a respectively. From Propo-
sition 5.6, F̃ ∈ K̃(1). Further, again by Proposition 5.6, K̃ ⊂ K(1). In other words,
F̃ ∈ K(2). We can again argue as above to show that Wrc

2D(F̃) � 0 = Wmem(F̃) as
required.

��

6. Characterization of Fine-Scale Features

The energy densityW2D is not quasiconvex. Thus a membrane with this energy
density is able to relax its energy to that of Wqc

2D through the introduction of fine-
scale features. In this section, we characterize these features. Briefly, we show that
the features in regionM are essentially planar involving oscillations of the director
(that is, no wrinkling) while those in W are necessarily wrinkles (that is, uniform
director). Further, we show that there are no fine-scale features in region S.

To characterize the fine-scale features, we consider the two-dimensional energy

I2D(y) =
ˆ

ω

W2D(∇′y)dx ′ (6.1)

subject to affine boundary conditions, i.e the space of deformations AF̄ := {y ∈
H1(ω,R3) : y− F̄ x ′ ∈ H1

0 (ω,R3)}with F̄ ∈ R
3×2. It is known (cf. Lemma 3.1(ii)

and Lemma 6.2, [10]) that there exists weakly converging minimizing sequences
that satisfy

y j ⇀ F̄ x ′ in H1(ω,R3) with I2D(y j ) → inf
AF̄

I2D = |ω|Wmem(F̄) as

j → ∞. (6.2)

Let νx be any H1 gradient Young measure generated by such a sequence. Since
{y j } is a minimizing sequence for I2D , it is also a minimizing sequence for the
relaxation

´
ω
Wmem(∇′y)dx ′. Further, since Wmem is non-negative and bounded

as in (4.9), it follows from Theorem 1.3 ofKinderlehrer and Pedregal [20] that

f (∇ y j ) ⇀ 〈νx , f 〉 in L1(A) for any

f ∈
{
g ∈ C(R3×2) : sup

G̃∈R3×2

|g(G̃)|
|G̃|2 + 1

< +∞
}

, (6.3)

and for every measurable A ⊂ ω whenever the sequence { f (∇ y j )} converges. As
an immediate consequence, we obtain the identities
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〈νx , id〉 = F̄, 〈νx ,Wmem〉 = Wmem(F̄) almost everywhere x ∈ ω. (6.4)

Now, sinceW2D is a normal integrand, the fundamental theorem ofYoungmeasures
gives an inequality, lim inf j→∞ I2D(y j ) �

´
ω
〈νx ,W2D〉dx (cf. Definition 6.27 and

Theorem 8.6, [18]). Thus,

|ω|Wmem(F̄) = lim
j→∞ I2D(y j ) �

ˆ
ω

〈νx ,W2D〉dx �
ˆ

ω

〈νx ,Wmem〉dx
= |ω|Wmem(F̄)

where we use the fact that W2D � Wmem . It follows |ω|Wmem(F̄) =´
ω
〈νx ,W2D〉dx . Again using the fact that W2D � Wmem and (6.4) we conclude

〈νx ,W2D〉 = Wmem(F̄) almost everywhere x ∈ ω. (6.5)

By the localizing properties of H1 gradient Young measures (cf. Theorem 2.3
of [19]), we conclude that the fine-scale features which arise from minimizing
sequences of W2D are described by the homogenous H1 gradient Young measures
which admit the identities,

〈ν, id〉 = F̄, 〈ν,W2D〉 = Wmem(F̄). (6.6)

We present a characterization of this in the following theorem.

Theorem 6.1. Let r > 1, F̄ ∈ R
3×2 and let

MF̄ := {
ν ∈ Mqc, 〈ν, id〉 = F̄, 〈ν,W2D〉 = Wmem(F̄)

}
(6.7)

be the set of homogenous H1 gradient Young measures that satisfy (6.6). Then,
there exists ν̄ ∈ MF̄ . Further, the following is true.

1. (The region M) Suppose (λM (F̄), δ(F̄)) ∈ M. Set δ̄ := δ(F̄). Let the sin-
gular value decomposition [cf. (2.2)] of F̄ be given by F̄ = Q̄DF̄ R̄ with
Q̄ ∈ SO(3), R̄ ∈ O(2). If ν̄ ∈ MF̄ , then

supp ν̄ ⊂ Kδ̄ := {G̃ ∈ R
3×2 : G̃ = Q̄QDδ̄R, Q ∈ SO(3), R ∈ O(2),

det(R)Q f3 = det(R̄) f3} (6.8)

where f3 ∈ S
2 is orthogonal to the plane of the reference configuration of the

membrane and

Dδ̄ = δ̄1/2

⎛
⎝
r1/4 0
0 r−1/4

0 0

⎞
⎠ . (6.9)

2. (The region W) Suppose (λM (F̄), δ(F̄)) ∈ W . Set λ̄M = λM (F̄). Further, set
eM ∈ S

2 and fM ∈ S
1 to be the unique pair (up to a change in sign) of vectors

which satisfy F̄ fM = λ̄MeM. If ν̄ ∈ MF̄ , then

supp ν̄ ⊂ Kλ̄M
:= {G̃ ∈ R

3×2 : (λM , δ)(G̃) = (λ̄M , λ̄
1/2
M ), G̃ fM = λ̄MeM }.
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3. (The region L) Suppose (λM (F̄), δ(F̄)) ∈ L.
If ν̄ ∈ MF̄ , then

supp ν̄ ⊂ K0 := {G̃ ∈ R
3×2 : (λM , δ)(G̃) ∈ L with δ/λM = r−1/6}.

4. (The region S) Suppose (λM (F̄), δ(F̄)) ∈ S. If ν̄ ∈ MF̄ , then ν̄ is a Dirac
mass. So supp ν̄ = {F̄}.
Theorem 6.1 has striking physical implications. First, consider Part 1 corre-

sponding to region M and consider the particular case when Q̄ = I . Consider
any G̃ ∈ supp ν̄ and its characterization in (6.8). Since det(R)Q f3 = det(R̄) f3, it
follows QDδ̄Rv · f3 = 0 for each v ∈ R

2. In other words, QDδ̄R maps R2 to R2.
Thus, all the oscillations are in the plane. Further, for such matrices G̃,

W2D(G̃) = W0(G̃|c) = We(G̃|c, n)

for c = (0, 0, δ̄−1)T and n · f3 = 0. The first of these identities follows from the
fact that (λM (G̃), δ(G̃)) ∈ S (see Lemma 6.2 below) and Lemma 5.3, while the
second follows from the fact that the largest principal value of (G̃|c) is λM (G̃).
Importantly, the director is always in the plane. In summary, the director oscillates
in the plane and oscillations create no out of plane deformation. The case Q̄ �= I is
similar except the plane is oriented by the rotation Q̄. Thus, the fine-scale features
inM is limited to in-plane oscillations of the director.

Now consider Part 2 corresponding to region W . First consider the case when

eM =
(

fM
0

)
. Using an argument as before, for any G̃ ∈ supp ν̄,

W2D(G̃) = W0(G̃|c) = We(G̃|c, n)

for c · eM = 0, |c| = λ̄
−1/2
M and n = eM . In other words, the director n is fixed with

an in-plane direction eM . Further, notice that G̃ is necessarily of the form

G̃ = Q

⎛
⎝

λ̄M 0
0 λ̄

−1/2
M

0 0

⎞
⎠

in the eM −
(

f ⊥
M
0

)
− f3 frame for Q ∈ SO(3) that satisfies QeM = eM . In other

words, the membrane is uniformly deformed and the fine features are related to
rotations about a fixed axis eM . In other words, oscillations represent wrinkling and

these oscillations are always perpendicular to eM . The general case eM �=
(

fM
0

)

is similar except a uniform rotation orients

(
fM
0

)
to eM .

Part 3 says that regionL involves only the spontaneously deformed states while
Part 4 says that there are no fine-scale features in S.

We now turn to the proofs of the theorems. They rely on the following lemmas.
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Lemma 6.2. Let F̄ ∈ R
3×2 and δ̄ satisfy the hypotheses in Theorem 6.1 Part 1.

Then any ν̄ ∈ MF̄ satisfies

supp ν̄ ⊂ {G̃ ∈ R
3×2 : (λM , δ)(G̃) = (r1/4δ̄1/2, δ̄)}. (6.10)

Lemma 6.3. Let F̄ ∈ R
3×2 and λ̄M satisfy the hypotheses of Theorem 6.1 Part 2.

Then any ν̄ ∈ MF̄ satisfies

supp ν̄ ⊂ {G̃ ∈ R
3×2 : (λM , δ)(G̃) = (λ̄M , λ̄

1/2
M )}. (6.11)

Proof of Lemma 6.2. Recall from Section 5 that we may write Wmem = ψ ◦
(λM , δ) and W2D = ϕ ◦ (λM , δ) where ψ (ϕ) : R → R (R ∪ {+∞}) respectively
for R = {(s, t) ∈ R

2 : s2 � t, t � 0}. Recall also that ψ is a convex, and it is
non-decreasing in each argument. Also, ψ � ϕ. Finally, (λM , δ) : R3×2 → R are
quasiconvex functions bounded quadratically. Therefore, for every homogenous
H1 gradient Young measure with 〈ν, id〉 = F̄ ,

Wmem(F̄) = ψ ◦ (λM , δ)(〈ν, id〉)
� ψ(〈ν, λM 〉, 〈ν, δ〉)
� 〈ν, ψ ◦ (λM , δ)〉
� 〈ν, ϕ ◦ (λM , δ)〉 = 〈ν,W2D〉. (6.12)

Here, the first inequality follows from the Jensen’s inequality satisfied by homoge-
nous H1 gradient Young measures since (λM , δ) are quasiconvex with the appro-
priate growth and ψ is non-decreasing in each argument. The second inequality
follows from the convexity of ψ , and the third follows since ψ � ϕ.

Now, for any ν̄ ∈ MF̄ , each inequality in (6.12) is an equality. This restricts the
support of ν̄. To deduce this restriction, suppose that the point (λM (F̄), δ(F̄)) ∈ M
corresponds to point C in Fig. 2a.

Consider the first inequality. By quasiconvexity and growth conditions,
〈ν̄, λM 〉 � λM (F̄) and 〈ν̄, δ〉 � δ(F̄). In the λM − δ space in Fig. 2a, these
inequalities imply the point (〈ν̄, λM 〉, 〈ν̄, δ〉) cannot be to the left or below point
C. Further, every point to the right and above the point C has higher ψ (cf. Fig. 1)
except the line between and including the points C and D. Hence,

(〈ν̄, λM 〉, 〈ν̄, δ〉) ∈ CD. (6.13)

Next, consider the last inequality. Since ϕ = ψ only on S ∪ {(s, t) ∈ L : t/s =
r−1/6} =: S ′ (see Fig. 2b), we conclude

supp ν̄ ⊂
{
G̃ ∈ R

3×2 : (λM , δ)(G̃) ∈ S ′}. (6.14)

It remains to consider the middle inequality in (6.12). We do this in Proposition
6.4 below. If the middle inequality is an equality, we show in the proposition the
support of ν̄ satisfies (6.10). This completes the proof. ��
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Proposition 6.4. Let F̄ and δ̄ be as in the Theorem 6.1 Part 1. If ν̄ satisfies (6.13),
(6.14) and

ψ(〈ν̄, λM 〉, 〈ν̄, δ〉) = 〈ν̄, ψ ◦ (λM , δ)〉, (6.15)

then the support of ν̄ satisfies (6.10) in Lemma 6.2.

Proof. Set A+ = {G̃ : (λM , δ)(G̃) ∈ S ∩ {δ > δ̄}} and
θ+ =

ˆ
A+

d ν̄(G).

If θ+ = 1, then by the polyconvexity of δ, 〈ν̄, δ〉 > δ̄ contradicting (6.13). Now
consider the case 1 > θ+ > 0. Set

λ+
M := 1

θ+

ˆ
A+

λM (G̃) dν̄(G̃), λ−
M := 1

1 − θ+

ˆ
R3×2\A+

λM (G̃) dν̄(G̃),

δ+ := 1

θ+

ˆ
A+

δ(G̃) dν̄(G̃), δ− := 1

1 − θ+

ˆ
R3×2\A+

δ(G̃) dν̄(G̃).

Clearly, δ+ > δ̄ and

θ+λ+
M + (1 − θ+)λ−

M = 〈ν̄, λM 〉,
θ+δ+ + (1 − θ+)δ− = 〈ν̄, δ〉. (6.16)

From the equality in (6.16), δ− < δ̄. Further, notice from the convexity of ψ that

ψ(λ+
M , δ+) � 1

θ+

ˆ
A+

ψ
(
λM (G̃), δ(G̃)

)
dν̄(G̃), (6.17)

ψ(λ−
M , δ−) � 1

1 − θ+

ˆ
R3×2\A+

ψ
(
λM (G̃), δ(G̃)

)
dν̄(G̃). (6.18)

Now, in the λM − δ space shown in Fig. 2a, the definitions above imply that the
point (λ+

M , δ+) is a point above the line CD while (λ−
M , δ−) is below the line CD

such that the line joining these points intersect CD. It is easy to verify by explicitly
computing the derivative along such lines (or by inspecting Fig. 1), thatψ is strictly
convex in such segments. Therefore,

ψ(〈ν̄, λM 〉, 〈ν̄, δ〉) = ψ
(
θ+λ+

M + (1 − θ+)λ−
M , θ+δ+ + (1 − θ+)δ−)

< θ+ψ(λ+
M , δ+) + (1 − θ+)ψ(λ−

M , δ−) (6.19)

� 〈ν̄, ψ ◦ (λM , δ)〉.
The last inequality follows from (6.17). However, this contradicts the assumption
(6.15).

Therefore, θ+ = 0, and

supp ν̄ ⊂ {(λM , δ)(G̃) ∈ S ′ : δ(G̃) � δ̄}, (6.20)

which is the compliment of A+ in the set given in (6.14).
Finally, given (6.20) and since δ̄ = 〈ν̄, δ〉 (see 6.13), it follows that supp ν̄ ⊂

{(λM , δ)(G̃) ∈ S ′ : δ(G̃) = δ̄}. But this is just a single point in the λM − δ space,
and it’s given by (6.10). Thus, we conclude the proposition. ��
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The proof of Lemma 6.3 is very similar and is omitted.

Proof of Theorem 6.1. The existence of a ν̄ ∈ MF̄ follows from the construction
in Section 5.4.
Part 1 For any F̄ with (λM (F̄), δ(F̄)) ∈ M and for any ν̄ ∈ MF̄ , the support of ν̄

satisfies (6.10) by Lemma 6.2. Note that (λM , δ)(G̃) = (r1/4δ̄1/2, δ̄) is equivalent
to stating that the principal values of G̃ are r1/4δ̄1/2 and r−1/4δ̄1/2. Therefore, by
the singular value decomposition theorem (2.2), it follows that

supp ν̄ ⊂ {G̃ ∈ R
3×2 : G̃ = QDδ̄R, Q ∈ SO(3), R ∈ O(2)} =: Ksupp (6.21)

for Dδ̄ is given in (6.9).
Now, for any D ∈ R

3×2, Q ∈ SO(3), R ∈ O(2), it is an easy calculation to find
that adj(QDR) = det(R)Q adj D. Further for D of the form (2.3), adj D = λ1λ2 f3.
Further, the adjugate is a minor and therefore 〈ν̄, adj〉 = adj(〈ν̄, id〉) = adj F̄ .
Recalling the support (6.21) of ν̄, we conclude

det(R̄)Q̄ f3= 1

δ̄
〈ν̄, adj〉= 1

δ̄

ˆ
R3×2

adj G̃ dν̄(G̃)=
ˆ
Ksupp

det(R(G̃))Q(G̃) f3 dν̄(G̃).

Note that det(R̄)Q̄ f3 ∈ S
2, and det(R(G̃))Q(G̃) f3 ∈ S

2 for each G̃ ∈ Ksupp.
In other words, the equation above states that an average of a distribution on S

2

yields an element of S2. However, since each element of S2 is an extreme point, it
means that the distribution is concentrated at a single point on S2. That is, if we let
Q0(G̃) = Q̄T Q(G̃), then det(R̄) f3 = det(R(G̃))Q0(G̃) f3. The result follows.
Part 2 For any F̄ with (λM (F̄), δ(F̄)) ∈ W and for any ν̄ ∈ MF̄ , it follows from
the definition of eM , fM thatˆ

R3×2
G̃ fM dν̄(G̃) = λ̄MeM . (6.22)

So, ˆ
R3×2

|G̃ fM | dν̄(G̃) �
∣∣∣∣
ˆ
R3×2

G̃ fM dν̄(G̃)

∣∣∣∣ = |F̄ fM | = λ̄M .

However, from Lemma 6.3, we see that maxe∈S1 |G̃e| = λM (G̃) = λ̄M for each
G̃ ∈ supp ν̄. Therefore, |G̃ fM | � λ̄M for each G̃ ∈ supp ν̄. We conclude that
|G̃ fM | = λ̄M for each G̃ ∈ supp ν̄. Setting G̃ fM = λ̄Me(G̃) for e(G̃) ∈ S

2 and
substituting in (6.22), we conclude that e(G̃) = eM for for each G̃ ∈ supp ν̄. The
result follows.
Part 3 For any F̄ with (λM (F̄), δ(F̄)) ∈ L, the result follows from the fact that
W2D is non-negative and W2D(G̃) = 0 if and only if G̃ ∈ K0.
Part 4 Finally, let F̄ ∈ R

3×2 such that (λM (F̄), δ(F̄)) ∈ S, ν̄ ∈ MF̄ . Recall
W2D = ϕ ◦ (λM , δ) and ϕ is strictly convex in S. Thus,

supp ν̄ ⊂ {G̃ ∈ R
3×2 : (λM , δ)(G̃) = (λM , δ)(F̄)}.

This is actually equivalent to the set (6.23) given in Proposition 6.5 below since
λm = δ/λM . The result follows from the proposition. ��
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Proposition 6.5. Let F̄ ∈ R
3×2 such that the singular values satisfy the strict

inequality

λM (F̄) > λm(F̄) � 0.

Suppose ν is a probabilitymeasure on the space ofR3×2matrices such that 〈ν, id〉 =
F̄ and

supp ν ⊂ {G̃ ∈ R
3×2 : (λM , λm)(G̃) = (λM , λm)(F̄)}. (6.23)

Then ν (up to a set of measure zero) is a Dirac mass at F̄ .

Proof. To begin, set (λ̄M , λ̄m) = (λM (F̄), λm(F̄)). We let {ē1, ē2} ⊂ R
3 and

{ f̄1, f̄2} ⊂ R
2 be sets of orthonormal vectors such that

F̄ = λ̄Mē1 ⊗ f̄1 + λ̄mē2 ⊗ f̄2. (6.24)

Let ϕ f̄1(G̃) := |G̃ f̄1|2. This is a convex function. Therefore, by Jensen’s inequality
and given 〈ν, id〉 = F̄ with F̄ satisfying (6.24),

〈ν, ϕ f̄1〉 � ϕ f̄1(F̄) = λ̄2M . (6.25)

Conversley, applying a similar change of variables (6.24) to the G̃ ∈ supp ν, we
see

〈ν, ϕ f̄1〉 = ´ (|(λ̄Me1 ⊗ f1 + λ̄me2 ⊗ f2) f̄1|2
)
(G̃) dν(G̃)

= ´ (
λ̄2M cos(θ(G̃))2 + λ̄2m sin(θ(G̃))2

)
dν(G̃)

{
= λ̄2M if ν({G̃ ∈ R

3×2 : sin(θ(G̃)) �= 0}) = 0

< λ̄2M otherwise,

since by assumption λ̄M > λ̄m . Here, cos θ denotes the direction cosine between f1
and f̄1. Combining this observation with (6.25), we deduce (up to a set of measure
zero), sin(θ(G̃)) = 0. This implies (up to a change in sign) f1 = f̄1 in measure.
Since f1 and f2 are orthogonal, it follows that (up to a change in sign) f2 = f̄2 in
measure.

We repeat this argument substituting ϕ f̄1 with the convex function ϕē1(G̃) =
|G̃T ē1|2. It follows that (up to a change in sign) e1 = ē1 and e2 = ē2 in measure.
The fact that 〈ν, id〉 = F̄ ensures the eigenvectors are fixed and not oscillating in
sign with some non-zero measure. The conclusion follows. ��
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7. State of Stress and Connection to Tension Field Theory

In this section, we seek to understand the state of stress in the membrane.
Formally, consider an incompressible energy density W3D of the form in (3.4)

and assumeW0 isC1 differentiable. The Piola–Kirchhoff and the Cauchy stress are
defined as

P(F) = ∇FW0(F) − p(adj F)T σ(F) = (∇FW0(F))FT − pI (7.1)

where p is the indeterminate pressure (Lagrange multiplier to enforce incompress-
ibility) and I is identity. We find p by requiring the tractions to be zero on faces of
themembrane. Alternately, recall that we obtain themembrane energy densityW2D
by writing F = (F̃ |c) and minimizing with c (when F̃ is full rank). The minimizer
cF̃ satisfies

∇cW0(F̃ |cF̃ ) − p(adj F̃) = 0, cF̃ · adj F̃ = det F = 1

�⇒ p = ∇cW0(F̃ |cF̃ ) · cF̃ . (7.2)

Above, ∇c denotes derivative with respect to the third column of the deformation
gradient. Substituting this back in (7.1) and writing ∇FW0 = (∇F̃W0|∇cW0) we
obtain a characterization of the state of stress in the membrane:

P2D(F̃) := P(F̃ |cF̃ ) = (∇F̃W0|0) = (∇F̃W2D|0),
σ2D(F̃) := σ(F̃ |cF̃ ) = (∇F̃W2D)F̃T . (7.3)

Notice that these depend only on W2D .
However, the effective energy of the membrane is not W2D but its relaxation.

In other words, energy minimization with the integral of W2D can lead to fine-
scale oscillations, and thus the stress may also oscillate on a fine scale. Therefore,
we need to understand the overall of effective stress. Ball et al. [2] have shown
that if f : R

n×m → R is differentiable and satisfies certain growth conditions,
then f qc is a C1 function. Moreover, ∇ f qc can be written in terms of ∇ f and a
homogeneousW 1,p gradient Youngmeasure ν generated byminimizing sequences
of
´
	

f (∇ y) dx , that is

∇ f qc =
ˆ

∇ f dν. (7.4)

Unfortunately W2D is an extended function (equal to +∞ when rank F̃ < 2), and
the analogous result is unknown. However, our resulting effective energy Wqc

2D ≡
Wmem is finite everywhere and is differentiable except on a boundary. So we have
the following characterization of the stress:

Theorem 7.1. Let r > 1, let D ⊂ R
2 be the open set D := {(s, t) ∈ R

2+ : 0 < t <

s2}, and let F̄ ∈ R
3×2 such that (λM (F̄), δ(F̄)) ∈ D. If νF̄ is a homogenous H1
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Fig. 3. The effective stress of nematic elastomer membranes

gradient Young measure generated by minimizing sequences for the energy I2D in
the space AF̄ [see (6.1)] with support in D, then

∇F̄W
mem =

ˆ
∇G̃W2D dνF̄ (G̃), (7.5)

(∇F̄W
mem)F̄T =

ˆ
(∇G̃W2D)G̃T dνF̄ (G̃). (7.6)

Further, the Cauchy stress σmem(F̄) := (∇F̄W
mem)F̄T has the following explicit

characterization.

σmem = μr1/3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if (λM , δ) ∈ L ∩ D,(
δ

r1/2
− 1

δ2

)
Id2 if (λM , δ) ∈ M ∩ D,(

λ2M
r − 1

λM

)
e1 ⊗ e1 if (λM , δ) ∈ W ∩ D,

(
λ2M
r − 1

δ2

)
e1 ⊗ e1 +

(
δ2

λ2M
− 1

δ2

)
e2 ⊗ e2 if (λM , δ) ∈ S ∩ D.

(7.7)

Before we prove the theorem, we make a few comments on the physical implica-
tions. First, the membrane is always in a state of plane stress in the tangent plane.
Second, the principal stresses (the eigenvalues) are always non-negative. There-
fore, the membrane can not sustain compressive stress. Further, the stress is zero
in region L, uniaxial tension in W , equi-biaxial tension in M and biaxial tension
in S. The different regimes are shown in Fig. 3.

To understand this further, consider the special case r = 1 when this theory
reduces to that of neo-Hookean elastic membrane. The region M now disappears
and we are left with regions L,W and S with zero, uniaxial tension and biaxial
tension respectively as in the traditional tension field theory [25,26,28].
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Nematic elastomers membranes with r > 1 are characterized by an additional
regionM where the state of stress is equi-biaxial tension. This is true even though
the principal stretches (λM , δ/λM ) can be unequal. In other words, one can have
shear strain but no shear stress. This is a potentially useful attribute of liquid crystal
elastomers in membrane applications.

We turn now to the proof of Theorem 7.1.

Proof of Theorem 7.1. Recall from Section 5 that we may write W2D = ϕ ◦
(λM , δ) and Wmem = ψ ◦ (λM , δ). Now, any G̃ ∈ R

3×2 has the representation

G̃ = λMe1 ⊗ f1 + λme2 ⊗ f2, (7.8)

where {e1, e2} ⊂ R
3 and { f1, f2} ⊂ R

2 are orthonormal and λM � λm � 0 are
the singular values of G̃. These singular values (and therefore δ = λmλM ) are
continuously differentiable with respect to G̃ as long as they are distinct, that is
λM > λm with

∇G̃λM = e1 ⊗ f1, ∇G̃λm = e2 ⊗ f2,

(cf. Corollary 3.5 andTheorem5.1, [27]).We can use this fact and the representation
for ϕ,ψ in Theorem 5.1 and Lemma 5.3 to conclude that W2D and Wmem are
continuously differentiable on {G̃ : (λM (G̃), δ(G̃)) ∈ D}.

The rest of the proof is by computation and verification.
Case 1 (λM (F̄), δ(F̄)) ∈ M ∩ D. Set δ̄ = δ(F̄). According to Theorem 6.1 Part
1, supp νF̄ ⊂ Kδ̄ . We can now apply the representation (7.8) to F̄ and G̃ ∈ supp ν̄

to write the identity F̄ = 〈νF̄ , id〉 as

λ̄Mē1 ⊗ f̄1 +
(

δ̄

λ̄M

)
ē2 ⊗ f̄2

= δ̄1/2
ˆ
Kδ̄

(
r1/4e1 ⊗ f1 + r−1/4e2 ⊗ f2

)
(G̃) dνF̄ (G̃). (7.9)

Another implication of Theorem 6.1 is that any G̃ ∈ supp νF̄ can be written as
Q̄QDδ̄R where Q̄ ∈ SO(3) arises from the identity F̄ = Q̄DF̄ R̄, for some
Q ∈ SO(3) and R ∈ O(2) such that det(R)Q f3 = det(R̄) f3. Here, f3 ∈ S

2 is
orthogonal to the reference configuration of the membrane. Without loss of gener-
ality, we assume f3 = (0, 0, 1)T . Now for each α = 1, 2 there is a corresponding
cα > 0 such that eα · (Q̄ f3) = cα(Q̄QDδ̄R fα) · (Q̄ f3) = cα(Dδ̄R fα) · (QT f3) =
cα(det R/ det R̄)(Dδ̄R fα) · f3 = 0. In other words, the vectors e1 and e2 span the
plane perpendicular to Q̄ f3 for each G̃ ∈ supp νF̄ . Moreover Q̄ f3 = ē1 × ē2, and
therefore ē1 and ē2 also span this plane. Now, let R0 be a 90 degree rotation about
f3 and Q0 be a 90 degree rotation about Q̄ f3 so that R̄T

0 f̄1 = f̄2, R̄T
0 f̄2 = − f̄1

and Q̄0ē1 = ē2, Q̄0ē2 = −ē1. Since e1 − e2 span the same plane as ē1 − ē2, and
f1 − f2 the same plane as f̄1 − f̄2, we have the following relation. If det(R̄) = 1,
then

R̄T
0 f1 = f2, Q̄0e1 = e2 if det(R) = 1,

R̄T
0 f1 = − f2, Q̄0e1 = −e2 if det(R) = −1. (7.10)
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If det(R̄) = −1, then

R̄T
0 f1 = − f2, Q̄0e1 = −e2, if det(R) = 1,

R̄T
0 f1 = f2, Q̄0e1 = e2, if det(R) = −1. (7.11)

Thus, pre-multiplying and post-multiplying the identity in (7.9) by δ̄−1/2 Q̄0 and
R̄0 respectively yields the identity

(
λ̄M

δ̄1/2

)
ē2 ⊗ f̄2 +

(
δ̄1/2

λ̄M

)
ē1 ⊗ f̄1

=
ˆ
Kδ̄

(
r1/4 Q̄0e1 ⊗ R̄T

0 f1 + r−1/4 Q̄0e2 ⊗ R̄T
0 f2

)
(G̃) dνF̄ (G̃)

=
ˆ
Kδ̄

(
r1/4e2 ⊗ f2 + r−1/4e1 ⊗ f1

)
(G̃) dνF̄ (G̃) (7.12)

by (7.10) and (7.11).
It is easy to verify ∂ϕ

∂λM
(r1/4δ̄1/2, δ̄) = 0. Thus, combining explicit differentia-

tion evaluated in Kδ̄ with the identity (7.12), we observeˆ
∇G̃W2D dνF̄ (G̃) =

ˆ (
∂ϕ

∂λM
∇G̃λM + ∂ϕ

∂δ
∇G̃δ

)
dνF̄ (G̃)

=
ˆ
Kδ̄

(
∂ϕ

∂δ

[
δ

λM
e1 ⊗ f1 + λMe2 ⊗ f2

])
(G̃) dνF̄ (G̃)

= μr1/3
ˆ
Kδ̄

([
δ

λ2M
− 1

δ3

][
δ

λM
e1 ⊗ f1 + λMe2 ⊗ f2

])
(G̃) dνF̄ (G̃)

= μr1/3
(

δ̄1/2

r1/2
− 1

δ̄3/2

) ˆ
Kδ̄

(
r−1/4e1 ⊗ f1 + r1/4e2 ⊗ f2

)
(G̃) dνF̄ (G̃)

= μr1/3
(

δ̄1/2

r1/2
− 1

δ̄3/2

)((
δ̄1/2

λ̄M

)
ē1 ⊗ f̄1 +

(
λ̄M

δ̄1/2

)
ē2 ⊗ f̄2

)

= μr1/3
{(

δ̄

λ̄Mr1/2
− 1

λ̄M δ̄

)
ē1 ⊗ f̄1 +

(
λ̄M

r1/2
− λ̄M

δ̄2

)
ē2 ⊗ f̄2

}
. (7.13)

Finally, it can be verified explicitly that ∇F̄W
mem coincides with (7.13). This gives

the identity (7.5) for region M ∩ D.
Similarly,ˆ
∇G̃W2DG̃

T dνF̄ (G̃) =
ˆ
Kδ̄

(
∂ϕ

∂δ
∇G̃δ

)
G̃T dνF̄ (G̃)

= μr1/3
ˆ
Kδ̄

(
δ2

λ2M
− 1

δ2

)
(e1 ⊗ e1 + e2 ⊗ e2) (G̃) dνF̄ (G̃)

= μr1/3
(

δ̄

r1/2
− 1

δ̄2

)ˆ
Kδ̄

(e1 ⊗ e1 + e2 ⊗ e2)(G̃) dνF̄ (G̃)

= μr1/3
(

δ̄

r1/2
− 1

δ̄2

)
Id2. (7.14)
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The fourth equality uses the fact that the basis {e1(G̃), e2(G̃)} always spans the
same plane. Finally, it can be verified explicitly that ∇F̄W

mem F̄T coincides with
(7.14) in this region. This gives the identities (7.6) and (7.7) for region M ∩ D.
Case 2 (λM (F̄), δ(F̄)) ∈ W ∩ D. Set λ̄M = λM (F̄). Following Theorem 6.1 Part
2, supp νF̄ ⊂ Kλ̄M

and so any G̃ ∈ supp νF̄ satisfies (λM (G̃), δ(G̃)) = (λ̄M , λ̄
1/2
M ).

In addition, for the vectors f̄1 ∈ S
1 and ē1 ∈ S

2 such that F̄ f̄1 = ē1, G̃ ∈ supp νF̄
also satisfies G̃ f̄1 = ē1. Writing G̃ ∈ supp νF̄ as in (7.8), we observe using the
properties of the set Kλ̄M

,

G̃ f̄1 = (λMe1 ⊗ f1 + (δ/λM )e2 ⊗ f2) f̄1

= (λ̄Me1 ⊗ f1 + λ̄
−1/2
M e2 ⊗ f2) f̄1

= λ̄M cos(θ)e1 + λ̄
−1/2
M sin(θ)e2 = λ̄Mē1. (7.15)

Here, cos(θ) denotes the direction cosine from f̄1 to f1. Applying the squared norm
to the identities in (7.15) yields |G̃ f̄1|2 = (λ̄M )2 cos(θ)2+λ̄−1

M sin(θ)2 = λ̄2M . Since
λ̄2M > λ̄−1

M in W , we deduce from this equation that cos(θ) = ±1. That is, f1 is
up to a change in sign equal to f̄1. Substituting for f1 back into (7.15), we find
e1 = ±ē1 when f1 = ± f̄1, or alternatively

e1 ⊗ f1 = ē1 ⊗ f̄1 ∀ G̃ ∈ supp νF̄ . (7.16)

Now, it is easy to verify explicitly ∂ϕ
∂δ

(λ̄M , λ̄
1/2
M ) = 0. Thus, combining explicit

differentiation evaluated in Kλ̄M
with (7.16),

ˆ
∇G̃W2D dνF̄ (G̃) =

ˆ
Kλ̄M

(
∂ϕ

∂λM
∇G̃λM

)
dνF̄ (G̃)

= μr1/3
ˆ
Kλ̄M

([
λM

r
− δ2

λ3M

]
e1 ⊗ f1

)
(G̃) dνF̄ (G̃)

= μr1/3
(

λ̄M

r
− 1

λ̄2M

) ˆ
Kλ̄M

e1 ⊗ f1(G̃) dνF̄ (G̃)

= μr1/3
(

λ̄M

r
− 1

λ̄2M

)
ē1 ⊗ f̄1. (7.17)

Finally, it can be verified explicitly that∇F̄W
mem coincides with (7.17). Therefore,

the identity (7.5) is satisfied forW .
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Similarly,

ˆ
∇G̃W2DG̃

T dνF̄ (G̃) =
ˆ
Kλ̄M

(
∂ϕ

∂λM
∇G̃λM

)
G̃T dνF̄ (G̃)

= μr1/3
ˆ
Kλ̄M

(
λ2M

r2
− δ2

λ2M

)
e1 ⊗ e1(G̃) dνF̄ (G̃)

= μr1/3
(

λ̄2M

r
− 1

λ̄M

) ˆ
Kλ̄M

e1 ⊗ e1(G̃) dνF̄ (G̃)

= μr1/3
(

λ̄2M

r
− 1

λ̄M

)
ē1 ⊗ ē1. (7.18)

For the last equality, recall e1 = ±ē1 for G̃ ∈ supp νF̄ . Finally, it is easy to verify
explicitly that ∇F̄W

mem F̄T coincides with (7.18) in this region. Thus, we have the
identities (7.6) and (7.7) for region W ∩ D.
Case 3 (λM (F̄), δ(F̄)) ∈ L ∩ D. According to Theorem 6.1 Part 3, supp ν̄ ⊂ K0.
We see that ∇W2D = 0 onK0 and similarly ∇Wmem = 0 on L∩D. The identities
(7.5), (7.6) and (7.7) for region L ∩ D.
Case 4 (λM (F̄), δ(F̄)) ∈ S ∩ D. According to Theorem 6.1 Part 4, supp ν̄ is a
Dirac mass. According to Theorem 5.1, W2D and Wmem coincide on S ∩ D. The
identities (7.5), (7.6) and (7.7) for region S ∩ D. ��

A. Appendix A: Proof of Part 2 of Lemma 5.4

A.1. Wmem � ϕ2

First, in the region L of liquid behavior there is nothing to prove. Therefore,
referring to Fig. 4, we are left with showing that Wmem � ϕ2 in the light gray
region of equations for r1/3 < λM � r−1/2δ−1. Recalling that in this region
Wmem = μ

2 [r1/3((λM (F̃))2r−1 + 2(λM (F̃))−1 − 3], it is enough to prove that

λ2M

r
+ 2

λM
� inf

δ

{(
λ2M + δ2

λ2M
+ 1

rδ2

)
for: δ � r−1/2λ−1

M , λM > r1/3
}
.

(A.1)

The critical point of λ2M + δ2λ−2
M + r−1δ−2 is attained at δ2 = λMr−1/2. This

corresponds to a minimum, yielding the following inequality

λ2M

r
+ 2

λM
� λ2M + 2

λMr1/2
(A.2)

which is indeed true for λM > r1/3. Then, evaluation of λ2M + δ2λ−2
M + r−1δ−2

along the curve δ = r−1/2λ−1
M does not improve the inequality above.
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Fig. 4. Regions where the comparison forWmem and the functions ϕ1 (dark gray), ϕ2 (light
gray) and ϕ3 (silver/intermediate gray) occurs. The web version of this article contains the
above plot figures in color

A.2. Wmem � ϕ1

We focus on the interval δ � r1/2λ−1
M corresponding (if again we ignore the

region L) to the dark gray area in Fig. 4. This set has a non-empty intersection with
both the simple-laminate regions M, W and the regime of solid behavior S. First
of all, notice that if (λM , δ) ∈ S then Wmem ≡ W2D and there is nothing to prove.

Let us assume r−1/2λ2M < δ � λ2M , δ � r1/2λ−1
M . This corresponds to a subset

of M for which we have Wmem = μ
2 [r1/3(2δ(F̃)r−1/2 + (δ(F̃))−2) − 3]. We are

left with the inequality

2δ

r1/2
+ 1

δ2
�

λ2M

r
+ δ2

λ2M
+ 1

δ2
for r−1/2λ2M < δ � λ2M , δ � r1/2λ−1

M ,

which is trivially true.
Then, let us assume r1/2λ−1

M � δ < λ
1/2
M . This is a subset of the region W

for which we have Wmem = μ
2 {r1/3[((λM (F̃))2r−1 + 2(λM (F̃))−1] − 3}. The

inequality

λ2M

r
+ 2

λM
�

λ2M

r
+ δ2

λ2M
+ 1

δ2
for r1/2λ−1

M � δ < λ
1/2
M ,

follows trivially.

A.3. Wmem � ϕ3

We now focus on the interval δ−1r−1/2 < λM < δ−1r1/2 corresponding to the
silver/intermediate gray area in Fig. 4.
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Notice that if we remove the region L (for which there is nothing to prove), we
are left with two disjoint subsets.

We begin with considering λM > r1/3. Since in this region Wmem =
μ
2 [r1/3((λM (F̃))2r−1 + 2(λM (F̃))−1 − 3], it is enough to show that

λ2M

r
+ 2

λM
� inf

{( δ2

λ2M
+ 2λM

r1/2δ

)
for

1

λM
r−1/2 < δ <

1

λM
r1/2, λM > r1/3

}
,

which is equivalent to

λ2M

r
+ 2

λM
� inf

{(
λ2m + 2 1

r1/2λm

)
for 1

λ2M
r−1/2

< λm < 1
λ2M

r1/2, λM > r1/3
}
. (A.3)

The critical point of λ2m + 2r−1/2λ−1
m is attained at (λm, λM ) = (r−1/6, r1/3) ∈ L .

Then, we have to evaluate λ2m + 2r−1/2λ−1
m on the curves of equations λm =

λ−2
M r−1/2 and λm = λ−2

M r1/2. Notice that, for λm = r1/2λ−2
M we have that ϕ3 = ϕ1

while for λm = r−1/2λ−2
M we have ϕ3 = ϕ2 and from discussion of these cases in

Paragraph A.2 and A.1, respectively, it therefore follows that (A.3) is true.
To conclude, we have to prove that the inequality Wmem � ϕ3 holds in the

remaining subregion defined by λ2M � δ, δ > r1/6 and δ < r1/2λ−1
M . This subset is

contained in the regionM in which case we have Wmem = μ
2 [r1/3(2δ(F̃)r−1/2 +

(δ(F̃))−2) − 3]. Therefore, we are left with proving the inequality

2δ

r1/2
+ 1

δ2
� inf

{( δ2

λ2M
+ 2λM

r1/2δ

)
for δ1/2 � λM , δ > r1/6, δ <

r1/2

λM

}
,

equivalent to

2δ

r1/2
+ 1

δ2
� inf

{(
λ2m + 2

r1/2λm

)
for λm � δ1/2, δ > r1/6, λm > r−1/2δ2

}
.

(A.4)

In order to prove the inequality above it is enough to evaluate the function λ2m +
2r−1/2λ−1

m on the boundary of the region defined on the right hand side of (A.4).
This yields the following two relations

2δ

r1/2
+ 1

δ2
� δ + 2

r1/2δ1/2
for δ ∈ (r1/6, r1/3) (A.5)

2δ

r1/2
+ 1

δ2
� r−1δ4 + 2

δ2
for δ ∈ (r1/6, r1/3), (A.6)

obtained by evaluating λ2m + 2r−1/2λ−1
m for λm = δ1/2 and λm = r−1/2δ2 respec-

tively. To show that (A.5) holds it is convenient to operate the change of variable
(r1/4, r1/2) � y := δ3/2 and thus writing (A.5) as follows

y2(r1/2 − 2) + 2y − r1/2 � 0 for y ∈ (r1/4, r1/2) (A.7)

which can be easily shown to be true ∀r � 1. Then, it is immediate to prove (A.6).
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