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Abstract

We present energetic and strain-threshold models for the quasi-static evolution
of brutal brittle damage for geometrically-linear elastic materials. By allowing
for anisotropic elastic moduli and multiple damaged states we present the issues
for the first time in a truly elastic setting, and show that the threshold methods
developed in (Garroni, A., Larsen, C. J., Threshold-based quasi-static brittle
damage evolution, Archive for Rational Mechanics and Analysis 194 (2), 585–609,
2009) extend naturally to elastic materials with non-interacting damage. We show
the existence of solutions and that energetic evolutions are also threshold evolutions.

1. Introduction

Many irreversible phenomena in mechanics have been studied through varia-
tional models, plasticity (c.f., e.g., [10,12,13]) and fracture [6] being prominent
examples. Variational formulations enable the use of the powerful tools of calcu-
lus of variations, for instance it is typically easy to show the existence of global
minimizers albeit perhaps only for a relaxed energy.

Mechanical phenomena have also been understood through threshold criteria.
In the examples given above, plastic behavior is triggered when stress reaches a
yield surface and fracture occurs where the stress has a sufficiently large singularity.
An attractive feature of these models is that these criteria are spatially local, which
is physically natural, expresses engineering intuition and facilitates modelling. On
the other hand it is often unclear what correspondence (if any) there is between
variational formulations and threshold formulations of the same phenomenon.

In this paper we present, first, energetic (i.e., variational) and threshold models
for the quasi-static evolution of brutal brittle damage in geometrically-linear elastic
materials. This part of our work may be viewed as an extension to true elasticity (i.e.,
with vector-valued displacement fields and possibly anisotropic elastic moduli) of
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an earlier model [9] which was restricted to anti-plane shear (a scalar setting) with
essentially scalar moduli (multiples of the identity). Moreover we allow for multiple
damage processes, and thus multiple damaged states; to the best of our knowledge
this is the first model to do so. Our model, both in the energetic and threshold
versions, allows for microstructure formation, due to both elasticity and damage;
we expand on the significance of this below. For the energetic formulation we show
the existence of solutions under reasonable hypotheses.

These two approaches to damage are formulated independently but the question
arises as to whether they are related for any given material and, if yes, how. In the
second part of our work we relate these formulations for a broad class of materials
which includes classical slip-plane plasticity without strain hardening. We show that
energetic evolutions are also threshold evolutions, for a threshold that is related to
the energetic cost of damage (i.e., the energy dissipated per unit volume due to
damage). Thus energetic evolutions also have a spatially-local description.

To place our work in context in Section 1.2 we briefly summarise three energetic
formulations [4,5,9] that have been proposed in the literature, in Section 1.3 we
summarise a threshold formulation [9], and in Section 1.4 we summarise the link
between them. It is convenient to introduce our notation before we do so.

1.1. Notation

Let D := {0, 1} and s be the dimension of space. LetΩ ⊂ R
s be Lipschitz and

P(Ω) := 2Ω , the set of subsets of Ω . | · | denotes either the Euclidean norm on R

or the Lebesque measure on R
s . We denote the Euclidean inner product in R

s by ·.
For a, b ∈ R

s ,

a ⊗s b := 1

2
(a ⊗ b + b ⊗ a)

where a ⊗ b is the tensor product of a and b.
Let S := {

M ∈ R
s×s | M = MT

}
be the linear space of symmetric matrices.

We denote the standard inner product in S by 〈·, ·〉. P is the set of all orthogonal
projections on S and M is the set of all elastic modulli (i.e., positive-definite self-
adjoint linear operators) on S. We use the standard operator norm on M:

‖ · ‖ := sup
ε∈S

〈·ε, ε〉
‖ε‖2 ,

and the partial order that is defined through quadratic forms: ∀α1, α2 ∈M,

α1 � α2 ⇐⇒ ∀ε ∈ S, 〈α1ε, ε〉 � 〈α2ε, ε〉.
We set

M(c1, c2) := {α ∈M | c1 � ‖α‖ � c2}
for 0 < c1 < c2.

The map e : H1
0 (Ω,R

s)→ L2(Ω,S) is defined through

e(·) := 1

2

(
D · +D·T

)
,

so e(u) is the strain corresponding to the deformation u.
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For α ∈ L∞(Ω,M(c1, c2)) and body force f ∈ H−1(Ω,Rs) by u(α, f ) we
denote the solution in H1

0 (Ω,R
s) of

− div(αe(·)) = f. (1.1)

In addition we set e(α, f ) := e (u(α, f )) ∈ L2(Ω,S). The corresponding elastic
energy on S ⊂ Ω is

ES(α, f ) :=
∫

S

(
1

2
〈α e(α, f ), e(α, f )〉 − f · u(α, f )

)
dx .

When S = Ω we drop the subscript and write E . Note that

E(α, f ) = inf
u∈H1

0 (Ω,R
s )

∫

Ω

(
1

2
〈α e(u), e(u)〉 − f · u

)
dx (1.2)

and the minimisers u ∈ H1
0 (Ω,R

s) of E(α, f ) satisfy (1.1).
Since our deformations u ∈ H1

0 (Ω,R
s) vanish on the boundary the quasi-

static evolutions that we consider are driven only by time-dependent body-forces
f ∈ H−1(Ω,Rs). In fact there is no loss of generality here, see [4, Remark 5].

Unless explicitly indicated otherwise, by
�
⇀ we denote weak� convergence in

L∞(Ω,Rm), where m would be clear from the context.

1.2. Energetic Formulations

In the model for damage proposed by [5], two states, undamaged and damaged,
are characterised by two elastic moduli A0 ∈ M and A0 − ΔA1 ∈ M, respec-
tively.1 The elastic moduli are well-ordered: A0 > A0 −ΔA1. The energy of each
displacement u ∈ H1

0 (Ω,R
s) and body-force f ∈ H−1(Ω,Rs) is given by
∫

Ω

W (e(u))− f · u dx,

for an energy density

W (·) = min

{
1

2
〈A0·, ·〉, 1

2
〈(A0 −ΔA1)·, ·〉 + k

}
.

Here k is the energetic cost of damage. This energy density is not quasi-convex,
thus we expect microstructure formation, which necessitates relaxation. The quasi-
convex envelope of W , QW , is given by

QW (·) := min
θ∈[0,1] QθW (·).

QθW (·) := min
A∈Gθ ({A0,ΔA1})

1

2
〈A·, ·〉 + kθ,

1 For consistency with the rest of the paper our notation differs from [5].
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where Gθ ({A0,ΔA1}) is the G-closure of A0 and A0 − ΔA1 mixed with volume
fractions 1−θ and θ respectively (see Section 2.2 below). QθW is known in variety
of situations, see [1].

Given a time-parametrised external loading f ∈ H−1(Ω,Rs), a relaxed quasi-
static evolution for this model that also includes irreversibility of damage was
constructed in [4]. It was proved that there exists a time-parametrized family of
elastic moduli A(t) ∈ L∞(Ω,M(c1, c2)) and a time-parametrized family of dam-
age volume fraction θ(t) ∈ L∞(Ω, [0, 1]) such that,

A(t) ∈ Gθ(t)({A0,ΔA1})
(which, at x ∈ Ω , mix A0 and A0 −ΔA1 with proportion 1− θ(t, x) and θ(t, x)
respectively) and satisfying

1. monotonicity conditions (related to irreversibility of the damage): A is non-
increasing and θ is non-decreasing,

2. an energy balance, and
3. a minimality condition: At every time t ,

E(A(t), f (t))+
∫

Ω

kθ(t) dx � E( Ã, f (t))+
∫

Ω

k
(
(1− θ̃ )θ(t)+ θ̃

)
dx

for every ( Ã, θ̃ ) such that Ã is in G-closure of A(t) and A0 −ΔA1 mixed with
volume fractions 1− θ̃ and θ̃ respectively.

It was observed in [9, Remark 4 and Example 1] that if a sequence of mixtures of
undamaged and damaged materials corresponds to a homogenised elasticity tensor
A ∈M, and another sequence of mixtures with more (in the sense of set inclusion)
damaged material corresponds to A′ ∈ M then it is not necessarily true that A′ is
obtainable as a mixture of A and the damaged material. Yet it is only with respect to
such mixtures that the evolutions in [4] are minimal. By enforcing minimality with
respect to G-closures of A(t) with the damaged material [4] imposes minimality
only with regard to further damage on larger length scales while neglecting the
possibility of additional damage on the same length scale.

Garroni et al. [9] overcomes this through an energetic formulation that is
expressed explicitly in terms of sequences of sets that generate microstructure
(rather than in terms of the effective behaviour of the microstructure); this leads to
the notion of constrained G-closure (see Definition 2.5 in Section 2.2 below) and
the notion of weak energy-minimizing evolutions in Definition 1.1 below. Their
analysis is restricted to scalar (i.e., anti-plane) deformations with elastic moduli
being isotropic (i.e., multiples of the identity): A0 = β I and ΔA1 = Δβ I for
some β > 0 and Δβ ∈ (0, β).
Definition 1.1. ([9, Definition 3]) Let f ∈ W 1,1([0, T ], H−1(Ω,R)). An evolution

[0, T ] � t �→ (A(t), θ(t)) ∈ L∞(Ω,M(c1, c2))× L∞(Ω, [0, 1])
with

A(t) ∈ Gθ(t)({β I,Δβ I })
(see Definition 2.5 in Section 2.2 below) is a weak energy-minimizing evolution if
the following hold:
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1. Monotonicity: The map t �→ A(t) is non-increasing and the map t �→ θ(t) is
non-decreasing.

2. Energy balance: The energy satisfies

E(A(t), f (t))+
∫

Ω

k · θ(t) dx

= E(A(0), f (0))+
∫

Ω

k · θ(0) dx −
∫ t

0
ḟ (s) · u(A, f )(s) ds.

3. Minimality: There exists a sequence {Dn(t)} ⊂ Ω , non-decreasing in t for each
n, such that for every t ∈ [0, T ],

β I −ΔβχDn(t) I
G→ A(t),

χDn(t)
�
⇀ θ(t)

(see Section 2.1 below for the definition of G-convergence) and for every ( Ã, θ̃ )
such that

Ã ∈ Gθ̃ (t)({Dn(t)}, {β I,Δβ I })
(see Section 2.2 below for the definition of constrained G-closure) we have

E(A(t), f (t))+
∫

Ω

k · θ(t) dx � E( Ã, f (t))+
∫

Ω

k · θ̃ dx .

Garroni et al. [9] also shows the existence of weak energy-minimizing evo-
lutions for every f ∈ W 1,1([0, T ], H−1(Ω,Rs)).

1.3. A Threshold Formulation

We now describe the model introduced in [9] for damage evolution based explic-
itly on a strain threshold without any reference to an energetic cost for damage.
As before this analysis is restricted to scalar deformations with A0 = β I and
ΔA1 = Δβ I for some β > 0 and Δβ ∈ (0, β).

The formulation rests on three principles:

1. Irreversibility of damage: The damaged region is non-decreasing in time (in the
sense of set inclusion).

2. Presence of a threshold: There exists a (positive) damage threshold which is
not exceeded by the absolute value of the strain in the undamaged region.

3. Necessity of damage: Damage only occurs as is necessary in order to maintain
condition (2).

The first two principles are straightforward to formulate, but the third is more subtle
(see Remark 1.3 below). These principles lead to:

Definition 1.2. ([9, Definition 8]) Let f ∈ W 1,1([0, T ], H−1(Ω,R)). For D ⊂ Ω
we set

αD := β I −ΔβχD I.

An evolution
[0, T ] � t �→ D(t) ⊂ Ω

is a strong threshold evolution with threshold λ > 0 if
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1. Monotonicity: The damage evolution t �→ D(t) is non-decreasing.
2. Threshold: The threshold is not exceeded outside the damage set:

|∇u(αD(t), f (t))| � λ

a.e. in Ω \ D(t).
3. Necessity of damage:

(a) For every E ⊂ D(T ) with |E | > 0 and every sufficiently small Δτ , there
exists τ < T −Δτ such that, with

ΔE := E ∩ (D(τ +Δτ) \ D(τ )) ,

we have
|∇u(αD(τ+Δτ)\ΔE , f (τ +Δτ))| > λ

in a subset of ΔE with positive measure.
(b) (Trivially satisfied if D is continuous from below at T .) For every

E ⊂ D(T ) \
⋃

τ<T

D(τ )

with positive measure, we have

|∇u(αD(T )\E , f (T ))| > λ

in a subset of E with positive measure.

Remark 1.3. The monotonicity condition in Definition 1.2 requires that damage
be irreversible and the threshold condition requires that the threshold be exceeded
unless damage occurs.

The necessity condition imposes the converse restriction, locally in space: from
Item (3a), were a region not included in the damage set then the threshold would
have been exceeded in a (measurable) subset of that region. Item (3b) asks that
the damage set jump (increases discontinuously) to include a region only if the
alternative would have been to exceed the threshold in that region.

Note that it suffices to impose the necessity condition at the final time T since
all earlier times are included.

1.4. Link between Variational and Threshold Formulations

Garroni et al. [9, Theorem 9] shows that there is a correspondence between
the damage cost k in [4] and the threshold λ such that a strong energy-minimimising
evolution (in the sense of [4]) is a strong threshold evolution in the sense of
Definition 1.2.

If the energy needs to be relaxed, due to the development of microstructure, then
so does the threshold criterion. That is, there might be no solutions to the threshold
formulation, only approximate solutions that develop microstructure. A weak form
of the threshold criterion then needs to be formulated. This is done in [9, Definition
10]. Since we will present a more general definition in Section 4 below we do not
repeat their definition here.
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However we will highlight the key feature: any threshold model must involve
pointwise properties of (symmetrised) gradients of the deformation. It follows that
it cannot be formulated only in terms of weak limits of approximating sequences.
The solution used in [9] is to use pointwise properties of deformation gradients
corresponding to sequences of damage sets; we shall use the same approach.

The resulting definition of “weak threshold evolutions” then suggests a formu-
lation for “weak energy-minimising evolutions”. Again, it cannot be formulated
only in terms of weak limits of approximating sequences but must consider the
sequences of damage sets that generate the relaxed solution. This formulation,
presented in [9], was described above (Definition 1.1). It maintains the correspon-
dence between energy and threshold formulations, that is, it guarantees that weak
energy-minimising evolutions are also weak threshold evolutions.

1.5. Outline of Paper

In Section 2 we remind the reader of the notions of G-convergence and G-
closure. This is followed, in Section 3, by a description of elastic damage with
illustrative examples. In Sections 4 and 5 we explore threshold and energetic for-
mulations of elastic damage, respectively. We also prove the existence of quasi-static
evolutions for the energetic formulation, even in the presence of microstructure.

In Section 6 we relate these two formulations, as in [9], by showing that, for
a broad class of materials, all energetic (quasistatic) evolutions are also threshold
(quasistatic) evolutions. As a consequence we obtain the existence of quasi-static
evolutions for the threshold formulation, even in the presence of microstructure. In
addition this shows that energetic (quasistatic) evolutions satisfy a local threshold.
Moreover this link between variational and threshold formulations enables us to
show in Section 7 that all local minimisers of energy are global minimisers.

2. G-Convergence and G-Closures

2.1. G-convergence

We recall, for the readers’ convenience, the notion of G-convergence; for
detailed introductions we suggest [2,14].

Definition 2.1. (G-convergence,
G→) A sequence An ∈ L∞(Ω,M(c1, c2)) G-

converges to A ∈ L∞(Ω,M(c1, c2)), An G→ A, iff for every f ∈ H−1(Ω,Rs),

u(An, f ) ⇀ u(A, f ) weakly in H1
0 (Ω,R

s). (2.1a)

Remark 2.2. (Convergence of stresses) As a consequence of the symmetries of the

linear operators in M, if An G→ A then

Ane(An, f ) ⇀ Ae(A, f ) weakly in L2(Ω,S). (2.1b)

The following properties of G-convergence are worth noting:
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Remark 2.3. For sequences An, Bn ∈ L∞(Ω,M(c1, c2)),

1. Compactness: There exists A ∈ L∞(Ω,M(c1, c2)) such that An G→ A upto
subsequence.

2. Convergence of energy: If An G→ A then, ∀ f ∈ H−1(Ω,Rs),

E(An, f )→ E(A, f ).

3. Metrizability: G-convergence is associated to a metrizable topology on
L∞(Ω,M(c1, c2)).

4. Ordering: If An G→ A, Bn G→ B and Bn � An then B � A.

5. Locality: If An G→ A, Bn G→ B, and χ is a characteristic function on Ω , then

χ An + (1− χ)Bn G→ χ A + (1− χ)B.
6. Periodicity: Let A ∈ L∞([0, 1]s,M(c1, c2)) be periodic and An(x) := A(nx).

Then An G→ A0 where A0 satisfies

〈A0e, e〉 = inf
ϕ : periodic

∫

[0,1]s
〈A(x)(e + e(ϕ)), (e + e(ϕ))〉 dx .

2.2. G-closures

Next we introduce two notions of G-closure. While the concept of G-closure
(Definition 2.4) is standard (c.f., e.g., [2,14]) the specific notation here has been
chosen to suit our purposes. Our definition of Constrained G-closures (Defini-
tion 2.5) extends the corresponding definition in [9]. For these definitions we set
A0 ∈M(c1, c2), m ∈ N and

A := {A0} ∪ {ΔAi ∈M(c1, c2) | i = 1, . . . ,m}, (2.2)

(viewed as a (m + 1)-tuple) while requiring

A0 −
m∑

i=1

ΔAi ∈M(c1, c2). (2.3)

Definition 2.4. (G-closure, G·) Let θ ∈ L∞(Ω, [0, 1]m) and let χn : Ω → D
m

be such that χn �
⇀ θ . Then the G-closure of A, Gθ (A), is the set of all possible

G-limits of

A0 −
m∑

i=1

χn
i ΔAi .

We also set

G(A) := {α | ∃θ ∈ L∞(Ω, [0, 1]m), α ∈ Gθ (A)
}
.
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Definition 2.5. (Constrained G-closure) Let ξn : Ω → D
m be weak-* convergent

characteristic functions on Ω . When the sequence χ in Definition 2.4 is picked
such that χn

i � ξn
i , i = 1, . . . ,m, then the set of all possible G-limits of

A0 −
m∑

i=1

χn
i ΔAi

is the constrained G-closure of A (with phase fraction θ and constraint {ξn}),
Gθ ({ξn},A). By abuse of notation we also denote this by Gθ ({Dn},A) where ξn

i =
χDn

i
, i = 1, . . . ,m, for some sequence {Dn} = {(Dn

i , Dn
2 , . . . Dn

m)} ⊂ Ωm .

3. Damage

We consider a geometrically-linear elastic material which in the undamaged
state has elastic modulus α{0}m ∈M (the reason for this notation will become clear
in a moment) and, thus, energy density W{0}m : S → R given by

W{0}m (·) = 1

2

〈
α{0}m ·, ·

〉
.

This material is capable of undergoing m � 1 damage processes, any combination
of which can occur simultaneously in both space and time. The (pointwise) damage
state of the material is denoted by d ∈ D

m where

di =
{

1 if i-damage has occurred,

0 otherwise.

Thus, for example, {0}m denotes the undamaged material and {1}m the fully dam-
aged material.

The i th damage process (“i-damage”) costs ki > 0 and weakens the material
by diminishing the elastic modulus byΔαi ∈M whereΔαi � 0. Thus, the elastic
modulus and energy density corresponding to damage d ∈ D

m are

αd := α{0}m −
m∑

i=1

di Δαi (3.1a)

Wd := 1

2
〈αd ·, ·〉 + k · d (3.1b)

and the possible elastic moduli are

α = {αd | d ∈ D
m} ⊂M.

The weakest elastic modulus corresponds to the material being damaged in all m
ways; we require this to be positive-definite:

α{1}m = α{0}m −
m∑

i=1

Δαi > 0.

For convenience we set M := {1, . . . ,m}.
We pause to introduce two examples after which we will be ready for the

threshold and energy formulations of damage.
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3.1. Examples

For the examples we present it is convenient to decompose S into hydrostatic,
diagonal shear and off-diagonal shear subspaces. Thus, in two dimensions, let

H := span

{(
1 0
0 1

)}
,

D := span

{(
1 0
0 −1

)}
,

O := span

{(
0 1
1 0

)}
;

S := D ⊕O.
Similarly, in three dimensions, let

H := span

⎧
⎨

⎩

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎫
⎬

⎭
,

D := span

⎧
⎨

⎩

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 1 0
0 0 −1

⎞

⎠

⎫
⎬

⎭
,

O := span

⎧
⎨

⎩

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠

⎫
⎬

⎭
;

S := D ⊕O.
In either case we denote the projections on these spaces by �H ,�D,�O and �S

respectively.
A cubic elastic modulus is an element of M that is of the form κ�H +μ�D +

η�O for some κ, μ, η > 0. When μ = η we obtain an isotropic elastic modulus,
κ�H + μ�S .

Example 3.1. (Isotropic damage) Consider an isotropic material which in the
undamaged state has elastic modulus κ�H + μ�S . Suppose this material is sus-
ceptible to two damage processes:

1. H-damage which reduces the elastic modulus by Δκ �H with Δκ ∈ (0, κ),
2. S-damage which reduces the elastic modulus by Δμ�S with Δμ ∈ (0, μ).

Schematically:

κ�H + μ�S

=: α(0,0) H− damage−−−−−−−−→
(κ −Δκ)�H + μ�S

=: α(1,0)
S − damage ↓ ↓ S − damage

κ�H + (μ−Δμ)�S

=: α(0,1) H− damage−−−−−−−−→
(κ −Δκ)�H + (μ−Δμ)�S

=: α(1,1).
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Note that
α(0,0) > α(0,1), α(1,0) > α(1,1),

but α(0,1) and α(1,0) are not well-ordered.

Example 3.2. (Cubic shear damage) Consider a cubic material which in the undam-
aged state has elastic modulus κ�H + μ�D + η�O . Suppose this material is
susceptible to two damage processes:

1. D-damage which reduces the elastic modulus by Δμ�D with Δμ ∈ (0, μ),
2. O-damage which reduces the elastic modulus by Δη�O with Δη ∈ (0, η).

Schematically:

κ�H + μ�D + η�O

=: α(0,0) D − damage−−−−−−−−→
κ�H + (μ−Δμ)�D + η�O

=: α(1,0)
O − damage ↓ ↓ O − damage

κ�H + μ�D + (η −Δη)�O

=: α(0,1) D − damage−−−−−−−−→
κ�H+(μ−Δμ)�D+(η−Δη)�O

=: α(1,1)
As before

α(0,0) > α(0,1), α(1,0) > α(1,1),

but α(0,1) and α(1,0) are not well-ordered.

3.2. Two Formulations of Damage

Let i ∈ M.

Formulation 3.3. (Threshold criterion for damage) The ith damage process is
(pointwise) sensitive only to the strain ε and only through an orthogonal projection
�i on a subspace of S: At x ∈ Ω , i -damage occurs only if otherwise,

‖�iε(x)‖ > λi (3.2)

for some specified threshold λi > 0. We refer to range(�i ) as the i th damage
subspace.

Note that (3.2) presents a necessary but not sufficient condition for damage.
The sufficient condition is more subtle and is stated in Section 4 (Definitions 4.1(3)
and 4.3(3) and Remark 4.2).

Formulation 3.4. (Energetic description of damage) The ith damage process costs
ki > 0: The energy density corresponding to damage d ∈ D

m is

Wd(·) := 1

2
〈αd ·, ·〉 + d · k (3.3)

where αd is given by (3.1).
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We explore these formulations in Sections 4 and 5 respectively. In Section 6
(See proofs of Lemmata 6.4 and 6.5) we explore the relationship between these
formulations for materials that possesses the following property:

Property 3.5. 1. The damage subspaces are strain compatible: For each i ∈ M,

ε ∈ Range(�i ) �⇒ ∃a, b ∈ R
s such that ε = a ⊗s b. (3.4a)

2. The undamaged elastic modulus is a multiple of the identity on each damage
subspace: For each i ∈ M,

α{0}m�i = βi�i (3.4b)

for some (scalar) βi > 0. (That is, the damage subspaces are eigenspaces
of the undamaged elastic modulus with βi being the corresponding positive
eigenvalue.)

3. The elastic modulus is weakened only on the relevant damage subspace, and
uniformly on the subspace: for i ∈ M,

Δαi = Δβi�i , (3.4c)

for some Δβi ∈ (0, βi ).
4. The damage subspaces are orthogonal: for i, j ∈ M with i �= j ,

�i� j = 0. (3.4d)

Remark 3.6. Equations (3.4b), (3.4c) and (3.4d) imply that for d ∈ D
m ,

αd =
m∑

i=1

(βi − diΔβi )�i + β ′ (3.5)

where β ′ ∈M satisfies β ′�i = 0 for all i ∈ M.

Remark 3.7. (Relation to crystal plasticity) Property 3.5 is suggestive of classi-
cal slip-plane perfect-plasticity, albeit imperfectly (especially post-yielding) since
damage softens the material, whilst plasticity induces residual deformations:

When (3.4a) is replaced by the stronger condition

∃n̂ ∈ R
s, ε ∈ Range(�i ) �⇒ ∃a ∈ R

s such that ε = a ⊗s n̂

then the damage subspaces are precisely slip planes with plane normal n̂ and slip
direction a. Equation (3.4d) asks that the slip systems be independent (in fact pair-
wise orthogonal); thus m � 6, or, if the hydrostatic subspace is excluded, m � 5.
The threshold condition (3.2) is the yield condition and involves the resolved shear
strain on the slip system.
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3.3. Notation

In the rest of the paper we adopt the following notation:
Let Di ⊂ Ω , i ∈ M, denote the region in which i-damage has occurred, and

let χDi be the corresponding characteristic functions. We define:

D := (D1, . . . , Dm) ∈ P(Ω)m,

χD :=
(
χD1 , . . . , χDm

)
.

By abuse of notation we set,

αD(x) := αχD(x) ,

u(D, ·) := u(αD, ·),
e(D, ·) := e(αD, ·),
E(D, ·) := E(αD, ·).

Set-theoretic operations on P(Ω)m are performed component-wise, e.g., for
D, D′ ∈ P(Ω)m ,

D ∪ D′ = (D1 ∪ D′1, . . . , Dm ∪ D′m
)
,

D ∩ D′ = (D1 ∩ D′1, . . . , Dm ∩ D′m
)
,

D \ D′ = (D1 \ D′1, . . . , Dm \ D′m
) ;

and likewise for set-theoretic statements on P(Ω)m :

D ⊂ D′ ⇐⇒ Di ⊂ D′i , ∀i ∈ M.

For D ∈ P(Ω)m , we define |D| ∈ [0,∞)m by:

|D|i = |Di |, i ∈ M.

4. Threshold Formulation

First we formulate a definition for the classical situation in which the damage
occurs in a set:

Definition 4.1. (Strong threshold evolution) Let f : [0, T ] → H−1(Ω,Rs). An
evolution

[0, T ] � t �→ D(t) ∈ P(Ω)m

is a strong threshold evolution with thresholds

{(�i , λi ) ∈ P × (0,∞) | i ∈ M} (4.1)

if the following hold for each i ∈ M:

1. Monotonicity: The damage evolution t �→ Di (t) is non-decreasing.
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2. Threshold: The threshold is not exceeded outside the damage set: ∀t ∈ [0, T ],
‖�i e (D(t), f (t))‖ � λi a.e. in Ω \ Di (t).

3. Necessity of damage:
(a) For every E ⊂ Di (T ) with |E | > 0 and every sufficiently small Δτ , there

exists τ < T −Δτ such that, with ΔE ∈ P(Ω)m ,

ΔE j :=
{

E ∩ Di (τ +Δτ) \ Di (τ ) if j = i,

∅ if j �= i,

we have
‖�i e (D(τ +Δτ) \ΔE, f (τ +Δτ))‖ > λi (4.2a)

in a subset of ΔEi with positive measure.
(b) (Trivially satisfied if Di is continuous from below at T .) For every E ∈

P(Ω)m satisfying

E j ⊂
{

Di (T ) \⋃τ<T Di (τ ) if j = i,

∅, if j �= i,

with |Ei | > 0, we have

‖�i e( D(T ) \ E, f (T ) )‖ > λi (4.2b)

in a subset of Ei with positive measure.

Remark 4.2. In addition to being local in space, the necessity condition is “local”
also with respect to the damage mode: (4.2a) and (4.2b) are stronger than requiring
only

∃ j ∈ M,
∥
∥� j e (D(τ +Δτ) \ΔE, f (τ +Δτ))∥∥ > λ j

and
∃ j ∈ M,

∥
∥� j e

(
D(T ) \ E, f (T ) )‖ > λ j

(in a subset of Ei with positive measure), respectively.

The extension to the situation where there is damage microstructure is as fol-
lows:

Definition 4.3. (Weak threshold evolution) Let f : [0, T ] → H−1(Ω,Rs). An evo-
lution

[0, T ] � t �→ (A(t), θ(t)) ∈ L∞(Ω,M(c1, c2))× [0, 1]m
is a weak threshold evolution with thresholds (4.1) if: For every t ∈ [0, T ] there
exists a sequence {Dn(t)} ⊂ P(Ω)m such that

αDn(t)
G→ A(t),

χDn(t)
�
⇀ θ(t),

and the following hold for each i ∈ M:
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1. Monotonicity: The damage evolution t �→ Dn
i (t) is non-decreasing.

2. Threshold: For each δ > 0 the sets in which there is no i-damage but the
threshold is exceeded by at least δ converge in measure to the empty set: ∀t ∈
[0, T ], ∣

∣U n
i (δ)

∣
∣→ 0 as n →∞,

where

U n
i (δ) :=

{
x /∈ Dn

i (t) |
∥
∥�i e(Dn(t), f (t))(x)

∥
∥ > λi + δ

}
. (4.3)

3. Necessity of the damage: For each δ > 0,
(a) For every En ⊂ Dn

i (T ) with lim inf |En| > 0 and every sufficiently small
Δτ , there exists τ < T −Δτ such that, with ΔEn ∈ P(Ω)m ,

ΔEn
j :=

{
En ∩ Dn

i (τ +Δτ) \ Dn
i (τ ) if j = i,

∅ if j �= i,

we have
lim inf
n→∞

∣
∣V n

i (δ)
∣
∣ > 0,

where

V n
i (δ) :=

{
x ∈ En

i |
∥
∥�i en(x)

∥
∥ > λi − δ

}
, (4.4a)

en := e(Dn(τ +Δτ) \ En, f (τ +Δτ)). (4.4b)

(b) (Trivially satisfied if
∫
Ω
θi (x, ·) dx is continuous from below at T .) For

every tn ↗ T and every En ∈ P(Ω)m satisfying

En
j ⊂

{
Dn

i (T ) \ Dn
i (t

n) if j = i,

∅, if j �= i,

with lim inf |En
i | > 0 we have

lim inf
n→∞

∣
∣W n

i (δ)
∣
∣ > 0,

where

W n
i (δ) :=

{
x ∈ En

i |
∥
∥�i e(Dn(T ) \ En, f (T ))(x)

∥
∥ > λi − δ

}
. (4.5)

Remark 4.4. Let f : [0, T ] → H−1(Ω,Rs). An evolution

[0, T ] � t �→ D(t) ∈ P(Ω)m

is a strong threshold evolution if the evolution

[0, T ] � t �→ (αD(t), χD(t)) ∈ L∞(Ω,M(c1, c2))× [0, 1]m

is a weak threshold evolution. (Pick the sequence {Dn(t)} in Definition 4.3 to be a
constant sequence.)
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5. Energetic Formulation

Definition 5.1. (Energy) The energy associated with α ∈ L∞(Ω,M(c1, c2)), f ∈
H−1(Ω,Rs) and θ ∈ L∞(Ω, [0, 1]m) is

W(α, θ, f ) := E(α, f )+
∫

Ω

k · θ dx

=
∫

Ω

1

2
〈α e(α, f ), e(α, f )〉 − f · u(α, f )+ k · θ dx . (5.1a)

It is convenient to also define, for v ∈ H1
0 (Ω,R

s), χ ∈ L∞(Ω,Dm), f ∈
H−1(Ω,Rs) and S ⊂ Ω ,

VS(v, χ, f ) :=
∫

S

1

2

〈
αχ e(v), e(v)

〉− f · v + k · χ dx, (5.1b)

and, by abuse of notation, for D ∈ P(Ω)m ,

VS(v, D, f ) :=
∫

S

1

2
〈αD e(v), e(v)〉 − f · v + k · χD dx . (5.1c)

Finally, we define

ṼS(v, α, θ, f ) :=
∫

S

1

2
〈α e(v), e(v)〉 − f · v + k · θ dx . (5.1d)

When S = Ω we drop the subscript S write V or Ṽ .
In (5.1), where necessary, by f we mean the localisation of a representative of

f to S, see [9, page 602] for details.
Note that

W(α, θ, f ) � Ṽ(v, α, θ, f ).

Definition 5.2. (Strong energy-minimizing evolution) Let f ∈ W 1,1([0, T ],
H−1(Ω,Rs)). An evolution

[0, T ] � t �→ D(t) ∈ P(Ω)m

is a strong energy-minimizing evolution if the following hold:

1. Monotonicity: The damage evolution t �→ Di (t) is non-decreasing for each
i ∈ M.

2. Energy balance: For every t ∈ [0, T ] the energy satisfies

E(D(t), f (t), ) = E(D(0), f (0))−
∫ t

0
ḟ (s) · u(D, f )(s) ds.

3. Minimality: For every t ∈ [0, T ] and every D̃ ⊇ D(t),

E(D(t), f (t)) � E(D̃, f (t)).

The extension to the situation where there is damage microstructure is as fol-
lows:



Quasi-Static Brittle Damage Evolution 847

Definition 5.3. (Weak energy-minimizing evolution) Let f ∈ W 1,1([0, T ],
H−1(Ω,Rs)). An evolution

[0, T ] � t �→ (A(t), θ(t)) ∈ L∞(Ω,M(c1, c2))× L∞(Ω, [0, 1]m)

with

A(t) ∈ Gθ(t)(α)
is a weak energy-minimizing evolution if the following hold:

1. Monotonicity: The map t �→ A(t) is non-increasing and for each i ∈ M, the
map t �→ θi (t) is non-decreasing.

2. Energy balance: For every t ∈ [0, T ] the energy

W(t) :=W(A(t), θ(t), f (t)) (5.2a)

satisfies

W(t) =W(0)−
∫ t

0
ḟ (s) · u(A, f )(s) ds. (5.2b)

3. Minimality: There exists a sequence {Dn(t)} ⊂ P(Ω)m , non-decreasing in t
for each n, such that for every t ∈ [0, T ],

αDn(t)
G→ A(t),

χDn(t)
�
⇀ θ(t)

(5.3a)

and for every ( Ã, θ̃ ) such that Ã ∈ Gθ̃ (t)({Dn(t)},α) we have

W(t) � W( Ã, θ̃ , f (t)). (5.3b)

Remark 5.4. Let f : [0, T ] → H−1(Ω,Rs). An evolution

[0, T ] � t �→ D(t) ∈ P(Ω)m

is a strong energy-minimising evolution if the evolution

[0, T ] � t �→ (αD(t), χD(t)) ∈ L∞(Ω,M(c1, c2))× [0, 1]m

is a weak energy-minimising evolution. (Pick the sequence {Dn(t)} in Defini-
tion 5.3(3) to be a constant sequence.)

Next we show that weak energy-minimising evolutions exist:

Theorem 5.5. For every f ∈ W 1,1([0, T ], H−1(Ω,Rs)), there exists a weak
energy-minimising evolution.

Our proof follows [4,9] (see also [15]).
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Proof. Given n ∈ N we set N := � T
n � and consider a partition {tn

j }Nj=0 of [0, T ]
such that

tn
0 = 0,

tn
N = T,

Δtn := tn
j − tn

j−1 � 1

n
, j = 1, . . . , N .

We set f n
j (·) := f (tn

j , ·) and let f n be the piecewise constant (in time) approxi-
mation of f given by

f n(t, ·) := f (tn
j , ·) for t ∈ [tn

j , tn
j+1), j = 1, . . . , N .

Note that f n(t)→ f (t) in H−1(Ω,Rs).
We construct a piecewise constant approximation of the solution starting from

the almost minimizers of an appropriate incremental variational problem:
Step 1: The first time step tn

0 = 0. At the first time step we almost minimize
V(v, χ, f (0)) over (v, χ) ∈ H1

0 (Ω,R
s) × L∞(Ω,Dm) by choosing a sequence

of subsets D0,l,n ⊂ P(Ω)m such that

min
v∈H1

0 (Ω,R
s )

V(v, D0,l,n, f (0)) � inf
D

min
v∈H1

0 (Ω,R
s )

V(v, D, f (0))+ 1

2l
.

Step 2: The subsequent time steps. For every j ∈ {1, ..., N } we choose a sequence
{D j,l,n} ⊂ P(Ω)m with D j,l,n ⊇ D j−1,l,n such that

min
v∈H1

0 (Ω,R
s )

V(v, D j,l,n, f n
j ) � inf

D⊇D j−1,l,n
min

v∈H1
0 (Ω,R

s )

V(v, D, f n
j )+

1

2 j+1l
.

Step 3: The discrete approximation. Let

Dl,n(t) := D j,l,n for t ∈ [ tn
j , tn

j+1), j = 1, . . . , N .

Note that Dl,n(t) is piecewise constant (in time) and non-decreasing in t . We extract
a subsequence in l (not relabelled) such that for every t ∈ [0, T ]we have, as l →∞,

αDl,n(t)
G→ An(t),

χDl,n(t)
�
⇀ θn(t),

for some An(t) ∈ L∞(Ω,M(c1, c2)), non-increasing in t , and some θn(t) ∈
L∞(Ω, [0, 1]m), non-decreasing in t , satisfying

An(t, x) ∈ Gθn(t,x)(α)

a.e. in Ω .
Thus (see, e.g., [4, Theorem 3.1 and Remark 3.3]) we can now extract a subse-

quence in n (not relabelled) such that for every t ∈ [0, T ] we have, as n →∞,

An(t)
G→ A(t),

θn(t)
�
⇀ θ(t),
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for some A(t) ∈ L∞(Ω,M(c1, c2)), non-increasing in t , and some θ(t) ∈
L∞(Ω, [0, 1]m), non-decreasing in t , satisfying

A(t, x) ∈ Gθ(t,x)(α)
a.e. in Ω .

Finally by a diagonal argument we can find a sequence l(n) with l(n)→∞ as
n →∞ such that the sequence Dn(t) := Dl(n),n(t) satisfies, as n →∞,

αDn(t)
G→ A(t),

χDn(t)
�
⇀ θ(t),

for every t ∈ [0, T ].
Note that, by construction, A(·) is non-increasing and θ(·) is non-decreasing.

Thus Definition 5.3(1) is satisfied.
Step 4: Minimality. Fix t ∈ [0, T ] and consider D̃n ⊃ Dn(t) such that

αD̃n
G→ Ã,

χD̃n
�
⇀ θ̃.

(5.4a)

By the definition of Dn(t) we have

min
v∈H1

0 (Ω,R
s )

V(v, Dn(t), f n(t)) � min
v∈H1

0 (Ω,R
s )

V(v, D̃n, f n(t))+ o(1)

where o(1) → 0 as n → ∞. Using the definition of G-convergence and the
convergence of f n(t) to f (t) in H−1(Ω,Rs), we obtain

min
v∈H1

0 (Ω,R
s )

Ṽ(v, A(t), θ(t), f (t)) � min
v∈H1

0 (Ω,R
s )

Ṽ(v, Ã, θ̃ , f (t)). (5.4b)

From (5.4) we deduce (5.3). Thus Definition 5.3(3) is satisfied.
Step 5: Energy Balance. From the definition of D j,l,n in Step 2,

min
v∈H1

0 (Ω,R
s )

V(v, D j,l,n, f n
j )

� inf
D⊃D j−1,l,n

min
v∈H1

0 (Ω,R
s )

V(v, D, f n
j )+

1

2 j+1l

� V(v j−1,l,n, D j−1,l,n, f n
j )+

1

2 j+1l

� min
v∈H1

0 (Ω,R
s )

V(v, D j−1,l,n, f n
j−1)+ ( f n

j−1 − f n
j ) · v j−1,l,n + 1

2 j+1l
.

Iterating, we obtain

min
v∈H1

0 (Ω,R
s )

V(v, D j,l,n, f n
j )

� min
v∈H1

0 (Ω,R
s )

V(v, D0,l,n, f (0))+
j∑

k=1

(
f n
k−1 − f n

k

) · vk−1,l,n + 1

l
.
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By the definition of Dn(t) in Step 3, for every t ∈ [tn
j , tn

j+1) we get

V(vn(t), Dn(t), f n(t))

� V(vn(0), Dn(0), f (0))−
j∑

k=1

(
f n
k − f n

k−1

) · u(αDn(tn
k−1)

, f n(tn
k−1))+ o(1).

(5.5)

Notice that, as n →∞, for a.e. τ ,

f (τ +Δtn)− f (τ )

Δtn
H−1→ ḟ (τ )

(since Δtn � 1
n ). Thus, as n →∞, (5.5) yields

W(t) � W(0)−
∫ t

0
ḟ (τ ) · u(τ ) dτ.

The proof of the inverse inequality is standard and based on the fact that from the
construction of A(t) it is easy to check that (A(t), θ(t)) is an admissible competitor
for the minimality condition at time s < t . In fact this is a particular case of
inequality (6.22) which is proved below. Thus Definition 5.3(2) is satisfied. !"

6. Relation between Threshold and Energy Formulations

Theorems 6.1 and 6.2 below show that energy-minimising evolutions are also
threshold evolutions:

Theorem 6.1. For a material satisfying Property 3.5, a weak energy-minimising
evolution with damage cost k ∈ R

m is a weak threshold evolution with threshold
λ ∈ R

m satisfying

ki = 1

2

βi Δβi

βi −Δβi
λ2

i , i ∈ M. (6.1)

Before we prove Theorem 6.1 we motivate (6.1) with a one-dimensional exam-
ple (Section 6.1) and state several ancillary results which we will use in the proof
(Section 6.2).

A similar (but simpler) proof shows that:

Theorem 6.2. For a material satisfying Property 3.5, a strong energy-minimizing
evolution with damage cost k ∈ R

m is a strong threshold evolution with threshold
λ ∈ R

m satisfying (6.1).
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6.1. A One-dimensional Example

The following example expands on [9, Remark 1].
Let d = 1, Ω = (0, 1) and m = 1. In this one-dimensional setting the strain

corresponding to a displacement H1((0, 1),R) is Du ∈ L2((0, 1),R). It is simpler
to consider a Dirichlet problem so we set f ≡ 0 and allow u(1) �= 0.

Property 3.5 is trivially satisfied: Using the notation of (3.4b) and (3.4c), the
undamaged elastic modulus is

α0 = β1 > 0,

and the damaged elastic modulus is

α1 = α0 −Δα1 = β1 −Δβ1 > 0.

Threshold formulation. From the threshold criterion for damage (Formulation 3.3),
damage occurs at x ∈ (0, 1) when |Du(x)| > λ. The equilibrium equation (1.1)
yields

α(x) Du(x) = σ,
for some constant σ . Thus we conclude:

Du(x) =
{
σ
β1

in the undamaged region,
σ

β1−Δβ1
in the damaged region,

with |σ |
β1 −Δβ1

> λ � |σ |
β1
.

Suppose |σ |
β1

� λ. Then the material is undamaged and we obtain

u(x) = σ

β1
x;

in particular

u(1) = σ

β
∈ (−λ, λ).

On the other hand when |u(1)| > λ, say u(1) > λ, the material is necessarily
damaged in some D ⊂ (0, 1). With no loss of generality we set D = (0, |D|).
Thus for a (different) constant σ ,

Du(x) =
{

σ
β1−Δβ1

x ∈ (0, |D|),
σ
β1

x ∈ (|D|, 1),
(6.2a)

with
σ

β1 −Δβ1
> λ � σ

β1
. (6.2b)

Integrating, we obtain

u(x) =
{

σ
β1−Δβ1

x x ∈ (0, |D|),
σ
β1
(x − |D|)+ σ

β1−Δβ1
|D| x ∈ (|D|, 1).
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Thus

|D| =
(

u(1)

σ
− 1

β1

)
β1(β1 −Δβ1)

Δβ1
. (6.3)

This is minimised when σ = λβ1 which, from (6.2b), is the largest possible value
of σ . Thus the optimal choice of |D| is

|D| =
(

u(1)

λ
− 1

)
β1 −Δβ1

Δβ1
.

Essentially the same holds when u(1) < −λ. Thus we conclude

|D| =
{

0 if |u(1)| � λ,( |u(1)|
λ
− 1

)
β1−Δβ1
Δβ1

if |u(1)| > λ
(6.4a)

and, from (6.2a), the optimal u satisfies

|Du(x)| =
{

β1
β1−Δβ1

λ x ∈ (0, |D|),
λ x ∈ (|D|, 1).

(6.4b)

Energetic formulation. Let us now consider the same situation from the energetic
perspective (Formulation 3.4). The energy density is

W (·) =
{

1
2β1·2 in the undamaged region
1
2 (β1 −Δβ1) ·2 +k in the damaged region

When the material is undamaged its energy is

E0 := inf
u∈H1((0,1),R)

u(0)=0

∫ 1

0

1

2
β1 (Du(x))2 dx = 1

2
β1u(1)2. (6.5)

On the other hand, when there is damage, with no loss of generality setting the
damage set to be (0, |D|) ⊂ (0, 1) as before, we obtain the optimal energy to be

E1 := inf|D| inf
u∈H1((0,1),R)

u(0)=0

⎛

⎜
⎜
⎜
⎝

∫ |D|

0

(
1

2
(β1 −Δβ1) (Du(x))2 + k

)
dx

+
∫ 1

|D|
1

2
β1 (Du(x))2 dx

⎞

⎟
⎟
⎟
⎠

= inf|D| min
v1,v2∈R

|D|v1+(1−|D|)v2=u(1)

(
1

2
(β1 −Δβ1)v

2
1 |D| +

1

2
β1v

2
2(1− |D|)

)
+ k|D|

= inf|D|
1

2

(β1 −Δβ1)β1

|D|β1 + (1− |D|)(β1 −Δβ1)
u(1)2 + k|D|

= β1

√
2(β1 −Δβ1)k

β1Δβ1
u(1)− β1 −Δβ1

Δβ1
k (6.6)
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where the optimal value of |D| is

(√
β1Δβ1

2(β1 −Δβ1)k
u(1)− 1

)
β1 −Δβ1

Δβ1
.

Imposing |D| � 0 we obtain

u(1) �
√

2(β1 −Δβ1)k

β1Δβ1
(6.7)

as a necessary condition for damage. It is easy to verify from (6.5) and (6.6) that
E1 � E0. Thus damage occurs whenever (6.7) is satisfied with strict inequality.
We conclude:

|D| =
⎧
⎨

⎩

0 if |u(1)| �
√

2(β1−Δβ1)k
β1Δβ1

,
(√

β1Δβ1
2(β1−Δβ1)k

u(1)− 1
)
β1−Δβ1
Δβ1

if |u(1)| >
√

2(β1−Δβ1)k
β1Δβ1

.
(6.8)

Relating the threshold and energetic formulations. Comparing (6.4a) and (6.8) we
see that the two formulations agree precisely when

k = β1Δβ1

2(β1 −Δβ1)
λ2 (6.9)

and (6.1) is the natural extension of this to multiple non-interacting (see Prop-
erty 3.5(4)) damage processes.

For future reference we note that, from (6.6) and (6.9),

E1 = β1λu(1)− 1

2
β1λ

2,

E0 − E1 = 1

2
β1 (u(1)− λ)2 . (6.10)

6.2. Ancillary Results

Remark 6.3, Lemmas 6.4 and 6.5 below prepare the way for the proof of The-
orem 6.1.

Remark 6.3. (See [9] Remark 13) For R > 0 let Q R be the cube in R
s with side

R centred at 0 and oriented along the coordinate axis. Let {un}, {vn} be sequences
bounded in H1(Q1,R

s) such that un − vn → 0 in L2(Q1,R
s). For 0 < R1 <

R2 < 1 let φ(R1,R2) be a cutoff function satisfying

φ(R1,R2) =
{

0 in Q R1,

1 in Q1 \ Q R2;
‖∇φ(R1,R2)‖ =

1

R2 − R1
on Q R2 \ Q R1 .



854 Isaac Vikram Chenchiah & Christopher J. Larsen

Then, there exists R2 ∈ (0, 1) such that for every R1 ∈ (0, R2),

lim
R1→R2

lim
n→∞

∫

Q R2\Q R1

‖∇(φ(R1,R2)u
n + (1− φ(R1,R2))v

n)‖2 dx = 0,

lim
R1→R2

lim
n→∞

∫

Q R2

‖∇(φ(R1,R2)(u
n − vn))‖2 dx = 0.

It suffices to choose R1 so as to avoid concentrations in ‖∇un‖2 and ‖∇vn‖2 on
∂Q R2 .

Lemma 6.4. Let f ∈ H−1(Ω,Rs), D ∈ P(Ω)m, δ > 0 and i ∈ M. Assume

Ui := {x /∈ Di | ‖�i e(D, f )(x)‖ > λi + δ}

has positive measure. For brevity we write u for u(D, f ).
Let ε > 0 and Qε

i ⊂ R
s be a cube with centre x ∈ Ui satisfying the following

properties:

1. x is a Lebesgue point for D j , ∀ j ∈ M and χUi , u and ∇u (and thus e(D, f )).
For brevity we write ex for e(D, f )(x).

2. Two sides of Qε
i are orthogonal to n̂ ∈ R

s where the unit vector n̂ satisfies
�i ex = m̄ ⊗s n̂ for some m̄ ∈ R

s (see Property 3.5(1)).
3. For y ∈ Qε

i , let

uaffine(y) := (y − x) · n̂ m̄ + (�⊥i ex + ∇u(x)−∇T u(x))y + u(x)

with m̄ as in (2) above. Observe that

�i e(uaffine)(y) = m̄ ⊗s n̂ = �i ex .

Then

‖u − uaffine‖2
H1(Qε

i ,R
s )

� ε|Qε
i |.

4. The intersections of Qε
i with D satisfy:

(a) |Di ∩ Qε
i | � ε|Qε

i |.
(b) For j �= i , either |D j ∩ Qε

i | � ε|Qε
i | or |D j ∩ Qε

i | � (1− ε)|Qε
i |.

Then, for a material satisfying Property 3.5 and (6.1),

inf
v−u(D, f )∈H1

0 (Q
ε
i ,R

s )

Ei⊆Qε
i

E j=D j for j �=i

VQε
i
(v, E, f )

� VQε
i
(u(D, f ), D, f )|Di=∅ −

1

2
βiδ

2|Qε
i | + o(ε)|Qε

i | (6.11)

where o(ε)→ 0 as ε → 0.
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Equation (6.11) states that, as ε → 0,

1

|Qε
i |

VQε
i
(u(D, f ), D, f )|Di=∅−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

inf
v−u(D, f )∈H1

0 (Q
ε
i ,R

s )

Ei⊆Qε
i

E j=D j for j �=i

1

|Qε
i |

VQε
i
(v, E, f )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

� 1

2
βiδ

2.

(6.12)
In other words, wherever (i) the threshold for i-damage is exceeded by at least
δ > 0 and (ii) the material is not i-damaged, the reduction in energy density that
can be achieved by introducing i-damage is at least 1

2βiδ
2 whereβi is the (essentially

scalar, see (3.5)) undamaged elastic modulus on the i th damage subspace. (Compare
with (6.10).)

Proof. Step 1: First we construct a test sequence of displacements and damage sets
({uk

test} ⊂ H1(Qε
i ,R

s) and {Dk
test} ⊂ Qε

i below) that reduce the energy in Qε
i ; this

construction is motivated by the example in Section 6.1:
We set

δ′ := ‖�i ex‖ − λi , (6.13a)

γ := Δβi

βi −Δβi
, (6.13b)

d ′ := 1

γ λi
δ′. (6.13c)

Let m̂ ∈ R
s be parallel to m̄ but normalised such that ‖m̂⊗s n̂‖ = 1. Let ê := m̂⊗s n̂.

Then �i ex = (λi + δ′)ê.
Let ψ be the (unique) Lipschitz function on R, with ψ(0) = 0 and 1-periodic

derivative Dψ given by

Dψ(y) :=
{
(1+ γ )λi if y ∈ (0, d ′),
λi if y ∈ (d ′, 1).

(6.14)

(Compare (6.14) and (6.13) with (6.4b).)
Note that

∫ 1
0 Dψ(y) dy = λi + δ′. For k ∈ N and y ∈ Qε

i we set

utest(y) := ψ(y · n̂)m̂ + (�⊥i ex +∇u −∇T u)y + u(x),

uk
test(y) := utest(ky).

Then, for y ∈ Qε
i ,

e(utest)(y) = �⊥i ex +
{
(1+ γ )λi ê if y · n̂ ∈ Z+ (0, d ′),
λi ê if y · n̂ ∈ Z+ (d ′, 1).

Let
Dk

test :=
{

y ∈ Qε
i | �i e(u

k
test)(y) = (1+ γ )λi ê

}
.
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Step 2: Next we show (6.12) for the sequence {uk
test}—that is, for functions that

agree with uaffine (as opposed to u) on ∂Qε
i —and {Dk

test}.
As k → ∞, uk

test → uaffine in L2(Qε
i ,R

s) and is bounded in H1(Qε
i ,R

s).
Thus, from Remark 6.3 there exists utest ∈ L2(Qε

i ,R
s) that agrees with uaffine on

∂Qε
i and a corresponding Dtest for which VQε

i
(utest, Dtest, f ) is arbitrarily close to

1

2
d ′
〈
(αd −Δαi )(�

⊥
i ex + (1+ γ )λi ê), (�

⊥
i ex + (1+ γ )λi ê)

〉

+ 1

2
(1− d ′)

〈
αd(�

⊥
i ex + λi ê), (�

⊥
i ex + λi ê)

〉
−
∫

Qε
i

f · uaffine + ki d
′ dx

where d ∈ D
m is defined by

d j :=
{

0 if |D j ∩ Qε
i | � |Qε

i |,
1 if |D j ∩ Qε

i | � (1− ε)|Qε
i |,

j ∈ M;

(thus di = 0). It follows that

1

Qε
i

(
VQε

i
(u, D, f )− VQε

i
(utest, Dtest, f )

)
(6.15)

is arbitrarily close to

1

2

〈
αd

(
�⊥i ex + (λi + δ′)ê

)
,
(
�⊥i ex + (λi + δ′)ê

)〉

− 1

2
d ′
〈
(αd −Δαi )

(
�⊥i ex + (1+ γ )λi ê

)
,
(
�⊥i ex + (1+ γ )λi ê

)〉

− 1

2
(1− d ′)

〈
αd

(
�⊥i ex + λi ê

)
,
(
�⊥i ex + λi ê

)〉
− ki d

′. (6.16)

We now invoke Property 3.5: A simple calculation shows that (6.16) is

1

2
δ′(δ′ − λiγ )〈αd ê, ê〉 + 1

2
d ′(1+ γ )2λ2

i 〈Δαi ê, ê〉 + 1

2
d ′〈Δαi�

⊥
i ex ,�

⊥
i ex 〉

+ d ′(1+ γ )λi 〈Δαi�
⊥
i ex , ê〉 − ki d

′.

Moreover, the last two terms vanish because of (3.4c); and from (3.4b), (3.4c) and
the definition of ê,

〈αd ê, ê〉 = βi ,

〈Δαi ê, ê〉 = Δβi .

Using these and (6.13) we obtain that (6.15) is arbitrarily close to

1

2
βi (δ

′)2 + 1

2
βiλ

2
i δ
′
(

1− ki

λ2
i

2(βi −Δβi )

βi Δβi

)

When (6.1) holds this equals 1
2βi (δ

′)2.
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Step 3: Finally we observe that this conclusion holds for functions that agree with u
(as opposed to uaffine) on ∂Qε

i . To see this we make the test sequences constructed
in Step 1 admissible by adding u(t) − uaffine to them. Notice, from properties (3)
and (4) of Qε

i , that

∣
∣
∣VQε

i
(u, D, f )− VQε

i
(uaffine, D, f )|Di=∅

∣
∣
∣ � o(ε)|Qε

i |

where o(ε)→ 0 as ε → 0. Thus the error introduced in the modified (admissible)
test sequences is o(ε)|Qε

i |, with o(ε) → 0 as ε → 0. Equation (6.11) follows
immediately. !"

Lemma 6.5, extends the corresponding scalar result in [9]:

Lemma 6.5. Let D ∈ P(Ω)m, i ∈ M and S ⊂ Ω \ Di .
Define ΔD ∈ P(Ω)m by

ΔD j :=
{

S if j = i,

∅ if j �= i.

Then, for a material satisfying Property 3.5,

E(D, f )− E(D ∪ΔD, f ) � βi Δβi

2(βi −Δβi )
‖�i e(D, f )‖2

L2(S). (6.17a)

When (6.1) holds this yields,

E(D, f )− E(D ∪ΔD, f ) � ki

λ2
i

‖�i e(D, f )‖2
L2(S). (6.17b)

In other words, wherever the material is not i-damaged, the maximum reduction
in elastic energy that can be achieved by introducing i-damage is given by (6.17).

Our proof is based on [9] which in turn follows [11].

Proof. For brevity we set

φ := u(D ∪ΔD, f )− u(D, f ),

eφ := e(φ) = e(D ∪ΔD, f )− e(D, f ),

eD := e(D, f ),

Δα := αD − αD∪ΔD,

ΔE := E(D, f )− E(D ∪ΔD, f ).

From (1.1), self-adjointness and the divergence theorem,

∫

Ω

〈αDeD, eφ〉 dx =
∫

Ω

f · φ dx .
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Using this we easily obtain

ΔE = 1

2

∫

S
〈Δαi eD, eD〉 dx +

∫

S
〈Δαi eD, eφ〉 dx

−1

2

∫

S
〈(αD −Δαi )eφ, eφ〉 dx − 1

2

∫

Ω\S
〈αDeφ, eφ〉 dx

� 1

2

∫

S
〈Δαi eD, eD〉 dx +

∫

S
〈Δαi eD, eφ〉 dx

−1

2

∫

S
〈(αD −Δαi )eφ, eφ〉 dx . (6.18a)

We now invoke Property 3.5: using (3.4c) the first two terms become

1

2
Δβi

∫

S
〈�i eD, eD〉 dx +Δβi

∫

S
〈�i eD, eφ〉 dx

and the third term is

− 1

2

∫

S
〈αD�i eφ,�i eφ〉 dx −

∫

S
〈αD�i eφ,�

⊥
i eφ〉 dx

− 1

2

∫

S
〈αD�

⊥
i eφ,�

⊥
i eφ〉 dx + 1

2
Δβi

∫

S
〈�i eφ, eφ〉 dx .

Since, by hypothesis, Di ∩ S = ∅, from (3.4b) the first term here is

−1

2
βi

∫

S
〈�i eφ, eφ〉 dx .

Using (3.4d) also, we see that the second term is zero. Since the third term is
non-positive, we obtain,

ΔE � 1

2

∫

S
Δβi 〈�i eD, eD〉 dx +

∫

S
Δβi 〈�i eD, eφ〉 dx

−1

2
(βi −Δβi )

∫

S
〈�i eφ, eφ〉 dx . (6.18b)

Since �i is an orthogonal projection,

ΔE � 1

2
Δβi‖�i eD‖2

L2(S) +Δβi‖�i eD‖L2(S)‖�i eφ‖L2(S)

−1

2
(βi −Δβi )‖�i eφ‖2

L2(S).

The right hand side is quadratic in ‖�i eφ‖L2(S) and has a maximum at

‖�i eφ‖L2(S) =
Δβi

βi −Δβi
‖�i eD‖L2(S).

This yields (6.17a). !"
Remark 6.6. Note that (6.18a) is sharp when ΔE is replaced by

ΔES := ES(D, f )− ES(D ∪ΔD, f ).

If, in addition, �⊥i eφ = 0 then (6.18b) is sharp as well.

We are now ready to prove Theorem 6.1.
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6.3. Proof of Theorem 6.1

By Definition 5.3(3) there exists a sequence {Dn(t)} ⊂ P(Ω)m such that t �→
Dn

i (t) is non-decreasing. Thus Property 1 of Definition 4.3 is trivially satisfied. It
remains to show that {Dn(t)} also satisfies Properties 2 and 3 of Definition 4.3.

If Property 2 is false, then there exists i ∈ M and δ > 0 such that the sets U n
i (δ)

in (4.3) do not eventually have small measure. We can then localise to nice points
in U n

i (δ) and add regions of damage as in Lemma 6.4. This creates a competitor
D̃n to Dn , whose energy is lower on the order lim supn→∞ |U n

i (δ)|, contradicting
the minimality of Dn (Definition 5.3(3)).

Proof. (that Definition 4.3(2) is satisfied) Suppose, on the contrary, that there exists
i ∈ M and δ > 0 such that U n

i (δ) in (4.3) satisfy

lim sup
n→∞

|U n
i (δ)| = γ > 0. (6.19)

Note that for every ε > 0 the set of all cubes Qn
ε that satisfy the four conditions

listed in Lemma 6.4 is a fine covering of U n
i (δ) (except possibly for a set of measure

zero). Therefore for every ε > 0 and n ∈ N we can choose a countable collection
of disjoint cubes {Qn

ε ( j) | j ∈ N} such that
∣
∣
∣
∣
∣
∣
U n

i (δ) \
⋃

j∈N

Qn
ε ( j)

∣
∣
∣
∣
∣
∣
= 0.

Using Lemma 6.4 we construct a competitor (ũn, D̃n) for (un(t), Dn(t)) with
D̃n ∈ P(Ω)m satisfying

D̃n
j

{
⊃ Dn

i (t) if j = i,

= Dn
j (t) if j �= i,

that agrees with (un(t), Dn(t)) outside ∪ j∈NQn
ε ( j) and is such that

V(ũn, D̃n, f (t)) � V(un(t), Dn(t), f (t))− 1

2
βiδ

2
∑

j∈N

|Qn
ε ( j)|+o(ε)

∑

j∈N

|Qn
ε ( j)|

where o(ε)→ 0 as ε → 0. There exist θ̃ ∈ R
m and Ã ∈ G θ̃ ({Dn},α) such that

χD̃n

�
⇀ θ̃,

αD̃n

G→ Ã

where the G-convergence is unto subsequence (not relabelled). Taking the limit as
n →∞,

inf
w∈H1

0 (Ω,R
s )

V(w, Ã, θ̃ , f (t)) � V(u(t), A(t), θ(t), f (t))− 1

2
βiδ

2γ + o(ε)γ

which contradicts the minimality of (u(t), A(t), θ(t)) for sufficiently small ε. !"
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If Property 3 of Definition 4.3 is not satisfied, then there exists a sequence of
sets En

i ⊂ Dn
i (t) with lim infn→∞ |En

i | = γ > 0, and there exist δ > 0 and
Δτ ↘ 0 such that for all τ small enough, the sequence of sets V n

i (δ) in (4.4a)
satisfy |V n

i (δ)| → 0 as n → ∞. This suggests that the sets En
i ⊂ Dn

i were not
necessary at time τ in order for the strain in the undamaged region to remain below
the threshold, and so it should not have been worth the cost to add the slices En

i to
Dn

i (τ ). Using the fact that in En
i we are below the threshold by δ, we show that if

we consider a lower damage cost k̃(δ) ∈ R
m given by

k̃ j (δ) =
{
(λ̃i (δ))

2βi Δβi
2(βi−Δβi )

if j = i,

k j if j �= i,
(6.20)

corresponding to the lower threshold λ̃(δ) ∈ R
m satisfying

λ̃ j (δ) :=
{
λi − δ if j = i,

λ j if j �= i,

then we have an energy balance with this new coefficient on En
i , contradicting the

energy balance with the original coefficient.

Proof. (that Definition 4.3(3a) is satisfied) Assume, on the contrary, that there
exist:

1. A sequence of sets En ∈ P(Ω)m satisfying

En
j ⊂

{
Dn

i (T ) if j = i,

∅, if j �= i,

with lim inf |En
i | = γ > 0.

2. δ > 0,
3. a sequence Δτ ↘ 0

such that for all τ < T and for each term in (3) satisfying Δτ < T − τ , V n
i (δ)

in (4.4a) satisfies

lim inf
n→∞

∣
∣V n

i (δ)
∣
∣ = 0. (6.21)

It suffices to show that u satisfies

Ṽ(t)+ γ (k̃i (δ)− ki ) � Ṽ(0)−
∫ t

0
ḟ (σ ) · u(σ ) dσ, (6.22)

where (for brevity, see (5.1d))

Ṽ(t) := Ṽ(u(t), A(t), θ(t), f (t)).

Since k̃i (δ) < ki , this together with energy balance (5.2) implies that γ = 0.
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For each fixedΔτ we consider the partition {t j | j = 0, . . . , J } of [0, T ] given
by

t j = jΔτ,

J = ' T

Δτ
(

(thus t J is the last element in the partition and satisfies 0 � T − t J � Δτ ). Define

ΔEn(t j ) := En ∩
(

Dn(t j ) \ Dn(t j−1)
)

(so the only non-empty component ofΔEn(t j ) isΔEn
i (t

j )). From Lemma 6.5, the
equi-integrability of ‖en‖2 in (4.4b) (see, e.g., [8]) and (6.21), we conclude,

E(Dn(t j ), f (t j ))+ k̃i (δ)|ΔEn
i (t

j )| + o(1) � E(Dn(t j ) \ΔEn(t j ), f (t j )),

with o(1)→ 0 as n →∞. Thus, up to subsequence, as n →∞,

αDn(t j )\ΔEn(t j )

G→ AΔτ (t
j )

χΔEn(t j )

�
⇀ θΔτ (t

j )

and

E(A(t j ), f (t j ))+ k̃(δ) ·
(∫

Ω

θΔτ (t
j ) dx

)
� E(AΔτ (t j ), f (t j )).

Using the minimality property of Definition 5.3(3) and noting that since

Dn(t j ) \ΔEn(t j ) ⊃ Dn(t j−1),

the pair (AΔτ (t j ), θ(t j )−θΔτ (t j )) is a competitor for (A(t j−1), θ(t j−1))we obtain

E(A(t j ), f (t j ))+k ·
(∫

Ω

θ(t j ) dx −
∫

Ω

θΔτ (t
j ) dx

)
+k̃(δ)·

(∫

Ω

θΔτ (t
j ) dx

)

� E(A(t j−1), f (t j−1))−( f (t j )−f (t j−1))·u(AΔτ (t j ), f (t j ))+k·
∫

Ω

θ(t j−1) dx,

(6.23)

where we have used (1.2). Let

γΔτ := lim
n→∞ |E

n
i ∩ Dn

i (t
I )|

(upto subsequence). Since

J∑

j=0

∫

Ω

χΔEn(t j ) dx
�
⇀

J∑

j=0

∫

Ω

θΔτ (t
j ) dx

and
J∑

j=0

∫

Ω

χΔEn(t i ) dx
�
⇀ γΔτ ,
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summing (6.23) over j gives

E(A(t J ), f (t J ))+ k ·
∫

Ω

θ(t I ) dx + (k̃i (δ)− ki )γΔτ

� E(A(0), f (0))+k ·
∫

Ω

θ(0) dx−
J∑

j=0

(
f (t j )− f (t j−1)

)
·u(AΔτ (t j ), f (t j )).

Since

1. A(t j ) � AΔτ (t j ) � A(t j−1),
2. A(t), being monotonic, is continuous at a.e. t , and
3. f ∈ W 1,1([0, T ], H−1(Ω,Rs)),

by the continuous dependence of u on A, we obtain for a.e. τ ,

u(AΔτ (τ ), f (τ ))
L2→ u(τ ).

Moreover, for a.e. τ ,
f (τ +Δτ)− f (τ )

Δτ

H−1→ ḟ (τ )

and hence

∑

i

(
f (tn

i )− f (tn
i−1)

) · u(AΔτ (tn
i ), f (tn

i ))→
∫ T

0
ḟ (τ ) · u(τ ) dτ.

As a consequence of the energy balance E is continuous and thus E(t J )→ E(t) as
Δτ → 0. In addition γΔτ → γ as Δτ → 0. This yields (6.22). !"
Proof. (that Definition 4.3(3b) is satisfied) Assume, on the contrary, that there
exist:

1. Sequences tn ↗ t and En ∈ P(Ω)m satisfying

En
j ⊂

{
Dn

i (T ) \ Dn
i (t

n) if j = i,

∅ if j �= i,

with lim infn→∞ |En
i | = γ > 0 and,

2. δ > 0 such that W n
i (δ) in (4.5) satisfies

lim inf
n→∞ |W n

i (δ)| = 0.

From Lemma 6.5 we see that, as in the previous proof,

E(Dn(t), f (t))+k·|Dn(t)\En|+k̃i (δ)|En
i |+

∫

Ω

( f (t)− f (tn))·u(Dn(t), f (t)) dx

� E(Dn(tn), f (tn))+ k · |Dn(tn)| − o(1)

with o(1)→ 0 as n →∞. Taking the limit as n →∞, we get

W(t)− (ki − k̃i (δ))γ � W(t).

Since k̃i (δ) < ki , this is a contradiction. !"
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7. Local Minimality and Stability

In this section we will use the threshold property of energetic solutions to show
that local minimisers (defined below) of damage are also global minimisers. In
other words there are no purely local minimisers of damage.

It is natural to consider an increment in damage to be small if, for every dam-
age process, the L1(Ω, [0, 1]) norm of the (characteristic function of the) damage
increment is small. (Of course, any L p(Ω, [0, 1]) norm for p < ∞ would be
acceptable; whereas for p = ∞ there would be no small increments. Following [9]
we use p = 1.) This leads to the definition:

Definition 7.1. (Damage neighbourhood) Let ε > 0.

1. The ε-damage neighbourhood of θ ∈ L1(Ω, [0, 1]m) is

B(θ, ε) :=
{
θ ′ ∈ L1(Ω, [0, 1]m)

∣
∣
∣
∣∀i ∈ M, θ ′i � θi a.e. in Ω and

∫

Ω

θ ′i − θi dx < ε

}
.

2. The ε-damage neighbourhood of D ∈ P(Ω)m is

B(D, ε) := {D′ ∈ P(Ω)m | χD′ ∈ B(χD, ε)
}
.

(These would induce asymmetric metrics on L1(Ω, [0, 1]m) and P(Ω)m respec-
tively; see, e.g., [3,7,12,13]).

We are now ready to define local minimisers and stable states of damage; these
are one-sided (so to speak) notions since we compare only with increments in
damage:

Definition 7.2. (Minimmality and stability) Let A ∈ L∞(Ω,M(c1, c2)) and θ ∈
L∞(Ω, [0, 1]m) with A(x) ∈ Gθ(x)(α) a.e. in Ω . Let the sequence {Dn} ⊂ P

m

satisfy

αDn
G→ A, (7.1a)

χDn
�
⇀ θ. (7.1b)

Let f ∈ H−1(Ω,Rs).

1. Local minimality: {Dn} is a local minimizer of W(·, ·, f ) if there exists ε > 0
such that for every A′ ∈ Gθ ′ ({Dn},α) with θ ′ ∈ B(θ, ε), we have

W(A, θ, f ) � W(A′, θ ′, f ). (7.2)

2. Global minimality: {Dn} is a global minimizer of W(·, ·, f ) if (7.2) holds for
every A′ ∈ Gθ ′({Dn},α) with θ ′ ∈ B(θ,∞).

3. Stability: {Dn} is a stable state of W(·, ·, f ) if

lim sup
ε→0

sup
θ ′∈B(θ,ε)

A′∈Gθ ′ ({Dn},α)

W(A, θ, f )−W(A′, θ ′, f )

ε
� 0.
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In fact local minimality implies global minimality, and so does stability.

Theorem 7.3. (Either local minimality or stability implies global minimality) Let
f ∈ H−1(Ω,Rs) and let the sequence {Dn} ⊂ P

m satisfy (7.1). If {Dn} is either
a local minimiser or a stable state of W(·, ·, f ) then it is a global minimiser of
W(·, ·, f ).

The proof follows [9].

Proof. Suppose, on the contrary, that {Dn} is not a global minimiser. We show it
is neither a local minimiser nor a stable state.

Let A, θ be as in (7.1). By assumption there exists θ ′ ∈ L∞(Ω, [0, 1]m), with
θ ′ � θ , and A′ ∈ Gθ ′({Dn},α) such that

W(A, θ, f ) > W(A′, θ ′, f ). (7.3)

Step 1: First we show that θ ′i > θi for some i ∈ M:
From the definition of G({Dn},α) there exists a sequence of sets En ⊇ Dn

such that

χEn
�
⇀ θ ′,

αEn
G→ A′.

Let un and vn be minimisers of Ṽ(·, αDn , χDn , f ) and Ṽ(·, αEn , χEn , f ),
respectively (see (5.1d)).

Then from (7.3) and θ ′ � θ we have

lim
n→∞

⎛

⎜
⎜
⎝

∫

Ω

1

2

〈
αDn e(un), e(un)

〉− f · un

− 1

2

〈
αEn e(vn), e(vn)

〉+ f · vn dx

⎞

⎟
⎟
⎠ > 0,

while from the minimality of un we have

lim
n→∞

⎛

⎜
⎜
⎝

∫

Ω

1

2

〈
αDn e(un), e(un)

〉− f · un

− 1

2

〈
αDn e(vn), e(vn)

〉+ f · vn dx

⎞

⎟
⎟
⎠ � 0.

But if, for all i ∈ M, limn→∞
∣
∣En

i \ Dn
i

∣
∣ = 0, since {|e(vn)|2} is equi-integrable

(see, e.g., [8]),

0 < lim
n→∞

(∫

Ω

〈
αDn e(vn), e(vn)

〉− 〈αEn e(vn), e(vn)
〉

dx

)

= lim
n→∞

∑

i∈M

Δβi

∫

En
i \Dn

i

‖�i e(v
n)‖2 dx

= 0,

which is a contradiction. Thus θ ′i > θi for some i ∈ M.
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Step 2: Let i ∈ M satisfy θ ′i > θi . Next we show that e(un) exceeds the threshold
for i-damage somewhere in En

i \ Dn
i ; more precisely that there exists δ > 0 such

that
lim sup

n→∞
∣
∣Ũ n

i (δ)
∣
∣ > 0

where
Ũ n

i (δ) :=
{

x ∈ En
i \ Dn

i

∣
∣ ‖�i e(u

n)(x)‖ > λi + δ
}
.

Assume, on the contrary, that for every δ > 0,

lim sup
n→∞

∣
∣Ũ n

i (δ)
∣
∣ = 0. (7.4)

Then, using (6.17a),

E(Dn, f )− E(En, f ) � k̃(δ) · |En \ Dn| + βi Δβi

2(βi −Δβi )
‖�i e

n‖2
L2(Ũ n

i (δ))
,

where k̃ is defined in (6.20). Taking the limit as n → ∞, using (7.4), the equi-
integrability of e(un) and the arbitrariness of δ, we obtain a contradiction of (7.3).
Step 3: Finally we show that {Dn} is neither a local global minimiser not a stable
state.

Continuing from Step 2, dropping to a subsequence, we have

χŨ n
i (δ)

�
⇀ θi > 0.

Pick xo ∈ Ω that is a Lebesgue point for θ with θ(xo) > 0. Now, given any ε > 0,
we can choose a ball U ⊂ Ω , with radius |U | � ε, such that

∫

U
θ dx >

|U |
2
θ(xo),

that is,

lim
n→∞

∣
∣Ũ n

i (δ) ∩U
∣
∣ >

|U |
2
θ(xo) > 0.

Then, from Lemma 6.4, by adding laminates of damage within Ũ n
i (δ) ∩ U , the

energy of {Dn} can be lowered in the limit by at least 1
2βiδ

2 |U |
2 θ(xo). The sequence

{D̃n} generated by the union of {Dn} and these laminates (i) has lower energy than
{Dn} and (ii) its characteristic functions have a weak-* limit that lies in B(θ, ε).
Thus {Dn} is not a local minimiser.

In fact, this also shows that

lim sup
ε→0

sup
θ ′∈B(θ,ε)

A′∈Gθ ′ ({Dn},α)

W(A, θ, f )−W(A′, θ ′, f )

ε
� 1

2
βiδ

2,

and so ({Dn}, A, θ) is not stable. !"
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