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Abstract

We study the infimum of the Ginzburg—Landau functional in a two dimensional
simply connected domain and with an external magnetic field allowed to vanish
along a smooth curve. We obtain energy asymptotics which are valid when the
Ginzburg-Landau parameter is large and the strength of the external field is below
the third critical field. Compared with the known results when the external magnetic
field does not vanish, we show in this regime a concentration of the energy near the
zero set of the external magnetic field. Our results complete former results obtained
by K. Attar and X.B. Pan—-K.H. Kwek.

1. Introduction

The Ginzburg-Landau functional is a model describing the response of a super-
conducting material to an applied magnetic field through the qualitative behavior
of the minimizing/critical configurations. The mathematically rigorous analysis of
such configurations led to a vast literature and to many mathematically challenging
questions, with the aim of recovering what physicists had already observed through
experiments or heuristic computations. (See [16] for an introduction to the physics
of superconductivity, and the two monographs [8,31] for the mathematical progress
on this subject.)

Much of the mathematical literature concerns samples in the form of a long
cylinder or a thin film subject to a constant magnetic field. The direction of the
magnetic field is parallel to the cylinder’s axis (for cylindrical samples) or perpen-
dicular to the plane of the thin film (for thin film samples). For such samples, we
have the following behavior (this is thoroughly reviewed in the two monographs
[8,31]):

e For very large values of the intensity of the magnetic field, the magnetic field
penetrates the sample which is in a normal (non-superconducting) state.
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Fig. 1. Sample subject to a variable magnetic field that vanishes along the curve I"

Decreasing the intensity of the magnetic field gradually past a critical value
H,,, superconductivity nucleates along the boundary of the sample; the bulk
of the sample remains in a normal state; this is the phenomenon of surface
superconductivity (see [33]).

Decreasing the field further, superconductivity is restored in the bulk of the
sample; the magnetic field may penetrate the sample along point defects called
vortices; such vortices indicate regions of the sample that remain in the normal
state (see [31]).

In this paper, we will consider samples submitted to a variable magnetic field

(both the direction and the intensity of the field will be variable). Samples submitted

to

variable magnetic fields are considered in the physical literature, see [22,34].
For the sake of illustrating the results in this paper, let us consider a thin film

sample placed horizontally (see Fig. 1). The region occupied by the sample is
decomposed into two sub-regions €21 and €2, separated by a smooth curve I". Now,
we let the sample be subjected to a non-constant magnetic field such that the field is
applied on 2] from above, while it is applied from below on €2;. We suppose that
the magnetic field varies smoothly, hence it has to vanish along the smooth curve

Ir.

In such a situation, we have the following picture:

For very large values of the intensity of the magnetic field, the sample is in a
normal state [27].

Decreasing the intensity of the magnetic field gradually past a critical value H.,,
superconductivity nucleates along the curve I'; the rest of the sample remains in a
normal state ; this is in contrast of the phenomenon of surface superconductivity
observed for samples subject to a constant magnetic field (see [3] and the results
in this paper).

There are two regimes describing the concentration of the superconductivity
along the curve I'. In a first regime, the distribution of the superconductivity is
displayed via a new limiting function E(-); this limiting function is defined via
a simplified Ginzburg-Landau type functional with a magnetic field vanishing
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along a line. In another regime, the distribution of the superconductivity is dis-
played via a known limiting function g(-) ; surprisingly, the limiting function g(-)
is defined via a simplified Ginzburg—Landau type functional with a constant mag-
netic field; the function g(-) displays the distribution of (bulk) superconductivity
for samples submitted to a constant magnetic field [13,32].

The rest of this introduction is devoted to precise statements displaying the
picture that we have sketched previously.

In a two dimensional bounded and simply connected domain €2 with smooth
boundary, the Ginzburg—Landau functional is defined over configurations (¥, A) €
HY(Q; C) x H'(Q; R?) by,

EGY. A) = /QeK,wa, A)dx (L)
where

2

ex. i (U A) = |(V = ic HAYW > = @1 + 11" + (cH)?|eurl A — Bol,

The modulus of the wave function ¢ measures the density of the supercon-
ducting electrons; the curl of the vector field A measures the induced magnetic
field; the parameter H measures the intensity of the external magnetic field and the
parameter « (¢ > 0) is a characteristic of the superconducting material; dx is the
Lebesgue measure dx; dx,. The function By represents the profile of the external
magnetic field in €2 and is allowed to vanish non-degenerately on a smooth curve.
We suppose that By is defined and C* in a neighborhood of Q and satisfies,

|Bo| +|VBy| =¢c>0 in<, (1.2)
and that the set
I'={xeQ : Byx) =0} (1.3)
consists of a finite number of simple smooth curves. We also assume that:
I' N9 is a finite set. (1.4)

The assumptions on I, together with (1.2), force the function By to change sign. In
physical terms, the set I" splits the domain €2 into two parts 21 = {Bo(x) > 0} and
Qo = {Bo(x) < 0} such that the magnetic field applied on €2 is along the opposite
direction of the magnetic field applied on 2, (compare with Fig. 1). The results
in this paper do not cover the potentially interesting case where the magnetic field
By vanishes on isolated points; such an assumption displays different physics since
the magnetic field can not change sign here.
The ground state energy of the functional is,

Egs(k, H) = inf(E(, A) : (Y. A) e H'(Q: C) x H'(Q: R?)}.  (L5)
We focus on the regime where H satisfies

H =02 o€ (0,00). (1.6)
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Our results allow for o to be a function of « satisfying & > « ~!. Earlier results
corresponding to vanishing magnetic fields have been obtained recently in [3,4].
The assumption on the strength of the magnetic field was H < Ck, where C is a
constant. In the regime of large «, K. Attar has obtained, in [3,4], parallel results
to those known for the constant magnetic field in [32]. However, it is proved in [3]
that if

H = bk, (1.7)

and b is a constant, then when b is large enough, the energy and the superconducting
density are concentrated near the set I' with a length scale %. Essentially, that is a
consequence of the following asymptotics of the energy (k — 00),

Ego(k, H) = /cz/Qg (§|Bo(x)|) dx + o (ICH )m %) + 1) . (18)

which is valid under the relaxed assumption that
AP < H < Ak, (1.9)

A1 and A; being positive constants.

In particular, the assumption (1.9) covers the situation in (1.7). The function g
appears in the analysis of the two and three dimensional Ginzburg—Landau func-
tional with constant magnetic field, [13,32]. It is associated with some effective
model energy. The function g will play a central role in this paper and its definition
will be recalled later in this text (see (3.49)).

One purpose of this paper is to give a precise description of the aforementioned
concentration of the order parameter and the energy when o >> 1, thereby leading
to the assumption in (1.6).

The leading order term of the ground state energy in (1.5) is expressed via the
quantity E(-) introduced in Theorem 3.8 below. The function (0, c0) > L +— E(L)
is a continuous function satisfying the following properties:

e FE(L) is defined via a reduced Ginzburg—Landau energy in the strip (this energy
is introduced in (3.14)).

e E(L)=0iffL =2 1, 3/2 , where XA is a universal constant defined as the bottom
of the spectrum of a Montgomery operator, see (3.4).

e As L — 0., the expected asymptotic behavior of E(L) is like L™4/3 .

Throughout this text, we use the following notation. If A and B are two positive
quantities, then

A <K Bmeans A = 6(k)Band §(k) —> Oask — o0}

A < Bmeans A £ CB and C > 0 is a constant independent of « ;

A > Bmeans B < A,and A 2 Bmeans B < A;

A~ Bmeans c;B < A < B, c¢; > 0and ¢ > 0 are constants independent
of k.

The main result in this paper is:
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Theorem 1.1. Suppose that the function By satisfies Assumptions (1.2) and (1.3).
Let b : Ry — Ry be a function satisfying

lim b(k) =00 and limsupk'b(k) < oco. (1.10)
k=00 kK—00
Suppose that
H = b(k)«k.

Then, as k — 00, the ground state energy in (1.5) satisfies:

(1) Ifb(k) > '/, then

B (k. H)= v By (o) 1/3E vBo) L) d ©
es(ic, H) =k /F(I o(X)Ip) (I o(x)lp) s(x) +0(§),

where ds denotes the arc-length measure in T'.
() Ifb(k) < k2, then

3
Eg(k, H)=K2/ g(£|Bo(x)|) dx—+—o(K—). (1.12)
Q K H

Remark 1.2. (About the critical field H,,)

As we shall see in Section 2, PAN and KwEek [27] prove that if H is larger than
a critical value H,, (k) , then the minimizers of the functional in (1.1) are trivial
and the ground state energy is Egs(«, H) = 0. Furthermore, the value of H, («) as
given in [27] admits, as k — 00, the following asymptotics

Hey (1) ~ cok?, (1.13)

where cq is an explicit constant (determined by the function Bgp). As such, the
assumption on the magnetic field in Theorem 1.1 is significant when b(k)x <
H < M«?*and M € (0, co] is a constant. Note also that our theorem gives a bridge
between the situations studied by ATTAR in [3,4] and PAN and KWEK in [27].

Remark 1.3. (The remainder terms in Theorem 1.1)

As long as the intensity of the external magnetic field satisfies k <« H < Mk?
and M € (0, ¢p), the remainder term appearing in Theorem 1.1 is of lower order
compared with the principal term. The function g (b) is bounded and vanishes when
b = 1. Accordingly,

H H K
g\ —IBo(x)]) dx = g —IBo(x)|) dx ~ —.
Q \K {(IBow)l<%)  \K H

‘We shall see in Theorem 3.12 that,

H\'? H 2
(IVBo(x)IK—z) E (IVBO(x)|ﬁ) N
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Remark 1.4. (The two regimes in Theorem 1.1)

Theorem 1.1 display two regimes governing the behavior of the ground state energy.
The two regimes appear as follows. In the regime H < «3/2, if we estimate
Egs(, H) using the limiting function E(-), then we cannot manage to prove that
the error terms are of lower order compared to the term

H\'3 H
K /(|VBO(X)|_2) E(|VBO(X)|_2) ds(x) ).
r K K

Surprisingly, when H < «3/2, the leading order behavior of the ground state energy

Egs(k, H) is governed by the limiting function g(-).

As such, there is a small gap between the two regimes considered in Theo-
rem 1.1. Hence it would be interesting to show that the two asymptotics match in
this intermediate zone. A necessary step would be to inspect whether there exists a
relationship between the limiting functions E(-) and g(-).

Remark 1.5. (Curvature effects)

By analogy with the existing results for the case of a constant magnetic field in
[6,7,11], one expects that the ground state energy Eg(x, H) behaves as follows.
Let co be the value in (1.13). We expect that:

o If H = cok? 4 o(k?), then the curvature of I' = {Bg(x) = 0} will contribute to
the leading order behavior of Egs(x, H).

o Ifk3? « H <M k2and 0 < M < co, then the second correction term in the
aymptotics in Theorem 1.1 involves the curvature of I'.

Along with the proof of Theorem 1.1, we obtain:

Theorem 1.6. Suppose that the function By satisfies Assumptions (1.2) and (1.3).
Let b : Ry — Ry be a function satisfying (1.10). Suppose that

H =b(k)x

and that (Y, A) is a minimizer of the functional in (1.1).
Then, as k — o0, the following items hold:

1. Estimate of the magnetic energy.
3

K2H2/ | curl A — Bo|2dx = K—o(l).
Q H

2. Estimate of the local energy.
Let D C Q2 be an open set with a smooth boundary such that 0 D N\ T is a finite
set.
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(@) Ifb(x) > k'/2, then

2
Eo(¥, A; D) :=/ (|(V — ik HAY > — 2|y )? + %W) dx
D

H 1/3 H
=K / (|VBO(X)|—2) E (IVBo(X)|—2> ds(x)
pNr K K

K3
—I—Eo(l). (1.14)

(d) If1 L bk) < k2, then
3

So(f. A; D) = xz/ g (£|Bo(x)|) dx + —o(l).
D K H

3. Concentration of the order parameter.
Let D C 2 be an open set with a smooth boundary such that 9 D N\ T is a finite
set.
(@) Ifbk) > k2, then

. 2 H\'? H
[ o dx=——(/ (IVBO(X)|—2) E(|VBO(X)|—2) ds<x>)
D K DNl K K

Lol

(b) If1 € b(k) < «'/?, then

/IW(X)I4dx=—/ g(leo(X)I) dx + —o(1).
D D K H

Remark 1.7. In Theorem 1.6, the functions o(1) are controlled independently of
the choice of the minimizer (¢, A). In the first assertion, the expression of o(1)
depends only on the domain €2 and the function By, while in the second and third
assertions, the expression depends additionally on the domain D.

Remark 1.8. In the two regimes displayed in Theorem 1.6, the main term in the
asymptotic expansions vanish when D NI = ¢. It could be interesting to improve
the remainder terms. In Theorem 6.3, we will prove that the L2-norm of the order
parameter i is concentrated near the set I', and that ¥ exponentially decays as
kK — 00, away from I'.

2. Critical Fields

The identification of the critical magnetic fields is an important question regard-
ing the functional in (1.1). This question has an early appearance in physics (see for
example [16]) and was the subject of a vast mathematical literature in the past two
decades. The two monographs [8,31] contain an extensive review of many impor-
tant results. In this section, we give a brief informal description of critical fields
and highlight the importance of the case of a vanishing applied magnetic field.
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2.1. Reminder: The Constant Field Case

When the magnetic field By is a (non-zero) constant, three critical values are
assigned to the magnetic field H, namely H,,, H., and H,,. The behavior of min-
imizers (and critical points) of the functional in (1.1) changes as the parameter
H (that is magnetic field) crosses the values H,,, H., and H.,. The identification
of these critical values is not easy, especially the value H,,, which is still loosely
defined.

Let us recall that a critical point (Y, A) of the functional in (1.1) is said to be
normal if Y = 0 everywhere. The critical field H., (k) is then defined as the value
at which the transition from normal to non-normal critical points takes place.

The identification of the critical value H,, («) is strongly related to the spectral
analysis of the magnetic Schrodinger operator with a constant magnetic field and
Neumann boundary condition. Suppose that & C R? is connected, open, has a
smooth boundary and the boundary consists of a finite number of connected com-
ponents, Ag a vector field satisfying curlAg = By, the function By is constant and
positive, and A(Hk Ap) the lowest eigenvalue of the magnetic Schrédinger operator

— Ay = —(V —ikHAp)? in L*(Q), 2.1

with Neumann boundary conditions. It has been proved that the function ¢ +—
A(tAg) is monotonic for large values of 7, see [8] and the references therein. Grosso
modo, the critical field H, is the unique solution of the equation,1

A(Hey (K)k Ag) = 2. (2.2)
In this case, it was shown by Lu and PaN [23] that,
MHkAg) ~ (Hk)Bg®g, when Hik > 1. 2.3)

Further improvements of (2.3) are available, see [8] for the state of the art in 2009
and references therein.
As a consequence of (2.2) and (2.3), we get for « sufficiently large,

H., (k) ~ k/(®9By). 2.4)
The second critical field H,, (k) is usually defined as follows
H., (k) = k/By. (2.5

Notice that this definition of H,, is asymptotically matching with the following
definition,

AP (He, () Ag) = K2, (2.6)

1 Initially (see [23]), one should start by defining four critical values according to locally
or globally minimizing solutions. Following the terminology of [8], these are upper or lower,
global or local fields. The four fields are proved to be equal in [8].
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where A is the first eigenvalue of the operator in (2.1), but with Dirichlet boundary
condition?.

Near H,, (), a transition takes place between surface and bulk superconduc-
tivity. At the level of the energy, this transition is described in [14]. The bulk
distribution of the superconductivity near H., is computed in [21].

We recall that ®) < 1. Hence, as expected, H, (k) < H, (k) for « suffi-
ciently large. For the identification of the critical field H, (), we refer to SANDIER
and SERFATY [31]. A natural question is to extend this discussion in the variable
magnetic field case (that is, where By is a non-constant function).

2.2. The Case of a Non Vanishing Exterior Magnetic Field

Here we discuss the situation where the magnetic field By is a non-constant
function such that By(x) # 0 everywhere in 2. In this case, it is proved by Lu-
PAN [24, Theorem 1] that,

AM(HkAg) ~ (Hk) min (inf |Bo(x)|, ®¢ inf IBo(x)I) , 2.7
xeQ x€d2

as Hx — oo. Basically, this leads to the consideration of two cases as follows.

Surface superconductivity First, we assume that

inf |Bo(x)| > ©p inf |By(x)|. (2.8)
xeQ x€02

In this case, the phenomenon of surface superconductivity observed in the con-
stant magnetic field case is preserved. More precisely, superconductivity starts to
appear at the points where (Bo),/yq is minimal. The critical value H;(x) is still
defined by (2.2). If the minima of (By) /s are non-degenerate, then the monotonic-
ity of the eigenvalue A(t Ag) for large values of ¢ is established in [29, Section 6].
Consequently, we get when « is sufficiently large,

K
M) ™ gt rcom [Bolol @9
Tentatively, one could think to define H,, (k) either by
Hoy(k) = e, (2.10)
inf . & |Bo(x)|
or by
P (He, ()i Ag) = K2, @.11)

where AP is the first eigenvalue of the operator in (2.1) with Dirichlet boundary
condition.

2 Assuming the monotonicity of # > AP (tAg) for ¢ large.
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Notice that both formulas agree with their analogues in the constant magnetic field
case (see (2.5) and (2.6)). Also, the values of H.,(x) given in (2.10) or (2.11)
asymptotically match as k — oco.

In order that the definition of H,,(«x) in (2.11) is consistent, one should prove
monotonicity of ¢ 2P (1 Ap) for large of values of ¢. This will ensure that (2.11)
assigns a unique value of H., (x). However, such a monotonicity is not proved yet.
The definition in (2.10) was proposed in [8].

Interior onset of superconductivity Here we assume that

inf |By(x)| < ©p inf |By(x)|. (2.12)
xeQ x€dQ2

In this case, the onset of superconductivity near the surface of the domain disap-
pears. If one decreases gradually the intensity of the magnetic field H from oo,
then superconductivity will start to appear near the minima of the function | By,
that is inside a compact subset of €2.

In this situation, we need not distinguish between the critical fields H,, (k) and
H, (), since surface superconductivity is absent here. Consequently, we expect
that,

K
He, (k) = Hey (k) ~ -

—_— (2.13)
inf, & [Bo(x)|

A partial justification of this fact can be done using the linearized Ginzburg-Landau
equation near a normal solution. Actually, we may also define H, (k) and H,, (k)
as the values verifying (2.2) and (2.6). It should be noticed here that the vector
field Ao satisfies curl A9 = By and By cannot be constant. Under the assumption
(2.12), the known spectral asymptotics (which are actually the same in this case)
of the Dirichlet and Neumann eigenvalues will lead us to the asymptotics given in
the righthand side of (2.13). Under the additional assumption that inf & |Bo(x)|
is attained at a unique minimum in €2 and that this minimum is non degenerate,
a complete asymptotics of AV (rAg) can be given (see HELFFER and MOHAMED
[20], HELFFER and KorDYUKOV [18,19], RaAYMOND and VU NcGoc [30] ) and the
monotonicity/strong diamagnetism property holds for large values of 7 (see Chapter
31in [8]). Hence the definition of H,, («) is clear in this case.

Besides the aforementioned linearized calculations, the results of [3] can be
used to justify the equality of the critical fields H,, («) and H, (k) as well as their
definition in (2.13).

o .. 1
First, we observe that if C is a positive constant such that C <

inf g |Bo(x)|’
andif H < Ck ,thenthe openset D = {x € Q : |Byp(x)| < %} # () is non-empty.
Now, Theorem 1.4 of [3] asserts that,

ko >0, Jep > 0, /|w(x)|4dx;eD>0,
D

for any « 2 ko and any minimizer (1, A) of the functional in (1.1).
Consequently, a minimizer cannot be a normal solution.
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Now, suppose that the constant C satisfies

1
> — .
inf, g |Bo(x)]

If H = Ck, then Theorem 1.4 of [3] asserts that any critical point (v, A) of (1.1)
satisfies,

1im/|¢(x)|4dx=0,
K—> 00 Q

hence, loosely speaking, critical points are nearly normal solutions. However,
repeating the proof given in [8, Section 10.4] and using the asymptotics of the
first eigenvalue in (2.7), one can get that such critical points are indeed normal
solutions.

The foregoing discussion shows that the value appearing in the right hand side
of (2.13) is indeed critical.

2.3. The Case of a Vanishing Exterior Magnetic Field

We now discuss the case when By vanishes along a curve, first considered in
[27] and then in [3]. We assume that

|Bol + |VBo| #0 inQ, (2.14)

which ensures that By vanishes non-degenerately.

At each point of By ! (0) N 2, PAN and Kwek [27] introduce a reduced model
(a Montgomery operator parameterized by the intensity of the magnetic field at this
point) whose ground state energy, denoted by ¢, captures the ‘local’ ground state
energy of the Schrodinger operator in (2.1).

Similarly, at every point x of B "oy noag, a toy operator is defined on Ri
parameterized (up to unitary equivalence) by the intensity of By(x) and the angle
0(x) € [0, w/2) between the unit normal of the boundary and V By (x). The ground
state energy of this toy operator is denoted by Ag(R, 8(x)).

The leading order behavior of the ground state energy of the operator in (2.1)
is now described as follows [27],

2/3
M(HiAg) ~ (Hi)? a7, (2.15)
as Hk — 00.
Here
@) = min (,\3/2 min |VBo(x)|, min AO(R+,9(x))|VBo(x)|), (2.16)
x€lpik x€lbnd
Do = {x € Q 1 Bo(x) =0} 2.17)
and

I'ond = {x € 92 : Bo(x) = 0}. (2.18)
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The critical value H.,(x) could tentatively be defined as the solution of the
equation in (2.2). However, when By = curl Ag vanishes, monotonicity of ¢ +—
A(tAop) is not a direct application of Chapter 3 in [8] (see the discussion below).
Nevertheless, for the various definitions of H, (k) proposed in [27], one always
gets that, for large values of «,

2

K
He (k) ~ 01—1. (2.19)

Surface superconductivity (near H.;) is absent if
32 min [VBo(x)| < min Ag(Ry, 6(x)|VBo(x)],
x€elpk X€lpnd
and in this case, we do not distinguish between H,, and H.,. However, if

% min [VBy(x)| > min Ag(Ry,6(x))|VBo(x)], (2.20)
xelpk x€lpnd

the phenomenon of surface superconductivity is observed in decreasing magnetic
fields. Superconductivity will nucleate near the minima of the function

Fbnd 3 x = Ao(Rop, (X)) [V Bo(x)].

In this case, a natural definition of H,, (k) can be

K2
H,, (K):za—z, 2.21)

for large values of « .
Here

ar = 3)/* min |VBy(x).
x€elpik

The methods in [9] suggest that the monotonicity of the eigenvalue A(rAg) for
large values of ¢ can be obtained in the case when (2.20) is satisfied®. A necessary
step is to find the second correction term in (2.15). The work in [25] is along
this direction. (Recall that A(tAg) is the eigenvalue of the operator in (2.1) with
Neumann condition.)

Clearly, the condition in (1.9) is violated when the intensity of the magnetic
field H is comparable with the critical value H,, (x) ~ k2, thereby preventing the
application of the results of ATTAR [3]. The case with pinning will be analyzed in

[5].

3. The Limiting Problems

In this section, we define the two limiting functions E(-) and g(-) appearing
in Theorem 1.1. The limiting function g(-), that we might call the bulk energy,
is defined previously in [13,32]. It is a characteristic of superconducting samples
subject to a constant magnetic field. The limiting function E(-) arises as the limit of
a certain simplified Ginzburg—Landau functional with a magnetic field vanishing

3 Personal communication of S. Fournais.
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along a line. The construction of the limiting function E(-) occupies most of this
section.
This section contains three important theorems:

e Theorem 3.8 contains the definition of the limiting function E(-).

e Theorem 3.11 displays a relationship between the limiting function E(-) and the
energy of a simplified functional defined in a disc domain.

e Theorem 3.12 contains a remarkable property of the function E (-). The proof of
this property uses the function g(-).

The conclusions in the above three theorems will be used throughout the rest
of this paper.

3.1. The Montgomery Operator

Consider the self-adjoint operator in L?(R?)

2\ 2
X 2
P:—(ax] —1?) — 35, (3.1

Ao = inf o (P) (3.2)

The ground state energy

of the operator P is described using the Montgomery operator as follows.
If r € R, let A(7) be the first eigenvalue of the Montgomery operator [26],

d? X3 2 2
P(r) = —@ + (7 + r) , in L*(R). (3.3)

Notice that the eigenvalue A(7) is positive, simple and has a unique positive eigen-
function ¢ of L? norm 1. There exists a unique 7y € R such that

Ao = A(10). (3.4)

Hence Ag > 0. We write

70

Q=9
Clearly, the function

T gy (x2), (3.5)

is a bounded (generalized) eigenfunction of the operator P with eigenvalue Ag.

Moreover (see [17] and references therein) the minimum of A at 7( is non-degenerate.
We collect some important properties of the family of operators P (7).

Yo(xy, x2) =e

Theorem 3.1. ([17])

(1 1 <0.
(2) lim; 100 A(T) = 00.
(3) The function A(t) is increasing on the interval [0, 00) .
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3.2. A One Dimensional Energy

Let b > 0 and @ € R. Consider the functional
0o 2 2 b
Eap(f) = [w (|f’<r>|2 + (5 + a) f@OF =bIfOF + 5 If(t)l4) dr,
(3.6)
defined over configurations in the space
BI(®R)={f e H®R;R) : I*f € L>(R)}.

In light of Theorem 3.1, we may define two functions z; (b) and z; (b) satisfying,

21(b) < 1 < 22(b), 27! ([10, b)) = (21 (D), 22(b)). 3.7)
Notice that, if b < A(0), then z,(b) < 0. This follows from (3) in Theorem 3.1.
Theorem 3.2. ([8, Sec. 14.2])

(1) The functional Eoll 2 has a non-trivial minimizer in the space B' (R) ifand only
if
Ma) < b. Furthermore, a non-trivial minimizer fo can be found which
is a positive function and % f,, are the only real-valued minimizers.

(2) Let

b(er, b) = inf{E,0(f) : f e B'®)}. (3.8)
There exists oy € (z1(b), z2(b)) such that,
b(eo, b) = inf b(e, b). (3.9)

3) Ifb < X(0), thenag < 0.
(4) (Feynman—Hellmann)

00 l2
/ (— + ao) | fuo (D] dr = 0. (3.10)
—o \ 2
The proof of this theorem can be obtained by adapting the analysis of [8, Sec. 14.2]
devoted to the functional
o b
Fap () = / (|f/<t>|2 +(t+ )’ IfOF = BIFOF + 51£(®) |4) dr.
0
(3.11)
We note for future use that a minimizer of £ oll ,Db satisfies the Euler-Lagrange equation:
2 2

— ") + (% + a) F@) —bf@t)+bf (1)} =0, (3.12)

and that f € S(R).
According to Theorem 3.2, we observe that the functional 8;2 has non-trivial
minimizers if and only if & € (z1(b), z2(b)).
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3.3. Reduced Ginzburg—Landau Functional

LetL >0,R>0,S, =(—R,R) xR and

2
Aapp(¥) = (—%2 o), (x = (x1,%) € Sg = (=R, R) x R).  (3.13)

Consider the functional
2 a3 2 L2
SL,R(u)z/S (|(V—iAapp)u| — L% |u| +T|M| ) dx, (3.14)
R

and the ground state energy

egs(L; R) = inf{€L r(u) : (V= iAgpp)u € L*(Sk),
u € L*(Sg), and u = 0 on dSg}. (3.15)

Following the analysis in [28] and [15, Theorem 3.6], we can prove that the
functional in (3.14) has a minimizer. If ¢; g denotes such a minimizer, then we
will prove in Theorem 3.3,

122 (V — iAapp)er & € L*(Sk), |x2]"?¢r r € L*(Sg) and
lx21*?lor rI* € L*(Sk). (3.16)

Useful properties of the minimizer ¢; r are collected in the next theorem.
They give a rough description of the decay of the minimizer ¢;, r at infinity. Most
importantly, the estimates in (3.20) and (3.18) describe the decay at infinity and are
valid when R — oo and L — 0.

The estimates obtained in Theorem 3.3 will serve in computing various quan-
tities involving ¢y, . With these estimates in hand, one can cut the domain of the
variable x at the price of a small controlled error (see the proof of Theorem 3.11).

Theorem 3.3. Let L > 0, R > 0 and ¢, g be a minimizer of the functional £, r
in (3.14). It holds that

lor.rlloo = 1. (3.17)

Furthermore, there exists a universal positive constants C such that the minimizer
@L R satisfies the following inequalities:

/ 2| gz, g*dx < CL?R, (3.18)
SrN{|x2|24L~2/3)

/ lx2Plor gl dx < CLYR, (3.19)
SrN{lx2| 26L~2/3}

and

/ 2l [(V = iAapp)gr, kPdx S CLPP R (3.20)
SrN{lx2| Z6L~2/3)
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Proof. The minimizer ¢y, g satisfies the Ginzburg—Landau equation,

— (V= iAgpp)?0r. g = L7231 — |9 R1P)0L.R- (3.21)

Hence (3.17) results from the strong maximum principle.

In the sequel, if x denotes a variable point in Sg, then the coordinates of x will
be denoted (x1, x2) so that x; € (—R, R) and x; € (—00, 00).

For m > 4L=%/3, we construct ,, € C 2°(R) and ¢ as functions satisfying

Supp nm C (—2m,2m), nu =1 in(—m,m), |n,| < inR,

m
and
¢=0 in[-2L723,2L723], =1 inR\[-4L723 4L7%3,
¢l £ CL*? inR?,
where C is a constant independent of m and L. Below, ¢ and 7, will denote the

associated functions on R2, that is (x1, x2) > 1 (x2) and (x1, x2) > Z(x1, X2).
We have the simple decomposition formula,

-2/3

2 22 ler rI* dx

/S (V= i Aupp) Cim@r, ) 1* — L7231\ nmer rIZ +
R

CR
=/S (¢ nm) or,rI*dx < — CRL?3, (3.22)
R

The upper bound for the integral in the right-hand side follows from the condition
on the support of 77/, , ¢, the bounds |1,| < C/m, |¢'| £ CL*3 and ||¢p glloo < 1
(see (3.17)). Since {nmepr,r € HY(Sg) and ¢ = 0 in {|x2| < 2L7%/3}, then we
can write,

/S (Y = i Agpp) C gz )2 = /5 | curl Aupp| [£mer I dx
R R

= / X2l [Emer g1 dx. (3.23)
{lx2|22L-2/3}

In that way, we infer from (3.22),

/ x|
{xeSk : ma|=2L-23) 2

Sending m to oo (and using monotone convergence), we arrive at

CR
1Enmer rI? dx £ —+ CRL*3.

X
/ ol o kP dx < CL2PR.
{xeSg : m|22L-23) 2

Since ¢ = 1in {|xa| = 4L~2/3}, we get further,

[x2]

/ — loL.rl*dx < CL*’R. (3.24)
(xeSg : x| 24L-23) 2
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This proves that |x2|1/2<pL,R € L%(Sg) and the estimate in (3.18).
Next we prove that |x2|3/2|(pL,R|2 € L%(Sg). To thatend, let x € C°(R) be a
function (of the variable x,) satisfying,
X(2) =0 if [xo] S4L77, x(x2) = a2 if xa| Z 617277,
and [x'(x2)| S CL7Y3 if |xp) < 61723,

We have the decomposition formula,

) B L—2/3
/S|<V—1Aapp><nmx¢L‘R>|2—L Blmxer,rl* + 5 e xlor,rl* dx
R
=/ | x) 1, I* dx. (3.25)
Sk

Using the bounds satisfied by 17,,, x” and 7,,, the condition on the support of 7,
and the inequality in (3.24), we may write, for all m > 6L~4/3,

/ | x) o, R |* dx
Sr

<c / 2P, (e ler g P dx + € / X P 1 lon x> dx
{xeSg : m=Z|xa|<2m}) Sr

<c / el oz ol dx + L‘“/ o1zl dx
(xeSk : [l 24L-2/3) (xeSk : 2| 24L-2/3)

< CL*R. (3.26)

Next, we use the inequality

/S [(V — i Aupp) M x 9L, B> dx 2 /8 | curl Auppl [1m x 9L 8 1% dx
R R

= / 2l [ x e &1 dx,
Sr
and the fact that x = 0 for |x2| < 4L~2/3 to infer from (3.25) and (3.26),

1-2/3
2

/5 2 xler rI*dx £ CL?R.
R

Sending m to oo, we get that |)C2|3/2|<pL,R|2 € L%(Sg) and the estimate in (3.19).
Also, we infer from (3.25) that

3

: /S [(V — i Aupp) M x@L,R)1> dx < CL*3R. (3.27)
R

Using a simple commutator argument, we write,

. | .
/ |V = i Aapp) (i x01 1) dx = —/ )21V = i Aagp) ot & dx
SR 2 SR

—4/ | ) o R () |* dux.
Sk
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By (3.26), we get, further, that

. 1 |
/ |V — i Aapp) (01 )1 dx = 5/ )21V — i Aapp)pr. 17 dx — CLY3R.
Sgr Sk

We insert this into (3.27) to get
3 .
Z/S (nmX)2|(V - lAapp)¢L,R|2dx < CL*3R.
R

Sending m to oo, we deduce that |x2|3/2(V—iAapp)<pL,R € L?(Sg) and the estimate
in (3.20). O

Remark 3.4. We can bootstrap the argument in the proof of Theorem 3.3 to get the
following improvement of (3.18): for all n € N, there exists C,, > 0 such that, for
all L > 0,

/ Ix2| oz r|* dx < C,L*"/3R.
SrN|x2|24nL=2/3)

As a consequence of Theorem 3.3, we can obtain a uniform estimate of the
energy components of a minimizer ¢y, g .

Proposition 3.5. Let A > 0. There exists a positive constant C 5 such that, for all
Le (0,A)and R > 0,

/|¢L,R(x>|2dx§cAL*2/3R and / |(V—iAapp)pr g|*dx < CAL™*R.

SR SR

Proof. As a consequence of the inequalities in (3.17) and (3.18), we have,

/ oL g2 dx = / oL R0 dx
Sk SrN{|x2|S4L2/3)

+ / oL RGO dx
SpN{lx2|24L~2/3)

<8LYPR+4+CLP =L@+ CL?).

Since L™2/3(8 4 CL?*) ~ 8L~2/3 when L — 0., we get a constant C» > 0 such
that, for all L € (0, A),

/ oL, (x)[>dx < CAL™23.
Sg

To finish the proof of the theorem, we multiply both sides of (3.21) by ¢z g and
integrate by parts. In that way we obtain

/ [(V — iAgpp)gr g|* dx < L72/3 / lor, R(x)[*dx < CAL™*3 R.
Sr

Sk
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The value of the ground state energy defined in (3.15) is related to the eigenvalue
Ao in (3.4). We will find that the energy vanishes when L 2 )»6 3/ 2, and we will

give a rough estimate of the energy when L — A 32,

Proposition 3.6. For R > 0, L > 0, if egs(L; R) denotes the ground state energy

in (3.15), it holds:

(1) IfL =2y then egs(L; R) = 0.

(2) There exist positive constants C1, C and C3 such that, if L < )»6 3/2 and
R > 0, then

ees(L; R)
G LR B
: = (1= aL2/3)

Proof. Suppose that L = A, 32 Letu e Hé (Sg). The min-max principle and
the condition on L tell us that £, g(u) = 0 and consequently egs(L; R) = 0. But
egs(L; R) = & r(0) = 0. This proves the statement in (1).

Now, suppose that L < A, 32 Leto e C 2°(R) be a function satisfying,
suppd C (—1,1), 0501, O=1in (—1/2,1/2),

C
< -G LR+ ?3. (3.28)

and let
Or(x) :==0(x/R).
Lets > 0 and

u(xy, x2) = tOg(xy) Yolxy, x2),

where g is the function in (3.5).
Recall that vy satisfies —(V — i Aapp)2 Yo = Lovo . An integration by parts yields,

/ [(V — i Agpp)ut| dx
Sr

=7 (<9R<x1)2wo, —(V = iAap)W0) + /S |¢o(xz>9}e<x1)lzdx)
R

1
=1 (<9R<x1)2wo, ~( = iAW)+ 7 [ 9’(x1>2dx1)
2 2 ¢
=1"\*0 [ 1Or(xDYo(x)|"dx + — ).
Sk R
As a consequence, we get that,

Lo R) < ELx@) = (0= L) [ fouol ax
Sk

—2/3

2

C L
+2S / 10R ) Yo ()l *dx.

Sk

c
< ¢? (R (,\0 - L_2/3) + E) + RvL™23 4,



74 BERNARD HELFFER & AYMAN KACHMAR

Here
_ 4
V—/ l@o(x2)]" dx2
R

and ¢ is the L2-normalized function introduced in (3.17).
Selecting ¢ such that

1
(o — L23) 4oL 2342 = E(AO _ L3

finishes the proof of the upper bound.
The lower bound is obtained as follows. Let ¢ g be the minimizer in Theo-
rem 3.3. It follows from the min-max principle that,

eos(L; R) = €L r(pL.r) = L™ (Mo L?? — 1) /S oL r(X)]* dx.
R
Under the assumption L < )»6 ez 3, Proposition 3.5 tells us that

/ lor,r(x)[>dx < CIL™*R.

Sk

As a consequence, we get the lower bound. O

Remark 3.7. In light of Propositions 3.5 and 3.6, we observe that:

(1 IfL = iy 2/ 3, then ¢7, g = 0 is the minimizer of the functional in (3.14)

realizing the ground state energy in (3.15).

(2 IfL=Xx, o 3, every minimizer ¢y g satisfies,

/ [(V—iAgpp)pr g(X) P dx SCL™3, / lor,r(x)[*dx SCL™R,
Sk

Sk

(3.29)
where C is a universal constant.

Notice that the energy &1 g (1) in (3.14) is invariant under translation along the
x1-axis. This allows us to follow the approach in [13,28] and obtain that the limit

LR . . .
of % as R — oo exists. The precise statement is:

Theorem 3.8. Given L > 0, there exists E(L) < 0 such that,

eos(L; R
lim tes(Li R)

= E(L).
R—o00 2 ()

The function (0, 00) > L — E(L) € (—o0, 0] is continuous, monotone increasing
and

E(L)=0 if and onlyif L =35>



Ginzburg-Landau with Vanishing Magnetic Field 75

Furthermore,

egs(L; R)

VR>O0,YL >0, E(L)<
2R

(3.30)

and there exists a constant C such that
egs(LQ R)

R <EWL)+CU+L2HRB. 33D

VR >2VL >0,

Proof. There is nothing to prove when L 2 4, 3 2, hence we assume that
0<L < )L(;Bﬂ.
Step 1. Let n = 2 be a natural number, a € (0, 1) and consider the family of strips
2 ; a
1= (-n —l—a+(2]—l)(1+§),
=1+ Qj+D(1+3)) xR (€D

Notice that the width of each strip in the family (/;) is 2(1 + a), and if two strips
in the family overlap, then the width of the overlapping region is a. Consider a
partition of unity of R? such that

DxiP=1 0Zx 21, DVl S
J J

|

. supp x; C 1,

(S5}

a

where C is a universal constant.
Define xg, j(x) = x;(x/R). That way we obtain the new partition of unity,

C

—_, Su . CI i
42R2 PP XR,j R,j

DllxrjlP=1, 0 xr; <1, D |Vxr, P <
J J

where Ig j ={Rx : x € I;}.

Notice that (IR, ;) jeqi 2,... n2) 1s @ covering of S2p = (—n’R, n*R) x R by n?
strips, each having side-length 2(1 + a)R .

Let ¢y ,2p € H(} (S,2) be the minimizer in Theorem 3.3. It holds the decom-
position

egs(L; an) = gL,an(‘pL,an)

n2

= (5L,n2R(XR,./<PL,n2R) = [ 1Vxr,jl ‘pL,an”iz(San))

j=1
n? n?
= ZSL,nZR(XR,,/¢L,n2R) —/ Z:|VXR,/|2 | @1 5] dx
j:l San J*l
n’ 27 -2/3
Cn’L™%
; ZEL,HZR(XR,,i¢L,n2R) — az—R [By Remark 37]

j=1
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The function xg, j¢; ,2x is supported in an infinite strip of width 2(1+a)R . Since
the energy &£ g(u) is (magnetic) translation-invariant along the x; direction, we
get

v, EL,nZR(XR,jq)L,an) 2 egs(L; (I+a)R)
and consequently,
5 ) n2L—2/3
egs(L; n"R) 2 n"egs(L; (1 +a)R) — C R

Dividing both sides of the above inequality by n”R and using the estimate in
Proposition 3.6, we get

L2 ) 23
egs(L; n°R) > egs(L; (1 +a)R) _c a2 i L ‘
n?R R a’R?

Using the trivial inequality (1 +a) < (1 + a)?, we finally obtain:

es(Lin*R) _ eg(Li (1 +a)°R) s L7
> —ClaL™2PF+=——). 3.32
R - (+a)?R ¢ TR 42

Step 2. Let £ > 0. Let us define

eos(L; €%) _d. L)
s L =—"7"

Clearly, the function ¢ +— d(¢, L) is decreasing. Thanks to Proposition 3.6, we
observe that d(¢, L) < 0 and f (£, L) is bounded. Furthermore, (3.32) used with
R = (2 tells us that

d(t,L) =

f(ne,L) > f(1+a),L)—C (aL—2/3 + %) }
a-t

By [15, Lemma 3.10], we get the existence of E(L) such that

Jim f(e.L) = E(L).

The simple change of variable £ = +/R gives us

lim egs(L; R)

= E(L).
R—00 2R (L)

Step 3. Using a comparison argument and the translation invariance of the energy
Er.r(u), we observe that

VneN, ex(L;n’R) < n’eg(L; R).
Dividing both sides of the above inequality by 21> R and taking n — oo, we get

4 L;an eos(L; R
E(L) = lim as( )§ as( )_
n— 00 2n2R 2R
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The matching lower bound for E (L) is obtained by taking n — oo in (3.32),
selecting @ = R~/ and replacing R by (1 + a)*R.

Step 4. Proposition 3.6 tells us that E(L) = 0 if and only if L = A, 32 The
continuity and monotonicity properties of E(L) are easily obtained through the
study of the energy &7, g (u) as a function of L along the same methods used in [15,
Thm 3.13]. O

It would be desirable to establish a simpler expression of E(L) when L €
G073 30
Conjecture 3.9. Let A be the function introduced in (3.3). If
ro < L7213 < (0, (3.33)
then
E(L) = E'P(L7?/3).
Here, for b > 0, E'P(b) = b(ag, b) and b(xg, b) is defined in (3.9).

In the case of a constant magnetic field, a similar statement to Conjecture 3.9
has been conjectured in [28]. A partial affirmative answer was given in [2,12]. The
conjecture has been proved recently in [6,7]. The methods in [6,7] do not yield an
affirmative answer for Conjecture 3.9.

Remark 3.10. In [17], the following numerical estimate is given: Ao ~ 0.57 . Fur-
thermore, the lower bound:

3\ 3
A(O)§(Z) <1, (3.34)

is proved. Finally the strict inequality A9 < 1(0) is a consequence of the uniqueness
of the point of minimum of the function A (7).

3.4. The Approximate Functional

Let v € [0, 27) be a given angle. Define the magnetic potential:

2
Agppv (X) = —%n, n=(cosv,sinv), (x=(x1,x2) €R?. (3.35)

Clearly, v is the angle between the x;-axis and the line {curl A,pp , = 0}.
Let« > 0,£ € (0,1), Dy, = D(0, £) the disc centered at 0 and of radius ¢, and
L > 0. Consider the functional:

2
G = /D (|(v — i LI Agpp )V — iYW + %W) dx, (3.36)
14

together with the ground state energy

Egsr(k, L, v; £) = inf{G(¥) : ¥ € Hy(Dy)}. (3.37)
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The change of variable x — /m k x yields
Egs,r(K, L;¢) = egs,disc(‘}a L; R), (3.38)
where m = L?/3, R = \/m« £, Dg = D(0, R),

1-2/3

Ev.L.r (1) =/ (|(v — iAgpp)ul* — L7 u)* + |u|4) dx, (3.39)
Dr

and
eos.disc(V, L3 R) = inf{&, 1 r(u) : u € Hy(Dg)}. (3.40)

We now show that the ground state energy egs disc (v, L; R) is independent of v. Let
u be a given function in HO1 (Dr). We perform the rotation

(x1,x2) = (x1cosv + xpsinv, —xp Sinv + x» COS V),

which transforms the function u to a new function i, then the gauge transformation

~ i3 /6~
i v =¢"1/%7 and get

L—2/3

EvL.r(u) = /D (|<v — iAgpp)v* = L7 u)? + |v|4) dx =: G g(v),
R

where Ay, is introduced in (3.13).
Hence we get,

egs.disc(V, L3 R) = inf{G L r(v) : v € Hy(Dp)}. (3.41)

This simple observation allows us to prove the following Theorem 3.11 below,
which indicates a situation where the energies egs(L; R) and egs disc (v, L; R) match.

Theorem 3.11. Forv € [0,27), L > 0 and R > 0, we have,

egs,disc(Vy L;R) = egs,disc(O, L;R) 2 egs(L§ R), (3.42)
where egs(L; R) and egs disc(v, L; R) are the ground state energies introduced in
(3.15) and (3.40).
Moreover, there exists a constant C such that, for L > 0, a € (0, 1/2), and

R > 4max(a_1/2L_2/3, 1),

we have

C L3
egs,disc(0, L; R) < egs(L; (1 —a)R) + m (1 + m) . (3.43)
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Proof. The independence of v was observed in (3.41). From now on we can take
v=0.

Lower bound. Let u € HO1 (Dgr) be a minimizer of the functional G, r. The
function u can be extended by O to a function in H(} (SR). Thus,

egs,disc(oy L;R) = GL,R(”) = 5L,R(u) 2 egs(L§ R).
Upper bound. Leta € (0, %), R= (I —a)R and
V=9, R € Hol(Sﬁ)

aminimizer of G, . Rememberthaty; g =0whenL = i, 32 (Proposition 3.6).

We impose the condition
JaR > 4L, (3.44)

Consider a test function y € C2°(R) such that

0= x =1 suppx C (—va—a)R, Va2 —a)R),
x =lin (—+/a(l —a) R, /Ja(1 —a) R),

< _C_ "< _C_
|X|:ﬁR and |X|:aR2‘

Let
u(x, x2) = x(x2) v(x1, x2),  (x1,x2) € R%.
Clearly, u € H} (Dg). Thus,

egS,diSC(Ov L; R) g GL,R(”) = gL,R(u)

= /S (X C2?1(V = iAupp)ol® = x )" e o ?
R

2/3 ,, L7 4
— L7 el + S5 Ix Gl dx
L—2/3
g/ (|(V—iAapp>v|2—L—2/3|v|2+—|v|4) dx
Sk 2
2/3
_2 2 2 CL
+ L 3/SR(1—X )|U| dx-l-m
L—2/3
=/ (|(v — iAgpp)V|* — LR + —|v|4) dx
Sx 2
R
cL?
—-2/3 L 2v0,12
+ L /SR(l X)) |v|“dx + —a3/2R2

- - Cc cL¥
< L; R —s t+ =5
See(LiR)+ 75+ —3ps

The two terms L~ 3 fSR(l — x(x2)3)|v(x1, x2)|*dx and fSR x (x2)x" (x2)
|v(x1, x2)|? dx have been controlled by using the decay of v = ¢ 1R established in
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Theorem 3.3 (Formula (3.18)). Here, we have used Assumption (3.44) (and (3.18))
to write

2 2/3 | cL*?
/ G, x)Pdx £ CLYPR x (VaR) ™' = ——.
{Ix212/a R} al/

Remembering that R = (1 —a)R, this achieves the proof of Theorem 3.11.
]

3.5. Bulk Energy

In this subsection, we recall the construction of a function that describes the
energy of the Ginzburg-Landau model with constant magnetic field [1,13,32].
Consider b € (0,00),r > 0,and Q, = (—r/2,r/2) x (—r/2,r/2). Define the
functional

1
Fp.0, () =/ (b|(v —iAgul> — u? + E|u|4) dx, forue H'(Q,).

r

(3.45)
Here, Ay is the magnetic potential
1 2
Ao(x) = 5(—X2,x1), (x = (x1, x2) € R). (3.46)
Define the two ground state energies
ep(b,r) =inf{Fy o, (u) : u e H(}(Q,)}, (3.47)
en(b,r) =inf{F, o, () : u € H'(0))}. (3.48)
It is known [4,13,32] that
b b
Vb>0, gb)= tim 280, v®.0) (3.49)
r>oo Q| r>o00 Q|

where | Q, | denotes the area of Q, (|Q,| = r?) and g is a continuous function such
that

1
g(0) = —5 and g(b) =0 when b = L. (3.50)

Furthermore, there exists a constant C such that, forall» > 1 and b > 0,

gy~ cenbin) cen®n) )y Vb g
r 1O 1O r
We will use the function g(-) to prove Theorem 3.12 below. This theorem concerns
the limiting function E (-). It contains sharp bounds on E(-) in the regime L — 04
(compare with Proposition 3.6).
The function g(-) provides us with a test function to prove:
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Theorem 3.12. There exist two positive constants C1 and Co such that, if L €

(0, )\53/2] , then

—Ci(1 = 2L*?) L™ < E(L) £ —=Co(1 = AgL?3) L4/,

Proof. The lower bound follows immediately by sending R to oo in the lower
bound in Proposition 3.6 (see also Theorem 3.8). The upper bound in the second
item of Proposition 3.6 gives us the upper bound

E(L) £ —C (1 —aL*3} L7, (3.52)

forall L € (0, 2,°"%).
We have just to improve itas L — 0.
The improved upper bound with order L
test function as follows.

Let us cover R? by a lattice of squares Q. j, where Q¢ ; = (—€ +aj, £ +a;)
and

—4/3 follows from the construction of a

¢=mL'3, (3.53)

The choice of the positive constant m will be specified later. Notice that the magnetic
potential Ay, (cf. (3.13)) satisfies

Bapp = curl Aypp = xo.

Let Ag be the magnetic potential in (3.46), a; = (aj,1,aj2) be the center of

the square Qg’j and Fj(xl, x2) = ( — %(xz — aj,z)z, %(xz - aj,z)(xl — aj’l)). It
is easy to check that

curl Agpp = curl(aj2A0 +F;) in Qg ;.

Since the square Qy,; is a simply connected domain in RR2, then there exists a
real-valued smooth function ¢; defined in Qg ; such that

Aapp = aj,on + Fj — V¢j in Ql,j~
Thanks to the definition of F;, we have
[F;(x)| €% in Q.
Thus, for any j, we can select a gauge ¢, such that, in the square Qg ;, we have
|Aapp(¥) — (@ 2A0(x — aj) — V)| < €2,
Now, we define the test function as follows,
ATy u,(Jajz (x —aj))  ifajs>0and

x € Qg C{lx1] < Rand %L*2/3 <x) < eL™23y,

v(x) =1 i (flajol (x —aj)) if ajz < 0and
x € Q¢ C{lx1] < Rand %L’ZB < —x7 < €L7%y,
0 otherwise,

(3.54)
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where the function u, € HOl (Q,) is a minimizer of the ground state energy Fj o,
introduced in (3.45) and € € (0, 1) is a positive constant (to be determined in
(3.56)).

We impose the following condition on m and €

m\/g = 1. (3.55)

. _ I _
(|(v—1Aapp)u|2—L 2/3|v|2+§L 2/3|u|4) dx.

We will use the notation

EL.r(; Qe j) =/

Ql,]

Notice that, if a;» > 0and Q¢ ; C {|x1] < R and §L™2/3 < |x3| < eL™%/3},
then, for all n > 0,

EL.r(; Qe j)

<L (/ (L2/3(1 + IV —iaj2Ao(x —aj)v* — L723|v]?
Oy.j
1
+- L7 |v|4) dx)
2
+ Cn_1£6
1,-2/3

= ( / (L2/3a,-,2(1 + IV = iAg()u,(x)* = L7 v
Qme

ajz2

1
+3 L% |v|4) dx) +Cn~ e

L72/3
(g(L2/3aj72(1 +)laj 2|2 +Cy/L23a; ,(141) a2 e) +Cn~ 8.

aj’z

A

To write the last inequality, (3.51) is used with b = L2/3aj,2(1 +n)and r =
/a; 2 €. (Thanks to the condition (3.55), we have r =1).
Similarly, if a;» < 0 and Q¢ ; C {Ix1| < Rand SL™'3 < |x3| < €L7%/},
then,

1,-2/3
ELr(W; Qpj) < (g<L2/3|a,-,z|(1+n>)|a,-,z|e2 + C/LY3(1 + 1) a2l E)

= laj 2
+C77_1£6.

Notice the simple decomposition of the energy of v:

EL.r(v) = Z EL,r(; Qg ),
jed
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where 7 = {j : Q¢; C{lx1] < Rand §L7/° < |xp| < eL™2/3}}.
Let

n=Card J.
The numbers L and ¢ are small enough such that

2L‘2/3R <ne?< %L‘2/3R < L723R.

Now, we have the following upper bound on the energy of v,

Er@) £ L7 g1 lajal(1+m) 2+ Cn L2 + 1) ¢
J

+Cnn~ el

We select n = % Having in mind (3.50), we can select € sufficiently small such
that

g = —i, vVt e [0, 2¢]. (3.56)
Observing
L Jajo| (1+n) < 2,
we get, for R > ne2L%,

egs(LQ R) < EL.r(W) < 1-2/3
R - R ~
Sending R — oo, we deduce that

(—% L2 4ocL\3 23 z—l) +2CL23 ¢,

E(L) < —;—2L—4/3 +CL7l el oL
Having in mind (3.53), we get
c
E(L) < (—36—2 + Z) L3 £ cm*L23. (3.57)

Recalling (3.55) and (3.56), we select m such that

€ +C 0 d 2
——+4+— <0 an N
2 m TN

In that way, (3.57) gives us the existence of a constant C’ > 0 such that, for
sufficiently small values of L,

E(L) < —C' L3,

Since L is sufficiently small, we may write

!/

—C
—C'=(1- LAOL2/3)m < —C'(1 — LagL?3),

and get the upper bound in Theorem 3.12 when L — 0. O
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4. A Priori Estimates and Gauge Transformation

Letx > 0, H > 0 and (v, A) be a critical point of the functional in (1.1), that
is (¥, A) satisfies

— (V=i HAY Y = (= [y D)y, 4.1)
— VtcurlA —F) = % (¥ (V—ikHA)Y) inQ, (4.2)
and the two boundary conditions
v-(V—ikHA)Y =0 and curlA—F)=0 ond<,

where v is the unit exterior normal vector of 9€2.
We note for further use the following identity. Multiplying both the equation in
(4.1) by ¥ then integrating over 2, we get

2
oY, A; Q) :=/ (|(v — ik HAY > — iy + %wr‘) dx
Q

K2
_ __/ 1wl dx < 0. 4.3)
2 Ja

We need the following estimates on i and A that we take from [8]. Earlier
versions of these estimates are given in [10,23] when the magnetic field is constant.

Proposition 4.1. Let o € (0, 1). There exists a constant C = C(«, Q) > 0 such
that, if k > 0, H > 0 and (¥, A) a critical point of the functional in (1.1), then

Voo 1, 4.4)
C
[ curl(A —F)|2 = i I 1l2, 4.5)
I(V =ik HAY 2 <« |¥]l2, (4.6)
1+ «H +«?
IA = Fllcreg) = CT 1V lloo 1% 12 4.7

Using the regularity of the curl-div system, we obtain the following improved
estimates of A — F.

Proposition 4.2. Let o € (0, 1). There exists a constant C = C(a, 2) > 0 such
that, if k > 0, H > 0 and (¥, A) a critical point of the functional in (1.1), then,

1 .
IA = Fllcowig = C (II curl(A —F)[2 + i ik HA)Y |2 IIWlloo) .

Proof. Leta = A — F. Notice that a satisfiesdiva = 0inQandv-a =0on d<2.
Thus, there exists C(€2) > 0 such that for all a satisfying the previous condition

lall 2 () < CQlcurlall 1 (q)-
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Since (¥, A) is a critical point of the functional in (1.1), then
1 _
Vicurla = —Im (Y (V — ik H)¥).
kH

Consequently, we get

1 :
lallg2@) = C (II curl(A —F) 2 + K—HII(V — ik HA)Y||2 Ilwlloo) :
This finishes the proof of the proposition in light of the continuous embedding of
H*(Q)inC%%(Q). O

In the subsequent sections, we will need to approximate the magnetic potential
F generating a non-constant magnetic field by a simpler magnetic potential gener-
ating a constant magnetic field. The approximation will be done in domains with
small area and in general will lead to large errors. By applying a suitable gauge
transformation, one can absorb the large errors and be left with small errors. The
next proposition provides us with useful gauge transformations.

Proposition 4.3. Given Q2 and By as in the introduction, there exists a constant
C > 0 such that the following is true.

(1) Lett>0,a; €2, D(aj,t) CQandxj € D(aj, t). There exists a function
@j € Cl(D(aj, L)) such that, for all x € D(aj, {),

[F(x) — (Bo(x;)Ao(x — a;) + V)| < C £ (4.8)

(2) Lett > 0,a; € I"and x; € D(aj, t) NT. There exist v; € [0,2m) and a
Sfunction ¢; € Cl(D(aj, £) N Q) such that, for all x € D(aj, £) N <,

[F(x) — (IV Bo(x))| Aapp.v; (x —aj) + V)| < C €. (4.9)

Proof. The function ¢; in (1) is constructed in [3].
We give the construction of the function ¢; announced in (2). The vector field F and
the function By are defined in a neighborhood of € (w.l.0.g. we can even assume
that they are defined in R2). In particular, F(x) and By(x) are defined in D(a;, £)
even when D(a;, {) ¢ Q.

Select v; € [0, 27) such that

VBy(aj) = |VBo(aj)|(cosv;, sinv;).
We apply Taylor’s formula to the function By near a; . Since a; € I', we get
Bo(x) = |[VBy(a;)|(cosvj,sinv;) - (x —aj) + fj(x), (4.10)
where
i@ £ Clx —a;? £CE, (x € D(aj, 0)).
Taylor’s formula applied to the function |V By| near a; yields

[VBo(x;)| = |VBo(a;)| +ej,
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where
lejl = Clx; —aj| < CL.

In that way, (4.10) becomes

Bo(x) = |[VBo(xj)|(cosvj,sinv;) - (x —aj) + g;(x), 4.11)
where g;(x) = fj(x) +ej(cosvj,sinv;) - (x — a;) and satisfies

lgj(0)| £ C 2%,
Define the vector field:
G;(y) = (/01 sgj(sy +aj)ds) (=y2,y1), fory = (y1, y2).
Clearly, |G (y)| < C03, when y€ D(@,¢)and y +a; € Q2.
We perform the translation y = x — a; and define
F(y) = F(y +a;), fory e D(0, ¢).

In that way, the formula in (4.11) reads as follows:

curl (F — |V Bo(x;)|Aupp.y) = curl G; in D(0, ¢),

where Aapp,vj is introduced in (3.35).
Consequently, we deduce the existence of a function a j€C 1(D(0, £)) such that,

F — [VBo(x))|Aupp.y; = Gj + V@, in D(0,0).

The function ¢; is defined by ¢ (x) = ¢;(x — a;), for x € D(aj, £). O

5. Energy Upper Bound

In this section, we determine an asymptotic upper bound of the energy in (1.5).
The upper bound is valid under the assumptions

k>1 and « < H <«?,

and matches with the asymptotic expansions announced in Theorem 1.1.
The conclusion in Theorem 1.1 displays two regimes for the behavior of the
energy in (1.5),

Regime I : 3?2 <« H < /cz,
Regime II : « < H < /2.
As such, this section will present two independent constructions devoted to the

aforementioned two regimes (Regime I and Regime II). Each construction will be
the subject of an independent subsection.
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5.1. Upper Bound: Regime |

This subsection is devoted to the proof of:

l/ZE(K) = 400

and lim €(k) = 0. Ife(x)x> < H < Ak?, then the ground state energy in (1.5)
K—>0Q

Proposition 5.1. Let A > 0 and € : R — Ry such that lim «
K—0Q

satisfies,

Eos(k, H) < k / VB (x)|£ 1/?,E VB (x)|E ds(x) ) +o K—3
gs\e = r 0 K2 0 K2 H)’

(k — 00), (5.1)

where ds is the arc-length measure on T.

The proof of Proposition 5.1 consists of computing the energy of a relevant
test configuration. The construction of this test configuration hints at the actual
behavior of the minimizing configurations.

The conclusion in Proposition 5.1 is a straightforward application of Lemma 5.2
below. One part of Lemma 5.2 is devoted to the construction of a test configuration.
The construction requires that we cover the curves where the magnetic field vanishes
by a collection of discs satisfying:

the centers of the discs are in the set I' = {By(x) = 0};

the interiors of the discs are disjoint;

all the discs have equal radii ¢ ;

if D is a disc in this collection, then the arc-length of the curve D N T is approx-
imately the diameter of D.

The proof of Lemma 5.2 contains the detailed construction of these discs with
precise statements of their properties.

The statement of Lemma 5.2 below requires to introduce the quantity ¥ (w1, (2, a)
which is defined for ;1 > 0, uy > 0,and a € (0, 1) by

_ — —-1/3
VG, o, @) = max (40”2t 4u; ).

Lemma 5.2. Let A > 0, n € (0,1/2) and b : R — Ry such that lim b(k) = oo
K—> 00

and

lim «~V/ 2b(/() = 0. There exist positive constants C, ko and £y such that the
K—> 00

following is true.
Suppose that a € (0,1/2), £ € (0,£4p), 8 € (0,1), k = ko, H > 0 satisfy,

H . H
Kkl =y — inf |V By(x)], — inf [VBy(x)|, a ), 5.2)
K< xel K* xel

and

b()k? < H < A’
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Then, the ground state energy in (1.5) satisfies,

H\'3 H
Egs(k, H) < K/r (|VBO(X)|I?) E (IVBO(X)IF) ds(x) + C(a + B),
(5.3)

where

o ds is the arc-length measure on T,
o= H P 2/3+a’1/2(€ Pba 2073 + (02 + 87 H2 O,

o= (77+6+a)—

Proof. Step 1. Existence of £.

This step is devoted to the definition of the constant £( appearing in the statement
of Proposition 5.1. Recall the assumption that I" is the union of a finite number of
simple smooth curves and I' N 92 is a finite set. Given n > 0, there exists a
constant £; € (0, 1) such that, forall a € T" and ¢ € (0, £1) with D(a, ¢) C 2,
then D(a, £) N T is connected and

2w -1y < / ds(x) <26+ Lo, (5.4)
2 D(a,0)nT 2

Notice that / ds(x) is the arc-length (along I') of D(a, £) N I". Thus,
D(a,£)NT
the choice of ¢; is such that the arc-length of D(a, £) N T is approximately 2¢,

whenever ¢ € (0, £1).
The arc-length measure of I' is denoted by |I'|. By assumption, I" consists of a
finite number of simple smooth curves (Fi)i.‘zl. Let

. n £ -1
0 = I r; (1 ) .
0 mln(16 BT G )
If £ € (0, £p), then, on the one hand,
2¢ n
—_— < _’
i 4
and, on the other hand, ¢ < £ and (5.4) is satisfied.

1+nmt< i—l (5.5)

Step 2. A covering of T.
In the sequel, we suppose that £ € (0, £g). Consider i € {1, ..., k} and the
curve I';. Let n; € N be the unique natural number satisfying

';' (1 n 4)71 —<n < ';' (1 n 4)71. (5.6)

Select n; distinct points (b;;); on I'; such that
A Il
v j, distr;(bji.bjy1i) = o
1

where distr; is the arc-length measure on T';.
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Obviously, the Euclidean distance e; := |b; 41, — b; ;| satisfies ¢; < distr,
bjibjy1,i) = % Thanks to (5.6) and (5.5), we have,

€j§2€(1+n)<£1.

Thus, if D(b;;, e;) C 2, we can use (5.4) with £ = e; and get,
n T n
2e,(1—1) §2n_:§2€-’(1+1)'
Thanks to (5.6), this leads to
1_‘.
ejzu(1—ﬁ)zzz.
n;
Now, define the index set

Ji={j : D(bji,ej) CQ}

and N; = Card J;. Notice that, if j € J;, then e; > 20 and D®;;,t) C
D(bj,ej/2) C Q. Thesets (D(bj;,{)) ey are pairwise disjoint.
Since I'; N 0L2 is a finite set, then there exists a constant ¢ such that,

if a € T; and dist(a, 32) = ct, then D(a, {) C Q.
Consequently, the number N; satisfies
n, —C=N; <,
where C > 0 is a constant. Thus, thanks to (5.6) and (5.5),

n\~! n\~!
|1“,~|(1+Z) —CK§N,~><2€§|F,~|(1+Z) .

Now, collecting the points (b} ;) je 7 iefl,- ,k}» WE get the collection of points
onl,

@j)jeg = bji)jediell, - k)»
such that,
VjEj, a; el and D(aj,E)CQ,
k k
N=CardJ => N; and |T|=> |},
i=1 i=1
7\ ~! !
|F|(1+Z) —CZ§NX2£§|F|(1+Z) . (5.7)
Notice that

U(rmD(a—j,z)) CT,

J
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and the arc-length measure

U(rno@) - |

U, (FﬂD(aj N

)ds(x) = Z/:/m ds(x),

D(a;,0)

satisfies

It —cn £ |J(rnD@. )| £ ri+cn,

J

Thus, the arc-length measure of the set I" \ Uj (F N D(aj, Z)) satisfies

r\J (r N D, z)) <cn. (5.8)
j

Step 3. Construction of a test configuration. For each j, select an arbitrary point
xj € D(aj, £) N T" and write

VBy(xj) = |VBo(x;j)|(cosvj, sinv;),

with v; € [0, 2m).
Define

H
L =Lj=|VB(x))|

= R=Rj= L'xe. (5.9)

Thanks to the assumption in (5.2), the following condition holds:
R = 4max(a 2L7?83, 1). (5.10)

We can apply the result of Theorem 3.11.
We define a function w € H'(Q) as follows. Consider the set of indices J =
{j : D@a;, ) CQ}.Letx € Q and j € J.If x € D(aj, £), define

wx) =" Hiup g, (x —aj), (5.11)

where ug, Ly, € H(} (D(0, £)) is a minimizer of the functional in (3.36) with

v = v;,and ¢; is the function constructed in Proposition 4.3.If x ¢ U D(aj, t),
-4

we set w(x) =0.

Clearly, w € HY(Q).

Step 4. Upper bound of E(w, F).
Notice that curl F = By and that the magnetic energy term in (1.1) vanishes for
A = F. Thus, we have
Ew, F) =& (w, F; Q) =250(w,F;D(aj,€)), (5.12)
J

where the functional & is defined in (1.14).
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Recalling the definition of w, we observe that
Eo(w, F; D(aj, 0)) = Eour,ev;(x —a;), F—Vej; D(aj, 0)).
Thanks to the choice of ¢, we infer from Proposition 4.3 that
| IV Bo@ ) Aapp.v, (x — aj) — (F = V)| < C £2. (5.13)

As a consequence, applying the Cauchy—Schwarz inequality, we get that, for
any § > 0,

Eo(w, F; D(aj, £)) = (1 +8)E(ur o.v; (x — aj),
|V Bo(x;)|Aapp,v; (x —aj); D(aj, £)) + r1,

where

r = C@k*+ 8 'w?H?1%) lur e, (x —aj)|*dx.
D(a;,0)

Recall that uz, ¢, i being a minimizer, it satisfies
lur.ev;l = 1.
Thus,
ri £ C@r* + 8 P H (02 (5.14)
Now, performing the translation x — x — a;, we observe that
Eo(w, F; D(aj, ) < (1+O)E (U .0, 1V BoCx)) Aapp,uys DO, ) + 11,
With L = L; and R = R; in (5.9), we get, in light of Theorem 3.11,

2/3
C L~
Eo(w, A; D(aj, 0)) < + 8)egs (Lj; (1 —a)Rj) + m(l + aj?)—i-rl.
Jj

Thanks to Theorem 3.8, we deduce that

0w, F: D(aj. 0)) £2(1+8) (1 —a)R; E(Lj) + C (1 + L; )R}
2/3
C L"
+— 1+ L )+r. 5.15

Recall the definition of L; and R; in (5.9), and that the number of discs D(a;, £)
is inversely proportional to £, that is of order £~! .
Substituting (5.15) into (5.12) yields

H\'"? H
Ew,F) =2l(1+8)(1—a) Z (|VBO(xj)| ﬁ) E (|VB0(xj)|E)
J
FCHDPBO2B p ca P a3 4 O
(5.16)
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Thanks to (5.7) and the upper bound on E(-) obtained in Theorem 3.12, the term
H\'? H
Zzz (|v30(x,-)| K_Z) E (|v30(xj)|p) (5.17)
J

is of order x2/H. Thus, (5.16) becomes
H\'? H i
Ew,F) <« Zzz (|v30(x,-)| 72) E (|v30(x,»)|K—2) +CO+a)
J
+CHPBPe2B  ca P v a2 + Ol
(5.18)

In (5.17), replacing 2¢ by the arc-length measure of D(a;, £) N I" produces an
error n€/2 and the sum becomes a Riemann sum over V; = Ujej (1" ND(aj,?)).

The points x; can be selected such that the Riemann sum is a lower Riemann
sum. Thus,

H\'3 H
223 (|VBO(xj)|p) E(|VB0(xj)|ﬁ)
j

H\'"? H K2
é/ (|VBO(X)|—2) E (|VBO(X)|_2) ds(x) + Cn—.
Ve K K H

Inserting this into (5.18), we get

H\'3 H i3
Ew,F) <k /(|v30(x)|—2) E(|VBo(x)|—2) ds(x) [+C(n+8+a)—
Ve K K H

+CH (BB ca™ P a2 + e

As pointed out earlier, the arc-length measure of the set I' \ V; does not exceed
Cn. Recall the upper bound on E(-) obtained in Theorem 3.12. In that way, we get

H\'3 H
/ (IVBo(x)I —2) E (|VBO(X)|_2) ds(x)
Mve K K

Consequently, we deduce the following upper bound:

H\'3 H i3
Ew,F) <k /(|VBo(x)|—2) E(|VB0(x)|—2) ds(x) |+C(n+8+a)—
r K K H

+CH (BB ca V2 a2 + e

2
K
§C77ﬁ~

The definition of the ground state energy in (1.5) tells us that Egs(x, H) =
E(w, F). Recalling the definition of r{ in (5.14) finishes the proof of (5.3). 0O
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Proof of Proposition 5.1. We use the upper bound in Lemma 5.2 with the follow-
ing choice of the parameters:

e=k>BHA s =BT, (5.19)
Clearly, the parameters 6 and ¢ satisfy as k — 00
LK1

Let us show that the two conditions in (5.2) are satisfied. Observing that the para-
meter a € (0, 1/2) is fixed, that is independent of «, the conditions in (5.2) will
follow from

Kl = 13834 > max {ail/zszfl, Hf%/c%},

which is a consequence of the assumption in Regime I (that is k3> < H < «?).
Now, since (5.2) is satisfied, we can apply Lemma 5.2.
The remainder « in Lemma 5.2 satisfies (this simply follows by studying each
individual term in «)

RS KWOHL

Sending « to oo, the upper bound in Lemma 5.2 becomes

H H\'3 H
lim sup -5 1 Eg(k, H) =2« A(lVBo(x)|ﬁ) E(|VB0(x)|;) ds(x)

<C(m+a).
Since this is true for all n € (0, 1/2) and a € (0, 1/2), we get, by sending n and a

to 0,
. H H\ /3
lim sup — Egs(k, H) — 2k |VBo(x)|—2
Kk—oo K r K

E (IVBO(X)Ig) ds(x)) } <o,

and the conclusion in Proposition 5.1 follows. O

5.2. Upper Bound: Regime I1

In the next proposition, we give an upper bound of the ground state energy in
(1.5) valid in the regime k! « H < «3/2.

Proposition 5.3. Let A > Oande : R+ — Ry be afunction satisfying lim €(x) =
K—> 00
0 and lim ke(k) = oo.
K—>0Q

Ife(r)k S HZ Ak3/2, then the ground state energy in (1.5) satisfies

3
Egs(k, H) < & / g (EIBO(X)I) dx + 0 (K—) : (5.20)
Q K H

where g(-) is the function introduced in (3.49).
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Proof. Here, we construct a test function as in (5.21) below. Let ¢ = V16 g=1/2

and (Qk ;) be the lattice of squares generated by the square

(.t ¢ _tg
Q‘_( 2’2)X( 2’2)'

Notice that ¢ satisfies ¢ « 77 < 1. Define
7= {k L Qe C {dist(x, r) < M%} and dist(Qp.c.T) = Mg},

where M > 0 is a constant selected sufficiently large so that, if dist(x, ') > M+,
then |By(x)| = 47 - Notice that, since By vanishes non-degenerately on I, if k € Z,
then

|Bo(x)| =2 M't > 0in O ;.

For all k € Z, let a; be the center of the square O , and select an arbitrary point
Xk € m

Ifr >0and b > 0, let u, € HOI(Q,) be the minimizer of the ground state
energy Fj o, introduced in (3.47). For all k € Z, let ri. = {/k H|Bo(xp)], bi =
% | Bo(x)|, ux = u,, and ¢y be the gauge function satisfying (see Proposition 4.3)

IF(x) — (Bo(xi)Ao(x — ax) + V)| < €2, in Q.
Define the test function v as follows:

eI gy (% (x —ay)) if x € Q¢ C {Bo(x) > 0},
v(x) = { e ﬁ(r{—" (x —ay)) if x € Qr C{Bo(x) <0}, (5.21)
0 otherwise.

We outline the computation of £ (v, F). The details of the computations are given
in [3]. In every square O , we have

“1/16) Fyy,0,, (i)

4162 26
by

Eow,F; Qr o) = (14«

Thanks to the assumption on H and the definition of ¢ = V10172 we have
r¢ > 1. Thus, we may use (3.51), and write

2
.
Eo(v, F; Qug) < (1417110 22 (g(bk> +C + i /16,2 26
k

= (1 +x~/16)£2,2 (g (ngo(xk)l)+C§LK)+K1/16K2H2§6-

)

We sum over k and select the points x; as follows:

| Bo(xi)| = min{|Bo(x)| : x € Qe ).
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In that way, we obtain

&, F) =D &, F; Que)

kel

H 1
< +K_1/16)K2/ o (g (—lBo(x)|> +C— +K1/16H2;4) dx
Usez Oz K gk

<q +K*1/‘6)K2/

U

__ 8 (*IBo(x)I) dx + Ciel /16 5 o ppe—1/16”
ez Qkt K HC H

Notice that, since g(b) = 0 for b = 1 and By vanishes non-degenerately on I, then

H H K
/ _ 8 (—|BO(X)|) dx < / g (—|Bo(x)|) dx + —o(1).
Ukez Qk.s k Q ke H

Thus,
—1/16y,.2 H
Eow, F) = (14« s g ?|BO(X)| dx
Q
2 3 3
Cic/16 K M —1/16K~ | K7 .
+Ck e + Mk 7 + i o(l)

Since H < «3/2, then

2 12 .3
K H'/~ k
PRVACATS Vi S

1
H¢ K H<<

and

3
&, F) < (1 +K*1/‘6>K2/ g (£|Bo<x>|) dx + — o(1).
Q K H

Since Egs(k, H) < E(v, F) = & (v, F), then we get the upper bound in (5.20).
|
6. Exponential Decay of the Order Parameter

The aim of this section is to prove that the order parameter ¥ is exponentially
small (in the L?-norm) away from the curves where the magnetic field vanishes.
This bound is needed in Section 7 to obtain a lower bound of the ground state
energy in (1.5).

6.1. A Rough Bound

In this subsection we give a rough bound valid for any order parameter .
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Theorem 6.1. Let A > 0 and € : R — Ry such that lim ke(k) = oo and
K—>00

lim e(k) = 0. There exist constants C and ko such that, if (¥, A) is a critical

K—>0Q

point of the functional in (1.1), k 2 Ky and

c()k> < H < Ak?, 6.1)
then
1/6
i< () (6.2)
C /Kk\1/6
lerlA =Bl £ () - (6.3)
and
. K\ 1/6
I(V — ik HA)Y |l < Ci (E) . (6.4)

An important ingredient in the proof of this theorem is:
Proposition 6.2. Let A > 0 and € : R — Ry such that lim k €(k) = oo and
K—>0Q

lim €(k) = 0. There exist positive constants C, £y and ko such that the following
K—> 00

is true:
Fort e (0,£0),a e (0,1] and h € C2°(2) such that
supph C {x € Q : dist(x, dQ) > £ & dist(x, ") > +/a £} and ||h|leo < 1,

if (W, A) is a critical point of the functional in (1.1), k = ko and €(k)k* < H <
Ak?, then

/ [(V — ik HA)hyr|> dx > éK(H«/Eﬁ — cz)/ |hy|? dx
Q Q

—CK/ (1 — h?)|y|? dx.
Q
(6.5)

Proof. The support of the function 4y does not meet the boundary of Q2 and T'.
We can use the celebrated inequality

/ I(V — ik HA)hy|* dx zKH/ |curl A| |7 ¥|? dx.
Q Q

The simple decomposition curl A = curl F+curl(A —F) and the triangle inequality
yield

/ |(V — ik HAhy > dx > KH/ | curl F| |hy|* dx
Q Q

—KH/ |curl A — curl F| |hy > dx. (6.6)
Q
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By assumption, V By does not vanish on I', hence
1
|curl F| = |By(x)| 2 Mﬁﬂ in {dist(x, ") = a £} (6.7)

for some constant M > 0.
Thus,

1
/ | curl F| [hyr | dx = —ﬁe/ |hy)? dx. (6.8)
Q M Q

Next we use the Cauchy-Schwarz inequality and the inequality in (4.5) as fol-
lows

1/2
KH/ |curl A — curl F| |h1//|2dx<KH||curlA—curlF||2(/ |h1//|4dx)
Q Q

12
< Celly il (/Q |h1/f|4dx) .

Since || ¥|loo < 1 and ||hloo < 1, we get, further, that

12
||w||2(/ |h¢|4dx) g/ |w|2dx=/ |hw|2dx+/(1—h2)|w|2dx.
Q Q Q Q

Therefore, we have
KH/ |curl A — curl F| |hy|* dx < C/c/ |hyr|? dx +CK/(1 — )|y )? dx.
Q Q Q
(6.9)
Inserting (6.9) and (6.8) into (6.6) finishes the proof of the proposition. O

Proof of Theorem 6.1. Let £ > O and 2y = {x € Q : dist(x,0R) > £ & dist
(x,T") > £}. Select a function h € C2° () satisfying

0Sh<1 inQ, h=1 inQy, h=0 inQ\ Qy,
and

VR < = in Q,

~ O

where C is a constant.
Thanks to the bound ||/ || < 1 and the assumptions on &, we have

/ [yl §/|hx/f|2+cz, (6.10)
Q

/|(V—i/cHA)1//|2dx§/ |h(V — ik HA) Y |* dx (6.11)
Q Q

1
> E/ |(V—i/cHA)h1p|2dx—C/ VA |y dx. (6.12)
Q Q
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Thanks to the estimate on the gradient of /2, we may write

1

5/ |(V—iKHA)h1/f|2dx—K2/ |hy|? dx —C (t* +071) < Eo(¥, A; Q) <0,
Q Q

where &) (¥, A; Q) is introduced in (4.3).
Now, we use Proposition 6.2 with @ = 1 and get

K 2 2 2 —1,,2
(%(HE—C)—K)/QVHM dx < C + 2,

Selecting ¢ = (k/H)'/3, we get for « large and H satisfying (6.1)

/Q Iy 2dx < C (%)1/3.

Now, thanks to (6.10), the first inequality (6.2) in Theorem 6.1 is proved. Now, the
inequality (6.3) (resp. (6.4)) is simply a consequence of (4.5)) (resp. (4.6)). O
6.2. Exponential Bound

In the next theorem, we establish that every minimizing order parameter decays
exponentially fast away from the set I' where the magnetic field vanishes, provided
that k < H < k2.

Theorem 6.3. Let A > 0 and € : R — Ry such that lim k e(k) = oo and
K—> 00

lim €(k) = 0. There exist positive constants C, mqo and kg such that, if (Y, A) is

K—> 00

a critical point of the functional in (1.1), k = ko, €(kK)k> < H < Ak?, then

H ! , 2 2
/ exp (Zmo— t(x)) (—2|(V — ik HA)Y|” + [¢ (x)] ) dx
Q K K

< C/ ¥ (x)|? dx,
{t(x)SC 4}

where t(x) = dist(x, I').
Proof. Let

= H)"'3. (6.13)
The assumption on « and H ensures that

kTS, (6.14)

We will prove Theorem 6.3 by establishing the following two estimates (away from
the boundary or in a neighborhood of the boundary):

1
/ G2mo L 1(x) (_2|(V — ik HA)Y|? + IW(X)IZ) dx
{dist(x,d)>¢} «

< CI/ (0P dx, 6.15)
{t)SC )
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and
1
/ 2ot 1) (_2|(v — ik HA)Y > + |1/f(X)|2) dx
(dist(x,09) <¢} Kk
<o ol dx, (©10
{t)=CH)

expressing the localization of the energy of ¥ near I'.
The proof of (6.15) and (6.16) is divided into several steps.
Step 1.

Consider the parameters

£ e (1, 00), 0:%, =2 6.17)
K oK

Let

f) = x(x) exp(" 1 (x)),
and

g(x) = n(x) exp(€"1(x)).

The functions x € C2°(RQ) and n € C®(RQ) satisfy

0<x<1 inQ,

x=1 in {dist(x, Q) 2 ¢} Ulr () 2 ), 6.18)
x=0 in {dist(x, 99) < 3¢} Ufr(x) < 30), ©
Vx| £ Ck inQ.

and

0<n<1 inQ,

n=1 in {dist(x, Q) < ¢} Ulr (x) 2 €}, 6.19)
n=0 in {dist(x, 9Q) = 2¢} U{t (x) < e}, (©.

[Vn| £ Ck  in Q.
Here we have used for the control of the gradient (6.14) and that
ke <l.

Using the Ginzburg—Landau equation in (4.1), we write

[ (7 =it foP =9 7RI R) ar = [ (0 = 10iY) 2
Q Q

< KZ/QIfwlzdx, (6.20)



100 BERNARD HELFFER & AYMAN KACHMAR

and
[ (17 = ictingu = 19PP) ax = [ (1P = 191*) ax
Q Q
§K2/ lgw|? dx. 6.21)
Q
Step 2.

In this step, we determine a lower bound of / [(V—ikHA) fy |2 dx. Notice
Q
that fy € C2°(2). Consequently, we may write (see (6.6))

/I(V—ichA)fwlzdszH/ | curl Fl | £ da
Q Q
—KH/ |curl A — curl F| | fy)? dx.
Q

We use the following estimates

/ | curl FY | f9 dx > ie/ U P dx [by (6.7)]
Q M
C

1/6
= () TIrvIid oy 63,

/ |curl A — curl F| | fy|? dx <
Q H

and obtain
/ (V —ikHA) fy|*dx > i;cHe/ |fy|?dx — Ck (i)l/é Ifvis
o =M o H 4

Notice that fyy € C(Q) C H L(R?). By the continuous Sobolev embedding of
H'(R?) in L*(R?) and a scaling, we get for all n € (0, 1):

L=l 17wl
< Cson (WIVIFWIIE + 77" 1£w13)

< Coan(nll(V = ik HA) fy13 + 17" 1 £wI3)  [By the diamagnetic inequality].

_1 )
We select n = %Sb/c_l (%) 6 and obtain
0

¢ ’\2

KH
/I(V—IKHA)wa avz (S -0 ( /|f¢| dv. (6.22)

Thanks to the choice of the parameters in (6.17), the lower bound in (6.22) becomes

, ) Exr L, K\/3 )
/Q|(V—ucHA)fw| dxz(ﬁ—CK (E) )/Q|fl/f| dx. (6.23)
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Step 3.

We insert (6.23) into (6.20) and use that

/|Vf|2|w|2dx§2z*2/ |fw|2dx+2/ Vx> exp(2€~ 1 (x)) |y |* dx
Q Q Q

gzz”/ |f1//|2dx+CK2/ |g1ﬁ|2dx+Clc2/ [v|? du,
Q Q {111}
(6.24)
to obtain
[ (G —ienmsor+ L (5 2T e (5)7) v
. \2 K >\ 2 %_ZIC K I X
< aZ/ |g¢f|2dx—|—ac2/ [y % dx. (6.25)
Q {1
Step 4.

We will determine a lower bound of / [(V —ikHA) gy |2 dx. We cover the
Q

set
Qe ={x € Q : dist(x, 9Q) < 2¢, dist(x,T) = ¢}
by a family of squares (in tubular coordinates)
Kaj,¢)=1{x € Q : dist(x, 3Q) < 2¢, distyo(p(x), aj) <2},
where:

e distyq is the arc-length distance along 9€2.

e if x € Q¢ ¢ and ¢ is sufficiently small, p(x) is the unique point on 92 satisfying
dist(x, p(x)) = dist(x, 92).

o forall j,a; € 9Q2 ﬂm.

Let (x ;) be a partition of unity such that

Dxi=1 D IVxP ¢ suppxj C Kaj, 20).
J J
This holds the decomposition formula
[ —ictmguras =3 [ 1= ixtidygevPar =3 [ 19R gw ax
J J

> Z/Q (V= i HA)x g > dx — C¢—2/Q gy dx.
J
(6.26)
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Next, we define the gauge function
aj = (Aa;) —F(aj))  (x —aj).

Let @ € (0, 1) be a constant. Using the Cauchy-Schwarz inequality, Proposition
4.2 and Theorem 6.1, we may write

/Q|(v—i/<HA)X,»g¢|2dx=/Q|(v—ixH(A—Vaj))e—fKH“fngwzdx

K

| _ 1/3
> 5/ [(V — i HF)e "M% y gy P dx — Cic? (H) 4“2“/ Ixjgw|? dx.
Q Q
(6.27)

Recall the definition of the magnetic potential Ag in (3.46). There exists a gauge
function ¢; satisfying (see Proposition 4.3)

[F(x) — (Bo(x))Ao(x — aj) + Vg,)| < C¢* inKj(aj, ).

Again, using the Cauchy-Schwarz inequality, we may write
/ [(V — ik HF)e " H% y oyr|? dx
Q
1 . .
= E/Q |(V — ik HBo(aj)Ao(x — aj))e”*M0ie= 1%y ; oy |? dx

—K2H2§4/Q Ix;gV | dx. (6.28)

Now, we are allowed to use the analysis of the Neumann realization of the Schrédinger
operator with a constant magnetic field equal to « H Bo(a;) in our case. In the half-
plane case, the ground state energy of this operator is ®ok H|Bo(a;)|, where the
constant ®g is universal and satisfies ®y € (%, 1). The result remains asymp-
totically true in general domains with smooth and compact boundary [20]. More
precisely, there exists a function

err : Ry — Ry,
such that lim |,  err(b) = 0 and
Vb, AN(b) = Oglb| — |b|err(b),

where AN (b) is the lowest eigenvalue of the operator —(V — ibAg)? in L2(2) with
Neumann boundary condition.

Notice that by the assumptions on £ and the points (a;), we may use (6.7) with
X =aj, and get

1
Vj. «H|Bo(aj)| Z - CxH > 1.

Moreover, the magnetic potentials Ag(x) and Ag(x — a;) are gauge equivalent
since

Aog(x —aj) =Ag(x) —Agla;) = Aog(x) — Vu;(x),

withuj(x) = Ag(a;) - x.
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In that way, when « is sufficiently large, we may write
/ |(V — ik HBo(aj)Ag(x —a;))e “Heig=IKHe y o aypi2 dx
o .
> ®o 2 > 1 5
2 —«H|Bo(aj)| | Ixje¥|"dx =2 —tkH [ [xjg¥| dx. (6.29)
2 Q aM Q
Collecting the estimates in (6.26), (6.27), (6.28) and (6.29), we get
/ I(V — ik HA) gy |* dx
Q
H¢ C 1/3
> (22— ceH? Y — = —Cke (ﬁ) 2 / lgv|?dx. (6.30)
4M K§2 H Q
Recall the definition of the parameters in (6.17) and (6.13):
.= (H/()fl/3 = 31,

We insert (6.30) into (6.21) and use that
/|Vg|2|w|2dx§2ﬂ/ |g¢|2dx+2/ IVil? exp2€~ 't (x) | dx
Q Q Q

< 2z—2/9|gw|2dx+cfc2/g|fw|2dx

+ CK2/ || dx
(el (=1}

to obtain

1 . 2, 1 £ic? -2 2/3
/Q (§|(v —ikHA)gY | + E(W — 2072 — o
_CK (i) 1/3 Cza)lgl/f|2 dx
H
< CK2/ | Fy)?dx + CKZ/ |v)? dx. 6.31)
Q {1 1)<ty
Step 5.

Summing the two inequalities in (6.25) and (6.31), we get
1
5/(|(v —ikHA)gY > + [(V — ik HA) f[*) dx
Q
1 2 2 1/3
+ —/ (EL —cZ 2~k - co¥i - Ck (ﬁ) ;‘2"‘>
Q H

Ufvl +1gv®)

< CK2/ lv)? dx. (6.32)
(e-11(x)<1)
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Recall that o satisfies k ~! <« o < A. We select & sufficiently large such that

£ A?
— —C— —C > 2.
aM g2
. 173
Since (47) /" < land ¢ < 1, we get,
1 . 2 i 2 2 2
|V =ik HA) fy|"+ —|fy]"dx ) = Ck [~ dx,
a\2 2 {0y

and

1 K2
/ (—|(v ik HA)gY? + —|gw|2dx) < CKZ/ 2 dx.
o \2 2 -1 1<

Thanks to the definitions of f and g, the two aforementioned inequalities yield the
inequalities in (6.15) and (6.16) with mg = 1/£. O

As a consequence of Theorem 6.3, we get an improvement of the bound given
in Theorem 6.1.

Proposition 6.4. Under the assumptions of Theorem 6.3, it holds,

I 1l2 §C\/g-

Combining the results in Propositions 4.1, 4.2 and 6.4, we obtain the improved
estimates:

Proposition 6.5. Under the assumptions of Theorem 6.3 and Proposition 4.2, it

holds,
|| curl A — curl F|j; < %\/g,
IA = Fllorog < ca\/g,
1A = Fll o, < %\/g

7. Energy Lower Bound

In this section, we will derive lower bounds of the following energy:
2 a0, K
. A U) =/ (|(V—i/<HA)1p| — I+ Y ) dx, (7.1
U

where U C R? is an open set such that U C Q.
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Proposition 7.1. Let A > 0 and € : R — Ry such that lim k €(k) = oo and
K—> 00

lim e(k) = 0. For a € (0, 1), there exist positive constants C and ko such
K—>0Q

that, for £ € (0,1),6 € (0,1),a; € I, D(aj,f) C Q, x; € D(aj,¢)NT,
h € C*(D(aj,t)) a function satisfying |||l <1, (¥, A) a critical point of the
functional in (1.1), k 2 kg, and

etk < H < Ak?,

the following holds:

H\'3 H
Eo(hr, A; D(aj, £) =2 (1 —8)2L«k (|VBO(xj)|ﬁ) E (IVBo(Xj)|K—2) =7

where

3
r=C (5/(2 45! (K—zz"‘ + K2H2156))/ oy |? dx.
H Diaj,b)

Proof. Leto; = (A(aj) —F(a;)) - (x — a;). Thanks to Proposition 6.5, we have
A = (F+ Va))| £ C A = Fllpoug I —aj|* < € X @ in D (12)
PN = O (Q) =gV j
Notice that
Eo(hyr, A; D(aj, 0))
= Eo(hp e *HY% A —Va;; D(aj, £))
> (1 = 8)E(h e ™% F; D(aj, )

-C 5K2/ |h1/f|2dx+8’1/<2H2/ IA — (F4+Va,)*|hy|* dx ).
Diaj.b) D(aj,0) '
(7.3)
Using (7.2), we get,

Eo(hr, A; D(aj, 0) = (1 = 8)E(hy e % F: D(aj, £))
3
—C (5K2+81K—£2")/ P dx. (7.4)
H D(a;.0)

Let
fj —h we—iKHajeiKH(bj’
where ¢; is defined in Proposition 4.3.
Notice that f; € H& (D(aj, ), | filloo < 1 and, using (4.9),
Eo(h yr e “H% 'F; D(aj, £))
> (- 8)50(fj: |VBO(xj)|Aapp,vj (x — aj); D(aj, £))

— Ck*> + 8 W2 H?%) | ;1% dx. (7.5)
D(aj,0)
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We will use Theorem 3.11 to get a lower bound of the energy
Eo(fj, IVBo(xj)|Aapp,v; (x —aj); D(aj, £)).

Define
H
L=1L;=|VBy(x;)| a2 (7.6)
Performing the translation x — x + a;, we get that

gO(fj’ |VBO(xj)|Aapp,vJ-(x —aj); D(aj, 0) = g(f]) 2 Egs r(k, L; £). (1.7)

Here G is the functional in (3.36) and Eg ;(k, L; £) is the ground state energy in
(3.37).
Let

R =L"Y3ke.
Now, Theorems 3.11 and 3.8 applied successively tell us that
50(fj’ |VBO(xj)|Aapp,v,- (x — aj)§ D(ajs E)) > egs,disc(‘)a L; R)
>2RE(L) =2L"3k¢ E(L).

Recall the definition of L in (7.6). We insert the aforementioned estimate into (7.7).
In that way, we infer from (7.5) and (7.4) the lower bound of Proposition 7.1. O

Proposition 7.2. For r > 0, h € C®(R?) satisfying ||hlloc < 1, and (¥, A) a
critical point of the functional in (1.1), the following lower bound holds:

Eo(hyr, A; D(aj,r) N Q) = —mic?r?. (7.8)

Proof. Notice that all terms in & (h ¥, A; D(aj, r) N Q) are positive except the
integral of |hyr|2. Thus,

Eohyr, A; D(aj,r)NQ) 2 —K2/ |hy)? dx.
QND(aj,r)

This finishes the proof of the proposition upon using |2y |loo < 1 and ||/ ]c0 < 1.
m}

Theorem 7.3. Let A > 0 and € : R — R, such that lim ke(k) = oo and
K—> 00
lim e(k) =0.
K—> 00
There exist kg > 0 and a function err : R — R such that the following is true:
(1) lim err(x) =0.
K—> 00

(2) Let D C Q2 be a regular open set, h € C®(D), |h|loo < 1, (¥, A) a critical
point of the functional in (1.1), k = ko and €(kK)k> < H < Ak
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(@ IfH > 32, then,

H\'3 H
Eo(hyr, A; D) 2k / (|VBO(X)|—2) E(|VBO(X)|—2) ds(x)
rnp K K

K3
+ECIT(K). (7.9)
(®) IfH <32, then,
2 H K3
Eo(hy, A; D) >« / g (—|Bo(x)|) dx + —err(k). (7.10)
D K H

Proof. Consider three parameters
ae (0,1), £€(0,1), e (0,1),
and define the following sets:
Dy = {x € Q : dist(x,T") < 2a ¢},
Dy ={xeQ : dist(x,T") > Jat}.

Let (x ;) be a partition of unity satisfying

2 2
Sxi=1 D VxPEC@h suppx; € D; (e {l.2).
j=1 j=1

This holds the following decomposition of the energy:
2
Eo(hyr, A; D) Z Eo(xihr, A; D) +E (xahr, A; D) — Z/ V1% 1Ay ] dox.
; Q
j=1

The error terms are controlled using the pointwise bounds on |a|, [¥], |V x|, and
the conditions on the support of x ;. We obtain the following lower bound:

&y, A; D) Z ECahyr, A; Di) + & (hyr, A; Do) — C(Va )™ (7.11)

The formula in (7.11) is the key to compute a lower bound of the ground state
energy Egs(«, H) as in Theorem 1.1. Loosely speaking, we will do the following:

e Estimate the energy Ey(x1hY, A; D) using the limiting function E(-) (this is
the energy close to the set I');

e Estimate the energy Ey(x2h Y, A; D) using the limiting function g(-) (this is the
energy which is ‘relatively’ away from I').

Here we will need to split into the two regimes displayed in Theorem 1.1. In the
regime K32« H < K2, estimating &y (x1hAY, A; Dy) viathe limiting function E (-)
will produce small errors. In the regime H < «3/2, the errors will be large, so that
the main contributions in (7.11) will be captured through the term Ey(x2h v, A; D3)
via the function g(-). For the moment, we cannot explain this surprising behavior
through intuitive/physical terms.
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The Regime H > k>/?

In this regime, we shall see that & (x1hY, A; Dy) is the leading term and
Eo(x2h ¥, A; Dy) is an error term.

Lower bound of the term & (x1hv, A; D1). Consider a constant a € (0, 1) and
distinct points (a;) in I" such that

Vj, 20—at <dist(aj, aj41) <20 — %g_
Choose the constant a sufficiently small so that

={xeQ : distx,T) <2yat} C | J D, 0).
j

Consider a partition of unity satisfying
> ff=1inDi, suppfj C D@@j. 0), D IVfiI* < —7
J J

Notice that the support of each V f; isin D(a;, £) N D(aj+1, £). Since the points
(a;) are selected in such a manner that dist(a;, aj 1) — 2¢ ~ al, then the area of
the domain D(a;, £) N D(a;1, £) is proportional to /a £ x al = a/a £>.

The partition of unity (f;) allows us to decompose the energy as follows:

Eo(xihy, A; D) 2 " Eo(f; xihyr, A; D) — Z |1V 55l v |
- -

> Zé’o(h v, A; D)) — —— (7.12)

fe

where hj = f; x1hy is supported in D N D(a;, £) .
If D(aj, £) N 92 # ¥, then we can apply Proposition 7.2. Since I' N 92 is a finite
set, then we get

> &lhjy. A Dy) 2 —CiP.
D(a;j,0)N3QAH

Let§ € (0, 1) be a constant. We select the parameter £ as follows:

¢=8H"', (7.13)
In that way, we obtain
3 3
1 K
<1, k23
< < 77 \/_Z
and
K3
> &y AiDy) 2 7o) (k= o0). (7.14)

D(aj,0)NIQEN
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If D(aj, ¢) C D, then h; =0 and
Eo(hj ¥, A; D) =0.
Now,if j e T ={j : D(aj,¢) C Qand D(a;, £) N D # {}, then we can apply

Proposition 7.1 and get

H\' H
D Eohj ¥, A; D) Z (1= 8)2x > (|VBo(x,-)|K—2) E (IVBo(xj)IK—Z)

jeZ jeT

3
—C (5K2+81 (%320‘ +K2H2€6))/ Iy |? dx,
Q

where, for all j, x; is an arbitrary point in D(a;, £).

Thanks to Proposition 6.4 and the choice of £ in (7.13), we get, further, that
H\'? H
> Eothj v Ai D) = (1—8)20k Y (IVBo(xj)IK—z) E (IVBO(XJ)IK—z)
j€T jeT

_C (5 421X H72a/3) ﬁ
H H

Theorem 3.12 allows us to write

H\'’ H K
(|VB0(xj)|K—2) E (|VBo(xj)|K—2) < CE. (7.15)
Consequently,
H\'? H
D Eohj ¥, A; D) 220K (|VBo(xj>|p) E (lVBo(xj)lp)
jeT jeT

P

_C (3 + 82a71£ Hfza/s)
H H

Inserting this and (7.14) into (7.12), and using the fact that (/a '« %, we get

H\'? H
Eo(x1hy, A; D) 2 « 225 (IVBo(xJ')IK—z) E (|VBO(xj)|K_2)
jeT
3

K K
—C (a g1 H*2“/3) ©. 7.16
+ 7 7 (7.16)

Thanks to (7.15), the sum

H\'3 H
> (|VBo(xj)|;) E(|VBo(xj)|K—2) (7.17)

JjeT
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is of order «2 /H.Let n € (0,1). Select £¢ sufficiently small such that, for all
£ € (0, £o), the arc-length measure of D(a;, £) N T along I satisfies

20 —zg < |D(aj, ) NT| < 2£+eg.

Thus, replacing 2¢ by |D(aj, £) NI'| in the sum in (7.17) produces an error of order
nt. Now, select x; € D(aj, £) such that

H H
|VBo(x)|' E (IVBo(xj)|—2) = max |[VByx)|'"*E (|VBo<x>|—2).
K D(a;.0) K

In that way, the sum in (7.17) satisfies

H\'? H
22£(|VBo(xj)|;) E(IVBo(xj)lp)

jeZ

H\'? H K
2 IVBO(X')I—) E (IVBO(X')I—) dx |- Cn—.
Z(/D(aj,z)mr( I k2 2 H

JjeT
(7.18)

Recall (7.15). Since the balls (D(a s 6)) overlap in a region of length O(a¥f), and
the number of these balls is inversely proportional to £, then

H\'3 H
([ o (om0 ) (v 5) o)

jeT

>/ 1V Bo(x )| " o0 L) dx — cas
~ Jpnr 0 oI ) T Ay

Inserting this into (7.18), then inserting the resulting inequality into (7.16), we get

H\'3 H
Eo(x1thy, A; Dy) 2 K/ (|VBO(X)|K_2) E (|VBO(X)|K_2) ds(x)

rnb

PE

—C (a F5+ 52“—1% H™2/3 4 n) - (7.19)

Recall that o« > 0. Taking k — oo, we get

k=00 K3

. %
timint 5 { oGy A: D)~ [ (1980001
rnp K

H
E (|VBO(X)|K—2) ds(x)]
> —Cla+8+n).
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Taking n — 04, we obtain

.. . H H\'?
liminf — 1 & (x1hy, A; Dl)_K/ IVBo(x)|—
rnD K

Kk—>00 K3
H
E (|VBo(x)|K—2) ds(x)]

> —C(a+9). (7.20)

Lower bound of the term & (x2hv, A; D>) Since H > «3/%, the parameter ¢
defined in (7.13) satisfies

« B2

¢=sH 3 =55 X
H

> 7R

K

Thanks to the exponential decay in Theorem 6.3, there holds

2 2 i
K [P dx < —,
A i

and

3
&ummeﬁz—%mn(w»mx

which implies
. .. H
liminf —& (x2hyr, A; D2) 2 0. (7.21)
K—>00 K3

Inserting (7.21) and (7.20) into (7.11), we get

H H\' H
liminf — ( &y, A; D) —K/ (lVBo(x)|—) E(|v30(x)|—) ds(x)
K—00 K'3 ( rnbD K2 K2

2 —C(a+39).

Now, we take the limit (a, §) — (0, 0) to obtain

H H\'?
liminf — ( &y, A; D)—K/ |V Bo(x)|—
0o k3 rnb K2

K—

E (|VB0(x)|g) ds(x)) > 0.

Thus, we arrive at

3

H\'3 H
K
Eo(hy, A; D) 2 K/ (|VB0(X)|_2) E (|VBO(X)|_2) ds(x)——o(1).
rnb K K H
(7.22)

This completes the proof of Theorem 7.3 in the case H > «3/2.
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The Regime H < «3/2.

In this regime, we shall see that £y (x1~Y, A; Dy) is an error term and Ey (x2h,
A; D) is the leading term.
Since H < ©3/2 the parameter ¢ introduced in (7.13) satisfies
<o
H
Consequently, we have

3

Eo(x1hyr, A; Dy) = —KZ/ hy|?dx = Ci?e 2 —8%. (7.23)
Q

Unlike the regime H > «3/2, we can no more ignore the energy in {/a{ <
dist(x,T) < £},
We introduce the two parameters
m>1 and ¢ 0,0, (7.24)

and the domain,

U= {x € Dy : dist(x,T) > m% } (7.25)

Thanks to the exponential decay in Theorem 6.3, we get
K3
K2/ |2 dx < Cem2mmo
U H

and
K3
EoOhy, A; U) = —Ce™2mmo o (7.26)

Our next task is to determine a lower bound of the energy Ey(x2h v, A; D>\ U).
Consider for ¢ € (0, 1) the lattice of squares (Qx ;) generated by the square

d ( 2’2)X( 2’2)
Let

Jok =1tk : Qre CD2\U and Qi NI = ¢},
Jond,1 =1k @ k & Toie, Que N(D2\U) #90 and Qp  NIQ =0},
Jond2 ={k 1 Qxr C Dy \U and Qi NIQ # V).

‘We have the obvious decomposition,

EoOahY, As D2\ U) Z D" Eo(xah, A Qi
ke Joik

2
+O D Eolxahyr, A; Qe N (D2 \ U)). (7.27)

Jj=lkeTond, j
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Since I' N 9% is a finite set, then N = Card Jpng,2 is bounded independently of «.
Now, the terms corresponding to k € Jpng, ; are easily estimated as follows:

2
DD &lehy. As Qe N(D2\U))
J=1k€Tond, j
> —K2/ v |?dx — Nk2¢? > —Ck’c. (7.28)
{dist(x,0T)SC¢

For all k, let x; be the center of the square Oy ; and ay an arbitrary point in Oy ;.
Repeating the proof of Proposition 7.1, we get, for all k € J and n € (0, 1),

EoGhyr, A; Qre) = (1 — mE(xahyr e M Bo(ar)Ao(x — xi); Ok.¢)

3
_ K
-C (nKZ +1 1 (E{za + K2H2§4)) ”,w“%z(gk,;)’ (729)

where 1 is a gauge function.
We select the parameter ¢ as follows

c=nH 2 (7.30)

Clearly, ¢ satisfies

K K
(LSh <, Kl < = H> ¢ =,

¢ JEHIBo@o] 2 ¢k Hae 2 s all*

Applying a scaling and a translation, we may use (3.51) and get

1 .
EoGahy e Mk By(a) Ao (x — x1); Ok.¢)
(¢ <HTBotap)])’ ‘
LK (HlB( >|) c V Z1Bo(ay)]
= HiBo(ap) | & e 70% ¢k H|Bo(ap)|

We insert this into (7.29), sum over k € Jpx and use Proposition 6.4 to get

H C
> &0nhv. As Q) 2 Pk D] (g (?IBo(ak)I) _ g__K)
ke Joik ke Joix

3

K
—(Cn +o(D)) T

The sum in the inequality above becomes a lower Riemann sum if for each & the
point (ay) is selected in Qy ¢ as follows:

| Bo(ax)| = max{|Bo(x)| : x € OQp¢}.
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Notice that My = Card Jyi satisfies Ny x ¢2 2 |Dy \ Ul as ¢ — 0 and
1D\ U| = |{vat < dist(x,T) < m%}l < Cm%.

Consequently, we have

H C
> &Gy A; Qi) = KZ/ g (—|Bo<x>|) dx —m_"%
ke Jvik D¢ K ¢
K3
—(Cn+o(1) .

where

De= |J QccD\U.
ke Jpik

Since the function g is non-positive, then we get that

> Eolxahr, A; Qi)

ke Jpix
H K K K3
chz/ g(—IBo(x)|) dx —Cm— — — (Cn+o0(1)) —
Iy \K ¢ H H
H H/2 3 3
> K2/ g (—lBo(x)|) dx — Cmnp~ ' ——=— — (Cn+o(1)) —. (7.31)
Do\U K Kk H H

We insert (7.31) and (7.28) into (7.27). Since g (%|Bo(x)|) =0in {|By(x)| =
%} and H < «3/2, it results in the inequality

H
Eo(ahy. A; DY\ U) = / 3 (;|Bo<x>|) dx
D
K3
—(Cn+0(1))g, (k — 00). (7.32)
Combining (7.32) and (7.26), we get

H K3 K3
Eo(xahyr, A; Dy) = xz/ g (—|Bo<x)|) dx — Ce ™0 — — (Cy+ o(1)) —-.
D K H H

Now, we insert this inequality and (7.23) into (7.11) to get

2 H —2mm K3
Eo(hyr, A; D) = « g 7|BO(X)| dx —C(a+dé+n+e 0+0(1))ﬁ'
D

By taking the successive limits,

liminf, lim, lm, lim, lim,
K—>00 a—0y §—04 n—04 m—>00

we get
3

Solhyr, A; D) = xz/ g (5|Bo(x>|) dx — — o(1),
D K H

which finishes the proof of Theorem 7.3 in the regime H < «*/2. O
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We get, by applying Theorem 7.3 with D = Q and h = 1:
Corollary 74. Let A > 0 and € : R — Ry such that lim « e(k) = oo and
lim e(k) =0. o
K_)o;"here exist kg > 0 and a function err : R — R such that the following is true:
(1) lim err(x) = 0.
K—> 00

(2) Let k 2 ko, €()k> < H < Ax? and (Y, A) be a critical point of the
functional in (1.1).
(@) IfH > 3% then,

H\'3 H
Eo(W,A) 2 K(/F (|VBO(X)|F) E (|VBO(X)|K_2) dS(X))

3
+Eerr(/c). (7.33)

() IfH <32, then,

3
Sy, A) = K2/ g (£|Bo(x)|) dx + —err(c).  (7.34)
Q K H

‘We conclude this section with the

Proof of Theorem 1.1. We have just to combine the conclusions of Theorem 5.1
and Corollary 7.4. O

8. Local Energy Estimates

8.1. Preliminaries

Let D C 2 be an open set with a smooth boundary such that 9D N T is a finite
set. Let pg € (0, 1), p € (0, pog) and

D, ={x € Q : dist(x, D) < p}.
We select pg sufficiently small so that the boundary of 9D, is smooth.
Let hy € C2°(Dy) and hy € C* (R?) be functions satisfying
c . 2 : 2 2
0<hi =1, |Vhi|+|Vho|= — inR*, h;=1 inD,, and hi +h; = 1.
o
Notice that
supp hy C D

Let (¢, A) be a minimizer of (1.1). We will estimate the following energy

2
&, A; D) =/ (|V — ik HAY? — Py + %w) dx.

D
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Notice that we have the following decomposition of the energy

— C
oW, A; Q) = E(hiy, A; D)) + E(har, A; D) — ?/Q 1¥|? dx.

Now we use the estimate in Proposition 6.4 and write

—cC C K
oV, A; Q) 2 E(hiyr, A; Dp) + Eo(hay, A; D7) — 2H 8.1

Recall that we deal with two separate regimes:

RegimeI: ¥« <« H < K32,
Regime IT : «%? « H < «2.

We define the quantity Co(k, H; D) as follows:

H\'3 H
K / (|v30(x)|—2) E(lVBo(x)|—2) ds(x) ) in Regime 1,
Colk, H; D) = bnr “ a

2 H ) .
k“ | g\ —IBo(x)|) dx in Regime II.
D K

(8.2)

Notice that, in Regimes I and II, the result of Theorem 1.1 reads as follows:

3
Egs(x, H) = Co(x, H; Q) + %0(1), (k = 00).

8.2. Upper Bound

The results in this section are valid under the assumption that (v, A) is a mini-
mizer of the functional in (1.1).

We have (¥, A; Q) = Eg(k, H). Using || = 1 and the upper bound in
Theorem 5.1, we get

— K3 C «
Eo(hyr, A; Dp) + Eg(hayr, A; D7) = Colx, H; ) + —err(k) + — —.
H p- H

Using Theorem 7.3, we may write

—c /(3
Eo(hayr, A; DY) 2 Colk, H; D7) + Eerr(;c).

As a consequence, we have

i3 C «
Eo(h1y, A; Dy) < Co(k, H; D) + ﬁerr(/c) + ?ﬁ
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Since h; = 1 in D, we get the simple decomposition of the energy
Eo(¥, A; D) = E(hy, A; Dp) — Eo(hiyr, A; Dy \ D).

Since ||kl < 1 and the boundary of D, \ D is smooth, we get, in light of

Theorem 7.3,

3
ol A D, \ D) = Co(k, H: D, \ D) + %errpw).

In light of the upper bound in Theorem 3.12, we have

H\'? H K2
/ (IVBO(X)I—Q) E (|VBO(X)|—2) ds(x) )| = C—p.
(D,\D)NT' K K H
In the same vein, since g(b) is bounded and vanishes when b > 1, then
H K
/ g (—IBo(x)I) dx| = Cp—.
D,\D Kk H
As a consequence, we get
3
|Cote, H Dy \ D) = C p,
and
K3 C «
Eo(r, A; D) £ Colk, H; D) + —(Cp +errp (k) + — —.

s LRy = s s H P ,02 H
Sending « to infinity, we deduce that

. H

lim sup —{& (¥, A; Dy) — Co(k, H; D)} = Cp.

Kk—oo K
Next, we send p to 04 and get

. H
lim sup —3{€o(¢, A; D) — Co(k, H; D)} £ 0. (8.3)
Kk—oo K

Notice that the upper bound in (8.3) is valid for any open set D C €2 with smooth
boundary. In particular, it is true when D is replaced by D = Q\ D, that is

H —c —c
lim sup K—3{50(1/f, A; D) —Co(k, H; D)} = 0. (8.4)

K—0Q
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8.3. Lower Bound

We continue to assume that (¢, A) is a minimizer of the functional in (1.1). We
will give a lower bound of the energy & (¥, A; D). We plug the lower bound in
Corollary 7.4 into the following simple decomposition of the energy

o, A; D) + Eo (¥, A; DY) = & (¥, A; Q).

In that way, we get
—C K3
Eo(¥, As D) 2 Colk, H: ) = Eo (¥, A; D7) + rerr (k).
Notice the following simple decomposition of the term on the right hand side:

3
mwmmz@mmm+%mm

—{& (. A; D) — Co(x, H; D)},

Now we send « to co and using (8.4), we get

H
liminf — {& (¥, A; D) — Colk, H; D)} = 0. (8.5)
K—> K

8.4. Conclusion for the Local Energy

Combining (8.3) and (8.5), we get, in the two regimes we are considering, that
the local energy in D of a minimizer (i, A) satisfies

3
S, A; D) = Co(, H; D) + % (). (8.6)

where Co(x, H; D) is introduced in (8.2).

9. Proof of Theorem 1.6

The proof of (1) in Theorem 1.6 is a simple combination of the upper bound in
Theorem 5.1 and the lower bound in Theorem 7.3 (used with D = Q).

The assertion (2) in Theorem 1.6 is the conclusion of Section 8.4.

The rest of the section is devoted to the proof of statement (3) in Theorem 1.6.
This will be done in three steps. Recall the definition of the quantity Co(x, H; D)
in (8.2) and that we work under the assumption on H described in Regimes I and II.
It is sufficient to prove that the following formula is true in Regimes I and II:

/ [ @)t dx = —%CO(K, H:; D)+ = o(l), (x — o),
D K H

where (1, A) is a minimizer of the energy in (1.1).
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Step 1: The Case D = Q

A minimizer (¥, A) satisfies the Ginzburg—Landau equation in (4.1). Recall
the useful identity in (4.3):

2
K
——/ ¥ @I dx = (¥, A; Q).
2 Ja
Thanks to the formulas in Sect. 8.4 used with D = €2, we observe that (8.6) yields
4 2 K
[Y ()" dx = == Colx, H; Q) + — o(1), .1
Q K H
where the formula is valid in Regimes I and II.
Step 2: Upper Bound
Let
(=1 /% and Dy ={x e D : dist(x, D) > ¢}.
Consider a cut-off function x; € C2°(D) such that
C .
Ixello = 1, [IVxel = 7 Kxe= L'in Dy.

Multiplying both sides of the equation in (4.1) by xﬁ then integrating by parts
and using the estimate in Proposition 6.4 Yields,

/D (17 = i HAY e P = 10 P + 2w de

C « i3
= [ VxePlvd =0(——)=— 0.
/D| xel“ 1|7 dx 2H HO()
Since 1 = ng > X?, this formula implies
- ?/ xg M dx 2 Eo(xetr, A; D) — ﬁ0(1)~ 9.2)
D

Using the bounds ||/[loc = 1 and [|¥[|2 < C,/;, the fact that y; is supported

in D and x¢ = 1 in Dy, we get

/ |w<x>|4dx=/ xgz(X)Il/f(x)I4dx+/(1—xez(x))lw(x)|4dx
D D D

_ 2 4 K

_/ng(x)wf(xn dx+0(ﬁ /H)

=/ Xg(x)|w(x)|4dx+%o(1). 9.3)
D

Now, we infer from (9.2) and Theorem 7.3 that

/ |1p(x)|4 dx < —%CQ(K, H; D)+ i0(1). 9.4)
D K H
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Step 3: Lower Bound

Notice that (9.4) is valid for any open domain D C 2 with a smoo@ boundgy,
in particular, it is valid when D is replaced by the complementary of D in €: D’
‘We have the simple decomposition

/ |w(x>|4dx=/ |w(x)|4dx—/,c|w(x>|4dx
D Q D

2 —
> / W )I* dx — 5 Colie, H: D) + - o(1).
Q K H

Using the asymptotics in (9.1) obtained in Step 1, we deduce that

2 K
/Dw/(x)r‘dx 2 =5 Colk, H; D) + - o(1).

Combining this lower bound and the upper bound in (9.4), we obtain the asymptotics
announced in the third assertion of Theorem 1.6.
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