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Abstract

We address the question of whether three-dimensional crystals are minimiz-
ers of classical many-body energies. This problem is of conceptual relevance as
it presents a significant milestone towards understanding, on the atomistic level,
phenomena such as melting or plastic behavior. We characterize a set of rotation-
and translation-invariant two- and three-body potentials V2, V3 such that the energy
minimum of
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⎛
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V2(y, y
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V3(y, y
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⎠

over all Y ⊂ R
3, #Y = n, converges to the energy per particle in the face-centered

cubic (fcc) lattice as n tends to infinity. The proof involves a careful analysis of the
symmetry properties of the fcc lattice.

1. Introduction

A material is crystalline if its underlying atomic structure comprises a (multi)-
lattice of particles. It is known, through techniques such as x-ray diffraction, that
most materials crystallize when at a sufficiently low temperature. Whilst the range
of crystallinematerials is vast, however, the number of underlying atomic structures
is relatively small. For example, more than half of the metals crystallize into a face-
centered cubic lattice (fcc), a hexagonal-close packed crystal lattice (hcp) or a
body-centered cubic lattice (bcc). The question of why lattices are ubiquitous in
nature can be reformulated mathematically: why is it the case that so many energy
functionals admit periodic minimizers?

The premise of this paper is to provide a reasonably large set of energy func-
tionals E : R3×n → R which are invariant under translations and rotations and
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permutations for which the optimality of unique periodic (lattice) configurations
can be rigorously proven in the many particle limit n → ∞. Of course uniqueness
of the optimal lattice only holds up to translations and rotations.

We will focus on cases where the optimal lattice L is given by the fcc lattice

Lfcc := (b1 b2 b3)Z
3 =

{
3∑

i=1

aibi : ai ∈ Z, i = 1, 2, 3

}
(1.1)

where b1 = 1√
2
(0, 1, 1)T , b2 = 1√

2
(1, 0, 1)T and b3 = 1√

2
(1, 1, 0)T are column

vectors.
To our best knowledge, the first three-dimensional examples for which the exis-

tence of periodic minimizers can be guaranteed are due to A. Suto, [21,22]. The
results provide the existence of pair interaction potentials which admit periodic
ground states. However, the potentials are very delocalized resulting in a signifi-
cantly degenerate behavior of the ground states: every periodic configuration with
a sufficiently high density is a minimizer. Our results are concerned with localized
potentials where the strength of the interaction between pairs of particles decays
with an inverse power law as a function of the distance. As a consequence we obtain
that the minimum energy per particle converges to the energy of the fcc lattice as
the number of particle tends to infinity.

The assumption that the potentials are localized induces a natural splitting of
the interaction energy into three separate contributions: short-range, medium-range
and long-range interaction energies. The analysis of pure short-range models has
a long history in discrete geometry. This approach was first discussed by Kepler
[11], who suggested that the six-fold symmetry of snowflakes could be explained
by considering ice to be composed of small balls of vapor, packed together in
planes in the tightest way possible. In two dimensions, this tightest packing is an
arrangement of discs whose centers are placed at the points of a triangular lattice.
Such an arrangement clearly exhibits the six-fold symmetry of a snowflake. A
refinement of these geometric ideas allows the construction of compactly supported
potentials for which it can be shown that minimizers are translated, rotated and
dilated subsets of the triangular lattice [17]. A more detailed analysis in [3] even
provides a complete characterization of the surface energy and a proof that after
rescaling the minimizers converge to the Wulff shape as n tends to infinity.

In three dimensions the situation is significantly more involved. In particular,
for pure short-range models, it cannot be expected that minimizers are necessarily
periodic. Illustrative examples are the theorems by Hales [9] and Schütte and
Van derWaerden [20]. The results show that close-packed structures, and in par-
ticular fcc or hcp, solve both the densest packing problem and the kissing problem
in three dimensions.

The close-packed structures are constructed as follows: consider a triangular
arrangement of spheres of diameter 1 in a two-dimensional plane A = (b1, b2)Z2 ⊂
R
3. Now add a translated copy B = A + b3 so that each sphere of B sits directly

above a hole of A. For the third layer C , there are two possibilities: either C =
A+ 2

√
2

3 (1, 1,−1)T andC lies directly above A; orC = A+2b3 and each sphere of
C sits directly above a hole of both A and B. In the first instance, we relabelC = A.



Face-Centered Cubic Crystallization 365

Fig. 1. Three layers of the fcc and hcp crystal lattice

By repeating this stacking construction we obtain a close-packed structure. The fcc
lattice and hcp lattice are defined to be the close-packed structures with stacking
sequences ABCABCABCA... or ABABABABA..., respectively. This definition
of fcc is equivalent to (1.1), whilst hcp is a multi-lattice which is generated by the

basis b̃1 = b1, b̃2 = b2, b̃3 = 2
√
2

3 (1, 1,−1)T and a translation vector t = b3 in
the sense that

Lhcp = {0, t} + (b̃1 b̃2 b̃3)Z
3.

For our purposes, the most relevant property of the close-packed structures is that
theymaximize the number of nearest neighbors to every point in the packing, that is
they solve the kissing problem. It has been known since 1953 that the solution of the
three-dimensional kissing problem is twelve [12,16,20], and therefore these max-
imal neighborhoods each contain twelve points. In our analysis, it is this common
feature of the close-packed structures that makes them the most natural candidates
for crystallization (Fig. 1).

The degeneracy of purely local models regarding the crystalline structure is
broken by the presence of long range interactions which occur naturally in physi-
cally relevant situations [13]. The main result of this paper is Theorem 1.1, which
states the existence of a large set of rotation and translation-invariant interaction
potentials V2, V3 with the property that the ground states behave asymptotically
like an fcc lattice energy, as the number of particles tends to infinity.

Theorem 1.1. (Main theorem) There exists α0 > 0 such that for any α ∈ (0, α0)

and any pair ofα-localized potentials (V2, V3) (cf. Definition 2.1)which is invariant
under translations and rotations in the sense that

Vi (Rξπ(1) + t, . . . , Rξπ(i) + t) = Vi (ξ1, . . . , ξi )

for all permutations π, R ∈ O(3), t ∈ R
3, i ∈ {2, 3} (1.2)

and any finite set Y ⊂ R
3 the inequality

1

#Y
E(Y ) > min

r>0
E fcc(r) (1.3)

holds, where

E(Y ) = 2
∑

{y,y′}⊂Y

V2(y, y
′) + 6

∑
{y,y′,y′′}⊂Y

V3(y, y
′, y′′), (1.4)
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and

E fcc(r) =
∑

y∈Lfcc\{0}
V2(0, r y) + 2

∑
{y,y′}⊂Lfcc\{0}

V3(0, r y, r y
′).

Moreover,

lim
R→∞

1

#YR
E(YR) = min

r>0
E fcc(r), (1.5)

if YR = B(0, R) ∩ Lfcc. B(0, R) denotes the ball with radius R centered at the
origin.

Note that we later assume that minr>0 E fcc(r) = E fcc(1). This assumption does
not involve any loss of generality as it can be achieved by rescaling the potentials
Vi .

The role of the three-body potential V3 is of solely a technical nature. It is quite
likely that the assumptions of Theorem 1.1 can be relaxed so that also pure pair
models are covered, (see the discussion in Section 2.1).

It cannot be expected that a similar theorem holds if Lfcc is replaced by Lhcp.
For any dilation parameter r > 0 and generic potentials V2 and V3 the dilated lattice
rLhcp is not optimal. To see this we define for L ∈ {Lfcc,Lhcp} the stored energy
function

WL(F) =
∑

k∈L\{0}
V2(0, F k) + 2

∑
{k,k′}⊂L\{0}

V3(0, F k, F k′),

and the Piola-Kirchhoff tensor S(F) ∈ R
3×3 by

Si j = ∂WL
∂Fi j

(F).

If WL(r∗ Id) = minr>0 WL(r Id), then

trace S(r∗ Id) = 0. (1.6)

It is well known that S(F) is a multiple of the identity if F is a multiple of the
identity and L = Lfcc; together with (1.6) this implies that S(r∗ Id) = 0. For the
convenience of the reader we give a short proof.

Observe that W is invariant under the combined action of O(3) and the point
group

G = {g ∈ O(3) : gL = L}

in the sense that

WL(RFg) = WL(F) for all R ∈ O(3), g ∈ G. (1.7)
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Indeed,

WL(RFg) =
∑

k∈L\{0}
V2(0, F g k) + 2

∑
{k,k′}⊂L\{0}

V3(0, F g k, F g k′)

=
∑

k∈L\{0}
V2(0, F k) + 2

∑
{k,k′}⊂L\{0}

V3(0, F k, F k′) = WL(F).

The penultimate equation is a consequence of (1.2), the final equation holds because
gL = L.

The invariance (1.7) implies that S(F) is equivariant,

S(RFg) = RS(F) g for all R ∈ O(3) and g ∈ G.

The choice F = r Id and R = gT delivers the equation

� = gT� g for all g ∈ G, (1.8)

where � = S(r Id).
A more general discussion of equivariant maps can be found in [8], here we

only present a self-contained proof of this rather simple example. Equation (1.8)
implies that the restriction of � to the span of {b1, b2} is a multiple of the identity
if L ∈ {Lfcc,Lhcp}. Indeed, if G contains the reflection gv = Id− 2 v ⊗ v for some
v ∈ R

3 such that |v| = 1, then v is an eigenvector of �. It can be checked that
gv ∈ G if v ∈ {b1, b2, b2−b1}, hence b1, b2 and b2−b1 are eigenvectors. As these
three vectors are linearly dependent the eigenvalues coincide. In the case L = Lfcc
the same argument can be applied to {b1, b3, b3−b1} and one obtains the existence
of λ(r) ∈ R such that

S(r Id) = λ Id. (1.9)

On the other hand, if L = Lhcp then every matrix � which can be written as

� = λb̃3 ⊗ b̃3 + μ
(
|b̃3|2 Id − b̃3 ⊗ b̃3

)

is compatible with (1.8). In this case Equation (1.6) only implies that λ = −2μ.
Thus, the configuration y(x) = Fεx with Fε = r∗ Id − ε� has lower energy if
μ �= 0 and 0 < ε � 1.

Theorem 1.1 provides a significant generalization of the two-dimensional result
in [23]. The differences affect both the analysis of the local interactions and the
analysis of the long-range interactions. In particular,

1. The challenges met by the local analysis are considerably more involved. For
example, solutions of the kissing problem in three dimensions are highly degen-
erate. Unlike in the two-dimensional setting, it is not possible to identify kissing
configurations as orbits of simple symmetry groups.

2. To differentiate between the fcc and the hcp lattice it is unavoidable to con-
sider medium-range interactions whose range reaches beyond nearest neigh-
bors. Specifically, we require an analysis of second and third nearest neighbor
interactions.
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3. The heart of the proof consists of localizing long-range interaction energies.
The analysis in [14,23] is limited to highly symmetric two-dimensional lat-
tices and cannot be generalized to three dimensions where the lattices are less
symmetric.

Here we deal only with energetic crystallization. Positional crystallization can be
obtained under suitable boundary conditions as a corollary to Theorem 1.1 and a
generalization of [23]. Corollary 1.3 provides a result when the particle positions
are subjected periodic or clamped boundary conditions.

Definition 1.2. Let Y ⊂ R
3 be countable and non-empty. We say that Y is

• L-periodic if there exists a Bravais lattice L ⊂ R
3 such that

Y + η = Y for each η ∈ L,

• a compactly supported perturbation of Lfcc if

#Lfcc \ Y + #Y \ Lfcc < ∞.

The relevant particles areA = Y/L if Y is periodic andA = (Y \Lfcc) ∪ bdry(Y )

if Y is a compactly supported perturbation where bdry(Y ) = {y ∈ Y : Y ∩ By �=
Lfcc ∩ By} ∪ {y0} and By ⊂ R

3 is the closed ball with radius 1 centered at y. The
point y0 ∈ Y ∩ Lfcc is arbitrary.

In both cases the energy is defined by

EA(Y ) =
∑
y∈A

( ∑
y′∈Y\{y}

V2(y, y
′) +

∑
y′,y′′∈Y\{y}

y′ �=y′′

V3(y, y
′, y′′)

)
. (1.10)

The only purpose of the point y0 is to avoid the situation where A = ∅.
Corollary 1.3. (Ground states with periodic or clamped boundary conditions) Let
α0 > 0 be the constant from Theorem 1.1 and assume that (V2, V3) is α-localized
with α < α0. If Y ⊂ R

3 is L-periodic or a compactly supported perturbation of
Lfcc, then the inequality

1

#A EA(Y ) � E fcc(1)

holds.
Equality is attained if and only if there exists a translation vector t ∈ R

3 and a
rotation R ∈ SO(3) such that

RY + t = Lfcc.

Before outlining the proof we comment on possible physical applications. Clas-
sical groundstates are limiting cases of more general states. One important group of
examples is given by quantummechanical energies where the states are many-body
wavefunctions ψ ∈ L2(R3×n).
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Another generalization of classical groundstates are Gibbs states at finite tem-
perature. Here one is interested in the properties of the probability measure

Pρ,β,
(y) = e−β E(y)+F(β,ρ,
),

where 
 ⊂ R
3, y ∈ 
n , n = ρ |
|, β > 0 and F(β, ρ,
) is a normalization

constant. The thermodynamic limit Pρ,β is the weak limit of Pρ,β,
 as n → ∞. If
ρ is close to the density selected by the groundstates and the inverse temperature
β is large, then it is expected that Pρ,β exhibits long-range positional order in the
following sense: There exists s(ρ, β) > 0 such that

lim
n→∞

1

n − 1

∫
dPρ,β,
(y) sup

Q∈O(3)

n∑
i=2

f (s Q (yi − y1)) > 0 (1.11)

for any Lfcc-periodic and non-constant function f ∈ C(R3) with average 0. The
Mermin-Wagner theorem [15] states that (1.11) does not hold for two-dimensional
systems. It would be highly desirable to link the properties of the groundstates with
the properties of the Gibbs states.

1.1. Outline of the Proof of Theorem 1.1

In Definition 2.1 it is assumed that V2 and V3 are suitably normalized so that
minr>0 E fcc(r) = E fcc(1) and we define

e∗ = E fcc(1).

The upper bound (1.5) is an easy consequence of Theorem 1 in [1].
Our focus, therefore, is to establish the lower bound (1.3). For the proof it is

advantageous to view y ∈ Y as a map. Therefore we assume that there exists an
index set X such that #X = #Y and

Y = {y(x) : x ∈ X}.
Then

E(Y ) = E(y) = 2
∑

{x,x ′}⊂X

V2(y(x), y(x
′)) + 6

∑
{x,x ′,x ′′}⊂X

V3(y(x), y(x
′), y(x ′′)).

(1.12)

Central to the proof of (1.3) is the set of (nearest neighbor) edges, defined by

S := {(x, x ′) ∈ X × X : ∣∣∣∣y(x ′) − y(x)
∣∣− 1

∣∣ � α}. (1.13)

By construction, S is induced by y, although this dependency is not shown. The
structure induced by S allows us to define defects: A label x is an element of Xco
if the nearest neighbors of x can be mapped bijectively to the nearest neighbors of
the origin in Lfcc such that nearest neighbors pairs are mapped to nearest neighbor
pairs. The complement of Xco is called the set of defects or boundary ∂X = X \Xco.



370 L. C. Flatley & F. Theil

The main task is to establish the finer estimate

E(y) � e∗ #X + C
∑

(x,x ′)∈S

∣∣∣∣y(x ′) − y(x)
∣∣− 1

∣∣2 + Cα
1
2 #∂X, (1.14)

whereC > 0 depends on V2 and V3. Inequality (1.14) not only implies (1.3), it also
provides insight into the additional structure offered by S. We will demonstrate
that C can be chosen independently of α and #X .

The proof of (1.14) is organized around three key concepts: a geometric analysis
of nearest neighbors (c.f. Proposition 3.3); the construction of a reference configu-
ration which identifies large defect-free patches of the ground state with rotated and
translated subsets of the lattice Lfcc (c.f. Proposition 3.14); a resummation of the
energy to recover a lattice energy together with several error terms (c.f. Section 6).

In Section 2, we introduce the set of α-localized potentials and derive a lower
bound on the distance between ground state particles (Proposition 2.5).

In Section 3, we characterize the fcc lattice based on local properties. This
characterization allows us to identify arbitrarily large defect free patches of the
ground state which can be identified with subsets of Lfcc via discrete imbeddings.
Existence results for imbedding are stated in Section 3.3.

In Section 4, we demonstrate the long-range rigidity of the ground state. The
main result here is Proposition 4.2, which states that the L2 proximity of a ground
state deformation gradient to a rigid rotation is controlled by a quadratic sum of
edge length distortions.

In Section 5, we introduce path sets, they will be used to bound the interaction
energy from below by local expressions.

In Section 6 the proof of Theorem 1.1 is given. It relies on the concept of path
sets to localize the long-range interactions. We obtain two types of error terms:
energy contributions arising from the geometric distortion of bonds; and a surface
energy contribution arising from the omission of individual bonds. The first error
term is controlled by the rigidity estimates of Proposition 4.2, which reduce the
long-range energy contributions to a quadratic sum of edge length distortions. The
second error term is controlled by size of the set of defects.

The main focus of the paper is on the analysis of low energy states of a large
number of particles #X . Since the asymptotic behavior is discussed only at the end,
we suppress any dependency on #X in the notation. The letter C always denotes a
generic positive constant, which depends on V2 and V3, but not onα or #X, provided
α is sufficiently small, andwhose valuemay vary from line to line. A glossary of the
most commonly used notation is included at the end of the appendix. A preliminary
version of this article has been published in [6].

2. Admissible Potentials

It is easy to see that the invariance (1.2) implies the existence of functions
V : [0,∞) → R, � : [0,∞)3 → R such that

V2(y1, y2)=V (|y2 − y1|) and V3(y1, y2, y3)=�(|y2 − y1|, |y3 − y2|, |y1 − y3|).
(2.1)
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The set of admissible potentials of Definition 2.1 are characterized by a small
parameter α > 0. The pair potentials are chosen to have growth behavior similar to
that of aLennard-Jones potential, whilst the three-body potentials take a generalized
form of the Stillinger-Weber potential.

Definition 2.1. (α-localized potentials) Let α > 0 be a positive parameter. We
say that (V2, V3) are α-localized if there exist potentials (V, �) in Zα such that
(2.1) holds. The set Zα ⊂ C2([0,∞)) × C2([0,∞)3) is defined by the following
requirements.

1. The pair potential V has the properties limr→∞ V (r) = 0, V is normalized in
the sense that V (1) = −1,

min
r>0

∑
k∈Lfcc\{0}

(V (r |k|) − V (|k|)) = 0, (2.2)

and satisfies the conditions,

V (
√
8/3) − 3 V (

√
3) � α

1
2 , (2.3)

V (r) � 1

α
for r ∈ [0, 1 − α] , (2.4)

V ′′(r) � 1 for r ∈ (1 − α, 1 + α), (2.5)

V (r) � −α
1
4 for r ∈

[
1 + α,

4

3

)
, (2.6)

V ′(
√
3) � 0, (2.7)

|V ′′(r)| � α
1
4 for r ∈

[
4

3
,

√
7

2

]
, (2.8)

∣∣V ′′(r)
∣∣ � αr−10 for r ∈

[√
7

2
,∞
)

. (2.9)

2. The three-body potential � has the properties

min
r1,r2,r3�0

�(r1, r2, r3) = �(1, 1, 1) = −1 and

�(r1, r2, r3) � 0 if max
i

|ri − 1| � α, (2.10)

�(r1, r2, r3) � 1

α
if min

i
ri � 1 − α and max

i
ri <

4

3
, (2.11)

�(r1, r2, r3) = 0 if max
i

ri � 7

5
. (2.12)

2.1. Discussion

A heuristic argument behind the choice of admissible potentials is as follows:
Assumption (2.2) sets the lattice parameter to 1. This assumption simplifies the
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notation and does not involve a loss of generality. The large energies of short-
range bonds created by condition (2.4) ensures a minimum distance of 1 − α

between particles (c.f. Proposition 2.5). Conditions (2.4)–(2.5) on V create a sharp,
prominent well close to r = 1, which favors configurations which maximize the
number of nearest neighbor pairs. Assumption (2.3) selects fcc as the optimal
crystalline form, since

−2 = #
{
k ∈ Lfcc : |k| = √8/3

}
− #

{
k ∈ Lhcp : |k| = √8/3

}
,

6 = #
{
k ∈ Lfcc : |k| = √

3
}

− #
{
k ∈ Lhcp : |k| = √

3
}

.

Assumption (2.7) is of purely technical nature and is satisfied for Lennard-Jones
type potentials. Assumptions (2.8) and (2.9), which characterize the decay of V ,
entail that medium and long-range interactions are much weaker than the short-
range interactions.

The three-body potential � selects ground states which maximize the number
of edges in each nearest neighborhood. This serves to reduce the number of nearest-
neighbor graph structures down to just two: the fcc and the hcp crystal lattices (c.f.
Theorem 3.5).

The main part of the analysis concerns the pair energies. The role of the three-
body potential is to geometrically determine the optimal crystalline form, by assign-
ing positive energy contributions to ground states which do not approximate fcc or
hcp structures.

The assumptions on the pair potential V are generic in the sense that there
exist open subsets Ẑα of the weighted space C2

ρ([0,∞)) such that each V ∈ Ẑα

satisfies assumptions (2.2)–(2.9) after rescaling. On the other hand, the assumptions
on the three-body potential � are not generic, that is the set of potentials which
satisfy (2.10), (2.11) after rescaling does not contain an open set. The proof of
Theorem 1.1 can be generalized if the conditions are slightly relaxed so that Zα is
open; this would involve a significant increase of the notational complexity.

It is conceivable that the dependence of Theorem 1.1 on V3 can be omitted
entirely. Although this remains an open problem, the following conjecture provides
a possible route to eliminate the necessity of V3.

Conjecture 2.2. Let Z ⊂ R
3 satisfy that

∣∣z′ − z
∣∣ � 1 for all {z, z′} ⊂ Z and,

for every z ∈ Z , let N (z) := {
z′ ∈ Z : |z′ − z| = 1

}
. If z, z′ have the properties

#N (z) = #N (z′) = 12 and z ∈ N (z′), then #(N (z) ∩ N (z′)) � 4.

Together with Theorem 3.5, Conjecture 2.2 implies that #(N (z) ∩ N (z′)) = 4 for
all z, z′ ∈ Z . It is not hard to see that up to rotation there are only two subsets of S2

with 12 points such that each point has precisely 4 neighbors: the cuboctahedron
and the twisted cuboctahedron [defined by Equation (3.1)].

2.2. Results Concerning Admissible Potentials

Lemma 2.3. (Equilibrium condition) If (V, �) ∈ Zα then
∑

k∈Lfcc\{0}
|k| V ′(|k|) = 0. (2.13)
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Proof. The normalization assumption (2.2) implies that (V ∗)′(1) = 0 (c.f. Defini-
tion 2.6). This is (2.13). ��
Lemma 2.4. Let (V, �) ∈ Zα . There exists α0 > 0 such that for every α ∈ (0, α0),
r > 0 the following estimates hold:

|V ′(r)| � α
1
4 for r ∈

[
4

3
,

√
7

2

]
, (2.14)

V (r) � −α
1
4 for r ∈

[
1 + α,

√
7

2

]
, (2.15)

|V (r)| � αr−8 for all r �
√
7

2
, (2.16)

V (r) � −2 for all r � 0. (2.17)

Proof. The proof follows immediately from assumptions (2.2)–(2.9). ��
Proposition 2.5. (Minimumdistance bound) Let (V, �) ∈ Zα . There existsα0 > 0
such that if α ∈ (0, α0) then any ground state Y of the associated energy (1.4)
satisfies the minimum distance bound

min
y,y′∈Y
y �=y′

|y − y| > 1 − α. (2.18)

Proof. Let M := maxη∈R3 #
(
Y ∩ B(η, 1

2 (1 − α))
)
and assume wlog that the max-

imum is achieved at η = 0. Set BM := B(0, 1
2 (1− α)) andA := Y ∩ BM . We aim

to show that M = 1.
We define Ac = Y \ A and separate the energy contributions within A from

the energy contributions within Ac by decomposing the total energy: E(Y ) =
E(A) + E(Ac) + E(A,Ac) with

E(A,Ac) =2
∑
y∈A

y′∈Y\A

V (|y − y′|) + 6
∑

{y,y′,y′′}⊂Y
{y,y′,y′′}∩A�=∅
{y,y′,y′′}∩Ac �=∅

V3(y, y
′, y′′)

=:E (2)(A,Ac) + E (3)(A,Ac).

Assumptions (2.4) and (2.10) imply that

E(A) �
∑
y,y′∈A
y �=y′

V (
∣∣y′ − y

∣∣) � 1

α
M(M − 1). (2.19)

By moving the positions A to infinity in such a way that their mutual distances
diverge, we obtain

E(A) + E(A,Ac) � 0.
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The above estimate together with (2.19) implies that

1

α
M(M − 1) + E (2)(A,Ac) + E (3)(A,Ac) � 0. (2.20)

We will estimate the second and the third term in (2.20) separately.
First we consider E (2). For each d � 0, let T (d) := Y ∩(2(d + 1) BM\2d BM )

and n(d) := #T (d). If 1 � d � 3, then (2.17) implies
∑
y∈A

y′∈T (d)

V (|y − y′|) � −2n(d)M. (2.21)

For the long-range interactions the decay estimate (2.16) implies for sufficiently
small α0 > 0, α ∈ (0, α0) and d � 4 that

∑
y∈A

∑
y′∈T (d)

V (|y′ − y|) � −C n(d) Mα ((d − 1)(1 − α))−8 . (2.22)

There exists a constant C > 0 such that for any d � 0, T (d) can be covered
by C(d + 1)2 translated copies of BM , which implies that n(d) � CM(d + 1)2.
Consequently,

2
∑
y∈A

∑
y′∈Ac

V (|y − y′|) � −CM2

(
3∑

d=1

(d + 1)2 + α

(1 − α)8

∞∑
d=4

(d + 1)2

(d − 1)8

)
.

(2.23)

To study the third term in (2.20) we define for each y ∈ A

e3(y) := 3
∑

y′,y′′∈Ac

V3(y, y
′, y′′) + 3

∑
y′∈Ac

y′′∈A

V3(y, y
′, y′′),

and K > 0 by the requirement that the set

D = {z : 1 − α � |z| � 1 + α} ⊂ R
3

can be covered with K translated copies of BM . As we are interested in the cases
where α < 1 the constant K can be chosen independently from α. Assumptions
(2.10) and (2.11) imply that

e3(y) �3
∑
y′∈Y

y−y′∈D∩Y

(
�(1, 1, 1)#{y′′ : y, y′ ∈ D + y′′} + 1

α
#{y′′ : y′′ ∈ A \ {y}}

)

�3
∑
y′∈Y

y−y′∈D∩Y

(
K M �(1, 1, 1) + 1

α
(M − 1)

)
.

If α < (2 K )−1 and M > 1, then e3(y) > 0.
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Consequently, comparing (2.23) with (2.20), we obtain

−CM2

(
3∑

d=1

(d + 1)2 + α

(1 − α)8

∞∑
d=4

(d + 1)2

(d − 1)8

)
� − 1

2α
M(M − 1). (2.24)

Since the left-hand side remains bounded as α tends to 0, we deduce that (2.24) can
only hold for all α ∈ (0, α0) if M = 0 or 1. Since Y is non-empty, we conclude
that M = 1. ��
For every r > 0, the renormalized energy E fcc(r) assigns an average energy per
particle to the homogeneously deformed lattice rLfcc.

Definition 2.6. Let (V, �) ∈ Zα for some α > 0. The associated renormalized
pair potential V ∗ is defined by

V ∗(r) :=
∑

k∈Lfcc\{0}
V (r |k|) for all r > 0. (2.25)

Recall also the definition

E fcc(r) := V ∗(r) + 2
∑

{y,y′}⊂Lfcc\{0}
V3(0, r y, r y

′′).

We call E fcc the renormalized energy per particle.

Note that assumptions (2.2) implies that

min
r

V ∗(r) = V ∗(1). (2.26)

It is easy to see that for sufficiently small α the analogous equality

min
r

E fcc(r) = E fcc(1) = V ∗(1) + 48�(1, 1, 1) (2.27)

holds.
Indeed, a simple repetition of the considerations in the proof of Proposition 2.5

implies that

∑
{y,y′}⊂Lfcc\{0}

V3(0, r y, r y
′) > 0 (2.28)

if r < 1 − α. Moreover, assumption (2.10) implies that (2.28) holds if r > 1 + α.
Assumptions (2.10) and (2.12) imply that

∑
{y,y′}⊂Lfcc\{0}

V3(0, r y, r y′′) is minimal

if r = 1 and therefore (2.27) follows from the observation

#{(k1, k2) ∈ Lfcc × Lfcc : |k1| = |k2| = |k2 − k1| = 1} = 48.
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3. Discrete Reference Configurations

A key step towards the proof of (1.14) is the development of the concept of
a discrete reference configuration, which allows us to identify parts of the con-
figuration {y(x) | x ∈ X} as images of maps u : ω → R

3 with ω ⊂ Lfcc. We
require a characterization of the crystal lattices Lfcc and Lhcp which is based on
local properties of the point configuration. Neither Equation (1.1) nor the stacking
sequence are useful for our purposes.

3.1. Nearest Neighborhood Geometry

3.1.1. Local Geometry of the fcc and hcp Crystal Lattices Throughout this
paper, we denote by S2 ⊂ R

3 the unit sphere centered at the origin. The cubocta-
hedron and twisted cuboctahedron are defined by the relations

Qco := Lfcc ∩ S2 and Qtco := Lhcp ∩ S2. (3.1)

The surfaces of both convex hulls consist of twelve vertices, twenty-four edges and
fourteen faces, eight of which are equilateral triangles and six of which are squares.
Notice that Qtco is in fact a cuboctahedron in which a triangular face is rotated by
an angle of π/3, about its center and in the plane of the triangle. We will also use
the octahedron

Qo := Lfcc ∩ B
(
2− 1

2 , 2− 1
2 (1, 0, 0)T

)
.

Proposition 3.1. Let L′ ⊂ R
3 be a set with the property that for each z ∈ L′

1.
∣∣z − z′

∣∣ � 1 for all z′ ∈ L′ \ {z}.
2. There are exactly 12 points z′ ∈ L′ such that

∣∣z − z′
∣∣ = 1.

3. There are exactly 48 pairs z1, z2 ∈ L′ such that |z1 − z2| = |z − zi | = 1 for
i ∈ {1, 2}.

4. There are exactly 48 pairs z1, z2 ∈ L′ such that |z1 − z2| = √
3 and |zi −z| = 1

for i ∈ {1, 2}.
Then there exists a translation t ∈ R

3 anda rotation R ∈ SO(3) such that RL′+t =
Lfcc.

Proof. Properties 1–3 are sufficient to ensure that, for every z ∈ L′, the set (S2 +
z)∩L′ is either a rotated and translated cuboctahedron, or a twisted cuboctahedron;
this is a consequence of Theorem 3.5. Property 4 then selects the cuboctahedron.

By induction one can see that each cuboctahedron is a translated copy of a
single rotated cuboctahedron, that is there exists a translation t ∈ R

3 and a rotation
R ∈ SO(3) such that

(S2 + z) ∩ L′ = RQco + t for all z ∈ L′,

which concludes the proof. ��
Definition 3.2. (Contact graphs) For any discrete set Z ⊂ S2, the associated con-
tact graph CG(Z) is defined to be the graph with vertices at points in Z and edges
{z1, z2} such that z1, z2 ∈ Z and |z1 − z2| = 1.
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3.1.2. Nearest Neighborhood Geometry of the Ground State We denote by

P := {(x, x ′) ∈ X × X : x �= x ′} (3.2)

the set of ordered pairs.Wewill use the convention that if p ∈ P, then p = (p1, p2).
For clarity, we will generally write p ∈ P to denote a long-range pair, and q ∈ S to
denote an edge [c.f. (1.13)]. For each x ∈ X, we define the nearest neighborhood
of x by

N (x) := {x ′ ∈ X : (x, x ′) ∈ S} (3.3)

and define x and x ′ as nearest neighbors if x ′ ∈ N (x).
For each x ∈ X, we define

A(x) := {q ∈ S : q ⊂ N (x)},
to be the set of edges contained within the nearest neighborhood of x and

T := {(x, x ′, x ′′) ∈ X × X × X : (x ′, x ′′) ∈ A(x)} (3.4)

the set of neighboring triples.
The following proposition provides upper bounds on #N (x) and #A(x). If both

upper bounds are attained, then statement 2 says that y(N (x)) approximates a
rotated and translated subset of the fcc or hcp crystal lattice. This motivates the
definition of a set of regular points in X (c.f. Definition 3.6). Note that the concept
of regular points does not discriminate between Lfcc and Lhcp.

Proposition 3.3. (Local neighborhoods) There exists a constant α0 > 0 such that
for all α ∈ (0, α0) and all configurations y : X → R

3 satisfying the minimum
distance bound (2.18) the following statements are true.

1. #N (x) � 12 and 1
2#A(x) � 24 for all x ∈ X.

2. If 1
2#A(x) = 24, then #N (x) = 12 and there exists Q ∈ {Qco, Qtco}, a map

� : Q ∪ {0} → N (x) ∪ {x} and a monotone function ε : R → R such that
limα→0 ε(α) = 0 and

(�(η),�(η′)) ∈ S if and only if η, η′ ∈ Q ∪ {0} and |η − η′| = 1, (3.5)

min
R∈SO(3)

max
η∈Q∪{0}|Rη + y(x) − y ◦ �(η)| � ε(α). (3.6)

Note that (3.6) implies�(0) = x . The proof of Proposition 3.3 depends on two key
results: the three-dimensional kissing problem (Theorem 3.4) and the maximum
number of tangencies in a kissing configuration of unit spheres (Theorem 3.5).

Theorem 3.4. (The kissing problem) For any d ∈ {1, 2 . . .} let the kissing number
k(d) be the maximum number of non-overlapping unit spheres in R

d that can
simultaneously touch a central unit sphere. Then k(3) = 12.

The first proof that k(3) = 12 was given by Schütte and Van der Waerden in
1953 [20], followed by an independent proof by Leech in 1956 [12].
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Theorem 3.5. Let Z ⊂ S2 be a discrete set of vertices such that |z′ − z| � 1 for all
{z, z′} ⊂ Z . Then the maximal number of undirected of edges in the contact graph
CG(Z) (cf Definition 3.2) is 24. Equality is attained only when the points of Z are
placed at the vertices of a cuboctahedron or a twisted cuboctahedron, with edges
of unit length.

Proof. See [5] ��

Proof of Proposition 3.3. The proof of statements 1 and 2 is an immediate conse-
quence of Theorems 3.4 & 3.5 and standard compactness arguments. ��

The dichotomy result in Proposition 3.3 allows us to partition the label set X .

Definition 3.6. The subsets X12, Xco, X tco, ∂X of X are defined as

X12 = {x ∈ X : #N (x) = 12},
Xreg = {x ∈ X12 : 1

2#A(x) = 24
}
,

Xco = {x ∈ Xreg : (3.6) holds with Q = Qco
}
,

X tco = {x ∈ Xreg : (3.6) holds with Q = Qtco
}
,

∂X = X \ Xco.

Clearly X ⊃ X12 ⊃ Xreg. Proposition 3.3.2 implies that Xco and X tco form a
partition of Xreg, that is

Xreg = Xco ∪ X tco and Xco ∩ X tco = ∅ (3.7)

if α � α0.
If x ∈ Xreg, then Proposition 3.3.2 allows us to identify subsets of N (x) which

form triangles and squares. As an application of this construction we can charac-
terize the set of regular points with a complete set of second neighbors.

Definition 3.7. The regular points with complete second neighborhood are defined
by

X2
reg = {x ∈ Xreg : N (x) ⊂ Xreg}.

The second neighborhood of a label x ∈ X2
reg is defined by

N 2(x) =
⋃

{x1,...,x4}⊂N (x)
{x1,...,x4} is a square

(
4⋂

i=1

N (xi )

)∖
{x},

with the convention that a set {x1, . . . , x4} is called a square if it corresponds to
one of the six squares in the contact graph of Qtco and Qco, cf. Fig. 2.
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Fig. 2. Contact graphs of Qco and Qtco respectively

3.2. Simplicial Decomposition of L

If L = Lfcc or L = Lhcp it is possible to cover R3 by tetrahedra and octahedra
such that the corners coincidewithL and almost every point inR3 is covered exactly
once. To see this we recall that L can be written as unions of layers of triangular
lattices and observe that it suffices to decompose the space between two consecutive
layers such that the surface is given by two parallel planes. An illustration of the
(actually unique) decomposition is given in Fig. 3.

We introduce two families of sets: units U and simplices D. Units are either
tetrahedra or octahedra.

Each octahedron can be decomposed into 8 simplices, the tetrahedra are retained
without modification. The simplices provide an intuitive notion of piecewise affine
interpolation.

Definition 3.8. (Units and simplices) Let L be either Lfcc or Lhcp. The units are
given by

U = {τ ⊂ L : (#τ = 6 and diam(τ ) = √
2) or (#τ = 4 and diam(τ ) = 1)},

with diam(τ ) = max
{|η − η′| : η, η′ ∈ τ

}
. The centers of the octahedra are

defined by

L∗ =
{
1

6

∑
η∈τ

η : τ ∈ U and #τ = 6

}
.

Fig. 3. Two consecutive layers of a close packed lattice. Solid bullets are in the upper layer,
empty bullets in the lower layer. The tetrahedra and octahedra are defined by the rule:Upper
triangles with sidelength 1 that do not contain a solid bullet bound octahedra, the remaining
upper triangles with sidelength 1 bound tetrahedra and conversely for lower triangles
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The simplices are given by

D = {σ ⊂ L ∪ L∗ : #σ = 4 and diam(σ ) = 1} .

It is easy to see that each unit is either a tetrahedron or an octahedronwith sidelength
1. Moreover, both U and D form a disjoint covering of R3, that is

⋃
τ∈U

conv(τ ) =
⋃
σ∈D

conv(σ ) = R
3,

and

meas(conv(τ ) ∩ conv(τ ′)) = meas(conv(σ ) ∩ conv(σ ′)) = 0,

for all τ, τ ′ ∈ U , σ, σ ′ ∈ D such that τ �= τ ′ and σ �= σ ′. The simplicial decompo-
sition of R3 is finer than the decomposition into units, that is for each unit τ there
are simplices σ1 . . . σI such that

conv(τ ) =
I⋃

i=1

conv(σi ), (3.8)

where I = 1 if τ is a tetrahedron and I = 8 if τ is an octahedron.
Recall that the contact graphs of Qco and Qtco contain 6 rigid squares.

Remark 3.9. Note that for L = Lfcc a scaled octahedron � = s conv(Qo), s ∈
{1, 2, . . .} admits a decomposition into units in the sense that

� =
⋃
τ∈A

conv(τ ) for some collection of units A ⊂ U .

To see this it suffices to note that the boundary of � is a subset of the union of 8
triangular lattice planes which do not cut units.

Now we are in a position to introduce interpolations and reference configurations.

Definition 3.10. (�-interpolation maps) Let L be either Lfcc or Lhcp and � ⊂ R
3

be a simply connected set such that

� = ∪τ∈Aconv(τ ) for some collection of units A ⊂ U . (3.9)

The map u ∈ W 1,∞(�) is an interpolation of � : L∩ � → X if u|conv(σ ) is affine
for each simplex σ ∈ D such that σ ⊂ � and

u(η) =

⎧⎪⎨
⎪⎩

y ◦ �(η) if η ∈ L ∩ �,
1
6

∑
η′∈L

|η′−η|= 1
2
√
2

u(η′) if η ∈ L∗ ∩ �.

Definition 3.11. (Reference configuration) Let L be either Lfcc or Lhcp and y :
X → R

3 be a configuration map satisfying the minimum distance bound (2.18)
and A ⊂ X . A triple (�,�, u) is a reference configuration covering A if � ⊂
R
3 is simply connected, Equation (3.9) holds, the map u ∈ W 1,∞(�,R3) is an

interpolation of � : � ∩ L → X in the sense of Definition 3.10 and
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1. The map � covers A, that is A ⊂ �(� ∩ L).
2. (�(η),�(η′)) ∈ S if and only if |η − η′| = 1, η, η′ ∈ � ∩ L.
3. The map u satisfies the bound

‖dist(∇u, SO(3))‖L∞(�) � 1

2
. (3.10)

Inequality (3.10) guarantees that the local orientation is preserved by u.

3.3. Existence of Reference Configurations

We state existence results for reference configurations which cover defect-free
subsets of X . The construction is based on the existence of local imbeddings �

which map Qco bijectively to neighborhoods of labels x ∈ X \ ∂X . These imbed-
dings can be chosen in a compatible way in the sense that they coincide locally
after rotation and translation.

Proposition 3.12. (Compatibility of local imbeddings) Let x, x ′ ∈ Xreg, Q, Q′ ∈
{Qco, Qtco}, R, R′ ∈ SO(3),� : Q∪{0} → X,�′ : Q′ ∪{0} → X, ε : R → R be
the associated domains, rotations andmaps fromProposition 3.3. If x ′ ∈ N (x)∪{x}
and if α > 0 is sufficiently small, then there exists a rotation T ∈ SO(3) such that
the set A = (Q ∪ {0}) ∩ (T (Q′ ∪ {0}) + �−1(x ′)) has at least 6 elements and �′
is compatible with � in the sense that

�′(T−1(η − ξ)) = �(η) for all η ∈ A, (3.11)

and

|T − R−1R′| � 6 ε(α), (3.12)

where ξ = �−1(x ′) − �−1(x) and |F | = max|v|�1 |Fv| denotes the operator
norm.

Proof. See appendix. ��
If N (x) ⊂ Xreg, then we can construct a reference configuration which covers
N 2(x) ∪ N (x) ∪ {x}.
Proposition 3.13. Let x ∈ X2

reg. If α is sufficiently small, then there exists a refer-

ence configuration (�,�, u) covering N 2(x) ∪ N (x) ∪ {x} such that
∣∣∣�−1(x) − �−1(x ′)

∣∣∣ =
√
2 (3.13)

for all x ′ ∈ N 2(x).

Proof. See appendix. ��
It is easy to see that the domain � in Proposition 3.13 is a regular octahedron with
sidelength 2 if Q = Qco in (3.6). Large-scale imbeddings can be constructed by
piecing together local imbeddings. It will be important for the subsequent analysis
that for certain reference configurations (�,�, u) the rigidity constant (cf. Sec-
tion 4) of the domain � is uniformly bounded.
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Proposition 3.14. (Existence of a reference configuration) There exists α0 > 0
such that for all α ∈ (0, α0), r � 1 − α, x ∈ X and y : X → R

3 satisfying the
minimum distance bound (2.18) and

dist({y(x)}, y(∂X)) � 2 r + 3,

there exists a reference configuration (�,�, u) covering {x} such that � = s Qo

(a scaled octahedron) with

s = min

{
s′ ∈ Z : s′ � 5

2
r + 3

}
,

and B(�−1(x), r) ⊂ �. Furthermore, there exists a universal constant C > 0 such
that the interpolation u : � → R

3 has the property

‖dist(∇u, SO(3))‖L∞(�) � Cα. (3.14)

Proof. See appendix. ��

4. Rigidity Bounds

The purpose of this section is to establish L2 and L∞ rigidity estimates, which
quantify the deformations of the ground state. The bounds are based on the concept
of a reference configuration. Propositions 4.2 and 4.4 will imply that L2 defor-
mations, in defect-free regions, are controlled by a quadratic sum of edge length
distortions [c.f. (4.4)]. Our proof follows methods used previously in [4,18,19] and
references therein. The L∞ estimate (4.5) is required to control distortion terms
which later arise in the Taylor expansion of the ground state energy [c.f. (6.15)].
The basic bound is provided by the following rigidity estimate.

Theorem 4.1. ([2]) Let d ∈ {1, 2, . . .}, s ∈ (1,∞) and � ⊂ R
d be a simply

connected Lipschitz-domain. Then there exists a constant C = C(�, s) such that

min
R∈SO(d)

‖∇u − R‖Ls (�) � C ‖dist(∇u, SO(d))‖Ls (�) (4.1)

for all u ∈ W 1,s(�). The rigidity constant C(�, s) is invariant under dilations,
rotations and translations, that is

C(r R� + t, s) = C(�, s) (4.2)

for all r > 0, R ∈ SO(d) and t ∈ R
d .

For any bounded domain � ⊂ R
3, define

S(�) := {(q1, q2) ∈ S : q1, q2 ∈ �(�)} (4.3)

to be the set of edges with end-points in �.
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Proposition 4.2. Let (�,�, u) be a reference configuration such that� is a scaled
octahedron, that is

� = s conv(Qo)

for some s ∈ {1, 2, . . .}. Then there exists a universal constant C > 0 such that the
map u satisfies the global rigidity estimates

min
R∈SO(3)

‖∇u − R‖2L2(�)
� C

∑
q∈S(�)

||y(q2) − y(q1)| − 1|2 , (4.4)

∣∣∣∣
|u(η) − u(η′)|

|η − η′| − 1

∣∣∣∣ � C α for all η, η′ ∈ � such that η �= η′. (4.5)

Note that estimate (4.5) implies the injectivity of the maps u and �. The proof of
Proposition 4.2 relies on Lemma 4.3 which provides bounds for dist(∇u, SO(3))
in terms of ||y(x) − y(x ′)| − 1|, (x, x ′) ∈ S .

Lemma 4.3. Let τ ∈ U be a unit and u : conv(τ ) → R
3 be affine on conv(σ ) for

each simplex σ ⊂ conv(τ ) such that

u

(
1

#τ

∑
η∈τ

η

)
= 1

#τ

∑
η∈τ

u (η) .

There exist universal constants C, c > 0 such that the function Wτ : (R3)τ →
[0,∞) which is defined by

Wτ (u) :=
∑

η,η′∈τ :|η−η′|=1

∣∣∣∣u(η) − u(η′)
∣∣− 1

∣∣2

satisfies the bound

min
R∈SO(3)

‖∇u − R‖2L2(conv(τ ))
� C Wτ (u)

as long as ‖dist(∇u, SO(3))‖L∞(conv(τ )) � c.

Themap u which exchanges the positions of two neighboring (opposing) vertices if
τ is an tetrahedron (octahedron) and keeps the other positions fixed has the property
Wτ (u) = 0. Thus, the assumption that ‖dist(∇u, SO(3))‖L∞(conv(τ )) � c can not
be dropped.

Proof. See appendix. ��
Proof of Proposition 4.2. We first prove (4.4). Let A ⊂ U be a collection of units
such that � = ∪τ∈Aconv(τ ). Thanks to the rigidity estimate (4.1) we find that

min
R∈SO(3)

‖∇u − R‖2L2(�)
� C

∑
τ∈A

min
R∈SO(3)

‖∇u − R‖2L2(conv(τ ))
. (4.6)
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Lemma 4.3 implies that

min
R∈SO(3)

‖∇u − R‖2L2(conv(τ ))
� C

∑
η,η′∈τ

|η−η′ |=1

∣∣∣∣u(η) − u(η′)
∣∣− |η − η′|∣∣2 ,

which establishes (4.4).
Now we prove (4.5). Define U = conv(Qo). Later we will establish the exis-

tence of a universal constant C > 0 with the property that for each η, η′ ∈ � there
exists r > 0, t ∈ R

3 such that

r � C |η − η′|, (4.7)

{η, η′} ⊂ rU + t ⊂ �. (4.8)

Define v(w) = 1
r u(r w + t) for w ∈ U . Then

‖dist(∇v, SO(3))‖L4(U ) � C γ

where γ = ‖dist(∇u, SO(3))‖L∞(U ). Theorem 4.1 implies that there exists R ∈
SO(3) such that

‖∇v − R‖L4(U ) � C γ.

Let ϕ(w) = v(w) − Rw, then Morrey’s theorem delivers the existence of τ such
that the L∞-bound

‖ϕ − τ‖L∞(U ) � Cγ

holds. Setting w = 1
r (η − t) and w′ = 1

r (η
′ − t) one obtains

∣∣|u(η) − u(η′)| − |η − η′|∣∣ = r

∣∣∣∣|ϕ(w) − ϕ(w′) + R(w − w′)| − 1

r
|η − η′|

∣∣∣∣

�r

(∣∣∣∣|R(w − w′)| − 1

r
|η − η′|

∣∣∣∣+ |ϕ(w) − τ | + |ϕ(w′) − τ |
)

� C γ |η − η′|.

The trivial identity |R(w − w′)| = 1
r |η − η′| and (4.7) has been used in the final

inequality. Thus we have shown that
∣∣∣∣
|u(η) − u(η′)|

|η − η′| − 1

∣∣∣∣ � C‖dist(∇u, SO(3))‖L∞(�).

Estimate (4.5) follows now from (3.10) and Lemma 4.3 which implies

‖dist(∇u, SO(3))‖L∞(�) � C α.

Finally we prove (4.7). Since U is a convex polyhedron one obtains

U = {z : νi · z � λi , i = 1 . . . 8}
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for a suitable choice of νi ∈ R
3, |νi | = 1 and λi ∈ [0,∞). The constraints (4.8)

imply that the optimal parameter r is a solution of the linear program

rmin = min
{
r � 0 : max{η · νi , η

′ · νi } � rλi + t · νi � λi , i = 1 . . . 8
}
.

(4.9)

Note that rmin � 1 since r = 1, t = 0 is admissible. Assume that there exists
sequences ηn �= η′

n ∈ U such that

lim
n→∞

rmin(ηn, η
′
n)

|ηn − η′
n|

= ∞. (4.10)

We can assume without loss of generality that

lim sup
n→∞

dist({ηn, η′
n}, ∂U )

|ηn − η′
n|

< ∞. (4.11)

Indeed, if (4.11) fails, then we extract the corresponding subsequence (not rela-

beled) and define rn = |ηn−η′
n |

ρ
and tn = 1

2 (ηn +η′
n)−rn z, where ρ > 0 and z ∈ U

have the property that B(z, ρ) ⊂ U . Clearly

{η, η′} ⊂ rnU + tn ⊂ �

holds for all n which are sufficiently large.
Since U is a polyhedron ∂U can be decomposed into 3 disjoint components:

∂U = ∂U0 ∪ ∂U1 ∪ ∂U2,

which correspond to corners, edges and faces. Let i = 0. If there exists a subse-
quence (not relabeled) along which

lim sup
n→∞

dist({ηn, η′
n}, ∂Ui )

|ηn − η′
n|

= ∞ (4.12)

does not hold, then there exists C > 0 such that

lim sup
n→∞

max(|ηn − zn|, |η′
n − zn|)

|ηn − η′
n|

� C, (4.13)

where zn ∈ ∂Ui is the minimizer of dn(z) = |z− 1
2 (ηn +η′

n)|. After translation we
can assume that zn = 0, define tn = 0 and

rn = min{r : ηn, η
′
n ∈ rU }.

Inequality (4.13) implies that

lim sup
n→∞

rn
|ηn − η′

n|
� C (4.14)

which is the desired contradiction and we conclude that (4.12) holds for i = 0.
Inductively we repeat this step for i = 1, 2 and observe that (4.12) for i − 1

implies (4.14). Once (4.12) has been established for each i ∈ {0, 1, 2} we have
derived a contradiction to (4.11) and consequently (4.7) holds. ��
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We also require the following technical result.

Proposition 4.4. For each v ∈ R
3 \ {0} the inequality

min
R∈SO(3)

{
|F − R|2 : F v

|F v| = Rv

|v|
}

� C dist2(F, SO(3)) (4.15)

holds for all F ∈ R
3×3 such that Fv �= 0.

Proof. Assume without loss of generality that |v| = 1 and let S ∈ SO(3) and
U ∈ R

3×3
sym be the polar decomposition of F that is F = SU . Let T ∈ SO(3) be a

rotation which satisfies T Sv = 1
|Fv| Fv and leaves the span of {Sv, Fv} invariant.

Then, G := T S ∈ SO(3) satisfies the constraints of the left hand side of (4.15).
If θ ∈ [0, 2π ] is the angle of rotation of T , then the cosine rule gives

1 − cos(θ) = 1

2

∣∣∣∣Sv − Fv

|Fv|
∣∣∣∣
2

� 2

(
|Sv − Fv|2 +

∣∣∣∣Fv − Fv

|Fv|
∣∣∣∣
2
)

= 2
(
|Sv − Fv|2 + ||Fv| − 1|

)2
.

The identity sin2(θ) = (1 + cos(θ))(1 − cos(θ)) implies the bound

sin2(θ) � 4
(
|Fv| − 1|2 + |S − F |2

)
.

Moreover, one obtains

|T − Id|2 = 2(| cos(θ) − 1|2 + | sin(θ)|2) � 16 (|S − F |2 + ||Fv| − 1|2),
(4.16)

where we used (1 − cos(θ))2 � 2(1 − cos(θ)). This implies

|F − G|2 � 2(|F − S|2 + |T − Id|2) � Cdist2(F, SO(3)).

��

5. Partitioning of the Energy

5.1. Reference Path Sets and Label Path Sets

For pairs (x, x ′) ∈ X × X we wish to express global differences y(x) − y(x ′)
in a way which recognizes the local structure of the configuration: if the map
γ : {0, . . . , ν} → X has the properties γ (0) = x ′, γ (ν) = x , then

y(x) − y(x ′) =
ν∑

i=1

(y(γ (i)) − y(γ (i − 1)))

holds. This formula suggests that the sum over all pairs can be written as the sum
over all such maps which will be denoted as paths from now on. To formalize this
concept we have to introduce some structure to avoid double counting.
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We denote by B the set of ordered bases of Lfcc :
B := {B ∈ R

3×3 : det(B) �= 0 and Bei ∈ Lfcc, |Bei | = 1, i = 1, 2, 3}, (5.1)

with the standard convention e1 = (1, 0, 0)T etc. By abuse of notation we write
v ∈ B if v = Bei for some i ∈ {1, 2, 3}.

We denote by
 the set of all positive fcc lattice distances and define themedium
and long distances


 = {|z| : z ∈ Lfcc} = {1,√2,
√
3,
√
11/3, . . .}, (5.2)


med =
{√

2,
√
8/3,

√
3
}

, 
long = 
 ∩
(√

3,∞
)

.

Note that 
long ⊂ 
, but 
med \ 
 = {√8/3}. The additional distance is included
to facilitate the quantification of energy contributions created by the parts of the
configuration with hcp structure.

Definition 5.1. (Admissible paths) For given ν ∈ N and B ∈ B we say that a finite
sequence μ(i) ∈ Lfcc, i = 0 . . . ν is an admissible (reference) path if

μ( j) − μ( j − 1) = Bei j (5.3)

for some monotonic sequence i j ∈ {1, 2, 3} that is μ consists of maximally three
straight segments with directions given by the columns of B. We denote by �[B]
the set of such paths, and define

k(μ) = μ(ν) − μ(0),

�(λ) = {μ ∈ ∪B∈B�[B] : |k(μ)| = λ} ,

if λ >
√
3. The set of paths with medium length is defined by

�(λ) = {μ : {0, 1, 2} → Lfcc : |μ(1) − μ(0)|
= |μ(2) − μ(1)| = 1 and |μ(2) − μ(0)| = λ} ,

if λ ∈ {√2,
√
3}. The set of admissible paths is defined as

� = ∪λ∈
�(λ).

By abuse of notation, we will abbreviate v ∈ {μ(1)−μ(0), μ(2)−μ(1), . . .} with
v ∈ μ.

Although the definition of the set of admissible paths is very restrictive there
are many paths which connect two lattice points. This observation motivates the
introduction of the number

M(μ) := 1

120
# {B ∈ B : μ ∈ �[B]} ∈ [0, 1], (5.4)

which has the property that for k ∈ Lfcc \ {0}
∑

μ(0)=0, μ(ν)=k

M(μ) = 1. (5.5)
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Equation (5.5) holds because #B = 23 ∗ 6!
3! and for a generic lattice point there are

2−3#B = 120 choices of B such that the set

A = {μ ∈ �[B] : μ(0) = 0, μ(ν) = k}
is nonempty. The correction factor accounts for the cases where k is degenerate in
the sense that #A > 1.

The path sets�(λ) inherit the symmetry properties of the fcc lattice. To construct
a suitable representation of those path-symmetries we define for each path μ the
point ζ(μ) in the smallest subspace containing μ by the requirement that the end
points of the line segments which constitute the affine interpolation μ̂ of μ all have
the same distance ρ(μ) from ζ .

Lemma 5.2. For all μ ∈ �(λ) the estimate

ρ(μ) = max
i=1...m

|ζ(μ) − μ(i)| < 2λ (5.6)

holds.

Proof. The proof is a simple exercise which is included for the convenience of the
reader.

Define the difference vectors

vi = ei · B−1k(μ) Bei ∈ R
3.

Thanks to translation invariance we can assume that μ(0) + v1 + 1
2v2 = 0, i.e the

mid point of the second line segment is located in the origin. The point ζ is given
by the formula

ζ = 1

2
B−T MB−1k

where M ∈ R
3×3 is the diagonal matrix

M = diag(e1 · BT B(e1 + e2), 0,−e3 · BT B(e2 + e3)). (5.7)

Since |B−1| = √
2 and |M | = 3

2 we find that |ρ(μ)| � 3
2λ. Furthermore, as

|v2| �
√
2λ and v2 · ζ = 0 one obtains that

ρ(μ) � 1

2

√
11.

��
For a unit lattice vector v ∈ S2∩Lfcc the piecewise affine interpolant μ̂ contains

at most one line-segment which is parallel to v. Let η ∈ R
3 be the mid-point of that

line segment and define the affine map κv : R3 → R
3 by the equation

κv(y) = η + (Id − 2v ⊗ v)(y − η) ∈ R
3.
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Fig. 4. Illustration of the reflected paths. A path μ and a reflection κ(μ) are depicted with
a solid and a dashed line. The position of the point ζ(μ) is indicated by an empty circle

It is an easy exercise to check that κv leaves Lfcc invariant and ζ is a fixed point of
κv . Now we extend the operation of κv to the set of paths by

κv(μ)(i) := κv(μ(ν − i)).

If v �∈ μ, that is μ(i + 1) − μ(i) �= v for all i , then κv is defined as the identity,

κv(μ)(i) = μ(i),

cf. Fig. 4.
It is an easy exercise to see that κv : � → � leaves the sets �(λ) invariant and

has the following properties:

κv ◦ κv = Id, (5.8)

M(κv(μ)) = M(μ), (5.9)

ζ(κv(μ)) = ζ(μ). (5.10)

Notice that 1
2 (Id − (Id − 2v ⊗ v)) = v ⊗ v is just the projection onto the span of

{v} if v ∈ μ. This implies that

k(μ) + k(κv(μ))) and v are parallel. (5.11)

The second key property of the maps κv is that ζ(μ) is a fixed point and the distance
from ζ(μ) is unchanged, that is

max
i

|κv(μ)(i) − ζ(μ)| = max
i

|μ(i) − ζ(μ)|, (5.12)

thus the orbit

O(μ) =
∞⋃
i=1

⋃

v1...vi∈S2∩Lfcc

κvi ◦ · · · ◦ κv1(μ) ⊂ �

is a finite set.
For any λ ∈ 
, let

m(λ) = # {η ∈ Lfcc : |η| = λ} (5.13)

be the number of lattice points at distance λ from the origin.
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Definition 5.3. (Label paths) If λ ∈ 
 and γ : {0, . . . , ν} → X is a label path we
say that γ ∈ �̂∗(λ) if there exists a reference configuration (�,�, u) andμ ∈ �(λ)

such that � is a scaled octahedron, that is � = sQo for some s ∈ {1, 2 . . .},
γ = � ◦ μ and

B(ζ(μ), 2λ) ⊂ �. (5.14)

For each γ ∈ �̂∗(λ) we define

k̂(γ ) = k(μ),

M̂(γ ) = M(μ).

We will abbreviate q ∈ {γ (1) − γ (0), γ (2) − γ (1), . . .} with q ∈ γ .
For convenience, we assume for now that each label path γ ∈ �̂∗ is associated

with a unique reference configuration and hence drop the notational dependency of
k̂(γ ) on �. The choice of the reference configuration will be specified later.

Remark 5.4. Note that thanks to Lemma 5.2 and Equation (5.14) the orbit of μ is
contained in �:

O(μ) ⊂ �.

Since � is a scaled octahedron and Equation (4.2) implies that the rigidity constant
does not depend on s there exists a universal constant K > 0 such that Equa-
tions (4.4, 4.5) are satisfied with C = K .

A key property of the label paths is the invariance under the action of the reflection
map κ̂ .

Lemma 5.5. Let λ ∈ 
 and γ ∈ �̂∗(λ) be a label path. For each q ∈ S the reflected
reference path κk̂(q)

(μ) is contained in�. Moreover, the reflected label path, which
is defined by

κ̂q(γ ) = � ◦ κk̂(q)
(μ),

is an element of �̂∗(λ) with the same reference configuration (�,�, u). The reflec-
tion map κ̂q : �̂∗ → �̂∗ has the properties

κ̂2
q = Id, (5.15)

M̂(κ̂q(γ )) = M̂(γ ), (5.16)

|k̂(γ )| = |k̂(κ̂q(γ ))|, (5.17)

k̂(γ ) + k̂(κ̂q(γ )) ‖ k̂(q) if q ∈ γ. (5.18)

Proof. Lemma 5.2 and Equation (5.14) implies that κk̂(q)
(μ) is contained in�. The

claim is an immediate consequence of equations (5.8), (5.9), (5.10) and (5.11). ��
The concept of label paths allows us to partition the set of pairs into disjoint

subsets according to the distance.
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Definition 5.6. (Regular pairs and regular label paths) For λ ∈ 
 the set of regular
pairs with distance λ is given by

P∗(λ) =
{
p ∈ P : ∃γ ∈ �̂∗(λ) :

p = (γ (0), γ (ν)) and dist({y(p1), y(p2)}, y(∂X)) � 10λ

}

and P∗(1) = S.
The extended set of pairs is P(λ) = P∗(λ) if λ ∈ 
 \ 
med and

P(λ) =
{
p ∈ P : ∃x ∈ X2

reg such that p1, p2 ∈ N (x)

and |�−1(p2) − �−1(p1)| = λ

}
(5.19)

if λ ∈ 
med.
For a regular pair p ∈ P∗(λ) we define λ(p) = λ.
The set of defect pairs is defined as

P0 := P\ ∪λ∈
 P(λ).

The regular label paths are defined by the requirement that the end points form
regular pairs:

�̂(λ) = {γ ∈ �̂∗(λ) : (γ (0), γ (ν)) ∈ P∗(λ)},
λ ∈ 
.

For a regular label path γ ∈ �̂∗(λ) we define λ(γ ) = λ.

Equation (5.19) allows us to quantify the surplus energy generated by the parts of
the configuration with hcp structure, cf dichotomy (3.7). Note that only �̂∗(λ), but
not �̂(λ) is invariant under the action of the reflection map κ̂ .

5.2. Cardinality of the Sets P(λ)

The analysis of the energy of a configuration requires a quantitative link between
the label sets of Definition 3.6 and the pair sets P(λ). This link is provided by
Lemma 5.8.

Proposition 5.7. The pairs P(λ) and P∗(λ) have the following properties:

1. P∗(λ1) ∩ P∗(λ2) = ∅ if λ1, λ2 ∈ 
 and P(λ1) ∩ P(λ2) = ∅ if λ1, λ2 ∈ 
med,
λ1 �= λ2.

2. If p ∈ P∗(λ), then
∑

γ∈�̂(λ)
(γ (0),γ (ν))=p

M̂(γ ) = 1. (5.20)
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Proof. Assume first that p ∈ P(λ) for some λ ∈ 
med. Proposition 3.3 implies
that

||y(p1) − y(p2)| − λ| � ε(α). (5.21)

For sufficiently small α there is just one λ ∈ 
med which satisfies (5.21) because

med is a finite set.

Assumenext thatλ1 � λ2, p ∈ P∗(λ1)∩P∗(λ2) and let (�i ,�i , ui ), i = 1, 2 be
the associated reference configurations. Estimate (4.5) implies that λ2 − λ1 � Cα.
After translation we can assume that �i (0) = p1. Proposition 3.14 implies that
there exists a translated reference configuration (�0,�0, u0) such that p1 = �0(0)
and B(0, 2λ2) ⊂ �0. Proposition 3.12 implies the existence of rotations Ti with
the property ui (η) = u0(Tiη) for all η ∈ B(0, 1), i = 1, 2. Inductively one obtains
that

u0(η) = ui (Tiη) for all |η| � 2λ2, i = 1, 2. (5.22)

The rigidity bound (4.5) implies that |�−1
i (p2)| � 3

2 λ2 and together with (5.22)
one finds

λ1 = |�−1
1 (p2)| = |�−1

2 (p2)| = λ2,

which is claim 1.
Proof of claim 2. Let (�0,�0, u0) the reference configuration which is defined

above and let μ ∈ �(λ) be a reference path such that μ(0) = 0, μ(ν) = η. Then
γ = �0 ◦ μ ∈ �̂(λ) and (γ (0), γ (ν)) = p, this implies the lower bound

∑
γ∈�̂(λ)

(γ (0),γ (ν))=p

M̂(γ ) �
∑

μ∈�(λ)
(μ(0),μ(ν))=η

M(μ)
(5.5)= 1.

The first inequality holds because there might be label paths that require a different
reference configuration. To prove the corresponding upper bound we assume that
(�,�, u) is another reference configuration and μ is a reference path such that
(� ◦μ(0),� ◦μ(ν)) = p. Using the same argument as in the proof of claim 1 one
can rotate and translate (�,�, u). This induces a one-to-one relationship between
the label paths induced by (�,�, u) and (�0,�0, u0) and thereby claim 2. ��
Finallywe provide a quantitative link between path sets and the label sets introduced
in Definition 3.6.

Lemma 5.8. There exists constants C, α0 � 0 such that for every α ∈ (0, α0),

every configuration y : X → R
3 satisfying the minimum distance bound (2.18)

and every λ ∈ 
long, the estimate

0 � m(λ)

m(1)
#S − #P(λ) � Cλ3#∂X (5.23)
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holds. Let n = #X. Then the short- and medium-range pairs satisfy the bounds

(n − #X12) � m(1) n − #S � m(1)(n − #X12), (5.24)

#(Xreg \ X2
reg) � 12(n − #Xreg), (5.25)∣∣∣m(

√
2) n − #P(

√
2)
∣∣∣ � C(n − #Xreg), (5.26)

∣∣∣#P(
√
8/3) − 2#X2

tco

∣∣∣ � C(n − #Xreg), (5.27)

0 � #P(
√
3) − m(

√
3) #X2

co − 18#X2
tco � C(n − #Xreg). (5.28)

The proof can be found in the appendix.

6. Proof of Theorem 1.1

Proof. Weadopt the notation (1.12). Following the remarks in Section 1.1 it suffices
to establish the lower bound (1.3) which is a consequence of (1.14). ��
Recall the definitions of P(λ) and P∗(λ) in Definition 5.6. The interaction energy
(1.4) is written as the sum of structural, elastic and defect contributions:

E(y) = Estruct(y) + Eelast(y) + Edefect(y)

where

Estruct(y) =
∑
λ∈


∑
p∈P(λ)

V (λ) +
∑
x∈X

e3(x),

Eelast(y) =
∑
λ∈


∑
p∈P(λ)

(V (|y(p1) − y(p2)|) − V (λ)),

Edefect(y) =
∑
p∈P0

V (|y(p1) − y(p2)|),

and the associated three-body energy e3(x) is defined by

e3(x) := 2
∑

{x1,x2}⊂X\{x}
V3(y(x), y(x1), y(x2)). (6.1)

Let n = #X. The aim of this section is to prove that the defect-free energy can
be bounded from below by the reference energy, together with contributions from
bond distortions and surface terms:

Estruct(y) � n e∗ + c (n − #Xreg) + c α
1
2 #∂X, (6.2)

Edefect(y) � C α
1
4 (#Xreg − n) − Cα#∂X, (6.3)

Eelast(y) � c
∑
q∈S

||y(q2) − y(q1)| − 1|2 − Cα#∂X. (6.4)
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Estimates (6.2), (6.3) and (6.4) together deliver the lower bound

E(y) � n e∗ + c α
1
2 #∂X + c

∑
q∈S

||y(q2) − y(q1)| − 1|2 ,

which is the lower bound of Theorem 1.1.
Themain challenge is the analysis of the elastic energy because it is not obvious

why it should scale like O(#∂X) and not like O(#X). It will be shown in Section 6.3
that (6.4) holds because of a cancelation argument which relies on the presence of
certain reflection symmetries in the fcc lattice.

The bounds (6.3) and (6.2) are considerably less involved, a proof of the esti-
mates is given in Sections 6.1 and 6.2.

6.1. Bulk and Surface Energy

We show that Estruct can be estimated from below by a negative bulk contri-
bution and a positive surface energy. Since �(r1, r2, r3) = 0 if maxi ri � 1 + α

Proposition 3.3.1 implies that

e3(x) �
{
48�(1, 1, 1) if x ∈ Xreg,

46�(1, 1, 1) else.
(6.5)

By the definition of Estruct and assumption (2.10), we obtain the inequality

Estruct(y) �48 n �(1, 1, 1) − 2 (n − #Xreg)�(1, 1, 1)

+ #S V (1) + #P(
√
2) V (

√
2)

+ #P(
√
8/3) V (

√
8/3) + #P(

√
3) V (

√
3) +

∑
λ∈
long

#P(λ) V (λ),

with S and P defined in (1.13) and Definition 5.6. The bounds in Lemma 5.8
together with the relation #X tco + #Xco = #Xreg and the assumptions on V and �

imply that

Estruct(y) �(48 n − 2(n − #Xreg))�(1, 1, 1) + (m(1) n − (n − #X12)) V (1)

+ n m(
√
2) V (

√
2) + 2#X2

tco V (
√
8/3)

+
(
m(

√
3) #X2

co + 18 #X2
tco

)
V (

√
3)

− C(n − #Xreg)α
1
4 +

∑

λ>
√
3

m(λ)
(
nV (λ) − Cα #∂X λ−10

)

�e∗ n − 2(n − #Xreg)�(1, 1, 1) + V (1) (#X12 − n)

+ 2
(
V (
√
8/3) − 3 V (

√
3)
)

︸ ︷︷ ︸
�α

1
2

#X2
tco

+ m(
√
3)(n − #X2

reg)V (
√
3) − C α

1
4 (n − #Xreg) − Cα#∂X
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The assumptions on V in Definition 2.1 together with (5.25) and (5.28) imply that

Estruct(y) � e∗ n +
(
−V (1) − C α

1
4 − Cα

1
2

)
(n − #X12)

+
(
−�(1, 1, 1) − C α

1
4 − Cα

1
2

)
(X12 − #Xreg) + cα

1
2 #X tco − Cα#∂X,

which implies Equation (6.2) if α is sufficiently small.

6.2. Defect Energy

The defect energy can be decomposed into several parts: interaction energies
of pairs close to particles in X \ Xreg, and contributions of pairs near ∂X :

Edefect(y) =
∞∑
k=1

3∑
i=1

∑
p∈P0,k,i

V (|y(p2) − y(p1)|)

with

P0,k,1 = {p ∈ P0,k : ∃xp ∈ X \ Xreg

such that
∣∣y(xp) − y(p1)

∣∣ � 10(k + 1) + 3
}
,

P0,k,2 = {p ∈ P0,k \ P0,k,1 : ∃xp ∈ Xreg \ Xco

such that
∣∣y(xp) − y(p1)

∣∣ � 10(k + 1) + 3
}
,

P0,k,3 = P0,k \ (P0,k,1 ∪ P0,k,2),

P0,k = {p ∈ P0 : k � |y(p1) − y(p2)| < k + 1}.

Clearly the sets P0,k,i form a partition of P0,k . The minimum distance bound (2.18)
implies that

#P0,k,1 � C k5 (n − #Xreg), (6.6)

#P0,k,2 � C k5#(Xreg \ Xco) � C k5#∂X, (6.7)

#P0,k,3 � #
{
p ∈ P0,k : ∃xp ∈ Xco \ X2

reg

such that
∣∣y(xp) − y(p1)

∣∣ � 10(k + 1) + 3
}

� C k5#(Xco \ X2
reg) � C k5#(Xreg \ X2

reg) � Ck5 (n − #Xreg). (6.8)

The last bound is due to (5.25).
Inequalities (6.6) and (6.8) together with the estimates (2.15), (2.16) deliver the

bound

∞∑
k=1

∑
p∈P0,k,i

V (|y(p2) − y(p1)|) � −Cα
1
4 (#Xreg − n) (6.9)
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for i ∈ {1, 3}. It can be checked by inspection that p ∈ P0,k,2 and (5.2) implies

|y(p2) − y(p1)| �
√

7
2 and thus another application of the decay estimate (2.16)

together with (6.7) delivers the bound

∞∑
k=1

∑
p∈P0,k,2

V (|y(p2) − y(p1)|) � −Cα#∂X. (6.10)

Estimate (6.3) is a result of the combination of (6.9) and (6.10).

6.3. Elastic Energy

The main challenge is the demonstration that the elastic bulk contribution is
non-negative. The core of the argument is based on a cancelation effect induced by
the reflection map κ (Section 5). The details of this step can be found at the end of
Section 6.3.2.

Recall the definition of P∗ in Definition 5.6. We split the elastic energy into
short and long-range contributions by defining

Eelast(y) = Eshort(y) + Elong(y) + Emed(y)

Eshort(y) =
∑
q∈S

(V (|y(q2) − y(q1)|) − V (1)),

Elong(y) =
∑

λ∈
\{1}

∑
p∈P∗(λ)

(V (|y(p2) − y(p1)|) − V (λ)),

Emed(y) =
∑
λ∈


∑
p∈P(λ)\P∗(λ)

(V (|y(p2) − y(p1)|) − V (λ)).

The medium-range contributions are associated with pairs contained in the neigh-
borhoods of regular particles, which do not form the ends of paths. If λ ∈ 
med
and p ∈ P(λ), then

Proposition 3.12 and (4.5) imply that |V (|y(p2)− y(p1)|)− V (λ)| � Cα, and
thus the inequality

Emed(y) � −Cα
∑

λ∈
med

#(P(λ) \ P∗(λ)).

The definition of P∗(λ) and P(λ) together with the minimum distance bound (2.18)
implies that #(P(λ) \ P∗(λ)) � C#∂X and one finds that

Emed(y) � −Cα#∂X.

To simplify the analysis of Eelast we apply Equation (5.20) and write the long-range
energy contributions as a sum over paths:

Eelast(y) � Eshort(y) +
∑

λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ )(V (|y(γ (ν))

− y(γ (0))|) − V (λ)) − Cα#∂X. (6.11)



Face-Centered Cubic Crystallization 397

Let (�,�, u) be the reference configuration associated with γ and let R ∈ SO(3)
be the rotation which achieves the minimum in (4.1) for s = 2. Note that R
and � depend on γ ; as it will turn out that this dependency is irrelevant for the
bounds, we will mostly suppress it in our notation. For the remainder of this section
the shorthand η1 = �−1(γ (0)) and η2 = �−1(γ (ν)) will be used. Expanding
V (|u(η2) − u(η1)|) one obtains

V (|u(η2) − u(η1)|) − V (λ)

=V ′(λ)(|u(η2) − u(η1)| − λ) + 1

2
V ′′(r(γ ))(|u(η2) − u(η1)| − λ)2, (6.12)

where r(γ ) > 0 satisfies

|r(γ ) − λ| � ||u(η2) − u(η1)| − λ| � C α λ (6.13)

for a universal constant C > 0, provided α > 0 is sufficiently small. The final
inequality is due to the rigidity bound (4.5).

Next, we define the distortion

δ(γ ) = RT (u(η2) − u(η1)) − k̂(γ ) ∈ R
3. (6.14)

ByProposition 4.2, the distortion canbe boundedby a sumof edge length distortions
in the following way:

|δ(γ )|2 �
(

ν∑
i=1

∣∣∣∇u(ξi )(μ(i) − μ(i − 1))) − Rk̂(γ )

∣∣∣
)2

� Cλ2
∑

q∈S(�)

||y(q2) − y(q1)| − 1|2 , (6.15)

where the points ξi ∈ interior(conv(σi )) are arbitrary and each simplex σi ∈ D
has the property μ(i − 1), μ(i) ∈ σi . The right-hand side of (6.15) is clearly
an overestimation of the distortion, in which the sum of edge length distortions
contains an order of λ3 terms. An estimate of this form is sufficient because of the
strong decay (2.9).

We now expand each term in the right-hand side of (6.12):

|u(η2) − u(η1)| = λ + δ(γ ) · k̂(γ )

λ
+ e(γ )

where e(γ ) ∈ R is the second-order remainder term, satisfying

|e(γ )| � C |δ(γ )|2 , (6.16)

for a universal constantC > 0.Asecond order expansion of the energy contribution
of γ then takes the form

V (|u(η2) − u(η1)|) = V (λ) +
(

δ(γ ) · k̂(γ )

λ
+ e(γ )

)
V ′(λ)

+ 1

2

(
δ(γ ) · k̂(γ )

λ
+ e(γ )

)2

V ′′(r(γ )).
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If λ ∈
{√

2,
√
3
}

, then (6.13) and assumption (2.8) on the pair potential V implies

that
∣∣V ′′(r(p))

∣∣ � α
1
4 .

With this notation Equation (6.11) takes the form

Eelast(y) � R + G − Cα#∂X, (6.17)

where

R =
∑

λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ )

⎡
⎣e(γ ) V ′(λ) + 1

2

(
δ(γ ) · k̂(γ )

λ
+ e(γ )

)2

V ′′(r(γ ))

⎤
⎦ ,

(6.18)

G = Eshort(y) +
∑

λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ )
δ(γ ) · k̂(γ )

λ
V ′(λ). (6.19)

We will demonstrate that

R � −Cα
1
4
∑
q∈S

||y(q2) − y(q1)| − 1|2 , (6.20)

G � c
∑
q∈S

||y(q2) − y(q1)| − 1|2 − Cα#∂X. (6.21)

Combining (6.17), (6.20) and (6.21) gives (6.4).

6.3.1. Proof of Inequality (6.20) Weuse the rigidity estimate (4.5) and inequality
(6.15) to reduce R to a localized quadratic sum of edge distortions.

Taking themodulus of each term in (6.18) and using (6.16), (2.9) andLemma2.4
we find

|R| �Cα
1
4
∑

λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ )

(
|δ(γ )|2 λ−9 +

4∑
i=2

|δ(γ )|i λ−10

)
.

Recall the definition of the set S(�) in (4.3). Estimate (4.5) implies that |δ(γ )| �
Cλ and together with (6.15) one finds that

|R| �Cα
1
4
∑
q∈S

||y(q2) − y(q1)| − 1|2
∑
λ∈


λ−6
∑

γ∈�̂(λ)

M̂(γ )χS(�)(q)

�Cα
1
4
∑
q∈S

||y(q2) − y(q1)| − 1|2
∑
λ∈


λ−6
∑

p∈P(λ)

∑
γ∈�̂(λ)

p=(γ (0),γ (ν))

M̂(γ )

︸ ︷︷ ︸
=1

× max{χS(�(γ ))(q) | p = (γ (0), γ (ν))}
�Cα

1
4
∑
q∈S

||y(q2) − y(q1)| − 1|2 ,



Face-Centered Cubic Crystallization 399

which is (6.20). The final estimate is due to the injectivity of each discrete imbed-
ding, which implies the combinatorial estimate

# {p ∈ P(λ) : q ∈ S(�(γ )) for some γ ∈ �(λ) such that p = (γ (0), γ (ν))}
� Cm(λ)λ3 (6.22)

for each λ ∈ 
 and q ∈ S.

6.3.2. Proof of Inequality (6.21) The aim of this section is to prove

G = Eshort +
∑

λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ )
δ(γ ) · k̂(γ )

λ
V ′(λ)

� c
∑
q∈S

||y(q2) − y(q1)| − 1|2 − Cα#∂X. (6.23)

Inequality (6.23) is not a direct consequence of simple estimates, since the left-hand
is a linear function of pair distortions, whilst the right-hand side contains quadratic
terms. As a first step, the sum G is written as a localized sum of nearest neighbor
quantities. For the short-range interaction it is easy to see that Eshort(y) = I1 + I2
with

I1 =V ′(1)
∑
q∈S

(|y(q2) − y(q1)| − 1), (6.24)

I2 =
∑
q∈S

1

2
V ′′(ρq)(|y(q2) − y(q1)| − 1)2 (6.25)

where ρq ∈ [1 − α, 1 + α]. Assumption (2.5) implies that

I2 �
∑
q∈S

1

2
(|y(q2) − y(q1)| − 1)2. (6.26)

To localize the long-range interactions each vector y(p2(γ ))− y(p1(γ )) is decom-
posed into a sum over edges, c.f. (6.27). To this end, for each γ ∈ � and q ∈ S,

define the indicator function gq(γ ) ∈ {0, 1} by

gq(γ ) =
{
1 if q ∈ γ,

0 otherwise.

The injectivity of γ implies that

y(p2(γ )) − y(p1(γ )) =
∑
q∈γ

(y(q2) − y(q1)) =
∑
q∈S

gq(γ ) (y(q2) − y(q1)).

(6.27)

If γ ∈ � and q ∈ S is such that q ∈ γ, then we may choose a fixed simplex σ(q) ∈
D with the property q1, q2 ∈ �(σ(q)) and define Fq = ∇u|σ(q) ∈ M3×3. Let
furthermore Rq ∈ SO(3) be aminimizer of R �→ ∣∣Fq − R

∣∣ subject to the constraint
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(y(q2) − y(q1)) = rq Rk̂(q), with rq = |y(q2) − y(q1)| ∈ [1 − α, 1 + α] . Then
we obtain

y(p2(γ )) − y(p1(γ )) =
∑
q∈S

gq(γ )rq Rq k̂(q).

Notice that for every R ∈ SO(3) the equation

RT = Id + 1

2
(RT − R) − 1

2
(Id − RT )(Id − R)

holds. This implies that

RT = (RT Rq)R
T
q = (Id + Aq + Gq)R

T
q , (6.28)

where Aq= 1
2

(
RT Rq − RT

q R
)
is a skew symmetricmatrix andGq=− 1

2

(
Id−RT

Rq
) (

Id − RT
q R
)
satisfies

∣∣Gq
∣∣ � C

∣∣R − Rq
∣∣2 . Thus,

G = I2 + J1 + J2 + J3 − J4 (6.29)

with

J1 =
∑
q∈S

⎛
⎝V ′(1)rq +

∑
λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ ) rq gq(γ ) k̂(γ ) · k̂(q)W (λ)

⎞
⎠,

J2 =
∑
q∈S

∑
λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ ) rq gq(γ ) k̂(γ ) · Aq k̂(q)W (λ),

J3 =
∑
q∈S

∑
λ∈
\{1}

∑

γ∈�̂(λ)

M̂(γ ) rq gq(γ ) k̂(γ ) · Gq k̂(q)W (λ),

J4 =V ′(1)#S +
∑

λ∈
\{1}

∑
p∈P(λ)

λ2W (λ),

whereW (λ) = 1
λ
V ′(λ). Estimate (6.21) is a consequence of (6.26) and the inequal-

ities

J1 � − C α #∂X, (6.30)

J2 � − C α #∂X, (6.31)

J3 � − Cα
∑
q∈S

||y(q2) − y(q1)| − 1|2 , (6.32)

J4 � − Cα
1
4 (n − #Xreg) − Cα#∂X, (6.33)

which will be established below.
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Analysis of J1 and J4 The bounds of the sums J1 and J4 are a consequence of
the equilibrium condition (2.13).

J4 =V ′(1)#S +
∑

λ∈
\{1}

∑
p∈P(λ)

λ2W (λ)

=
∑
λ∈


(
#P(λ) − m(λ)

m(1)
#S
)

λ2W (λ) + 1

m(1)

∑
q∈S

∑
λ∈


m(λ)λ2W (λ)

︸ ︷︷ ︸
=0 by (2.13)

=
∑
λ∈


(
#P(λ) − m(λ)

m(1)
#S
)

λ2W (λ)

� − C |V ′(
√
2)| (n − #Xreg)

− √
3V ′(

√
3)
(
C(n − #Xreg) − 6#X tco

)− Cα#∂X

� − C |V ′(
√
2)| (n − #Xreg) − Cα#∂X+6

√
3V ′(

√
3)#X tco.

The penultimate equation is a consequence of assumptions (2.14), (2.9), and the
bounds in Lemma 5.8. Together with (2.7) this shows that (6.33) holds.

Next we establish a bound on

J1 :=
∑
q∈S

rq

⎛
⎝V ′(1) +

∑
λ∈
\{1}

∑
γ∈�(λ)

M̂(γ )gq(γ )W (λ) k̂(γ ) · k̂(q)

⎞
⎠ .

Notice that the uniqueness of discrete imbeddings up to rotation and translation
implies that J1 is independent of the choice of the reference configuration.

First we demonstrate that for q ∈ S and λ ∈ 
 the inequality
∑

γ∈�̂(λ)

M̂(γ ) gq(γ ) k̂(γ ) · k̂(q) � m(λ)λ2 (6.34)

holds.
Recall Equation (5.1) and the convention v ∈ B if there exists i ∈ {1, 2, 3}

such that v = Bei . To eliminate the localization function gq we bound the number
of paths γ with the properties k̂(γ ) = k and q = (γ (i), γ (i + 1)) for some i from
above by

∑
B∈B

f (k, B)ak(v, B), (6.35)

where v = k̂(q), the integer coefficients ak(v, B) ∈ {0, 1, 2, . . .} satisfy
k =

∑
w∈B

ak(w, B)w,

and f (k, B) � 0 is given by

f (k, B) = #{B ′ ∈ B : μ(k, B ′) = μ(k, B)}−1.
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Expression (6.35) is only an upper bound since not every reference path μ neces-
sarily corresponds to a label path γ . It is easy to see that

ak(v, B) =
{
kT B−T B−1v if v ∈ B,

0 else,
(6.36)

and f (k, B)M̂(γ ) = 1
120 if μγ ∈ �[B], cf. (5.4).

These considerations lead to the inequality

∑

γ∈�̂(λ)

M̂(γ ) gq k̂(γ ) · k̂(q) � 1

120

∑
|k|=λ

∑
B∈B

ak(v, B)k · v (6.37)

for all v ∈ S2 ∩ Lfcc. Estimate (6.34) follows now from

Lemma 6.1. For all λ ∈ 
, B ∈ B, and v ∈ B the identity

∑
k∈Lfcc|k|=λ

ak(v, B)k · v = 1

3
m(λ)λ2 (6.38)

holds, where ak(v, B) is the coefficient defined by (6.36) and m(λ) is the number
of lattice vectors of length λ, c.f. (5.13).

Proof. See appendix. ��

Define next

D(λ) =
⎧⎨
⎩q ∈ S :

∑

γ∈�̂(λ)

M̂(γ ) gq k̂(γ ) · k̂(q) < m(λ)λ2

⎫⎬
⎭ .

Thanks to (6.34) and the trivial bound rq � 2 we find that

|J1| �
∣∣∣∣
∑
q∈S

rq
∑
λ∈


W (λ)λ2m(λ)

︸ ︷︷ ︸
=0 by (2.13)

∣∣∣∣+ 2
∑

λ∈
\{1}
|W (λ)| λ2m(λ)#D(λ)

The minimum distance bound (2.18) implies that #D(λ) � Cλ3#∂X for some
absolute constant C . Together W (λ) � Cαλ−10 one obtains the estimate

|J1| � C α #∂X
∑

k∈Lfcc\{0}
|k|−5 � C α #∂X,

which is (6.30).
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Analysis of J3 - application of rigidity estimates We obtain a lower bound on

J3 :=
∑
q∈S

∑
λ∈


∑

γ∈�̂(λ)

k̂(γ ) · M̂(γ ) rq gq(γ )Gq k̂(q)W (λ)

by applying the rigidity estimates of Propositions 4.2 and 4.4.
For each q ∈ S(�) (c.f. (4.3)), let σ(q) ∈ D be the simplex which was chosen

in the construction of Rq . Then, η1, η2 ∈ σ(q) ⊂ �. Using the bound
∣∣Gq

∣∣ �
C
∣∣R − Rq

∣∣2 , and noting that for each simplex σ the number of bonds q such that
σ(q) = σ is bounded by 6, we obtain

∑
q∈S

∣∣gq(γ )Gq
∣∣ � C

∑
q∈S

gq
∣∣R − Rq

∣∣2

� C
∑
q∈S

gq(γ )︸ ︷︷ ︸
�1

[∣∣∇u|σ(q) − R
∣∣2 + ∣∣∇u|σ(q) − Rq

∣∣2]

� C
(
‖∇u − R‖2L2(�)

+ ‖∇u − Rq‖2L2(�)

)

� C
∑

q∈S(�)

||y(q2) − y(q1)| − 1|2 .

The final inequality is due to (4.4), (4.15) and Lemma 4.3. This implies

|J3| � C
∑
λ∈


λ |W (λ)|
∑

p∈P(λ)

∑
q∈S(�p)

||y(q2) − y(q1)| − 1|2
∑

γ∈�̂(λ)
γ (0)=p1,γ (ν)=p2

M̂(γ )

︸ ︷︷ ︸
=1 by (5.20)

(6.22)

� C
∑
λ∈


m(λ)λ4 |W (λ)|
∑
q∈S

||y(q2) − y(q1)| − 1|2

� Cα
∑
q∈S

||y(q2) − y(q1)| − 1|2 (6.39)

since (2.8) and (2.9) imply that |W (λ)| � Cαλ−8 for all λ ∈ 
. Thus, equation
(6.32) has been established.

Analysis of J2-pairwise cancelation of terms We will show that

J2 =
∑

λ∈
\{1}

∑
q∈S

∑

γ∈�̂

k̂(γ ) · M̂(γ ) rq gq(γ ) Aq(γ ) k̂(q)W (λ) � −C α #∂X.

(6.40)

This is mainly a consequence of the observation that thanks to the skewness of Aq

nonzero contributions are only generated by terms where k̂(γ ) and k̂(q) are not
parallel. To treat mixed terms where p �= q we collect for each q those pairs p such
that the sum is parallel to k̂(q).
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First we recall the label paths �̂∗ (cf. Definition 5.3) which are invariant under
the action of the reflections κ̂ and define

J ∗
2 =

∑
q∈S

rq
∑

γ∈�̂∗

k̂(γ ) · M̂(κ̂q(γ )) gq(κ̂q(γ )) Aq(κ̂q(γ )) k̂(q)W (λ(κ̂q(γ ))).

According to Remark 5.4 we can assume that all paths γ ′ in the orbit O (γ )

share the same reference configuration. Therefore

Aq(γ ) = Aq(κ̂q(γ )), M̂(γ ) = M̂(κ̂q(γ )), gq(γ ) = gq(κ̂q(γ )). (6.41)

Thanks to (6.41) the sum J ∗
2 can be written as

J ∗
2 =

∑
q∈S

rq
∑

γ∈�̂∗

k̂(κ̂q(γ )) · M̂(κ̂q(γ )) gq(κ̂q(γ )) Aq(κ̂q(γ )) k̂(q)W (λ(κ̂q(γ ))).

Adding the two expressions for J ∗
2 one arrives at the representation

J2 = (J2 − J ∗
2 ) +

∑
q∈S

rq
∑

γ∈�̂

1

2
M̂(κ̂q(γ )) gq(κ̂q(γ ))

[
k̂(γ ) + k̂(κ̂q(γ ))

]

· Aq(κ̂q(γ )) k̂(q) W (λ(κ̂q(γ ))).

Equation (5.18) implies that
[
k̂(γ ) + k̂(κ̂q(γ ))

]
·Aq k̂(q)=0 since Aq = Aq(κ̂q(γ ))

is skew-symmetric, and thus

J2 = J2 − J ∗
2 .

The proof of the estimate |J2| � C α #∂X is analogous to the proof in Section 6.2.

6.4. Proof of Corollary 1.3

Proof. We only consider the case where Y is L-periodic, the clamped case is anal-
ogous. Let Y and L be such that 1

#A EA(Y ) � E fcc(1). After replacing L with
λL for some λ ∈ N if necessary, a straight forward generalization of the proof of
Proposition 2.5 allows us to construct an L-periodic configuration Ỹ ⊂ Y such that

1

#Ã
EÃ(Ỹ ) � 1

#A EA(Y )

with strict inequality if Ỹ �= Y and Ỹ satisfies the minimum distance bound

min
y,y′∈Ỹ
y �=y′

|y − y′| � 1 − a.

Following the steps of the proof of the Theorem 1.1 one obtains the bound

EÃ(Ỹ ) � e∗ #Ã + C
∑

y∈Ã

∑
y′∈Ỹ

||y−y′ |−1|�a

∣∣∣∣y − y′∣∣− 1
∣∣2 + Cα

1
2 #∂Ã,
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where ∂Ã is defined analogously to Definition 3.6. On the other hand, by construc-
tion EÃ(Ỹ ) � e∗ #Ỹ ; thus ∂Ã = ∅, and ∣∣y − y′∣∣ = 1 for all y, y′ ∈ Ỹ such that
||y − y′| − 1| � a.

Proposition 3.14 implies that there exists a map u : R3 → R
3 such that Ỹ =

u(Lfcc). Since |u(η)−u(η′)| = 1 for |η−η′| = 1 we conclude that u(η) = Qη+ t
for some Q ∈ SO(3), t ∈ R

3 and all η ∈ R
3 by Proposition 4.2. ��

7. Appendix

Proof of Proposition 3.12

Let σ ∈ U be a tetrahedron such that 0, ξ ∈ σ . Clearly σ ⊂ Q ∪ {0}. We will show
next that �(σ) ⊂ N (x ′). Indeed, if η ∈ σ \ {0, ξ}, then Equation (3.6) implies that

||y ◦ �(η) − y ◦ �(ξ)| − 1| � 2ε.

Theorem 3.4 implies that �(η) ∈ N (x ′) for sufficiently small ε since x ′ ∈ Xreg.
Define next σ ′ = (�′)−1 ◦�(σ) ∈ U . The rotation T ∈ SO(3) is characterized by
the requirements

Tσ ′ + ξ = σ, (7.1)

T
(
(�′)−1(x)

)
+ ξ = 0. (7.2)

Define η′ = T−1(η − ξ). We will show later that

�(η) = �′(η′) (7.3)

holds for all η ∈ σ . Equation (7.3) implies that

|y(x) + R(Tη′ + ξ) − y(x ′) − R′η′| � 2ε

for all η ∈ σ ′. Since |y(x) − y(x ′) − Rξ | � ε one obtains the bound

|(T − R−1R′)η′| � 3ε,

for all η′ ∈ σ ′. Let now M be a 3 × 3 matrix whose columns are the vectors
connecting the origin with the remaining 3 vertices of σ ′. Without loss of generality
we can assume that M = (b1 b2 b3) where bi , i ∈ {1, 2, 3} are the basis vectors
defined after (1.1). A simple explicit calculation shows that |M−1| = √

2. This
implies that

∣∣∣T − R−1R′
∣∣∣ � 3

√
3 ε

and thus (3.12) holds.
It can be checked by inspection that the set S2 ∩ (T (Q′ ∪ {0}) + �−1(x ′)) has at
least 5 elements. Estimate (3.6) and Theorem 3.4 together imply that the set has
precisely 5 elements. This implies that #A = 6 holds.
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Now we establish (3.11). If η ∈ A, then
∣∣y ◦ �(η) − y ◦ �′(η′)

∣∣
� |y ◦ �(η) − y(x) − Rη| + |y(x) − y(x ′) + Rη − R′η′|

+ ∣∣y(x ′) + R′η′ − y ◦ �′(η′)
∣∣

� 2ε +
∣∣∣y(x) − y(x ′) + R

(
η − (R−1R′ − T + T )T−1(η − ξ)

)∣∣∣
� 2ε + ∣∣y(x) − y(x ′) + Rξ

∣∣+
∣∣∣(R−1R′ − T )T−1(η − ξ)

∣∣∣
� 9ε

by (3.6) and (3.12). Thus, if 9ε < 1−α then y ◦�(η) = y ◦�′(η′). This is (3.11).
We finish the proof by establishing (7.3). Enumerate the vertices of the simplex so
that σ = {σ1 . . . σ4} and assume that σ1 = 0, σ2 = ξ . Equation (7.2) implies that
(7.3) holds if η ∈ {σ1, σ2}. We will demonstrate that

�(σ3) = �′ (T−1(σ4 − ξ)
)

implies

min
R′∈SO−(3)

|R′η′ + y(x ′) − y ◦ �′(η′)| � 2ε, (7.4)

with SO−(3) = O(3) \ SO(3). For sufficiently small ε this contradicts (3.6)
because the convex hull of σ has positive volume.
To see that (7.4) holds we assume without loss of generality that R = Id and define
the reflection

R′ = T (Id − 2(σ ′
4 − σ ′

3) ⊗ (σ ′
4 − σ ′

3)).

Clearly R′ ∈ SO−(3) and R′σ ′
4 = Tσ ′

3 = σ3 − σ2. Next, one calculates

|R′σ ′
4 + y(x ′) − y ◦ �′(σ ′

4)| = |σ3 − σ2 + y(x) + y(x ′) − y(x) − y ◦ �(σ3)|
�|y(x) − y ◦ �(σ3) + σ3| + |y(x ′) − y(x) − σ2| � 2ε

by (3.6) since R = Id. Thus (7.4) holds.

Proof of Proposition 3.13

Let Q ∈ {Qco, Qtco}, R ∈ SO(3),� : Q → X be the associated domains, rotations
and maps from Proposition 3.3. Depending on Q we select L ∈ {Lfcc,Lhcp} and
the units U accordingly. Assume furthermore that τ ∈ U is an octahedron such
that τ ∩ Q is a square. For ξ ∈ τ ∩ Q we define x ′ = �(ξ) and assume that
Q′ ∈ {Qco, Qtco}, �′ : Q → X and R′, T ∈ SO(3) are the associated domains,
maps and rotations from Proposition 3.3 and Proposition 3.12.
We extend � to Q ∪ τ by defining

�(η) = �′(T−1(η − ξ))
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if η ∈ τ is the outmost vertex, that is |τ | = √
2. Define furthermore� = conv(Q)∪

conv(τ ) and the interpolation u : � → R
3 according to Definition 3.10. The triple

(�,�, u) satisfies the requirements of Definition 3.11 if we show that the map
�(η) does not depend on the choice of ξ . Independence holds if we establish the
bound

|y(x) + Rη − y ◦ �(η)| � 8ε (7.5)

and choose α so small that ε < 1
16 .

An application of the triangle inequality to the left hand side of (7.5) yields

|y(x) + Rη − y ◦ �(η)|
�
∣∣y(x) + Rη′ − y(x ′)

∣∣+
∣∣∣R(η − η′) + y(x ′) − y ◦ �′(T−1(η − η′))

∣∣∣
+ |(R − T−1R′)(η − η′)|.

Equation (3.6) implies that the first two terms are bounded by ε, Equation (3.12)
implies that the third term is bounded by 6ε.
We repeat this procedure 5 more times until we end up with the Lipschitz domain

� =
⋃
τ∈U
0∈τ

conv(τ ).

Equation (3.13) is an immediate consequence of the construction.

Proof of Proposition 3.14

Wedefine�l = lQco and construct inductively reference configurations (�l ,�l , ul)
for l ∈ {1 . . . s} such that �l(ηcenter) = x with ηcenter = [l/2]√2(1, 0, 0)T ∈
�l ∩ Lfcc and

‖dist(∇u, SO(3))‖L∞(�l ) � Cα (7.6)

for some universal constant C > 0.
Moreover the maps �l have the property that N (�l(η)) ∩ ∂X = ∅ and the local
reference configurations (�local,�η, uη)η∈�l∩Lfcc with �local = ⋃

0∈τ∈U conv(τ )

of Proposition 3.13 can be chosen so that they are compatible, that is

�η′
(η − η′) = �η′′

(η − η′′) if η − η′, η − η′′ ∈ �local ∩ Lfcc. (7.7)

The existence of the reference configuration (�l ,�l , ul) in the case l = 1 is a
consequence of Proposition 3.13. Estimate (7.6) follows from Lemma 4.3. Propo-
sition 3.3 together with the assumption dist({y(x)}, y(∂X)) � 2r + 3 implies that
{�l(η)} ∪ N (�l(η)) ∩ ∂X = ∅ for all η ∈ �l . The compatibility is a consequence
of Proposition 3.12 and (4.4).
In the induction step we define for each η ∈ �l+1 ∩ Lfcc the label �l+1(η) as
follows:

�l+1(η) =
{

�̂l(η) if η ∈ �̂l ,

�η′
(η − η′) if η ∈ �l+1 \ �̂l ∩ Lfcc, η

′ ∈ �l ∩ Lfcc and |η − η′| = 1,
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where the potentially translated domain �l and map �l are given by

�̂l =
{

�l if [(l + 1)/2] = [l/2]
�l + ηcenter else,

and

�̂l =
{

�l if [(l + 1)/2] = [l/2]
�l(· − ηcenter) else.

The translated local reference configurations (�local,�η, uη) are defined in a simi-
lar fashion. We have to show that �η′ (

η − η′) does not depend on the choice of η′.
Indeed, if η′, η′′ ∈ �l ∩ Lfcc have the property that |η − η′| = |η − η′′| = 1, then
|η′ − η′′| = 1 since �l is a scaled octahedron with the property that ∂�l ∩Lfcc is a
union of subsets of rigidly translated and rotated triangular lattices. Thus �η′

and
�η′′

are compatible, this implies that �η′
(η − η′) = �η′′

(η − η′′).
The existence and compatibility of the local reference configurations follows from
a similar argument like in the case l = 1.
Inequality (3.14) follows from (4.4).

Proof of Lemma 4.3

First, we define for each simplex σ ∈ D such that σ ⊂ τ the local gradient Fσ =
∇u|conv(σ ). Note that Fσ depends linearly on u and satisfies for each G ∈ R

3×3

the equation Fσ (u) = G if u(η) = Gη for all η ∈ τ . This implies that there exists
a constant C > 0 such that for fixed R ∈ SO(3)

|Fσ − R|2 � C IR(u) (7.8)

where

IR(u) = min

{∑
η∈τ

|u(η) − t − Rη|2 : t ∈ R
3

}
. (7.9)

We will show below that

min
R∈SO(3)

IR(u) � CWτ (u) for all u such that ‖dist(∇u, SO(3))‖L∞(conv(τ )) � c

(7.10)

if c,C > 0 are suitably chosen. The bounds (7.8) and (7.10) deliver the claim:

min
R∈SO(3)

‖∇u − R‖2L2(conv(τ ))

= min
R∈SO(3)

∑
σ∈D
σ⊂τ

meas(conv(σ )) |Fσ − R|2 � C Wτ (u). (7.11)

The proof of (7.10) rests on the observation that IR and Wτ are non-negative and
invariant under translations and rotations. Thanks to the invariances and the fact
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that minR∈SO(3) IR(u0) = Wτ (u0) = 0, with u0(η) = η, η ∈ τ , it suffices to
establish the bound

∑
|v(η)|2 � CWτ (u0 + v) for all v ∈ A, |v| � c. (7.12)

To see that (7.12) holds we define the Hessian H = D2Wτ (u0). We will show
that H is positive definite on the subspace Z ⊂ (R3)τ which is defined as the
orthogonal complement of the subspace spanned by translations z(η) = t ∈ R

3 for
all η ∈ τ and infinitesimal rotations z(η) = Aη, η ∈ τ , where t ∈ R

3 and A is
skew-symmetric.
If H is positive definite on Z , then it is easy to see that there exist constants c,C > 0
which depend on ‖Wτ (u0 + ·)‖C3(A∩B(0,c)) such that (7.12) holds.
To prove the positivity of the restriction of H to Z we derive a more explicit
representation of H . The gradient of Wτ is given by

∂Wτ (u)

∂u(η)
= 2

∑
η′∈τ

|η−η′|=1

∣∣u(η) − u(η′)
∣∣− 1

|u(η) − u(η′)|
(
u(η) − u(η′)

)
,

Thus, 3 × 3-block components the Hessian matrix H are of the form,

∂2Wτ (u0)

∂u(η) ∂u(η′)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∑

η′′∈τ :
|η−η′′|=1

(η − η′′) ⊗ (η − η′′) if η = η′,

−2(η − η′) ⊗ (η − η′) if |η − η′| = 1,
0 else

for all η, η′ ∈ τ .
In the case where τ is a tetrahedron the associated eigenvalues of H are 0 (mul-
tiplicity 6), 2 (multiplicity 2), 4 (multiplicity 3) and 8 (multiplicity 1), this can
be verified either with an explicit, but lengthy calculation, or a computer-algebra
package. If τ is an octahedron we obtain the eigenvalues 0 (multiplicity 6), 2 (mul-
tiplicity 5), 4 (multiplicity 3), 6 (multiplicity 3) and 8 (multiplicity 1). In particular,
both Hessian matrices have a kernel of dimension 6. By the rotational and trans-
lational invariance of Wτ , it follows that zero eigenmodes must correspond to the
six-dimensional space of rotations of translations, and that the Hessian matrices are
positive definite on the orthogonal complement of this space.

Proof of Lemma 5.8

Long range pairs
The lower bound is an immediate consequence of the injectivity of the map �

associated with each p ∈ ∪λ∈
 (Proposition 3.14). For each x ∈ X and λ ∈ 
, let

s(x, λ) := #
{
x ′ ∈ X : (x, x ′) ∈ P(λ)

}
.

If p = (x, x ′) ∈ P(λ), then

s(x, 1) = #
{
(x, x ′) ∈ S : x ′ ∈ X

} = m(1). (7.13)
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The injectivity of the map� implies that s(x, λ) � m(λ). Inequality (7.13) implies
s(x, λ) � m(λ)

m(1) s(x, 1). We obtain,

#P(λ) =
∑
x∈X

s(x, λ) � m(λ)

m(1)

∑
x∈X

s(x, 1) = m(λ)

m(1)
#S.

and the left-hand inequality of (5.23) is proved.
For the upper bound, let λ ∈ 
 and suppose there exists x ∈ X such that s(x, λ) <

m(λ). Thanks to Proposition 5.7.2 there exists a defect xb ∈ ∂X such that y(xb) ∈
B(y(x), 4λ) and the minimum distance bound (2.18) implies that

# (B(y(xb), 2λ) ∩ y(X)) � Cλ3.

Thus, the number of labels x ∈ X such that s(x, λ) < m(λ) is bounded above by
Cλ3#∂X and we obtain

#P(λ) =
∑
x∈X

s(x, λ) � m(λ)

(
1

m(1)

∑
x∈X

s(x, 1) − Cλ3#∂X

)

= m(λ)

(
1

m(1)
#S − Cλ3#∂X

)

and the right-hand inequality of (5.23) is proved.
Short- and medium-range pairs
Firstly, note that

m(1) = 12, m(
√
2) = 6,m(

√
3) = 24.

The proof of (5.24) is immediate:

#S =
∑
x∈X

#N (x) =
∑
x∈X12

#N (x) +
∑

x∈X\X12

#N (x)

= m(1)#X −
∑

x∈X\X12

(m(1) − #N (x)).

Proposition 3.3 implies that 1 � m(1) − #N (x) � m(1) in the last sum, therefore
(5.24) holds.
Inequality (5.25) is the result of a simple estimate:

#(Xreg \ X2
reg) �

∑
x∈Xreg

#(N (x) ∩ (X \ Xreg)) =
∑

x∈X\Xreg

#(N (x) ∩ Xreg)

�12(n − #Xreg). (7.14)

Now we consider the case λ = √
2. For p ∈ P (λ) we define

a(p) = #
{
x ∈ X2

reg : p ⊂ N (x)
}

.
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One obtains that

#P (λ) =
∑

x∈X2
reg

∑
p⊂N (x)
p∈P(λ)

1

a(p)

=
∑

x∈X2reg
N (x)⊂X2reg

∑
p⊂N (x)
p∈P(λ)

1

a(p)
+

∑

x∈X2reg
N (x) �⊂X2reg

∑
p⊂N (x)
p∈P(λ)

1

a(p)
.

It is easy to see that x ∈ X2
reg implies #{p ⊂ N (x) : p ∈ P(λ)} = 24 and

N (x) ⊂ X2
reg implies a(p) = 4, hence

#P (λ) = 6 #X2
reg +

∑

x∈X2reg
N (x) �⊂X2reg

(
− 6 +

∑
p⊂N (x)
p∈P(λ)

1

a(p)

)
. (7.15)

Since a(p) � 4 one finds that
∑
p⊂N (x)
p∈P(λ)

1

a(p)
� 6, (7.16)

therefore it suffices to bound the second term in (7.15) from above.

∑

x∈X2reg
N (x) �⊂X2reg

⎛
⎜⎝−6 +

∑
p⊂N (x)
p∈P(λ)

1

a(p)

⎞
⎟⎠ � 18#

{
x ∈ X2

reg : N (x) �⊂ X2
reg

}

� 4
∑

x∈X2
tco

#
(
N (x) \ X2

reg

)
= 18

∑

x∈X\X2
reg

#(N (x) ∩ X2
reg)︸ ︷︷ ︸

�6

� 108(n − #X2
reg) = 108(n − #Xreg) + 108#(Xreg \ X2

reg) � C(n − #Xreg).

(7.17)

The final inequality is due to (5.25). Estimates (7.17), (7.16) and (7.15) imply
(5.26).
Now we consider the case λ = √

8/3 which represents the shortest distance in
which the non-equivalence of fcc and hcp becomes relevant. The proofs of (5.26)
and (5.27) are nearly identical. For p ∈ P (λ) we define

a(p) = #
{
x ∈ X2

tco : p ⊂ N (x)
}

.

One obtains that

#P (λ) =
∑

x∈X2
tco

∑
p⊂N (x)
p∈P(λ)

1

a(p)

=
∑

x∈X2tco
N (x)⊂X2reg

∑
p⊂N (x)
p∈P(λ)

1

a(p)
+

∑

x∈X2tco
N (x) �⊂X2reg

∑
p⊂N (x)
p∈P(λ)

1

a(p)
.



412 L. C. Flatley & F. Theil

If x ∈ X2
reg and N (x) ⊂ X2

reg then a(p) = 3, hence

#P (λ) = 2 #X2
tco +

∑

x∈X2tco
N (x) �⊂X2reg

⎛
⎜⎝−2 +

∑
p⊂N (x)
p∈P(λ)

1

a(p)

⎞
⎟⎠ . (7.18)

Since a(p) � 3 one finds that

∑
p⊂N (x)
p∈P(λ)

1

a(p)
� 2, (7.19)

therefore it suffices to bound the second term in (7.18) from above.

∑

x∈X2tco
N (x) �⊂X2reg

⎛
⎜⎝−2 +

∑
p⊂N (x)
p∈P(λ)

1

a(p)

⎞
⎟⎠ � 4#

{
x ∈ X2

tco : N (x) �⊂ X2
reg

}

� 4
∑

x∈X2
tco

#
(
N (x) \ X2

reg

)
= 4

∑

x∈X\X2
reg

#(N (x) ∩ X2
tco)︸ ︷︷ ︸

�6

� 24(n − #X2
reg) = 24(n − #Xreg) + 24#(Xreg \ X2

reg) � C(n − #Xreg).

(7.20)

The final inequality is due to (5.25). Estimates (7.20), (7.19) and (7.18) imply
(5.27).
Finally we consider λ = √

3.
For x ∈ Xreg we define the equator

Neq(x) =
{
x ′ ∈ N (x) : �−1(x ′) · (b1 × b2) = 0

}
.

It is easy to see that �−1(Neq(x)) is a regular hexagon in the plane spanned by the
vectors b1 and b2. Armed with this notation one finds

#P
(√

3
)

= 2
∑

x∈X2
co

(24 − #(N (x) ∩ X2
reg))

+
∑

x∈X2
tco

(
36 − 2#

(
N (x) ∩ X2

reg

)
+ #

(
Neq(x) ∩ X2

reg

))

One obtains the following estimate for the first term:

2
∑

x∈X2
co

(24 − #(N (x) ∩ X2
reg)) = 24#X2

co + 2
∑

x∈X2co
N (x) �⊂X2reg

(12 − #(N (x) ∩ X2
reg)).

(7.21)
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As #N (x) � 12 one obtains the lower bound

2
∑

x∈X2
co

(24 − #(N (x) ∩ X2
reg)) � 24#X2

co. (7.22)

The inequality #(N (x) ∩ X2
reg) � 0 implies

2
∑

x∈X2
co

(24 − #(N (x) ∩ X2
reg)) � 24#X2

co + 24#{x ∈ X2
co : N (x) �⊂ X2

reg}

� 24#X2
co + 24

∑

x∈X\X2
reg

#(N (x) \ Xreg)︸ ︷︷ ︸
�12

� 24#X2
co + C(n − #X2

reg)

� 24#X2
co + C(n − #Xreg) + C#

(
Xreg \ X2

reg

)
� 24#X2

co + C(n − #Xreg).

(7.23)

The final inequality is a result of (5.25).
The second term in (7.21) can be estimated in a similar way:

∑

x∈X2
tco

(
36 − 2#

(
N (x) ∩ X2

reg

)
+ #

(
Neq(x) ∩ X2

reg

))

= 18#X tco +
∑

x∈X2tco
N (x) �⊂X2reg

(
18 − 2#

(
N (x) ∩ X2

reg

)
+ #

(
Neq(x) ∩ X2

reg

))
.

The inequality 2#
(
N (x) ∩ X2

reg

)
−#
(
Neq(x) ∩ X2

reg

)
� 18 implies a lower bound

for the second term in (7.21):

∑

x∈X2
tco

(
36 − 2#

(
N (x) ∩ X2

reg

)
+ #

(
Neq(x) ∩ X2

reg

))
� 18#X tco. (7.24)

Similarly to (7.23) one obtains the upper bound

∑

x∈X2
tco

(36 − 2#
(
N (x) ∩ X2

reg

)
+ #(Neq(x) ∩ X2

reg))

�18#X tco + 18#
{
x ∈ X tco : N (x) �⊂ X2

reg

}
� 18#X tco + C(n − Xreg).

(7.25)

Equations (7.22), (7.23), (7.24) and (7.25) imply (5.28).
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Proof of Lemma 6.1

For λ ∈ 
, let S(λ) := {k ∈ Lfcc : |k| = λ} and M(λ, v) :=∑k∈S(λ) ak(v, B)v ·k.
We first demonstrate the existence of r(λ) > 0 such thatK(λ) :=∑k∈S(λ) k⊗ k =
r(λ)Id. To this end, let {πi }4i=1 be the four triangular lattice planes which pass
through the origin and, for i ∈ {1, . . . , 4} , let Ri ∈ SO(3) be the rotation by
an angle 2π/3 in the plane πi . Then, Ri S(λ) = S(λ), and there exists a unique
invariant line �i ⊂ R

3 such that Ri�i = �i . Thus, K(λ) is invariant under Ri in the
sense that RT

i K(λ)Ri = K(λ), since

RT
i K(λ)Ri =

∑
k∈S(λ)

RT
i k ⊗ RT

i k = K(λ).

Since RT
i K(λ)Ri�i = RT

i K(λ)�i = K(λ)�i if and only ifK(λ)�i = �i , this implies
that K(λ) has four invariant lines and therefore K(λ) = r(λ)Id. In particular, if
{e1, e2, e3} is the standard basis of R3, then the relation ei ·K(λ)ei =∑k∈S(λ)(k ·
ei )2 for i = 1, 2, 3 implies

r(λ) = 1

3

3∑
i=1

∑
k∈S(λ)

(k · ei )2 = 1

3
m(λ)λ2.

Thus, if B = (v1, v2, v3) ∈ B then (6.36) states that ak(v, B) = B−1k · B−1v and
we obtain

M(λ, v) =
∑

k∈S(λ)

(B−1k · B−1v)(k · v) = v

·B−T B−1
∑

k∈S(λ)

(k ⊗ k)v = r(λ)

∣∣∣B−1v

∣∣∣2 = 1

3
m(λ)λ2

where the final equality follows from the fact that v = vi for some i ∈ {1, 2, 3} and
thus |B−1v| = |ei | = 1.

Notation. 1. Lfcc and Lhcp denote the face-centered cubic and hexagonal close-
packed lattices respectively.

2. B(η, r) ⊂ R
3 denotes the closed ball, centered at η ∈ R

3 with radius r > 0.
3. S2 is the unit sphere, centered at the origin.
4. X is a labeling set of #X particles, with n = #X.

5. P := {(x, x ′) ∈ X2 : x �= x ′} and S := {(x, x ′) ∈ X2 : ||y(x ′)− y(x)|−1| �
α are the set of pairs and edges respectively. We denote the components of
p ∈ P by p = (p1, p2) and the components of S by q = (q1, q2).

6. N (x) := {x ′ ∈ X : (x, x ′) ∈ S
}

7. A(x) := {q ∈ S : q1, q2 ∈ N1(x)} is the set of nearest neighborhood edges of
x ∈ X.
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8. Qco := Lfcc∩S2 and Qtco := Lhcp∩S2 contain the vertices of a cuboctahedron
and twisted cuboctahedron respectively, centered at the origin. Qo denotes the
octahedron with the vertices

1√
2

⎛
⎝
0 1 1 1 1 2
0 1 −1 0 0 0
0 0 0 1 −1 0

⎞
⎠ ei , i = 1 . . . 6.

9. x ∈ X is regular if #N (x) = 12 and 1
2#A(x) = 24.

10. ∂X ⊂ X is the set of defects (c.f. Definition 3.6).
11. D and U are the sets of simplices and units respectively (c.f. Definition 3.8).
12. S(�) := {q ∈ S : �−1(q1),�−1(q2) ∈ �

} ⊂ S.

13. 
 := {|z| : z′ ∈ Lfcc \ {0}} is the set of fcc lattice distances and, for each
λ ∈ 
, m(λ) = # {ζ ∈ Lfcc : |ζ | = λ} .

14. For each λ ∈ 
, P(λ) ⊂ P is the set of pairs associated with a reference
configuration pair of lengthλ (c.f.Definition5.6)and P0 := P\∪λ∈
P(λ) ⊂ P
is the set of defect pairs.

15. �[B] is the set of reference paths with directions determined by a basis B ∈ B
and � = ∪B∈B�[B] is the complete set of reference paths (c.f. Definition 5.1).

16. �̂(λ) is the set of label paths associated with a lattice distance λ ∈ 
 and
�̂ = ∪λ∈
�̂(λ) is the complete set of label paths (c.f. Definition 5.1).

17. gq(γ ) ∈ {0, 1} is an indicator function which takes the value 1 if and only if
q ∈ γ.
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