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Abstract

We are motivated by the study of the Microcanonical Variational Principle
withinOnsager’s description of two-dimensional turbulence in the range of energies
where the equivalence of statistical ensembles fails. We obtain sufficient conditions
for the existence and multiplicity of solutions for the corresponding Mean Field
Equation on convex and “thin” enough domains in the supercritical (with respect
to the Moser–Trudinger inequality) regime. This is a brand new achievement since
existence results in the supercritical regionwere previously known only onmultiply
connected domains.We then study the structure of these solutions by the analysis of
their linearized problems andwe also obtain a newuniqueness result for solutions of
theMean Field Equation on thin domains whose energy is uniformly bounded from
above. Finally we evaluate the asymptotic expansion of those solutions with respect
to the thinning parameter and, combining it with all the results obtained so far, we
solve the Microcanonical Variational Principle in a small range of supercritical
energies where the entropy is shown to be concave.
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1. Introduction

In a pioneering paper [63] Onsager proposed a statistical theory of two-
dimensional turbulence based on the N-vortex model [60]. We refer to [39] for an
historical review and to [58] and the introduction in [38] for a detailed discussion
about this theory and its range of applicability in real world models. More recently,
those physical arguments were turned into rigorous proofs [18,19,46,47]. Together
with other well known physical [14,66,71,72,74,78] and geometrical [21,44,75]
applications, these new results were the motivation for efforts in the understand-
ing of the resulting mean field [18,19] Liouville-type [54] equations. We refer the
reader to [3,7,12,13,16,17,20,22–30,33–37,45,49,51–53,55,56,61,62,65,67,69,
70,73,77], and more recently [4–6,8,9,11,57] and the references quoted therein.

In spite of these efforts it seems that there are some basic questions arising in
[19] which have been left unanswered so far. These are our main motivations and
this is why we will begin our discussion with a short review of some of the results
obtained in [19] as completed in [20].

Definition 1.1. Let � ⊂ R
2 be any open, bounded and simply connected domain.

We say that� is simple if ∂� is the support of a simple and rectifiable Jordan curve.
Let � be a simple domain. We say that it is regular if [see also [20]]:

(–) its boundary ∂� is the support of a continuous and piecewise C2 curve
∂� = supp(γ ) with bounded first derivative ‖γ ′ ‖∞ � C and at most a finite
number of corner-type points {p1, . . . , pm}, that is, the inner angle θ j formed by
the corresponding limiting tangents is well defined and satisfies θ j ∈ (0, 2π)\{π}
for any j = 1, . . . , m;
(–) for each p j there exists a conformal bijection from an open neighborhood U
of p j which maps U ∩ ∂� onto a curve of class C2.

In particular any regular domain is by definition simply connected.

We will use these definitions throughout the rest of this paper without further
comment. Of course polygons of any kind are regular according to our definition.
The notations |�| or A(�) will be used to denote the area of a simple domain �,
while L(∂�) will denote the length of the boundary of �.

Remark 1.2. We will discuss at length solutions of a Liouville-type semilinear
equation with Dirichlet boundary conditions, see P(λ,�) in Section 1.1 below.
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In this respect, and if � is regular, a solution u will be by definition an H1
0 (�)

weak solution [40] of the problem at hand, H1
0 (�) being the closure of C1

c (�)

in the norm ‖u‖2 + ‖ |∇u| ‖2. It turns out that, by using the well known Brezis–
Merle results [17] together with Lemma 2.1 in [20], any H1

0 (�) weak solution on
a regular domain is also a classical C2(�) ∩ C0(�) solution. In those cases where
� is just assumed to be simple, a solution will be by definition a classical solution
u ∈ C2(�) ∩ C0(�).

Let � ⊂ R
2 be open, bounded and simple. We define

P =
{
ω ∈ L1(�) | ω � 0 almost everywhere in �,

∫

�

ω = 1

}
,

and G�(x, y) to be the unique solution of

{−
G�(x, y) = δx=y in �,

G�(x, y) = 0 on ∂�,
(1.1)

where δx=y is the Dirac distribution with singular point y ∈ �, G�(x, y) =
− 1

2π log(|x − y|) + H�(x, y) and H� denotes the regular part.
For any ω ∈ P we also define the entropy and the energy of ω as

S(ω) =
∫

�

s(ω), E(ω) = 1

2

∫

�

ωG[ω],

respectively, where

s(t) =
{−t log t, t > 0,
0, t = 0,

and

G[ω](x) =
∫

�

G�(x, y)ω(y) dy.

For any E ∈ R we consider the MVP (Microcanonical Variational Principle)

S(E) = sup {S(ω), ω ∈ PE } , PE = {ω ∈ P | E(ω) = E}. (MVP)

The following results have been obtained in [19] (see Propositions 2.1, 2.2, 2.3
in [19]):

MVP-(i) For any E > 0, S(E) < +∞ and there exists ω ∈ PE such that
S(E) = S(ω);
MVP-(ii) Let ϒ = 1

|�| be the uniform density on � and Eϒ = E(ϒ). Then ϒ

is a maximizer of S on PEϒ and in particular if |�| = 1, then S(Eϒ) = 0;
MVP-(iii) If |�| = 1 then S(E) is strictly increasing and negative for E < Eϒ

and strictly decreasing and negative for E > Eϒ ;
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MVP-(iv) Let ω(E) be a solution for the MVP at energy E . Then there exists
β = βE ∈ R such that

ω(E) = e−βG[ω(E)]
∫
�

e−βG[ω(E)] ,

or, equivalently, the function ψ = G[ω(E)] satisfies the Mean Field Equation
⎧
⎨

⎩
−
ψ = e−βψ

∫
�

e−βψ
in �

ψ = 0 on ∂�

(MFE);

MVP-(v) S(E) is continuous.

We find it appropriate at this point to continue our discussion by introducing
some concepts as in [19] but with the aid of slightly different mathematical argu-
ments based on some results in [17,49,50] and in particular in [20] which were not
at hand at that time.

Since solutions of the (MFE) with fixed β > −8π are unique not only if � is
simple and smooth [69] but also if � is regular (see [20]), and by using the Brezis–
Merle [17] theory of Liouville-type equations (as later improved in [50] and then in
[49]) and the boundary estimates in [20], we can divide the set of regular domains
(see Definition 1.1) into two classes, first introduced in [19]:

Definition 1.3. Let� be regular. We say that� is of first kind if the unique (at fixed
β > −8π [20,69]) solution ψβ of the (MFE) satisfies

ω(β) := e−βψ

∫
�

e−βψ
⇀ δx=p, as β ↘ (−8π)+, (1.2)

weakly in the sense of measures, for some p ∈ �.
We say that � is of second kind otherwise.

We will skip the discussion of the case β > 0 since its mathematical-physical
description is well understood [19].

Let E(ω(β)) be the energy of the unique solution of the (MFE) with β ∈
(−8π, 0]. By using known arguments based on the results in [17,50] and [20,49] it
can be shown that either ψβ is uniformly bounded for β ∈ (−8π, 0] or it must sat-
isfy (1.2) and E(ω(β)) → +∞ as β ↘ (−8π)+. Of crucial interest here is Lemma
2.1 in [20], which ensures that solutions are uniformly bounded in a neighborhood
of ∂� whenever � is regular.

Remark 1.4. As a consequence of an argument which we introduce in Lemma
2.1 below, we could extend this alternative (either ψβ is bounded or the energy
E(ω(β)) → +∞ as β ↘ (−8π)+) to the case where � is just simple, the only
difference in this case being that one would have to allow (in principle) p ∈ ∂� in
(1.2). However we do not know of any result claiming the uniqueness of solutions
of the (MFE) with β ∈ (−8π, 0) under such weak regularity assumptions on �.

As in [19] we need the following:
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Definition 1.5. We set Ec = E(ω(β)) |β=(−8π)+ if � is of second kind and Ec =
+∞ if � is of first kind.

It has been shown in [19] that Eϒ < Ec and that to each Eϒ < E < Ec there
corresponds a uniqueω(E) which attains the supremum in theMVP and in particular
a unique β = β(E) ∈ (−8π, 0) such that the corresponding unique solution ψβ

of the (MFE) satisfies ω(β(E)) ≡ ω(E) and attains the supremum in the associated
CVP (Canonical Variational Principle)

f (β) = f�(β) = sup{Fβ(ω), ω ∈ P | − S(ω) < +∞}, (CVP)

where, for ω ∈ P ,

Fβ(ω) = − 1

β
S(ω) + E(ω),

is the free energy of ω. In particular it has been proved in [19] that E(ω(β)) is con-
tinuous and decreasing in (−8π, 0) and S(E) is smooth and concave in (Eϒ, Ec).
Concerning these remarkable results we refer to Theorem 3.1 and Proposition 3.3
in [19].

In particular, for domains of first kind the (mean field) thermodynamics of the
system is rigorously defined for any attainable value of the energy and equivalently
described by solutions of either the MVP or the CVP. Actually, this problem is
closely related with another very subtle issue: the (MFE) always admits a solution
for β ∈ (−8π, 0] (a consequence of the Moser–Trudinger inequality [59]), while
in general this is not the case for β � −8π , the value β = −8π being the critical
threshold where the coercivity of the corresponding variational functional [that is
(1.6) below] breaks down. A detailed discussion of this point is beyond the scopes
of our investigations and we will just recall a few details needed in the presentation
of our results, see also Section 1.1 below.

Some sufficient conditions for the existence of solutions of the (MFE) at β =
−8π were provided in [18] and hence used to show that, for example, any long
and thin enough rectangle is of the second kind. The problem has been later solved
in [20] by using a refined version of the subtle estimates in [26,27] and the newly
derived uniqueness of solutions of the (MFE) with β ∈ (−8π, 0] and, whenever
they exist, for β = −8π as well on regular domains. In particular, it has been
proved in Proposition 6.1 in [20] that if � is regular, then the following facts are
equivalent:

SK-(i) � is of second kind;
SK-(ii) There is a solution of the (MFE) with β = −8π , say ψ−8π ;
SK-(iii) The unique branch of solutions of the (MFE) ψβ with β ∈ (−8π, 0] is
uniformly bounded and converges uniformly to ψ−8π as β ↘ (−8π)+.

We conclude that if the branch of (unique) maximizers satisfies (1.2), then there
is no solution of the (MFE) with β = −8π and in particular that a solution of the
(MFE) with β = −8π exists (and is unique) if and only if blow up for the (MFE)
at β = 8π occurs from the left, that is, (1.2) occurs but with β → (−8π)−. The
fact that (irrespective on the “side” which β may choose to approach 8π ) there is a
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branch of solutions which satisfy a concentration property as in (1.2) was already
proved in [19] see NEQ-(ii) below.

The full theory as exposed in [20] aswell as the equivalence of statistical ensem-
bles has been recently extended to cover the case where � is multiply connected
in [9]. As far as one is concerned with the analytical problem of the existence
for β = −8π and uniqueness for β ∈ [−8π, 0), the results in [20] have been
generalized in [7,8] to the case where Dirac-type singular data are added in the
(MFE).

The mean field thermodynamics for domains of the second kind when E � Ec

is more involved.
Since it is not difficult to show thatFβ is unbounded from above for β < −8π ,

then there is no solution for the CVP with β < −8π and therefore no equivalence
(at all) among the MVP and the CVP is at hand in this case. Nevertheless some
insight about the range of energies E � Ec was also obtained in [19]. Let � be a
domain of the second kind. Then we have (see Propositions 6.1, 6.2 and Theorem
6.1 in [19]):

NEQ-(i) It holds

−8π E + C1 � S(E) � −8π E + C2, ∀ E � Ec,

where C2 = S(Ec) + 8π Ec = 8π f (−8π);

NEQ-(ii) Let ω(E) be a solution of MVP at energy E . Then (up to subsequences)
ω(E) ⇀ δx=p, as E → +∞, where p is a maximum point of H�(x, x);
NEQ-(iii) S(E) is not concave for E > Ec.

Besides these facts, we do not know of any positive result about this problem for
domains of the second kind when E � Ec.

It is one of our motivations to begin here a systematic study of the statistical
mechanics description of the case E � Ec. In this paper we work out the following
program:

(–) Prove the existence of solutions of the (MFE) for suitableβ < −8π by assuming
the domain to be “thin” enough, see Section. 1.1 and Section. 1.4.
(–) Prove that the first eigenvalue of the linearized problem for the (MFE) on
these solutions is strictly positive. This fact will imply that our solutions are local
maximizers of Fβ as well as a multiplicity result yielding another set of unstable
solutions, see Section. 1.2.
(–) Prove that if the domain is “thin” enough, then there exists at most one solution
of the (MFE) with β bounded from below whose energy is less than a certain
threshold. This fact will imply that we have found a connected and smooth branch
of solutions where the energy is well defined as a function of λ := −β, see Remark
1.15 and Section. 1.3.
(–) Prove that if the domain is “thin” enough and in a small enough rangeof energies,
then the energy is monotonic increasing as a function of λ = −β. This fact, under
an additional and probably technical assumption, will imply that there exists one
and only one solution of the MFE at fixed energy (in that small range) which
therefore is also the unique maximizer of the entropy for the MVP. In particular
we will prove that the entropy is concave in this range, see Section. 1.4.
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This is the underlying idea which will guide us in the analysis of various prob-
lems of independent mathematical interest as discussed in the rest of this intro-
duction. We take the occasion here to provide all the motivations and/or necessary
comments about the statements of the many results obtained (with the unique ex-
ception of Proposition 4.1 below) which is why the introduction is so lengthy.

1.1. Existence of Solutions for the Supercritical (MFE) on Thin Domains

Amongst other things which will be discussed below, one of the main reasons
which makes things more difficult in the case E � Ec is the lack of a description
of the solutions set for the (MFE) with β < −8π . Since this will be a major point
in our discussion, we introduce the quantities

λ := −β, and u = −βψ = λψ,

and consider the following alternative but equivalent formulation of the (MFE)
⎧
⎨

⎩
−
u = λ

eu
∫
�

eu
in �

u = 0 on ∂�

P(λ,�)

which we will denote by P(λ,�). The following remark will be used throughout
the rest of this paper.

Remark 1.6. Clearly P(λ,�) is rotational and translational invariant. Moreover
the integral in the denominator of the nonlinear datum in P(λ,�) makes the
problem dilation invariant too, that is, u is a solution of P(λ,�) if and only if
v(y) = u(y0 + d0R0y) is a solution of P(λ,�(0)), where y0 ∈ R

2, d0 > 0, R0 is
an orthogonal 2 × 2 matrix and

�(0) := {y ∈ R
2 | y0 + d0R0y ∈ �}.

In particular, u solves P(λ,�ρ) with ρ = a
b where

�ρ = {(x, y) ∈ R
2 | ρ2x2 + y2 � 1, ρ ∈ (0, 1]}, (1.3)

is the canonical two dimensional ellipse whose axis lengths are 1
ρ
and 1, if and only

if u0(x
′
, y

′
) with {bx

′ = x, by
′ = y} solves P(λ,Ea,b), where

Ea,b = {(x
′
, y

′
) ∈ R

2 | a2x
′2 + b2y

′2 � 1, a ∈ (0, 1], b ∈ (0, 1], b � a},
is the canonical two dimensional ellipse whose axis lengths are 1

a and 1
b .

As mentioned above, we just miss a description of the solutions set of P(λ,�)

with λ > 8π and � regular. General existence results for P(λ,�) are at hand for
λ ∈ R\8πN only if � is a multiply connected domain, see [35,67] and the deep
results in [27] (see also [5]).

This is far from being a technical problem. Indeed, a well known result based on
the Pohozaev identity (see for Example [18]) shows that if � is strictly starshaped,
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then there exists λ∗ = λ∗(�) � 8π (see also Remark 1.9 below) such that P(λ,�)

has no solutions for λ � λ∗(�). This result is sharp since, indeed, λ∗(BR(0)) = 8π ,
where BR(0) = {x ∈ R

2 : |x | < R} for some R > 0.
Therefore, in particular, the Leray–Shauder degree of the resolvent operator for

P(λ,�) with � regular vanishes identically for any λ > 8π , see [27].
If this was not enough we also observe that, at least in case � is convex, the

well known results in [1,26,37,45] concerning concentrating solutions for P(λ,�)

as λ → 8πk, for some fixed k ∈ N, are of no help, since it has been shown in [41]
that in fact neither those blow-up solutions sequences exists if k � 2.

Finally let us remark that we are concerned here just with solutions of P(λ,�).
If we allow some weight to multiply the exponential nonlinearity, then other solu-
tions exist for λ > 8π on simply connected domains, see for example [2,3,12] and
more recently the general results derived in [11].

As a matter of fact, the only general result we are left with is the immediate
corollary of the uniqueness results in [20], which shows that:

SK-(iv) if � is of second kind, then the branch of unique solutions uλ, λ ∈
[0, 8π ] of P(λ,�) can be extended (via the implicit function theorem) in a small
right neighborhood of 8π .

Our first result is concerned with a sufficient condition for the existence of
solutions of P(λ,�) with λ > 8π on “thin” domains.

Theorem 1.7.

(a) Let � be a simple domain. For any c ∈ (0, 1] there exist ρ∗ > ρ∗(c) > 0 such

that if {ρ2x2 + y2 � β2−} ⊂ � ⊂ {ρ2x2 + y2 � β2+} with c = β2−
β2+

then, for any

ρ ∈ (0, ρ∗(c)] and for any λ � λρ,c, there exists a solution u(λ) of P(λ,�),

where λρ,c < λρ,c < λρ and λρ,c, λρ are strictly decreasing (as functions of ρ)

in (0, ρ∗(c)], (0, ρ∗] respectively with λρ∗(c),c
= 8π = λρ∗ and λρ,c � 4πc

(8−c)ρ ,

λρ � 11π
16ρ as ρ → 0+.

(b) There exists N̄ > 4π such that if � is an open, bounded and convex set

(therefore simple) whose isoperimetric ratio, N ≡ N (�) = L2(∂�)
A(�)

, satisfies

N � N̄ , then for any λ � λN there exists a solution u(λ) of P(λ,�), where
�N < λN < �N with �N̄ = 8π , �N and �N strictly increasing in N and

�N � π2N
496 + O(1), �N � 33

√
3N

16π + O(1) as N → +∞.

Remark 1.8. The suspicion that this result should hold was initially due to the
above mentioned result in [18] (which states that if � is a long and thin enough
rectangle then a solution of P(8π,�) exists) and to a result in [20] (which states
that there exists a critical value d1 < 1 such that if � is a rectangle whose sides
lengths are a1 � b1, then a solution of P(8π,�) exists if and only if a1

b1
� d1).

Remark 1.9. Clearly c = 1 if and only if � is an ellipse, while if � is a rectangle
it is easy to see that c = 1

2 is optimal. We also have the quantitative estimate
0.0702 < ρ∗(1) which could be used in principle to obtain an estimate for either
d1 (see Remark 1.8) or N̄ . We will not be insistent about this point since it seems
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that we are too far from optimality. In the case of the ellipse �ρ , the existence
lower/upper threshold values λρ � 4π

7ρ /λρ � 11π
16ρ should be compared with the

Pohozaev’s upper bound for the existence of solutions for P(λ,�ρ), that is

λ < λ∗(�ρ) := 4
∫

∂�ρ

ds

(x, ν )
= 4π

ρ
(1 + ρ2).

Remark 1.10. For regular domains, the branches of solutions obtained above will
be seen to be connected and smooth, see Remark 1.15 below. We will denote
them by Gρ,c = {(λ, u(λ)) : λ ∈ [0, λρ,c]} (as obtained in Theorem 1.7a) and
GN = {(λ, u(λ)) : λ ∈ [0, λN ]} (as obtained in Theorem 1.7b) respectively.

The proof of Theorem 1.7 is, surprisingly enough, based on the sub-
supersolutions method. In particular we use the result in [31] which allows for
such weak assumptions about the regularity of �. The underlying idea in case
� = �ρ is:

(–) If the ellipse � = �ρ is “thin” enough (that is if ρ is small enough) then
the branch of minimal solutions for the classical Liouville problem

{−
u = μ eu in �

u = 0 on ∂�
Q(μ,�)

cannot be pointwise too far from the C2
0 (�ρ) function

vρ,γ = 2 log

(
1 + γ 2

1 + γ 2(ρ2x2 + y2)

)
, (x, y) ∈ �ρ,

for a suitable value of γ depending on μ and ρ. Of course, the guess about vρ,γ

is inspired by the Liouville formula [54]. Therefore, for fixed μ and ρ, we seek
values γ∓ such that vρ,γ∓ are sub-supersolutions respectively of Q(μ,�ρ).

(–) If the choice of γ±(μ) is made with enough care, then, along the branch of
solutions (say uμ) for Q(μ,�) found via the sub-supersolutions method, the value
of λ defined as follows

λ := μ

∫

�ρ

euμ,

can be quite large whenever ρ is small enough.
Part (b) of Theorem 1.7 will be a consequence of Part (a) and Theorems 1.11

and 1.12 below.

Theorem 1.11. [43] Let K ⊂ R
2 be a convex body (that is a compact convex set

with nonempty interior). Then there is an ellipsoid E (called the John ellipsoid
which is the ellipsoid of maximal volume contained in K ) such that, if c0 is the
center of E, then the inclusions

E ⊂ K ⊂ {c0 + 2(x − c0) : x ∈ E}
hold.
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Theorem 1.12. [48] Every convex body K ⊂ R
2 contains an ellipse of area

π

3
√
3

A(K ).

A short proof of the previous theorem is based on a result in [15], where the
existence of an affine-regular hexagon H of area at least 2

3 A(K ) and inscribed in
K is established. Indeed, considering the concentric inscribed ellipse in H one gets
the thesis.

Remark 1.13. In particular Theorem 1.12 has been used to obtain the asymptotic
behaviors of �N and �N . A more rough estimate of those asymptotics could have
been obtained by using other (much worse) known estimates of the area of the
enclosed ellipse. In particular, while Theorem 1.11 is well known [43], it seems
that Theorem 1.12 is not and we are indebted with Prof. M. Lassak who kindly
reported to us a proof of it [48] based on the cited reference [15].

Clearly, as an immediate corollary of Theorem 1.7 and the equivalence of SK-
(i) and SK-(ii) we conclude that if � is regular and satisfies the assumptions of
Theorem 1.7(a) (Theorem 1.7(b)) with ρ ∈ (0, ρ∗(c)] (N (�) > N̄ ) then it is of
second kind.

1.2. Non Degeneracy and Multiplicity of Solutions of the Supercritical (MFE)
on Thin Domains

Let us define the density corresponding to a solution uλ of P(λ,�) as

ωλ ≡ ω(uλ) := euλ

∫
�

euλ
. (1.4)

A crucial tool used in the proof of the equivalence of statistical ensembles [19] is
the uniqueness of solutions [20,69] (see also [9]) of P(λ,�) for λ ∈ [0, 8π ]. The
situation is far more involved in the case λ > 8π since on domains of second kind,
solutions are not anymore unique.

This fact is already clear from NEQ-(ii) and SK-(iv) above, that is, if � is of
second kind we have a blow-up branch which satisfies

ω(uλ) ⇀ δx=p, as λ ↘ (8π)+, (1.5)

weakly in the sense of measures, for some critical point p ∈ � of H�(x, x), and the
smooth solutions of P(λ,�) in a small right neighborhood of 8π . Hence, we have
at least two solutions in a right neighborhood of 8π , a well known fact that could
have been also deduced by using the alternative in Theorem 7.1 in [19] together
with the uniqueness result in [20].

We wish to make a further step in this direction. To this end we first study
the linearized problem of P(λ,�) at u(λ), where u(λ) is the solution obtained in
Theorem 1.7, showing the positivity of its first eigenvalue (see Proposition 4.1 and
Remark 4.2 for details). It is worth pointing out that the above fact, which yields
a multiplicity result too, is also crucial in the analysis of the solutions branches
Gρ,c,GN , see Remarks 1.10 and 1.15. In particular we have:
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Proposition 1.14. For fixed c ∈ (0, 1], let � be a regular domain satisfying {ρ2x2+
y2 � β2−} ⊂ � ⊂ {ρ2x2 + y2 � β2+}, with

β2−
β2+

= c and ρ ∈ (0, ρ∗(c)], with ρ∗(c)
as found in Theorem 1.7(a). Let � be a convex domain with N (�) > N̄ as found
in Theorem 1.7(b).

The portions of Gρ,c,GN with λ ∈ [0, 8π ] coincide with the branch of unique
absolute minimizers of

Fλ(u) = 1

2

∫

�

|∇u|2 dx − λ log

( ∫

�

eu dx

)
, u ∈ H1

0 (�), (1.6)

and for each λ ∈ (8π, λρ,c] or λ ∈ (8π, λN ] the corresponding solutions u(λ) such
that (λ, u(λ)) ∈ Gρ,c and (λ, u(λ)) ∈ GN are strict local minimizers of Fλ.

Remark 1.15. By using the bounds provided by the sub-supersolutions method
(see (3.8) in the proof of Theorem 1.7), Proposition 4.1, Theorem 1.19 below and
standard bifurcation theory [32] we conclude that for any fixed λ > 8π , possibly
taking a smaller ρ∗(c) and a larger N , the portions of Gρ,c and GN with λ � λ are
smooth and connected branches with no bifurcation points.

The proof of Proposition 1.14 is a straightforward consequence of the fact that
the first eigenvalue of the linearized problem for P(λ,�) is strictly positive along
Gρ,c and GN , see Proposition 4.1 in Section 4.

We shall see that, by virtue of Proposition 1.14, it is possible to show that for
λ ∈ (8π, λρ,c)\8πN the functional Fλ exhibits a mountain-pass type structure
which in turn yields the existence of min-max type solutions to P(λ,�). More
precisely we obtain the following result.

Theorem 1.16.

(a) Let �, ρ ∈ (0, ρ∗(c)] and λρ,c be as in Theorem 1.7(a) and let u(λ) be a solution
of P(λ,�) for λ � λρ,c. Then, for any λ ∈ (8π, λρ,c)\8πN there exists a second
solution v(λ) of P(λ,�) such that Fλ(v

(λ)) > Fλ(u(λ)).
(b) Let �, N̄ > 4π , N (�) and λN be as in Theorem 1.7(b) and let u(λ) be a solution

of P(λ,�) for λ � λN . Then, for any λ ∈ (8π, λN )\8πN there exists a second
solution v(λ) of P(λ,�) such that Fλ(v

(λ)) > Fλ(u(λ)).

Remark 1.17. By using well known compactness results [49] as well as those
recently derived in [41], we conclude that any sequence of solutions v(λ) with
8πk < λ < 8π(k + 1), k � 1 obtained in part (b) converges as λ → 8π(k + 1)
to a solution v8π(k+1) of P(8π(k + 1),�). We also have at least two different
arguments showing that for any fixed λ > 0, possibly taking a larger N , those v8πk

which also satisfy 8πk � λ are distinct from those obtained in Theorem 1.7(b) for
λ = 8πk. The first one is a standard bifurcation-type argument based on Remark
1.15 and Proposition 4.1 below. The second one is based on the uniqueness result
stated in Theorem 1.19 below.

Remark 1.18. It is easy to check that if u is a solution of P(λ,�) and ω(u) is
defined as in (1.4), then ω(u) is a critical point of F−λ and in particular F−λ(ω) =
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− 1
λ2

Fλ(u). Hence, if u(λ) and v(λ) are as in Theorem 1.16, then it is readily seen that
F−λ(ω(u(λ))) < F−λ(ω(v(λ))). In particular ω(u(λ)) is a kind of metastable state
(in the sense that it is a strict local maximizer of F−λ) while ω(v(λ)) is expected to
be unstable (since it is a min-max type critical point of F−λ).

In any case, whenever � is regular (and since solutions of P(8π,�) are unique
in this case [20]), then any sequence of solutions found in Theorem1.16 for P(λ,�)

with λ↘ 8π+ must satisfy (1.5).

1.3. Uniqueness of Solutions for the Supercritical (MFE) with Bounded Energy
on Thin Domains

As a matter of fact we are still unable to define the energy as a monodrome
function of λ. We explain the next step toward this goal in the case of the ellipse
�ρ .

Although solutions of P(λ,�ρ) are not unique as a function of λ, what we can
prove is that for fixed λ � 8π and E � 1, then for ρ small enough there could be
at most one solution uρ,λ such that λ � λ and

E(ω(uρ,λ)) � E . (1.7)

This is amajor achievement since, by using alsoProposition 4.1 below, it implies
that (as far as ρ is small enough) the energy (see Proposition 6.1) is well defined
as a function of λ, whenever λ � λ and the supremum of the range of the energy
itself is not greater than E .

Let us think of the results obtained in Section. 1.1 and Section. 1.2 in terms of
the (λ, ‖uρ,λ‖∞) bifurcation diagram. To fix the ideas, we propose the following
naive description. As ρ gets smaller and smaller, we have:

(–) The portion with λ � λ and E(uρ,λ) � E of the (smooth, see Remark 1.15)
branches of solutions Gρ,c,GN obtained in Theorem 1.7 gets lower and flatter,
that is, ‖uρ,λ‖∞ ↘0+. See also Remark 1.23 below.

(–) In the same time the portion with λ � λ of the branches obtained in Theo-
rem 1.16 (as well as any other possible solution) gets higher and higher the
corresponding energies getting greater and finally greater than E .

(–) Any bifurcation/bending point one should possiblymeet along Gρ,c,GN moves
in the region λ > λ.

It is understood that the value 1 in the condition E � 1 could have been
substituted by any other fixed positive number.More exactly we have the following:

Theorem 1.19. Fix λ � 8π and E � 1. Then:

(a) Let � be a simple domain and suppose that there exists c ∈ (0, 1] such that

{ρ2x2 + y2 � β2−} ⊆ � ⊆ {ρ2x2 + y2 � β2+} with c = β2−
β2+

.

Then there exists ρ̃1 = ρ̃1(c, E, λ) > 0 such that for any ρ ∈ (0, ρ̃1], there
exists at most one solution uλ of P(λ,�) with λ � λ which satisfies (1.7).
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(b) Let � be any open, bounded and convex (therefore simple) domain. There exists
Ñ = Ñ (λ, E) � 4π such that for any such � satisfying

N (�) := L2(∂�)

A(�)
� Ñ ,

there exists at most one solution uλ of P(λ,�) with λ � λ which satisfies (1.7).

The proof of Theorem 1.19 is based on two main tools.
The first one is an a priori estimate for solutions of P(λ,�) [which satisfy

λ � λ and (1.7)] with a uniform constant C which does not depend neither on u
nor on the domain�, but only on λ and E . Roughly speaking, in case� = �ρ , this
kind of uniformity with respect to the domain is needed since we consider the limit
in which ρ gets very small, that is, we seek uniqueness for all domains which are
“thin” in the sense specified in the statement of Theorem 1.19. We refer to Lemma
2.1 and the discussion about it in Section 2 for further details.

The second tool is a careful use of the dilation invariance (see Remark 1.6) to be
used together with an estimate about the first eigenvalue of the Laplace-Dirichlet
problem on a “thin” domain, see (2.12) below for more details.

1.4. Uniqueness of Solutions for the Supercritical (MFE) on �ρ with Fixed
Energy and Concavity of the Entropy

In this subsection we fix � = �ρ .
As observed above, by using Theorem 1.19 and Proposition 4.1 below we can

prove that (as far as ρ is small enough) the energy (see Proposition 6.1) is well
defined as a function of λ (along the branch Gρ,1 found in Theorem 1.7(a), see
Remark 1.15) whenever λ � λ and the supremum of the range of the energy itself
is not greater than E . It is tempting at this point to say that the entropy maximizers
of the MVP are those solutions of the (MFE) obtained in Theorem 1.7(a). However
we still don’t know whether or not this is true, since obviously there could be
many solutions on Gρ,1 (that is with different values of λ) corresponding to a fixed
energy E � E (see for example fig. 5 in [19]). In such a situation it would be
difficult to detect which is, (or worst, which are) the one which really maximizes
the entropy. A possible solution to this problem could be obtained if we would be
able to understand the monotonicity of the energy as a function of λ on Gρ,1. The
first step toward this goal is to show that the solutions of P(λ,�ρ) obtained in
Theorem 1.7(a) can be expanded in powers of ρ with the leading order taking up
an explicit and simple form [see also (6.3), (6.5) below], that is

φ0(x, y; λ, ρ) = μ0(λ, ρ)ψ0(x, y; ρ), (x, y) ∈ �ρ, (1.8)

where μ0 satisfies (1.12)–(1.13) below and

ψ0(x, y; ρ) = 1

2(1 + ρ2)

(
1 − (ρ2x2 + y2)

)
, (x, y) ∈ �ρ. (1.9)

Of course, we could have used the fact that we already knew about the existence
of the branch Gρ,1 and managed to expand those solutions as a function of ρ.
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Instead we decided to make the argument self-contained by pursuing another proof
of independent interest of the existence of solutions of P(λ,�ρ). It shows that
there exists ρ0 small enough (depending on λ) such that for any ρ < ρ0 and for
each λ ∈ [0, λ) a solution uλ for P(λ,�ρ) exists whose leading order with respect
to ρ takes up the form (1.8). There is no problem in checking that these solutions
coincide with those on the branch Gρ,1 obtained in Theorem 1.7(a). Indeed this is
at this point an easy consequence of Theorem 1.19.

We still face the problem of how to handle the term
∫
�ρ

euλ in the denominator
of the nonlinear term in P(λ,�ρ). This time we will solve this issue by seeking
solutions vρ of Q(μ0ρ,�ρ) which satisfy the following identity in a suitable set
of values of λ,

λ = μ0ρ

∫

�ρ

euλ . (1.10)

This is the content of Theorem 1.20 below. More exactly, by setting

D(k)
λ = ∂k

∂λk
, k = 0, 1, 2,

we have the following:

Theorem 1.20. Let λ � 8π be fixed. There exists ρ0 > 0 depending on λ such that
for any ρ < ρ0 and for each λ ∈ [0, λ ) there exists a solution uλ for P(λ,�ρ)

which satisfies

uλ(x, y; λ) = ρφ0(x, y; λ) + ρ2φ1(x, y; λ) + ρ3φ2(x, y; λ), (x, y) ∈ �ρ,

(1.11)
where {φ0, φ1, φ2} ⊂ C2

0 (�). Moreover φ0 takes the form (1.8) with μ0 a smooth
function which satisfies

μ0(λ, ρ) = λ

π
− λ2

4π2 ρ + O(ρ2), (1.12)

and

D(1)
λ μ0(λ, ρ)= 1

π
− λ

2π2 ρ+O(ρ2), D(2)
λ μ0(λ, ρ) = − 1

2π2 ρ+O(ρ2). (1.13)

In particular the following uniform estimates hold

‖D(k)
λ φ0‖C2

0 (�) + ‖D(k)
λ φ1‖C2

0 (�) + ‖D(k)
λ φ2‖C2

0 (�) � Mk, k = 0, 1, 2, (1.14)

for suitable constants Mk, k = 0, 1, 2 depending only on λ. Finally these solutions’
set is a smooth branch which coincides with a portion of Gρ,1.

Remark 1.21. In the proof of Theorem 1.20 and therefore in all the expansions in
powers of ρ what we really use is the fact that solutions vρ of Q(μ0ρ,�ρ) can be
expanded in powers of ρ and in particular that λ0(μ0, ρ) := μ0ρ

∫
�ρ

evρ is smooth,
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see Lemma 6.2 below. Here we need some estimates about the first eigenvalue of
the linearization of Q(μ,�) as obtained in Proposition 4.1 below (see Remark 4.2).

By using Theorem 1.20 we can prove the following result. Let ρ̃1 be fixed as in
Theorem 1.19(a). Then we have:

Theorem 1.22. Let λ � 8π and let Êρ be defined by

Êρ := ρ

8π
+ ρ2

50π2 λ.

For each ρ < ρ̃1 and E ∈ [ ρ
8π , Êρ

]
there exists one and only one solution uλ for

P(λ,�ρ) such that λ � λ and whose energy is E(ω(uλ)) = E. Let λ̂ρ be defined
by E(ω(u λ̂ρ )) = Êρ . Then in particular the identities

Ê(λ) = E(ω(uλ)), E(ω(u λ̂(E))) = E,

define:
Ê(λ) : [0, λ̂ρ] → [

ρ
8π , Êρ

]
as a smooth and strictly increasing function of λ

and
λ̂(E) : [ ρ

8π , Êρ

]→ [0, λ̂ρ] as a smooth and strictly increasing function of E.
Moreover we have

Ê(λ) = ρ

8π
+ ρ2

48π2 λ + O(ρ3), λ̂(E) = 48π2

ρ2

(
E − ρ

8π

)
+ O(ρ).

(1.15)

d

dλ
Ê(λ) = ρ2

48π2 + O(ρ3),
d

d E
λ̂(E) = 48π2

ρ2 + O(ρ), (1.16)

d2

dλ2
Ê(λ) = O(ρ3),

d2

d E2 λ̂(E) = O(ρ). (1.17)

Remark 1.23. The notation O(ρm), m ∈ N is used here and in the rest of this paper
to denote various quantities uniformly bounded by Cmρm with Cm > 0 a suitable
constant depending only on λ.

This result is consistent with the underlying idea that, as ρ gets smaller and
smaller, then the energies of the entropy maximizers (which are solutions of
P(λ,�ρ)) with values of λ uniformly bounded from above have to approach the
energy of the uniform density distribution ϒ = 1

|�ρ | , that is

Eϒ,ρ := E
(

1

|�ρ |
)

= 1

2

∫

�ρ

1

|�ρ |Gρ

[
1

|�ρ |
]

= ρ

2π

∫

�ρ

1

|�ρ |2(1 + ρ2)

(
1 − (ρ2x2 + y2)

)
= ρ

8π(1 + ρ2)
.

Here we used the easily derived explicit expression of the function Gρ

[
1

|�ρ |
]
see

also (1.8), (1.9) and (6.3), (6.5) below.
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Remark 1.24. In particular (1.15) yields λ̂ρ = 48
50λ + O(ρ) and since λ � 8π

can be chosen at wish and (see Definition 1.5) Ec = E(ω(u8π )), then of course
Eϒ,ρ < Ec < Êρ and we succeed in the description of the energy as a function of
(minus) the inverse temperature λ = −β in a very small range of energies above
Ec.

Let us observe that (1.15) is in perfect agreement with the discussion in §1.3,
that is, the portion with λ � λ of the branch of solutions obtained in Theorem 1.7
gets lower and flatter as ρ gets smaller and smaller. We will prove Theorem 1.22
by some explicit evaluations. This is why our concern in Theorem 1.20 was with
respect to the exact expression of solutions of P(λ,�ρ) with λ � λ and ρ small
and not just with the estimates one can get by using the sub-supersolutions just
found in Theorem 1.7.

At this point (see Section 7 for details), by using an additional and probably
technical assumption, we can conclude that indeed S(E) ≡ S(ω(uλ)) |λ=̂λ(E) in[

ρ
8π , Êρ

]
. In particular we conclude that S(E) is also smooth in

[
ρ
8π , Êρ

]
and by

using the asymptotic expansions (1.15), (1.16) and (1.17) and the above mentioned

explicit expressions (1.8) and (1.9) we are eventually able to evaluate d2S(E)

dE2 in the

case � = �ρ and E ∈ [ ρ
8π , Êρ

]
. Indeed, we have

Proposition 1.25. Let � = �ρ , E ∈ [ ρ
8π , Êρ

]
and ρ < ρ̃1 as defined in Theorem

1.22. Assume that there is no solutions of P(λ,�ρ) such that λ > λ and whose
energy is E(ω(uλ)) = E. Then we have S(E) ≡ S(ω(uλ)) |λ=̂λ(E) in

[
ρ
8π , Êρ

]
and

in particular it holds

d2S(E)

dE2 = −11

(
48π2

ρ2

)
+ O

(
1

ρ

)
.

In other words, we conclude that the branch of “small energy” solutions of
P(λ,�ρ) with λ � λ is, for ρ small enough, a branch of Entropy maximizers in a
range where S is concave.

1.5. Open Problems

Obviously it will be interesting to remove that assumption in Proposition 1.25
about the non existence of solutions of P(λ,�ρ) with λ > λ and whose energy
is E(ω(uλ)) = E . It is likely to be just a technical assumption as we are going to
discuss in the following conjecture and open problem.

It is well known that S(E) is not concave (see NEQ-(iii) above) for E > Ec and
that solutions of the MVP (see NEQ-(iii) and (1.5) above) blow up as E → +∞.
Concerning this point we have the following:

Conjecture Let � be a convex domain of the second kind. There exists one and
only one branch of solutions uλ which satisfies (1.5) and in particular there exists
E� > Ec such that S(E) is convex in (E�,+∞).

In particular, the uniqueness of blow-up solutions would imply that they coin-
cide (at least in a small right neighborhood of 8π ) with the set of mountain-pass
type solutions found in Theorem 1.16, see Remark 1.18.



Supercritical Mean Field Equations 541

Then we pose the following problem:
Open ProblemsLet us assume that either the above conjecture is true or that� is

a convex domain of the second kind for which we can find E� > Ec such that S(E)

is convex in (E�,+∞). Is it true that the entropy have only one inflection point?
If not, under which conditions (if any) does the entropy have only one inflection
point?

In particular, is it true that the global branch of solutions of P(λ,�ρ) with ρ

small enough has just one bending point, no bifurcation points and it is connected
with the blow-up solution’s branch as λ ↘ (8π)+? Can we answer this question at
least on some convex domains?

Of course, these properties do not hold on general simply connected domains.
For example, there should be no reason to expect the energy to be a generally
injective function of λ (see for example Fig. 5 in [19]). Moreover, some well known
numerical results [64] suggest that bifurcation points can exist on the bifurcation
diagram of P(λ,�) on (symmetric and/or non symmetric) non convex domains.
It seems however that the very rich structure of those bifurcation diagrams [64] is
inherited by solutions sharing either multiple peaks or just a single peak but which
may be located at different points. The typical example of such kind of blow-up
behavior is observed on dumbbell shaped domains, see for example [37].

On the other side, there are easier situations, such as on convex domains, where
k−peaks solutions with k � 2 do not exist (as shown in [41]). Moreover it is well
known (see for example [42]) that if � is convex then the Robin function H�(x, x)

is strictly concave and thus admits one and only one critical point, which of course
coincides with the absolute maximum. This rules out the possibility of having more
than one single peak blow-up solution.

So far, it seems that, in particular, the global structure of the solution’s branch
is known only for domains which are close in C2-norm to a disk, see [68].

Of course, if (say in case � = �ρ with ρ small enough) the entropy really has
just one inflection point, then it will coincide with the point on the continuation
of Gρ,1 where the first eigenvalue of the linearized problem for P(λ,�ρ) will
finally vanish. However, in this situation we cannot use the standard results (see
for example [70]) which in the classical cases show that this point must necessarily
be a bending point. This is due to the peculiar form of the linearized problem for
P(λ,�), see (4.1) below, which implies for example that the first eigenfunction
changes sign and that in general the first eigenvalue is not simple. Indeed an explicit
example of a changing sign and non simple first eigenfunction in a similar situation
can be found in Appendix D in [3].

In any case we think that this topic deserves a separate discussion and that it
should be already very interesting to set up the problem on some symmetric and
convex domain of the second kind such as thin ellipses and/or rectangles.

This paper is organized as follows. In Section 2 we prove Theorem 1.19. In
Section 3 we prove Theorem 1.7. In Section 4 we prove Proposition 1.14 by using
a result concerning the first eigenvalue of the linearization of P(λ,�) around those
solutions found in Theorem 1.7, see Proposition 4.1. Section 5 is devoted to the
proof of Theorem1.16. Section 6 is concernedwith the proofs of Theorems 1.20 and
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1.22. Finally Section 7 is devoted to the proof of Proposition 1.25. Some technical
evaluations are left to the Appendix.

2. A Uniqueness Result for Solutions of P(λ,�)

The aim of this section is to obtain a uniqueness result for solutions of P(λ,�)

with finite energy E(ωλ) � E [see (1.4)] on domains chosen as in Theorem 1.19.

The proof of Theorem 1.19. We will need an a priori estimate for solutions of
P(λ,�) with a uniform constant C which does not depend neither on u nor on
the domain �. This is why we do not follow the standard route which is widely
used (under some additional regularity assumption on ∂�, see for example [20]) in
case where the domain is fixed. In that case in fact one needs to prove that blow-
up points (in the sense of Brezis-Merle [17]) cannot converge to the boundary. A
detailed discussion of this point in our situation would be not only more tricky
(since we do not fix �) but also really counterproductive, since instead, by using
the energy bound (1.7), our argument yields the needed estimate with the weakest
possible regularity assumptions about ∂� (that is � simple) see Definition 1.1.

The underlying idea is to use the dilation invariance (seeRemark1.6) of P(λ,�)

to show that even if a blow-up “bubble” converges to the boundary, then its energy
must be unbounded. More exactly we have:

Lemma 2.1. Let λ � 8π and E � 1 be fixed. There exists C = C(λ, E) such that
for any simple domain � and for all solutions of P(λ,�) such that λ � λ and
E(ωλ) � E it holds ‖uλ‖∞ � C. In particular C does not depend neither on u nor
on �.

Proof. In viewofRemark 1.2we can assume u to be a classical solution of P(λ,�).
We argue by contradiction and suppose that there exists a sequence of simple

domains {�n} and a sequence of positive numbers {λn} such that sup
N

λn � λ and

there exists a sequence of solutions {un} for P(λn,�n) such that

E(ω(un)) � E,

and there exists a sequence of points {xn} such that xn ∈ �n ∀ n ∈ N and

un(xn) = max
�n

un → +∞.

Of course, we have used here the fact that the maximum principle ensures that any
solution for P(λn,�n) is nonnegative.

Since the problem is translation invariant we can assume without loss of gen-
erality that

xn ≡ 0, ∀ n ∈ N.

Let us set

dn := dist(0, ∂�n),
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and define

wn,0(y) = un

(
dn

2
y

)
, y ∈ �n,0 :=

{
y ∈ R

2 : dn

2
y ∈ �n

}
.

Clearly we have
B1(0) � �n,0 (2.1)

and in particular (see Remark 1.6)wn,0 is a solution of P(λn,�n,0)which therefore
satisfies

wn,0(0) = un(0) = max
�n,0

wn,0 → +∞. (2.2)

Let us set

μn,0 := λn

(∫

�n,0

ewn,0

)−1

.

We claim that:
Claim: wn,0(0) + logμn,0 → +∞.
We argue by contradiction and observe that if the claim was false, then we

would find
{−
wn,0 � C0 in �n,0

wn,0 = 0 on ∂�n,0

for some C0 > 0. For any n ∈ N we can choose Rn > 0 such that �n,0 ⊂ BRn and
let

ϕn(y) = C0

R2
n
(R2

n − |y|2), y ∈ BRn

be the unique solution of
{−
ϕn = C0 in BRn

ϕn = 0 on ∂ BRn

.

Clearly, by the maximum principle we have wn,0(0) � ϕn(0) = C0, which is a
contradiction to (2.2). This proves the claim.

Therefore we see that the function wn,1(y) = wn,0(y) + logμn,0 satisfies
⎧
⎪⎨

⎪⎩

−
wn,1 = ewn,1 in B1∫
B1

ewn,1 � λ

wn,1(0) = max
B1

wn,1 → +∞
.

Hence we can apply the Brezis-Merle’s result [17] as further improved by Li
and Shafrir [50] to conclude that there exists r0 ∈ (0, 1] such that

ewn,1 ⇀ 8πmδp=0, in B2r0 ,

weakly in the sense of measures, where m is a positive integer which satisfies

1 � m � λ
8π . We remark that with a little extra work we could also prove that
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the oscillation of wn,1 is bounded on (say) ∂ Br0 and hence in particular obtain the
desired contradiction by using the Li’s result [49]. We will not purse this approach
here since we can come up with the desired conclusion just setting

δ2n,0 := e−wn,1(0) → 0, (2.3)

and use the by now standard blow-up argument in [50]. It shows that there exists a
subsequence (which we will not relabel) such that

wn(z) = wn,1(δn,0z) − wn,1(0), |z| < (δn,0)
−1,

satisfies

wn(z) → w(z), in C2
loc(R

2), (2.4)

where

w(z) = 2 log
1

(1 + 1
8 |z|2)

,

∫

R2
ew = 8π. (2.5)

At this point we observe that, in view of the translation and dilation invariance
of the energy we have

∫

�n,0

∣∣∇wn,1
∣∣2 =

∫

�n,0

∣∣∇wn,0
∣∣2 =

∫

�n

|∇un|2 = 2λ2nE(ω(un)) � 2λ
2

E,

so that, by using (2.2) and (2.3), we should have,

2λ
2

E �
∫

�n

|∇un |2=λn

∫

�n

ω(un)un =λn

∫

�n,0

ω(wn,0)wn,0>λn

∫

BRδn,0

ω(wn,0)wn,0

=
∫

BRδn,0

ewn,1(wn,1 − logμn,0) =
∫

BR

ewn (wn + wn,1(0) − logμn,0)

=
∫

BR

ewn wn + un(0)
∫

BR

ewn ,

for any R � 1 and for any n ∈ N, which is clearly in contradiction with (2.2) and
(2.4), (2.5).We refer to Lemma 3.1 in [7] for a proof of the fact that theGauss-Green
formula

∫
�n

|∇un|2 = λn
∫
�n

ω(un)un holds on domains which are only assumed
to be simple. ��

The proof of Theorem 1.19 completed.
We first prove part (b).
We argue by contradiction and suppose that there exists a sequence of open,

bounded and convex domains {�n,0} such that

N (�n,0) = L2(∂�n,0)

A(�n,0)
> n, (2.6)
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and a sequence of positive numbers {λn} such that sup
N

λn � λ, such that for any

n ∈ N there exist at least two solutions un,1 and un,2 for P(λn,�n,0) such that

E(ω(un,i )) � E, i = 1, 2. (2.7)

In view of Theorem 1.11 we see that for each n ∈ N there exist two concentric
and omotetic ellipses such that

En,− ⊆ �n,0 ⊆ En,+ (2.8)

and
A(En,+)

A(En,−)
= 4. (2.9)

Since P(λ,�) and (2.7) are both rotational, translational and dilation invariant,
then, in view of Remark 1.6, we can assume without loss of generality that for each
n ∈ N

En,+ = �ρn , for some ρn > 0. (2.10)

By (2.9) and the convexity of �n,0 we have

N (En,+) = L2(∂En,+)

A(En,+)
= Ł2(∂En,+)

4A(En,−)
� L2(∂En,+)

4A(�n,0)
� 1

4
N (�n,0) >

n

4
.

Therefore, since in view of (2.10) we have L2(∂En,+) � 4π2

ρ2
n

and A(En,+) = π
ρn
,

then we also conclude that

n

4
< N (En,+) � 4π2

ρ2
n

ρn

π
,

that is

ρn <
16π

n
. (2.11)

At this point we observe that

σn,0 := inf

{ ∫
�n,0

|∇ϕ|2 dx
∫
�n,0

ϕ2 dx

∣
∣∣∣∣
ϕ ∈ H1

0 (�n,0)

}

� 2(1 + ρ2
n ) > 2, (2.12)

which easily follows from the fact that σn,0 � σn , where

σn := inf

{ ∫
�ρn

|∇ϕ|2 dx
∫
�ρn

ϕ2 dx

∣∣∣∣
∣
ϕ ∈ H1

0 (�ρn )

}

,

see (4.5) and (4.7) below for further details.
Hence, by using (2.12), we conclude that

2
∫

�n,0

∣∣un,1 − un,2
∣∣2 �

∫

�n,0

∣∣∇(un,1 − un,2)
∣∣2

= λn

∫

�n,0

(ω(un,1) − ω(un,2))(un,1 − un,2).
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Let us write
∫

�n,0

(ω(un,1) − ω(un,2))(un,1 − un,2) = I1,n + I2,n,

where

I1,n =
∫

�n,0

eun,1 − eun,2

∫
�n,0

eun,1
(un,1 − un,2),

I2,n =
∫

�n,0

eun,2

(
1

∫
�n,0

eun,1
− 1
∫
�n,0

eun,2

)

(un,1 − un,2).

It follows fromLemma2.1 (which of course can be applied since any open, bounded
and convex domain is simple according to Definition 1.1) and the fact that solutions
of P(λ,�) are non negative that, by using also (2.9), we can estimate these two
integrals as follows

∣∣I1,n
∣∣ �

∫

�n,0

eun

A(�n,0)
|un,1 − un,2|2 �

∫

�ρ

eC

A(En,−)
|un,1 − un,2|2

= 4eC

π
ρn

∫

�n,0

|un,1 − un,2|2,

and similarly,

∣∣I2,n
∣∣ �

∫

�n,0

eun,2 |un,1 − un,2|
⎛

⎜
⎝
∫

�n,0

eun

(∫
�n,0

eun

)2 (un,1 − un,2)

⎞

⎟
⎠

� e2C

A2(�n,0)

(∫

�n,0

|un,1 − un,2|
)2

� 4e2C

π A(�n,0)
ρn

(∫

�n,0

|un,1 − un,2|
)2

� 4e2C

π
ρn

∫

�n,0

|un,1 − un,2|2,

where un is a suitable function which satisfies un ∈ (min{un,1, un,2},
max{un,1, un,2}).

Collecting these estimates we conclude that

∫

�n,0

|un,1 − un,2|2 � λnρn
8e2C

π

∫

�n,0

|un,1 − un,2|2,

which is of course a contradiction to (2.11). This contradiction shows that in fact
there exists at most one solution under the given assumptions and concludes the
proof of part (b) of the statement.

As for part (a) it is easy to adapt the argument by contradiction used above just
by replacing the assumption of divergent isoperimetric ratio in (2.6) with that of
the existence of ρn ↘ 0+ and 0 < β−,n � β+,n < +∞ such that
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En,− := {ρ2
n x2 + y2 � β2−,n} ⊆ �n,0 ⊆ {ρ2

n x2 + y2 � β2+,n}

=: En,+,
β2−,n

β2+,n
= c, ∀ n ∈ N.

In particular we see that this time we already have (by assumption) the needed
concentric omotetic ellipses [as in (2.8)] which in this case satisfy

A(En,+)

A(En,−)
= β2+,n

β2−,n
= c.

At this point, since of course Lemma 2.1 can be applied to the situation at hand,
the proof can be worked out as above with minor changes. ��

3. Solutions of Supercritical Mean Field Equations on Thin Domains

In this section we prove Theorem 1.7. Indeed, we will construct a branch of
solutions of P(λ,�ρ)which for ρ small enough extends up to some value λρ � 4π

7ρ ,
and more generally we obtain the same statement on any domain � lying between
two concentric and similar “thin” ellipses. In particular we recover the result for
convex domains having a large isoperimetric ratio. To achieve our goal, we consider
the auxiliary problem Q(μ,�) (see §1.1) and make use of a well known result [31]
whose statement calls up for the following:

Definition 3.1. A function u is said to be a subsolution(supersolution) of Q(μ,�)

if u ∈ C0(�) and
⎧
⎨

⎩

∫
�
(−
ϕ)u � (�)μ euϕ in �

u � (�)0 on ∂�

, ∀ϕ ∈ C∞
0 (�), ϕ � 0. (3.1)

Theorem 3.2. (Sub-Supersolutions method, [31]). Let � be simple. Suppose that,
for fixed μ > 0, there exist a subsolution uμ and a supersolution uμ of Q(μ,�). If

uμ � uμ in �, then Q(μ,�) admits a classical solution u = uμ ∈ C2(�)∩C0(�)

which moreover satisfies uμ � uμ � uμ.

Proof. We use the existence Theorem in [31], where the domain � is just assumed
to be regular with respect to the Laplacian (see [40], p. 25). It is well known that
any simple domain satisfies this assumption (see [40], p. 26). Therefore we can
apply the result in [31] which yields the existence of a function uμ ∈ C0(�)

which satisfies uμ � uμ � uμ and moreover satisfies (3.1) for all ϕ ∈ C∞
0 (�)

with the equality sign replacing the corresponding inequalities. Hence in particular
uμ is a distributional solution of the equation in Q(μ,�). Therefore the Brezis-
Merle [17] theory of distributional solutions of Liouville type equations shows that
it is also locally bounded and then standard elliptic regularity theory shows that
uμ ∈ C2(�) is a classical solution of Q(μ,�) as well. We insist about the fact that
the continuity up to the boundary is a byproduct of the result in [31], which indeed
yields a distributional solution uμ ∈ C0(�). ��
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The proof of Theorem 1.19. For fixed c ∈ (0, 1] and in view of Remark 1.6 we
can assume without loss of generality that

�ρ,c := {ρ2x2 + y2 � c} ⊆ � ⊆ {ρ2x2 + y2 � 1} =: �ρ.

Let us define

vρ,γ = 2 log

(
1 + γ 2

1 + γ 2(ρ2x2 + y2)

)
, (x, y) ∈ �ρ. (3.2)

A straightforward evaluation shows that vρ,γ satisfies
{−
vρ,γ = Vρ,γ evρ,γ in �ρ

vρ,γ = 0 on ∂�ρ,
(3.3)

where

Vρ,γ (x, y) = 4γ 2

(1 + γ 2)2

(
1 + ρ2 + γ 2(1 − ρ2)(ρ2x2 − y2)

)
(3.4)

Since

Vρ,γ (x, y) � g+(γ, ρ) := 4γ 2

(1 + γ 2)2

(
1 + ρ2 + γ 2(ρ2 − 1)

)
, ∀(x, y) ∈ �ρ,

we easily verify that vρ,γ is a classical supersolution and in particular a supersolu-
tion (according to the above definition) of Q(μ,�) whenever

μ � g+(γ, ρ). (3.5)

For fixed ρ ∈ (0, 1), the function hρ(t) = g+(
√

t, ρ) satisfies hρ(0) = 0 =
hρ

(
1+ρ2

1−ρ2

)
, is strictly increasing in

(
0, 1+ρ2

3−ρ2

)
and strictly decreasing in

(
1+ρ2

3−ρ2 ,

1+ρ2

1−ρ2

)
. Therefore, putting γ 2

ρ = 1+ρ2

3−ρ2 and μρ := hρ

(
γ 2

ρ

) ≡ g+(γ ρ, ρ) ≡
(ρ2+1)2

2 , we see in particular that for each μ ∈ (0, μρ] there exists a unique
γ +
ρ ∈ (0, γ ρ

]
such that g+(γ +

ρ , ρ) = μ and vρ,γ +
ρ
is a supersolution of Q(μ,�).

Indeed we have

(
γ +
ρ

)2 = (γ +
ρ (μ)

)2 = 2(1 + ρ2) − μ − 2
√

(1 + ρ2)2 − 2μ

μ + 4(1 − ρ2)
.

On the other hand let us consider

vρ,γ,c =

⎧
⎪⎨

⎪⎩

2 log

(
1+γ 2

1+ γ 2

c (ρ2x2+y2)

)

, (x, y) ∈ �ρ,c

0, (x, y) ∈ �\�ρ,c.

(3.6)

Again a straightforward computation shows that vρ,γ,c satisfies
{−
vρ,γ,c = Vρ,γ,cevρ,γ,c in �ρ,c

vρ,γ,c = 0 on ∂�ρ,c,
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where

Vρ,γ,c(x, y) =
{

4γ 2

c(1+γ 2)2

(
1 + ρ2 + γ 2

c (1 − ρ2)(ρ2x2 − y2)
)

in �ρ,c

0 in �\�ρ,c.

Since

Vρ,γ,c(x, y) � g−(γ, ρ, c) := 4γ 2

c(1+γ 2)2

(
1 + ρ2 + γ 2(1 − ρ2)

)
, ∀(x, y) ∈ �,

it is not difficult to check that vρ,γ,c is a subsolution (according to the above defi-
nition) of Q(μ,�) whenever

μ � g−(γ, ρ, c). (3.7)

For fixed ρ ∈ (0, 1), the function fρ,c(t) = g−(
√

t, ρ, c), t ∈ (0, γ 2
ρ] is strictly

increasing and satisfies fρ,c(t) > hρ(t). Therefore, for each μ ∈ (0, μρ] there
exists a unique γ −

ρ,c ∈ (
0, γ ρ

)
such that g−(γ −

ρ,c, ρ, c) = μ, γ −
ρ,c < γ +

ρ and
vρ,γ −

ρ,c,c
is a subsolution of Q(μ,�). Indeed we have

(
γ −
ρ,c

)2 = (γ −
ρ,c(μ)

)2 = μc − 2(1 + ρ2) + 2
√

(1 + ρ2)2 − 2ρ2μc

4(1 − ρ2) − μc
.

In conclusion, since γ −
ρ,c(μ) � γ +

ρ (μ) implies vρ,γ −
ρ,c,c

� vρ,γ +
ρ
, for fixed ρ ∈

(0, 1) and for each μ ∈ (0, μρ] we can set

uμ = vρ,γ −
ρ,c(μ),c, uμ = vρ,γ +

ρ (μ),

to obtain (through Theorem 3.2) a solution uρ,μ,c for Q(μ,�) which satisfies

vρ,γ −
ρ,c(μ),c � uρ,μ,c � vρ,γ +

ρ (μ), ∀(x, y) ∈ �. (3.8)

Any such a solution uρ,μ,c therefore solves P(λ,�) with λ = λρ,c(μ) satisfying

λ = λρ,c(μ) = μ

∫

�

euρ,μ,c � μ

∫

�ρ,c

e
v
ρ,γ

−
ρ,c(μ),c = μc

π

ρ
(1+(γ −

ρ,c(μ))2), (3.9)

and

λ = λρ,c(μ) = μ

∫

�

euρ,μ,c � μ

∫

�ρ

e
v
ρ,γ

+
ρ (μ) = μ

π

ρ
(1 + (γ +

ρ (μ))2). (3.10)

In the particular case μ = μρ we have (γ −
ρ,c(μρ))2 ≡ γ 2

ρ,c
= (1 + ρ2)

c−4+cρ2+4
√

1−cρ2

8(1−ρ2)−c(1+ρ2)2
, γ 2

ρ,c
< γ 2

ρ , (γ
+
ρ (μρ))2 ≡ γ 2

ρ = (1 + ρ2)
3−ρ2

8(1−ρ2)+(1+ρ2)2
and

uρ,μρ,c is a solution for P(λρ,c(μρ),�), where

λρ,c := λρ,c(μρ) � λρ,c = c(1 + ρ2)2

2

π

ρ
(1 + γ 2

ρ,c
) � 4πc

(8 − c)ρ
, (3.11)
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and

λρ,c := λρ,c(μρ) � λρ = (1 + ρ2)2

2

π

ρ
(1 + γ 2

ρ) � 11π

16ρ
(3.12)

as ρ → 0+. Moreover it is easy to verify that λρ,c is strictly decreasing at least

for ρ ∈ (0, 1
2
√
10

] and that there exists ρ∗(c) < 1
2
√
10

such that λρ,c � 8π for any

ρ ∈ (0, ρ∗(c)]. We also see that λρ → 4π− as ρ → 1−, is strictly decreasing for
ρ ∈ (0, ρp] and strictly increasing for ρ ∈ [ρp, 1) for some ρp � 0.5 and then it
is straightforward to check that there exists ρ∗ > ρ∗(c) satisfying 0.0702 < ρ∗ <

0.0703 such that λρ � 8π for any ρ ∈ (0, ρ∗].
Finally, since λρ,c(μ) is continuous in μ and by using (3.9) and (3.10)

0 < λρ,c(μ) � μ
π

ρ

(
1 + (γ +

ρ (μ))2
)

as μ → 0−→ 0,

we obtain the existence of a solution for P(λ,�) not only for λ = λρ,c, but for any
λ ∈ (0, λρ,c] as well. ��
The proof of Theorem 1.19. If N̄ exists, then it must be strictly greater than 4π ,
since any ball is of first kind. In view of Remark 1.6 we can assume without loss
of generality that L(∂�) = 1. Let E1 be the John maximal ellipse of �, then by
Theorem 1.11 E2 := {c0 + 2(x − c0) : x ∈ E1}, where c0 is the center of E1,
contains �. Again by using Remark 1.6 we can also assume that c0 = 0 and in
particular that E1 and E2 have the following form

E1 =
{

x2

a2 + y2

b2
= 1

}
, E2 =

{
x2

a2 + y2

b2
= 4

}
,

where clearly we can suppose that 0 < b � a.
By virtue of Ramanujan’s estimate of the perimeter of the ellipse [76], namely:

L(∂ E1) � π

{
(a + b) + 3(a − b)2

10(a + b) + √
a2 + 14ab + b2

}
,

being E1 ⊂ �, � convex, and since N (�) = L2(∂�)
A(�)

, we derive the following
inequalities:

1= L(∂�)� L(∂ E1)�(a+b)π; 1

N (�)
= A(�)

L2(∂�)
= A(�) � A(E1) = πab.

(3.13)
Moreover since � ⊂ E2 ⊂ Ra,b := {(x, y) ∈ R

2 | |x | � 2a, |y| � 2b} we get
1 = L(∂�) � L(∂ E2) � L(Ra,b) = 8(a + b), (3.14)

and by using Theorem 1.12

1

N (�)
= A(�) � 3

√
3

π
A(E1) = 3

√
3ab. (3.15)
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To simplify the notation we set N = N (�). Collecting (3.13), (3.14) and (3.15)
we have {

1
3
√
3N

� ab � 1
π N

−b + 1
8 � a � −b + 1

π
,

(3.16)

which in turn implies
{

b2 − b
π

+ 1
3
√
3N

� 0

b2 − b
8 + 1

π N � 0.

It is worth to notice that, since a � b and ab � 1
π N , if N > 64

π
then b < 1

8 .
Therefore solving the above system of inequalities, with N > 64

π
, we get

1 −
√
1 − 4π2

3
√
3N

2π
� b �

1 −
√
1 − 256

π N

16
.

Next, for N > 512
π
, considering the Taylor formula of the square root and estimating

the second order reminder we derive

π

3
√
3N

�
2π2

3
√
3N

+ 1
8 (

4π2

3
√
3N

)2

2π
� b �

128
π N + 1

2
√
2
( 256
π N )2

16
= 8

π N
+ 1024

√
2

π2N 2 ,

(3.17)
thus

1

8
− 8

π N
− 1024

√
2

π2N 2 � a � 1

π
− π

3
√
3N

. (3.18)

Combining (3.17) and (3.18), we have

ψ(N ) := π2

3
√
3N − π2

� b

a
�

64 + 8192
√
2

π N

π N − 64 − 8192
√
2

π N

=: ϕ(N ).

By definition of E1 and E2 we are in position to apply point (a) of this theorem

with c = 1
4 . Let us fix N̄ such that

64+ 8192
√
2

π N̄

π N̄−64− 8192
√
2

π N̄

= ρ∗(
1
4 ). We point out that since

ρ∗(
1
4 ) � 0, 0161, N̄ > 512

π
.

Then, for any N � N̄ , ρN := b
a � ρ∗(

1
4 ) and so we get the existence of a

solution u(λ) to P(λ,�) for any λ � λN where

�N := λ
ϕ(N ), 14

� λ
ρN , 14

< λN < λρN
� λψ(N ) =: �N .

At last from (3.11) and (3.12) we obtain the desired estimates on �N and �N :

�N � π2N

496
+ O(1) �N � 33

√
3N

16π
+ O(1) as N → +∞.

��
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4. The Eigenvalue Problem

The aim of this section is to prove Proposition 4.1 belowwhich yields positivity
of the first eigenvalue for the linearization of P(λ,�). Among other things, with
the aid of Proposition 4.1 we have:

The proof of Theorem 1.19. Let Gρ,c,GN denote the set of pairs of parameter-
solutions for P(λ,�) found in Theorem 1.7. Since the linearized problem for
P(λ,�) corresponds to the kernel equation for the second variation of Jλ, then the
conclusions of Proposition 1.14 are an immediate consequence of Proposition 4.1
below and the uniqueness results in [20]. ��

Putting

ω = ω(u) = eu
∫
�

eu
, and < f >ω=

∫

�

ω(u) f,

then the linearized problem for P(λ,�) takes the form

{−
ϕ − λω(u)ϕ + λω(u) < ϕ >ω= 0 in �

ϕ = 0 on ∂�.
(4.1)

Proposition 4.1. For fixed c ∈ (0, 1], let � be a regular domain such that {ρ2x2 +
y2 � β2−} ⊂ � ⊂ {ρ2x2 + y2 � β2+}, with

β2−
β2+

= c. For any ρ ∈ (0, ρ∗(c)] let

u = u(λ) ≡ uρ,μ,c be a solution of P(λ,�) and of Q(μ,�) with λ = μ
∫
�

eu as
obtained in Theorem 1.7(a) for λ ∈ [0, λρ,c]. Then (4.1) has only the trivial solution
and in particular the first eigenvalues of the linearized problems for P(λ,�) and
Q(μ,�) at u = u(λ) ≡ uρ,μ,c respectively are strictly positive.

Moreover, let � be a regular and convex domain with N (�) > N̄ as defined
in Theorem 1.7(b) and u(λ) be a solution of P(λ,�) and of Q(μ,�) for 0 � λ =
μ
∫
�

eu(λ) � λN as obtained therein. Then the first eigenvalues of the linearized
problems for P(λ,�) and Q(μ,�) at u = u(λ) are strictly positive.

Remark 4.2. As far as one is concerned with problem Q(μ,�), then it is well
known (see for example [70]) that it is well defined (and unique) that the extremal
(classical) solution v∗ which corresponds to the extremal value μ∗ such that the
bifurcation diagram has a bending point at (μ∗, v∗). In particular the first eigenvalue
of the linearized problem for Q(μ,�) is zero at μ∗.

The reasons why we have strictly positive first eigenvalues for λ � λρ,c are:

(–) As it will be shown in the proof below, the first eigenvalue of the linearized
problem for P(λ,�) (say τ1) is always greater or equal to the first eigenvalue
(which we will denote by ν0) of the linearized problem for Q(μ,�) and we will
use the latter to estimate both;
(–) The value of μ corresponding to λρ,c, which is defined implicitly via λ =
μ
∫
�ρ

euμ , is less than μ∗.
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Proof of Proposition 1.14We will use the fact that (see [17,20] and Remark 1.2
above) if u solves P(λ,�) then there exists C = C(�, λ, u) > 0 such that

1

C
� ω(u) � C.

Letting H ≡ H1
0 (�) and

L(φ,ψ) =
∫

�

(∇φ · ∇ψ) − λ

∫

�

ω(u)φψ

+λ

(∫

�

ω(u)φ

)(∫

�

ω(u)ψ

)
, (φ, ψ) ∈ H × H,

then by definition ϕ ∈ H is a weak solution of (4.1) if

L(ϕ, ψ) = 0, ∀ψ ∈ H.

We define τ ∈ R to be an eigenvalue of the operator

L[ϕ] := −
ϕ − λω(u)(ϕ− < ϕ >ω), ϕ ∈ H,

if there exists a weak solution φ0 ∈ H \{0} of the linear problem
−
φ0 − λω(u)φ0 + λω(u) < φ0 >ω= τω(u)φ0 in �, (4.2)

that is, if

L(φ0, ψ) = τ

∫

�

ω(u)φ0ψ, ∀ψ ∈ H.

Standard arguments show that the eigenvalues form an unbounded (from above)
sequence

τ1 � τ2 � · · · � τn · · · ,

with finite dimensional eigenspaces (although the first eigenfunction changes sign
and cannot be assumed to be simple in this situation).

Let us define

Q(φ) = L(φ, φ)

< φ2 >ω

=
∫
�

|∇φ|2 − λ < φ2 >ω +λ < φ >2
ω

< φ2 >ω

, φ ∈ H.

In particular it is not difficult to prove that the first eigenvalue can be characterized
as follows

τ1 = inf{Q(φ) | φ ∈ H \{0}}.
At this point we argue by contradiction and assume that (4.1) admits a non

trivial solution. Hence, in particular, τ1 � 0 and we readily conclude that

τ0 := inf{Q0(φ) | φ ∈ H \{0}} � 0, where Q0(φ) = L0(φ, φ)

< φ2 >ω
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and

L0(φ,ψ) =
∫

�

(∇φ · ∇ψ) − λ

∫

�

ω(u)φψ, (φ,ψ) ∈ H × H.

Clearly τ0 is attained by a simple and positive eigenfunction ϕ0 which satisfies
{−
ϕ0 − λω(u)ϕ0 = τ0ω(u)ϕ0 in �

ϕ0 = 0 on ∂�.
(4.3)

Let us recall that we have obtained solutions for P(λ,�) as solutions of
Q(μ,�) in the form u = uρ,μ,c, for some μ = μ(ρ) � μρ whose value of
λ = λ(μ, ρ, c) was then estimated as a function of ρ. Therefore, at this point, it is
more convenient to look at the linearized problem in the other way, that is, to go
back to μ = λ

(∫
�

eu
)−1. Hence, let us observe that for a generic value μ � μρ

(4.3) takes the form
{−
ϕ0 − μKρ,μ,cϕ0 = ν0Kρ,μ,cϕ0 in �

ϕ0 = 0 on ∂�,
(4.4)

where

Kρ,μ,c = euρ,μ,c and ν0 = μ
τ0

λ
� 0.

Remark 4.3. Of course, the assertion about the positivity of the first eigenvalues
corresponds to the positivity of τ1 and ν0 respectively. Therefore that part of the
statement will be automatically proved once we get the desired contradiction.

Since also the linearized problem (4.1) is rotational, translational and dilation
invariant, by arguing exactly as in the proof of Theorem 1.7 we can assume without
loss of generality that

�ρ,c := {ρ2x2 + y2 � c} ⊂ � ⊂ {ρ2x2 + y2 � 1} =: �ρ.

We observe that, by defining

K (−)
ρ,μ,c := e

v
ρ,γ

−
ρ,c(μ),c =

⎧
⎪⎨

⎪⎩

(
1+γ −

ρ,c(μ)2

1+ γ
−
ρ,c(μ)2

c (ρ2x2+y2)

)2

(x, y) ∈ �ρ,c

1 (x, y) ∈ �\�ρ,c,

K (+)
ρ,μ := e

v
ρ,γ

+
ρ (μ) =

(
1 + γ +

ρ (μ)2

1 + γ +
ρ (μ)2(ρ2x2 + y2)

)2

, (x, y) ∈ �ρ

we have

K (−)
ρ,μ,c � Kρ,μ,c � K (+)

ρ,μ for any (x, y) ∈ �.

In particular, since

K (+)
ρ,μ � (1 + γ +

ρ (μ)2)2 and 1 � K (−)
ρ,μ,c � (1 + γ −

ρ,c(μ)2)2 in �,
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and
� ⊂ Tρ := {(x, y) ∈ R

2 | | x | � (ρ)−1, | y| � 1}, (4.5)

then, by using the fact that

ν0 = inf

{ ∫
�

|∇ϕ|2 dx − μ
∫
�

Kρ,μϕ2 dx
∫
�

Kρ,μϕ2 dx

∣∣∣
∣∣
ϕ ∈ H

}

� 0,

it is not difficult to check that, for any μ � μρ = (1+ρ2)2

2 , the following inequality
holds:

inf

{ ∫
Tρ

|∇ϕ|2 dx − μ(1 + γ +
ρ (μ)2)2

∫
Tρ

ϕ2 dx
∫

Tρ
ϕ2 dx

∣∣∣
∣∣
ϕ ∈ H

}

� 0. (4.6)

Hence, there existsμ0 � 0 such that, puttingσ = σ(μ, ρ) = μ(1+γ +
ρ (μ)2)2+

μ0, there exists a weak solution φ0 ∈ H of
{−
φ0 − σφ0 = 0 in Tρ,

φ0 = 0 on ∂Tρ.
(4.7)

It is well known that the minimal eigenvalue σmin of (4.7) satisfies σmin = π2

4 ρ2 +
π2

4 > 2(1 + ρ2) and we conclude that

2(1 + ρ2) � σ(μ, ρ) = μ(1 + γ +
ρ (μ)2)2 + μ0. (4.8)

Next, since ρ∗(c) < 1
2
√
10
, it is not difficult to check that σ = σ(μ, ρ) satisfies

σ(μ, ρ) � 1,

for any ρ � ρ∗(c), which is of course a contradiction to (4.8). This fact concludes
the first part of the proof. As for the second one it can be derived by arguing as
above with some minor changes as in the proof of Theorem 1.7(b). ��

5. A Multiplicity Result

This section is devoted to the proof of Theorem 1.16.

The proof of Theorem 1.19. (a). Let us fix λ ∈ (8π, λρ,c) \ 8πN, then there
exists k ∈ N

∗ such that λ ∈ (8kπ, 8(k + 1)π). Let us fix now k distinct points,
x1, . . . , xk , in the interior of �ρ,β− = {ρ2x2 + y2 � β2−}. Next we fix d̄ > 0 such
that dist(xi , x j ) > 4d̄ for any i �= j and such that dist(xi , ∂�ρ,β−) > 2d̄ for any
i ∈ {1, . . . , k}.

Following [36] we introduce some notations. For d ∈ (0, d̄) we consider a
smooth non-decreasing cut-off function χd : [0,+∞) → R satisfying the follow-
ing properties:

⎧
⎨

⎩

χd(t) = t for t ∈ [0, d]
χd(t) = 2d for t � 2d
χd(t) ∈ [d, 2d] for t ∈ [d, 2d].
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Then, given μ > 0, we define the function ϕμ,d ∈ H1
0 (�) by

ϕμ,d(y) =
⎧
⎨

⎩
log

∑k
j=1

1
k

(
8μ2

(1+μ2χ2
d (|y−x j |))2

)
− log

(
8μ2

(1+4d2μ2)2

)
y ∈ �ρ,β−

0 y ∈ �\�ρ,β− .

By arguing exactly as in Section 5 of [36] we have

Fλ(ϕμ,d) � (16kπ − 2λ + od(1)) ln(μ) + O(1) + Cd

where Cd is a constant independent of μ and od(1) → 0 as d → 0.
Then, there exist d0 sufficiently small and μ0 sufficiently large such that

Fλ(ϕμ0,d0) < Fλ(u
(λ)) − 1.

Next we define

D = {γ : [0, 1] → H1
0 (�) : γ is continuous, γ (0) = u(λ), γ (1) = ϕμ0,d0}

and, for any η ∈ (8kπ, 8(k + 1)π) ∩ (8π, λρ,c), we set

cη = inf
γ∈D

max
s∈[0,1] Fη(γ (s)).

Since u(λ) is a strict local minimum for Fλ, there exists ελ > 0 such that cλ �
Fλ(u(λ)) + ελ. Besides, since Fλ is continuous and the branch Gρ,c is smooth, we
have that a bound on the min-max levels applies uniformly in a small neighborhood
of λ. More precisely the following straightforward fact holds true.

Lemma 5.1. There exists λ0 > 0 sufficiently small such that

[λ − λ0, λ + λ0] ⊂ (8kπ, 8(k + 1)π) ∩ (8π, λρ,c)

and for any η ∈ [λ − λ0, λ + λ0] we have Fη(ϕμ0,d0) � Fη(u(λ)) − 1
2 and

cη � Fλ(u
(λ)) + 3

4
ελ � Fη(u

(λ)) + 1

2
ελ.

If η, η′ ∈ (λ − λ0, λ + λ0), η � η′, then Fη

η
− F ′

η

η′ = 1
2

(
1
η

− 1
η′
) ∫

�
|∇u|2 � 0,

whence
cη

η
� cη′

η′ . (5.1)

Therefore we have that the function η �→ cη

η
is non-increasing and in turn differ-

entiable almost everywhere in (λ − λ0, λ + λ0). Set

� =
{
η ∈ (λ − λ0, λ + λ0) | cη

η
is differentiable at η

}
.

Lemma 5.2. cη is achieved by a critical point v(λ) of Fη provided that η ∈ �.
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Proof of Theorem 1.16 The proof is a step by step adaptation of the arguments
of Lemma 3.2 of [35] where, with respect to their notations, we have just to choose
δ < 1

4ελ. ��
Finally we state a (well known) compactness result for sequence of solutions

of P(λn,�).

Lemma 5.3. Let λn → λ and let v(λn ) ∈ H1
0 (�) be a solution of P(λn,�). If

λ /∈ 8πN, then v(λn ) admits a subsequence which converges smoothly to a solution
v(λ) of P(λ,�).

Proof of Theorem 1.16 In view of Lemma 2.1 in [20] v(λn ) is uniformly bounded
in a fixed neighborhood of the boundary. Hence the conclusion is a straightforward
and well known consequence of the Brezis-Merle [17] concentration-compactness
result as completed by Li and Shafrir [50]. ��

Now we are able to conclude the proof of Theorem 1.16(a). Indeed the thesis
is an easy consequence of Lemmas 5.2 and 5.3, noticing that the solution v(λ),
obtained by this procedure, does not coincide with u(λ), because by Lemma 5.1
Fλ(v

(λ)) > Fλ(u(λ)).
(b). This part can be proved exactly as the previous one. ��

6. A Refined Estimate for Solutions on Gρ,1

Let Gρ,c,GN denote the branches of parameter-solutions pairs of P(λ,�) found
in Theorem 1.7. As a consequence of Theorem 1.19 and Proposition 4.1 we obtain
the following:

Proposition 6.1. Let λ � 8π , ρ̃1 and Ñ be as in Theorem 1.19. Let either G(λ) =
{(λ, u(λ)) ∈ Gρ,c : λ ∈ [0, λ)} or G(λ) = {(λ, u(λ)) ∈ GN : λ ∈ [0, λ)} denote that
part of Gρ,c,GN with λ ∈ [0, λ), ρ ∈ (0, ρ̃1] and N � Ñ respectively. Then the
energy function

Ê(λ) := E(ω(u(λ))), u(λ) ∈ G(λ), (6.1)

is a monodrome and smooth function of λ ∈ [0, λ).

Proof of Theorem 1.16 By using the explicit bounds (3.8) and the fact that

E(ω(u(λ))) = 1

2λ

∫

�

ω(u(λ))u(λ),

then it is straightforward to show that the energy of any solution lying on G(λ) is
uniformly bounded from above by a suitable value E , whichwe can assumewithout
loss of generality to be larger than 1. Therefore Theorem 1.19 applies and we see
that E(ω(u(λ))) is monodrome as a function of λ ∈ [0, λ) and consequently Ê(λ)

is well defined. At this point Proposition 4.1 implies that it is smooth as well, see
also Remark 1.15. ��
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Our next aim is to improve Proposition 6.1 in the case � = �ρ to come up
with a unique solution of P(λ,�ρ) at fixed energy. Indeed, this is the content of
Theorem 1.22 whose proof is the main aim of this section. To achieve this goal we
have to pay a price in terms of a smallness assumption on the energy and indeed
we will obtain this result by using Theorem 1.19 and the expansion of solutions as
functions of ρ. Actually, we first need a more precise formula about the explicit
form of solutions of P(λ,�ρ) lying on Gρ,1, as claimed in (1.11) of Theorem 1.20.
By using these expansions we will be able to calculate explicitly, at least for small
ρ, their energy as a function of λ and then prove that Ê is monotone. It turns out
that this is enough to prove uniqueness of solutions with fixed energy. Actually we
also provide another proof (still by using the sub-supersolutions method) of the
existence of solutions for P(λ,�ρ).

The Proof of Theorem 1.20. The notation O(ρm), m ∈ N will be used in the rest
of this proof to denote various quantities uniformly bounded byCmρm withCm > 0
a suitable constant depending only on λ.

Let us first seek solutions vρ of Q(μ0ρ,�ρ) in the form

vρ = ρφ0 + ρ2φ0,1, φ0, φ0,1 ∈ C2(�ρ) ∩ C0(�ρ), (6.2)

with the additional constraints

0 � ‖φ0‖∞ � M0, 0 � ‖φ0,1‖∞ � M1.

Since vρ must satisfy −
v = μ0ρev then φ0 and φ0,1 should be solutions of
{−
φ0 = μ0 in �ρ

φ0 = 0 on ∂�ρ
(6.3)

and {
−
φ0,1 = μ0ρ

−1
(

eρφ0eρ2φ0,1 − 1
)

in �ρ

φ0,1 = 0 on ∂�ρ

(6.4)

respectively. Therefore the explicit expression of φ0 is easily derived to be

φ0(x, y; ρ) = μ0

2(1 + ρ2)

(
1 − (ρ2x2 + y2)

)
, (x, y) ∈ �ρ. (6.5)

Please observe that the functionφ0(x, y; λ, ρ) as defined in (1.8) will be recognized
to be φ0(x, y; ρ) where μ0 = μ0(λ, ρ).

Clearly

‖φ0‖∞ = μ0

2(1 + ρ2)
,

and therefore, in particular we have

∀ t0 > 1 ∃ ρ1 = ρ1(t0) > 0 : eρφ0 � e
μ0ρ

2(1+ρ2) < 1 + t0
μ0ρ

2
, ∀ ρ < ρ1, (6.6)

the last inequality being a trivial consequence of the convexity of e
μ0s

2(1+s2) in a right
neighborhood of s = 0.
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Our next aim is to use the sub-supersolutions method to obtain solutions for
(6.4). Let us define

f (t;φ0) := eρφ0eρ2t , t � 0,

so that, in particular, we have

∀ t1 > 1 ∃ ρ2 > 0 : eρ2t < 1 + t1ρ
2t, ∀ ρ < ρ2, (6.7)

with ρ2 depending on t1. By using (6.6) and (6.7) we conclude that

f (t;φ0) �
(
1 + t0

μ0ρ

2

) (
1 + t1ρ

2t
)

, ∀ ρ < min{ρ1, ρ2}.

Hence, setting

A+ = 1 + t0
μ0ρ

2
,

we see that a supersolution φ+ for (6.4) will be obtained whenever we will be able
to solve the differential problem

⎧
⎪⎨

⎪⎩

−
φ+ � t0
μ2
0
2 + t1μ0A+ρφ+ in �ρ

φ+ � 0 on ∂�ρ

0 � φ+ � M1 in �ρ.

(6.8)

Let us define

φ+(x, y) = C+
2(1 + ρ2)

(
1 − (ρ2x2 + y2)

)
, (x, y) ∈ �ρ,

with C+ > 0, so that the differential inequality in (6.8) yields

−
φ+ = C+ = C+
2

+ C+
2

= C+
2

+ (1 + ρ2)‖φ+‖∞ � t0
μ2
0

2
+ t1μ0A+ρφ+.

Therefore (6.8) will be satisfied whenever we can choose C+ such that the
following inequalities are verified

⎧
⎨

⎩

C+ � t0μ2
0

(1 + ρ2) � t1μ0A+ρ

C+ � 2(1 + ρ2)M1.

(6.9)

We first impose

C+ = 2M1,

so that the third inequality in (6.9) is automatically satisfied and then we substitute
it in the first inequality obtaining

μ2
0 � min

{
2M1

t0
, (4M0)

2
}

= 2M1

t0
, for any M0 large enough. (6.10)
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We conclude in particular that the second inequality is trivially satisfied for any
ρ small enough. At this point Theorem 3.2 shows that there exists a solution vρ of
Q(μ0ρ,�ρ) taking the form (6.2), where φ0 is defined as in (6.5) and 0 � φ0,1 �
M1 with the constraint (6.10).

Our next aim is to show that ∀ λ � 8π we can find ρ0 small enough such that
∀ ρ < ρ0 and for any λ < λ we can choose μ0 in such a way that vρ is a solution
of P(λ,�ρ). Indeed, we have

λ = λ0(μ0, ρ) := μ0ρ

∫

�ρ

evρ = πμ0+ f0(μ0, ρ), where | f0(μ0, ρ)| � CM1ρ,

(6.11)
where λ is a fixed value in the range of λ0 and we have used ‖φ0,1‖∞ � M1 and

∫

�ρ

eρφ0 =
(
1 + ρ2

) 2π

μ0ρ3

(

e
μ0ρ2

2(1+ρ2) − 1

)

.

Lemma 6.2. λ0(μ0, ρ) is smooth and in particular

∂λ0

∂μ0
(μ0, ρ) = π + O(ρ). (6.12)

Proof of Theorem 1.16 It is straightforward to check that the energy of these
solutions vρ is uniformly bounded from above by a suitable positive number E
(possibly depending on M1 and λ) which we can assume without loss of generality
to be larger than 1. Therefore Theorem 1.19 shows that they must coincide with
some subset of the branch G(λ) (see Proposition 6.1). We can use Proposition 4.1
(see Remark 4.2) at this point and conclude that λ0(μ0, ρ) is smooth as a function
of μ0. In particular standard arguments show that

∂vρ

∂μ0
= ρ

∂φ0

∂μ0
+ ρ2 ∂φ0,1

∂μ0
,

with ∂φ0
∂μ0

and ∂φ0,1
∂μ0

being both bounded in L∞(�ρ) by some constants depending
only on M0, M1. By using this fact, then (6.12) follows either by a straightforward
evaluation or just by observing that then (6.11) holds in C1 sense with respect to
μ0. At this point the (joint) regularity of λ0(μ0, ρ) as a function of μ0 and ρ is
derived by standard elliptic estimates. ��

Hence, in particular we can always choose μ0 and ρ0 such that ∀ ρ < ρ0 we
have [see (6.10)]

[0, λ) ⊂ λ0

([

0, 2

√
M1

t0

)

, ρ

)

,

and since λ0(μ0, ρ) is also continuous, we finally obtain the desired solution for
any λ < λ.
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At this point, let us fix a positive value λ < λ for which we seek an approximate
solution uλ of P(λ,�ρ). As a consequence of (6.11), (6.12) we have

μ0 = μ0(λ, ρ) = λ

π
+ O(ρ), (6.13)

and then

uλ := ρφ0 + ρ2φ0,1 = ρμ0

2π(1 + ρ2)

(
1 − (ρ2x2 + y2)

)
(1 + O(ρ))

= ρλ

2π

(
1 − (ρ2x2 + y2)

)
(1 + O(ρ)), (6.14)

is a solution for P(λ,�ρ), as desired.

Remark 6.3. However, by using (1.10), (6.13) and (6.14), a straightforward explicit
evaluation shows that

E(ωλ) = 1

2

∫

�ρ

ωλGρ[ωλ] = 1

2λ

∫

�ρ

ωλuλ = μ0ρ

2λ2

∫

�ρ

euλuλ

= λρ + O(ρ3)

2πλ2

∫

�ρ

euλuλ = ρ

8π
(1 + O(ρ)) ,

see Remark 1.23. Therefore, as far as we are interested in themonotonicity of Ê(λ),
we see that the first order expansion is not enough to our purpose.

Hence we make a further step to come up with an expansion of E at order ρ2.
Let φ0,1 be the solution of (6.4) determined above, we write it as

φ0,1 = φ1 + ρφ2,

so that, if φ1 is the unique solution of
{−
φ1 = μ0φ0 = μ2

0ψ0 in �ρ

φ1 = 0 on ∂�ρ
(6.15)

[see (1.8)–(1.9)] then by definition φ2 is a solution for
{

−
φ2 = μ0ρ
−2
(

eρφ0eρ2φ0,1 − 1 − ρφ0

)
in �ρ

φ2 = 0 on ∂�ρ

(6.16)

and it is not difficult to check that it also satisfies ‖φ2‖ � M2, for a suitable M2
depending only M0 and M1.

At this point, using (6.11), (6.12) and by arguing as in Lemma 6.2, then stan-
dard elliptic estimates to be used together with the maximum principle show that
{φ0, φ1, φ2} ⊂ C2

0 (�) and ‖D(k)
λ φ0‖C2

0 (�) + ‖D(k)
λ φ1‖C2

0 (�) + ‖D(k)
λ φ2‖C2

0 (�) � Mk

for suitable constants Mk > 0 depending only on M0, M1, M2, that is, depending
only on λ.
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Let λ0 = λ0(μ0, ρ) as defined in (6.11) above, at this point a straightforward
evaluation shows that the following second order expansion holds,

λ0(μ0, ρ) := μ0ρ

∫

�ρ

evρ = μ0ρ

∫

�ρ

(1 + ρφ0 + O(ρ2))

= πμ0 + πμ2
0ρ

4(1 + ρ2)
+ O(ρ2) = πμ0 + πμ2

0ρ

4
+ O(ρ2).

By arguing as in Lemma 6.2, and for a fixed value λ in the range of λ0, we can
use the implicit function theorem to obtain the inverse expansion up to order ρ2,
that is

λ = πμ0 + πμ2
0ρ

4
+ O(ρ2), μ0 = λ

π
− λ2

4π2 ρ + O(ρ2),

in C2 sense and (1.12)–(1.13) follow immediately. This observation concludes the
proof. ��
The Proof of Theorem 1.22. The notation O(ρm), m ∈ N will be used in the rest
of this proof to denote various quantities uniformly bounded byCmρm withCm > 0
a suitable constant possibly depending on λ and on the constants Mk , k = 0, 1, 2
as obtained in Theorem 1.20.

By using (1.10) above and Theorem 1.20 we obtain the Taylor expansion

E(ωλ) = 1

2

∫

�ρ

ωλGρ[ωλ] = 1

2λ

∫

�ρ

ωλuλ = μ0ρ

2λ2

∫

�ρ

euλuλ

= μ0ρ

2λ2

∫

�ρ

euλuλ = μ0ρ

2λ2

∫

�ρ

(1 + ρφ0 + O(ρ2))(ρφ0 + ρ2φ1 + O(ρ3))

= μ0ρ

2λ2

∫

�ρ

(ρφ0 + ρ2φ2
0 + ρ2φ1 + O(ρ3))

= μ0ρ

2λ2

[
πμ0

4(1 + ρ2)
+ πμ2

0ρ

12(1 + ρ2)2
+ πμ2

0ρ

12(1 + ρ2)2
+ O(ρ2)

]

,

where we have used the fact that
∫

�ρ

ρ2φ1 = πμ2
0ρ

12(1 + ρ2)2
, (6.17)

which can be obtained by using the explicit expression of φ0 in (1.8) together with
the fact that φ1 solves (6.15), see the Appendix 8.1 below for further details.

Hence, by using Proposition 6.1 and (1.12)–(1.13) and (1.14), we have

Ê(λ) := E(ωλ) = πμ2
0ρ

8λ2
+ πμ3

0ρ
2

12λ2
+ O(ρ3) = πρ

8λ2

(
λ2

π2 − λ3

2π3 ρ + O(ρ2)

)

+ πρ2

12λ2
λ3

π3 + O(ρ3) = ρ

8π
+ ρ2

48π2 λ + O(ρ3).
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In particular we conclude that

Ê(λ) = ρ

8π
+ ρ2

48π2 λ + O(ρ3), (6.18)

and, in view of (1.12)–(1.13) and (1.14),

d

dλ
Ê(λ) = ρ2

48π2 + O(ρ3), (6.19)

d2

dλ2
Ê(λ) = O(ρ3).

At this point (6.18) shows that wemay restrict the domain of Ê to the preimages
of E ∈ [ ρ

8π , Êρ

]
. Then (6.19) implies that Ê(λ) is monotonic increasing there.

Hence the preimage of
[

ρ
8π , Êρ

]
is exactly [0, λ̂ρ] and so, according to Theorem

1.19, as far as λ � λ the uniqueness of uλ as a function of λ implies that the
equation E(ω(u λ̂(E))) = E defines λ̂(E) as a monotonic increasing function of E
in
[

ρ
8π , Êρ

]
. Therefore, we can use (6.18) and (6.19) together with the implicit

function theorem to take the inverse up to order ρ2, that is

λ̂(E) = 48π2

ρ2

(
E − ρ

8π

)
+ O(ρ),

and then conclude that

d

dE
λ̂(E) = 48π2

ρ2 + O(ρ),

and

d2

dE2 λ̂(E) = O(ρ).

��

7. The Entropy is Concave in E ∈ [ ρ
8π , Êρ

]

The Proof of Proposition 1.25. Let us recall that according to definition 1.4 the
density corresponding to a solution uλ of P(λ,�ρ) is defined to be

ωλ ≡ ω(uλ) := euλ

∫
�ρ

euλ
.

As usual Gρ,1 denotes the branch of solutions obtained in Theorem 1.7(a).
When evaluated on (λ, uλ) ∈ Gρ,1, of course S(ω(uλ)) yields a function of λ

defined in principle on λ ∈ [0, λρ,1]. Then we can use MVP-(iv), that is, the fact
that any entropy maximizer (at fixed E) of the MVP satisfies P(λ,�) (for a certain
unknown value λ). We can then observe, however, that Theorem 1.22 states that
there exists one and only one solution of P(λ,�) with λ = λ̂(E) such that the
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energy is exactly E , Ê(λ) = E , as far as λ � λ and whenever E ∈ [ ρ
8π , Êρ

]
. At

this point we will need the assumption in Proposition 1.25 about the non existence
of solutions of P(λ,�) with λ > λ and energy E ∈ [ ρ

8π , Êρ

]
. As a consequence

we conclude that indeed S(E) ≡ S(ω(uλ)) |λ=̂λ(E) in
[

ρ
8π , Êρ

]
. Hence, when

evaluated on those densities ωλ̂(E) as obtained in Theorem 1.22, we have

S(E) ≡ S(ωλ̂(E)) = −2E λ̂(E) + log

(∫

�ρ

euλ̂(E)

)

, E ∈
[ ρ

8π
, Êρ

]
.

In particular, in view of Theorem 1.22 we can set

u̇ = du λ̂(E)

dE
, and ü = d2u λ̂(E)

dE2 ,

to obtain

dS(E)

dE
= −2̂λ(E) − 2E

d̂λ(E)

dE
+
∫

�ρ

ωλ̂(E)u̇,

and then

d2S(E)

dE2 = −4
d̂λ(E)

dE
−2E

d2̂λ(E)

dE2 +
∫

�ρ

ωλ̂(E)(u̇)2−
(∫

�ρ

ωλ̂(E)u̇

)2

+
∫

�ρ

ωλ̂(E)ü.

(7.1)

We wish to evaluate d2S(E)

dE2 in case � = �ρ and E ∈ [ ρ
8π , Êρ

]
.

We are going to evaluate (7.1) by using (1.12)–(1.13), Theorem 1.22 and the
estimates (1.14) in Theorem 1.20. Let us set

˙̂λ = d

dE
λ̂(E), ¨̂λ = d2

d E2 λ̂(E),

and

φ
′
j = d

dλ
φ j , φ

′′
j = d2

dλ2
φ j , j = 0, 1, 2,

so that, in view of (1.14) and (1.15), (1.16), (1.17) we have

u̇ = du

dλ
˙̂λ = ˙̂λ

(
ρφ

′
0 + ρ2φ

′
1 + O(ρ3)

)
,

and

ü = d2u

dλ2
˙̂λ2 + du

dλ
¨̂λ = ˙̂λ2

(
ρφ

′′
0 + ρ2φ

′′
1 + O(ρ3)

)
+ ¨̂λ

(
ρφ

′
0 + ρ2φ

′
1 + O(ρ3)

)
,

(7.2)
where the derivatives with respect to λ will be estimated by using (1.12)–(1.13).

Hence we can introduce

S̈0(E) :=
∫

�ρ

ω(uλ̂(E))(ü + u̇2) −
(∫

�ρ

ω(uλ̂(E))u̇

)2

,
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to obtain, after a lengthy evaluation where we use (1.12)–(1.13) and (7.2),

S̈0(E) = (48π)2

ρ2

⎡

⎣−
∫

�ρ

ω(uλ̂(E))ψ0 −
(∫

�ρ

ω(uλ̂(E))ψ0

)2

+π2
∫

�ρ

ω(uλ̂(E))φ
′′
1

]

+ O

(
1

ρ

)
.

At this point we can use
∫

�ρ

ω(uλ̂(E))ψ0 = 1

4
+ O(ρ), (7.3)

and ∫

�ρ

ω(uλ̂(E))φ
′′
1 = 1

6π2 + O(ρ), (7.4)

whose proof is left to Appendix 8.2, and (1.16), (1.17) to obtain

d2S(E)

dE2 =−4 ˙̂λ−2E ¨̂λ+ S̈0(E)=−448π
2

ρ2 + (48π)2

ρ2

(
−1

4
− 1

16
+ 1

6

)
+ O

(
1

ρ

)
,

and the conclusion readily follows. ��

8. Appendix

8.1. The Proof of (6.17)

To obtain (6.17) we multiply−
φ1 by y2 and integrate by parts twice to obtain

−
∫

�ρ

y2
φ1 = −
∫

∂�ρ

y2∂νφ1 − 2
∫

�ρ

φ1.

Similarly we have

−
∫

�ρ

ρ2x2
φ1 = −
∫

∂�ρ

ρ2x2∂νφ1 − 2ρ2
∫

�ρ

φ1,

so that we can sum up to obtain

2(1 + ρ2)

∫

�ρ

φ1 =
∫

�ρ

(ρ2x2 + y2)
φ1 −
∫

∂�ρ

∂νφ1.

Therefore, by using the equation in (6.15) and the divergence theorem we have

2(1 + ρ2)

∫

�ρ

φ1 =
∫

�ρ

(−(ρ2x2 + y2) + 1)μ0φ0,

that is ∫

�ρ

φ1 = (μ0)
2
∫

�ρ

ψ2
0 , (8.1)

and the conclusion follows by a straightforward evaluation based on the explicit
expression of ψ0 [see (1.9)]. ��



566 Daniele Bartolucci & Francesca De Marchis

8.2. The Proofs of (7.3) and (7.4)

Concerning (7.3) we just observe that
∫

�ρ

ω(uλ̂(E))ψ0 =
∫

�ρ

1 + O(ρ)
∫
�ρ

(1 + O(ρ))
ψ0 = ρ

π
(1 + O(ρ))

∫

�ρ

ψ0 = 1

4
+ O(ρ),

where the last equality is obtained by a straightforward evaluation based on the
explicit expression of ψ0 [see (1.9)].

Concerning (7.4) we observe as above that
∫

�ρ

ω(uλ̂(E))φ
′′
1 = ρ

π
(1 + O(ρ))

∫

�ρ

φ
′′
1, (8.2)

and that in view of (6.15) and (1.8), then φ
′′
1 satisfies

{−
φ
′′
1 = (μ0φ0)

′′ ≡ (μ2
0)

′′
ψ0 in �ρ

φ
′′
1 = 0 on ∂�ρ

(8.3)

where μ0 = μ0(λ, ρ) [see (1.12)–(1.13)]. In other words φ
′′
1 is a solution for the

same problem as φ1 [that is (6.15)] but for the fact that μ2
0 is replaced by (μ2

0)
′′
in

(8.3). Hence the argument in Section 8.1 applies and we obtain [see (8.1)]
∫

�ρ

φ
′′
1 = (μ2

0)
′′
∫

�ρ

ψ2
0 = (μ2

0)
′′ π

12ρ
+ O(ρ2) = 1

6πρ
+ O(ρ2),

and the conclusion follows by substituting this result in (8.2). ��
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