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Abstract

We study the infimum of the Ginzburg–Landau functional in a two dimensional
simply connected domain and with an external magnetic field allowed to vanish
along a smooth curve. We obtain energy asymptotics which are valid when the
Ginzburg–Landau parameter is large and the strength of the external field is below
the third critical field. Comparedwith the known results when the external magnetic
field does not vanish, we show in this regime a concentration of the energy near the
zero set of the external magnetic field. Our results complete former results obtained
by K. Attar and X.B. Pan–K.H. Kwek.

1. Introduction

The Ginzburg–Landau functional is a model describing the response of a super-
conducting material to an applied magnetic field through the qualitative behavior
of the minimizing/critical configurations. The mathematically rigorous analysis of
such configurations led to a vast literature and to many mathematically challenging
questions, with the aim of recovering what physicists had already observed through
experiments or heuristic computations. (See [16] for an introduction to the physics
of superconductivity, and the twomonographs [8,31] for themathematical progress
on this subject.)

Much of the mathematical literature concerns samples in the form of a long
cylinder or a thin film subject to a constant magnetic field. The direction of the
magnetic field is parallel to the cylinder’s axis (for cylindrical samples) or perpen-
dicular to the plane of the thin film (for thin film samples). For such samples, we
have the following behavior (this is thoroughly reviewed in the two monographs
[8,31]):

• For very large values of the intensity of the magnetic field, the magnetic field
penetrates the sample which is in a normal (non-superconducting) state.
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Fig. 1. Sample subject to a variable magnetic field that vanishes along the curve �

• Decreasing the intensity of the magnetic field gradually past a critical value
Hc3 , superconductivity nucleates along the boundary of the sample; the bulk
of the sample remains in a normal state ; this is the phenomenon of surface
superconductivity (see [33]).

• Decreasing the field further, superconductivity is restored in the bulk of the
sample; the magnetic field may penetrate the sample along point defects called
vortices; such vortices indicate regions of the sample that remain in the normal
state (see [31]).

In this paper, we will consider samples submitted to a variable magnetic field
(both the direction and the intensity of the field will be variable). Samples submitted
to variable magnetic fields are considered in the physical literature, see [22,34].

For the sake of illustrating the results in this paper, let us consider a thin film
sample placed horizontally (see Fig. 1). The region occupied by the sample is
decomposed into two sub-regions �1 and �2 separated by a smooth curve �. Now,
we let the sample be subjected to a non-constant magnetic field such that the field is
applied on �1 from above, while it is applied from below on �2. We suppose that
the magnetic field varies smoothly, hence it has to vanish along the smooth curve
�. In such a situation, we have the following picture:

• For very large values of the intensity of the magnetic field, the sample is in a
normal state [27].

• Decreasing the intensity of the magnetic field gradually past a critical value Hc3 ,
superconductivity nucleates along the curve �; the rest of the sample remains in a
normal state ; this is in contrast of the phenomenon of surface superconductivity
observed for samples subject to a constant magnetic field (see [3] and the results
in this paper).

• There are two regimes describing the concentration of the superconductivity
along the curve �. In a first regime, the distribution of the superconductivity is
displayed via a new limiting function E(·); this limiting function is defined via
a simplified Ginzburg–Landau type functional with a magnetic field vanishing
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along a line. In another regime, the distribution of the superconductivity is dis-
played via a known limiting function g(·) ; surprisingly, the limiting function g(·)
is defined via a simplifiedGinzburg–Landau type functionalwith a constantmag-
netic field; the function g(·) displays the distribution of (bulk) superconductivity
for samples submitted to a constant magnetic field [13,32].

The rest of this introduction is devoted to precise statements displaying the
picture that we have sketched previously.

In a two dimensional bounded and simply connected domain � with smooth
boundary, the Ginzburg–Landau functional is defined over configurations (ψ,A) ∈
H1(�;C) × H1(�;R2) by,

E(ψ,A) =
∫

�

eκ,H (ψ,A) dx (1.1)

where

eκ,H (ψ,A) := |(∇ − iκ HA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4 + (κ H)2| curlA − B0|2.

The modulus of the wave function ψ measures the density of the supercon-
ducting electrons; the curl of the vector field A measures the induced magnetic
field; the parameter H measures the intensity of the external magnetic field and the
parameter κ (κ > 0) is a characteristic of the superconducting material; dx is the
Lebesgue measure dx1 dx2. The function B0 represents the profile of the external
magnetic field in � and is allowed to vanish non-degenerately on a smooth curve.
We suppose that B0 is defined and C∞ in a neighborhood of � and satisfies,

|B0| + |∇B0| � c > 0 in �, (1.2)

and that the set

� = {x ∈ � : B0(x) = 0} (1.3)

consists of a finite number of simple smooth curves. We also assume that:

� ∩ ∂� is a finite set. (1.4)

The assumptions on �, together with (1.2), force the function B0 to change sign. In
physical terms, the set � splits the domain � into two parts �1 = {B0(x) > 0} and
�2 = {B0(x) < 0} such that the magnetic field applied on �1 is along the opposite
direction of the magnetic field applied on �2 (compare with Fig. 1). The results
in this paper do not cover the potentially interesting case where the magnetic field
B0 vanishes on isolated points; such an assumption displays different physics since
the magnetic field can not change sign here.

The ground state energy of the functional is,

Egs(κ, H) = inf{E(ψ,A) : (ψ,A) ∈ H1(�;C) × H1(�;R2)}. (1.5)

We focus on the regime where H satisfies

H = σκ2, σ ∈ (0,∞). (1.6)
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Our results allow for σ to be a function of κ satisfying σ � κ−1. Earlier results
corresponding to vanishing magnetic fields have been obtained recently in [3,4].
The assumption on the strength of the magnetic field was H � Cκ , where C is a
constant. In the regime of large κ , K. Attar has obtained, in [3,4], parallel results
to those known for the constant magnetic field in [32]. However, it is proved in [3]
that if

H = bκ, (1.7)

and b is a constant, thenwhen b is large enough, the energy and the superconducting
density are concentrated near the set � with a length scale 1

b . Essentially, that is a
consequence of the following asymptotics of the energy (κ → ∞),

Egs(κ, H) = κ2
∫

�

g

(
H

κ
|B0(x)|

)
dx + o

(
κ H
∣∣∣ln κ

H

∣∣∣+ 1
)

, (1.8)

which is valid under the relaxed assumption that

�1κ
1/3 � H � �2κ, (1.9)

�1 and �2 being positive constants.
In particular, the assumption (1.9) covers the situation in (1.7). The function g
appears in the analysis of the two and three dimensional Ginzburg–Landau func-
tional with constant magnetic field, [13,32]. It is associated with some effective
model energy. The function g will play a central role in this paper and its definition
will be recalled later in this text (see (3.49)).

One purpose of this paper is to give a precise description of the aforementioned
concentration of the order parameter and the energy when σ � 1, thereby leading
to the assumption in (1.6).

The leading order term of the ground state energy in (1.5) is expressed via the
quantity E(·) introduced in Theorem 3.8 below. The function (0,∞) � L 	→ E(L)

is a continuous function satisfying the following properties:

• E(L) is defined via a reduced Ginzburg–Landau energy in the strip (this energy
is introduced in (3.14)).

• E(L) = 0 iff L � λ
−3/2
0 , where λ0 is a universal constant defined as the bottom

of the spectrum of a Montgomery operator, see (3.4).
• As L → 0+, the expected asymptotic behavior of E(L) is like L−4/3 .

Throughout this text, we use the following notation. If A and B are two positive
quantities, then

• A 
 B means A = δ(κ)B and δ(κ) → 0 as κ → ∞ ;
• A � B means A � C B and C > 0 is a constant independent of κ ;
• A � B means B 
 A, and A � B means B � A ;
• A ≈ B means c1B � A � c2B, c1 > 0 and c2 > 0 are constants independent
of κ .

The main result in this paper is:
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Theorem 1.1. Suppose that the function B0 satisfies Assumptions (1.2) and (1.3).
Let b : R+ → R+ be a function satisfying

lim
κ→∞ b(κ) = ∞ and lim sup

κ→∞
κ−1b(κ) < ∞. (1.10)

Suppose that

H = b(κ)κ.

Then, as κ → ∞, the ground state energy in (1.5) satisfies:

(1) If b(κ) � κ1/2, then

Egs(κ, H)=κ

(∫
�

(
|∇ B0(x)| H

κ2

)1/3
E

(
|∇ B0(x)| H

κ2

)
ds(x)

)
+o

(
κ3

H

)
,

(1.11)

where ds denotes the arc-length measure in �.
(2) If b(κ) � κ1/2, then

Egs(κ, H) = κ2
∫

�

g

(
H

κ
|B0(x)|

)
dx + o

(
κ3

H

)
. (1.12)

Remark 1.2. (About the critical field Hc3 )
As we shall see in Section 2, Pan and Kwek [27] prove that if H is larger than
a critical value Hc3(κ) , then the minimizers of the functional in (1.1) are trivial
and the ground state energy is Egs(κ, H) = 0 . Furthermore, the value of Hc3(κ) as
given in [27] admits, as κ → ∞ , the following asymptotics

Hc3(κ) ∼ c0κ
2, (1.13)

where c0 is an explicit constant (determined by the function B0). As such, the
assumption on the magnetic field in Theorem 1.1 is significant when b(κ)κ �
H � Mκ2 and M ∈ (0, c0] is a constant. Note also that our theorem gives a bridge
between the situations studied by Attar in [3,4] and Pan and Kwek in [27].

Remark 1.3. (The remainder terms in Theorem 1.1)
As long as the intensity of the external magnetic field satisfies κ 
 H � Mκ2

and M ∈ (0, c0), the remainder term appearing in Theorem 1.1 is of lower order
compared with the principal term. The function g(b) is bounded and vanishes when
b � 1. Accordingly,

∫
�

g

(
H

κ
|B0(x)|

)
dx =

∫
{|B0(x)|< κ

H }
g

(
H

κ
|B0(x)|

)
dx ≈ κ

H
.

We shall see in Theorem 3.12 that,

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
≈ κ2

H
.
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Remark 1.4. (The two regimes in Theorem 1.1)
Theorem1.1 display two regimes governing the behavior of the ground state energy.
The two regimes appear as follows. In the regime H � κ3/2, if we estimate
Egs(κ, H) using the limiting function E(·), then we cannot manage to prove that
the error terms are of lower order compared to the term

κ

(∫
�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)
.

Surprisingly, when H � κ3/2, the leading order behavior of the ground state energy
Egs(κ, H) is governed by the limiting function g(·).

As such, there is a small gap between the two regimes considered in Theo-
rem 1.1. Hence it would be interesting to show that the two asymptotics match in
this intermediate zone. A necessary step would be to inspect whether there exists a
relationship between the limiting functions E(·) and g(·).

Remark 1.5. (Curvature effects)
By analogy with the existing results for the case of a constant magnetic field in
[6,7,11], one expects that the ground state energy Egs(κ, H) behaves as follows.
Let c0 be the value in (1.13). We expect that:

• If H = c0κ2 + o(κ2), then the curvature of � = {B0(x) = 0} will contribute to
the leading order behavior of Egs(κ, H).

• If κ3/2 
 H � Mκ2 and 0 < M < c0, then the second correction term in the
aymptotics in Theorem 1.1 involves the curvature of �.

Along with the proof of Theorem 1.1, we obtain:

Theorem 1.6. Suppose that the function B0 satisfies Assumptions (1.2) and (1.3).
Let b : R+ → R+ be a function satisfying (1.10). Suppose that

H = b(κ)κ

and that (ψ,A) is a minimizer of the functional in (1.1).
Then, as κ → ∞ , the following items hold:

1. Estimate of the magnetic energy.

κ2H2
∫

�

| curlA − B0|2 dx = κ3

H
o (1) .

2. Estimate of the local energy.
Let D ⊂ � be an open set with a smooth boundary such that ∂ D ∩� is a finite
set.
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(a) If b(κ) � κ1/2, then

E0(ψ,A; D) :=
∫

D

(
|(∇ − iκ HA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4
)

dx

= κ

(∫
D∩�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)

+ κ3

H
o (1) . (1.14)

(b) If 1 
 b(κ) � κ1/2, then

E0(ψ,A; D) = κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx + κ3

H
o (1) .

3. Concentration of the order parameter.
Let D ⊂ � be an open set with a smooth boundary such that ∂ D ∩� is a finite
set.
(a) If b(κ) � κ1/2, then

∫
D

|ψ(x)|4 dx =− 2

κ

(∫
D∩�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)

+ κ

H
o (1) .

(b) If 1 
 b(κ) � κ1/2, then∫
D

|ψ(x)|4 dx = −
∫

D
g

(
H

κ
|B0(x)|

)
dx + κ

H
o (1) .

Remark 1.7. In Theorem 1.6, the functions o(1) are controlled independently of
the choice of the minimizer (ψ,A). In the first assertion, the expression of o(1)
depends only on the domain � and the function B0, while in the second and third
assertions, the expression depends additionally on the domain D.

Remark 1.8. In the two regimes displayed in Theorem 1.6, the main term in the
asymptotic expansions vanish when D ∩ � = ∅. It could be interesting to improve
the remainder terms. In Theorem 6.3, we will prove that the L2-norm of the order
parameter ψ is concentrated near the set �, and that ψ exponentially decays as
κ → ∞, away from �.

2. Critical Fields

The identification of the criticalmagnetic fields is an important question regard-
ing the functional in (1.1). This question has an early appearance in physics (see for
example [16]) and was the subject of a vast mathematical literature in the past two
decades. The two monographs [8,31] contain an extensive review of many impor-
tant results. In this section, we give a brief informal description of critical fields
and highlight the importance of the case of a vanishing applied magnetic field.
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2.1. Reminder: The Constant Field Case

When the magnetic field B0 is a (non-zero) constant, three critical values are
assigned to the magnetic field H , namely Hc1 , Hc2 and Hc3 . The behavior of min-
imizers (and critical points) of the functional in (1.1) changes as the parameter
H (that is magnetic field) crosses the values Hc1 , Hc2 and Hc3 . The identification
of these critical values is not easy, especially the value Hc2 , which is still loosely
defined.

Let us recall that a critical point (ψ,A) of the functional in (1.1) is said to be
normal if ψ = 0 everywhere. The critical field Hc3(κ) is then defined as the value
at which the transition from normal to non-normal critical points takes place.

The identification of the critical value Hc3(κ) is strongly related to the spectral
analysis of the magnetic Schrödinger operator with a constant magnetic field and
Neumann boundary condition. Suppose that � ⊂ R

2 is connected, open, has a
smooth boundary and the boundary consists of a finite number of connected com-
ponents, A0 a vector field satisfying curlA0 = B0, the function B0 is constant and
positive, and λ(Hκ A0) the lowest eigenvalue of the magnetic Schrödinger operator

− �κ H A0 = −(∇ − iκ H A0)
2 in L2(�), (2.1)

with Neumann boundary conditions. It has been proved that the function t 	→
λ(t A0) is monotonic for large values of t , see [8] and the references therein. Grosso
modo, the critical field Hc3 is the unique solution of the equation,1

λ(Hc3(κ)κ A0) = κ2. (2.2)

In this case, it was shown by Lu and Pan [23] that,

λ(Hκ A0) ∼ (Hκ)B0�0, when Hκ � 1. (2.3)

Further improvements of (2.3) are available, see [8] for the state of the art in 2009
and references therein.

As a consequence of (2.2) and (2.3), we get for κ sufficiently large,

Hc3(κ) ∼ κ/(�0B0). (2.4)

The second critical field Hc2(κ) is usually defined as follows

Hc2(κ) = κ/B0. (2.5)

Notice that this definition of Hc2 is asymptotically matching with the following
definition,

λD(Hc2(κ)κ A0) = κ2, (2.6)

1 Initially (see [23]), one should start by defining four critical values according to locally
or globally minimizing solutions. Following the terminology of [8], these are upper or lower,
global or local fields. The four fields are proved to be equal in [8].
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where λD is the first eigenvalue of the operator in (2.1), but with Dirichlet boundary
condition2.

Near Hc2(κ), a transition takes place between surface and bulk superconduc-
tivity. At the level of the energy, this transition is described in [14]. The bulk
distribution of the superconductivity near Hc2 is computed in [21].

We recall that �0 < 1 . Hence, as expected, Hc2(κ) < Hc3(κ) for κ suffi-
ciently large. For the identification of the critical field Hc1(κ), we refer to Sandier
and Serfaty [31]. A natural question is to extend this discussion in the variable
magnetic field case (that is, where B0 is a non-constant function).

2.2. The Case of a Non Vanishing Exterior Magnetic Field

Here we discuss the situation where the magnetic field B0 is a non-constant
function such that B0(x) �= 0 everywhere in � . In this case, it is proved by Lu-
Pan [24, Theorem 1] that,

λ(Hκ A0) ∼ (Hκ)min

(
inf
x∈�

|B0(x)|,�0 inf
x∈∂�

|B0(x)|
)

, (2.7)

as Hκ → ∞ . Basically, this leads to the consideration of two cases as follows.

Surface superconductivity First, we assume that

inf
x∈�

|B0(x)| > �0 inf
x∈∂�

|B0(x)|. (2.8)

In this case, the phenomenon of surface superconductivity observed in the con-
stant magnetic field case is preserved. More precisely, superconductivity starts to
appear at the points where (B0)/∂� is minimal. The critical value Hc3(κ) is still
defined by (2.2). If the minima of (B0)/∂� are non-degenerate, then the monotonic-
ity of the eigenvalue λ(t A0) for large values of t is established in [29, Section 6].
Consequently, we get when κ is sufficiently large,

Hc3(κ) ∼ κ

�0 inf x∈∂� |B0(x)| . (2.9)

Tentatively, one could think to define Hc2(κ) either by

Hc2(κ) = κ

infx∈� |B0(x)| , (2.10)

or by

λD(Hc2(κ)κ A0) = κ2, (2.11)

where λD is the first eigenvalue of the operator in (2.1) with Dirichlet boundary
condition.

2 Assuming the monotonicity of t 	→ λD(t A0) for t large.
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Notice that both formulas agree with their analogues in the constant magnetic field
case (see (2.5) and (2.6)). Also, the values of Hc2(κ) given in (2.10) or (2.11)
asymptotically match as κ → ∞ .

In order that the definition of Hc2(κ) in (2.11) is consistent, one should prove
monotonicity of t 	→ λD(t A0) for large of values of t . This will ensure that (2.11)
assigns a unique value of Hc2(κ). However, such a monotonicity is not proved yet.
The definition in (2.10) was proposed in [8].

Interior onset of superconductivity Here we assume that

inf
x∈�

|B0(x)| < �0 inf
x∈∂�

|B0(x)|. (2.12)

In this case, the onset of superconductivity near the surface of the domain disap-
pears. If one decreases gradually the intensity of the magnetic field H from ∞,
then superconductivity will start to appear near the minima of the function |B0|,
that is inside a compact subset of �.

In this situation, we need not distinguish between the critical fields Hc2(κ) and
Hc3(κ), since surface superconductivity is absent here. Consequently, we expect
that,

Hc2(κ) = Hc3(κ) ∼ κ

inf x∈� |B0(x)| . (2.13)

A partial justification of this fact can be done using the linearizedGinzburg–Landau
equation near a normal solution. Actually, we may also define Hc3(κ) and Hc2(κ)

as the values verifying (2.2) and (2.6). It should be noticed here that the vector
field A0 satisfies curl A0 = B0 and B0 cannot be constant. Under the assumption
(2.12), the known spectral asymptotics (which are actually the same in this case)
of the Dirichlet and Neumann eigenvalues will lead us to the asymptotics given in
the righthand side of (2.13). Under the additional assumption that infx∈� |B0(x)|
is attained at a unique minimum in � and that this minimum is non degenerate,
a complete asymptotics of λN (t A0) can be given (see Helffer and Mohamed
[20], Helffer and Kordyukov [18,19], Raymond and Vu Ngoc [30] ) and the
monotonicity/strong diamagnetism property holds for large values of t (see Chapter
3 in [8]). Hence the definition of Hc3(κ) is clear in this case.

Besides the aforementioned linearized calculations, the results of [3] can be
used to justify the equality of the critical fields Hc2(κ) and Hc3(κ) as well as their
definition in (2.13).

First,we observe that if C is a positive constant such that C <
1

infx∈� |B0(x)| ,
and if H � Cκ , then the open set D = {x ∈ � : |B0(x)| < 1

C } �= ∅ is non-empty.
Now, Theorem 1.4 of [3] asserts that,

∃ κ0 > 0, ∃ εD > 0,
∫

D
|ψ(x)|4 dx � εD > 0,

for any κ � κ0 and any minimizer (ψ,A) of the functional in (1.1).
Consequently, a minimizer cannot be a normal solution.
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Now, suppose that the constant C satisfies

C >
1

inf x∈� |B0(x)| .

If H � Cκ , then Theorem 1.4 of [3] asserts that any critical point (ψ,A) of (1.1)
satisfies,

lim
κ→∞

∫
�

|ψ(x)|4 dx = 0,

hence, loosely speaking, critical points are nearly normal solutions. However,
repeating the proof given in [8, Section 10.4] and using the asymptotics of the
first eigenvalue in (2.7), one can get that such critical points are indeed normal
solutions.

The foregoing discussion shows that the value appearing in the right hand side
of (2.13) is indeed critical.

2.3. The Case of a Vanishing Exterior Magnetic Field

We now discuss the case when B0 vanishes along a curve, first considered in
[27] and then in [3]. We assume that

|B0| + |∇B0| �= 0 in �, (2.14)

which ensures that B0 vanishes non-degenerately.
At each point of B−1

0 (0) ∩ �, Pan and Kwek [27] introduce a reduced model
(a Montgomery operator parameterized by the intensity of the magnetic field at this
point) whose ground state energy, denoted by λ0, captures the ‘local’ ground state
energy of the Schrödinger operator in (2.1).

Similarly, at every point x of B−1
0 (0) ∩ ∂�, a toy operator is defined on R

2+
parameterized (up to unitary equivalence) by the intensity of B0(x) and the angle
θ(x) ∈ [0, π/2) between the unit normal of the boundary and∇B0(x). The ground
state energy of this toy operator is denoted by λ0(R+, θ(x)).

The leading order behavior of the ground state energy of the operator in (2.1)
is now described as follows [27],

λ(Hκ A0) ∼ (Hκ)2/3 α
2/3
1 , (2.15)

as Hκ → ∞ .
Here

α1 = min

(
λ
3/2
0 min

x∈�blk
|∇B0(x)|, min

x∈�bnd
λ0(R+, θ(x))|∇B0(x)|

)
, (2.16)

�blk = {x ∈ � : B0(x) = 0} (2.17)

and

�bnd = {x ∈ ∂� : B0(x) = 0}. (2.18)
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The critical value Hc3(κ) could tentatively be defined as the solution of the
equation in (2.2). However, when B0 = curl A0 vanishes, monotonicity of t 	→
λ(t A0) is not a direct application of Chapter 3 in [8] (see the discussion below).
Nevertheless, for the various definitions of Hc3(κ) proposed in [27], one always
gets that, for large values of κ ,

Hc3(κ) ∼ κ2

α1
. (2.19)

Surface superconductivity (near Hc3 ) is absent if

λ
3/2
0 min

x∈�blk
|∇B0(x)| < min

x∈�bnd
λ0(R+, θ(x))|∇B0(x)|,

and in this case, we do not distinguish between Hc2 and Hc3 . However, if

λ
3/2
0 min

x∈�blk
|∇B0(x)| > min

x∈�bnd
λ0(R+, θ(x))|∇B0(x)|, (2.20)

the phenomenon of surface superconductivity is observed in decreasing magnetic
fields. Superconductivity will nucleate near the minima of the function

�bnd � x 	→ λ0(R+, θ(x))|∇B0(x)|.
In this case, a natural definition of Hc2(κ) can be

Hc2(κ):=κ2

α2
, (2.21)

for large values of κ .
Here

α2 = λ
3/2
0 min

x∈�blk
|∇B0(x)|.

The methods in [9] suggest that the monotonicity of the eigenvalue λ(t A0) for
large values of t can be obtained in the case when (2.20) is satisfied3. A necessary
step is to find the second correction term in (2.15). The work in [25] is along
this direction. (Recall that λ(t A0) is the eigenvalue of the operator in (2.1) with
Neumann condition.)

Clearly, the condition in (1.9) is violated when the intensity of the magnetic
field H is comparable with the critical value Hc3(κ) ≈ κ2, thereby preventing the
application of the results of Attar [3]. The case with pinning will be analyzed in
[5].

3. The Limiting Problems

In this section, we define the two limiting functions E(·) and g(·) appearing
in Theorem 1.1. The limiting function g(·), that we might call the bulk energy,
is defined previously in [13,32]. It is a characteristic of superconducting samples
subject to a constant magnetic field. The limiting function E(·) arises as the limit of
a certain simplified Ginzburg–Landau functional with a magnetic field vanishing

3 Personal communication of S. Fournais.
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along a line. The construction of the limiting function E(·) occupies most of this
section.

This section contains three important theorems:

• Theorem 3.8 contains the definition of the limiting function E(·).
• Theorem 3.11 displays a relationship between the limiting function E(·) and the
energy of a simplified functional defined in a disc domain.

• Theorem 3.12 contains a remarkable property of the function E(·). The proof of
this property uses the function g(·).
The conclusions in the above three theorems will be used throughout the rest

of this paper.

3.1. The Montgomery Operator

Consider the self-adjoint operator in L2(R2)

P = −
(

∂x1 − i
x22
2

)2
− ∂2x2 . (3.1)

The ground state energy

λ0 = inf σ(P) (3.2)

of the operator P is described using the Montgomery operator as follows.
If τ ∈ R, let λ(τ) be the first eigenvalue of the Montgomery operator [26],

P(τ ) = − d2

dx22
+
( x22
2

+ τ
)2

, in L2(R). (3.3)

Notice that the eigenvalue λ(τ) is positive, simple and has a unique positive eigen-
function ϕτ of L2 norm 1. There exists a unique τ0 ∈ R such that

λ0 = λ(τ0). (3.4)

Hence λ0 > 0. We write

ϕ0 = ϕτ0 .

Clearly, the function

ψ0(x1, x2) = e−iτ0x1 ϕ0(x2), (3.5)

is a bounded (generalized) eigenfunction of the operator P with eigenvalue λ0.
Moreover (see [17] and references therein) theminimumofλ at τ0 is non-degenerate.

We collect some important properties of the family of operators P(τ ).

Theorem 3.1. ([17])

(1) τ0 < 0 .
(2) limτ→±∞ λ(τ) = ∞.

(3) The function λ(τ) is increasing on the interval [0,∞) .
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3.2. A One Dimensional Energy

Let b > 0 and α ∈ R. Consider the functional

E1D
α,b( f ) =

∫ ∞

−∞

(
| f ′(t)|2 +

(
t2

2
+ α

)2
| f (t)|2 − b | f (t)|2 + b

2
| f (t)|4

)
dt,

(3.6)

defined over configurations in the space

B1(R) = { f ∈ H1(R;R) : t2 f ∈ L2(R)}.
In light of Theorem 3.1, we may define two functions z1(b) and z2(b) satisfying,

z1(b) < τ0 < z2(b), λ−1([τ0, b)
) = (z1(b), z2(b)). (3.7)

Notice that, if b < λ(0) , then z2(b) < 0 . This follows from (3) in Theorem 3.1.

Theorem 3.2. ([8, Sec. 14.2])

(1) The functional E1D
α,b has a non-trivial minimizer in the space B1(R) if and only

if
λ(α) < b . Furthermore, a non-trivial minimizer fα can be found which
is a positive function and ± fα are the only real-valued minimizers.

(2) Let

b(α, b) = inf{E1D
α,b( f ) : f ∈ B1(R)}. (3.8)

There exists α0 ∈ (z1(b), z2(b)) such that,

b(α0, b) = inf
α∈R

b(α, b). (3.9)

(3) If b < λ(0), then α0 < 0 .
(4) (Feynman–Hellmann)

∫ ∞

−∞

(
t2

2
+ α0

)
| fα0(t)|2 dt = 0. (3.10)

The proof of this theorem can be obtained by adapting the analysis of [8, Sec. 14.2]
devoted to the functional

F1D
α,b( f ) =

∫ ∞

0

(
| f ′(t)|2 + (t + α)2 | f (t)|2 − b| f (t)|2 + b

2
| f (t)|4

)
dt.

(3.11)

Wenote for future use that aminimizer ofE1D
α,b satisfies theEuler-Lagrange equation:

− f ′′(t) +
(

t2

2
+ α

)2
f (t) − b f (t) + b f (t)3 = 0, (3.12)

and that f ∈ S(R) .
According to Theorem 3.2, we observe that the functional E1D

α,b has non-trivial
minimizers if and only if α ∈ (z1(b), z2(b)).
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3.3. Reduced Ginzburg–Landau Functional

Let L > 0, R > 0, SR = (−R, R) × R and

Aapp(x) =
(

− x22
2

, 0

)
, (x = (x1, x2) ∈ SR = (−R, R) × R). (3.13)

Consider the functional

EL ,R(u) =
∫
SR

(
|(∇ − iAapp)u|2 − L−2/3|u|2 + L−2/3

2
|u|4
)

dx, (3.14)

and the ground state energy

egs(L; R) = inf{EL ,R(u) : (∇ − iAapp)u ∈ L2(SR),

u ∈ L2(SR), and u = 0 on ∂SR}. (3.15)

Following the analysis in [28] and [15, Theorem 3.6], we can prove that the
functional in (3.14) has a minimizer. If ϕL ,R denotes such a minimizer, then we
will prove in Theorem 3.3,

|x2|3/2(∇ − iAapp)ϕL ,R ∈ L2(SR), |x2|1/2ϕL ,R ∈ L2(SR) and

|x2|3/2|ϕL ,R |2 ∈ L2(SR). (3.16)

Useful properties of the minimizer ϕL ,R are collected in the next theorem.
They give a rough description of the decay of the minimizer ϕL ,R at infinity. Most
importantly, the estimates in (3.20) and (3.18) describe the decay at infinity and are
valid when R → ∞ and L → 0.

The estimates obtained in Theorem 3.3 will serve in computing various quan-
tities involving ϕL ,R . With these estimates in hand, one can cut the domain of the
variable x2 at the price of a small controlled error (see the proof of Theorem 3.11).

Theorem 3.3. Let L > 0, R > 0 and ϕL ,R be a minimizer of the functional EL ,R

in (3.14). It holds that

‖ϕL ,R‖∞ � 1. (3.17)

Furthermore, there exists a universal positive constants C such that the minimizer
ϕL ,R satisfies the following inequalities:

∫
SR∩{|x2|�4L−2/3}

|x2| |ϕL ,R |2 dx � C L2/3R, (3.18)

∫
SR∩{|x2|�6L−2/3}

|x2|3|ϕL ,R |4 dx � C L4/3R, (3.19)

and ∫
SR∩{|x2|�6L−2/3}

|x2|3 |(∇ − iAapp)ϕL ,R |2 dx � C L2/3 R. (3.20)
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Proof. The minimizer ϕL ,R satisfies the Ginzburg–Landau equation,

− (∇ − iAapp)
2ϕL ,R = L−2/3(1 − |ϕL ,R |2)ϕL ,R . (3.21)

Hence (3.17) results from the strong maximum principle.
In the sequel, if x denotes a variable point in SR , then the coordinates of x will

be denoted (x1, x2) so that x1 ∈ (−R, R) and x2 ∈ (−∞,∞).
For m > 4L−2/3, we construct ηm ∈ C∞

c (R) and ζ as functions satisfying

supp ηm ⊂ (−2m, 2m), ηm = 1 in (−m, m), |η′
m | � C

m
in R,

and

ζ = 0 in [−2L−2/3, 2L−2/3], ζ = 1 in R \ [−4L−2/3, 4L−2/3],
|ζ ′| � C L2/3 in R

2,

where C is a constant independent of m and L . Below, ζ and ηm will denote the
associated functions on R

2, that is (x1, x2) 	→ ηm(x2) and (x1, x2) 	→ ζ(x1, x2).
We have the simple decomposition formula,
∫
SR

|(∇ − iAapp)(ζηmϕL ,R)|2 − L−2/3|ζηmϕL ,R |2 + L−2/3

2
ζ 2η2m |ϕL ,R |4 dx

=
∫
SR

|(ζηm)′ϕL ,R |2 dx � C R

m
+ C RL2/3. (3.22)

The upper bound for the integral in the right-hand side follows from the condition
on the support of η′

m , ζ
′, the bounds |η′

m | � C/m, |ζ ′| � C L2/3 and ‖ϕL ,R‖∞ � 1
(see (3.17)). Since ζηmϕL ,R ∈ H1

0 (SR) and ζ = 0 in {|x2| � 2L−2/3}, then we
can write,

∫
SR

|(∇ − iAapp)(ζηmϕL ,R)|2 dx �
∫
SR

| curlAapp| |ζηmϕL ,R |2 dx

=
∫

{|x2|�2L−2/3}
|x2| |ζηmϕL ,R |2 dx . (3.23)

In that way, we infer from (3.22),∫
{x∈SR : |x2|�2L−2/3}

|x2|
2

|ζηmϕL ,R |2 dx � C R

m
+ C RL2/3.

Sending m to ∞ (and using monotone convergence), we arrive at∫
{x∈SR : |x2|�2L−2/3}

|x2|
2

|ζϕL ,R |2 dx � C L2/3R.

Since ζ = 1 in {|x2| � 4L−2/3}, we get further,
∫

{x∈SR : |x2|�4L−2/3}
|x2|
2

|ϕL ,R |2 dx � C L2/3R. (3.24)



Ginzburg–Landau with Vanishing Magnetic Field 71

This proves that |x2|1/2ϕL ,R ∈ L2(SR) and the estimate in (3.18).
Next we prove that |x2|3/2|ϕL ,R |2 ∈ L2(SR). To that end, let χ ∈ C∞(R) be a

function (of the variable x2) satisfying,

χ(x2) = 0 if |x2| � 4L−2/3, χ(x2) = |x2|3/2 if |x2| � 6L−2/3,

and |χ ′(x2)| � C L−1/3 if |x2| � 6L−2/3.

We have the decomposition formula,
∫
SR

|(∇ − iAapp)(ηmχϕL ,R)|2 − L−2/3|ηmχϕL ,R |2 + L−2/3

2
η2mχ2|ϕL ,R |4 dx

=
∫
SR

|(ηmχ)′ϕL ,R |2 dx . (3.25)

Using the bounds satisfied by η′
m , χ ′ and ηm , the condition on the support of ηm

and the inequality in (3.24), we may write, for all m > 6L−4/3,
∫
SR

|(ηmχ)′ϕL ,R |2 dx

� C
∫

{x∈SR : m�|x2|�2m}
|x2|3(η′

m(x2))
2|ϕL ,R |2 dx + C

∫
SR

|χ ′(x2)|2 η2m |ϕL ,R |2 dx

� C

(∫
{x∈SR : |x2|�4L−2/3}

|x2| |ϕL ,R |2 dx + L−2/3
∫

{x∈SR : |x2|�4L−2/3}
|ϕL ,R |2 dx

)

� C L2/3R. (3.26)

Next, we use the inequality∫
SR

|(∇ − iAapp)(ηmχϕL ,R)|2 dx �
∫
SR

| curlAapp| |ηmχϕL ,R |2 dx

=
∫
SR

|x2| |ηmχϕL ,R |2 dx,

and the fact that χ = 0 for |x2| � 4L−2/3 to infer from (3.25) and (3.26),

L−2/3

2

∫
SR

η2mχ2|ϕL ,R |4 dx � C L2/3R.

Sending m to ∞, we get that |x2|3/2|ϕL ,R |2 ∈ L2(SR) and the estimate in (3.19).
Also, we infer from (3.25) that

3

4

∫
SR

|(∇ − iAapp)(ηmχϕL ,R)|2 dx � C L2/3R. (3.27)

Using a simple commutator argument, we write,∫
SR

|(∇ − iAapp)(ηmχϕL ,R)|2 dx � 1

2

∫
SR

(ηmχ)2|(∇ − iAapp)ϕL ,R |2 dx

−4
∫
SR

|(ηmχ)′ϕL ,R(x)|2 dx .



72 Bernard Helffer & Ayman Kachmar

By (3.26), we get, further, that

∫
SR

|(∇ − iAapp)(ηmχϕL ,R)|2 dx � 1

2

∫
SR

(ηmχ)2|(∇ − iAapp)ϕL ,R |2 dx − C L2/3R.

We insert this into (3.27) to get

3

4

∫
SR

(ηmχ)2|(∇ − iAapp)ϕL ,R |2 dx � C L2/3R.

Sendingm to∞,we deduce that |x2|3/2(∇−iAapp)ϕL ,R ∈ L2(SR) and the estimate
in (3.20). ��
Remark 3.4. We can bootstrap the argument in the proof of Theorem 3.3 to get the
following improvement of (3.18): for all n ∈ N, there exists Cn > 0 such that, for
all L > 0,

∫
SR∩{|x2|�4nL−2/3}

|x2| |ϕL ,R |2 dx � Cn L2n/3R.

As a consequence of Theorem 3.3, we can obtain a uniform estimate of the
energy components of a minimizer ϕL ,R .

Proposition 3.5. Let � > 0 . There exists a positive constant C� such that, for all
L ∈ (0,�) and R > 0,
∫
SR

|ϕL ,R(x)|2 dx �C�L−2/3R and
∫
SR

|(∇−iAapp)ϕL ,R |2 dx � C�L−4/3R.

Proof. As a consequence of the inequalities in (3.17) and (3.18), we have,
∫
SR

|ϕL ,R(x)|2 dx =
∫
SR∩{|x2|�4L−2/3}

|ϕL ,R(x)|2 dx

+
∫
SR∩{|x2|�4L−2/3}

|ϕL ,R(x)|2 dx

� 8L−2/3R + C L4/3 = L−2/3(8 + C L2).

Since L−2/3(8 + C L2) ∼ 8L−2/3 when L → 0+, we get a constant C� > 0 such
that, for all L ∈ (0,�),

∫
SR

|ϕL ,R(x)|2 dx � C�L−2/3.

To finish the proof of the theorem, we multiply both sides of (3.21) by ϕL ,R and
integrate by parts. In that way we obtain
∫
SR

|(∇ − iAapp)ϕL ,R |2 dx � L−2/3
∫
SR

|ϕL ,R(x)|2 dx � C�L−4/3 R.

��
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The value of the ground state energy defined in (3.15) is related to the eigenvalue
λ0 in (3.4). We will find that the energy vanishes when L � λ

−3/2
0 , and we will

give a rough estimate of the energy when L → λ
−3/2
0 .

Proposition 3.6. For R > 0, L > 0, if egs(L; R) denotes the ground state energy
in (3.15), it holds:

(1) If L � λ
−3/2
0 , then egs(L; R) = 0.

(2) There exist positive constants C1, C2 and C3 such that, if L < λ
−3/2
0 and

R > 0, then

− C1 L−4/3R � egs(L; R)

(1 − λ0L2/3)
� −C2 L−2/3R + C3

R
. (3.28)

Proof. Suppose that L � λ
−3/2
0 . Let u ∈ H1

0 (SR). The min-max principle and
the condition on L tell us that EL ,R(u) � 0 and consequently egs(L; R) � 0 . But
egs(L; R) � EL ,R(0) = 0 . This proves the statement in (1).

Now, suppose that L < λ
−3/2
0 . Let θ ∈ C∞

c (R) be a function satisfying,

supp θ ⊂ (−1, 1), 0 � θ � 1, θ = 1 in (−1/2, 1/2),

and let

θR(x) := θ(x/R).

Let t > 0 and

u(x1, x2) = t θR(x1) ψ0(x1, x2),

where ψ0 is the function in (3.5).
Recall that ψ0 satisfies −(∇ − iAapp)

2 ψ0 = λ0ψ0 . An integration by parts yields,∫
SR

|(∇ − iAapp)u|2 dx

= t2
(〈

θR(x1)
2ψ0, −(∇ − iAapp)

2ψ0

〉
+
∫
SR

|φ0(x2)θ
′
R(x1)|2 dx

)

= t2
(〈

θR(x1)
2ψ0, −(∇ − iAapp)

2ψ0

〉
+ 1

R

∫
θ ′(x1)

2 dx1

)

= t2
(

λ0

∫
SR

|θR(x1)ψ0(x)|2 dx + C

R

)
.

As a consequence, we get that,

egs(L , R) � EL ,R(u) � t2
(
λ0 − L−2/3

) ∫
SR

|θRψ0|2 dx

+ t2
C

R
+ t4

L−2/3

2

∫
SR

|θR(x1)ψ0(x)|4dx .

� t2
(

R
(
λ0 − L−2/3

)
+ C

R

)
+ RνL−2/3 t4.
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Here

ν =
∫
R

|ϕ0(x2)|4 dx2

and ϕ0 is the L2-normalized function introduced in (3.17).
Selecting t such that

(λ0 − L−2/3) + νL−2/3 t2 = 1

2
(λ0 − L−2/3)

finishes the proof of the upper bound.
The lower bound is obtained as follows. Let ϕL ,R be the minimizer in Theo-

rem 3.3. It follows from the min-max principle that,

egs(L; R) = EL ,R(ϕL ,R) � L−2/3(λ0L2/3 − 1)
∫
SR

|ϕL ,R(x)|2 dx .

Under the assumption L < λ
−2/3
0 , Proposition 3.5 tells us that

∫
SR

|ϕL ,R(x)|2 dx � C1L−2/3R.

As a consequence, we get the lower bound. ��
Remark 3.7. In light of Propositions 3.5 and 3.6, we observe that:

(1) If L � λ
−2/3
0 , then ϕL ,R = 0 is the minimizer of the functional in (3.14)

realizing the ground state energy in (3.15).
(2) If L � λ

−2/3
0 , every minimizer ϕL ,R satisfies,

∫
SR

|(∇−iAapp)ϕL ,R(x)|2 dx �C L−4/3,

∫
SR

|ϕL ,R(x)|2 dx �C L−2/3R,

(3.29)

where C is a universal constant.

Notice that the energy EL ,R(u) in (3.14) is invariant under translation along the
x1-axis. This allows us to follow the approach in [13,28] and obtain that the limit

of
egs(L;R)

R as R → ∞ exists. The precise statement is:

Theorem 3.8. Given L > 0, there exists E(L) � 0 such that,

lim
R→∞

egs(L; R)

2R
= E(L).

The function (0,∞) � L 	→ E(L) ∈ (−∞, 0] is continuous, monotone increasing
and

E(L) = 0 if and only if L � λ
−3/2
0 .
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Furthermore,

∀ R > 0,∀L > 0, E(L) � egs(L; R)

2R
, (3.30)

and there exists a constant C such that

∀ R � 2,∀L > 0,
egs(L; R)

2R
� E(L) + C(1 + L−2/3)R−2/3. (3.31)

Proof. There is nothing to prove when L � λ
−3/2
0 , hence we assume that

0 < L < λ
−3/2
0 .

Step 1. Let n � 2 be a natural number, a ∈ (0, 1) and consider the family of strips

I j =
(
−n2 − 1 − a + (2 j − 1)

(
1 + a

2

)
,

−n2 − 1 + (2 j + 1)
(
1 + a

2

))
× R, ( j ∈ Z).

Notice that the width of each strip in the family (I j ) is 2(1 + a), and if two strips
in the family overlap, then the width of the overlapping region is a. Consider a
partition of unity of R2 such that

∑
j

|χ j |2 = 1, 0 � χ j � 1,
∑

j

|∇χ j |2 � C

a2 , suppχ j ⊂ I j ,

where C is a universal constant.
Define χR, j (x) = χ j (x/R). That way we obtain the new partition of unity,

∑
j

|χR, j |2 = 1, 0 � χR, j � 1,
∑

j

|∇χR, j |2 � C

a2R2 , suppχR, j ⊂ IR, j ,

where IR, j = {R x : x ∈ I j }.
Notice that (IR, j ) j∈{1,2,··· ,n2} is a covering of Sn2R = (−n2R, n2R) ×R by n2

strips, each having side-length 2(1 + a)R .
Let ϕL ,n2R ∈ H1

0 (Sn2R) be the minimizer in Theorem 3.3. It holds the decom-
position

egs(L; n2R) = EL ,n2R(ϕL ,n2R)

�
n2∑
j=1

(
EL ,n2R(χR, jϕL ,n2R) − ∥∥ |∇χR, j | ϕL ,n2R

∥∥2
L2(Sn2R)

)

=
⎛
⎝ n2∑

j=1

EL ,n2R(χR, jϕL ,n2R)

⎞
⎠−
∫
Sn2R

⎛
⎝ n2∑

j=1

|∇χR, j |2
⎞
⎠ | ϕL ,n2R |2 dx

�

⎛
⎝ n2∑

j=1

EL ,n2R(χR, jϕL ,n2R)

⎞
⎠− Cn2L−2/3

a2R
[By Remark 3.7].
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The function χR, jϕL ,n2R is supported in an infinite strip of width 2(1+a)R . Since
the energy EL ,R(u) is (magnetic) translation-invariant along the x1 direction, we
get

∀ j, EL ,n2R(χR, jϕL ,n2R) � egs(L; (1 + a)R)

and consequently,

egs(L; n2R) � n2egs(L; (1 + a)R) − C
n2L−2/3

a2R
.

Dividing both sides of the above inequality by n2R and using the estimate in
Proposition 3.6, we get

egs(L; n2R)

n2R
� egs(L; (1 + a)R)

R
− C

(
aL−2/3 + L−2/3

a2R2

)
.

Using the trivial inequality (1 + a) � (1 + a)2, we finally obtain:

egs(L; n2R)

n2R
� egs(L; (1 + a)2R)

(1 + a)2R
− C

(
aL−2/3 + L−2/3

a2R2

)
. (3.32)

Step 2. Let � > 0 . Let us define

d(�, L) = egs(L; �2)

2
, f (�, L) = d(�, L)

�2
.

Clearly, the function � 	→ d(�, L) is decreasing. Thanks to Proposition 3.6, we
observe that d(�, L) � 0 and f (�, L) is bounded. Furthermore, (3.32) used with
R = �2 tells us that

f (n�, L) � f ((1 + a)�, L) − C

(
aL−2/3 + 1

a2�2

)
.

By [15, Lemma 3.10], we get the existence of E(L) such that

lim
�→∞ f (�, L) = E(L).

The simple change of variable � = √
R gives us

lim
R→∞

egs(L; R)

2R
= E(L).

Step 3. Using a comparison argument and the translation invariance of the energy
EL ,R(u) , we observe that

∀ n ∈ N, egs(L; n2R) � n2egs(L; R).

Dividing both sides of the above inequality by 2n2R and taking n → ∞ , we get

E(L) = lim
n→∞

egs(L; n2R)

2n2R
� egs(L; R)

2R
.
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The matching lower bound for E(L) is obtained by taking n → ∞ in (3.32),
selecting a = R−2/3 and replacing R by (1 + a)2R .

Step 4. Proposition 3.6 tells us that E(L) = 0 if and only if L � λ
−3/2
0 . The

continuity and monotonicity properties of E(L) are easily obtained through the
study of the energy EL ,R(u) as a function of L along the same methods used in [15,
Thm 3.13]. ��

It would be desirable to establish a simpler expression of E(L) when L ∈
(λ(0)− 3

2 , λ
− 3

2
0 ) :

Conjecture 3.9. Let λ be the function introduced in (3.3). If

λ0 < L−2/3 < λ(0), (3.33)

then

E(L) = E1D(L−2/3).

Here, for b > 0, E1D(b) = b(α0, b) and b(α0, b) is defined in (3.9).

In the case of a constant magnetic field, a similar statement to Conjecture 3.9
has been conjectured in [28]. A partial affirmative answer was given in [2,12]. The
conjecture has been proved recently in [6,7]. The methods in [6,7] do not yield an
affirmative answer for Conjecture 3.9.

Remark 3.10. In [17], the following numerical estimate is given: λ0 ≈ 0.57 . Fur-
thermore, the lower bound:

λ(0) �
(
3

4

) 4
3

< 1, (3.34)

is proved. Finally the strict inequality λ0 < λ(0) is a consequence of the uniqueness
of the point of minimum of the function λ(τ).

3.4. The Approximate Functional

Let ν ∈ [0, 2π) be a given angle. Define the magnetic potential:

Aapp,ν(x) = −|x |2
2

n, n = (cos ν, sin ν), (x = (x1, x2) ∈ R
2). (3.35)

Clearly, ν is the angle between the x1-axis and the line {curlAapp,ν = 0}.
Let κ > 0, � ∈ (0, 1), D� = D(0, �) the disc centered at 0 and of radius �, and

L > 0. Consider the functional:

G(ψ) =
∫
D�

(
|(∇ − i Lκ3Aapp,ν)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4
)

dx, (3.36)

together with the ground state energy

Egs,r(κ, L , ν; �) = inf{G(ψ) : ψ ∈ H1
0 (D�)}. (3.37)
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The change of variable x 	→ √
m κ x yields

Egs,r(κ, L; �) = egs,disc(ν, L; R), (3.38)

where m = L2/3, R = √
m κ �, DR = D(0, R),

Eν,L ,R(u) =
∫
DR

(
|(∇ − iAapp,ν)u|2 − L−2/3|u|2 + L−2/3

2
|u|4
)

dx, (3.39)

and

egs,disc(ν, L; R) = inf{Eν,L ,R(u) : u ∈ H1
0 (DR)}. (3.40)

We now show that the ground state energy egs,disc(ν, L; R) is independent of ν. Let
u be a given function in H1

0 (DR). We perform the rotation

(x1, x2) 	→ (x1 cos ν + x2 sin ν, −x1 sin ν + x2 cos ν),

which transforms the function u to a new function ũ, then the gauge transformation
ũ 	→ v = eix31/6ũ and get

Eν,L ,R(u) =
∫
DR

(
|(∇ − iAapp)v|2 − L−2/3|v|2 + L−2/3

2
|v|4
)

dx =: GL ,R(v),

where Aapp is introduced in (3.13).
Hence we get,

egs,disc(ν, L; R) = inf{GL ,R(v) : v ∈ H1
0 (DR)}. (3.41)

This simple observation allows us to prove the following Theorem 3.11 below,
which indicates a situationwhere the energies egs(L; R) and egs,disc(ν, L; R)match.

Theorem 3.11. For ν ∈ [0, 2π), L > 0 and R > 0, we have,

egs,disc(ν, L; R) = egs,disc(0, L; R) � egs(L; R), (3.42)

where egs(L; R) and egs,disc(ν, L; R) are the ground state energies introduced in
(3.15) and (3.40).
Moreover, there exists a constant C such that, for L > 0, a ∈ (0, 1/2), and

R > 4max(a−1/2L−2/3, 1),

we have

egs,disc(0, L; R) � egs(L; (1 − a)R) + C

a1/2

(
1 + L2/3

a R2

)
. (3.43)
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Proof. The independence of ν was observed in (3.41). From now on we can take
ν = 0 .
Lower bound. Let u ∈ H1

0 (DR) be a minimizer of the functional GL ,R . The
function u can be extended by 0 to a function in H1

0 (SR). Thus,

egs,disc(0, L; R) = GL ,R(u) = EL ,R(u) � egs(L; R).

Upper bound. Let a ∈ (0, 1
2 ), R̃ = (1 − a)R and

v = ϕL ,R̃ ∈ H1
0 (SR̃)

a minimizer of GL ,R̃ . Remember that ϕL ,R̃ = 0 when L � λ
−3/2
0 (Proposition 3.6).

We impose the condition
√

a R > 4L−2/3. (3.44)

Consider a test function χ ∈ C∞
c (R) such that

⎧⎨
⎩
0 � χ � 1, suppχ ⊂ (−√

a(2 − a) R,
√

a(2 − a) R),

χ = 1 in (−√
a(1 − a) R,

√
a(1 − a) R),

|χ ′| � C√
a R

and |χ ′′| � C
a R2 .

Let

u(x1, x2) = χ(x2) v(x1, x2), (x1, x2) ∈ R
2.

Clearly, u ∈ H1
0 (DR). Thus,

egs,disc(0, L; R) � GL ,R(u) = EL ,R(u)

=
∫
SR

(
χ(x2)

2|(∇ − iAapp)v|2 − χ(x2)χ
′′(x2)|v|2

− L−2/3|χ(x2)v|2 + L−2/3

2
|χ(x2)v|4

)
dx

�
∫
SR

(
|(∇ − iAapp)v|2 − L−2/3|v|2 + L−2/3

2
|v|4
)

dx

+ L− 2
3

∫
SR

(1 − χ2)|v|2 dx + C L2/3

a3/2R2

=
∫
SR̃

(
|(∇ − iAapp)v|2 − L−2/3|v|2 + L−2/3

2
|v|4
)

dx

+ L−2/3
∫
SR

(1 − χ2)|v|2 dx + C L2/3

a3/2R2

� egs(L; R̃) + C

a1/2 + C L2/3

a3/2R2 .

The two terms L− 2
3
∫
SR

(1 − χ(x2)2)|v(x1, x2)|2 dx and
∫
SR

χ(x2)χ ′′(x2)

|v(x1, x2)|2 dx have been controlled by using the decay of v = ϕL ,R̃ established in
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Theorem 3.3 (Formula (3.18)). Here, we have used Assumption (3.44) (and (3.18))
to write

∫
{|x2|�√

a R}
|v(x1, x2)|2 dx � C L2/3R × (

√
a R)−1 = C L2/3

a1/2 .

Remembering that R̃ = (1 − a)R , this achieves the proof of Theorem 3.11.
��

3.5. Bulk Energy

In this subsection, we recall the construction of a function that describes the
energy of the Ginzburg–Landau model with constant magnetic field [1,13,32].
Consider b ∈ (0,∞), r > 0 , and Qr = (−r/2, r/2) × (−r/2, r/2). Define the
functional

Fb,Qr (u) =
∫

Qr

(
b|(∇ − iA0)u|2 − |u|2 + 1

2
|u|4
)

dx, for u ∈ H1(Qr ).

(3.45)

Here, A0 is the magnetic potential

A0(x) = 1

2
(−x2, x1),

(
x = (x1, x2) ∈ R

2). (3.46)

Define the two ground state energies

eD(b, r) = inf{Fb,Qr (u) : u ∈ H1
0 (Qr )}, (3.47)

eN (b, r) = inf{Fb,Qr (u) : u ∈ H1(Qr )}. (3.48)

It is known [4,13,32] that

∀ b > 0, g(b) = lim
r→∞

eD(b, r)

|Qr | = lim
r→∞

eN (b, r)

|Qr | , (3.49)

where |Qr | denotes the area of Qr (|Qr | = r2) and g is a continuous function such
that

g(0) = −1

2
and g(b) = 0 when b � 1. (3.50)

Furthermore, there exists a constant C such that, for all r � 1 and b > 0,

g(b) − C

√
b

r
� eN (b, r)

|Qr | � eD(b, r)

|Qr | � g(b) + C

√
b

r
. (3.51)

We will use the function g(·) to prove Theorem 3.12 below. This theorem concerns
the limiting function E(·). It contains sharp bounds on E(·) in the regime L → 0+
(compare with Proposition 3.6).

The function g(·) provides us with a test function to prove:
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Theorem 3.12. There exist two positive constants C1 and C2 such that, if L ∈
(0, λ−3/2

0 ] , then

−C1(1 − λ0L2/3) L−4/3 � E(L) � −C2(1 − λ0L2/3) L−4/3.

Proof. The lower bound follows immediately by sending R to ∞ in the lower
bound in Proposition 3.6 (see also Theorem 3.8). The upper bound in the second
item of Proposition 3.6 gives us the upper bound

E(L) � −C (1 − λ0L2/3) L−2/3, (3.52)

for all L ∈ (0, λ−3/2
0 ) .

We have just to improve it as L → 0 .
The improved upper bound with order L−4/3 follows from the construction of a
test function as follows.

Let us cover R2 by a lattice of squares Q�, j , where Q�, j = (−� + a j , � + a j )

and

� = mL1/3. (3.53)

The choice of the positive constantm will be specified later. Notice that themagnetic
potential Aapp (cf. (3.13)) satisfies

Bapp = curlAapp = x2.

Let A0 be the magnetic potential in (3.46), a j = (a j,1, a j,2) be the center of

the square Q�, j and F j (x1, x2) =
(

− 1
3 (x2 − a j,2)

2, 1
3 (x2 − a j,2)(x1 − a j,1)

)
. It

is easy to check that

curlAapp = curl(a j,2A0 + F j ) in Q�, j .

Since the square Q�, j is a simply connected domain in R
2, then there exists a

real-valued smooth function φ j defined in Q�, j such that

Aapp = a j,2A0 + F j − ∇φ j in Q�, j .

Thanks to the definition of F j , we have

|F j (x)| � �2 in Q�, j .

Thus, for any j , we can select a gauge φ j , such that, in the square Q�, j , we have

|Aapp(x) − (a j,2A0(x − a j ) − ∇φ j )| � �2.

Now, we define the test function as follows,

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eiφ j (x) ur
(√

a j,2 (x − a j )
)

if a j,2 > 0 and
x ∈ Q�, j ⊂ {|x1| < R and ε

2 L−2/3 < x2 < εL−2/3},
eiφ j (x) ur

(√|a j,2| (x − a j )
)

if a j,2 < 0 and
x ∈ Q�, j ⊂ {|x1| < R and ε

2 L−2/3 < −x2 < εL−2/3},
0 otherwise,

(3.54)
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where the function ur ∈ H1
0 (Qr ) is a minimizer of the ground state energy Fb,Qr

introduced in (3.45) and ε ∈ (0, 1) is a positive constant (to be determined in
(3.56)).
We impose the following condition on m and ε

m

√
ε

2
� 1. (3.55)

We will use the notation

EL ,R(v; Q�, j ) =
∫

Q�, j

(
|(∇ − iAapp)v|2 − L−2/3|v|2 + 1

2
L−2/3 |v|4

)
dx .

Notice that, if a j,2 > 0 and Q�, j ⊂ {|x1| < R and ε
2 L−2/3 < |x2| < εL−2/3},

then, for all η > 0,

EL ,R(v; Q�, j )

� L−2/3

(∫
Q�, j

(
L2/3(1 + η)|(∇ − ia j,2A0(x − a j ))v|2 − L−2/3|v|2

+1

2
L−2/3 |v|4

)
dx

)

+ Cη−1�6

= L−2/3

a j,2

(∫
Q√

a j,2 �

(
L2/3a j,2(1 + η)|(∇ − iA0(x))ur (x)|2 − L−2/3|v|2

+1

2
L−2/3 |v|4

)
dx

)
+ Cη−1�6

� L−2/3

a j,2

(
g(L2/3a j,2(1+η))|a j,2|�2+C

√
L2/3a j,2(1+η)

√
a j,2 �

)
+Cη−1�6.

To write the last inequality, (3.51) is used with b = L2/3a j,2(1 + η) and r =√
a j,2 � . (Thanks to the condition (3.55), we have r � 1 ).
Similarly, if a j,2 < 0 and Q�, j ⊂ {|x1| < R and ε

2 L−1/3 < |x2| < εL−2/3},
then,

EL ,R(v; Q�, j ) � L−2/3

|a j,2|
(

g(L2/3|a j,2|(1+η))|a j,2|�2 + C
√

L2/3(1 + η) |a j,2| �
)

+Cη−1�6.

Notice the simple decomposition of the energy of v:

EL ,R(v) =
∑
j∈J

EL ,R(v; Q�, j ),
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where J = { j : Q�, j ⊂ {|x1| < R and ε
2 L−2/3 < |x2| < εL−2/3}}.

Let

n = CardJ .

The numbers L and � are small enough such that
ε

4
L−2/3R � n �2 � ε

2
L−2/3R < L−2/3R.

Now, we have the following upper bound on the energy of v ,

EL ,R(v) � L−2/3

⎛
⎝∑

j

g(L2/3|a j,2|(1 + η)
)
�2 + C n

√
L2/3(1 + η) �

⎞
⎠

+C n η−1�6.

We select η = 1
2 . Having in mind (3.50), we can select ε sufficiently small such

that

g(t) � −1

4
, ∀ t ∈ [0, 2ε]. (3.56)

Observing

L2/3 |a j,2| (1 + η) � 2ε,

we get, for R � n �2L
2
3 ,

egs(L; R)

R
� EL ,R(v)

R
� L−2/3

(
− ε

16
L−2/3+2C L1/3 L−2/3 �−1

)
+2C L−2/3�4.

Sending R → ∞ , we deduce that

E(L) � − ε

32
L−4/3 + C L−1 �−1 + C L−2/3�4.

Having in mind (3.53), we get

E(L) �
(

− ε

32
+ C

m

)
L−4/3 + Cm4L2/3. (3.57)

Recalling (3.55) and (3.56), we select m such that

− ε

32
+ C

m
< 0 and m >

√
2

ε
.

In that way, (3.57) gives us the existence of a constant C ′ > 0 such that, for
sufficiently small values of L ,

E(L) � −C ′ L−4/3.

Since L is sufficiently small, we may write

−C ′ = (1 − Lλ0L2/3)
−C ′

1 − Lλ0L2/3 � −C ′(1 − Lλ0L2/3),

and get the upper bound in Theorem 3.12 when L → 0+ . ��
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4. A Priori Estimates and Gauge Transformation

Let κ > 0, H > 0 and (ψ,A) be a critical point of the functional in (1.1), that
is (ψ,A) satisfies

− (∇ − iκ HA)2ψ = κ2(1 − |ψ |2)ψ, (4.1)

− ∇⊥ curl(A − F) = 1

κ H

(
ψ (∇ − iκ HA)ψ

)
in �, (4.2)

and the two boundary conditions

ν · (∇ − iκ HA)ψ = 0 and curl(A − F) = 0 on ∂�,

where ν is the unit exterior normal vector of ∂�.
We note for further use the following identity. Multiplying both the equation in

(4.1) by ψ then integrating over �, we get

E0(ψ,A;�) :=
∫

�

(
|(∇ − iκ HA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4
)

dx

= −κ2

2

∫
�

|ψ |4 dx � 0. (4.3)

We need the following estimates on ψ and A that we take from [8]. Earlier
versions of these estimates are given in [10,23] when the magnetic field is constant.

Proposition 4.1. Let α ∈ (0, 1). There exists a constant C = C(α,�) > 0 such
that, if κ > 0, H > 0 and (ψ,A) a critical point of the functional in (1.1), then

‖ψ‖∞ � 1, (4.4)

‖ curl(A − F)‖2 � C

H
‖ψ‖2, (4.5)

‖(∇ − iκ HA)ψ‖2 � κ ‖ψ‖2, (4.6)

‖A − F‖C1,α(�) � C
1 + κ H + κ2

κ H
‖ψ‖∞ ‖ψ‖2. (4.7)

Using the regularity of the curl-div system, we obtain the following improved
estimates of A − F.

Proposition 4.2. Let α ∈ (0, 1) . There exists a constant C = C(α,�) > 0 such
that, if κ > 0 , H > 0 and (ψ,A) a critical point of the functional in (1.1), then,

‖A − F‖C0,α(�) � C

(
‖ curl(A − F)‖2 + 1

κ H
‖(∇ − iκ HA)ψ‖2 ‖ψ‖∞

)
.

Proof. Let a = A−F. Notice that a satisfies div a = 0 in � and ν · a = 0 on ∂� .
Thus, there exists C(�) > 0 such that for all a satisfying the previous condition

‖a‖H2(�) � C(�)‖ curl a‖H1(�).



Ginzburg–Landau with Vanishing Magnetic Field 85

Since (ψ,A) is a critical point of the functional in (1.1), then

∇⊥ curl a = 1

κ H
Im (ψ (∇ − iκ H)ψ).

Consequently, we get

‖a‖H2(�) � C

(
‖ curl(A − F)‖2 + 1

κ H
‖(∇ − iκ HA)ψ‖2 ‖ψ‖∞

)
.

This finishes the proof of the proposition in light of the continuous embedding of
H2(�) in C0,α(�) . ��

In the subsequent sections, we will need to approximate the magnetic potential
F generating a non-constant magnetic field by a simpler magnetic potential gener-
ating a constant magnetic field. The approximation will be done in domains with
small area and in general will lead to large errors. By applying a suitable gauge
transformation, one can absorb the large errors and be left with small errors. The
next proposition provides us with useful gauge transformations.

Proposition 4.3. Given � and B0 as in the introduction, there exists a constant
C > 0 such that the following is true.

(1) Let � > 0, a j ∈ �, D(a j , �) ⊂ � and x j ∈ D(a j , �). There exists a function
ϕ j ∈ C1(D(a j , �)) such that, for all x ∈ D(a j , �),

|F(x) − (B0(x j )A0(x − a j ) + ∇ϕ j )| � C �2. (4.8)

(2) Let � > 0, a j ∈ � and x j ∈ D(a j , �) ∩ �. There exist ν j ∈ [0, 2π) and a
function φ j ∈ C1(D(a j , �) ∩ �) such that, for all x ∈ D(a j , �) ∩ �,

|F(x) − (|∇B0(x j )|Aapp,ν j (x − a j ) + ∇φ j )| � C �3. (4.9)

Proof. The function ϕ j in (1) is constructed in [3].
We give the construction of the function φ j announced in (2). The vector fieldF and
the function B0 are defined in a neighborhood of � (w.l.o.g. we can even assume
that they are defined in R

2). In particular, F(x) and B0(x) are defined in D(a j , �)

even when D(a j , �) �⊂ �.
Select ν j ∈ [0, 2π) such that

∇B0(a j ) = |∇B0(a j )|(cos ν j , sin ν j ).

We apply Taylor’s formula to the function B0 near a j . Since a j ∈ �, we get

B0(x) = |∇B0(a j )|(cos ν j , sin ν j ) · (x − a j ) + f j (x), (4.10)

where

| f j (x)| � C |x − a j |2 � C �2, (x ∈ D(a j , �)).

Taylor’s formula applied to the function |∇B0| near a j yields

|∇B0(x j )| = |∇B0(a j )| + e j ,
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where

|e j | � C |x j − a j | � C�.

In that way, (4.10) becomes

B0(x) = |∇B0(x j )|(cos ν j , sin ν j ) · (x − a j ) + g j (x), (4.11)

where g j (x) = f j (x) + e j (cos ν j , sin ν j ) · (x − a j ) and satisfies

|g j (x)| � C �2.

Define the vector field:

G j (y) =
(∫ 1

0
sg j (sy + a j ) ds

)
(−y2, y1), for y = (y1, y2).

Clearly, |G j (y)| � C�3 , when y ∈ D(0, �) and y + a j ∈ � .
We perform the translation y = x − a j and define

F̃(y) = F(y + a j ), for y ∈ D(0, �).

In that way, the formula in (4.11) reads as follows:

curl
(̃
F − |∇B0(x j )|Aapp,νj

) = curlG j in D(0, �),

where Aapp,νj is introduced in (3.35).

Consequently, we deduce the existence of a function φ̃ j ∈ C1(D(0, �)) such that,

F̃ − |∇B0(x j )|Aapp,νj = G j + ∇φ̃ j , in D(0, �).

The function φ j is defined by φ j (x) = φ̃ j (x − a j ) , for x ∈ D(a j , �). ��

5. Energy Upper Bound

In this section, we determine an asymptotic upper bound of the energy in (1.5).
The upper bound is valid under the assumptions

κ � 1 and κ 
 H � κ2,

and matches with the asymptotic expansions announced in Theorem 1.1.
The conclusion in Theorem 1.1 displays two regimes for the behavior of the

energy in (1.5),

Regime I : κ3/2 
 H � κ2,

Regime II : κ 
 H � κ3/2.

As such, this section will present two independent constructions devoted to the
aforementioned two regimes (Regime I and Regime II). Each construction will be
the subject of an independent subsection.
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5.1. Upper Bound: Regime I

This subsection is devoted to the proof of:

Proposition 5.1. Let � > 0 and ε : R → R+ such that lim
κ→∞ κ1/2ε(κ) = +∞

and lim
κ→∞ ε(κ) = 0 . If ε(κ)κ2 � H � �κ2, then the ground state energy in (1.5)

satisfies,

Egs(κ, H) � κ

(∫
�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)
+ o

(
κ3

H

)
,

(κ → ∞), (5.1)

where ds is the arc-length measure on �.

The proof of Proposition 5.1 consists of computing the energy of a relevant
test configuration. The construction of this test configuration hints at the actual
behavior of the minimizing configurations.

The conclusion in Proposition 5.1 is a straightforward application of Lemma 5.2
below. One part of Lemma 5.2 is devoted to the construction of a test configuration.
The construction requires thatwe cover the curveswhere themagnetic field vanishes
by a collection of discs satisfying:

• the centers of the discs are in the set � = {B0(x) = 0} ;
• the interiors of the discs are disjoint ;
• all the discs have equal radii � ;
• if D is a disc in this collection, then the arc-length of the curve D ∩� is approx-
imately the diameter of D.

The proof of Lemma 5.2 contains the detailed construction of these discs with
precise statements of their properties.

The statement ofLemma5.2below requires to introduce thequantityψ(μ1, μ2, a)

which is defined for μ1 > 0, μ2 > 0, and a ∈ (0, 1) by

ψ(μ1, μ2, a) := max
(
4 a−1/2μ−1

1 , 4μ−1/3
2

)
.

Lemma 5.2. Let � > 0, η ∈ (0, 1/2) and b : R → R+ such that lim
κ→∞ b(κ) = ∞

and
lim

κ→∞ κ−1/2b(κ) = 0 . There exist positive constants C, κ0 and �0 such that the

following is true.
Suppose that a ∈ (0, 1/2) , � ∈ (0, �0) , δ ∈ (0, 1) , κ � κ0 , H > 0 satisfy,

κ� � ψ

(
H

κ2 inf
x∈�

|∇B0(x)|, H

κ2 inf
x∈�

|∇B0(x)|, a

)
, (5.2)

and

b(κ)κ3/2 � H � �κ2.
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Then, the ground state energy in (1.5) satisfies,

Egs(κ, H) � κ

∫
�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x) + C(α + β),

(5.3)

where

• ds is the arc-length measure on �,
• α = H−5/9κ13/9�−2/3 + a−1/2(�−1 + a−1κ−2�−3) + (δκ2 + δ−1κ2H2�6)�,

• β = (η + δ + a)
κ3

H
.

Proof. Step 1. Existence of �0.
This step is devoted to the definition of the constant �0 appearing in the statement

of Proposition 5.1. Recall the assumption that � is the union of a finite number of
simple smooth curves and � ∩ ∂� is a finite set. Given η > 0, there exists a
constant �1 ∈ (0, 1) such that, for all a ∈ � and � ∈ (0, �1) with D(a, �) ⊂ �,
then D(a, �) ∩ � is connected and

2� − η

2
� �
∫

D(a,�)∩�

ds(x) � 2� + η

2
�. (5.4)

Notice that
∫

D(a,�)∩�

ds(x) is the arc-length (along �) of D(a, �) ∩ �. Thus,

the choice of �1 is such that the arc-length of D(a, �) ∩ � is approximately 2�,
whenever � ∈ (0, �1).

The arc-length measure of � is denoted by |�|. By assumption, � consists of a
finite number of simple smooth curves (�i )

k
i=1. Let

�0 = min

(
η

16
min

1�i�k
|�i |, �1

16

(
1 + η

4

)−1
)

.

If � ∈ (0, �0), then, on the one hand,

2�

|�i | <
η

4
, (1 + η) � <

�1

4
, (5.5)

and, on the other hand, � < �1 and (5.4) is satisfied.

Step 2. A covering of �.
In the sequel, we suppose that � ∈ (0, �0). Consider i ∈ {1, . . . , k} and the

curve �i . Let ni ∈ N be the unique natural number satisfying

|�i |
2�

(
1 + η

4

)−1 − 1 < ni � |�i |
2�

(
1 + η

4

)−1
. (5.6)

Select ni distinct points (b j,i ) j on �i such that

∀ j, dist�i (b j,i , b j+1,i ) = |�i |
ni

,

where dist�i is the arc-length measure on �i .
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Obviously, the Euclidean distance e j := |b j+1,i − b j,i | satisfies e j � dist�i

(b j,i , b j+1,i ) = |�i |
ni

. Thanks to (5.6) and (5.5), we have,

e j � 2� (1 + η) < �1.

Thus, if D(b j,i , e j ) ⊂ �, we can use (5.4) with � = e j and get,

2e j

(
1 − η

4

)
� 2

|�i |
ni

� 2e j

(
1 + η

4

)
.

Thanks to (5.6), this leads to

e j � |�i |
ni

(
1 − η

4

)
� 2�.

Now, define the index set

Ji = { j : D(b j,i , e j ) ⊂ �},
and Ni = CardJi . Notice that, if j ∈ Ji , then e j � 2� and D(b j,i , �) ⊂
D(b j,i , e j/2) ⊂ �. The sets (D(b j,i , �)) j∈Ji are pairwise disjoint.

Since �i ∩ ∂� is a finite set, then there exists a constant c such that,

if a ∈ �i and dist(a, ∂�) � c�, then D(a, �) ⊂ �.

Consequently, the number Ni satisfies

ni − C � Ni � ni ,

where C > 0 is a constant. Thus, thanks to (5.6) and (5.5),

|�i |
(
1 + η

4

)−1 − C� � Ni × 2� � |�i |
(
1 + η

4

)−1
.

Now, collecting the points (b j,i ) j∈Ji ,i∈{1,··· ,k}, we get the collection of points
on �,

(a j ) j∈J = (b j,i ) j∈Ji ,i∈{1,··· ,k},

such that,

∀ j ∈ J , a j ∈ � and D(a j , �) ⊂ �,

N = CardJ =
k∑

i=1

Ni and |�| =
k∑

i=1

|�i |,

|�|
(
1 + η

4

)−1 − C� � N × 2� � |�|
(
1 + η

4

)−1
. (5.7)

Notice that
⋃

j

(
� ∩ D(a j , �)

)
⊂ �,
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and the arc-length measure∣∣∣∣∣∣
⋃

j

(
� ∩ D(a j , �)

)∣∣∣∣∣∣ =
∫
⋃

j

(
�∩D(a j ,�)

) ds(x) =
∑

j

∫
�∩D(a j ,�)

ds(x),

satisfies

|�| − Cη �

∣∣∣∣∣∣
⋃

j

(
� ∩ D(a j , �)

)∣∣∣∣∣∣ � |�| + Cη.

Thus, the arc-length measure of the set � \⋃ j

(
� ∩ D(a j , �)

)
satisfies

∣∣∣∣∣∣� \
⋃

j

(
� ∩ D(a j , �)

)∣∣∣∣∣∣ � Cη. (5.8)

Step 3. Construction of a test configuration. For each j , select an arbitrary point
x j ∈ D(a j , �) ∩ � and write

∇B0(x j ) = |∇B0(x j )|(cos ν j , sin ν j ),

with ν j ∈ [0, 2π).
Define

L = L j = |∇B0(x j )| H

κ2 , R = R j = L1/3κ�. (5.9)

Thanks to the assumption in (5.2), the following condition holds:

R � 4max(a−1/2L−2/3, 1). (5.10)

We can apply the result of Theorem 3.11.
We define a function w ∈ H1(�) as follows. Consider the set of indices J =

{ j : D(a j , �) ⊂ �} . Let x ∈ � and j ∈ J . If x ∈ D(a j , �) , define

w(x) = eiκ Hφ j uL ,�,ν j (x − a j ), (5.11)

where u R,L ,ν j ∈ H1
0 (D(0, �)) is a minimizer of the functional in (3.36) with

ν = ν j , and φ j is the function constructed in Proposition 4.3. If x �∈
⋃
j �∈J

D(a j , �) ,

we set w(x) = 0 .
Clearly, w ∈ H1(�) .

Step 4. Upper bound of E(w,F).
Notice that curlF = B0 and that the magnetic energy term in (1.1) vanishes for

A = F. Thus, we have

E(w,F) = E0(w,F;�) =
∑

j

E0(w,F; D(a j , �)), (5.12)

where the functional E0 is defined in (1.14).
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Recalling the definition of w, we observe that

E0(w,F; D(a j , �)) = E0(uL ,�,ν j (x − a j ),F − ∇φ j ; D(a j , �)).

Thanks to the choice of φ j , we infer from Proposition 4.3 that
∣∣ |∇B0(x j )|Aapp,ν j (x − a j ) − (F − ∇φ j )

∣∣ � C �3. (5.13)

As a consequence, applying the Cauchy–Schwarz inequality, we get that, for
any δ > 0 ,

E0(w,F; D(a j , �)) � (1 + δ)E0(uL ,�,ν j (x − a j ),

|∇B0(x j )|Aapp,ν j (x − a j ); D(a j , �)) + r1,

where

r1 = C(δκ2 + δ−1κ2H2�6)

∫
D(a j ,�)

|uL ,�,ν j (x − a j )|2 dx .

Recall that uL ,�,ν j being a minimizer, it satisfies

|uL ,�,ν j | � 1.

Thus,

r1 � C(δκ2 + δ−1κ2H2�6)�2. (5.14)

Now, performing the translation x 	→ x − a j , we observe that

E0(w,F; D(a j , �)) � (1 + δ)E0(uL ,�,ν j , |∇B0(x j )|Aapp,ν j ; D(0, �)) + r1.

With L = L j and R = R j in (5.9), we get, in light of Theorem 3.11,

E0(w,A; D(a j , �)) � (1 + δ)egs
(
L j ; (1 − a)R j

)+ C

a1/2

(
1 + L2/3

j

a R2
j

)
+ r1.

Thanks to Theorem 3.8, we deduce that

E0(w,F; D(a j , �)) � 2(1 + δ) (1 − a)R j E(L j ) + C (1 + L−2/3
j )R1/3

j

+ C

a1/2

(
1 + L2/3

j

a R2
j

)
+ r1. (5.15)

Recall the definition of L j and R j in (5.9), and that the number of discs D(a j , �)

is inversely proportional to �, that is of order �−1 .
Substituting (5.15) into (5.12) yields

E(w,F) � 2κ�(1 + δ)(1 − a)

⎛
⎝∑

j

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)⎞
⎠

+ C H−5/9κ13/9�−2/3 + Ca−1/2(�−1 + a−1κ−2�−3) + C r1�
−1.

(5.16)
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Thanks to (5.7) and the upper bound on E(·) obtained in Theorem 3.12, the term

∑
j

2�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)
(5.17)

is of order κ2/H . Thus, (5.16) becomes

E(w,F) � κ

⎛
⎝∑

j

2�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)⎞
⎠+ C(δ + a)

κ3

H

+ C H−5/9κ13/9�−2/3 + Ca−1/2(�−1 + a−1κ−2�−3) + C r1�
−1.

(5.18)

In (5.17), replacing 2� by the arc-length measure of D(a j , �) ∩ � produces an
error η�/2 and the sum becomes a Riemann sum over V� =⋃ j∈J

(
� ∩ D(a j , �)

)
.

The points x j can be selected such that the Riemann sum is a lower Riemann
sum. Thus,

∑
j

2�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)

�
∫

V�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x) + Cη

κ2

H
.

Inserting this into (5.18), we get

E(w,F)�κ

(∫
V�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)
+C(η+δ+a)

κ3

H

+ C H−5/9κ13/9�−2/3 + Ca−1/2(�−1 + a−1κ−2�−3) + C r1�
−1.

As pointed out earlier, the arc-length measure of the set � \ V� does not exceed
Cη. Recall the upper bound on E(·) obtained in Theorem 3.12. In that way, we get

∣∣∣∣∣
∫

�\V�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

∣∣∣∣∣ � Cη
κ2

H
.

Consequently, we deduce the following upper bound:

E(w,F)�κ

(∫
�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)
+C(η+δ+a)

κ3

H

+ C H−5/9κ13/9�−2/3 + Ca−1/2(�−1 + a−1κ−2�−3) + C r1�
−1.

The definition of the ground state energy in (1.5) tells us that Egs(κ, H) �
E(w,F). Recalling the definition of r1 in (5.14) finishes the proof of (5.3). ��
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Proof of Proposition 5.1. We use the upper bound in Lemma 5.2 with the follow-
ing choice of the parameters:

� = κ5/8H−3/4, δ = κ9/8H−3/4. (5.19)

Clearly, the parameters δ and � satisfy as κ → ∞
� 
 δ 
 1.

Let us show that the two conditions in (5.2) are satisfied. Observing that the para-
meter a ∈ (0, 1/2) is fixed, that is independent of κ , the conditions in (5.2) will
follow from

κ� = κ13/8H−3/4 � max
{
a−1/2κ2H−1, H− 1

3 κ
2
3
}
,

which is a consequence of the assumption in Regime I (that is κ3/2 
 H � κ2).
Now, since (5.2) is satisfied, we can apply Lemma 5.2.
The remainder α in Lemma 5.2 satisfies (this simply follows by studying each

individual term in α)

α 
 κ3H−1.

Sending κ to ∞, the upper bound in Lemma 5.2 becomes

lim sup
κ→∞

H

κ3

{
Egs(κ, H)−2κ

(∫
�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)}

� C(η + a).

Since this is true for all η ∈ (0, 1/2) and a ∈ (0, 1/2), we get, by sending η and a
to 0,

lim sup
κ→∞

H

κ3

{
Egs(κ, H) − 2κ

(∫
�

(
|∇B0(x)| H

κ2

)1/3

E

(
|∇B0(x)| H

κ2

)
ds(x)

)}
� 0,

and the conclusion in Proposition 5.1 follows. ��

5.2. Upper Bound: Regime II

In the next proposition, we give an upper bound of the ground state energy in
(1.5) valid in the regime κ−1 
 H � κ3/2.

Proposition 5.3. Let� > 0and ε : R+ → R+ be a function satisfying lim
κ→∞ ε(κ) =

0 and lim
κ→∞ κε(κ) = ∞.

If ε(κ)κ � H � �κ3/2, then the ground state energy in (1.5) satisfies

Egs(κ, H) � κ2
∫

�

g

(
H

κ
|B0(x)|

)
dx + o

(
κ3

H

)
, (5.20)

where g(·) is the function introduced in (3.49).
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Proof. Here, we construct a test function as in (5.21) below. Let ζ = κ−1/16H−1/2

and (Qk,ζ ) be the lattice of squares generated by the square

Qζ =
(

−ζ

2
,
ζ

2

)
×
(

−ζ

2
,
ζ

2

)
.

Notice that ζ satisfies ζ 
 κ
H 
 1. Define

I =
{

k : Qk,ζ ⊂
{
dist(x, �) � M

κ

H

}
and dist(Qk,ζ , �) � Mζ

}
,

where M > 0 is a constant selected sufficiently large so that, if dist(x, �) > M κ
H ,

then |B0(x)| � κ
H . Notice that, since B0 vanishes non-degenerately on �, if k ∈ I,

then

|B0(x)| � M ′ζ > 0 in Qk,ζ .

For all k ∈ I, let ak be the center of the square Qk,ζ and select an arbitrary point
xk ∈ Qk,ζ .

If r > 0 and b > 0, let ur ∈ H1
0 (Qr ) be the minimizer of the ground state

energy Fb,Qr introduced in (3.47). For all k ∈ I, let rk = ζ
√

κ H |B0(xk)|, bk =
H
κ

|B0(xk)|, uk = urk and ϕk be the gauge function satisfying (see Proposition 4.3)

|F(x) − (B0(xk)A0(x − ak) + ∇ϕk)| � Cζ 2, in Qk,ζ .

Define the test function v as follows:

v(x) =
⎧⎨
⎩

e−iφk (x) uk
( rk

ζ
(x − ak)

)
if x ∈ Qk,ζ ⊂ {B0(x) > 0},

e−iφ j (x) uk
( rk

ζ
(x − ak)

)
if x ∈ Qk,ζ ⊂ {B0(x) < 0},

0 otherwise.
(5.21)

We outline the computation of E0(v,F). The details of the computations are given
in [3]. In every square Qk,ζ we have

E0(v,F;Qk,ζ ) � (1 + κ−1/16)
Fbk ,Qrk

(uk)

bk
+ κ1/16κ2H2ζ 6.

Thanks to the assumption on H and the definition of ζ = κ−1/16H−1/2, we have
rk � 1. Thus, we may use (3.51), and write

E0(v,F;Qk,ζ ) � (1 + κ−1/16)
r2k
bk

(
g(bk) + C

√
bk

rk

)
+ κ1/16κ2H2ζ 6

= (1 + κ−1/16)ζ 2κ2
(

g

(
H

κ
|B0(xk)|

)
+ C

1

ζκ

)
+ κ1/16κ2H2ζ 6.

We sum over k and select the points xk as follows:

|B0(xk)| = min{|B0(x)| : x ∈ Qk,ζ }.
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In that way, we obtain

E0(v,F) =
∑
k∈I

E0(v,F;Qk,ζ )

� (1 + κ−1/16)κ2
∫
⋃

k∈I Qk,ζ

(
g

(
H

κ
|B0(x)|

)
+ C

1

ζκ
+ κ1/16H2ζ 4

)
dx

� (1 + κ−1/16)κ2
∫
⋃

k∈I Qk,ζ

g

(
H

κ
|B0(x)|

)
dx + Cκ1/16 κ2

Hζ
+ Mκ−1/16 κ3

H
.

Notice that, since g(b) = 0 for b � 1 and B0 vanishes non-degenerately on �, then

∫
⋃

k∈I Qk,ζ

g

(
H

κ
|B0(x)|

)
dx �

∫
�

g

(
H

κ
|B0(x)|

)
dx + κ

H
o(1).

Thus,

E0(v,F) � (1 + κ−1/16)κ2
∫

�

g

(
H

κ
|B0(x)|

)
dx

+ Cκ1/16 κ2

Hζ
+ Mκ−1/16 κ3

H
+ κ3

H
o(1).

Since H � κ3/2, then

κ1/16 κ2

Hζ
= κ1/8 H1/2

κ

κ3

H

 1

and

E0(v,F) � (1 + κ−1/16)κ2
∫

�

g

(
H

κ
|B0(x)|

)
dx + κ3

H
o(1).

Since Egs(κ, H) � E(v,F) = E0(v,F), then we get the upper bound in (5.20).
��

6. Exponential Decay of the Order Parameter

The aim of this section is to prove that the order parameter ψ is exponentially
small (in the L2-norm) away from the curves where the magnetic field vanishes.
This bound is needed in Section 7 to obtain a lower bound of the ground state
energy in (1.5).

6.1. A Rough Bound

In this subsection we give a rough bound valid for any order parameter ψ .
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Theorem 6.1. Let � > 0 and ε : R → R+ such that lim
κ→∞ κ ε(κ) = ∞ and

lim
κ→∞ ε(κ) = 0 . There exist constants C and κ0 such that, if (ψ,A) is a critical

point of the functional in (1.1), κ � κ0 and

ε(κ)κ2 � H � �κ2, (6.1)

then

‖ψ‖2 � C
( κ

H

)1/6
, (6.2)

‖ curl(A − F)‖2 � C

H

( κ

H

)1/6
, (6.3)

and

‖(∇ − iκ HA)ψ‖2 � Cκ
( κ

H

)1/6
. (6.4)

An important ingredient in the proof of this theorem is:

Proposition 6.2. Let � > 0 and ε : R → R+ such that lim
κ→∞ κ ε(κ) = ∞ and

lim
κ→∞ ε(κ) = 0 . There exist positive constants C, �0 and κ0 such that the following

is true:
For � ∈ (0, �0) , a ∈ (0, 1] and h ∈ C∞

c (�) such that

supp h ⊂ {x ∈ � : dist(x, ∂�) > � & dist(x, �) >
√

a �} and ‖h‖∞ � 1,

if (ψ,A) is a critical point of the functional in (1.1), κ � κ0 and ε(κ)κ2 � H �
�κ2, then

∫
�

|(∇ − iκ HA)hψ |2 dx � 1

C
κ
(
H

√
a � − C2) ∫

�

|hψ |2 dx

−Cκ

∫
�

(1 − h2)|ψ |2 dx .

(6.5)

Proof. The support of the function hψ does not meet the boundary of � and �.
We can use the celebrated inequality

∫
�

|(∇ − iκ HA)hψ |2 dx � κ H
∫

�

| curlA| |h ψ |2 dx .

The simple decomposition curlA = curlF+curl(A−F) and the triangle inequality
yield

∫
�

|(∇ − iκ HA)hψ |2 dx � κ H
∫

�

| curlF| |hψ |2 dx

−κ H
∫

�

| curlA − curlF| |hψ |2 dx . (6.6)
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By assumption, ∇B0 does not vanish on �, hence

| curlF| = |B0(x)| � 1

M

√
a � in {dist(x, �) �

√
a �} (6.7)

for some constant M > 0 .
Thus, ∫

�

| curlF| |hψ |2 dx � 1

M

√
a �

∫
�

|hψ |2 dx . (6.8)

Next we use the Cauchy-Schwarz inequality and the inequality in (4.5) as fol-
lows

κ H
∫

�

| curlA − curlF| |hψ |2 dx � κ H‖ curlA − curlF‖2
(∫

�

|hψ |4 dx

)1/2

� Cκ‖ψ‖2
(∫

�

|hψ |4 dx

)1/2
.

Since ‖ψ‖∞ � 1 and ‖h‖∞ � 1, we get, further, that

‖ψ‖2
(∫

�

|hψ |4 dx

)1/2
�
∫

�

|ψ |2 dx =
∫

�

|hψ |2 dx +
∫

�

(1 − h2)|ψ |2 dx .

Therefore, we have

κ H
∫

�

| curlA − curlF| |hψ |2 dx � Cκ

∫
�

|hψ |2 dx + Cκ

∫
�

(1 − h2)|ψ |2 dx .

(6.9)

Inserting (6.9) and (6.8) into (6.6) finishes the proof of the proposition. ��
Proof of Theorem 6.1. Let � > 0 and �� = {x ∈ � : dist(x, ∂�) > � & dist
(x, �) > �}. Select a function h ∈ C∞

c (�) satisfying

0 � h � 1 in �, h = 1 in �2�, h = 0 in � \ ��,

and

|∇h| � C

�
in �,

where C is a constant.
Thanks to the bound ‖ψ‖∞ � 1 and the assumptions on h, we have
∫

�

|ψ |2 �
∫

|hψ |2 + C�, (6.10)
∫

�

|(∇ − iκ HA)ψ |2 dx �
∫

�

|h(∇ − iκ HA)ψ |2 dx (6.11)

� 1

2

∫
�

|(∇ − iκ HA)hψ |2 dx − C
∫

�

|∇h|2 |ψ |2 dx . (6.12)
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Thanks to the estimate on the gradient of h, we may write

1

2

∫
�

|(∇−iκ HA)hψ |2 dx−κ2
∫

�

|hψ |2 dx−C
(
�κ2+�−1) � E0(ψ,A;�) � 0,

where E0(ψ,A;�) is introduced in (4.3).
Now, we use Proposition 6.2 with a = 1 and get

( κ

2C
(H� − C2) − κ2

) ∫
�

|hψ |2 dx � C(� + �−1)κ2.

Selecting � = (κ/H)1/3, we get for κ large and H satisfying (6.1)∫
�

|hψ |2 dx � C
( κ

H

)1/3
.

Now, thanks to (6.10), the first inequality (6.2) in Theorem 6.1 is proved. Now, the
inequality (6.3) (resp. (6.4)) is simply a consequence of (4.5)) (resp. (4.6)). ��

6.2. Exponential Bound

In the next theorem, we establish that every minimizing order parameter decays
exponentially fast away from the set � where the magnetic field vanishes, provided
that κ 
 H � κ2.

Theorem 6.3. Let � > 0 and ε : R → R+ such that lim
κ→∞ κ ε(κ) = ∞ and

lim
κ→∞ ε(κ) = 0 . There exist positive constants C, m0 and κ0 such that, if (ψ,A) is

a critical point of the functional in (1.1), κ � κ0 , ε(κ)κ2 � H � �κ2, then
∫

�

exp

(
2m0

H

κ
t (x)

)(
1

κ2 |(∇ − iκ HA)ψ |2 + |ψ(x)|2
)

dx

� C
∫

{t (x)�C κ
H }

|ψ(x)|2 dx,

where t (x) = dist(x, �).

Proof. Let

ζ = (κ H)−1/3. (6.13)

The assumption on κ and H ensures that

κ−1 � ζ 
 1. (6.14)

We will prove Theorem 6.3 by establishing the following two estimates (away from
the boundary or in a neighborhood of the boundary):

∫
{dist(x,∂�)�ζ }

e2m0
H
κ

t (x)

(
1

κ2 |(∇ − iκ HA)ψ |2 + |ψ(x)|2
)

dx

� C1

∫
{t (x)�C κ

H }
|ψ(x)|2 dx, (6.15)
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and
∫

{dist(x,∂�)�ζ }
e2m0

H
κ

t (x)

(
1

κ2 |(∇ − iκ HA)ψ |2 + |ψ(x)|2
)

dx

� C2

∫
{t (x)�C κ

H }
|ψ(x)|2 dx, (6.16)

expressing the localization of the energy of ψ near �.
The proof of (6.15) and (6.16) is divided into several steps.

Step 1.

Consider the parameters

ξ ∈ (1,∞), σ = H

κ2 , � = ξ

σκ
. (6.17)

Let

f (x) = χ(x) exp(�−1 t (x)),

and

g(x) = η(x) exp(�−1t (x)).

The functions χ ∈ C∞
c (�) and η ∈ C∞(�) satisfy

⎧⎪⎪⎨
⎪⎪⎩

0 � χ � 1 in �,

χ = 1 in {dist(x, ∂�) � ζ }⋃{t (x) � �},
χ = 0 in {dist(x, ∂�) � 1

2ζ }⋃{t (x) � 1
2�},|∇χ | � Cκ in �.

(6.18)

and
⎧⎪⎪⎨
⎪⎪⎩

0 � η � 1 in �,

η = 1 in {dist(x, ∂�) � ζ }⋃{t (x) � �},
η = 0 in {dist(x, ∂�) � 2ζ }⋃{t (x) � 1

2�},|∇η| � Cκ in �.

(6.19)

Here we have used for the control of the gradient (6.14) and that

κ−1 
 � � 1.

Using the Ginzburg–Landau equation in (4.1), we write
∫

�

(
|(∇ − iκ HA) f ψ |2 − |∇ f |2|ψ |2

)
dx = κ2

∫
�

(|ψ |2 − |ψ |4) f 2 dx

� κ2
∫

�

| f ψ |2 dx, (6.20)
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and ∫
�

(
|(∇ − iκ HA)gψ |2 − |∇g|2|ψ |2

)
dx = κ2

∫
�

(
|ψ |2 − |ψ |4

)
g2 dx

� κ2
∫

�

|gψ |2 dx . (6.21)

Step 2.

In this step, we determine a lower bound of
∫

�

|(∇ − iκ HA) f ψ |2 dx . Notice

that f ψ ∈ C∞
c (�). Consequently, we may write (see (6.6))
∫

�

|(∇ − iκ HA) f ψ |2 dx � κ H
∫

�

| curlF| | f ψ |2 dx

−κ H
∫

�

| curlA − curlF| | f ψ |2 dx .

We use the following estimates
∫

�

| curlF| | f ψ |2 dx � 1

M
�

∫
�

| f ψ |2 dx [by (6.7)]
∫

�

| curlA − curlF| | f ψ |2 dx � C

H

( κ

H

)1/6 ‖ f ψ‖24 [by (6.3)],

and obtain∫
�

|(∇ − iκ HA) f ψ |2 dx � 1

M
κ H�

∫
�

| f ψ |2 dx − Cκ
( κ

H

)1/6 ‖ f ψ‖24.

Notice that f ψ ∈ C∞
c (�) ⊂ H1(R2) . By the continuous Sobolev embedding of

H1(R2) in L4(R2) and a scaling, we get for all η ∈ (0, 1):

‖ f ψ‖24 = ∥∥ | f ψ | ∥∥24
� CSob

(
η‖∇| f ψ |‖22 + η−1‖ f ψ‖22

)

� CSob

(
η‖(∇ − iκ HA) f ψ‖22 + η−1‖ f ψ‖22

)
[By the diamagnetic inequality].

We select η = 1
CCSob

κ−1
(

κ
H

)− 1
6 and obtain

∫
�

|(∇ − iκ HA) f ψ |2 dx �
(κ H�

2M
− Ĉκ2

( κ

H

)1/3 ) ∫
�

| f ψ |2 dx . (6.22)

Thanks to the choice of the parameters in (6.17), the lower bound in (6.22) becomes

∫
�

|(∇ − iκ HA) f ψ |2 dx �
(ξκ2

2M
− Ĉκ2

( κ

H

)1/3 ) ∫
�

| f ψ |2 dx . (6.23)
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Step 3.

We insert (6.23) into (6.20) and use that

∫
�

|∇ f |2|ψ |2 dx � 2�−2
∫

�

| f ψ |2 dx + 2
∫

�

|∇χ |2 exp(2�−1t (x))|ψ |2 dx

� 2�−2
∫

�

| f ψ |2 dx + Cκ2
∫

�

|gψ |2 dx + Cκ2
∫

{�−1t (x)�1}
|ψ |2 dx,

(6.24)

to obtain
∫

�

(
1

2
|(∇ − iκ HA) f ψ |2 + 1

2

(
ξκ2

2M
− 2

σ 2

ξ2
κ2 − Ĉκ2

( κ

H

)1/3) | f ψ |2 dx

)

� Ĉκ2
∫

�

|gψ |2 dx + Ĉκ2
∫

{�−1t (x)�1}
|ψ |2 dx . (6.25)

Step 4.

We will determine a lower bound of
∫

�

|(∇ − iκ HA)gψ |2 dx . We cover the

set

�ζ,� = {x ∈ � : dist(x, ∂�) � 2ζ, dist(x, �) � �}
by a family of squares (in tubular coordinates)

K(a j , ζ ) = {x ∈ � : dist(x, ∂�) � 2ζ, dist∂�(p(x), a j ) � 2ζ },
where:

• dist∂� is the arc-length distance along ∂�.
• if x ∈ �ζ,� and ζ is sufficiently small, p(x) is the unique point on ∂� satisfying
dist(x, p(x)) = dist(x, ∂�).

• for all j , a j ∈ ∂� ∩ �ζ,�.

Let (χ j ) be a partition of unity such that

∑
j

χ2
j = 1,

∑
j

|∇χ j |2 � Cζ−2, suppχ j ⊂ K(a j , 2ζ ).

This holds the decomposition formula

∫
�

|(∇ − iκ HA)gψ |2 dx =
∑

j

∫
�

|(∇ − iκ HA)χ j gψ |2 dx −
∑

j

∫
�

|∇χ j |2 |gψ |2 dx

�
∑

j

∫
�

|(∇ − iκ HA)χ j gψ |2 dx − Cζ−2
∫

�

|gψ |2 dx .

(6.26)
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Next, we define the gauge function

α j = (A(a j ) − F(a j )) · (x − a j ).

Let α ∈ (0, 1) be a constant. Using the Cauchy-Schwarz inequality, Proposition
4.2 and Theorem 6.1, we may write∫

�

|(∇ − iκ HA)χ j gψ |2 dx =
∫

�

|(∇ − iκ H(A − ∇α j ))e
−iκ Hα j χ j gψ |2 dx

� 1

2

∫
�

|(∇ − iκ HF)e−iκ Hα j χ j gψ |2 dx − Cκ2
( κ

H

)1/3
ζ 2α
∫

�

|χ j gψ |2 dx .

(6.27)

Recall the definition of the magnetic potential A0 in (3.46). There exists a gauge
function ϕ j satisfying (see Proposition 4.3)∣∣F(x) − (B0(x j )A0(x − a j ) + ∇ϕ j )

∣∣ � Cζ 2 in K j (a j , ζ ).

Again, using the Cauchy-Schwarz inequality, we may write∫
�

|(∇ − iκ HF)e−iκ Hα j χ j gψ |2 dx

� 1

2

∫
�

|(∇ − iκ H B0(a j )A0(x − a j ))e
−iκ Hϕ j e−iκ Hα j χ j gψ |2 dx

−κ2H2ζ 4
∫

�

|χ j gψ |2 dx . (6.28)

Now,weare allowed touse the analysis of theNeumann realizationof theSchrödinger
operator with a constant magnetic field equal to κ H B0(a j ) in our case. In the half-
plane case, the ground state energy of this operator is �0κ H |B0(a j )|, where the
constant �0 is universal and satisfies �0 ∈ ( 12 , 1). The result remains asymp-
totically true in general domains with smooth and compact boundary [20]. More
precisely, there exists a function

err : R+ → R+,

such that lim|b|→∞ err(b) = 0 and

∀ b, λN (b) � �0|b| − |b| err(b),

where λN (b) is the lowest eigenvalue of the operator −(∇ − ibA0)
2 in L2(�) with

Neumann boundary condition.
Notice that by the assumptions on � and the points (a j ), we may use (6.7) with

x = a j , and get

∀ j, κ H |B0(a j )| � 1

M
� κ H � 1.

Moreover, the magnetic potentials A0(x) and A0(x − a j ) are gauge equivalent
since

A0(x − a j ) = A0(x) − A0(a j ) = A0(x) − ∇u j (x),

with u j (x) = A0(a j ) · x .
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In that way, when κ is sufficiently large, we may write
∫

�

|(∇ − iκ H B0(a j )A0(x − a j ))e
−iκ Hϕ j e−iκ Hα j χ j gψ |2 dx

� �0

2
κ H |B0(a j )|

∫
�

|χ j gψ |2 dx � 1

4M
�κ H

∫
�

|χ j gψ |2 dx . (6.29)

Collecting the estimates in (6.26), (6.27), (6.28) and (6.29), we get
∫

�

|(∇ − iκ HA)gψ |2 dx

� κ

(
H�

4M
− Cκ H2ζ 4 − C

κζ 2 − Cκ
( κ

H

)1/3
ζ 2α
)∫

�

|gψ |2 dx . (6.30)

Recall the definition of the parameters in (6.17) and (6.13):

ζ = (Hκ)−1/3 = σ−1/3κ−1.

We insert (6.30) into (6.21) and use that
∫

�

|∇g|2|ψ |2 dx � 2�−2
∫

�

|gψ |2 dx + 2
∫

�

|∇η|2 exp(2�−1t (x))|ψ |2 dx

� 2�−2
∫

�

|gψ |2 dx + Cκ2
∫

�

| f ψ |2 dx

+ Cκ2
∫

{�−1t (x)�1}
|ψ |2 dx

to obtain
∫

�

(
1

2
|(∇ − iκ HA)gψ |2 + 1

2

(ξκ2

4M
− 2�−2 − Cσ 2/3κ

−Cκ
( κ

H

)1/3
ζ 2α
)
|gψ |2 dx

)

� Cκ2
∫

�

| f ψ |2 dx + Cκ2
∫

{�−1 t (x)�1}
|ψ |2 dx . (6.31)

Step 5.
Summing the two inequalities in (6.25) and (6.31), we get

1

2

∫
�

(|(∇ − iκ HA)gψ |2 + |(∇ − iκ HA) f ψ |2) dx

+ 1

2

∫
�

(
ξκ2

4M
− C

σ 2

ξ2
κ2 − Cκ2 − Cσ 2/3κ − Cκ

( κ

H

)1/3
ζ 2α
)

(| f ψ |2 + |gψ |2)
� Cκ2

∫
{�−1 t (x)�1}

|ψ |2 dx . (6.32)
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Recall that σ satisfies κ−1 
 σ � �. We select ξ sufficiently large such that

ξ

4M
− C

�2

ξ2
− C > 2.

Since
(

κ
H

)1/3 
 1 and ζ 
 1, we get,

∫
�

(
1

2
|(∇ − iκ HA) f ψ |2 + κ2

2
| f ψ |2 dx

)
� Cκ2

∫
{�−1 t (x)�1}

|ψ |2 dx,

and
∫

�

(
1

2
|(∇ − iκ HA)gψ |2 + κ2

2
|gψ |2 dx

)
� Cκ2

∫
{�−1 t (x)�1}

|ψ |2 dx .

Thanks to the definitions of f and g, the two aforementioned inequalities yield the
inequalities in (6.15) and (6.16) with m0 = 1/ξ . ��

As a consequence of Theorem 6.3, we get an improvement of the bound given
in Theorem 6.1.

Proposition 6.4. Under the assumptions of Theorem 6.3, it holds,

‖ψ‖2 � C

√
κ

H
.

Combining the results in Propositions 4.1, 4.2 and 6.4, we obtain the improved
estimates:

Proposition 6.5. Under the assumptions of Theorem 6.3 and Proposition 4.2, it
holds,

‖ curlA − curlF‖2 � C

H

√
κ

H
,

‖A − F‖C1,α(�) � Cα

√
κ

H
,

‖A − F‖C0,α(�) � Ĉα

H

√
κ

H
.

7. Energy Lower Bound

In this section, we will derive lower bounds of the following energy:

E0(ψ,A; U ) =
∫

U

(
|(∇ − iκ HA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4
)

dx, (7.1)

where U ⊂ R
2 is an open set such that U ⊂ �.
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Proposition 7.1. Let � > 0 and ε : R → R+ such that lim
κ→∞ κ ε(κ) = ∞ and

lim
κ→∞ ε(κ) = 0 . For α ∈ (0, 1), there exist positive constants C and κ0 such

that, for � ∈ (0, 1) , δ ∈ (0, 1) , a j ∈ �, D(a j , �) ⊂ �, x j ∈ D(a j , �) ∩ �,
h ∈ C∞

c (D(a j , �)) a function satisfying ‖h‖∞ � 1, (ψ,A) a critical point of the
functional in (1.1), κ � κ0, and

ε(κ)κ2 � H � �κ2,

the following holds:

E0(h ψ,A; D(a j , �)) � (1 − δ) 2� κ

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)
− r,

where

r = C

(
δκ2 + δ−1

(
κ3

H
�2α + κ2H2�6

))∫
D(a j ,�)

|hψ |2 dx .

Proof. Let α j = (A(a j ) − F(a j )) · (x − a j ). Thanks to Proposition 6.5, we have

∣∣A − (F + ∇α j )
∣∣ � C ‖A − F‖C0,α(�)|x − a j |α � C

H

√
κ

H
�α in D(a j , �).(7.2)

Notice that

E0(h ψ,A; D(a j , �))

= E0(h ψ e−iκ Hα j ,A − ∇α j ; D(a j , �))

� (1 − δ)E0(h ψ e−iκ Hα j ,F; D(a j , �))

−C

(
δκ2
∫

D(a j ,�)

|hψ |2 dx+δ−1κ2H2
∫

D(a j ,�)

|A − (F+∇α j )|2|hψ |2 dx

)
.

(7.3)

Using (7.2), we get,

E0(h ψ,A; D(a j , �)) � (1 − δ)E0(h ψ e−iκ Hα j ,F; D(a j , �))

−C

(
δκ2 + δ−1 κ3

H
�2α
)∫

D(a j ,�)

|hψ |2 dx . (7.4)

Let

f j = h ψ e−iκ Hα j eiκ Hφ j ,

where φ j is defined in Proposition 4.3.
Notice that f j ∈ H1

0 (D(a j , �)), ‖ f j‖∞ � 1 and, using (4.9),

E0(h ψ e−iκ Hα j ,F; D(a j , �))

= E0( f j ,F − ∇φ j ; D(a j , �))

� (1 − δ)E0( f j , |∇B0(x j )|Aapp,ν j (x − a j ); D(a j , �))

− C(δκ2 + δ−1κ2H2�6)

∫
D(a j ,�)

| f j |2 dx . (7.5)
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We will use Theorem 3.11 to get a lower bound of the energy

E0( f j , |∇B0(x j )|Aapp,ν j (x − a j ); D(a j , �)).

Define

L = L j = |∇B0(x j )| H

κ2 . (7.6)

Performing the translation x 	→ x + a j , we get that

E0( f j , |∇B0(x j )|Aapp,ν j (x − a j ); D(a j , �)) = G( f j ) � Egs,r(κ, L; �). (7.7)

Here G is the functional in (3.36) and Egs,r(κ, L; �) is the ground state energy in
(3.37).
Let

R = L1/3κ�.

Now, Theorems 3.11 and 3.8 applied successively tell us that

E0
(

f j , |∇B0(x j )|Aapp,ν j (x − a j ); D(a j , �)
)

� egs,disc(ν, L; R)

� 2R E(L) = 2L1/3κ� E(L).

Recall the definition of L in (7.6). We insert the aforementioned estimate into (7.7).
In that way, we infer from (7.5) and (7.4) the lower bound of Proposition 7.1. ��
Proposition 7.2. For r > 0, h ∈ C∞(R2) satisfying ‖h‖∞ � 1, and (ψ,A) a
critical point of the functional in (1.1), the following lower bound holds:

E0(h ψ,A; D(a j , r) ∩ �) � −πκ2r2. (7.8)

Proof. Notice that all terms in E0(h ψ,A; D(a j , r) ∩ �) are positive except the
integral of |hψ |2. Thus,

E0(h ψ,A; D(a j , r) ∩ �) � −κ2
∫

�∩D(a j ,r)

|hψ |2 dx .

This finishes the proof of the proposition upon using ‖hψ‖∞ � 1 and ‖ψ‖∞ � 1 .
��
Theorem 7.3. Let � > 0 and ε : R → R+ such that lim

κ→∞ κ ε(κ) = ∞ and

lim
κ→∞ ε(κ) = 0 .

There exist κ0 > 0 and a function err : R → R such that the following is true:

(1) lim
κ→∞ err(κ) = 0.

(2) Let D ⊂ � be a regular open set, h ∈ C∞(D), ‖h‖∞ � 1, (ψ,A) a critical
point of the functional in (1.1), κ � κ0 and ε(κ)κ2 � H � �κ2.
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(a) If H � κ3/2, then,

E0(hψ,A; D)�κ

(∫
�∩D

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)

+κ3

H
err(κ). (7.9)

(b) If H � κ3/2, then,

E0(hψ,A; D) � κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx + κ3

H
err(κ). (7.10)

Proof. Consider three parameters

a ∈ (0, 1), � ∈ (0, 1), δ ∈ (0, 1),

and define the following sets:

D1 = {x ∈ � : dist(x, �) < 2
√

a �},
D2 = {x ∈ � : dist(x, �) >

√
a �}.

Let (χ j ) be a partition of unity satisfying

2∑
j=1

χ2
j = 1,

2∑
j=1

|∇χ j |2 � C(a�2)−1, suppχ j ⊂ D j ( j ∈ {1, 2}).

This holds the following decomposition of the energy:

E0(hψ,A; D)�E0(χ1hψ,A; D1)+E0(χ2hψ,A; D j ) −
2∑

j=1

∫
�

|∇χ j |2 |hψ |2 dx .

The error terms are controlled using the pointwise bounds on |h|, |ψ |, |∇χ j |, and
the conditions on the support of χ j . We obtain the following lower bound:

E0(hψ,A; D) � E0(χ1hψ,A; D1) + E0(χ2hψ,A; D2) − C(
√

a �)−1. (7.11)

The formula in (7.11) is the key to compute a lower bound of the ground state
energy Egs(κ, H) as in Theorem 1.1. Loosely speaking, we will do the following:

• Estimate the energy E0(χ1hψ,A; D1) using the limiting function E(·) (this is
the energy close to the set �) ;

• Estimate the energy E0(χ2hψ,A; D2) using the limiting function g(·) (this is the
energy which is ‘relatively’ away from �).

Here we will need to split into the two regimes displayed in Theorem 1.1. In the
regime κ3/2 
 H � κ2, estimatingE0(χ1hψ,A; D1) via the limiting function E(·)
will produce small errors. In the regime H � κ3/2, the errors will be large, so that
themain contributions in (7.11) will be captured through the term E0(χ2hψ,A; D2)

via the function g(·). For the moment, we cannot explain this surprising behavior
through intuitive/physical terms.
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The Regime H � κ3/2

In this regime, we shall see that E0(χ1hψ,A; D1) is the leading term and
E0(χ2hψ,A; D2) is an error term.

Lower bound of the term E0(χ1hψ,A; D1). Consider a constant a ∈ (0, 1) and
distinct points (a j ) in � such that

∀ j, 2� − a� � dist(a j , a j+1) � 2� − a

2
�.

Choose the constant a sufficiently small so that

D1 = {x ∈ � : dist(x, �) < 2
√

a �} ⊂
⋃

j

D(a j , �).

Consider a partition of unity satisfying

∑
j

f 2j = 1 in D1, supp f j ⊂ D(a j , �),
∑

j

|∇ f j |2 � C

a2�2
.

Notice that the support of each ∇ f j is in D(a j , �) ∩ D(a j+1, �). Since the points
(a j ) are selected in such a manner that dist(a j , a j+1) − 2� ≈ a�, then the area of
the domain D(a j , �) ∩ D(a j+1, �) is proportional to

√
a � × a� = a

√
a �2.

The partition of unity ( f j ) allows us to decompose the energy as follows:

E0(χ1hψ,A; D1) �
∑

j

E0( f j χ1hψ,A; D1) −
∑

j

∥∥ |∇ f j | χ1hψ
∥∥2
2

�
∑

j

E0(h j ψ,A; D1) − C√
a �

, (7.12)

where h j = f j χ1hψ is supported in D ∩ D(a j , �) .
If D(a j , �) ∩ ∂� �= ∅, then we can apply Proposition 7.2. Since � ∩ ∂� is a finite
set, then we get

∑
D(a j ,�)∩∂� �=∅

E0(h j ψ,A; D1) � −Cκ2�2.

Let δ ∈ (0, 1) be a constant. We select the parameter � as follows:

� = δH−1/3. (7.13)

In that way, we obtain

� 
 1, κ2�2 
 κ3

H
,

1√
a �


 κ3

H
,

and

∑
D(a j ,�)∩∂� �=∅

E0(h j ψ,A; D1) � κ3

H
o(1) (κ → ∞). (7.14)
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If D(a j , �) ⊂ Dc, then h j = 0 and

E0(h j ψ,A; D1) = 0.

Now, if j ∈ I = { j : D(a j , �) ⊂ � and D(a j , �) ∩ D �= ∅}, then we can apply
Proposition 7.1 and get

∑
j∈I

E0(h j ψ,A; D1) � (1 − δ) 2� κ
∑
j∈I

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)

−C

(
δκ2 + δ−1

(
κ3

H
�2α + κ2H2�6

))∫
�

|hψ |2 dx,

where, for all j , x j is an arbitrary point in D(a j , �).

Thanks to Proposition 6.4 and the choice of � in (7.13), we get, further, that

∑
j∈I

E0(h j ψ,A; D1) � (1 − δ) 2� κ
∑
j∈I

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)

−C
(
δ + δ2α−1 κ

H
H−2α/3

) κ3

H
.

Theorem 3.12 allows us to write∣∣∣∣∣
(

|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)∣∣∣∣∣ � C
κ2

H
. (7.15)

Consequently,

∑
j∈I

E0(h j ψ,A; D1) � 2� κ
∑
j∈I

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)

−C
(
δ + δ2α−1 κ

H
H−2α/3

) κ3

H
.

Inserting this and (7.14) into (7.12), and using the fact that (
√

a �)−1 
 κ3

H , we get

E0(χ1hψ,A; D1) � κ
∑
j∈I

2�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)

−C
(
δ + δ2α−1 κ

H
H−2α/3

) κ3

H
. (7.16)

Thanks to (7.15), the sum

∑
j∈I

2�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)
(7.17)
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is of order κ2/H . Let η ∈ (0, 1). Select �0 sufficiently small such that, for all
� ∈ (0, �0), the arc-length measure of D(a j , �) ∩ � along � satisfies

2� − �
η

2
� |D(a j , �) ∩ �| � 2� + �

η

2
.

Thus, replacing 2� by |D(a j , �)∩�| in the sum in (7.17) produces an error of order
η�. Now, select x j ∈ D(a j , �) such that

|∇B0(x j )|1/3 E

(
|∇B0(x j )| H

κ2

)
= max

D(a j ,�)

|∇B0(x)|1/3 E

(
|∇B0(x)| H

κ2

)
.

In that way, the sum in (7.17) satisfies

∑
j∈I

2�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)

�
∑
j∈I

(∫
D(a j ,�)∩�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)
dx

)
− Cη

κ2

H
.

(7.18)

Recall (7.15). Since the balls
(
D(a j , �)

)
overlap in a region of length O(a�), and

the number of these balls is inversely proportional to �, then

∑
j∈I

(∫
D(a j ,�)∩�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)
dx

)

�
∫

D∩�

(
|∇B0(x j )| H

κ2

)1/3
E

(
|∇B0(x j )| H

κ2

)
dx − Ca

κ2

H
.

Inserting this into (7.18), then inserting the resulting inequality into (7.16), we get

E0(χ1hψ,A; D1) � κ

∫
�∩D

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

−C
(

a + δ + δ2α−1 κ

H
H−2α/3 + η

) κ3

H
. (7.19)

Recall that α > 0. Taking κ → ∞, we get

lim inf
κ→∞

H

κ3

{
E0(χ1hψ,A; D1) − κ

∫
�∩D

(
|∇B0(x)| H

κ2

)1/3

E

(
|∇B0(x)| H

κ2

)
ds(x)

}

� −C(a + δ + η).
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Taking η → 0+, we obtain

lim inf
κ→∞

H

κ3

{
E0(χ1hψ,A; D1) − κ

∫
�∩D

(
|∇B0(x)| H

κ2

)1/3

E

(
|∇B0(x)| H

κ2

)
ds(x)

}

� −C(a + δ). (7.20)

Lower bound of the term E0(χ2hψ,A; D2) Since H � κ3/2, the parameter �

defined in (7.13) satisfies

� = δH−1/3 = δ
κ

H

H2/3

κ
� κ

H
.

Thanks to the exponential decay in Theorem 6.3, there holds

κ2
∫

D2

|ψ |2 dx 
 κ3

H
,

and

E0(χ2hψ,A; D2) � −κ3

H
o(1) (κ → ∞),

which implies

lim inf
κ→∞

H

κ3 E0(χ2hψ,A; D2) � 0. (7.21)

Inserting (7.21) and (7.20) into (7.11), we get

lim inf
κ→∞

H

κ3

(
E0(hψ,A; D) − κ

∫
�∩D

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)

� −C(a + δ).

Now, we take the limit (a, δ) → (0, 0) to obtain

lim inf
κ→∞

H

κ3

(
E0(hψ,A; D) − κ

∫
�∩D

(
|∇B0(x)| H

κ2

)1/3

E

(
|∇B0(x)| H

κ2

)
ds(x)

)
� 0.

Thus, we arrive at

E0(hψ,A; D) � κ

∫
�∩D

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)− κ3

H
o(1).

(7.22)

This completes the proof of Theorem 7.3 in the case H � κ3/2.
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The Regime H � κ3/2.

In this regime, we shall see that E0(χ1hψ,A; D1) is an error term and E0(χ2hψ,

A; D2) is the leading term.
Since H � κ3/2, the parameter � introduced in (7.13) satisfies

� � δ
κ

H
.

Consequently, we have

E0(χ1hψ,A; D1) � −κ2
∫

�

|χ1hψ |2 dx � Cκ2� � −δ
κ3

H
. (7.23)

Unlike the regime H � κ3/2, we can no more ignore the energy in {√a � �
dist(x, �) � κ

H }.

We introduce the two parameters

m > 1 and ζ ∈ (0, �), (7.24)

and the domain,

U =
{

x ∈ D2 : dist(x, �) � m
κ

H

}
. (7.25)

Thanks to the exponential decay in Theorem 6.3, we get

κ2
∫

U
|ψ |2 dx � Ce−2m m0

κ3

H

and

E0(χ2hψ,A; U ) � −Ce−2m m0
κ3

H
(7.26)

Our next task is to determine a lower bound of the energy E0(χ2hψ,A; D2\U ).
Consider for ζ ∈ (0, 1) the lattice of squares (Qk,ζ )k generated by the square

Qζ =
(

−ζ

2
,
ζ

2

)
×
(

−ζ

2
,
ζ

2

)
.

Let

Jblk = {k : Qk,ζ ⊂ D2 \ U and Qk,ζ ∩ ∂� = ∅},
Jbnd,1 = {k : k �∈ Jblk, Qk,ζ ∩ (D2 \ U ) �= ∅ and Qk,ζ ∩ ∂� = ∅},
Jbnd,2 = {k : Qk,ζ ⊂ D2 \ U and Qk,ζ ∩ ∂� �= ∅}.

We have the obvious decomposition,

E0(χ2hψ,A; D2 \ U ) �
∑

k∈Jblk

E0(χ2hψ,A;Qk,ζ

+
2∑

j=1

∑
k∈Jbnd, j

E0(χ2hψ,A;Qk,ζ ∩ (D2 \ U )). (7.27)
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Since � ∩ ∂� is a finite set, then N = CardJbnd,2 is bounded independently of κ .
Now, the terms corresponding to k ∈ Jbnd, j are easily estimated as follows:

2∑
j=1

∑
k∈Jbnd, j

E0(χ2hψ,A;Qk,ζ ∩ (D2 \ U ))

� −κ2
∫

{dist(x,∂�)�Cζ

|ψ |2 dx − Nκ2ζ 2 � −Cκ2ζ. (7.28)

For all k, let xk be the center of the square Qk,ζ and ak an arbitrary point in Qk,ζ .
Repeating the proof of Proposition 7.1, we get, for all k ∈ J and η ∈ (0, 1),

E0(χ2hψ,A;Qk,ζ ) � (1 − η)E0(χ2hψ e−iκ Huk , B0(ak)A0(x − xk);Qk,ζ )

−C

(
ηκ2 + η−1

(
κ3

H
ζ 2α + κ2H2ζ 4

))
‖ψ‖2L2(Qk,ζ )

, (7.29)

where uk is a gauge function.
We select the parameter ζ as follows

ζ = ηH−1/2. (7.30)

Clearly, ζ satisfies

ζ 
 � � δ
κ

H

 1, κ2ζ 
 κ

H
, H2ζ 4 = η4,

ζ
√

κ H |B0(ak)| � ζ

√
κ H

√
a � � ηδ1/2a1/4.

Applying a scaling and a translation, we may use (3.51) and get

1(
ζ
√

κ H |B0(ak)|
)2 E0(χ2hψ e−iκ Huk , B0(ak)A0(x − xk);Qk,ζ )

� κ

H |B0(ak)|

⎛
⎝g

(
H

κ
|B0(ak)|

)
− C

√
H
κ

|B0(ak)|
ζ
√

κ H |B0(ak)|

⎞
⎠ .

We insert this into (7.29), sum over k ∈ Jblk and use Proposition 6.4 to get

∑
k∈Jblk

E0(χ2hψ,A;Qk,ζ ) � ζ 2κ2
∑

k∈Jblk

(
g

(
H

κ
|B0(ak)|

)
− C

ζκ

)

− (Cη + o(1))
κ3

H
.

The sum in the inequality above becomes a lower Riemann sum if for each k the
point (ak) is selected in Qk,� as follows:

|B0(ak)| = max{|B0(x)| : x ∈ Qk,�}.
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Notice that Nblk = CardJblk satisfies Nblk × ζ 2 ≈ |D2 \ U | as ζ → 0 and

|D2 \ U | = |{√a � � dist(x, �) � m
κ

H
}| � Cm

κ

H
.

Consequently, we have
∑

k∈Jblk

E0(χ2hψ,A;Qk,ζ ) � κ2
∫
Dζ

g

(
H

κ
|B0(x)|

)
dx − m

Cκ

ζ

κ

H

− (Cη + o(1))
κ3

H
,

where

Dζ =
⋃

k∈Jblk

Qk,ζ ⊂ D2 \ U.

Since the function g is non-positive, then we get that∑
k∈Jblk

E0(χ2hψ,A;Qk,ζ )

� κ2
∫
D2\U

g

(
H

κ
|B0(x)|

)
dx − Cm

κ

ζ

κ

H
− (Cη + o(1))

κ3

H

� κ2
∫
D2\U

g

(
H

κ
|B0(x)|

)
dx − C mη−1 H1/2

κ

κ3

H
− (Cη + o(1))

κ3

H
. (7.31)

We insert (7.31) and (7.28) into (7.27). Since g
( H

κ
|B0(x)|) = 0 in {|B0(x)| �

H
κ

} and H � κ3/2, it results in the inequality

E0(χ2hψ,A; D2 \ U ) � κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx

− (Cη + o(1))
κ3

H
, (κ → ∞). (7.32)

Combining (7.32) and (7.26), we get

E0(χ2hψ,A; D2) � κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx − Ce−2m m0

κ3

H
− (Cη + o(1))

κ3

H
.

Now, we insert this inequality and (7.23) into (7.11) to get

E0(hψ,A; D) � κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx − C(a + δ + η + e−2m m0 + o(1))

κ3

H
.

By taking the successive limits,

lim inf
κ→∞ , lim

a→0+
, lim

δ→0+
, lim

η→0+
, lim

m→∞,

we get

E0(hψ,A; D) � κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx − κ3

H
o(1),

which finishes the proof of Theorem 7.3 in the regime H � κ3/2. ��
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We get, by applying Theorem 7.3 with D = � and h = 1 :

Corollary 7.4. Let � > 0 and ε : R → R+ such that lim
κ→∞ κ ε(κ) = ∞ and

lim
κ→∞ ε(κ) = 0 .

There exist κ0 > 0 and a function err : R → R such that the following is true:

(1) lim
κ→∞ err(κ) = 0.

(2) Let κ � κ0, ε(κ)κ2 � H � �κ2 and (ψ,A) be a critical point of the
functional in (1.1).
(a) If H � κ3/2, then,

E0(ψ,A) � κ

(∫
�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)

+κ3

H
err(κ). (7.33)

(b) If H � κ3/2, then,

E0(ψ,A) � κ2
∫

�

g

(
H

κ
|B0(x)|

)
dx + κ3

H
err(κ). (7.34)

We conclude this section with the

Proof of Theorem 1.1. We have just to combine the conclusions of Theorem 5.1
and Corollary 7.4. ��

8. Local Energy Estimates

8.1. Preliminaries

Let D ⊂ � be an open set with a smooth boundary such that ∂ D ∩ � is a finite
set. Let ρ0 ∈ (0, 1), ρ ∈ (0, ρ0) and

Dρ = {x ∈ � : dist(x, D) < ρ}.
We select ρ0 sufficiently small so that the boundary of ∂ Dρ is smooth.

Let h1 ∈ C∞
c (Dρ) and h2 ∈ C∞(R2) be functions satisfying

0 � h1 � 1, |∇h1| + |∇h2| � C

ρ
in R

2, h1 = 1 in Dρ, and h2
1 + h2

2 = 1.

Notice that

supp h2 ⊂ D
c
.

Let (ψ,A) be a minimizer of (1.1). We will estimate the following energy

E0(ψ,A; D) =
∫

D

(
|∇ − iκ HA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4
)

dx .
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Notice that we have the following decomposition of the energy

E0(ψ,A;�) � E0(h1ψ,A; Dρ) + E0(h2ψ,A; D
c
) − C

ρ2

∫
�

|ψ |2 dx .

Now we use the estimate in Proposition 6.4 and write

E0(ψ,A;�) � E0(h1ψ,A; Dρ) + E0(h2ψ,A; D
c
) − C

ρ2

κ

H
. (8.1)

Recall that we deal with two separate regimes:
{

Regime I : κ 
 H � κ3/2 ;
Regime II : κ3/2 
 H � κ2.

We define the quantity C0(κ, H ; D) as follows:

C0(κ, H ; D) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ

(∫
D∩�

(
|∇ B0(x)| H

κ2

)1/3
E

(
|∇ B0(x)| H

κ2

)
ds(x)

)
in Regime I,

κ2
∫

D
g

(
H

κ
|B0(x)|

)
dx in Regime II.

(8.2)

Notice that, in Regimes I and II, the result of Theorem 1.1 reads as follows:

Egs(κ, H) = C0(κ, H ;�) + κ3

H
o(1), (κ → ∞).

8.2. Upper Bound

The results in this section are valid under the assumption that (ψ,A) is a mini-
mizer of the functional in (1.1).

We have E0(ψ,A;�) � Egs(κ, H). Using |ψ | � 1 and the upper bound in
Theorem 5.1, we get

E0(h1ψ,A; Dρ) + E0(h2ψ,A; D
c
) � C0(κ, H ;�) + κ3

H
err(κ) + C

ρ2

κ

H
.

Using Theorem 7.3, we may write

E0(h2ψ,A; Dc) � C0(κ, H ; D
c
) + κ3

H
err(κ).

As a consequence, we have

E0(h1ψ,A; Dρ) � C0(κ, H ; D) + κ3

H
err(κ) + C

ρ2

κ

H
.
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Since h1 = 1 in D, we get the simple decomposition of the energy

E0(ψ,A; D) = E0(h1ψ,A; Dρ) − E0(h1ψ,A; Dρ \ D).

Since ‖h1‖∞ � 1 and the boundary of Dρ \ D is smooth, we get, in light of
Theorem 7.3,

E0(h1ψ,A; Dρ \ D) � C0(κ, H ; Dρ \ D) + κ3

H
errρ(κ).

In light of the upper bound in Theorem 3.12, we have

∣∣∣∣∣
(∫

(Dρ\D)∩�

(
|∇B0(x)| H

κ2

)1/3
E

(
|∇B0(x)| H

κ2

)
ds(x)

)∣∣∣∣∣ � C
κ2

H
ρ.

In the same vein, since g(b) is bounded and vanishes when b � 1, then

∣∣∣∣∣
∫

Dρ\D
g

(
H

κ
|B0(x)|

)
dx

∣∣∣∣∣ � Cρ
κ

H
.

As a consequence, we get

∣∣C0(κ, H ; Dρ \ D)
∣∣ � C

κ3

H
ρ,

and

E0(ψ,A; D) � C0(κ, H ; D) + κ3

H
(Cρ + errρ(κ)) + C

ρ2

κ

H
.

Sending κ to infinity, we deduce that

lim sup
κ→∞

H

κ3 {E0(ψ,A; Dρ) − C0(κ, H ; D)} � Cρ.

Next, we send ρ to 0+ and get

lim sup
κ→∞

H

κ3 {E0(ψ,A; D) − C0(κ, H ; D)} � 0. (8.3)

Notice that the upper bound in (8.3) is valid for any open set D ⊂ � with smooth
boundary. In particular, it is true when D is replaced by D

c = � \ D, that is

lim sup
κ→∞

H

κ3 {E0(ψ,A; D
c
) − C0(κ, H ; D

c
)} � 0. (8.4)
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8.3. Lower Bound

We continue to assume that (ψ,A) is a minimizer of the functional in (1.1). We
will give a lower bound of the energy E0(ψ,A; D). We plug the lower bound in
Corollary 7.4 into the following simple decomposition of the energy

E0(ψ,A; D) + E0(ψ,A; D
c
) = E0(ψ,A;�).

In that way, we get

E0(ψ,A; D) � C0(κ, H ;�) − E0(ψ,A; D
c
) + κ3

H
err(κ).

Notice the following simple decomposition of the term on the right hand side:

E0(ψ,A; D) � C0(κ, H ; D) + κ3

H
err(κ)

−{E0(ψ,A; D
c
) − C0(κ, H ; D

c
)}.

Now we send κ to ∞ and using (8.4), we get

lim inf
κ→∞

H

κ3
{E0(ψ,A; D) − C0(κ, H ; D)} � 0. (8.5)

8.4. Conclusion for the Local Energy

Combining (8.3) and (8.5), we get, in the two regimes we are considering, that
the local energy in D of a minimizer (ψ,A) satisfies

E0(ψ,A; D) = C0(κ, H ; D) + κ3

H
o(κ), (8.6)

where C0(κ, H ; D) is introduced in (8.2).

9. Proof of Theorem 1.6

The proof of (1) in Theorem 1.6 is a simple combination of the upper bound in
Theorem 5.1 and the lower bound in Theorem 7.3 (used with D = �).

The assertion (2) in Theorem 1.6 is the conclusion of Section 8.4.
The rest of the section is devoted to the proof of statement (3) in Theorem 1.6.

This will be done in three steps. Recall the definition of the quantity C0(κ, H ; D)

in (8.2) and that we work under the assumption on H described in Regimes I and II.
It is sufficient to prove that the following formula is true in Regimes I and II:

∫
D

|ψ(x)|4 dx = − 2

κ2 C0(κ, H ; D) + κ

H
o(1), (κ → ∞),

where (ψ,A) is a minimizer of the energy in (1.1).
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Step 1: The Case D = �

A minimizer (ψ,A) satisfies the Ginzburg–Landau equation in (4.1). Recall
the useful identity in (4.3):

−κ2

2

∫
�

|ψ(x)|4 dx = E0(ψ,A;�).

Thanks to the formulas in Sect. 8.4 used with D = � , we observe that (8.6) yields∫
�

|ψ(x)|4 dx = − 2

κ2 C0(κ, H ;�) + κ

H
o(1), (9.1)

where the formula is valid in Regimes I and II.

Step 2: Upper Bound

Let

� = κ−1/4

√
κ

H
and D� = {x ∈ D : dist(x, ∂ D) � �}.

Consider a cut-off function χ� ∈ C∞
c (D) such that

‖χ�‖∞ � 1, ‖∇χ�‖ � C

�
, χ� = 1 in D�.

Multiplying both sides of the equation in (4.1) by χ2
� ψ then integrating by parts

and using the estimate in Proposition 6.4 Yields,∫
D

(
|(∇ − iκ HA)χ�ψ |2 − κ2χ2

� |ψ |2 + κ2χ2
� |ψ |4

)
dx

=
∫

D
|∇χ�|2|ψ |2 dx = O

( C

�2

κ

H

)
= κ3

H
o(1).

Since 1 � χ2
� � χ4

� , this formula implies

− κ2

2

∫
D

χ2
� |ψ |4 dx � E0(χ�ψ,A; D) − κ3

H
o(1). (9.2)

Using the bounds ‖ψ‖∞ � 1 and ‖ψ‖2 � C
√

κ
H , the fact that χ� is supported

in D and χ� = 1 in D�, we get∫
D

|ψ(x)|4 dx =
∫

D
χ2

� (x)|ψ(x)|4 dx +
∫

D
(1 − χ2

� (x))|ψ(x)|4 dx

=
∫

D
χ2

� (x)|ψ(x)|4 dx + O
(√

�

√
κ

H

)

=
∫

D
χ2

� (x)|ψ(x)|4 dx + κ

H
o(1). (9.3)

Now, we infer from (9.2) and Theorem 7.3 that∫
D

|ψ(x)|4 dx � − 2

κ2 C0(κ, H ; D) + κ

H
o(1). (9.4)
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Step 3: Lower Bound

Notice that (9.4) is valid for any open domain D ⊂ � with a smooth boundary,
in particular, it is valid when D is replaced by the complementary of D in �: D

c
.

We have the simple decomposition
∫

D
|ψ(x)|4 dx =

∫
�

|ψ(x)|4 dx −
∫

D
c
|ψ(x)|4 dx

�
∫

�

|ψ(x)|4 dx − 2

κ2 C0(κ, H ; D
c
) + κ

H
o(1).

Using the asymptotics in (9.1) obtained in Step 1, we deduce that
∫

D
|ψ(x)|4 dx � − 2

κ2 C0(κ, H ; D) + κ

H
o(1).

Combining this lower bound and the upper bound in (9.4),we obtain the asymptotics
announced in the third assertion of Theorem 1.6.
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