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Abstract

We consider a variational model related to the formation of islands in het-
eroepitaxial growth on unbounded domains. We first derive the scaling regimes of
the minimal energy in terms of the volume of the film and the amplitude of the
crystallographic misfit. For small volumes, non-existence of minimizers is then
proven. This corresponds to the experimentally observed wetting effect. On the
other hand, we show the existence of minimizers for large volumes. We finally
study the asymptotic behavior of the optimal shapes.

1. Introduction

We consider the epitaxial deposition of a thin crystalline film on a relatively
thick rigid substrate with a misfit between the lattice parameters of the film and
those of the substrate. Experimental and numerical observations suggest that the
shape of the film changes with increasing volume (see [3,15,19,30,32]). At small
volumes, one typically observes a very thin flat layer (“wetting”), while at larger
volumes, compact islands form. This transition is often explained as the result of
a competition between two opposing types of energies, namely, the stored strain
energy due to the crystallographic misfit, and the surface energy of the film’s free
surface. Heuristically, at small volumes, the surface energy dominates, and complex
structures are avoided, while at larger volumes, the film forms patterns to release
elastic energy at the price of an additional surface energy.

We study, analytically, a two-dimensional variational model introduced in [31]
(see also [3,10,14]), to describe the surfacemorphologies of the epitaxially strained
film.

The main difference to the previous analytical works (see [10,12,14,18]) is
that the model explicitly allows for wetting, which corresponds to film profiles
with unbounded support. We assume that the film occupies a domain �h which
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can be described as a subgraph of a height profile function h : R → [0,∞), i.e.,
�h := {x := (x, y) ∈ R

2 : 0 < y < h(x)}. The energy functional is then given by

F(u, h) :=
∫

�h

|∇u|2 dx +
∫
R

(√
1 + h′2 − 1

)
dx, (1.1)

where u : �h → R. For fixed volume d > 0 of the film, we look for profile
functions h and associated displacement functions u : �h → R that minimize the
total energy (1.1) subject to the constraints

∫
R
h dx = d and u(x, 0) = e0x for

all x ∈ R. The latter condition describes the crystallographic misfit between the
substrate and the film, where e0 > 0 measures its amplitude.

The first term in (1.1) models the strain elastic energy in the film. Recall that
we assume that there is a mismatch between the two crystal lattices, i.e., there is no
stress-free configuration possible, and consequently, a strain is induced in the film
during deposition. The second term in (1.1) models the extra surface energy due to
the rearrangement of the atoms in the film. All typical surface energy constants per
unit length are normalized to one. Let us notice that the functional F bears many
similarities with models for capillary surfaces [20,27].

We point out that, as noted before, in contrast to many previous works (see
[10,14,18]), we do not assume a periodic pattern of islands and do not restrict
matters to a single island on a compact domain. The main difference is that in
(1.1) the support of the height profile function h may be unbounded, which can
lead to a loss of compactness for low energy sequences. A short comparison to the
compact setting is given in Proposition 4.6. Many of our results, however, build on
techniques developed in the works on compactly supported islands.

Let us make some comments on several simplifications built into the model.
First, the displacement function u ∈ H1

loc(�h) and the elastic energy term |∇u|2 are
scalar valued simplifications of a typical geometrically linear elastic energy density
W (U ) = μ| 12 (∇U + ∇TU )|2 for a displacement U : �h → R

2, μ being a typical
elastic modulus. Based on the analysis in [18], we expect that the simplified energy
contains, at least qualitatively, all relevant information. We note that the proofs of
the scaling laws can be carried over to the elasticity setting, and are generalized
to the three-dimensional setting in Section 5. Second, we assume that the domain
occupied by the film can be described as a subgraph of the profile function h,
which has the effect of preventing the formation of droplets or nanorings (see, for
example [34]). Third, we do not take into account any plastic effects, such as misfit
dislocations (see, for example [28]). Finally, we consider only the stationary setting,
and refer to [8,11,29] for some recent results on the time evolution problem for the
compact setting.

We consider twodifferent types of approximations of the surface energy, namely
for small and large slopes |h′|. Many physical models are based on the assumption
that for small volumes of the deposited film one expects small slopes of the film’s
profile function (see [32,33] or [20] where a similar simplification is used in the
study of sliding liquid drops). This corresponds to the approximation (we ignore
the factor 1/2) ∫

R

(√
1 + h′2 − 1

)
dx ∼

∫
R

h′2 dx =: Ss(h). (1.2)
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If one expects, however, the formation of an island, the small slope approximation
might not be appropriate anymore, and we compare it to the large slope approxi-
mation ∫

R

(√
1 + h′2 − 1

)
dx ∼

∫
R

|h′| dx =: S�(h). (1.3)

If we insert either of the approximations (1.2) or (1.3) into (1.1), then, due to the
specific structure of the elastic energy term, we can rescale the problem to set
e0 = 1, i.e., we consider (see Section 3 for a detailed derivation)

Fs/�(V ) := inf

{∫
�h

|∇u|2 dx + Ss/�(h) : h ∈ H1(R), h � 0,
∫
R

h dx = V,

u(x, 0) = x

}
. (1.4)

It turns out that in both cases there are two scaling regimes of the energy, namely
(see Propositions 3.9 and 4.3)

Fs(V ) ∼ min{V, V 4/5} and F�(V ) ∼ min{V, V 2/3}.
Heuristically, these scaling laws reflect the transition fromawetting regime inwhich
the surface energy dominates and, consequently, the film forms a thin flat layer, to
a regime in which a compactly supported island forms, in which case the optimal
energy comes from the competition between elastic and surface energy. We note
that in this model, the surface energy prefers a flat layer, while the elastic energy
favors oscillations. This is in contrast to many other physical situations where the
surface energy typically favors compact shapes, and consequently minimizers exist
for small volumes, but not for large volumes (see, for example [17,21,22,26] for
some recent works). The situation is the opposite here: we prove that for large
volumes, there always exists a minimizer, while for small volumes we prove the
non-existence of minimizers in the case of the small slope approximation (see
Proposition 3.13). This is due to a loss of compactness of low-energy sequences,
which corresponds to the wetting effect. Note that this phenomenon does not occur
in case of a non-vanishing miscut angle (see [12]).

To studymore quantitatively the optimal shape of an island once it is formed, the
limit V → ∞ is considered. If properly rescaled, the asymptotic shape turns out to
be a parabola (in the case of the small slope approximation) and a rectangle (in the
case of the large slope approximation). We should stress the fact that even though
it sheds some light on what can be (mathematically) predicted by our models, this
asymptotic analysis does not tell much about the physics. In fact, it corresponds to
very large mismatch e0 and/or large volume d, for which the model is not expected
to be relevant anymore. Moreover, since in the original variables, minimizers tend
to have large slopes, the small slope approximation is also questionable in this
regime. We believe that adapting our analysis to the original functional (1.1) would
lead to results similar to the one obtained in the large slope approximation.

The remaining part of the text is organized as follows. After setting the notation
in Section 2, we first consider the small slope approximation. Some qualitative
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properties are derived in Section 3.1, and the scaling law for the minimal energy is
proven in Proposition 3.9. The scaling law is then refined to showmore quantitative
results. More precisely, we show that there is a range of volumes 0 < V < V , for
which the minimal energy is exactly equal to V , and consequently, there does not
exist a minimizer for 0 < V < V (see Proposition 3.13). On the other hand, for
volumes such that Fs(V ) < V (i.e., if V > V ), there always exists a smooth
minimizer, which has compact and connected support and meets the substrate at
zero angle (see Proposition 3.16 and Theorem 3.18). Regularity properties and
estimates on the support and its maximal height are provided (see Sections 3.4
and 3.5). The regularity of a minimizer (see Section 3.4) is shown using arguments
from [10] withminor changes required due to a different form of the surface energy.
Though the proof follows a standard approach, for the sake of completeness we
include it in the paper. Finally, the asymptotic behavior for large V → ∞ is studied.
It is shown, that, when properly rescaled, minimizers converge to a parabola, and
away from a boundary layer, this convergence occurs at an exponential rate in the
L2-topology.

Subsequently, in Section 4, the large slope approximation (1.3) is considered.
Note that this approximation comes along with a loss of regularity of admissible
profile functions h, and we consider the relaxation following [10]. We prove the
scaling law of the minimal energy F� (see Proposition 4.3), and show that in the
regime F�(V ) < V there always exists a minimizer with connected support (see
Proposition 4.10). If properly rescaled, a sequence of minimizing profiles con-
verges, away from a boundary layer, to a rectangular shape for large volumes at an
exponential rate in the L1-topology (see Proposition 3.39). Recall that for the small
slope approximation, non-existence of minimizers at small volumes is due to the
fact that Fs(V ) = V . For the large slope approximation, we only get the weaker
result F�(V )/V → 1 as V → 0 (see Proposition 4.7).

Finally, in Section 5, the three-dimensional setting is considered, and the scaling
laws for both types of approximations are discussed.

2. Notation and Preliminary Results

In this section, we set the notation and collect some results that will be used
later. Throughout the text we denote by C and c constants that may vary from
expression to expression. The symbols ∼, �, � indicate estimates that hold up to
a constant. For instance, f � g denotes the existence of a constant C > 0 such
that f � Cg. For � ⊂ R

2, we denote by H1 (�) its one-dimensional Hausdorff
measure, and by |�| its two-dimensional Lebesgue measure. When it exists, we
will denote by ν its inward normal. Given two sets A, B ⊂ R

2, we define their
Hausdorff distance as dH(A, B) := inf{r > 0 : A ⊂ N (B, r) and B ⊂ N (A, r)},
where N (A, r) := {x ∈ R

2 : d(x, A) < r}, and d(x, A) denotes the distance from
x to A. Given a vector x := (x, y) ∈ R

2, we denote by |x| := (
x2 + y2

)1/2
its

Euclidean norm.
We will use the following rescaling property for functions on rectangles.

Lemma 2.1. If u ∈ H1 ([0, �] × [0, L] ;R), with u (x, 0) = x, then letting
v (x, y) := 1

�
u (�x, �y), there holds
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∫
[0,�]×[0,L]

|∇u|2 dx = �2
∫
[0,1]×[0,L/�]

|∇v|2 dx. (2.1)

As a consequence, for every λ > 0, there exists C(λ) > 0 such that∫
[0,�]×[0,λ�]

|∇u|2 dx � C(λ)�2. (2.2)

The following lemma describes the behavior of the elastic energy for small
thickness of the film. It can be seen as a simple special case of a dimension reduction
argument (see [2,24]). A proof for the more complicated case of vector-valued
functions can be found in [18].

Lemma 2.2. There holds

lim
ε→0+ min

u(x,0)=x

1

ε

∫
[0,1]×[0,ε]

|∇u|2 dx = 1. (2.3)

Remark 2.3. The analogous statements hold for typical elastic energy functionals
for deformations U : R2 → R

2, i.e.,

lim
ε→0+ min

U (x,0)=(x,0)

1

ε

∫
[0,1]×[0,ε]

W (∇U ) dx = 1 (2.4)

if W (∇U ) = |∇U |2 or W (∇U ) = | 12 (∇U + ∇TU )|2 (see [18] and the references
given there). This allows us to carry over the qualitative results to the linear elasticity
setting.

3. Small Slope Approximation

In this section we consider the small slope approximation
√
1 + h′2 − 1 ∼ h′2

and study

Fs(e0, d) := inf

{∫
�h

|∇u|2 dx +
∫
R

h′2 dx : h ∈ H1(R), h � 0,

u ∈ H1
loc(�h),

∫
R

h dx = d, u(x, 0) = e0x if x ∈ supp h

}
.

(3.1)

Note that by Gagliardo–Nirenberg inequality we have h ∈ H1(R) if h ∈ L1(R)

and h′ ∈ L2(R).
One main difference between the model considered here and the related models

on compact domains (see [10,14,18]) is that it behaves well under rescaling as
shown by the following lemma (compare also [12, Section 5]):

Lemma 3.1. For h ∈ H1(R), h � 0, u ∈ H1
loc(�h)with∇u ∈ L2(�h), and λ > 0,

letting uλ(x, y) = 1
λ
u(λx, λy) and hλ(x) = 1

λ
h(λx), we have∫

�h

|∇u|2 dx +
∫
R

h′2 dx = λ2
∫

�hλ

|∇uλ|2 dx + λ

∫
R

h′2
λ dx

and
∫
R
h dx = λ2

∫
R
hλ dx.
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By rescaling, we can eliminate one of the two parameters d or e0. We will
renormalize such that e0 = 1:

Proposition 3.2. Let e0 > 0 and d > 0. Set V := e40d and

Fs(V ) := inf

{∫
�h

|∇u|2 dx +
∫
R

h′2 dx : (u, h) ∈ AV

}
, (3.2)

where the set of admissible pairs is given by

AV :=
{
(u, h) : h ∈ H1(R), h � 0, u ∈ H1

loc(�h),

∫
R

h dx = V,

u(x, 0) = x if x ∈ supp h

}
. (3.3)

Then

Fs(e0, d) = 1

e20
Fs(V ).

Proof. Let (u, h) be admissible for Fs(e0, d), and let λ := 1
e20
. Using the notation

of Lemma 3.1, set

h̃(x) := hλ(x), and ũ(x, y) := 1

e0
uλ(x, y). (3.4)

Then (ũ, h̃) ∈ AV and, by Lemma 3.1,

∫
�h

|∇u|2 dx +
∫
R

h′2 dx = 1

e20

(∫
�h̃

|∇ũ|2 dx +
∫
R

h̃′2 dx
)

.

Since (3.4) induces a bijective correspondence between the admissible pairs for
Fs(e0, d) and AV , this proves the assertion. 
�

In this section we study the problem (3.2). We first prove the scaling law of
the optimal energy. It is shown that there exists a critical volume V > 0 such
that for volumes 0 < V < V , we have Fs(V ) = V , which leads to the non-
existence of minimizers. We also prove that for V > V , we have Fs(V ) < V
and that there exists a compact connected smooth minimizer of (3.2), which has
zero contact angle with the substrate. Moreover, we provide estimates on the size
of the support of this island together with estimates on its maximal height. We
finally investigate the large volume limit and prove that, when suitably rescaled,
the minimizers converge to a parabola and that away from a boundary layer this
convergence is exponentially fast in the (strong) L2-topology. We point out that
we investigate the asymptotic behavior mostly for mathematical reasons to better
understand the shapes of minimizers. The physical model, and in particular the
small slope approximation implemented here, is expected to give more reliable
results in the case of small volumes.
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3.1. First Properties of the Minimization Problem

For every V > 0 and every (u, h)∈ AV , we set

EV (u, h) :=
∫

�h

|∇u|2 dx and SV (h) :=
∫
R

h′2 dx .

When it is clear from the context, we will often drop the explicit dependence on
(u, h). As a simple consequence of Lemma 3.1, we have the following important
property of Fs .

Proposition 3.3. Fs : (0,∞) → R is concave and thus locally Lipschitz continu-
ous.

Proof. Let V > 0 be fixed. Then, for every V0 > 0 and for every admissible

competitor (u, h)∈ AV0 , by Lemma 3.1, Fs(V ) � V
V0
EV0(u, h) +

(
V
V0

)1/2
SV0(h).

Hence

Fs(V ) = inf
V0>0

inf
(u,h)∈AV0

(
V

V0
EV0(u, h) +

(
V

V0

)1/2

SV0(h)

)
, (3.5)

and since for every V0 > 0 and (u, h)∈ AV0 , the function V �→ V
V0
EV0(u, h) +(

V
V0

)1/2
SV0(h) is concave, Fs is the infimum of concave functions and therefore

also concave. 
�
The scaling behavior from Lemma 3.1 is typical for various discrete and contin-

uous models for epitaxial growth, and thus, similar properties hold for a large class
of models (see also [12,32]). Using the same rescaling we obtain the following
result:

Proposition 3.4. For every V > 0, if

Fs(V ) = min

{∫
�h

|∇u|2 dx+
∫
R

h′2 dx : (u, h) ∈ AV

}
=EV (u∗, h∗)+SV (h∗),

i.e., if the minimum is attained, then {h∗ > 0} is connected.
Proof. Fix V > 0, and suppose that there exists aminimizer. It suffices to show that
for every (u, h) ∈ AV , for which {h > 0} is not connected, there exists (u, h) ∈ AV

with lower total energy. Assume that h = h(1) + h(2) with h(1) � 0, h(2) � 0,
{h(1) > 0} ∩ {h(2) > 0} = ∅, 0 <

∫
R
h(1) dx = V1 < V ,

∫
R
h(2) dx = V − V1,

and h(1), h(2) ∈ H1(R). Up to translation, we can further assume that h(1) and h(2)

were chosen such that

{h(1) > 0} ⊂ R
− and {h(2) > 0} ⊂ R

+. (3.6)

We set u(1) := u|�h(1) and u
(2) := u|�h(2) . Then (u(i), h(i)) ∈ AVi for i = 1, 2. We

note that

EV (u, h) + SV (h) = EV1(u
(1), h(1)) + SV1(h

(1)) + EV2(u
(2), h(2)) + SV2(h

(2)).
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We now build a competitor as follows. Consider the two components separately

and rescale them. Precisely, for 0 � μ � V , set λ1 :=
√

V1
μ

and λ2 :=
√

V2
V−μ

,
and, using the notation of Lemma 3.1 consider

hμ := h(1)
λ1

+ h(2)
λ2

(· − τμ),

where τμ is such that {h(1)
λ1

> 0} ∩ {h(2)
λ2

(· − τμ) > 0} = ∅ [which exists thanks to
(3.6)], and the associated uμ. Note that h = hV1 , and, by Lemma 3.1,

∫
R
hμ dx =

μ
V1
V1 + V−μ

V2
V2 = V for every μ ∈ [0, V ]. Hence (uμ, hμ) ∈ AV for every

μ ∈ [0, V ]. Let
f (μ) := EV (uμ, hμ) + SV (hμ),

so that by Lemma 3.1,

f (μ) = μ

V1
EV1(u

(1), h(1)) +
√

μ

V1
SV1(h

(1)) + V − μ

V2
EV2(u

(2), h(2))

+
√
V − μ

V2
SV2(h

(2)).

Since SV1(h
(1)) > 0 and SV2(h

(2)) > 0, the function f is strictly concave. There-
fore, it attains its minimum at the boundary, that is, at μ = 0 or at μ = V . This
shows that there is a configuration with strictly lower energy than (u, h) and proves
that the minimizer must be connected. 
�

Using a different rescaling we obtain the following:

Lemma 3.5. If V > 0, then

Fs(V ) = inf

{∫
�h

|∇u|2 dx +
∫
R

h′2 dx : (u, h) ∈ AV ;

∂yu ≡ 0 or
∫

�h

(∂yu)2 dx = 3

4

∫
R

h′2 dx
}

.

Proof. For (u, h) ∈ AV consider the equivalence class {(uλ, hλ) : λ > 0} ⊂ AV

given by the anisotropic rescaling uλ(x, y) = 1
λ
u(λx, 1

λ
y) and hλ(x) = λh(λx).

Then
∫

�hλ

|∇uλ|2 dx +
∫
R

h′2
λ dx =

∫
�h

(
(∂xu)2 + 1

λ4
(∂yu)2

)
dx + λ3

∫
R

h′2 dx .

Suppose that ∂yu �≡ 0. Since for every (u, h) ∈ AV we have
∫
R
h′2 dx > 0,

within one equivalence class, the energy is minimized for λ = 4
3

∫
�h

(∂yu)2 dx∫
R
h′2 dx > 0.

Therefore, from each such equivalence class, only the elementwith
∫
�h

(∂yu)2 dx =
3
4

∫
R
h′2 dx is relevant for the infimum. 
�
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Following [3,10,18], we prove the lower semicontinuity of the energy and
density of Lipschitz configurations.

Proposition 3.6. For every sequence (un, hn)∈ AV with supn EV (un, hn) +
SV (hn) � C, there exists (u, h) with h ∈ H1(R), h � 0 and u ∈ H1

loc(�h)

such that up to a subsequence, hn converges to h in L∞
loc(R), un converges weakly

in H1
loc(�h) to u, u(x, 0) = x, and

lim
n→+∞

(EV (un, hn) + SV (hn)) �
∫

�h

|∇u|2 dx +
∫
R

h′2 dx .

Moreover, if {hn} is tight, then hn → h in L1(R), and
∫
R
h dx = V .

Conversely, for every (u, h)∈ AV with EV (u, h) + SV (h) < ∞, there exists a
sequence (un, hn)∈ AV such that hn is Lipschitz continuous with bounded support
and such that hn converges to h in L∞(R), un converges weakly in H1

loc(�h) to u,
and

lim
n→+∞

(EV (un, hn) + SV (hn)) � EV (u, h) + SV (h).

Proof. Let (un, hn)∈ AV be a sequence such that supn EV (un, hn)+SV (hn) � C .
From the compact embedding of H1

loc(R) in L∞
loc(R), we get that (up to a subse-

quence), hn converges in L∞
loc(R) to some (continuous) function h. This implies

the local Hausdorff convergence of R2\�hn to R
2\�h , from which as in [3,10]

we infer the existence of a function u∈ H1(�h) with u(x, 0) = x such that un
converges weakly in H1

loc(�h), and as in [3,10] we obtain the lower semicontinuity

lim
n→+∞

(EV (un, hn) + SV (hn)) +
∫

�h

|∇u|2 dx +
∫
R

h′2 dx .

If {hn} is tight, then hn → h in L1(R), which implies that
∫
R
h dx = V .

Let now (u, h) ∈ AV be such that EV (u, h) + SV (h) < ∞. It is readily seen
that we can approximate h from below by compactly supported height profiles so
that we will assume from now on that h itself is compactly supported. It suffices
to approximate h by a sequence of Lipschitz functions hn with 0 � hn � h and
SV (hn) � SV (h). We refer the reader to [3,10,18] for the treatment of the volume
constraint. Following [3], for n ∈ N and x ∈ R, we define

hn(x) := inf
x ′∈R

(
h(x ′) + n|x − x ′|)

to be theYosida transform of h. The latter is an n−Lipschitz functionwhich satisfies
0 � hn � h. As proven in [3], �hn converges to �h in the Hausdorff topology.
Since hn and h are continuous functions, the set {hn < h} is open and thus made of
a countable union of disjoint intervals (ak, bk), k ∈ N. On each of these intervals
(see [3]),

hn(x) = min{h(ak) + n|x − ak |, h(bk) + n|x − bk |}
so that

∫ bk
ak

h′2
n dx �

∫ bk
ak

h′2 dx . From h′ = h′
n almost everywhere on {hn = h}, we

obtain that SV (hn) � SV (h) and that hn converges in L∞ to h. 
�
We now prove an interpolation inequality which will be useful later.
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Proposition 3.7. For every h∈ H1(R), we have

‖h‖L∞(R) �
(

9

16

)1/3 (∫
R

|h(x)| dx
)1/3 (∫

R

h′(x)2 dx
)1/3

. (3.7)

Proof. Without loss of generality, we may assume that h � 0 (otherwise consider
|h|). By rescaling the dependent and the independent variables, wemay assume that
‖h‖L∞ = 1 and

∫
R
h dx = 1. Indeed, suppose that the inequality holds for some

h ∈ H1. For M > 0 and λ > 0 consider the rescaled function h̃(x) = Mh(λx).
Then, by changing variables, x̃ = x

λ
, we get that (3.7) holds for h̃ since

‖h̃‖L∞ = M‖h‖L∞ � M

(
9

16

)1/3 (∫
R

|h(x)| dx
)1/3 (∫

R

h′(x)2 dx
)1/3

= M

(
9

16

)1/3 ( 1

M

∫
R

|(Mh)(x)| dx
)1/3 ( 1

M2

∫
R

(Mh)′(x)2 dx
)1/3

=
(

9

16

)1/3 (
λ

∫
R

|(Mh)(λx̃)| dx̃
)1/3 (

λ

∫
R

1

λ2
(Mh)′(λx̃)2 dx̃

)1/3

=
(

9

16

)1/3 (∫
R

|h̃(x)| dx
)1/3 (∫

R

h̃′(x)2 dx
)1/3

.

By translation and symmetric decreasing rearrangement (see [25]), we can further
restrict ourselves to functions h with h(0) = sup h = 1, which are even and non-
increasing on [0,+∞). Let

g(x) :=
⎧⎨
⎩
(
1 − |x |

x0

)2
, if x ∈ (−x0, x0),

0, else,

where x0 > 0 is chosen so that the volume constraint is satisfied, i.e., x0 = 3/2.
Let us prove that g is the minimizer of

∫
R
h′2 dx in the class

M :=
{
h ∈ H1(R) : h � 0, ‖h‖L∞ = h(0) = 1,

∫
R

h dx = 1,

h(x) = h(−x), h non-increasing on [0,∞)

}
.

Let h ∈ M. Then∫ +∞

0
h′2 dx =

∫ +∞

0
g′2 dx + 2

∫ +∞

0
g′(h − g)′ dx +

∫ +∞

0
|(h − g)′|2 dx

=
∫ +∞

0
g′2 dx − 2

∫ x0

0
g′′(h − g) dx +

∫ +∞

0
|(h − g)′|2 dx

where we used integration by parts and the fact that g′(x0) = 0, h(0) = g(0) = 1.
Since on [0, x0], g′′ = 2

x20
and since

∫ +∞
0 (h − g) dx = 0, we further obtain that

∫ x0

0
g′′(h − g) dx = 2

x20

∫ x0

0
(h − g) dx = − 2

x20

∫ +∞

x0
h dx
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so that ∫ +∞

0
h′2 dx =

∫ +∞

0
g′2 dx + 4

x20

∫ +∞

x0
h dx

+
∫ +∞

0
|(h − g)′|2 dx �

∫ +∞

0
g′2 dx .

By symmetry, this shows that gminimizes
∫
R
h′2 dx inM. Using that

∫ x0
0 g′2 dx =

8/9, we obtain (3.7). 
�
Remark 3.8. In terms of the energy, (3.7) can be rephrased as

‖h‖L∞(R) �
(

9

16

)1/3

V 1/3SV (h)1/3.

3.2. Scaling Law

In this section, we prove the following scaling law for the energy.

Proposition 3.9. There exists a constant c0> 0 such that for every V > 0,

c0 min{V, V 4/5} � Fs(V ) � c−1
0 min{V, V 4/5}.

Moreover, there exists C > 0 with the following property: If V is large enough,
and (u, h)∈ AV with EV (u, h) + SV (h) � 1

c0
V 4/5, then max h � CV 3/5.

Proof. We prove the upper bound first. For that, we have to construct two elements
from AV for V > 0. First, for N ∈ N, set

hN (x) :=

⎧⎪⎪⎨
⎪⎪⎩

V
N2 x + V

N , if − N � x � 0,

− V
N2 x + V

N , if 0 � x � N ,

0, if |x | � N ,

and set uN (x, y) := x if (x, y) ∈ �hN . Then (uN , hN ) ∈ AV , and EV (uN , hN ) +
SV (hN ) = V + 2V 2

N3 � 2V for N large enough. Note that we even have

EV (uN , hN ) + SV (hN ) → V as N → ∞. (3.8)

For the other regime, set

h̃(x) :=

⎧⎪⎪⎨
⎪⎪⎩

V 1/5x + V 3/5, if − V 2/5 � x � 0,

−V 1/5x + V 3/5, if 0 � x � V 2/5,

0, if |x | � V 2/5,

and let ũ be the restriction to �h of

ũ(x, y) :=
{
x(1 − V−2/5y), if y � V 2/5,

0, if y � V 2/5.
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Then (ũ, h̃) ∈ AV , and

EV (ũ, h̃)+SV (h̃)�
∫ V 2/5

−V 2/5

∫ V 2/5

0
(1−V−2/5y)2+V−4/5x2 dx+2

∫ V 2/5

0
V 2/5 dx

=
(
10

3
+ 2

)
V 4/5.

For the lower bound, thanks to Proposition 3.6, we can assume that h is a Lipschitz
functionwith

∫
R
h dx = V and {h > 0} compact and connected (otherwise consider

each of the (possibly infinitely many) connected components separately). Let then
u ∈ H1(�h) be the minimizer of the Dirichlet energy in �h with u(x, 0) = x . Let
x1 ∈ R be such that h(x1) > 0, and let t1 > 0 be the maximal t > 0 such that the
square [x1, x1 + t] × [0, t] is below the graph of h, i.e., [x1, x1 + t] × [0, t] ⊂ �h .
Observe that the maximality of t1 implies the existence of a point x̄1 ∈ [x1, x1 + t1]
such that h(x̄1) = t1. Now let

V1 :=
∫ x1+t1

x1
h dx, E1 :=

∫ x1+t1

x1

∫ h(x)

0
|∇u|2 dx, and S1 :=

∫ x1+t1

x1
h′2 dx .

We want to show that E1 + S1 � min{V1, V 4/5
1 }. By Lemma 2.1 , E1 �∫

[x1,x1+t1]×[0,t1] |∇u|2 dx � Ct21 , hence E1 � C
2 V1 provided that V1 � 2t21 .

Let us now assume that V1 > 2t21 . Since max[x1,x1+t1] h � V1
t1
, we have

S1 � 1

t1

(
max[x1,x1+t1]

h − min[x1,x1+t1]
h

)2

� 1

t1

(
V1
t1

− t1

)2

= 1

t1

(
V1
2t1

+ V1
2t1

− t1

)2

� V 2
1

4t31
.

Since E1 � Ct21 , we obtain

E1 + S1 � Ct21 + V 2
1

4t31
� CV 4/5

1 ,

where the last inequality follows from Young’s inequality.
We have thus shown that the energy in [x1, x1 + t1] is bounded from below

by c0 min{V1, V 4/5
1 }. We define iteratively x2 := x1 + t1, xi+1 := x1 + ∑i

k=1 tk ,
and repeat the process in each interval [xi , xi + ti ], and similarly in the opposite
direction (i.e., going to the left) starting at x1. Since h is Lipschitz we cover with
this procedure the whole set {h > 0}, and the lower bound follows.

It remains to show that if V is large enough, and (u, h) ∈ AV with EV (u, h) +
SV (h) � 1

c0
V 4/5, then max h � CV 3/5 for some C > 0 independent of V . Having

ti and Vi constructed in the previous part of the proof, let us assume that V1 is the
largest among all {Vi }. Then we have

V 4/5

c0
� EV (u, h) + SV (h) �

∑
i

c0 min
{
Vi , V

4/5
i

}

� c0 min{1, V−1/5
1 }

∑
i

Vi = c0 min
{
1, V−1/5

1

}
V,
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which gives c100 V � max{1, V1}. Assume now that V � c−10
0 so that V1 � c100 V . If

we setM := max[x1,x1+t1] h, then as beforeM � V1/t1, which implies t1 � V1/M .
Since E1 � Ct21 , we have

V 4/5/c0 � E1 � t21 � (V1/M)2 � c200 V 2M−2,

which implies max h � M � V 3/5. 
�
Remark 3.10. Using the scaling law (see Proposition 3.9) and (3.7), we find that
max h � V 3/5, and so the previous proposition implies that max h ∼ V 3/5 for
sufficiently large V . Using this we see that the size of the support of h is at least of
order max{1, V 2/5}.

In terms of the original parameters e0 and d, the scaling law reads as follows.

Proposition 3.11. There exists a positive constant c such that for every V > 0,

cmin
{
e20d, d4/5e6/50

}
� F(V ) � 1

c
min

{
e20d, d4/5e6/50

}
.

Remark 3.12. In the original coordinates, for e40d � 1, the typical island is of

height e2/50 d3/5 and of width
(

d
e0

)2/5
.

3.3. Existence and Non-Existence of Minimizers

Let us start by studying the non-existence case for small V , i.e., the wetting
regime. For this, we prove that for a non-trivial range of volumes 0 < V � V , the
infimum of the energy Fs(V ) is equal to V .

Proposition 3.13. There exists V > 0 such that for every 0 < V � V we have
Fs(V ) = V . As a consequence, there exists no minimizer of (3.2) for 0 < V < V .

Proof. Recall that by the construction of flat layers in the proof of the scaling law
[see (3.8)], we have Fs(V ) � V . It remains to show the reverse inequality, i.e., that
for every (u, h) ∈ AV , we have EV (u, h) + SV (h) � V if V is small enough. By
density, it suffices to consider (u, h) ∈ AV for which h is Lipschitz continuous (see
Proposition 3.6), and u being the minimizer of the Dirichlet energy in �h subject
to the boundary condition u(x, 0) = x on {h > 0}. In particular, −	u = 0 in �h .
Testing the Laplace equation with u(x, y) − x , we obtain

0=
∫

�h

div(∇u) · (u−x) dx=−
∫

�h

(
|∇u|2−∂xu

)
dx+

∫
∂�h

∂νu · (u−x) dH1.

The boundary integral vanishes, because ∂νu = 0 if y = h(x), and u(x, 0) = x .
Hence ∫

�h

|∇u|2 dx =
∫

�h

∂xu dx,
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and integration by parts yields
∫

�h

∂xu dx =
∫

�h

div

(
u
0

)
dx =

∫
∂�h

(
u
0

)
· ν dH1

=
∫

{y=h(x)}
uνx dH1 = −

∫
R

u(x, h(x))h′(x) dx .

Here we used that ν = (−h′(x),1)√
1+h′2 , and so νx dH1 = −h′(x) dx .

By the fundamental theorem of calculus, u(x, h(x)) = x + ∫ h(x)
0 ∂yu dy, and

we deduce∫
R

u(x, h(x))h′(x) dx =
∫
R

xh′(x) dx +
∫

�h

∂yu(x, y)h′(x) dx.

For the first integral on the right-hand side, integration by parts implies∫
R

xh′(x) dx = −
∫
R

h(x) = −V,

and so altogether,∫
�h

|∇u|2 dx = V −
∫

�h

∂yu(x, y)h′(x) dx.

We add SV = ∫
R
h′2 dx to both sides of the equation to obtain

EV + SV =
∫

�h

|∇u|2 dx + SV = V + SV −
∫

�h

∂yu(x, y)h′(x) dx. (3.9)

To show that the energy of (u, h) is not smaller than V , it suffices to prove that∫
�h

∂yu(x, y)h′(x) dx � SV .

By Lemma 3.5, we have either ∂yu ≡ 0, in which case the inequality holds trivially
true, or, using Hölder’s inequality,

∫
�h

∂yu(x, y)h′(x) dx �
(∫

�h

(∂yu)2(x, y) dx
)1/2 (∫

�h

h′2(x) dx
)1/2

�
√
3

4
SV

√
sup h, (3.10)

which implies that EV (u, h) + SV (h) � V for any admissible (u, h) ∈ AV which
satisfies sup h � 4/3. Note that by (3.7),

sup h �
(

9

16

)1/3

V 1/3S1/3V �
(

9

16

)1/3

V 2/3.

Hence, the infimum of the energy is exactly V for 0 < V � 25

9
√
3
, and so there

exists a maximal V > 0 such that Fs(V ) = V for V ∈ (0, V ].
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To show non-existence of a minimizer, let us argue by contradiction and assume
that there exists a minimizer (u, h) ∈ AV for some V with 0 < V < V . Choose V0
with V < V0 � V , and set λ :=

√
V
V0
. Then by Lemma 3.1, since (uλ, hλ) ∈ AV0

and SV (h) > 0, we obtain a contradiction:

V0 = Fs(V0)� EV0(uλ, hλ) + SV0(hλ) =V0
V

EV (u, h) +
(
V0
V

)1/2

SV (h)

<
V0
V

(EV (u, h) + SV (h)) = V0.


�
We next consider the regime {V > V } and aim to prove that minimizers exist

for every V > V . For that, we need some auxiliary properties. For V > 0, we set

β(V ) := Fs(V )

V
. (3.11)

By (3.5) and Fs(V ) � V , we see that β(V ) � 1 for every V , and that β is a
non-increasing function of V. Using that Fs(V ) = V for V ∈ (0, V ], we can say
more about β:

Lemma 3.14. The function β is strictly decreasing in the region {Fs(V ) < V } =
{β < 1}.
Proof. Weassume the contrary, i.e., that there exist V < V0 < V1 < ∞ andβ0 < 1
such that Fs(V ) = β0V < V for all V ∈ [V0, V1] ⊂ (V ,∞). We use the concavity
of Fs , Fs(0) = 0, and the previous assumption, to get for every V ∈ (0, V )

Fs(V ) �
(
1 − V

V0

)
Fs(0) + V

V0
Fs(V0) = V

V0
Fs(V0) =β0V, and

β0V0 = Fs(V0) � V1 − V0
V1 − V

Fs(V ) + V0 − V

V1 − V
Fs(V1).

Since Fs(V1) = β0V1, the second relation simplifies to Fs(V ) � β0V , which
together with the first relation implies Fs(V ) = β0V . This is a contradiction, since
β0 < 1 and by assumption Fs(V ) = V . 
�

The essential step to prove the existence of minimizers is to derive the com-
pactness of minimizing sequences. It is based on the following auxiliary lemma:

Lemma 3.15. Let V > V and δ > 0. Then there exist a length l = l(V, δ) > 0
and C(V, δ) > 0 with the following property: for every (u, h) ∈ AV with ε :=
EV (u, h) + SV (u) − Fs(V ) � C(V, δ), and every x0 < x1, with x1 − x0 = l, we
have

∫ x0

−∞
h dx � δ or

∫ ∞

x1
h dx � δ. (3.12)
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Proof. Let V > V and δ > 0. Note that by the strict monotonicity of β in [V ,∞),
we have β(V ) < β

( V
2

)
. Choose C(V, δ) > 0 and let 0 < α < 1 be such that

C(V, δ) <
δ

2

(
β

(
V

2

)
− β(V )

)
, and α <

(
δ

156

[
β

(
V

2

)
− β(V )

])2

.

(3.13)

Assume further that α > 0 is such that V
3α = n ∈ N. Set l := V

α
, and let [x0, x1] be

an arbitrary interval of length x1 − x0 = l. Since α−1V = 3n with n ∈ N, we can
decompose [x0, x1] as an essentially disjoint union of 3n intervals of length 1, i.e.,

[x0, x1] =
3n−1⋃
k=0

[x0 + k, x0 + (k + 1)].

Since
∫
R
h dx = V = n · 3α, there are at most n intervals which satisfy

∫
Ik
h dx �

3α. Similarly, since SV (h) < V , we find at most n intervals such that
∫
Ik
h′2 dx �

3α. Hence, among Ik there is an interval I such that∫
I
h dx � 3α and

∫
I
h′2 dx � 3α, (3.14)

in particular

3α �
∫
I
h′2 dx �

(
sup
I

h − inf
I
h

)2

.

Since we also have 3α �
∫
I h dx � inf I h, we get that

sup
I

h =
(
sup
I

h − inf
I
h

)
+ inf

I
h �

√
3α + 3α � 3(α + α1/2). (3.15)

Without loss of generality (translating h), we may assume that I = [0, 1]. Now we
“cut” the profile into three parts. Precisely, we set

h0(x) :=

⎧⎪⎪⎨
⎪⎪⎩

h(x), if x � 0,

min(−2h(0)x + h(0), h(x)), if 0 � x � 1
2 ,

0 otherwise,

and u0 := u|�h0
,

and

h1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

min(2h(1)x − h(1), h(x)), if 1
2 � x � 1,

h(x), if x � 1,

0 otherwise,

and u1 := u|�h1
.

We use the notation

V0 :=
∫ 1/2

−∞
h0 dx, V1 :=

∫ ∞

1/2
h1 dx, Vlo := V − V0 − V1.
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Wemayassumewithout loss of generality thatV0 � V1,which implies thatV0 � V
2 .

Note that by construction (u0, h0) ∈ AV0 , (u1, h1) ∈ AV1 ,

Vlo � sup
I

h � 3(α + α1/2), (3.16)

and

EV (u, h) � EV0(u0, h0) + EV1(u1, h1). (3.17)

Further, again by construction and (3.15),

SV (u, h) � SV0(h0) + SV1(h1) −
[∫ 1/2

0
h′2
0 dx +

∫ 1

1/2
h′2
1 dx

]

� SV0(h0) + SV1(h1) −
(
2 sup

I
h

)2

� SV0(h0) + SV1(h1)

−36(α + α1/2)2. (3.18)

Since Fs(V ) = β(V )V with β < 1 we have by (3.17) and (3.18),

β(V )V + ε = Fs(V )+ε = EV (u, h)+SV (h) � Fs(V0)+Fs(V1)−36(α+α1/2)2

= β(V0)V0 + β(V1)V1 − 36(α + α1/2)2.

Moreover, since β is non-increasing and since V = V0 + V1 + Vlo, and V0 � V
2 ,

β(V0)V0+β(V1)V1 =β(V )V+V0(β(V0)−β(V ))+V1(β(V1)−β(V ))−β(V )Vlo
� β(V )V + V0(β(V/2) − β(V )) − Vlo

which together implies V0(β(V/2) − β(V )) � ε + Vlo + 36(α + α1/2)2. Since
V > V , the strict monotonicity of β implies β(V/2) − β(V ) > 0, and so, since
α2 < α < α1/2,

V0 � ε + Vlo + 36(α + α1/2)2

β(V/2) − β(V )
� ε + 78α1/2

β(V/2) − β(V )
. (3.19)

By (3.13), we obtain that V0 < δ, and thus
∫ x0

−∞
h dx =

∫ x0

−∞
h0 dx �

∫
R

h0 dx = V0 � δ.


�
Proposition 3.16. For any V > V , a minimizer of (3.2) exists.

Proof. Let V be such that Fs(V ) < V , and let (un, hn) be a minimizing sequence.
First we claim that Lemma 3.15 implies tightness of (un, hn).

Indeed, let 0 < δ < V/2 be fixed and let l = l(V, δ) be obtained from
Lemma 3.15. Then for n large enough the energy of (un, hn) is close enough to
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Fs(V ) [i.e., ε := EV (un, hn)+SV (hn)−Fs(V ) fromLemma3.15 is small enough].
Then we choose xn such that

∫ xn
−∞ hn dx = 2δ and observe that by Lemma 3.15

∫ ∞

xn+l
hn dx � δ.

Hence, for n large enough we have
∫ xn
−∞ hn � 2δ and

∫∞
xn+l hn � δ, which im-

plies tightness of the minimizing sequence (up to translations). The existence of a
minimizer then follows from the lower semicontinuity of the energy (see Proposi-
tion 3.6). 
�

We will prove in Corollary 3.34 that also for V = V a minimizer exists.

3.4. Regularity of Minimizers

Notation In this section, for given x ∈ R (xi ∈ R, etc.), we will denote by z (zi ) a
point in R2 defined by z := (x, y) = (x, h(x)) (zi = (xi , yi ) = (xi , h(xi ))).

In this subsection we prove the regularity of minimizers of (3.2) if they exist.
For this we follow the strategy of [10] (see also [9]) which in turn was inspired
by [5]. Let us first notice that as in [10], the volume constraint can be relaxed. For
μ > 0 and V > 0 set

Fμ
s (V ) := inf

{∫
�h

|∇u|2 dx +
∫
R

h′2 dx + μ

∣∣∣∣
∫
R

h dx − V

∣∣∣∣ : (u, h) ∈ A
}

with

A :=
{
(u, h) : h ∈ H1(R), h � 0, u ∈ H1(�h), u(x, 0) = x if x ∈ supp h

}
.

Note that AV = {(u, h) ∈ A : ∫
R
h dx = V }. We have the following relation

between Fμ
s and Fs :

Proposition 3.17. Let C � 2
c0
, where c0 is the constant from Proposition 3.9. Then,

for μ := C min {1, V−1/5}, we have Fμ
s (V ) = Fs(V ).

Proof. We closely follow the proof of [16, Theorem 2.8]. Let V > 0. First, since
AV ⊂ A, and

∫
�h

|∇u|2 dx +
∫
R

h′2 dx + μ

∣∣∣∣
∫
R

h dx − V

∣∣∣∣ =
∫

�h

|∇u|2 dx +
∫
R

h′2 dx

for every (u, h) ∈ AV , we have Fμ
s (V ) � Fs(V ). Assume now for the sake of

contradiction that Fμ
s (V ) < Fs(V ), i.e., there exists (u, h)∈ A such that1

E(u, h) + S(h) + μ

∣∣∣∣
∫
R

h dx − V

∣∣∣∣ < Fs(V ). (3.20)

1 We denote here, for simplicity, E(u, h) := ∫
�h

|∇u|2 dx and S(h) := ∫
R
h′2 dx .
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We note first that by rescaling we can assume that
∫
R
h dx � V . Indeed, assume

that there exists (u, h) ∈ A with (3.20) and
∫
R
h dx =: W > V . Then for the

rescaled pair (see Lemma 3.1) (uλ, hλ) ∈ AV with λ :=
√

W
V > 1, we also have

by Lemma 3.1 and (3.20),

E(uλ, hλ) + S(hλ) < E(u, h) + S(h) < Fs(V ).

On theother hand, if
∫
R
h dx � V

2 , thenμ| ∫
R
h dx−V | � μ V

2 =C
2 min {1, V 4/5} �

Fs(V ) by the choice ofC and Proposition 3.9. Hence we can assume that
∫
R
h dx �

V
2 . Now we construct a competitor from AV for (u, h) ∈ A\AV by rescaling. De-
noting α := ∫

�h
|∇u|2 dx + ∫

R
h′2 dx and W := ∫

R
h dx , we find by (3.20) that

α + μ(V − W ) = E(u, h) + S(h) + μ

∣∣∣∣
∫
R

h dx − V

∣∣∣∣ < Fs(V ) � α
V

W
.

From this we get μ < α
W [since otherwise α + μ(V − W ) � αV

W ], and from the
scaling law (Proposition 3.9) finally (recall that W � V/2)

μ <
α

W
� Fs(V )

W
� 1

W

1

c0
min{V, V 4/5} � 2

c0
min{1, V−1/5},

from which we get a contradiction by the choice of C . 
�
In order to prove more properties of the minimizers, we will need to use the

Euler–Lagrange equation. For this, we will need to show first that minimizers of
(3.2) are smooth.

Theorem 3.18. If (u, h) ∈ A is a minimizer of (3.2), then h is analytic in {h > 0}
and satisfies the zero contact angle condition.

Following [5,9,10], we divide the proof of the regularity of (u, h) into several
lemmas. We first prove that h is locally Lipschitz continuous. Then, in the spirit of
[5], we prove a uniform sphere condition. From this, we derive decay estimates for
|∇u| which as in [10] leads to the regularity of h.

Lemma 3.19. Let the pair (u, h) be a minimizer of (3.2). Then in the set {h > 0}
the height profile h is a locally Lipschitz function.

Proof. Let m > 0, and x0, x1 ∈ supp h be such that x0 < x1, h(x0) < h(x1) and
m � h(x) for x ∈ [x0, x1]. Since h is continuous, there exist

x0 := max{x ∈ [x0, x1) : h(x) = h(x0)},
x3 := min{x > x1 : h(x) = h(x0)}, and

x2 := max{x < x3 : h(x) = h(x1)}.
Note that h � h(x0) in [x̄0, x3] and h > h(x0) in (x̄0, x1). We denote δ :=
h(x1) − h(x0).

Let us now define a competitor (ũ, h̃) for (u, h). In R\[x̄0, x3] we set h̃ := h,
and in [x̄0, x3] we set
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h̃(x) :=
{
h(x0) if h(x0) � h(x) < h(x1)

h(x) − δ if h(x) � h(x1).

Since h̃ � h, we have �h̃ ⊂ �h and the following definition makes sense

ũ(x) := u(x), x ∈ �h̃ . (3.21)

We denote M := {x ∈ [x̄0, x3] : h(x0) � h(x) < h(x1)}. Then h′(x) = h̃′(x) for
almost every x �∈ M and h̃′(x) = 0 for almost every x ∈ M , and so

∫
R

h̃′2 dx =
∫
R

h′2 dx −
∫
M
h′2 dx �

∫
R

h′2 dx −
∫ x1

x̄0
h′2 dx

�
∫
R

h′2 dx − δ2

x1 − x̄0
,

where the last inequality follows from δ2 = (h(x1) − h(x̄0))2 =
(∫ x1

x̄0
h′ dx

)2
�

(x1 − x̄0)
∫ x1
x̄0

h′2 dx .
We now estimate

∫
R
h̃ dx :

∫
R

h̃ dx =
∫
R

h dx −
∫

{x̄0<x<x3}
min{h(x) − h(x0), δ} dx � V − (x3 − x̄0)δ.

Since h(x) � m in [x̄0, x3], we have that V �
∫ x3
x̄0

h(x) dx � (x3 − x̄0)m, and so

V �
∫
R

h̃ dx � V − δV

m
. (3.22)

Finally, by (3.21) we see that
∫
�h

|∇u|2 dx �
∫
�h̃

|∇ũ|2 dx.
Since (u, h) is a minimizer, the previous estimates and Proposition 3.17 imply
∫

�h

|∇u|2 dx +
∫
R

h′2 dx �
∫

�h̃

|∇ũ|2 dx +
∫
R

h̃′2 dx + μ

∣∣∣∣
∫
R

h̃ dx − V

∣∣∣∣

�
∫

�h

|∇u|2 dx +
∫
R

h′2 dx −
(

δ2

x1 − x̄0
− μ

δV

m

)
,

where μ = CV−1/5. Hence δ
x1−x̄0

� μ V
m , which implies

h(x1) − h(x0)

x1 − x0
� h(x1) − h(x0)

x1 − x̄0
= δ

x1 − x̄0
� μV

m
� V 4/5

m
.

In the case h(x0) > h(x1) � m we proceed analogously. Altogether we get that
if both x0 and x1 belong to the set {x : h(x) � m}, then

|h(x0) − h(x1)| � |x0 − x1|V
4/5

m
,

in particular h is locally Lipschitz in the set {h > 0}. 
�
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We now prove that the graph of h satisfies a uniform sphere condition. The
proof is inspired by, but slightly different from, the proof of a similar statement in
[5] (see also [9,10]). The main difference to the aforementioned papers is that in
our setting, the surface energy is not invariant under rotation of the axis.

Lemma 3.20. Let V > 0, and let the pair (u, h) be a minimizer of (3.2). Then,
there exists a radius r0 = r0(V ) > 0 with the following property: for every circle
Sr (x0) (x0 := (x0, y0)) and every interval (a, b) ⊂ R such that (a, h(a)) ∈ Sr (x0),
h(a) > y0, (b, h(b)) ∈ Sr (x0), h(b) > y0, and such that the graph of h is above
Sr (x0) in (a, b), we have that r > r0.

Proof. Let Sr (x0) and (a, b) ⊂ R be as in the lemma. We define (h̃, ũ), a com-
petitor for (u, h), by

h̃(x) :=
{
h(x) if x �∈ (a, b)

h(a) + h(b)−h(a)
b−a (x − a) if x ∈ (a, b),

and ũ(x) := u(x) for x ∈ �h̃ ⊂ �h . Since (u, h) is a minimizer, Proposition 3.17
implies

∫
�h

|∇u|2 dx +
∫
R

h′2 dx �
∫

�h̃

|∇ũ|2 dx +
∫
R

h̃′2 dx + μ

∣∣∣∣
∫
R

h̃ dx − V

∣∣∣∣ .

Since u = ũ in �h̃ and �h̃ ⊂ �h , we see that
∫
�h̃

|∇u|2 dx �
∫
�

|∇ũ|2 dx. We use

this together with the fact that h = h̃ outside of (a, b) to derive

∫ b

a

(
h′2 − h̃′2) dx � μ

∣∣∣∣
∫
R

h̃ dx −
∫
R

h dx

∣∣∣∣ = μ

∣∣∣∣
∫ b

a

(
h − h̃

)
dx

∣∣∣∣ . (3.23)

Using the definition of h̃ and Hölder’s inequality, we obtain for every x ∈ (a, b)

∣∣∣h(x) − h̃(x)
∣∣∣ �

∫ x

a

∣∣∣∣h′(x ′) − h(b) − h(a)

b − a

∣∣∣∣ dx ′

� (b − a)1/2

(∫ b

a

(
h′(x ′) − h(b) − h(a)

b − a

)2

dx ′
)1/2

. (3.24)

We observe that
∫ b
a h′ dx = h(b) − h(a) implies that

∫ b

a

(
h′(x ′) − h(b) − h(a)

b − a

)2

dx ′ =
∫ b

a

(
h′2(x ′) − h̃′2(x ′)

)
dx ′.

We plug this relation into (3.24) to show

∫ b

a

(
h′2−h̃′2) dx

(3.23)
� μ

∫ b

a
|h̃−h| dx � μ(b − a)3/2

(∫ b

a

(
h′2−h̃′2) dx

)1/2

.
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Hence ∫ b

a

(
h′2 − h̃′2) dx � μ2(b − a)3,

and subsequently
∫ b

a

(
h − h̃

)
dx � μ(b − a)3. (3.25)

Let us now estimate
∫ b
a

(
h − h̃

)
dx using the fact that in the interval (a, b) the

height function h is above the circle Sr (x0), i.e., that h(x) � y0+√
r2 − (x − x0)2

=: f (x) for x ∈ (a, b). The trapezoidal rule implies that
∫ b

a
f (x) dx − (b − a)

f (a) + f (b)

2
= − (b − a)3

12
f ′′(ξ)

for some ξ ∈ (a, b). Using that
∫ b
a h̃ dx = (b − a)

h(a)+h(b)
2 = (b − a)

f (a)+ f (b)
2 ,

we get that
∫ b

a

(
h − h̃

)
dx �

∫ b

a
f dx − (b − a)

f (a) + f (b)

2
= − (b − a)3

12
f ′′(ξ).

Finally, we compute f ′′(ξ) = − r2

(r2−(ξ−x0)2)3/2
to show

∫ b

a

(
h − h̃

)
dx � − (b − a)3

12
f ′′(ξ) = (b − a)3

12

r2

(r2 − (ξ − x0)2)3/2

� 1

12r
(b − a)3.

We conclude by combining the previous estimate with (3.25) to get r � μ/12. 
�
Arguing as in [9,10], we obtain the following result:

Lemma 3.21. Let the pair (u, h) be a minimizer of (3.2). Then for every point
x ∈ supp h there exists a ball Br0(x0, y0) ⊂ �h ∪ {y � 0} (with r0 defined in
Lemma 3.20) such that ∂Br0(x0, y0) ∩ graph h = (x, h(x)).

From this and [5, Lemma 3], we obtain:

Corollary 3.22. Let the pair (u, h) be a minimizer of (3.2). Let x0 ∈ R be such that
h(x0) > 0. Then there exists a neighborhood U⊂ R of x0 such that h|U is Lipschitz
and admits left and right derivatives at every point of U, that are respectively left
and right continuous.

The previous corollary implies that to prove that h is a C1 function in the set
{h > 0}, it suffices to consider points x0 ∈ R, h(x0) > 0, for which h′+(x0) �=
h′−(x0), where h′+ and h′− denote the right and left derivatives. Following [9,10]
we call such points corner points. Our aim is to prove that if (u, h) is a minimizer
of (3.2), then there are no corner points. In order to show this, we first obtain the
following estimate on |∇u| (which is also an important ingredient in the proof of
[9,10]):
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Lemma 3.23. Let the pair (u, h) be a minimizer of (3.2), and let x0 be a corner
point. Then there exist α > 1 and r1 > 0 such that

∫
Bρ(z0)∩�h

|∇u|2 dx � C̄ρα for

all ρ ∈ (0, r1), where C̄ := r−α
1

∫
�h

|∇u|2 dx.
Proof. Since h(x0) > 0, h is locally Lipschitz in the neighborhood of x0 and we
can find δ, L > 0 such that

|h(x) − h(x ′)| � L|x − x ′| ∀x, x ′ ∈ (x0 − δ, x0 + δ). (3.26)

Sinceby assumption, x0 is a corner point,we can choose r1, 0 < r1 < min {δ, h(x0)},
small enough such that for every ρ ∈ (0, r1) both the graph of h|(x0,+∞) and of
h|(−∞,x0) intersect Sρ(z0) exactly once. For ρ ∈ (0, r1), let us denote the arc of
Sρ(z0), which connects two intersections of the graph of h with Sρ(z0), and which
belongs to �h (i.e., the bottom arc), by Aρ . By virtue of (3.26) this arc has length
at most

H1(Aρ) � 2πρ(1 − arctan(1/L)). (3.27)

For any a ∈ R and any ρ ∈ (0, r1), since 	(u − a) = 0 in Bρ(z0) ∩ �h and
∂ν(u − a) = 0 on ∂�h ∩ Bρ(z0), we get

∫
Bρ(z0)∩�h

|∇u|2 dx =
∫
Aρ

(u − a)∂νu dH1. (3.28)

Then Poincaré’s inequality with the optimal constant implies
∫
Aρ

(u − ū)2 dH1 �
(H1(Aρ)

π

)2 ∫
Aρ

|∂τu|2 dH1

(3.27)
� (2ρ(1 − arctan(1/L)))2

∫
Aρ

|∂τu|2 dH1, (3.29)

where ū denotes the average of u on Aρ and ∂τu denotes the derivative of u in the
tangential direction. Hence, by Hölder’s and Young’s inequality we get from (3.28)
with a := u and (3.29)∫

Bρ(z0)∩�h

|∇u|2 dx

=
∫
Aρ

(u − ū)∂νu dH1

�
(∫

Aρ

(u − ū)2 dH1

)1/2 (∫
Aρ

|∂νu|2 dH1

)1/2

� 2ρ(1 − arctan(1/L))

(∫
Aρ

|∂τu|2 dH1

)1/2 (∫
Aρ

|∂νu|2 dH1

)1/2

� 2ρ(1 − arctan(1/L))
1

2

∫
Aρ

(
|∂τu|2 + |∂νu|2 dH1

)

= ρ(1 − arctan(1/L))

∫
Aρ

|∇u|2 dH1.
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We let F(ρ) := ∫
Bρ(z0)∩�h

|∇u|2 dx and observe that the last estimate can be

rewritten as F(ρ) � ρ(1 − arctan(1/L))F ′(ρ). By integrating this inequality, we
obtain for any ρ ∈ (0, r1),

F(ρ) � F(r1)

(
ρ

r1

)α

,

where 1/α = (1 − arctan(1/L)) < 1. To conclude we observe that F(r1) �∫
�h

|∇u|2 dx implies

∫
Bρ(z0)∩�h

|∇u|2 dx = F(ρ) � ραF(r1)r
−α
1 � C̄ρα.


�
Following [10, Th. 3.13], we can now prove that in the set {h > 0} there are no

corner points, and so h ∈ C1({h > 0}):
Lemma 3.24. Let the pair (u, h) be a minimizer of (3.2). Then in the set {h > 0}
the height profile h is a C1 function.

Proof. To prove the lemma it is enough to show that there are no corner points.
Let us argue by contradiction and assume that x0 is a corner point. Then, by Corol-
lary 3.22 and Lemma 3.23 there exist r1 > 0 and α > 1 such that for ρ ∈ (0, r1)

∫
Bρ(z0)∩�h

|∇u|2 dx � C̄ρα, (3.30)

and h|(x0−r1,x0+r1) is a Lipschitz function with right and left derivatives, which are
respectively right and left continuous. Moreover, x0 being a corner point implies
h′+(x0) �= h′−(x0).

First,we observe that byLemma3.21, h′−(x0) < h′+(x0), and so ε := (h′+(x0)−
h′−(x0))/4 > 0. Then (possibly by diminishing r1), we can assume that for every
x ∈ (x0, x0 + r1)

∣∣∣∣h(x) − h(x0)

x − x0
− h′+(x0)

∣∣∣∣ � ε, (3.31)

and similarly for x ∈ (x0 − r1, x0)
∣∣∣∣h(x) − h(x0)

x − x0
− h′−(x0)

∣∣∣∣ � ε. (3.32)

By Lemma 3.20, for any ρ ∈ (0, r1) there exist unique points xl , xr∈ Sρ(z0)∩∂�h

with xl < x0 and xr > x0. Using xl and xr we define h̃, a competitor for h by

h̃ :=
{
h(x) if x �∈ [xl , xr ]
a(x) if x ∈ [xl , xr ],
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where a(x) := h(xl) + x−xl
xr−xl

(h(xr ) − h(xl)) is an affine function which connects
(xl , h(xl)) and (xr , h(xr )). Using (3.30) and the fact that ∂�h∩Bρ(z0) is Lipschitz,
we can extend u to �h̃ (still denoted by u) such that

∫
Bρ(z0)∩�h̃

|∇u|2 dx � C̄1ρ
α, (3.33)

where C̄1 depends only on C̄ and the Lipschitz constant of h|(x0−r1,x0+r1). Since
(u, h) is a minimizer of (3.2), Proposition 3.17 implies

∫
R

(
h′2 − h̃′2) dx �

∫
�h̃\�h

|∇u|2 dx + μ

∫
R

(
h̃ − h

)
dx . (3.34)

First we will estimate the left-hand side of (3.34) from below. The definition of h̃
implies

∫
R

(
h′2 − h̃′2) dx =

∫ x0

xl
h′2 dx +

∫ xr

x0
h′2 dx −

∫ xr

xl
h̃′2 dx . (3.35)

We set dl := h(x0)−h(xl )
x0−xl

and dr := h(xr )−h(x0)
xr−x0

. Then

∫ x0

xl
h′2 dx +

∫ xr

x0
h′2 dx � d2l (x0 − xl) + d2r (xr − x0), (3.36)

and
∫ xr

xl
h̃′2 dx = (dl(x0 − xl) + dr (xr − x0))2

xr − xl
. (3.37)

We plug (3.36) and (3.37) into (3.35) to get

∫ xr

xl

(
h′2−h̃′2) dx � d2l (x0−xl)+d2r (xr −x0)− (dl(xl−x0)+dr (xr −x0))2

xr −xl
.

A simple algebraic manipulation shows that

d2l (x0 − xl) + d2r (xr − x0) − (dl(xl − x0) + dr (xr − x0))2

xr − xl

= (x0 − xl)(xr − x0)

xr − xl
(dr − dl)

2 ,

and so the estimates on dl and dr [see (3.31) and (3.32)] imply that
∫ xr

xl

(
h′2 − h̃′2) dx � (x0 − xl)(xr − x0)

xr − xl
(h′+(x0) − h′−(x0) − 2ε)2

� 2min{x0 − xl , xr − x0}ε2, (3.38)

where in the last step we used that 2ab/(a + b) � min {a, b} and the definition of
ε. Let us now observe that since h is Lipschitz, we have that x0 − xl � Cρ and
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xr − x0 � Cρ, where C depends only on the Lipschitz constant of h|(x0−r1,x0+r1).
Therefore, for any ρ ∈ (0, r1) and the corresponding xl , xr we obtain that

∫ xr

xl

(
h′2 − h̃′2) dx � Cρ, (3.39)

where C > 0 depends on h|(x0−r1,x0+r1), but not on ρ.
Finally,weobserve that | ∫

R
(h̃−h) dx | = | ∫ xr

xl
(h̃−h) dx | � |Bρ |, and so (3.34),

(3.33), and (3.39) imply that there exists α > 1 and constants C > 0, C̄1 such that
for every ρ ∈ (0, r1) we have Cρ � C̄1ρ

α + μπρ2, which yields a contradiction
for sufficiently small ρ. This concludes the proof. 
�

We proved that in the set {h > 0} the height profile h is a C1 function. It then
follows that in fact h is more regular. Indeed, for any x0 such that h(x0) > 0 we
observe that given ε > 0 there exists r1 > 0 such that for any ρ ∈ (0, r1)

H1(Sρ(z0) ∩ �h) � (1 + ε)πρ. (3.40)

Then we can repeat the proof of Lemma 3.23 while replacing (3.27) by (3.40) to
show the following result.

Lemma 3.25. Let the pair (u, h) be a minimizer of (3.2), and let x0 ∈ R be such
that h(x0) > 0. Then for any 0 < α < 2 there exists r1 > 0 such that for any
ρ ∈ (0, r1)

∫
Bρ(z0)∩�h

|∇u|2 dx � C̄ρα,

where C̄ = r−α
1

∫
�h

|∇u|2 dx. Moreover, given α < 2, the corresponding r1 de-
pends [through relation (3.40)] only on the modulus of continuity of h′ in the
neighborhood of x0.

Similar ideas as in the proof of Lemma 3.24 then give the following result.

Proposition 3.26. Let the pair (u, h) be a minimizer of (3.2). Then for every β ∈
(0, 1/2) the height profile h|{h>0} is a C1,β

loc function.

Proof. Let x̄ ∈ R, h(x̄) > 0, and α ∈ (0, 2) be fixed. Then by Lemma 3.25 and
the fact that h ∈ C1({h > 0}) there exist U , a neighborhood of x̄ , a radius r1 > 0,
and a constant C1 such that for any point x ∈ U and any ρ ∈ (0, r1) we have

∫
Bρ(z)∩�h

|∇u|2 dx � C1ρ
α. (3.41)

Moreover, we can assume that h′ is bounded in U .
Let x0 ∈ U be fixed. Using standard extension argument and estimate (3.41) we

can extend u to Bρ(z0)\�h (the extension still denoted by u) such that
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∫
Bρ(z0)

|∇u|2 dx � C̄1ρ
α , where C̄1 is independent of ρ and the choice of x0.

Now let x1 > x0 be such that |z0 − z1| < r1. We set ρ := |z0 − z1| and define h̃ by

h̃(x) :=
{
h(x) if x �∈ [x0, x1]
a(x) if x ∈ [x0, x1],

where a(x) := h(x0) + x−x0
x1−x0

(h(x1) − h(x0) is an affine function connecting z0
and z1. We observe that �h̃ ⊂ �h ∪ Bρ(z0), and so (h̃, u|�h∪Bρ ) is a well defined
competitor for (u, h). Since (u, h) is a minimizer of (3.2), Proposition 3.17 implies
∫ x1

x0

(
h′2−h̃′2) dx �

∫
Bρ(z0)\�h

|∇u|2 dx+μ|Bρ(z0)| � C̄1ρ
α+μπρ2 � C̄ρα.

Since h′ is bounded in U , we have that x1 − x0 � C−1ρ, where C does not depend
on ρ or x1. Then

−
∫ x1

x0

(
h′(x) − −

∫ x1

x0
h′
)2

dx = −
∫ x1

x0

(
h′2 − h̃′2) dx � Cρ−1

∫ x1

x0

(
h′2 − h̃′2) dx,

and so

−
∫ x1

x0

(
h′(x) − −

∫ x1

x0
h′
)2

dx � Cρα−1. (3.42)

A relation similar to (3.42) holds also for the choice x1 < x0, and we can use [1,
Th. 7.51] to conclude that h ∈ C1,(α−1)/2(U). 
�

We showed that h ∈ C1,β
loc ({h > 0}) for any β ∈ (0, 1/2), and so (u, h) satisfies

all the assumptions of the following theorem (see [1, Th. 7.49]).

Theorem 3.27. Let � be an open set in R
2, g ∈ L∞(�) and u ∈ H1(�) be a

solution of the Neumann problem

−	u = g in �

∂νu = 0 on S.

If S ⊂ ∂� is a C1,β curve relatively open in ∂�, β < 1, then ∇u has a C0,β

extension up to S.

We apply this theorem to show that for every s > 0, |∇u| is C0,β in the
neighborhood of ∂�h ∩ {y > s}. As a consequence we obtain the following:

Proposition 3.28. A minimizer (u, h) of (3.2) satisfies the Euler–Lagrange equa-
tion

|∇u|2(x, h(x)) − 2h′′(x) = λV for almost every x ∈ {h > 0}, (3.43)

where λV= λ(V ) is a constant that depends on V , namely the Lagrange multiplier
associated to the volume constraint.
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Having (3.43), a simple bootstrap argument implies that in facth∈C∞({h > 0})
and u ∈ C∞(�h) (see [10] for more details). If κ denotes the mean curvature of
∂�h , observing that (3.43) can be rewritten as

κ = |∇u|2 − λV

2
ν3y ,

we see that [23, Th. 3.1] implies that h is analytic in {h > 0}. To prove Theorem3.18
it remains to show that h satisfies the zero contact angle condition. To do so we first
derive a lemma analogous to Lemma 3.23 which applies to the points of contact
with the substrate:

Lemma 3.29. Let the pair (u, h) be a minimizer of (3.2), and let x0 ∈ supp h be
such that h(x0) = 0. Then x0 ∈ ∂ supp h and there exist r0 > 0 and C̄ such that
for every ρ ∈ (0, r0) ∫

Bρ(z0)∩�h

|∇u|2 dx � C̄ρ4/3. (3.44)

Proof. First note that by Proposition 3.4, the set {h > 0} is connected if (u, h) is
a minimizer of (3.2). Therefore, if h(x0) = 0 and x0 ∈ supp h, then x0 ∈ ∂ supp h.
Consequently, h vanishes in (−∞, x0) or in (x0,∞). Let us now assume that h
vanishes in (−∞, x0), the other case being symmetric. Then by Lemma 3.21 and
[5, Lemma 3] there exists a radius r0 > 0 such that h|(x0−r0,x0+r0) has left and right
derivatives at every point, that are respectively left and right continuous (but could
possibly attain infinite values). Moreover, we can assume (by possibly diminishing
r0 > 0) that for every ρ ∈ (0, r0), the graph of h intersects Sρ((x0, 0)) in exactly
two points (x0 − ρ, 0) and (xr , h(xr )).

Let us fix ρ ∈ (0, r0) and the corresponding xr . Since u minimizes the Dirichlet
integral in �h subject to boundary conditions u(x, 0) = x , we get that

∫
Bρ(z0)∩�h

∇u · ∇(u − x) dx =
∫
Sρ(z0)∩�h

(u − x)∂νu dH1.

Let δ := 1/5. By Hölder’s and Young’s inequality the previous relation gives
∫
Bρ(z0)∩�h

|∇u|2 dx=
∫
Sρ(z0)∩�h

(u − x)∂νu dH1 +
∫
Bρ(z0)∩�h

∇u ·
(
1
0

)
dx

�
(∫

Sρ(z0)∩�h

(∂νu)2 dH1

)1/2(∫
Sρ(z0)∩�h

(u−x)2 dH1

)1/2

+δ

∫
Bρ(z0)∩�h

|∇u|2 dx + C

δ
|Bρ(z0)|. (3.45)

We estimate the second integral on the right-hand side usingWirtinger’s inequality,
which states that if f (0) = 0, then

∫ l

0
f (t)2 dt �

(
2l

π

)2 ∫ l

0
f ′(t)2 dt.
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More precisely, we apply Wirtinger’s inequality to u(x, y)− x on Sρ(z0)∩�h

(observe that u(x, 0) − x = 0 if x = 0), which, together with Young’s inequality,
yields

∫
Sρ(z0)∩�h

(u − x)2 dH1 � ρ2
∫
Sρ(z0)∩�h

|∂τ (u − x)|2 dH1

� ρ2
∫
Sρ(z0)∩�h

(1 + δ)(∂τu)2 + (1 + δ−1) dH1,

where τ denotes the tangent vector to Sρ , and we used that |∂τ x | � 1. Hence, using
Young’s inequality again and |Sρ(z0) ∩ �h | � ρπ/2, it follows from (3.45):

(1 − δ)

∫
Bρ(z0)∩�h

|∇u|2 dx � C

δ
ρ2 + ρ

2

∫
Sρ(z0)∩�h

[
(∂νu)2

+ (1 + δ)(∂τu)2 + (1 + δ−1)
]
dH1

� Cρ2δ−1 + ρ(1 + δ)

2

∫
Sρ(z0)∩�h

|∇u|2 dH1.

Since δ = 1/5, one has (1 − δ)/(1 + δ) = 2/3, and so
∫
Bρ(z0)∩�h

|∇u|2 dx � C1ρ
2 + 3

4
ρ

∫
Sρ(z0)∩�h

|∇u|2 dH1.

If we denote G(ρ) := ∫
Bρ(z0)∩�h

|∇u|2 dx+ 2C1ρ
2, then the last relation is equiv-

alent to

G(ρ) � 3

4
ρG ′(ρ).

Integrating this relation (the same way as we did in the end of the proof of
Lemma 3.23) we obtain (3.44). 
�

Proceeding along the lines of the proof of Lemma 3.24, we derive the following
result from Lemma 3.29.

Lemma 3.30. Let the pair (u, h) be a minimizer of (3.2). Let x0 ∈ supp h be such
that h(x0) = 0. Then h′(x0) = 0, and so h ∈ C1(R).

3.5. More Qualitative Results

It has been observed for various variational models for the epitaxial growth
that minimizers are often not unique. For instance, for a model for periodic island
formation, there is a regime of volumes and periods in which the flat configuration
is not the only minimizing configuration (see [14, Theorem 2.13]). We do not
obtain uniqueness of minimizers here, but part of the following result is the weaker
statement that for almost every V , any two minimizers have the same surface and
the same elastic energy. For a similar result for faceted islands see [12].
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Proposition 3.31. The function Fs : V �→ Fs(V ) is Lipschitz continuous with Lip-
schitz constant less than C min {1, V−1/5}. Moreover, if Fs is differentiable at V ,
then

F ′
s(V ) = λV = 1

V

(
EV (u, h) + 1

2
SV (h)

)
, (3.46)

for every minimizing pair (u, h).
At suchpoints of differentiability, if (u, h)and (ũ, h̃)are twodifferentminimizers

of (3.2), then EV (u, h) = EV (ũ, h̃) and SV (h) = SV (h̃) =: SV . Finally, there
holds,

lim
ε→0+

Fs(V + ε) + Fs(V − ε) − 2Fs(V )

ε2
� − SV

4V 2 .

Proof. We already know from Proposition 3.3 that Fs is locally Lipschitz continu-
ous. The estimate on the Lipschitz constant can be obtained by two different ways.
The first approach is to use Proposition 3.17, and test for two volumes V andW the
minimization problem Fμ

s with the minimizers for each of these volumes. Another
approach is to compute the derivative of Fs directly. For this, we see that for ε > 0,
using the rescaling argument (see Lemma 2.1),

Fs(V + ε) − Fs(V ) � (1 + ε/V )EV + (1 + ε/V )1/2SV − EV − SV ,

where EV and SV are the elastic and surface energy of the minimizer, respectively.
If Fs is differentiable at V , this implies by Proposition 3.9 that F ′

s(V ) � 1
V (EV +

1
2 SV ) � Fs(V )/V � c−1

0 min {1, V−1/5} with c0 > 0 from Proposition 3.9.
Similarly, by rescaling from V to V − ε, we find by Lemma 3.1 that

Fs(V − ε) − Fs(V )

−ε
� 1

ε
(EV + SV − (1 − ε/V )EV − (1 − ε/V )1/2SV ),

and thus F ′
s(V ) � EV + 1

2 SV
V � c0

2 min {1, V−1/5}, which implies F ′
s(V ) = 1

V (EV +
1
2 SV ). Moreover, this also implies that two minimizers for volume V have the same
elastic and the same surface energy. The same rescaling argument also gives the
bound

lim
ε→0+

Fs(V + ε) + Fs(V − ε) − 2Fs(V )

ε2
� − 1

4V 2 .

It remains to show that

λV V = Fs(V ) − 1

2
SV (3.47)

(where λV is the Lagrange multiplier) for V > V . We test the Laplace equation for
u in �h with the function y∂yu to find

0 =
∫

�h

−div

(
∂xu
∂yu

)
(y∂yu) dx =

∫
�h

(
∂xu
∂yu

)
·
(

y∂xyu
y∂yyu + ∂yu

)
dx.
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Using integration by parts we obtain

2
∫

�h

∂xu(y∂xyu) dx = −
∫

�h

(∂xu)2 dx +
∫

∂�h

(∂xu)2yνy dx, and

2
∫

�h

∂yu(y∂yyu) dx = −
∫

�h

(∂yu)2 dx +
∫

∂�h

(∂yu)2yνy dx,

which together with the previous relation imply
∫

�h

[
(∂xu)2 − (∂yu)2

]
dx =

∫
∂�h

|∇u|2yνy dH1.

Using the Euler–Lagrange equation, the right-hand side can be written as
−2

∫
R
h′2 dx + λV

∫
R
h dx , which implies

∫
�

[
(∂xu)2 − (∂yu)2

]
dx = −2SV + λV V .

From this and Lemma 3.5, we finally obtain (3.47). From (3.47) we get that if F is
differentiable, then F ′(V ) = λV . 
�

We can now use this information to study the compactness properties of mini-
mizers.

Proposition 3.32. Let V > V . Then for every minimizer (u, h) of (3.2), the height
function h has bounded support, andH1(supp h) � λV SV

1−λV
� V 3/5.

Proof. Let us first prove that any minimizer of (3.2) is compactly supported. For
the sake of contradiction, assume it is not. Since

∫
R

h′2 dx +
∫
R

(∫ h(x)

0
|∇u|2(x, y) dy

)
dx < +∞,

for any ε > 0 and K > 0 there exist x1 < x2 such that x2 − x1 � K and

|h′(xi )| +
∫ h(xi )

0
|∇u|2(xi , y)dy < ε, i = 1, 2. (3.48)

Using

u(x2, h(x2)) − u(x1, h(x1)) =
∫ x2

x1
∇u(x, h(x)) ·

(
1

h′(x)

)
dx

we find

|u(x1, h(x1)) − u(x2, h(x2))| �
∫ x2

x1
|∇u(x, h(x))|

√
1 + h′2(x) dx

Hölder
�

(∫ x2

x1
|∇u|2(x, h(x)) dx

)1/2 (∫ x2

x1
(1 + h′2(x)) dx

)1/2

.
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We use the Euler–Lagrange equation (3.43) to replace the first term on the right-
hand side of the previous relation, and get

|u(x1, h(x1)) − u(x2, h(x2))|
�

(∫ x2

x1
(λV + 2h′′(x)) dx

)1/2 (∫ x2

x1
(1 + h′2(x)) dx

)1/2

� (λV (x2 − x1) + 2|h′(x1) − h′(x2)|)1/2(x2 − x1 + SV )1/2

(3.48)
� (λV (x2 − x1) + 2ε)1/2(x2 − x1 + SV )1/2. (3.49)

Finally, since u(x, h(x)) = x + ∫ h(x)
0 ∂yu(x, y)dy, we have

|u(x1, h(x1)) − u(x2, h(x2))| � |x1 − x2| −
∫ h(x1)

0
|∂yu(x1, y)|dy

−
∫ h(x2)

0
|∂yu(x2, y)|dy

(3.48)
� |x1 − x2| − 2ε1/2(sup h)1/2,

so that

x2 − x1 � (λV (x2 − x1) + 2ε)1/2(x1 − x2 + SV )1/2 + 2ε1/2 sup h1/2.

Since λV < 1 and x2 − x1 � K , we get a contradiction for K large enough. We
thus see that the support of h must be bounded.

To prove the estimate on the size of the support of h, take x1 < x2 on the
boundary of the support. From the zero contact angle condition (see Lemma 3.30)
we get h′(xi ) = 0. Since u(xi , h(xi )) = xi , (3.49) with ε = 0 implies x2 − x1 �
λV (x2 − x1 + SV ). Note that by Proposition 3.31 and the scaling law, λV � V 4/5

c0V
.

Putting things together, we get

x2 − x1 � λV SV
1 − λV

� V 3/5.


�

Remark 3.33. The bound on the size of support of h derived in Proposition 3.32 is
slightly suboptimal since we expect from the proof of the scaling law (see Propo-
sition 3.9) that H1(supp h) ∼ V 2/5.

Using Proposition 3.32, we can prove the existence of a minimizer at the critical
volume.

Corollary 3.34. There exists a minimizer of (3.2) for V = V .
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Proof. The existence of a minimizer will follow from a general estimate on λV .
From (3.47) we know that for V > V we have V > Fs(V ) = λV V + SV /2, from
which we get

λV < 1 − 1

2

SV
V

. (3.50)

To show that λV is bounded away from 1 as V → V , it is enough to show that
SV /V does not tend to zero as V → V . Let us fix V > V . Then, from (3.9), (3.10)

and Fs(V ) � V we get that V � V + SV −
√

3
4 SV

√
sup h, which implies that

sup h > 4
3 . By Remark 3.8 we have sup h � (9/16)1/3V 1/3S1/3V , and thus

SV
V

>

(
4

3

)3 16

9
V−2.

We thus get with (3.50)

λV � 16

9

(sup h)2

V 2 �1 − 29

35
V−2

for any V > V . By Proposition 3.32, the size of the support of h for any minimizer
(u, h) (for any V > V ) is bounded by λV

1−λV
SV . Hence, the limit of minimizers as

V → V exists. This limit is a minimizer of Fs(V ) (as a consequence of a simple
�-limit type argument along the lines of Proposition 3.6). 
�

3.6. Asymptotic Analysis

For every V > V and every (u, h)∈ AV with u the minimizer of the Dirichlet
energy in �h subject to the boundary condition, we define an (anisotropically)
rescaled height profile h̃(x) := V−3/5h(V 2/5x) and a rescaled energy

GV (̃h) := V−4/5(SV (h) + EV (u, h)) =
∫
R

h̃′2 dx + V−4/5
∫

�h

|∇u|2 dx.

Observe that the rescaled h̃ satisfies
∫
R
h̃ dx = 1.

Theorem 3.35. For every sequence Vn → +∞ and every minimizer (uVn , hVn ) of
(3.2), the corresponding h̃Vn (possibly translated) converge, up to a subsequence,
in L∞(R) to some function h, which minimizes the functional

G(h) :=
(

inf
u(x,0)=x

∫
{h>0}×[0,+∞)

|∇u|2 dx
)

+
∫
R

h′2 dx (3.51)

under the constraint
∫
R
h dx = 1.
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Proof. We start by noticing that Proposition 3.9 and (3.7) give V 3/5 � max h �
V 1/3S1/3V , which implies SV � V 4/5. If Fs(V ) is differentiable at V , then Proposi-

tion 3.31 gives β ′(V ) =
(
Fs (V )
V

)′ = − SV
2V 2 . This together with SV � V 4/5 implies

β ′(V ) � −CV−6/5, and so

β(V ) � β(V/2) − C
∫ V

V/2
t−6/5 dt = β(V/2) − CV−1/5(21/5 − 1). (3.52)

Since GVn (̃hVn ) = V−4/5
n (SVn (hVn ) + EVn (uVn , hVn )) and by the scaling law

(see Proposition 3.9) Fs(Vn) = SVn (hVn ) + EVn (uVn , hVn ) � V 4/5
n , we see that

GVn (̃hVn ) � C .
Let us prove that (after possible translation) the sequence h̃Vn is tight. For this

we follow the argument from the proof of Lemma 3.15. Since
∫
R
h̃Vn dx = 1 and∫

R
h̃′2
Vn

dx � C (independently ofVn), for every ε > 0 there exists l = l(ε) such that

in every interval of length at least l we can cut the profile h̃V in two parts of volume
α1 and α2, respectively, with 1 − (α1 + α2) � ε (for the precise construction we
refer to the proof of Lemma 3.15). Moreover, we can assume that the cost (surface
energy) of the cut is bounded by a multiple of ε. Then we get

β(Vn)Vn
1/5 + Cε = GVn (h̃Vn ) + Cε � Vn

1/5(α1β(Vnα1) + α2β(Vnα2)),

and thus

ε(C + V 1/5
n β(Vn)) � V 1/5

n (α1(β(Vnα1) − β(Vn)) + α2(β(Vnα2) − β(Vn)))

� V 1/5
n (α1(β(Vn/2) − β(Vn)),

where we used that β is non-increasing and α1 < 1/2. Using that V 1/5
n β(Vn) � C

and (3.52) we find

α1 � Cε,

which by the same argument as in the proof Proposition 3.16 implies tightness of
(possibly shifted) h̃Vn . As a consequence of tightness we get L

1(R) convergence of
(possibly a subsequence of) h̃Vn to h. Using the compact embedding (on bounded
domains) of H1 into L∞ we get locally uniform convergence of h̃Vn to h. Moreover,
tightness of the sequence h̃Vn implies that outside of a compact set we can use a
half-line version of (3.7) to show that h̃Vn is uniformly small there. These two facts
together yield uniform convergence.

Let us now show that

lim
Vn→+∞

GVn (̃hVn ) � G(h).

Since the surface energy is lower semicontinuous, to prove the previous relation it
is enough to prove the inequality for the elastic part of the energy. For every ε > 0
and for Vn large enough we can assume that {h > ε} ⊂ {h̃Vn > ε/2}, and so



Study of Island Formation 197

∫
�hVn

|∇uVn |2 dx �
∫

�hVn
∩
[
{hVn>εV 3/5

n /2}×[0,∞)
] |∇uVn |2 dx

�
∫

{h>εV 3/5
n }×[0,εV 3/5

n ]
|∇uVn |2 dx.

Using the change of variables x = V 2/5
n x̂ , y = V 2/5

n ŷ, and uVn = V−2/5
n ûVn we

find

V−4/5
n

∫
�hVn

|∇uVn |2 dx �
∫

{h>ε/2}×[0,εV 1/5
n ]

|∇ûVn |2 dx.

Since for any interval I ⊂ R

lim
L→∞ min

u(x,0)=x

∫
I×[0,L]

|∇u|2 dx = min
u(x,0)=x

∫
I×[0,∞)

|∇u|2 dx,

we obtain

lim
n→+∞

V−4/5
n

∫
�hVn

|∇uVn |2 dx � min
u(x,0)=x

∫
{h>ε/2}×[0,+∞)

|∇u|2 dx.

By letting ε → 0 we obtain the desired lower bound.
For any other admissible function g, it is easily seen that

lim
Vn→+∞GVn (g) � G(g).

Bya classical argument of�−convergence (see [4]),wededuce that h is aminimizer
of G. 
�
Remark 3.36. Notice that

G(h) := CW

∑
i∈N

(bi − ai )
2 +

∫
R

h′2 dx,

where the intervals (ai , bi ) are the connected components of {h > 0}, and CW is a
constant defined by

CW := inf

{∫
[0,1]×[0,+∞)

|∇u|2 dx : u ∈ H1
loc([0, 1]×[0,∞)), u(x, 0)= x

}
.

(3.53)

We now study the limiting problem.

Proposition 3.37. The minimization problem (3.51) admits (up to translations) a
unique minimizer h given by

h(x) :=
{

3
2�

−3
(
�2 − x2

)
if x ∈ [−�, �]

0 if x /∈ [−�, �],

where � :=
(

9
16CW

)1/5
.
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Proof. The existence of a minimizer follows either by Theorem 3.35 or by the
following direct argument, which is similar in spirit to [18, Proposition 4.5]. Let h
be an admissible function. If Si denotes the surface energy of the i−th connected
component of h, �i its length, and Vi its volume (assuming Vi are in a non-increasing
order), we observe that h(x) = ∫ x

ai
h′ dx for x ∈ [ai , bi ], and so Vi � �

3/2
i S1/2i . We

sum this inequality for i � n and apply Hölder’s inequality to get

∑
i�n

Vi �

⎛
⎝∑

i�n

�3i

⎞
⎠

1/2 ⎛
⎝∑

i�n

Si

⎞
⎠

1/2

.

Since
∑

i∈N CW �2i + Si = G(h) � C , we get that n�2n � C , that is, �n �
Cn−1/2.

We deduce
∑

i�n Vi � Cn−1/2, which shows tightness of a minimizing se-
quence.

Let nowh be aminimizer. Then in eachof its connected components [ci−�i , ci+
�i ], h satisfies h

′′ = −λi , and so h = −λi
2 ((x − ci )2 −�2i ). Since

∫ ci+�i
ci−�i

h dx = Vi ,

the form of h implies λi = 3Vi
2�3i

. Then by direct computation the energy inside

[ci − �i , ci + �i ] equals

4CW �2i + 2

3
λ2i �

3
i = 4CW �2i + 3V 2

i

2�3i
.

This expression is minimized (under the constraint of volume Vi ) by

�i=
(

9
16CW

)1/5
V 2/5
i . Then the total energy G(h) is

∑
i

(
324 · C3

W

)1/5
V 4/5
i

with the constraint
∑

Vi = 1. Thus, this energy is minimized by a single island.

�

Remark 3.38. By the uniqueness of the minimizer of G, we see that the whole
sequence h̃V (possibly translated) converges in L∞ to h̄.

We will finally prove the exponential rate of convergence of optimal profiles.
For that, we need the following quantitative inequality, which can be considered as
a very simple quantitative isoperimetric inequality (see [6,13]).

Proposition 3.39. Let L > 0, V > 0, and let hmin∈ H1(R) be the minimizer of∫ L
−L h

′2 dx under the constraints h(−L) = h(L) = 0 and
∫ L
−L h dx = V . Then for

every other h∈ H1(R) satisfying the same constraints,

∫ L

−L
h′2 dx −

∫ L

−L
h′2
min dx � 1

4L2

∫ L

−L
|h − hmin|2 dx . (3.54)
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Proof. Let L , V, and hmin be as in the statement. Then, for every competitor h we
write h = (h − hmin) + hmin, and so

∫ L

−L
h′2 dx =

∫ L

−L
(h − hmin)

′2 dx +
∫ L

−L
h′2
min dx + 2

∫ L

−L
h′
min(h − hmin)

′ dx .

Since h′′
min is constant and

∫ L
−L h dx = ∫ L

−L hmin dx , integration by parts implies

∫ L

−L
h′2 dx =

∫ L

−L
(h − hmin)

′2 dx +
∫ L

−L
h′2
min dx .

For x ∈ [−L , L] we have

|h(x) − hmin(x)|2 �
(∫ x

−L
|h′ − h′

min| dx
)2

� 2L
∫ L

−L
(h − hmin)

′2 dx,

and so by integration we obtain

∫ L

−L
|h − hmin|2 dx � 4L2

∫ L

−L
(h − hmin)

′2 dx

= 4L2
(∫ L

−L
h′2 dx −

∫ L

−L
h′2
min dx

)
,

which shows the claim. 
�
We now prove the exponential convergence of h̃V to a truncated parabola.

To state our result, we will need the following notation. Let V > V and h̃V , a
minimizer of GV , be fixed. Then for s > 0, we let Ĩs be the largest connected
component of {̃hV > s} and h̄s be the minimizer of

∫
Ĩs
h′2 dx with the constraint∫

Ĩs
h dx = ∫

Ĩs
h̃V dx and h = h̃V on the boundary of Ĩs .

Proposition 3.40. Let ε > 0. Then there exist constants C0 = C0(ε) and C1 =
C1(ε) such that for every V > V and for every minimizer h̃V of GV ,

‖h̃V − h̄s‖L2( Ĩs ) � C0 exp(−C1V
1/5) ∀s � ε.

Proof. Let ε > 0, V > V , and h̃V be as in the statement. If V is large enough,
then

‖h̃V − h‖L∞ � ε/2.

We observe that for any s � ε, this implies {̃hV > s} ⊂ {h > ε/2}, and so
H1( Ĩs) � H1({h > ε/2}) � H1(supp h) = C for any s � ε. From this follows
that if Is denotes the largest connected component of {hV > s}, where hV is
obtained by the inverse rescaling of h̃V , then

H1(Is) � CV 2/5 ∀s � εV 3/5. (3.55)
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Now we claim that for some t ∈ [2εV 3/5, 3εV 3/5], we have
‖uV (·, t)‖2

Ḣ1/2(It×{t})

:= min
v(·,t)=uV (·,t)

∫
It×[t,+∞)

|∇v|2 dx � V 4/5ε−1 exp
(
−CεV 1/5

)
. (3.56)

Indeed, fix s � εV 3/5. Then since uV is the minimizer of the Dirichlet energy,
it satisfies the Laplace equation with Neumann boundary conditions at the upper
part of the boundary. Denoting by ūV the average value of uV on Is × {s}, �s

V :=
�hV ∩ (Is × [s,+∞)), and using Hölder’s and Poincaré’s inequalities, we get
∫

�s
V

|∇uV |2 dx =
∫
Is×{s}

(uV − ūV )∂yuV dx

�
(∫

Is×{s}
|uV − ūV |2 dx

)1/2 (∫
Is×{s}

(
∂yuV

)2 dx

)1/2

� H1(Is)

π

(∫
Is×{s}

(∂xuV )2 dx

)1/2 (∫
Is×{s}

(
∂yuV

)2 dx

)1/2

� H1(Is)

2π

∫
Is×{s}

|∇uV |2 dx
(3.55)
� CV 2/5

∫
Is×{s}

|∇uV |2 dx .

Since for F(s) := ∫
�s

V
|∇uV |2 dx, s � εV 3/5, this is equivalent to F(s) �

−CV 2/5F ′(s), an integration in s yields that for s � εV 3/5,

∫
�s

V

|∇uV |2 dx �
∫

�h

|∇uV |2 dx · exp
(

−C
s − εV 3/5

V 2/5

)

� V exp

(
−C

s − εV 3/5

V 2/5

)
.

In particular, the previous relation with s = 2εV 3/5 implies

∫ 3εV 3/5

2εV 3/5

∫
Is

|∇uV (x, s)|2 dx ds � V exp(−CεV 1/5),

and so there exists t ∈ [2εV 3/5, 3εV 3/5] such that
∫
It×{t}

|∇uV |2 dx � V 2/5ε−1 exp(−CεV 1/5).

Finally, we use Wirtinger’s inequality

‖uV − ūV ‖L2(It×{t}) � H1(It ) · ‖uV ‖Ḣ1(It×{t}),

where ūV denotes the average of uV on (It × {t}), together with
‖uV ‖2

Ḣ1/2(It×{t}) � ‖uV − ūV ‖L2(It×{t}) · ‖uV ‖Ḣ1(It×{t})
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(see, for example [7, Eq. (9)]), to get ‖uV ‖Ḣ1/2(It×{t}) � H1(It )1/2 · ‖uV ‖Ḣ1(It×{t})
and thus (3.56).

As a final step of the proof, for s � 3ε wewant to construct (̃u, h̃), a competitor
for (̃uV , h̃V ). Outside of Ĩs let h̃ := h̃V , and in Ĩs let h̃ := h̄s . Take then ũ to be
equal to uV outside of �t

V and to the restriction of a minimizer of

min
u(·,t)=uV (·,t)

∫
It×[t,+∞)

|∇u|2 dx

elsewhere. By minimality of (̃hV , uV ) we infer that
∫
Ĩs
h̃′2
V dx + V−4/5

∫
�s

V

|∇uV |2 dx �
∫
Ĩs
h̃′2 dx + V−4/5‖uV (·, t)‖2

Ḣ1/2(It×{t}),

hence
∫
Ĩs

(
h̃′2
V − h̃′2) dx � V−4/5‖uV (·, t)‖2

Ḣ1/2(It×{t})
(3.56)
� ε−1 exp

(
−CεV 1/5

)
.

Using Proposition 3.39 we conclude the proof. 
�

4. The Large Slope Approximation

If at large volume, a compact island forms, then |h′| is expected to be large on its
support. In this case, the small slope approximation

√
1 + h′2−1∼h′2 from Section

3 might not be appropriate, and we rather work with the large slope approximation

√
1 + h′2 − 1 ∼ |h′|, (4.1)

that is, we consider now for h ∈ W 1,∞(R) and u ∈ H1
loc(�h) the functional

∫
�h

|∇u|2 dx +
∫
R

|h′|. (4.2)

Note that this approximation comes along with a loss of regularity since for low-
energy configurations, h is no longer bounded in H1(R) but only in BV (R). Hence,
we consider the relaxation of the energy as determined in the case of compact
support in [10]. We follow the notation of [3,10,18]. If h : R → [0,+∞) is lower
semicontinuous, then we denote the pointwise variation of h by

Var h := sup

{
n∑

i=1

|h (xi ) − h (xi−1)| : x0 < · · · < xn

}
,

and set ∫
R

|h′| := inf{Var g : g = h almost everywhere}.



202 P. Bella, M. Goldman & B. Zwicknagl

If
∫
R

|h′| is finite then h is said to be of bounded pointwise variation (see [1]). For
a function h of bounded pointwise variation (BV), set

h− (x) := min
{
h
(
x+) , h

(
x−)} = lim inf

z→x
h (z) ,

h+ (x) := max
{
h
(
x+) , h

(
x−)} = lim sup

z→x
h (z) ,

whereh
(
x±) := limz→x± h (z).Wedenote by�cuts the atmost countable collection

of vertical cuts,

�cuts := {
(x, y) : x ∈ S (h) , h (x) � y � h− (x)

}

where S (h) := {
x : h (x) < h− (x)

}
. For h lower semicontinuous and of bounded

pointwise variation, we set

EV (u, h) :=
∫

�h

|∇u|2 dx and S(�)
V (h) :=

∫
R

|h′| + 2H1(�cuts).

Note that H1(�cuts) = 0 for locally Lipschitz functions h. If for a sequence of
bounded energy we restrict ourselves to a compact set, we are in the situation of
[10,18], and we obtain a local compactness result by [10, Lemma 2.1, Proposition
2.2, and Theorem 2.8]. The result becomes a global result, if we have strong L1-
convergence of {hn}, which, in turn, follows from tightness.

Proposition 4.1. Assume (un, hn) is admissible for (4.2) with
∫
R
hn(x) dx = V .

Then there exists a subsequence (un, hn) (not relabeled) with the following prop-
erties: We have (up to translations) hn → h in L1

loc(R) with

h(x) := inf

{
lim
n→∞

hn(xn) : xn → x

}
.

It holds that
∫
R
h dx � V .Further,R2\�hn → R

2\�h in the localHausdorff topol-
ogy, and un ⇀ u in H1

loc(�h). If {hn} is tight, then hn → h in L1(R),
∫
R
h dx = V ,

and

lim
n→∞

(
S(�)
V (hn) + EV (un, hn)

)
� S(�)

V (h) + EV (u, h).

Conversely, if h is a lower semicontinuous, nonnegative function of bounded point-
wise variation with

∫
R
h dx = V and u ∈ H1

loc(�h), then there exists a se-
quence of compactly supported Lipschitz functions hn with

∫
R
hn(x) dx = V ,

and un ∈ H1(�hn ) such that hn → h in L1(R), un ⇀ u in H1
loc(�h), and

S(�)
V (h) + EV (u, h) � lim

n→∞
(
S(�)
V (hn) + EV (un, hn)

)
.
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For V > 0, we set (see [10, (2.8)])

A�
V :=

{
(u, h) : h ∈ BV (R), h l.s.c, h � 0, u ∈ H1

loc(�h),

∫
R

h dx = V, u(x, 0) = x if x ∈ supp h

}
,

and

F�(V ) := inf

{∫
�h

|∇u|2 dx +
∫
R

|h′| + 2H1(�cuts) : (u, h) ∈ A�
V

}
. (4.3)

4.1. Basic Properties

Note that the rescaling property for the small slope approximation from
Lemma 3.1 carries over to the case of the large slope approximation (4.1). Pre-
cisely, for a lower semicontinuous function h ∈ BV (R), u ∈ H1

loc(�h) with
∇u ∈ L2(�h) and λ > 0, consider the rescaled quantities hλ ∈ BV (R) and
uλ ∈ H1

loc(�h) given by hλ(x) := 1
λ
h(λx) and uλ(x, y) := 1

λ
u(λx, λy). Then∫

R
h dx = λ2

∫
R
hλ(x) dx , and

∫
�h

|∇u|2 dx +
∫
R

|h′| + 2H1(�cuts)

= λ2
∫

�hλ

|∇uλ|2 dx + λ

∫
R

∣∣h′
λ

∣∣ + 2λH1(�cuts).

Further, we again have F�(V ) � V by considering a sequence hn(x) = V
n χ(0,n)

and un(x, y) = x in�hn . Hence, some results from the previous sections carry over
essentially verbatim to the large slope approximation. We collect some properties
in the following proposition.

Proposition 4.2. (i) F� is concave, and hence in particular locally Lipschitz con-
tinuous. At every point of differentiability,

F ′
�(V ) = 1

V

(
EV (u, h) + 1

2
S(�)
V (h)

)
,

for every minimizing pair (u, h).
Minimizers for a fixed volume have the same surface and the same elastic
energy. Further,

limε→0
F�(V + ε) + F�(V − ε) − 2F�(V )

ε2
� − S(�)

V

4V 2 .

(ii) For every V > 0, if a minimizer exists, that is, if there is (u∗, h∗) ∈ A�
V such

that F�(V ) = EV (u∗, h∗) + S(�)
V (h∗), then {h∗ > 0} is connected.
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(iii) For every V > 0,

F�(V ) = inf

{∫
�h

|∇u|2 dx +
∫
R

|h′| : (u, h) ∈ A�
V , h Lipschitz , ∂yu ≡ 0 or

∫
�h

(∂yu)2 dx = 1

4

∫
R

|h′|
}

.

(iv) We have

‖h‖L∞(R) �
∫
R

|h′|.
Proof. (i) See proofs of Propositions 3.3 and 3.31.
(ii) See proof of Proposition 3.4.
(iii) Consider the anisotropic volume-preserving scaling from the proof of

Lemma 3.5, that is, hλ(x) := λh(λx), and uλ(x) := 1
λ
u(λx, 1

λ
y). Then

∫
�h

|∇uλ|2 dx +
∫
R

|h′
λ| =

∫
�h

(
(∂xu)2 + 1

λ4
(∂yu)2

)
dx + λ

∫
R

|h′|,

and for ∂yu �≡ 0, minimization in λ yields the claim. 
�

4.2. Scaling Law

The scaling law for F� can be derived arguing along the lines of the proof of
Proposition 3.9.

Proposition 4.3. There is a constant c0 > 0 such that for all V > 0, we have

c0 min{V, V 2/3} � F�(V ) � 1

c0
min{V, V 2/3}.

Further, there is a constant c > 0 with the following property: If V is large
enough, and (u, h) is admissible for (4.2) with F(u, h) � 1

c0
min{V, V 2/3}, then

sup h � cV 2/3.

Proof. Weprove the upper boundfirst. IfV � 1, for L > 0we set h := V L−1χ[0,L]
and u(x, y) := x for all (x, y) ∈ �h . Then

F�(V ) �
∫ L

0

∫ V L−1

0
|∇u|2 dx +

∫
R

|h′| = V + 2V L−1.

Since L > 0 can be chosen arbitrary large, we have that F�(V ) � V .
In the case V � 1, choose L := V 1/3, h := V

L χ[0,L], and let u be a minimizer
of the Dirichlet energy in �h = [0, L] × [0, h] subject to u(x, 0) = x . Since
L = V 1/3 � V 2/3 ∼ V

L , we have∫
�h

|∇u|2 dx ∼ L2 ∼ V 2/3 and
∫
R

|h′| = 2V 2/3.

The lower bound together with the estimate on sup h can be obtained by repeating

the proof of Proposition 3.9 replacing the estimate S1 � V 2
1
t31

by S(�)
1 � V1

t1
. 
�
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Remark 4.4. Just as for Fs , using (iv) of Proposition 4.2, we can obtain that for an
almost minimizer, sup h ∼ V 2/3, and the size of the support of h is at least∼ V 1/3.

Remark 4.5. If we rescale V := e40d, and F�(e0, d) = 1
e20
F�(V ), we find

min F�(e0, d) ∼ min
{
e20d, e2/30 d2/3

}
.

Over the last years, much work has been devoted to the analysis of island for-
mation in a compact setting (see [10,14,18]). Precisely, assuming that h : [0, 1] →
[0,∞) is Lipschitz, set

F̃(d, e0) := inf

{∫
�h

|∇u|2 dx +
∫ 1

0
(
√
1 + h′2 − 1) dx :

h ∈ W 1,∞(R), u ∈ H1(�h),

∫ 1

0
h dx = d,

u(x, 0) = e0x, h(0) = h(1) = 0

}
. (4.4)

In this case, the surface energy is always bounded below by min{d, d2} since by
the compact support there is a point x∗ ∈ (0, 1) with h(x∗) � d, and thus

∫ 1

0
(
√
1 + h′2 − 1) dx =

∫ x∗

0
(
√
1 + h′2 − 1) dx +

∫ 1

x∗
(
√
1 + h′2 − 1) dx

�
√
1 + (2d)2 − 1 �

{
cd if d is large

cd2 if d is small.
(4.5)

Consequently, for compact support, the scaling law is the following.

Proposition 4.6. The following holds: For all d, e0 > 0

F̃(d, e0) ∼ max
{
min{d, d2}, min

{
de20, d

2/3e2/30

}}
. (4.6)

Proof. We prove the upper bound first.

(i) If d � 1, let �h be a triangle of length 1 and height 2d, and set u(x, y) = e0x
in �h . Then, since |h′| is small,

F̃(d, e0) � e20d + d2 �
{
d2 if e20 � d

e20d if e20 � d.

(ii) If 1 � e20 � d, let �h be a Lipschitz approximation of a rectangle of length 1
and height d, that is, supp h′ ⊂ (0, ε) ∪ (1− ε, 1) for 0 < ε � 1 and let u be
a minimizer of the Dirichlet energy in �h subject to the boundary condition
u(x, 0) = e0x . Then, since |h′| is large on its support,

F̃(d, e0) � e20 + d � d.
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(iii) If 1
e40

� d � e20, let �h be a Lipschitz approximation of a rectangle of length

L ∼ d1/3

e2/30

� 1, and height h ∼ d2/3e2/30 , and let u be a minimizer of the

Dirichlet integral in �h subject to the boundary condition u(x, 0) = e0x .
Then, since |h′| is large on its support,

F̃(d, e0) � e20L
2 + d2/3e2/30 ∼ e2/30 d2/3.

The lower bound follows from (4.5) and a proof similar to that of Proposition 3.9
since in case V1 > 2t21 , the slope used to estimate the surface energy is large. 
�

The scaling law (4.6) essentially resembles results from [18], where a model
without normalization of the surface energy has been considered, that is,

F̃2(d, e0) := inf

{∫
�h

|∇u|2 dx +
∫ 1

0

√
1 + h′2 dx : h ∈ W 1,∞(R), u ∈ H1(�h),

∫ 1

0
h dx = d, u(x, 0) = e0x, h(0) = h(1) = 0

}
.

There, the scaling law turns out to be

F̃2(d, e0) ∼ max
{
1, d, e2/30 d2/3

}
.

We note that the proof uses essentially the large slope approximation
√
1 + h′2 �

max{1, |h′|}.

4.3. Existence of Minimizers

In case of the small slope approximation, non-existence of minimizers follows
from the fact that there is a regime of volumes for which Fs(V ) = V (see Propo-
sition 3.13). In case of the large slope approximation, we can prove only a weaker
statement in this direction.

Proposition 4.7. For every δ > 0 there is Ṽ (δ) > 0 such that for every 0 < V < Ṽ ,

(1 − δ)V � F�(V ) � V .

In particular,

lim
V→0

1

V
F�(V ) = 1.

Proof. First, the upper bound F�(V ) � V is showed in the proof of Proposition 4.3.
To prove the other estimate, we refine the argument from the proof of the lower
bound for the minimal energy in Proposition 4.3.

Let h be any locally Lipschitz function with
∫
R
h dx = V and let 0 < δ < 1

be fixed. Let λ > 0 be a parameter which will be chosen below. Pick x1 ∈ R

with h(x1) > 0 and define t1 := max{t > 0 : [x1, x1 + t] × [0, λt] ⊂ �h}. Set
V1 := ∫ x1+t1

x1
h dx > 0.
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Let us first prove that there exists Ṽ :=Ṽ (δ) such that if V1 < Ṽ , then

∫ x1+t1

x1

∫ h(x)

0
|∇u|2 dx dy +

∫ x1+t1

x1
|h′| � (1 − δ)V1. (4.7)

Assume for the sake of contradiction that
∫ x1+t1

x1

∫ h(x)

0
|∇u|2 dx dy +

∫ x1+t1

x1
|h′| < (1 − δ)V1. (4.8)

Since h is locally Lipschitz, we have that max[x1,x1+t1] h − min[x1,x1+t1] h �∫ x1+t1
x1

|h′|. Then max[x1,x1+t1] h � V1/t1 and min[x1,x1+t1] h = λt1, which im-
plies that V1/t1 − λt1 < (1 − δ)V1, and subsequently

V1(1 − (1 − δ)t1) < λt21 . (4.9)

Next, by Lemma 2.2, there exists ψ = ψ(λ) such that
∫ x1+t1

x1

∫ λt1

0
|∇u|2 dx � ψλt21 , and ψ → 1 as λ → 0. (4.10)

In particular, we can choose λ = λ(δ) > 0 small enough such that ψ(λ) > 1 − δ.
By (4.10), the assumption (4.8) implies ψλt21 < (1 − δ)V1. We combine this
with (4.9) to obtain

t1 >
1 − 1−δ

ψ

1 − δ
> 0. (4.11)

Now we define Ṽ (δ) := λ

(
1− 1−δ

ψ

1−δ

)2

> 0 and observe that (4.11) implies V1 �

λt21 � Ṽ , a contradiction to the assumption V1 < Ṽ .
If we choose Ṽ as above, we can continue the same way as in the proof of

Proposition 3.9 and use that Vi � V < Ṽ to get

F�(V ) � (1 − δ)
∑
i

Vi = (1 − δ)V . (4.12)


�
This slightly weaker statement still allows us to derive an analogue to

Lemma 3.14. We define β� by F�(V ) =: β�(V )V . Note that again β�(V ) < 1
for large V .

Lemma 4.8. The function β� is strictly decreasing in {F�(V ) < V } = {β� < 1}.
Proof. Assume for a contradiction that there are V0 < V1 such that F�(V ) =
β0V < V for all V ∈ [V0, V1] with some 0 < β0 < 1. By Proposition 4.7, there
exists Ṽ > 0 such that F�(V ) � 1

2 (1 + β0)V for all V < Ṽ . As in the proof
of Lemma 3.14, concavity of F� and F�(0) = 0 imply that F�(V ) = β0V for
V ∈ (0, Ṽ ), which yields a contradiction. 
�
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Proceeding along the lines of Section 3, we show tightness of minimizing se-
quences for V ∈ {β� < 1}.
Lemma 4.9. Let V ∈ {β� < 1} and δ > 0. Then there exist � = �(V, δ) > 0 and
C(V, δ) > 0 with the following property: If (u, h)∈ A(�)

V with ε := EV (u, h) +
S(�)
V (h) − F�(V ) � C(V, δ), and x0 < x1 with x1 − x0 = �, then

∫ x0

−∞
h dx � δ or

∫ ∞

x1
h dx � δ.

Proof. We proceed along the lines of the proof of Lemma 3.15. We may assume
that h is locally Lipschitz continuous. Fix V ∈ {β� < 1} and δ > 0. Let

0 < C(V, δ) � δ

2

(
β�

(
V

2

)
−β�(V )

)
, and 0 < α <

δ

36

(
β�

(
V

2

)
−β�(V )

)

be such that V/(3α) = n ∈ N. Define � := α−1V , and consider an interval [x0, x1]
of length �, and write it as a disjoint union of 3n intervals of length 1. As in the
proof of Lemma 3.15, taking into account the different surface energy term, there
is an interval I such that∫

I
h dx� 3α and

∫
I
|h′| � 3α,

which implies

3α �
∫
I
|h′| � sup

I
h − inf

I
h.

Since also 3α �
∫
I h dx � inf I h, we have

sup
I

h =
(
sup
I

h − inf
I
h

)
+ inf

I
h � 3α + 3α= 6α.

Following the lines of the proof of Lemma 3.15, we make two cuts in I such that
the profile is separated into two pieces of volumes V0 < V1, with V = V0 +
V1 + Vlo, with Vlo � 16α such that the surface energy is increased by at most
Scut � 2 supI h � 12α. Then as in (3.19), V0 (β�(V/2) − β(V )) � ε + Vlo + Scut,
and thus,

V0 � ε + Vlo + Scut
β�(V/2) − β�(V )

� ε + 6α + 12α

β�(V/2) − β�(V )
< δ.

The proof is concluded as in Lemma 3.15. 
�
As worked out in Proposition 3.16, Lemma 4.9 implies tightness (up to trans-

lations) of minimizing sequences. Using lower semicontinuity of the energy we
obtain the existence of minimizers:

Proposition 4.10. Let V be such that F�(V ) < V . Then there exists a minimizer
(u,h) of (4.3).
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4.4. Asymptotic Behavior

Weproceed along the lines of Section 3.6. According to the slightly different scaling
law (see Proposition 4.3), we define for admissible h with

∫
R
h dx = V the rescaled

quantities by h̃(x) := V−2/3h(V 1/3x), and

GV (h̃) :=V−2/3 (EV (u, h)+SV (h))=V−2/3
∫

�h

|∇u|2 dx +
∫
R

|h̃′|+2H1(�cuts).

Note that
∫
R
h̃ dx = 1.

Theorem 4.11. For every sequence Vn → ∞, let (uVn , hVn ) be a sequence of
minimizers. Then there exists a subsequence such that the rescaled profile functions
h̃Vn (up to translations) converge to h in L1(R), which minimizes

G(h) :=
(

inf
u(x,0)=x

∫
{h>0}×[0,+∞)

|∇u|2 dx
)

+
∫
R

|h′| + 2H1(�cuts) (4.13)

subject to the constraint
∫
R
h dx = 1. Moreover, R2\�h̃Vn

converges in the

Hausdorff topology to R
2\�h.

Proof. We first observe that GVn (h̃Vn ) � C , and that (up to translations) the
sequence h̃Vn is tight (see proofs of Theorem 3.35 and Lemma 4.9). Thus, a sub-
sequence of h̃Vn converges to h in L1(R). Thanks to the bound on the surface
energy, we also have local Hausdorff convergence of R2\�h̃Vn

to R
2\�h which

then improves toHausdorff convergence thanks to Proposition 4.2 (iv). By the lower
semicontinuity, we obtain the lower bound for the surface energy, that is,

lim
n→∞

∫
R

|h̃′
Vn | + 2H1(�cuts(h̃Vn )) �

∫
R

|h′| + 2H1(�cuts).

For the elastic energy, we proceed as in [18, Proposition 4.3]. By the Hausdorff
convergence of �h̃V

to �h , we have convergence of the “boundary layers” {h̃Vn >

0 and h > 0}×[0,∞) to {h > 0}×[0,∞) in the local Hausdorff topology. Chang-
ing variables, x = V 1/3

n x̂ , y = V 1/3
n ŷ, uVn = V−1/3

n ûVn , there is a subsequence
such that ûVn ⇀ û locally weakly in H1({h > 0} × [0,∞)). Thus as in [18,
Proposition 4.3],

V−2/3
n

∫
�hVn

|∇uVn |2 dx �
∫

�h̃Vn
∩[{h>0}×[0,∞)]

|∇ûVn |2 dx

�
∫

{h>0}×[0,∞)

|∇ûVn |2 dx.

The lower bound follows. For the upper bound construction, it is enough considering
h̃Vn = h. We conclude by �-convergence, as in the proof of Theorem 3.35. 
�
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Remark 4.12. We note that

G(h) := CW

∑
i∈N

(bi − ai )
2 +

∫
R

|h′| + 2H1(�cuts),

where the intervals (ai , bi ) are the connected components of {h > 0}, and CW is
as in (3.53).

We next study the minimizer of the limiting functional.

Proposition 4.13. The minimization problem (4.13) admits a unique minimizer up
to translations, namely the rectangle with base 21/3C−1/3

W .

Proof. Theproof follows as in [18, Proposition4.5], andwebriefly sketch it only for
the reader’s convenience. The optimal function h is of the form h = ∑N

i=1 hiχ(ai ,bi )

with
∑N

i=1 hi (bi−ai ) = 1, and ai < bi < ai+1 since the rectangleminimizes
∫ |h′|

among profiles with given volume. We set �i := bi −ai . Then by Remark 4.12, the
energy is given by

CW

N∑
i=1

�2i + 2
N∑
i=1

hi .

Assume that there are two connected components, say, of lengths �1 � �2 > 0, then
for η ∈ [−h1,

�2
�1
h2], we consider the volume-preserving variation of h changing

h1 and h2 to h1+η and h2−η �1
�2
, respectively. The minimality condition then gives

�1 = �2, from which we deduce that �i = � ≡ const for every i = 1, . . . , N . The
minimization problem then reduces to minimizing CW N�2 + 2

�
subject to N ∈ N,

which yields N = 1 and � = 21/3C−1/3
W . 
�

To prove the exponential convergence, we have an analogue to Proposition 3.39.

Lemma 4.14. For L > 0 consider hmin := V
L χ[0,L], which is the minimizer of S(�)

V

among all h � 0 with
∫
R
h(x) dx = ∫ L

0 h(x) dx = V . Then for all h∈ BV (R) with∫
R
h(x) dx = ∫ L

0 h(x) dx = V we have
∫
R

|h′| −
∫
R

|h′
min| � 1

L

∫
R

|h − hmin| dx .

Proof. By rescaling, it suffices to consider L = 1 and V = 1, that is, hmin = χ[0,1]
and

∫
R

|h′
min| = 2. By approximation, we may assume that h ∈ W 1,∞(R). Let

the function h(x) − 1 attain its non-negative maximum at x ∈ [0, 1]. We have∫ 1
0 |h′| � 2h(x), and thus,

∫ 1

0
|h′| − 2 � 2(h(x) − 1) � 2

∫ 1

0
(h − 1)+ dx =

∫ 1

0
|h − hmin| dx,

where we used
∫ 1
0 h dx = 1 to show that 2

∫ 1
0 (h − 1)+ dx = ∫ 1

0 |h − 1| dx . 
�
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Finally, we prove exponential convergence of a sequence ofminimizing profiles
ofGV to the rectangle, whichminimizes the limit functional (see Proposition 4.13).
Wedenote by Is the largest connected component of {hV > s}, andby Ĩs the rescaled
one. Given a function h̃, we denote by h̄s the function that agrees with h̃ outside Is ,
has the same volume as h̃, and is such that the surface energy term is minimized.

Proposition 4.15. For every ε > 0 there exist constants C0 and C1 such that for
every V > V , and for every minimizer h̃V of GV , for all s � ε,

‖h̃V − hs‖L1( Ĩs )
� C0 exp(−C1V

1/3).

Proof. Let ε > 0. Since (after possible translations), R2\�h̃V
converges in Haus-

dorff topology to R
2\�h and since h is a characteristic function,

H1(h̃ > s) � C ∀s � ε.

Hence, by rescaling, we obtain that for s � εV 2/3, the largest connected component
Is of {hV > s} satisfies

H1(Is) � CV 1/3. (4.14)

By density, possibly slightly changing ε, we may instead of minimizers consider
Lipschitz functions H̃V with ‖H̃V − h̃V ‖L1 � exp(−C1V 1/3) and
EV (uV , HV ) + S(�)

V (HV ) � EV (u, hV ) + S(�)
V (hV ) + exp(−C1V 1/3).

Similarly to the derivation of (3.56) we then obtain that there is some t ∈ [2εV 2/3,

3εV 2/3] with
‖uV ‖2

Ḣ1/2(It×{t}) � V 2/3ε−1 exp(−CεV 1/3). (4.15)

Indeed, since H̃V is Lipschitz, and uV is a minimizer of the Dirichlet energy, we
have as in the proof of Proposition 3.40,

∫
�s

V

|∇uV |2 dx � CH1(Is)
∫
Is×{s}

|∇uV |2 dx � CV 1/3
∫
Is×{s}

|∇uV |2 dx,

that is, f (s) := ∫
�s

V
|∇uV |2 for s � εV 2/3 satisfies f (s) � −CV 1/3 f ′(s). Thus,

for s � εV 2/3, we have f (s) � V exp
(
−C s−εV 2/3

V 1/3

)
. In particular,

∫ 3εV 2/3

2εV 2/3
|∇uV |2 dx � V exp(−CεV 1/3),

and it follows by Wirtinger’s inequality that there is some t ∈ [2εV 2/3, 3εV 2/3]
such that (4.15) holds. Now we choose as a competitor the function ht , which by
definition agrees with H̃ outside of It , and the corresponding optimal deformation
u with boundary data u(x, t) = uV (x, t) for all x ∈ It . Using the almost optimality,
we conclude as in Proposition 3.40, using Lemma 4.14. Note that the factor V 2/3

cancels with the rescaling factor of the elastic energy. 
�
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5. The Scaling Law in Three Space Dimensions

In this section we will identify the scaling law for the energy in the (2+1)-
dimensional setting.Moreprecisely,we consider a three dimensional analogof (3.2):
given V ∈ (0,∞), we define

F3D
s (V ) := inf

(u,h)

{∫
�h

|∇u|2 dx+
∫
R2

|∇h|2 dx dy : h∈W 1,∞(R), u∈H1
loc(�h),

∫
R2

h dx dy = V, u(x, y, 0) = (x, y) in supp h

}
, (5.1)

where �h := {x := (x, y, z) ∈ R
3 : 0 < z < h(x, y)}.

Theorem 5.1. There exists a positive constant c such that for every V > 0

cmin{V, V 6/7} � F3D
s (V ) � c−1 min{V, V 6/7}.

Proof. To prove the upper bound, we consider two different constructions—a thin
layer and a pyramid.
Thin layer construction For ε > 0, let L be such that

∫
R2 h dx dy = V for h

defined by h(x, y) := min {ε, [(L + ε) − max(|x |, |y|)]+}, where by f+ :=
max{0, f } denotes the positive part of f . By setting u(x, y, z) := (x, y) we get∫
�h

|∇u|2 dx = 2V . We observe that |∇h| = χM with M the difference of two
concentric squares with sidelengths 2(L + ε) and 2L , and so

∫
R2

|∇h|2 dx dy = |M | = 4ε(2L + ε) � 4(
√
V ε + ε2),

where we used that (2L)2ε � V . Hence F(V ) � 2V +4(
√
V ε+ε2) for arbitrarily

small ε > 0, which implies F(V ) � 2V .
Pyramid construction Let L := V 2/7 and H := 3V 3/7/4. We define
h(x, y) := H (1 − max(|x |, |y|)/L)+ and u(x, y, z) := (x, y)(1 − z/L)+, and so∫
R2 h dx dy = V . Then |∇h| = χ[−L ,L]2H/L , and

∫
R2 |∇h|2 dx dy = 4L2(H/L)2

= 4H2. To estimate the elastic energy we observe that for (x, y, z) ∈ �h ∩ {z ∈
(0, L)} we have |∇u(x, y, z)|2 = 2(1 − z/L)2 + (x2 + y2)/L2, and ∇u = 0
otherwise. Since x2 + y2 � 2L2, we have that

∫
�h

|∇u|2 dx � 4|�h ∩{z < L}| �
4(2L)2L = 8L3, and finally F(V ) � 4H2 + 8L3 = (9/4 + 8)V 6/7.

It remains to prove the lower bound. Firstwedescribe thenotation. For (x0, y0) ∈
R
2 and l > 0 we define the square Sl(x0, y0) := [x0, x0 + l) × [y0, y0 + l). Let �

be a function, which for a given square Sl(x0, y0) counts on what portion of slices
the function h is larger than l:

�(Sl(x0, y0)) := ∣∣{x ∈ [x0, x0 + l) : h(x, y) � l for all y ∈ [y0, y0 + l)
}∣∣ / l.

We observe that this definition makes sense since h ∈ H1(R2), and so there exists a
representative which is defined everywhere on almost every slice. Let ε > 0 be such
that

∫
{h�ε} h dx � V/2. Given ε, we assume that the following Calderón–Zygmund

type lemma holds:
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Lemma 5.2. There exists a collection of disjoint squares {Sln (xn, yn)} such that
their union covers the set {h � ε}, and each square Sln (xn, yn) from the collection
satisfies:

• �(Sln (xn, yn)) � 1/2,
• there exists a point (x ′

n, y
′
n) such that Sln/2(x

′
n, y

′
n) ⊂ Sln (xn, yn) and �(Sln/2

(x ′
n, y

′
n)) � 1/2.

We postpone the proof of the lemma and first show how the lemma implies
the lower bound. Let Sln (xn, yn) be one of the squares obtained in Lemma 5.2. We
denote

Sn := Sln (xn, yn), Vn :=
∫
Sn
h dx dy, S′

n := Sln/2(x
′
n, y

′
n),

X ′
n := {

x ∈ [x ′
n, x

′
n + ln/2) : h(x, y) � ln/2 for all y ∈ [y′

n, y
′
n + ln/2)

}
.

Observe that∫
Sn×(0,∞)∩�h

|∇u|2 dx �
∫
S′
n×(0,∞)∩�h

|∇u|2 dx

�
∫
X ′
n

(∫ y′
n+ln/2

y′
n

∫ ln/2

0
|∇u|2 dy dz

)
dx

� |X ′
n|l2n

�(S′
n)�1/2

� l3n , (5.2)

where we used that for x ∈ X ′
n the whole square {x}×[y′

n, y
′
n + ln/2)×[0, ln/2) ⊂

�h , andwe used the one-dimensional argument to get
∫ y′

n+ln/2
y′
n

∫ ln/2
0 |∇u|2 dy dz �

l2n .
We consider two cases: Vn < 2l3n and Vn � 2l3n . If Vn < 2l3n , then by (5.2) we

have Vn �
∫
Sn×(0,∞)∩�h

|∇u|2 dx.

Now suppose that Vn � 2l3n . Since�(Sn) � 1/2, we can find x ′ ∈ [xn, xn + ln)

such that h(x ′, y′) � ln for some y′ ∈ [yn, yn + ln) and
∫ yn+ln
yn

|∂yh(x ′, y)|2 dy �
2l−1

n

∫
Sn

|∇h|2 dx dy. Then for any y ∈ [yn, yn + ln), Hölder’s inequality implies

|h(x ′, y) − h(x ′, y′)| �
∫ y′

y
|∂yh(x ′, ŷ)| d ŷ

� l1/2n

(
2l−1

n

∫
Sn

|∇h|2 dx dy
)1/2

=
(
2
∫
Sn

|∇h|2 dx dy
)1/2

. (5.3)

Since h(x ′, y′) � ln , we get that

max
y∈[yn ,yn+ln)

h(x ′, y) � ln +
(
2
∫
Sn

|∇h|2 dx dy
)1/2
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and that
∫ yn+ln
yn

h(x ′, y) dy � l2n + ln
(
2
∫
Sn

|∇h|2 dx dy
)1/2

. Finally, another ap-

plication of Hölder’s inequality shows that for every x ∈ [xn, xn + ln):

∫ yn+ln

yn
h(x, y) dy

�
∫ yn+ln

yn
h(x ′, y) dy +

∣∣∣∣
∫ yn+ln

yn
h(x, y) dy −

∫ yn+ln

yn
h(x ′, y) dy

∣∣∣∣
� l2n + ln

(
2
∫
Sn

|∇h|2 dx dy
)1/2

+
∫
Sn

|∇h| dx dy

� l2n + 3ln

(∫
Sn

|∇h|2 dx dy
)1/2

,

and thus

Vn =
∫
Sn
h dx dy =

∫ xn+ln

xn

(∫ yn+ln

yn
h(x, y) dy

)
dx

� l3n + 3l2n

(∫
Sn

|∇h|2 dx dy
)1/2

.

Since Vn � 2l3n , we have that V 2
n /(36l4n) �

∫
Sn

|∇h|2 dx dy. Then (5.2) and
Young’s inequality imply

∫
Sn×(0,∞)∩�h

|∇u|2 dx +
∫
Sn

|∇h|2 dx dy � l3n + V 2
n /

(
36l4n

)
� V 6/7

n . (5.4)

Summarizing, we get that
∫
Sn×(0,∞)∩�h

|∇u|2 dx +
∫
Sn

|∇h|2 dx dy � min
{
V 6/7
n , Vn

}
.

Since
⋃

n Sln (xn, yn) ⊃ {h � ε} and ∫
{h�ε} h � V/2, we have that

∑
n

∫
Sln (xn ,yn)

h dx dy =
∑
n

Vn � V/2.

Hence, summing (5.4) over all the squares Sln (xn, yn) and using the concavity of
f (t) := min {t6/7, t} yields

F3D
s (V ) �

∑
n

(∫
Sn×(0,∞)∩�h

|∇u|2 dx +
∫
Sn

|∇h|2 dx dy
)

�
∑
n

min
{
V 6/7
n , Vn

}
� min {V 6/7, V }.


�
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Proof of Lemma 5.2. Since h is Lipschitz, we see that δ := dist({h � ε}, {h �
ε/2}) > 0. Let l ′ := (2V )1/3, and let Sl ′(x

(0)
n , y(0)

n ) be a (finite) disjoint covering
of the set {h � ε}. The choice of l ′ implies that �(Sl ′(x

(0)
n , y(0)

n )) � 1/2 for every
n. Let us now fix one square Sl ′(x

(0)
n , y(0)

n ). We aim to construct a finite collection
N of disjoint squares with the following properties:

• all squares in N satisfy the two conditions given in Lemma 5.2,
• Sl ′(x

(0)
n , y(0)

n ) ∩ {h � ε} ⊂ ⋃
S∈N S.

We observe that if we construct such N for each initial square Sl ′(x
(0)
n , y(0)

n ),
taking the union of all those N will give a collection of squares which satisfies all
the required conditions of Lemma 5.2.

We now describe the iterative construction. We define M0 := {Sl ′(x (0)
n , y(0)

n )}
and Nk := ∅. Assume that Mk is constructed, and let Sl(x, y) ∈ Mk . We divide
Sl(x, y) into four disjoint squares S1, S2, S3, S4 with sidelength l/2, and consider
two cases. If �(Si ) � 1/2 for all i = 1, 2, 3, 4, then we add to Mk+1 all those Si
which satisfy Si ∩ {h � ε} �= ∅. Otherwise (that is, if �(Si ) > 1/2 for some i), we
add Sl(x, y) into Nk .

First, we observe that at any step k0 of the procedure we have

Sl ′
(
x (0)
n , y(0)

n

)
∩ {h � ε} ⊂

⋃
S∈Mk0∪⋃k<k0

Nk

S. (5.5)

We also see that any square S ∈ Nk satisfies the two conditions given in Lemma 5.2,
and so we are done with the construction of N := ⋃

Nk provided we show that
Mk = ∅ for large enough k. Let k be such that l ′2−k � min {δ/√2, ε/2}, and let us
assume that S ∈ Mk . From the wayMk was constructed we see that �(S) � 1/2,
the length of the side of S is l ′2−k , and S ∩ {h � ε} �= ∅.

On the other hand, since l ′2−k � δ/
√
2, we see that S ⊂ {h � ε/2}. Then,

l ′2−k � ε/2 implies h � l ′2−k in S, and so �(S) = 1, which contradicts �(S) �
1/2.

We showed that Mk is empty for large enough k, and so the N we just con-
structed satisfies all the requirements of Lemma 5.2. This finishes the proof of
Lemma 5.2, and thus of Theorem 5.1. 
�

Using the same line of proof, we can also show the scaling law for the large
slope approximation, that is, for the functional

F3D
� (V ) := inf

{∫
�h

|∇u|2 dx +
∫
R2

|∇h| dx dy : h ∈ BV (R2),

h ∈ W 1,∞(R2), u ∈ H1
loc(�h),

∫
R2

h dx dy = V,

u(x, y, 0) = (x, y) in supp h

}
,

Theorem 5.3. There exists a positive constant c such that for every V > 0

cmin {V, V 3/4} � F3D
� (V ) � 1

c
min {V, V 3/4}. (5.6)
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Notice that in contrast to [18, Proposition 5.1], we do not need here any hy-
pothesis on V .
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