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Abstract

A thorough study of domain wall solutions in coupled Gross–Pitaevskii equa-
tions on the real line is carried out including existence of these solutions; their
spectral and nonlinear stability; their persistence and stability under a small local-
ized potential. The proof of existence is variational and is presented in a general
framework: we show that the domain wall solutions are energy minimizers within
a class of vector-valued functions with nontrivial conditions at infinity. The admis-
sible energy functionals include those corresponding to coupled Gross–Pitaevskii
equations, arising in modeling of Bose–Einstein condensates. The results on spec-
tral and nonlinear stability follow from properties of the linearized operator about
the domain wall. The methods apply to many systems of interest and integrability
is not germane to our analysis. Finally, sufficient conditions for persistence and
stability of domain wall solutions are obtained to show that stable pinning occurs
near maxima of the potential, thus giving rigorous justification to earlier results in
the physics literature.

1. Introduction

Domain walls are ubiquitous in physical systems. The purpose of the present
work is to initiate a rigorous analysis of this phenomenon by placing it in a general
variational framework. We are interested in the existence and stability of these
domain walls as well as in their dynamical properties. The study is fairly complete
and covers the general existence and asymptotic properties of the solutions, spectral
and orbital stability, and it also includes the case of a small localized potential where
the spectral stability of these solutions is completely characterized. Our perspective
is mainly variational, also including some perturbation analysis in the case of small
localized potentials.
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Consider the system of coupled Gross–Pitaevskii equations,

i∂tψ1 = −∂2
xψ1 + (g11|ψ1|2 + g12|ψ2|2)ψ1,

i∂tψ2 = −∂2
xψ2 + (g12|ψ1|2 + g22|ψ2|2)ψ2,

}
(1)

where the cross-interaction terms are taken to be equal to preserve the Hamiltonian
structure of the underlying equations. The system (1) may be seen as the simplest
model for domain walls in the real line.

Domain walls occur in many physical experiments, such as convection in fluid
dynamics [14,15] and polarization modulation instability in fiber optics [12,13].
Recently, domain wall solutions were discussed in the coupled Bose–Einstein con-
densates, both in one and two dimensions [9], and this is the prime motivation for
our study, as the one-dimensional domain walls should represent the leading order
term in an expansion of the energy of a two-component Bose–Einstein condensate.

For simplicity, start with the model case g11 = 1 = g22 and γ = g12. Stationary
solutions of the form ψ1 = e−i tμ1 u1, ψ2 = e−i tμ2 u2 with real-valued envelopes
u1, u2 and normalization μ1 = 1 = μ2 satisfy the system of differential equations

−u′′
1(x)+

(
u2

1 + γ u2
2 − 1

)
u1 = 0,

−u′′
2(x)+

(
γ u2

1 + u2
2 − 1

)
u2 = 0,

⎫⎪⎬
⎪⎭ x ∈ R. (2)

We seek nonnegative solutions of system (2), with heteroclinic boundary con-
ditions at infinity,

u1(x) → 0, u2(x) → 1, as x → −∞, (3)

u1(x) → 1, u2(x) → 0, as x → +∞. (4)

In the special case γ = 3, such solutions are known explicitly [9,14]:

γ = 3 : u1,2(x) = 1

2

[
1 ± tanh

(
x√
2

)]
. (5)

Apart from the special case γ = 3, generally there is no explicit formula for the
domain wall solutions. However, we will prove that such solutions exist for any
γ > 1, and in fact for a large class of systems of two Hamiltonian PDEs. In addition,
we will prove that they are spectrally and nonlinearly stable. Lastly, we will add a
small localized potential to the coupled Gross–Pitaevskii equations (1) and prove
the early observation in [9] that the domain walls persist near the nondegenerate
extremum points of the small potentials and become spectrally stable (unstable)
near the maximum (minimum) points, thus providing a very complete picture of
this phenomenon.

For the main result, our technique is variational. Therefore, we introduce the
general energy functional, for functions ψ j : R → C, j = 1, 2,

E(ψ1, ψ2) = 1

2

∫ ∞

−∞

(
|ψ ′

1|2 + |ψ ′
2|2 + W (ψ1, ψ2)

)
dx, (6)
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where the appropriate choice of potential W corresponding to Equation (2) is:

W (ψ1, ψ2) = 1

2
(|ψ1|2 + |ψ2|2 − 1)2 + (γ − 1)|ψ1|2|ψ2|2. (7)

Denote by � = (ψ1, ψ2), and let R
2+ be the set of vectors in R

2 with nonnegative
coordinates: (x, y) ∈ R

2+ if x, y � 0. The potential W for γ > 1 satisfies the
following general properties:

(W1) W (�) = W (|ψ1|, |ψ2|) = F(|ψ1|2, |ψ2|2) for F ∈ C3(R2; R).
(W2) W (�) � 0 for all � ∈ C

2, and there exist a, b > 0, so that W (�) = 0 if
and only if (|ψ1|, |ψ2|) = a = (a, 0) or b = (0, b).

(W3) a, b are non-degenerate global minima of W (when restricted to R
2+).

(W4) There exist constants R0, c0 > 0 such that

∇W (U ) · U � c0|U |2 for all U ∈ R
2+ with |U | � R0.

We will show that the above properties are sufficient for the existence of domain
wall solutions, and also nearly sufficient for many of their properties, including
dynamical stability. A great variety of coupled equations of nonlinear Schrödinger
type fit the above framework. For instance, taking the general form of the coupled
Gross–Pitaevskii equations (1) with arbitrary g11, g22 > 0 and g12 >

√
g11g22,

we may seek stationary domain wall solutions of the form ψ1 = e−i tμ
√

g11 u1(x)
and ψ2 = e−i tμ

√
g22 u2(x), with μ > 0 any constant. The resulting system for

U = (u1, u2) takes the form

−u′′
1 + g11

(
u2

1 − a2
)

u1 + g12u1u2
2 = 0

−u′′
2 + g22

(
u2

2 − b2
)

u2 + g12u2
1u2 = 0

⎫⎪⎬
⎪⎭ (8)

with

U (x) → a := (a, 0), as x → ∞,

U (x) → b := (0, b), as x → −∞, (9)

where

a =
√
μ

4
√

g11
, b =

√
μ

4
√

g22
.

For this more general domain wall system, the corresponding potential is

W (ψ1, ψ2) = 1

2
(
√

g11|ψ1|2 + √
g22|ψ2|2 − μ)2 + (

g12 − √
g11g22

) |ψ1|2|ψ2|2,
(10)

which also satisfies the conditions (W1)–(W4) above, provided

g12 >
√

g11g22

a hypothesis which we make throughout the paper.
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Many other coupled Schrödinger systems with Hamiltonian structure may be
treated by choosing different potentials satisfying (W1)–(W4). For instance,

W (�) = 1

4
(|ψ1|4 + |ψ2|4 − 1)2 + γ − 1

2
|ψ1|4|ψ2|4, (11)

with γ > 1, is another admissible energy functional, which generates the system
of coupled Gross–Pitaevskii equations,

i∂tψ1 = −∂2
xψ1 + (|ψ1|4 + γ |ψ2|4 − 1)|ψ1|2ψ1,

i∂tψ2 = −∂2
xψ2 + (γ |ψ1|4 + |ψ2|4 − 1)|ψ2|2ψ2,

}

with the domain wall solutions satisfying asymptotic conditions�(x) → (0, 1) as
x → −∞ and �(x) → (1, 0) as x → ∞. Thus, we may consider systems other
than the standard cubic Gross–Pitaevskii equations (1).

To find solutions with the desired conditions (9) at infinity, we first start with
a very weak topology. Call X the class of all U = (u1, u2) ∈ H1

loc(R; R
2) which

satisfy the asymptotic conditions (9). Define also Y to be the class of complex-
valued � = (ψ1, ψ2) ∈ H1

loc(R; C
2) satisfying U := (|ψ1(x)|, |ψ2(x)|) → a as

x → ∞ and U → b as x → −∞. Although neither space is closed under H1
loc

convergence, we will nevertheless obtain convergence in the stronger topology
defined by the family of distances (see [3]),

ρA(�,�) :=
∑
j=1,2

[∥∥ψ ′
j −ϕ′

j

∥∥
L2(R)

+∥∥|ψ j |−|ϕ j |
∥∥

L2(R)
+ ∥∥ψ j − ϕ j

∥∥
L∞(−A,A)

]
,

(12)
where A > 0 is a fixed constant. Our main existence result is given by the following
theorem.

Theorem 1.1. Assume W satisfies (W1)–(W4). Define

m = inf
�∈Y

E(�).

Then there exists� = (ψ1, ψ2) ∈ Y which attains the infimum of E in Y.Moreover,
every minimizer has the form ψ1 = eiβ1 u1, ψ2 = eiβ2 u2, for nonnegative real-
valued U = (u1, u2) ∈ X and β1, β2 ∈ R constants. Furthermore, for any mini-
mizing sequence�n ∈ Y, E(�n) → m, there exists a minimizer� ∈ Y, a sequence
τn ∈ R, and a subsequence for which

ρA(�nk (· + τnk ),�(·)) → 0, as k → ∞
holds for all constants A > 0.

A more detailed theorem, giving essential properties of the minimizing domain
wall solutions, is presented in Section 2; see Theorem 2.1. In particular, the solutions
have exponential convergence as x → ±∞ to their asymptotic limits, and in the
symmetric case (2), all minimizers satisfy 0 � u1(x), u2(x) � 1 and there exists a
minimizer which is symmetric about x = 0, u2(x) = u1(−x).
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Remark 1.1. In the symmetric case (2), there exists another equilibrium state

c =
(

1√
1 + γ

,
1√

1 + γ

)

inside the range, where the domain wall solutions are defined. The equilibrium
state c corresponds to the center-saddle point of the dynamical system (2). It was
reported with the numerical shooting method in [12] that the domain wall solutions
with the symmetry u2(x) = u1(−x) satisfy u2(0) = u1(0) = 1√

1+γ for any γ > 1.
It remains open in the variational theory to prove this result.

Remark 1.2. We do not know if the minimizer found in Theorem 2.1 is unique.
However, in Section 5, see Proposition 5.1, we prove that under some general
hypotheses the set of all energy-minimizing domain walls is discrete.

The existence of heteroclinics connecting the wells of a bistable potential W
have been proven by many authors. Sternberg [18] gave an existence proof by
characterizing the heteroclinics as geodesics in a degenerate metric, a point of
view which we adopt in proving Theorem 1.1. Connecting orbits for symmetric
potentials were found in the case of multiple-well potentials by Bronsard, Gui,
and Schatzman [5] and Alama, Bronsard, and Gui [1]. A more general existence
theorem, in the absence of symmetry hypotheses, was found by Alikakos and Fusco
[2], by employing constraints. For the stability (linear and nonlinear) we require the
stronger convergence in the distance ρA of unconstrained minimizing sequences,
and thus our result is an improvement on previous work for the two-well case.

The existence of domain wall solutions having been established, we turn to the
questions of linear and nonlinear stability, with respect to the Hamiltonian flow,

i∂tψ1 = −∂2
xψ1 + ∂1 F(|ψ1|2, |ψ2|2)ψ1,

i∂tψ2 = −∂2
xψ2 + ∂2 F(|ψ1|2, |ψ2|2)ψ2. (13)

Linear and nonlinear stability of the domain wall solutions U will also be proven
under rather general hypotheses, nevertheless slightly more restrictive than were
necessary for their existence. The first step is to consider the linearization about
U , D2 E(U ), which is defined in H1

0 (R; C
2). Let us consider any admissible � =

�R + i�I and let us express�R = (ϕ1,R, ϕ2,R) and�I = (ϕ1,I , ϕ2,I ) in their real
and imaginary parts. We associate to the quadratic form D2 E(U ) two self-adjoint
linearizations, which decompose the second variation as

D2 E(U )� = L+�R + i L−�I ,

with self-adjoint operators

L+�R = −�′′
R + 1

2
D2W (U )�R, L−�I = −�′′

I + DF(u2
1, u2

2) : �I ,

where we denote v : w = (v1w1, v2w2) for v,w ∈ R
2. In Section 3, see Theo-

rem 3.1, we prove that both L± are positive semi-definite. In addition, L+ has a zero
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eigenvalue, corresponding to the eigenfunction U ′(x), but the essential spectrum
is bounded away from zero.

An important issue is the simplicity of the zero eigenvalue of L+, which is
sensitive to the form of the potential W . Indeed, if we choose g12 = 0 in (8), the
equations decouple and the zero eigenvalue of L+ will have multiplicity two. As
part of Theorem 3.1, we give a sufficient condition on W (�) = F(|ψ1|2, |ψ2|2)
for which zero is a simple eigenvalue,

(W5) ∂1∂2 F(ξ1, ξ2) � 0 for all ξ = (ξ1, ξ2) ∈ R
2+,

a condition which is satisfied by the examples (2), (8), and (11) given above. For
such W , we may also conclude the strict monotonicity of the profiles U (x) =
(u1(x), u2(x)). From this spectral analysis we also obtain a spectral stability result
in the spirit of the work of Di Menza and Gallo [8] on the black soliton for the
NLS equation.

Theorem 1.2. If U ∈ X is a minimizer of E, then the associated spectral problem

L+�R = −λ�I , L−�I = λ�R (14)

has no eigenvalues λ with Re(λ) �= 0.

We note that Theorem 1.2 holds even if zero is a multiple (semi-simple) eigen-
value of L+. In that case, it is unnatural to claim that the system is spectrally stable,
as the presence of a null vector which is not accounted for by symmetries (trans-
lation invariance, in our case) usually signals a bifurcation of stationary solutions.
In this case, perturbations from the domain wall may grow algebraically in time
and no linear or nonlinear stability of the solutions may be established. Therefore,
to establish stability of domain wall solutions we restrict our attention to the case
where zero is a simple eigenvalue of L+, which is ensured by the hypothesis (W5).

Nonlinear stability of non-degenerate domain wall solutions can be thought to be
a natural consequence of the minimizing character of these solutions in the energy
functional E . We note, however, that the fact that domain walls have nontrivial
boundary conditions at infinity presents additional challenges, as the dynamics
in this situation is not ruled by scattering. While we have the existence of the
domain wall solutions, there is no uniqueness result, and no explicit formula for the
solutions. The combination of these two features makes the problem quite subtle.
Having that in mind, define the energy space,

D := {� ∈ H1
loc(R; C

2) : E(�) < ∞}. (15)

From [19], we have the following global well-posedness result in the energy spaceD.

Theorem 1.3. (Zhidkov) Let �0(x) ∈ D ∩ L∞(R). There exists a unique global
in time solution �(x, t) to the system (13) with initial data �(x, 0) = �0(x).
Moreover, the map t → �(·, t) is continuous with respect to ρA and energy is
preserved along the flow, that is E(�(·, t)) = E(�0) for all t.

We may now state our result on the orbital stability of the domain wall solu-
tions. Again, the result is the same for any Gross–Pitaevskii system, as long as the
associated potential W satisfies (W1)–(W4).
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Theorem 1.4. Assume (W1)–(W4), let U be a minimizer of E in X, for which zero is
a simple eigenvalue of L+. Let�0 ∈ D∩ L∞ and let ε > 0. Then, for every A > 0,
there exist a positive number δ = δ(A) > 0 and real functions α(t), θ1(t), θ2(t)
such that if

ρA(�0,U ) � δ, (16)

then

sup
t∈R

ρA

(
�(·, t),

[
exp[iθ1(t)]u1(· + α(t)
exp[iθ2(t)]u2(· + α(t)

])
� ε. (17)

The proof of Theorem 1.4 makes use of the variational structure of the equation
and the concentration-compactness argument employed in proving Theorem 1.1.
In this way it recalls the classical work of Cazenave–Lions [6] and Grillakis–
Shatah–Strauss [10]. In our case, however, the control of the phase is a very
delicate matter and falls outside the Grillakis–Shatah–Strauss formalism. In [3],
orbital stability of the black soliton for the Gross–Pitaevskii equation was obtained
facing similar problems as ours. The black soliton is a constrained minimizer among
functions with fixed ‘untwisted momentum’ equal to π/2 and important part of the
analysis goes into defining this notion rigorously. We do not deal with such an issue,
however, a key point needed in the analysis in [3] is that travelling waves with speed
c (including the case c = 0 corresponding to the black soliton) are known explicitly
and are unique. This complete characterization is not available to us. Nevertheless,
we are able to circumvent this by making use of the asymptotic behavior of the
domain wall solutions at ±∞ and the fact that heteroclinic minimizers are isolated
(as in Proposition 5.1 below).

Note also that a stronger version of stability, namely asymptotic stability, is
expected to hold for the domain wall solutions and we hope to tackle this problem
in a future project.

Even though variational techniques do not give much information about θ1(t),
θ2(t) and α(t), a direct application of the same reasoning behind Theorem 1.3 in
[3] to our setting allows us to obtain a weak form of a slow motion law for the
center α(t) of the domain wall, at least for the family of solutions of the general
Gross–Pitaevskii system (13).

Theorem 1.5. Let U (x) ∈ X be an energy minimizing domain wall solution of
(8) with asymptotic conditions (9). Let α(t), θ1(t), θ2(t) be functions satisfying the
conclusion of Theorem 1.4. Then, there exists a constant C = C(A) such that for
all t ∈ R :

|α(t)| � Cεmax{1, |t |},
provided ε is sufficiently small.

Finally, in Section 6, we study the influence of a small localized potential on
the domain walls. For simplicity we treat perturbations of the model system (2),
but the same procedure may be adapted to the more general cases. Consider

i∂tψ1 = −∂2
xψ1 + εV (x)ψ1 + (|ψ1|2 + γ |ψ2|2)ψ1,

i∂tψ2 = −∂2
xψ2 + εV (x)ψ2 + (γ |ψ1|2 + |ψ2|2)ψ2,

}
(18)
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where ε > 0 is a small parameter and V : R → R is a given potential. Stationary
solutions of the form ψ1 = e−i t u1, ψ2 = e−i t u2 with real-valued envelopes u1, u2
satisfy the system of differential equations

−u′′
1(x)+

(
εV (x)+ u2

1 + γ u2
2 − 1

)
u1 = 0,

−u′′
2(x)+

(
εV (x)+ γ u2

1 + u2
2 − 1

)
u2 = 0,

⎫⎪⎬
⎪⎭ x ∈ R. (19)

For ε = 0, the existence of the domain wall solutions of the system (19)
with the boundary conditions (3) and (4) is given by Theorem 2.1. By using the
method of Lyapunov–Schmidt reductions, similarly to the work of Pelinovsky
and Kevrekidis [17] on black solitons for the Gross–Pitaevskii equation with a
small localized potential, we show persistence of the domain wall solutions for
small values of ε.

Theorem 1.6. Let U0 = (u1, u2) be a heteroclinic solution of the system (2) with
γ > 1 in function space X satisfying the symmetry reduction u2(x) = u1(−x) for
all x ∈ R. For a given V ∈ C2(R) ∩ L2(R), assume that there exists x0 ∈ R such
that ∫

R

V ′(x + x0)(u
2
1 + u2

2 − 1) dx = 0, (20)

and ∫
R

V ′′(x + x0)(u
2
1 + u2

2 − 1) dx �= 0. (21)

Then, there exists ε0 > 0 such that for all ε ∈ (−ε0, ε0), the system of differential
equations (19) admits a unique branch of the heteroclinic solutions U = (u1, u2)

in function space X. Moreover, U is C∞ in ε and there is C > 0 such that

sup
x∈R

|U (x)− U0(x − x0)| � C |ε|, ε ∈ (−ε0, ε0). (22)

Remark 1.3. In the particular case of even V , the first condition (20) is satisfied
for x0 = 0 because u2

1 + u2
2 − 1 is even and V ′ is odd. In this case, solutions of

system (19) for small ε ∈ (−ε0, ε0) satisfies the symmetry reduction

u2(x) = u1(−x) for all x ∈ R,

hence the bifurcation equation of the Lyapunov–Schmidt reduction [see Equa-
tion (61) below] is satisfied identically for s = x0 = 0. As a result, the second
condition (21) can be dropped and it is sufficient to require V ∈ C1(R)∩ L2(R) in
the statement of Theorem 1.6.

Note that the effective potential, which produces the conditions (20) and (21)
was introduced in equation (48) of Ref. [9] from physical arguments.

Once a unique branch of domain wall solutions is shown to exist for small
enough ε,we turn to the stability conditions for the persistent domain wall solutions
in the small localized potential.
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Theorem 1.7. Assume conditions of Theorem 1.6 and that V ∈ L1(R). The domain
wall solutions of Theorem 1.6 are spectrally stable if σ > 0 and unstable if σ < 0,
where

σ := 1

2

∫
R

V ′′(x + x0)(u
2
1 + u2

2 − 1) dx �= 0.

Note that if u2
1 + u2

2 − 1 � 0 for all x ∈ R and V is slowly varying on the
scale of the domain wall solution U = (u1, u2), then σ > 0 if x0 is the point of
maximum of V with V ′′(x0) < 0. This corresponds to the prediction of Ref. [9]
based on physical arguments that the stable pinning of the domain walls happens
at the potential maxima (rather than minima).

Let us give an example of the domain wall solution (5) for γ = 3 and the
explicit potential V (x) = a sech2(bx) with a ∈ R and b > 0. In this case, the
condition (20) is satisfied for x0 = 0 and the stability condition σ > 0 is satisfied
if a > 0, that is, when V is a single-humped potential. The instability condition
σ < 0 is satisfied if a < 0, that is, when V is a single-well potential. Although the
actual value of σ depends on b, the sign of σ does not.

The paper is organized as follows. The existence of domain wall solutions is
proved in Section 2 as a consequence of a more general existence theorem based on
variational methods characterizing heteroclinics as geodesics in a degenerate met-
ric. Section 3 is devoted to the study of the second variation of the energy functional
E at the domain wall solutions. Spectral stability follows from the properties of the
second variation and is established in Section 4. The proof of nonlinear stability
of the domain wall solutions is developed in Section 5. Finally, Section 6 gives
results on persistence and stability of the domain wall solutions in small localized
potentials by Lyapunov–Schmidt reduction analysis.

2. Existence of Heteroclinics

In this section, the construction of the domain walls is achieved by construct-
ing minimizers of an energy functional defined on a weak space that imposes the
desired conditions at infinity and satisfies certain symmetry conditions. The weak
convergence is improved by looking at the second variation, which in particular
implies exponential decay at infinity of |U |2 − 1, as well as the rest of the proper-
ties in Theorem 2.1 below. Exponential decay is needed later to show slow motion
of the center of mass of perturbations of the domain walls and to analyze stability
in the presence of a small potential. We denote the energy density

e(�) := 1

2

(
|ψ ′

1|2 + |ψ ′
2|2 + W (ψ1, ψ2)

)
.

The following theorem includes the results stated in Theorem 1.1:

Theorem 2.1. Assume W satisfies (W1)–(W4). Define

m = inf
�∈Y

E(�). (23)
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Then there exists � = (ψ1, ψ2) ∈ Y which attains the infimum of E in Y, and
solves the system

−� ′′(x)+ ∇W (�) = 0, lim
x→∞�(x) = a, lim

x→−∞�(x) = b (24)

Moreover,

(a) For any minimizing sequence �n ∈ Y, E(�n) → m, there exists a mini-
mizer � ∈ Y, a sequence τn ∈ R, and a subsequence for which ρA(�nk (· +
τnk ),�(·)) → 0 holds for all constants A > 0.

(b) Every minimizer has the form ψ1 = eiβ1 u1, ψ2 = eiβ2 u2, for real-valued
(u1, u2) ∈ X and β1, β2 ∈ R constants.

(c) All minimizers satisfy u1(x), u2(x) � 0.
(d) For W which obey the symmetry W (ψ2, ψ1) = W (ψ1, ψ2), there exists a

minimizer U which is symmetric, u2(x) = u1(−x) for all x ∈ R.

(e) All minimizers exhibit exponential convergence of |U (x)− a| as x → ∞ and
|U (x) − b| as x → −∞. For the system (2), there exist constants C1,C2, R
such that u1(x) � C1e

√
γ−1x for x < −R and 1 − u1(x) � C2e−√

2x for
x > R, and similarly for u2(x).

We note that the potential in the model case (7) satisfies the symmetry condi-
tion in (d), and hence there is a symmetric minimizing domain wall solution for
system (2).

We begin by establishing some basic energy estimates.

Lemma 2.2. Assume W satisfies (W1)–(W4), and belongs to the energy space D.
Then limx→±∞ W (�(x)) = 0.

Proof. For � = (ψ1, ψ2) ∈ C
2, denote

|dist|(�, a) := dist ((|ψ1|, |ψ2|), a) .

Since a,b are nondegenerate global minimizers of W , there exist constants C, δ > 0
such that for any � ∈ C

2 with |dist|(�, a) � δ, we have

C−1
√

W (�) � |dist|(�, a) � C
√

W (�), (25)

and the same estimate holding for b replacing a.
Suppose W (�(x)) �→ 0 as x → ±∞. Then there exists ε0 > 0 and a sequence

xn → ∞ (or xn → −∞) for which W (�(xn)) � ε0 for all n. By (25), we may
conclude that

min
{|dist| (�(xn), a) , |dist| (�(xn),b)

}
� C−1√ε0 := δ0.

On the other hand, since
∫ ∞
−∞ W (�(x)) dx < ∞, there also must exist sequences

along which W (�(x)) → 0. For each n, let tn be the smallest value of t > xn for
which

either |dist(�(tn), a) = 1

2
δ0, or |dist(�(tn),b) = 1

2
δ0, ∀n ∈ N.
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One of the two must occur infinitely often; suppose a subsequence may be chosen
with |dist|(�(tn), a) = 1

2δ0. By extracting further subsequences if necessary, we
may assume that the two sequences {xn} and {tn} interlace:

xn < tn < xn+1, ∀n ∈ N.

Next we observe (as in [18]),∫ z

y
e(�) dx �

∫ z

y

√
W (�(x))|� ′(x)| dx =

∫
σ

√
W ds, (26)

where σ is the path in R
2 parametrized by �(x), x ∈ (y, z), and s is arclength.

If we denote by σn the path traced by �(x) for x ∈ (tn, xn), we observe that the
(Euclidean) arclength of σn is at least δ0/2. Therefore, using (25) and (26), we may
conclude that∫ xn

tn
e(�) dx �

∫
σn

√
W ds �

∫
σn

C−1|dist|(�(x), a) ds � δ2
0

2C
,

which gives a constant contribution to the total energy for each n ∈ N. Since
the intervals [tn, xn] are mutually disjoint, we conclude that E(�) diverges, a
contradiction. ��

We note that the condition (W3) may be weakened, as long as the value of W
controls the distance to the minima, so as to replace the condition (25). For instance,
this would still be the case if at each of the minima a,b, W vanishes to finite order.

The following useful lemma comes from [1].

Lemma 2.3. Let U (x) = (u(x), v(x)) ∈ H1
loc([L1, L2]; R

2),with |U (L1)−b| < δ

and |U (L2)−a| < δ,where δ > 0 is as in (25). Then, there exists a constant C1 > 0
such that∫

[L1,L2]
e(U (x)) dx � m − C1

[
|U (L1)− b|2 + |U (L2)− a|2

]
.

We may now begin the proof of the existence theorem.

Proof of Theorem 2.1. Let �n = (ψ1,n, ψ2,n) ∈ Y be a minimizing sequence,
E(�n) → m. Let τn be the smallest value for which |ψ1,n(τn)| = |ψ2,n(τn)|. We
define �̃n(x) := �n(x + τn), and note that with this definition �̃n = (ψ̃1,n, ψ̃2,n)

is a minimizing sequence for E in Y with normalization

|ψ̃1,n(0)| = |ψ̃2,n(0)|. (27)

By the boundedness of the energy, we may conclude that‖�̃ ′
n‖L2(R) is uniformly

bounded. Hypothesis (W4) may be integrated to obtain the estimate

W (�) � 1

2
c0|�|2 − c1,

for a constant c1, which holds for all� ∈ C
2. As a consequence, for every fixed R >

0, ‖�̃n‖H1(−R,R) is likewise uniformly bounded in n. For each R, we may extract
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a subsequence �̃n j → � = (ψ1, ψ2) converging pointwise almost everywhere
on R, uniformly on [−R, R], and weakly in H1([−R, R]). Exhausting R by a
sequence of bounded intervals, and applying a diagonal argument, we obtain a
further subsequence (which we continue to denote �̃n j ) for which �̃ ′

n j
⇀ � ′ in

L2(R) and �̃n j → � uniformly on every compact set, with � ∈ H1
loc(R; C

2). By
weak lower semicontinuity of the norm and Fatou’s lemma, we have

E(�) � lim inf
j→∞ E(�̃n j ) = m.

For the existence statement, it remains to show that � ∈ Y , and hence � is
the desired minimizer. Denote by Un j (x) = (|ψ1,n j (x)|, |ψ2,n j (x)|) and U (x) =
(|ψ1(x)|, |ψ2(x)|) ∈ X . We note that E(U ) � E(�) = m, with Un j → U
uniformly on compact sets and weakly in H1

loc.
By Lemma 2.2, limx→±∞ W (�(x)) = 0. Assume, for a contradiction, that

|�(x)| → b as x → ∞. For any ε > 0 (to be chosen later,) there exists L1 > 0
with

∣∣U (L1)−b
∣∣ < ε. Since Un j → U locally uniformly, there exists j sufficiently

large that |Un j (L1)− b| < 2ε. In addition, Un j ∈ X , and so there exists L2 > L1
such that |Un j (L2)− a| � ε. Applying Lemma 2.3,∫ L2

L1

e(Un j ) dx � m − C1

[
|Un j (L1)− b|2 + |Un j (L2)− a|2

]
� m − 5C1ε

2. (28)

On the other hand, for each j , Un j → b as x → −∞, and Un j have been
normalized so that Un j (0) ∈ � := {u ∈ R

2+ : u1 = u2}. Fix δ > 0 such that
dist (a,�), dist (b,�) > 2δ, and let x j < 0 be the largest negative value for which
|Un j (x j )− b| = δ. By hypothesis (W2), there exists w0 > 0 with

√
W (U ) � w0

for all U ∈ R
2+ with dist (a,U ), dist (b,U ) � 2δ. Let D = dist (�, Bδ(b)). Then

for any j we have:∫ 0

x j

e(Un j ) dx �
∫ 0

x j

√
W (Un j (x)) |U ′

n j
| dx =

∫
{Un j (x): x j �x�0}

√
W ds � w0 D.

Together with the lower bound (28), we then have for all sufficiently large j :[∫ 0

x j

+
∫ L2

L1

]
e(Un j ) dx � m + w0 D − 5C1ε

2.

Taking ε > 0 small enough that ε2 < w0 D
10C1

we arrive at the contradiction E(�n j ) �
E(Un j ) � m + 1

2w0 D, for all sufficiently large j , which contradicts the definition
of �n as a minimizing sequence for E . In conclusion, U → a as x → +∞. A
similar argument shows that U → b as x → −∞, and hence U ∈ X and gives
the desired real-valued heteroclinic. This completes the proof of the existence of
heteroclinic solutions to (24).

We now prove the properties (a)–(e) stated in Theorem 2.1. To prove (b), let
� ∈ Y be any minimizer, and U (x) = (|ψ1(x)|, |ψ2(x)|) ∈ X , which is also a
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minimizer of E . Then, E(U ) � E(�) with equality if and only if ψ1 = eiβ1 u1
and ψ2 = eiβ2 u2, with constant β1, β2. Indeed, W (�) = W (|ψ1|, |ψ2|) holds for
any complex number �. The inequality |(|ψ j |)′(x)| � |ψ ′

j (x)| holds for almost

every x , with equality if and only if ψ j (x) = eiβ j |ψ j (x)| with constant β j . Thus,
all minimizing solutions must have the form specified in (b).

To prove (c), first note that by the argument of the preceding paragraph, if
Ũ (x) = (|u1(x)|, |u2(x)|) ∈ X , then E(Ũ ) � E(U ), with equality if and only if
u j (x) = |u j (x)|, and hence all minimizers have nonnegative components.

We now consider property (d), the symmetry of minimizers, in the special case
of symmetric W , W (ψ2, ψ1) = W (ψ1, ψ2). Let U (x) = (|ψ1(x)|, |ψ2(x)|) ∈ X ,
as above. We note that by the choice of τn above, U = (u1, u2) must satisfy
u1(0) = u2(0). In the case∫ ∞

0
e(U ) dx �

∫ 0

−∞
e(U ) dx, (29)

we define a new configuration Û (x) by

Û (x) =
{
(u1(x), u2(x)), if x � 0,

(u2(−x), u1(−x)), if x < 0.

Then Û ∈ X , and E(Û ) � E(U ) = m, so Û is also a minimizer of E in X ⊂ Y ,
with the desired symmetry. In case the opposite inequality holds in (29), we keep
the values of u1, u2 for x < 0, and perform the reflection to x > 0 to reduce the
energy. In either case, we obtain the existence of a minimizer with symmetry as
given by (d).

To prove (e) on the exponential decay of the solution as x → ±∞, we recall the
Stable and Unstable Manifold Theorem for differential equations (see, for example,
[16]). Both a and b are equilibrium states of the system of differential equations
(2), which correspond to the non-degenerate minima of W . Consequently, they
define saddle points of the dynamical system defined by the system of ODEs,
and the linearization at the saddle points possesses two pairs of (non-vanishing)
real eigenvalues. By the Unstable Manifold Theorem, the nonlinear dynamical
system (2) has a two-dimensional unstable manifold Wu(a) that is tangent to the
manifold Eu(a) at (u1, u2) = a. Since the minimizer must belong to the unstable
manifold because of the boundary condition (3), we conclude that the solution
decays exponentially to a.

For the specific equation (2), the linearized dynamical system has the two-
dimensional unstable manifold at the point a in the explicit form

Eu(a) :=
{

u′
1 = √

γ − 1u1, u′
2 = √

2(u2 − 1), (u1, u2) ∈ R
2
}
. (30)

Thanks to (c), the minimizer satisfies u1 > 0 and u2 < 1 in the parametrization of
Eu(a) in (30). Thanks to (d), the result also extends to the other infinity, where the
minimizer decays exponentially to b.

Finally, we turn to the convergence (a) of complex-valued minimizing sequences
in the distance functions ρA. Let �n = (ψn,1, ψn,2) be a minimizing sequence for
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E in Y . By the first step in the existence proof, we may find translations τn such that
�̃n(x) = �n(x + τn) is normalized with center at the origin, (27). For simplicity,
we assume that the original minimizing sequence �n satisfies (27). Denote by
Un = (|ψn,1|, |ψn,2|) ∈ X , which we have already noted is also a minimizing
sequence, with m � E(Un) � E(�n) → m. By previous arguments, there exists
a minimizer U ∈ X , E(U ) = m, and a subsequence (which we will continue to
denote Un) for which Un → U pointwise almost everywhere on R, uniformly on
compact intervals, and weakly in H1

loc.
Step 1: Un → U in L∞(R).

Suppose not: then there exists ε0 > 0 and a sequence of points xn → ∞ (or
xn → −∞) such that

|Un(xn)− U (xn)| � ε0

for all n. Furthermore, U (xn) → a as n → ∞, so there exists N1 ∈ N so that
|U (xn)− a| � ε0

10 for all n � N1. Hence,

|Un(xn)− a| � 9ε0

10

holds for all n � N1.
On the other hand, each Un(y) → a as y → ∞, so we may choose yn to be

the smallest y > xn for which |U (yn)− a| = ε0
10 . We thus have

|Un(yn)− Un(xn)| � 4ε0

5
(31)

for all n � N1. By the estimate (25),

√
W (Un(x)) � C−1|Un(x)− a| � C−1 ε0

10
,

for xn � x � yn and n � N1. Applying (26), we have∫ yn

xn

e(Un) dx �
∫
σn

√
W ds � C−1 ε0

10

4ε0

5
:= ε1,

where σn = {Un(x) : xn � x � yn} is a path in R
2 with (Euclidean) arclength at

least 4ε0
5 [by (31)].

Now choose R > 0 such that
∫ R
−R e(U ) dx � m − ε1

10 . By weak lower semi-
continuity, there exists N2 � N1 such that for all n � N2,

∫ R

−R
e(Un) dx �

∫ R

−R
e(U ) dx − ε1

10
� m − ε1

5
. (32)

Therefore, for n � N2 we have

E(Un) =
∫

R

e(Un) dx �
[∫ R

−R
+

∫ yn

xn

]
e(Un) dx � m + 4ε1

5
,
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which contradicts the fact that Un is a minimizing sequence for E . Thus, Step 1 is
verified.
Step 2:

∫
R

W (Un) dx → ∫
R

W (U ) dx .
Suppose not. By Fatou’s lemma we have

∫
R

W (U ) dx � lim inf
∫
R

W (Un) dx ,
and so we may assume that there exists ε1 > 0 and a subsequence (still labelled
Un) for which ∫

R

W (Un) dx −
∫

R

W (U ) dx � ε1

for all n. Let R be chosen so that∫ R

−R
e(U ) dx � m − ε1

10
.

By uniform convergence and the arguments of Step 1, there exists N2 ∈ N for
which both (32) holds and∫ R

−R
W (Un) dx �

∫ R

−R
W (U ) dx + ε1

5
�

∫
R

W (U ) dx + ε1

5
,

for all n � N2. By the definition of ε1, it follows that either

∫ ∞

R
W (Un) dx � 2ε1

5
, or

∫ −R

−∞
W (Un) dx � 2ε1

5
.

Assume it is the former which holds. But then we have the contradiction,

E(Un) =
∫

R

e(Un) dx �
∫ R

−R
e(Un) dx +

∫ ∞

R
W (Un) dx � m + ε1

5
,

for all n � N2. Thus Step 2 must hold.
As a corollary to Step 2 we have:

Step 3: ‖� ′
n‖2

L2(R)
→ ‖� ′‖2

L2(R)
.

Indeed, as
∫
R

W (�n) dx = ∫
R

W (Un) dx → ∫
R

W (U ) dx = ∫
R

W (�) dx ,
and E(�n) → E(�), it follows that∫

R

|� ′
n|2 dx →

∫
R

|� ′|2 dx .

By a familiar argument we may conclude that

‖� ′
n −� ′‖L2(R) → 0.

Step 4: Un → U in L2(R).
We first claim that for any ε > 0, there exists R0 > 0 so that∫

{|x |�R0}
W (Un) dx < ε (33)
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for every sufficiently large n ∈ N. Indeed, if we assume the contrary, then there
exists a subsequence of n → ∞, ε0 > 0 and Rn → ∞ such that∫

{|x |�Rn}
W (Un) dx � ε0.

Fix R0 > 0 with the property that∫ R0

−R0

W (U ) dx �
∫

R

W (U ) dx − ε0

4
.

By the uniform convergence Un → U on compact intervals, there exists N2 ∈ N
so that when n � N2,∫ R0

−R0

W (Un) dx �
∫

R

W (U ) dx − ε0

2
.

It follows that∫
R

W (Un) dx �
[∫ R0

−R0

+
∫

{|x |�Rn}

]
W (Un) dx �

∫
R

W (U ) dx + ε0

2
.

However, this contradicts Step 2, and thus the claim must be true.
To prove Step 4, we let ε > 0 be arbitrary, and recall the definition of δ

from (25). We choose R > 0 to satisfy the following three conditions: (33),∫
{|x |�R} W (U ) dx < ε, and that both of |Un(x) − a|, |U (x) − a| < δ for all

x � R and for all n. The first condition follows from the claim, the second from
the finiteness of the integral

∫
R

W (U ) dx , and the third from Step 1. Applying (25),
for all x ∈ R we have:

|Un(x)− U (x)|2 � (|Un(x)− a| + |U (x)− a|)2 � C2
(√

W (Un)+ √
W (U )

)2

� 2C2 (W (Un)+ W (U )) .

Therefore we have∫ ∞

R
|Un(x)− U (x)|2 dx � 2C2

∫ ∞

R
(W (Un)+ W (U )) dx � 4C2ε.

A similar calculation produces the same estimate over the interval (−∞, R), and
the convergence in L2([−R, R]) follows from uniform convergence on compact
sets. Thus Step 4 is proven.

Putting together the uniform convergence on compact sets [−A, A] and Steps 3
and 4, we obtain the conclusion (e), ρA(�n, �) → 0 for any fixed A > 0. ��

The real-valued energy minimizing domain wallsU (x) solve the Euler–Lagrange
equations,

−U ′′(x)+ ∇W (U ) = 0. (34)

Under the hypothesis (W4), all solutions (and not just energy minimizers) of this
system are in fact a priori bounded in supremum norm:
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Theorem 2.4. There exists a constant K > 0, depending only on W, such that any
domain wall solution U ∈ X of (34) satisfies

‖U‖L∞(R) � K . (35)

For the system (8), the following pointwise estimate holds:

u1(x)2

a2 + u2(x)2

b2 � 1.

Of course, by part (b) of Theorem 2.1, the same statement may be made for any
complex-valued solution � ∈ Y .

Proof. From hypothesis (W4), we may easily obtain the global bound,

∇W (U ) · U � c0|U |2 − c1, (36)

valid for all U ∈ R
2. Define ϕ(x) := u1(x)2 + u2(x)2 − K , for constant K >

max{(c1/c0), a2, b2}. We calculate

1

2
ϕ′′(x) = [u′

1]2 + [u′
2]2 + ∇W (U ) · U

� c0

(
|U |2 − c1

c0

)
� c0ϕ.

Since (by the choice of K ,) lim|x |→∞ ϕ(x) < 0, the positive part ϕ+(x) =
max{ϕ(x), 0} has compact support in R. Multiplying the equation for ϕ by ϕ+
and integrating, we have:∫

R

[
1

2
(ϕ′+)2 + c0ϕ

2+
]

dx = 0,

and hence ϕ(x) � 0 on R. This proves (35).
To prove the more precise bound for solutions of (8), let ϕ(x) := √

g11u2
1(x)+√

g22u2
2(x)− μ. Then, ϕ satisfies the equation

−1

2
ϕ′′ + (g11u2

1 + g22u2
2)ϕ = −√

g11[u′
1]2 − √

g22[u′
2]2

−(g12 − √
g11g22)

√
g11g22u2

1u2
2

� 0

Again, multiplying by ϕ+(x) = max{ϕ(x), 0} and integrating over R, we obtain:∫
R

[
1

2
(ϕ′+)2 + (g11u2

1 + g22u2
2)ϕ

2+
]

� 0,

so we conclude that ϕ(x) � 0 on R. Recalling the definitions of a, b, we have

0 � ϕ(x) = μ(
u2

1
a2 + u2

2
b2 − 1), and the desired bound follows. ��
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3. Second Variation and Monotonicity

Looking at the second variation allows us to derive asymptotic properties of the
domain walls obtained so far. In the end these properties will imply the minimizing
character of these heteroclinics in a space with a stronger topology. Let U (x) =
(u1(x), u2(x)) ∈ X be an energy minimizing heteroclinic solution obtained in
Theorem 2.1. For real-valued U , the second variation of energy, D2 E(U ) may be
expressed using the definition W (�) = F(|ψ1|2, |ψ2|2) in the following form,

D2 E(U )[�] := d2

dε2

∣∣∣∣
ε=0

E(U + ε�)

=
∫ ∞

−∞
{|�′|2 + ∂1 F(u2

1, u2
2)|ϕ1|2 + ∂2 F(u2

1, u2
2)|ϕ2|2

+2
[
∂2

1 F(u2
1, u2

2)(u1, ϕ1)
2

+2∂1∂2 F(u2
1, u2

2)(u1, ϕ1)(u2, ϕ2)+ ∂2
2 F(u2

1, u2
2)(u2, ϕ2)

2]} dx,

where � = (ϕ1, ϕ2) ∈ H1
0 (R; C

2) and the inner product of complex numbers
(z, w) := Re (z̄w). Having chosen U = (u1, u2) ∈ X , from Theorem 2.1 we may
conclude that D2 E(U ) is well-defined for � ∈ C∞

0 (R; C
2), and in fact we may

extend its domain to include any � ∈ H1(R; C
2).

Let U = (u1, u2) be a real-valued minimizer of E in the class X. Writing
� = �R + i�I , with �R = (ϕ1,R, ϕ2,R), �I = (ϕ1,I , ϕ2,I ) in its real and
imaginary parts, we associate to the quadratic form D2 E(U ) the two self-adjoint
linearizations L+ and L− so that

D2 E(U )[�] = 〈�R, L+�R〉 + 〈�I , L−�I 〉. (37)

With this decomposition, we obtain formulae for L±. First, the real part is given in
terms of the usual real-valued linearization of the Euler–Lagrange equations,

L+�R =
[−∂2

x + ∂1 F(u2
1, u2

2)+ 2∂2
1 F(u2

1, u2
2)u

2
1 2∂1∂2 F(u2

1, u2
2)u1u2

2∂1∂2 F(u2
1, u2

2)u1u2 −∂2
x + ∂2 F(u2

1, u2
2)+ 2∂2

2 F(u2
1, u2

2)u
2
2

]
�R

= −∂2
x�R + 1

2
D2W (U )�R . (38)

The imaginary part is a diagonal operator:

L−�I =
[−∂2

x + ∂1 F(u2
1, u2

2) 0
0 −∂2

x + ∂2 F(u2
1, u2

2)

]
�I

= −∂2
x�I + DF(u2

1, u2
2) : �I . (39)

Properties of the second variation are characterized in the following theorem.
They record useful information that will allow us to derive spectral stability of the
linearized operator about U.

Theorem 3.1. Assume (W1)–(W4), and let U = (u1, u2) by any energy minimizing
solution of (24) in X.
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(i) The quadratic form D2 E(U ) is positive semi-definite on H1
0 (R; C

2), and each
operator L± is also positive semi-definite on H1

0 (R; R
2).

(ii) Zero is an eigenvalue of L+, with associated eigenfunction U ′(x).
(iii) σess(L−) = [0,∞), and there exists �0 > 0 with σess(L+) = [�0,∞).

If in addition we assume,

∂1∂2 F(ξ) � 0 for all ξ ∈ R
2+, (W5)

we have:

(iv) u′
1(x) > 0 and u′

2(x) < 0 for all x ∈ R.
(v) Zero is a simple eigenvalue of L+.

An easy calculation shows that we obtain the full results of the theorem in the
special cases given in the Sect. 1:

Corollary 3.2. All conclusions (i)–(v) are valid for solutions U (x) ∈ X of (8) and
of (11).

Proof of Theorem 3.1. By the first part of the proof of Theorem 2.1, U ∈ X ⊂ Y
also minimizes E over the space Y , and hence for any � ∈ C∞

0 (R; C
2), we must

have D2 E(U )[�] � 0. By density we may then conclude that the quadratic form
D2 E(U ) � 0 on H1(R; C

2). By staying restricted to real-valued �, we have
〈�, L+�〉 � 0 for all � ∈ H1(R; R

2), and thus the self-adjoint operator L+ � 0.
Similarly, we obtain L− � 0 by considering only variations � = i�I with �I ∈
H1(R; R

2), and thus (i) is verified.
By (e) of Theorem 2.1 we may conclude that U ′(x) = (u′

1(x), u′
2(x)) ∈

H1(R; R
2). Moreover, by direct calculation we see that L+U ′ = 0 holds for x ∈ R.

Thus, λ = 0 is an eigenvalue of L+, and λ0 := inf σ(L+) = 0, and (ii) is true in
the general case.

Statement (iii) now follows from the asymptotic behavior of U at infinity. By
property (e) of Theorem 2.1, the decay of U to either a or b is exponential. By
Weyl’s Lemma, see, for example, [11], the essential spectrum of L± coincide with
the union of the spectra of constant-coefficient operators

L−+ = −∂2
x + 1

2
D2W (b), L++ = −∂2

x + 1

2
D2W (a)

and

L−− = −∂2
x + DF(b2) : , L+− = −∂2

x + DF(a2) : ,
where L−± = limx→−∞ L± and L+± = limx→+∞ L±. Since L±± are constant-
coefficient operators, their spectra are continuous, with lower bound given by the
smallest eigenvalue of the (constant) potential matrix. For L±+, we recall from (W3)
that b, a are nondegenerate minima of W , and hence we may choose �0 > 0 to
be the smallest eigenvalue among those of D2W (b), D2W (a), and conclude that
σess(L+) = [�0,∞).
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For L±−, we note that a being a critical point of W , we must have ∂1 F(a2) =
∂1 F(a2, 0) = 0, and hence σ(L+−) = [0,∞). The same argument applies to L−−,
and so we may conclude that (iii) holds in the general case.

Next, assume that ∂1∂2 F(ξ) � 0 for all ξ ∈ R
2+. To prove (iv), we use the

variational characterization of λ0 = inf‖�‖L2 =1〈�, L+�〉. As λ0 is an eigenvalue,

the infimum is attained by some � = (ϕ1, ϕ2) ∈ H1(R; R
2). We observe that

�̃ = (|ϕ1|,−|ϕ2|) ∈ H1(R; R
2), and by (W5), 〈�̃, L+�̃〉 � 〈�, L+�〉, and

hence for any null vector�, �̃ is also an eigenvector. Note that ϕ̃ j solve equations
of the form

ϕ̃′′
1 − c11(x)ϕ̃1 = c12(x)ϕ̃2 � 0, ϕ̃′′

2 − c22(x)ϕ̃2 = c21(x)ϕ̃1 � 0,

with coefficient matrix [ci j (x)]i, j = + 1
2 D2W (U ) having all positive entries. Thus,

by the strong maximum principle applied to each equation individually, we may
conclude that ϕ̃1(x) > 0 and ϕ̃2(x) < 0 for all x ∈ R. As a consequence, �̃ = �,
and all eigenfunctions corresponding to λ = 0 satisfy

ϕ1(x) > 0, ϕ2(x) < 0, for all x ∈ R. (40)

Since U ′ is such an eigenfunction, (iv) must hold.
The simplicity of the ground-state eigenvalue λ0 = 0 now follows from a

standard argument. Indeed, assume that dim ker(L+) � 2. Then, there exists an
eigenfunction � ∈ H1(R; R

2), L+� = 0, which is orthogonal to U ′, 〈U ′,�〉 =
0. By the above paragraph, � = (ϕ1, ϕ2) must also satisfy (40), whence 0 =
〈U ′,�〉 = ∫

R
[u′

1ϕ1 + u′
2ϕ2] dx > 0, a contradiction. Thus (v) is proven. ��

We observe that, at least in the more concrete example (2), the positivity of the
second variation follows directly from the Euler–Lagrange equations themselves,
without reference to energy minimization. Indeed, for the operator L+, we write
ϕ1,R := A1u′

1 and ϕ2,R := A2u′
2 with x-dependent A1,2, where the components

u1,2 satisfy the differential equations (2). Integrating by parts, we obtain

〈�R, L+�R〉 =
∫ ∞
−∞

[
(A′

1)
2(u′

1)
2 + (A′

2)
2(u′

2)
2 + A2

1[(3u2
1 + γ u2

2 − 1)(u′
1)

2 − u′
1u′′′

1 ]

+A2
2[(γ u2

1 + 3u2
2 − 1)(u′

2)
2 − u′

2u′′′
2 ] + 4γ A1 A2u1u2u′

1u′
2

]
dx .

Substituting derivatives of the system (2), we obtain

〈�R, L+�R〉 =
∫ ∞

−∞

[
(A′

1)
2(u′

1)
2 + (A′

2)
2(u′

2)
2 − 2γ u1u2u′

1u′
2(A1 − A2)

2
]

dx .

Since u1,2 > 0, u′
1 > 0, and u′

2 < 0, we confirm that the quadratic form is non-
negative and touches zero at only one eigenvector that corresponds to x-independent
A1 and A2 satisfying the constraint A1 = A2.



Domain Walls in the Coupled Gross–Pitaevskii Equations 599

For the operator L−, we writeϕ1,I := B1u1 andϕ2,I := B2u2 with x-dependent
B1,2. Integrating by parts and using the differential equations (2), we obtain

〈�I , L−�I 〉 =
∫ ∞

−∞

[
(B ′

1)
2u2

1 + (B ′
2)

2u2
2 + B2

1 [(u2
1 + γ u2

2 − 1)u2
1 − u1u′′

1]

+B2
2 [(γ u2

1 + u2
2 − 1)u2

2 − u2u′′
2]

]
dx

=
∫ ∞

−∞

[
(B ′

1)
2u2

1 + (B ′
2)

2u2
2

]
dx .

These computations shows that the quadratic form is non-negative.

4. Spectral Stability

Spectral stability of the domain wall solutions follows from analysis of eigenval-
ues in the linear eigenvalue problem associated with the perturbation (�R+i�I )ei tλ

of the domain wall solutions U . Here U is a real-valued minimizer of E in func-
tion space X and �R = (ϕ1,R, ϕ2,R), �I = (ϕ1,I , ϕ2,I ) are components of the
eigenvector in Dom(L±) ⊂ L2(R) that correspond to the eigenvalue λ ∈ C of the
associated spectral problem.

Proof of Theorem 1.2. We know from Theorem 3.1 that the spectrum of L+ has
a zero eigenvalue of finite multiplicity (moreover this zero eigenvalue is simple
whenever W satisfies (W5)), while the rest of the spectrum is bounded from below
by a positive number. Considering V := (ker L+)⊥, the orthogonal complement
of the nullspace of L+ in L2(R), one has that for any nonzero eigenvalue λ of the
spectral stability problem (14), the component �I must belong to Dom(L−) ∩ V .

We proceed to show any nonzero eigenvalue λ must be purely imaginary. To
that end let P denote the orthogonal projection from L2(R) to V . Let λ �= 0. Since
�I = P�I and λ is an eigenvalue associated to (14), we can decompose �R as

�R = −λP L−1+ P�I + (1 − P)�R,

where 1 is the identity operator in L2(R). Furthermore (1− P)�R can be expressed
uniquely as

(1 − P)�R =
n∑

i=1

ci fi ,

for some coefficients ci , where f1, . . . , fn form an orthonormal basis of ker L+.
The coefficients c1, . . . , cn can be equivalently found from �I as

ci = 〈 fi , L−�I 〉
λ

.

The linear eigenvalue problem (14) for λ �= 0 is equivalent to the generalized
eigenvalue problem

P L− P�I = −λ2 P L−1+ P�I , (41)
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As in [8, p.468], the characterization of the eigenvalues of the generalized eigen-
value problem (41) is given by the Rayleigh quotient:

−λ2 = inf
�∈Dom(L−)∩V,��=0

〈L−�,�〉
〈L−1+ �,�〉 . (42)

By Theorem 3.1, there exists C > 0 such that 〈L−1+ �,�〉 � C‖�‖2 for all
� ∈ Dom(L−) ∩ V (R), whereas 〈L−�,�〉 � 0. Therefore, −λ2 � 0, hence
λ ∈ iR. This proves that the domain wall solutions are spectrally stable for any
choice of parameters gi j , μ in (8), (9). ��
Remark 4.1. Note that under the assumption that zero is a simple eigenvalue of
L+ then V takes the simple form

V := L2
c(R) :=

{
� ∈ L2(R) : 〈U ′,�〉 = 0

}
.

In this case also, the decomposition of �R is simply given by

�R = −λP L−1+ P�I + aU ′,

this time a can be computed from �I as

a = 〈U ′, L−�I 〉
λ〈U ′,U ′〉 .

5. Nonlinear Stability

In this section we prove the orbital stability of the domain walls of (1) found as
local minimizers of E in Y. We have almost all the elements in place; global well
posedness, conservation of energy of which the domain walls are minimizers. One
thing is missing; if we are given a minimizing sequence in Y, we do not know if
its limit coincides with U. We conjecture that the minimizer U (x) of the energy
(6) in function space X is unique, up to translation and gauge invariance. For our
purposes it is enough to show that, should there be several real-valued minimizers
U of E in X , then each one is isolated in the H1(R; R

2) norm (modulo translation.)

Proposition 5.1. Let U = (u1, u2) ∈ X be any energy minimizing solution of (2).
Assume that λ = 0 is an isolated, simple eigenvalue of L+ (defined as in (37).)
Then there exists η0 > 0 such that if V = (v1, v2) ∈ X is any other solution of
(2), then either

inf
τ∈R

‖U (·)− V (· − τ)‖L2 � η0,

or there exists τ ∈ R such that V (x − τ) = U (x).

We note that by Theorem 3.1 the hypothesis on the ground state of L+ is satisfied
for the Gross–Pitaevskii examples (1) or (13).
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Proof. First, fix a solution U ∈ X of (2). We observe that∫
R

U · U ′(x) dx =
∫

R

1

2

d

dx
|U (x)|2 dx = 0. (43)

Let V ∈ X be any solution of (2) which is geometrically distinct from U ; that is,
V (x − τ) �= U (x) holds for every τ ∈ R. We first claim that there exists σ ∈ R

which attains the minimum value of

inf
τ∈R

‖U (· − τ)− V (·)‖L2(R) = ‖U (· − σ)− V (·)‖L2(R).

Indeed, let f (τ ) := ∫
R
(U (x − τ)− V (x))2 dx . Then, f is differentiable on R,

and limτ→±∞ f (τ ) = +∞. Thus, the minimum value of f is achieved at some
σ ∈ R. Furthermore, σ is a critical point, and hence

0 = f ′(σ ) = −2
∫

R

[U (x − σ)− V (x)] · U ′(x − σ) dx

= 2
∫

R

V (x) · U ′(x − σ) dx,

using (43). Thus, we have the additional orthogonality condition:∫
R

V (x + σ)U ′(x) dx = 0. (44)

Denote by V σ (x) = V (x +σ), with σ as in (44). Let� = V σ−U ∈ H1(R; R
2) by

the decay estimate (c) of Theorem 2.1. Note that by (43), (44), we have 〈�,U ′〉L2 =
0, that is, � ∈ Z := span {U ′}⊥.

Finally, we prove the proposition by contradiction: suppose Vn is a sequence
of solutions of (2) with E(Vn) = m, and infτ∈R ‖Vn(· + τ) − U (·)‖L2(R) → 0.
Let σn ∈ R be chosen as above, so that (44) holds for each Vn , and let V σn

n (x) :=
V (x + σn). Define �n := V σn

n − U . We write the equation satisfied by V σn
n in the

form 0 = G(V σn
n ) = −∂2

x V σn
n + DW (V σn

n ), and use the Taylor expansion to second
order on the function G: for each n there exists sn ∈ (0, 1) such that

0 = G(V σn
n ) = G(U +�n) = G(U )+ DG(U )�n + 1

2
D2G(U + sn�n)[�n,�n].

Since G(U ) = 0, DG(U )�n = L+�n , and D2G(U ) = D3W (U ), we thus have:

L+�n = −1

2
D3W (U + sn�n)[�n,�n].

Set �̃n := �n/‖�n‖L2 ∈ Z . Then, by homogeneity we have

L+�n = −1

2
‖�n‖L2 D3W (U + sn�n)[�̃n, �̃n]. (45)
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By (35) (see Theorem 2.4), there is a universal constant C1 such that ‖U‖L∞ ,
‖Vn‖L∞ � C1, and hence ‖�n‖L∞ = ‖Vn − U‖L∞ � 2C1. By (W1), D3W is
uniformly bounded on bounded sets, and thus we may estimate:

〈�̃n, L+�̃n〉L2 = −1

2

∫
R

∑
i, j,k

∂i jk W (U + sn�n)ϕ̃n,i ϕ̃n, jϕn,k

� C1‖�n‖L∞‖�̃n‖2
L2 � C2, (46)

is uniformly bounded in n. From this we conclude the uniform bound on the deriv-
atives, ∫

R

|�̃′
n|2 dx � 〈�̃n, L+�̃n〉L2 − 1

2

∫
R

D2W (U )[�̃n, �̃n] dx

� C2 + C1‖�̃n‖2
L2 = C2 + C1.

By the Sobolev embedding we conclude that ‖�̃n‖L∞ � C3 is uniformly bounded,
and we may improve the estimate (46),

〈�̃n, L+�̃n〉L2 = −1

2
‖�n‖L2

∫
R

∑
i, j,k

∂i jk W (U + sn�n)ϕ̃n,i ϕ̃n, j ϕ̃n,k

� C1‖�n‖L2‖�̃n‖2
L2‖�̃n‖L∞ → 0.

Since �̃n ∈ Z and ‖�̃n‖L2 = 1 for all n, we arrive at a contradiction, as the
quadratic form 〈�, L+�〉L2 is strictly positive definite for � ∈ Z . In conclusion,
each real minimizer U is isolated in L2(R) norm. ��

By combining Proposition 5.1 with statement (b) of Theorem 2.1, we have:

Corollary 5.2. Under the hypotheses of Proposition 5.1, for any complex-valued
minimizer � ∈ Y of E(�), either

inf
τ,α1,α2∈R

∥∥∥∥U (·)−
[

eiα1ψ1

eiα2ψ2

]
(· − τ)

∥∥∥∥
L2

� η0,

or there exists τ, α1, α2 ∈ R such that eiα jψ j (x − τ) = u j (x), j = 1, 2.

A careful inspection of the proof of Proposition 5.1 leads us to a further corollary,
where we recall the definition of the energy space D from (15).

Corollary 5.3. Let U = (u1, u2) be a minimizing solution of (2) and assume zero
is a simple eigenvalue of L+. Then, there are constants l1, l2, ε0 > 0 such that if
� ∈ D with

l1 < inf
θ1,θ2,α∈R

ρA (�, (exp iθ1u1(· + α), exp iθ2u2(· + α))) < l2,

then

E(�) > inf
Y

E(·)+ ε0. (47)
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Now, we turn to the proofs of Theorems 1.4 and 1.5.

Proof of Theorem 1.4. We reason by contradiction and assume, given A, ε > 0,
that for a sequence of positive numbers δn → 0, we can find �n

0 ∈ D ∩ L∞ and
times tn such that, denoting by �n(x, t) the unique global in time solution to (1)
with initial condition �n

0 , we have ρA(�
n
0 ,U ) � δn and for any θ1, θ2 ∈ R

inf
α∈R

ρA(�
n(·, tn), (exp iθ1u1(· + α), exp iθ2u2(· + α)) � ε. (48)

Now, because ρA(�
n
0 ,U ) → 0, Fatou’s lemma implies that E(�n

0 ) → m =
infY E(·). From conservation of energy along the flow we deduce the same for
E(�n(·, tn)). The �n(·, tn)’s are not necessarily elements of Y, but we modify
them so as to obtain a genuine minimizing sequence whose limit can be compared
to a member of the orbit of U.

Let Rn be a sequence of positive numbers such that Rn > A and∫ Rn

−Rn

e(�n(x, tn)) dx > E(�n(·, tn))− 1

n
. (49)

Define:

ψ̂n(x) :=
{
�n(x, tn), x ∈ [−Rn, Rn],
( fn(x), gn(x)), x �∈ [−Rn, Rn], (50)

where ( fn(x), gn(x)) is a continuous vector function satisfying

( fn(±Rn), gn(±Rn)) = �n(±Rn, tn),

lim
x→±∞( fn(x), gn(x)) =

(
a ± a

2
,

b ∓ b

2

)

and such that

E(ψ̂n) < E(�n(·, tn))+ 1

n
.

Note that by (49) and definition of ψ̂n, ρA(ψ̂n, �
n(·, tn)) → 0.

We appeal to part (a) of Theorem 2.1 to conclude that there is τn ∈ R such that
ψ̂n(· + τn) converges in the topology induced by ρA to a minimizer V of E in Y.

From Theorem 2.1 part (a) we also know V = (eiβ1v1, eiβ2v2) where (v1, v2)

is a minimizing solution of (2). By (48), Fatou’s Lemma and Proposition 5.1 we
deduce

inf
τ∈R

‖(v1, v2)− U (· + τ)‖L2 � η0.

By continuity of the flow, the above implies that for some t̃ n > 0

l1 < inf
θ1,θ2,α∈R

ρA(�
n(·, t̃ n), (exp iθ1u1(· + α), exp iθ2u2(· + α))) < l2,

which by Corollary 5.3 yields E(�n(·, t̃ n)) = E(�n(·, tn)) = E(�n
0 ) > m + ε0,

for n large enough, a contradiction. ��
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As mentioned in the introduction, an easy adaptation of the analysis in [3] yields
Theorem 1.5. We only highlight the main steps for convenience of the reader.

Proof of Theorem 1.5. As in [3], it suffices to verify the following claim:

Claim 1. Given any ε > 0 and A > 0, there exists some constant K , depending
only on A, and some positive number δ > 0 such that, if U and �0 are as in
Theorem 1.4 and if (16) holds, then

|a(t)| � K ε,

for any t ∈ [0, 1], and for any of the points a(t) satisfying inequality (17) for some
θ(t) ∈ R.

Indeed, once the claim is established, looking at the flow for t ∈ [n, n + 1),
appealing to Claim 1 and using induction on n, the arguments of [3] may be repeated
verbatim, as the conclusion of Theorem 1.5 follows without regard to the specific
equation, depending only on energy conservation and the well-posedness of the
initial value problem for the evolution equation.

To adapt the proof in [3] in our case we need to identify the following key
elements.
Center of mass. As a first step, we need an integral expression involving U (·−α(t)),
depending on quantities controlled along the flow by the energy, that can serve to
follow α(t).
Approximating α(t) in terms of ψ . In a second step, the same integral expres-
sion above applied to ψ needs to provide a good approximation of the one with
U (· − α(t)) as a consequence of orbital stability.
Motion identity. We need a measure of how these integral expressions change; they
should be controlled by a quantity that can be made arbitrarily small, again by pure
energy considerations, uniformly in t ∈ [0, 1]. This is the third step needed for the
right setup.

According to this, to prove the claim, we choose a function which identifies a
center of mass, in the spirit of [3].
Step 1 Let U be a domain wall solution of (8), and choose a translation U (· − τ)

with the property that∫
R

x(
√

g11u2
1(x − τ)+ √

g22u2
2(x − τ)− μ) dx = 0. (51)

Clearly such a choice is possible, as the integral above may be made arbitrarily large
by choosing a large positive τ , and arbitrarily negatively large for large negative
τ . By translation invariance, we may assume without loss of generality that the
solution U (x) is normalized so that (51) holds with τ = 0. (For the symmetric case
(2), U is the symmetric solution.) Define

m(U ) :=
∫

R

(
√

g11u2
1(x)+ √

g22u2
2(x)− μ) dx .

We note that for this U [normalized as in (51)] and any a ∈ R, we have

1

m(U )

∫
R

x(
√

g11u2
1(x − a)+ √

g22u2
2(x − a)− μ) dx = a.
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Step 2 Let g : R → [0, 1] be a smooth function with g(x) = 1 for |x | � 1 and
g(x) = 0 for |x | � 2, and set gR(x) = g(x/R), R � 1. For � ∈ Y and a ∈ R

define

Ga,R(�) := 1

m(U )

∫
R

gR(x)x(
√

g11|ψ1|2(x − a)+ √
g22|ψ2|2(x − a)− μ) dx .

We note now that without loss of generality one can assume α(0) = 0 by taking
δ sufficiently small in (16). The exponential convergence of U to its limits at ±∞
imply that

Ga,R(U ) → G(U ), as R → ∞.

Furthermore, this convergence is uniform in a on compact sets. Because of this, we
fix R0 > 0 such that

|Gα(t),R0(U )− α(t)| < ε, for all t such that |α(t)| < 1. (52)

Next, we note that Cauchy–Schwartz inequality and bound (17) yield

|Gα(t),R0(U )− G0,R0(ψ)| � Cε, (53)

for some positive constant C independent of ε.The above implies that G0,R0(ψ) can
be used to follow α(t) with a precision of O(ε) which is what we wanted. We then
turn to the quantitative dynamical property that lets us to exploit the approximation
of α(t) by G0,R0(ψ).

Step 3 In the third step one controls the evolution of the center of mass by
considering a localized version of its motion law in terms of the momentum. As in
Proposition 4.1 of [3], we have for any R > 0,

d

dt

∫
R

gR(x)x(
√

g11|ψ1|2(x)+ √
g22|ψ2|2(x)− μ) dx

= 2
∫

R

[√g11〈iψ1, ∂xψ1〉 + √
g22〈iψ2, ∂xψ2〉]∂x (x gR) dx . (54)

Indeed, differentiating under the integral sign, appealing to (1), and using the fact
that for j = 1, 2 :∫

〈iψ j , ψ j (|ψ j |2 + γ |ψ3− j |2 − 1)〉(xgR) dx = 0,

(54) follows.
To finish, let θ1, θ2 be such that |ψ1| = eiθ1ψ1 and |ψ2| = eiθ2ψ2. Because∫
[√g11〈ieiθ1 u1, ∂x (e

iθ1 u1)〉 + √
g22〈ieiθ2 u2, ∂x (e

iθ2 u2)〉]∂x (x gR) dx = 0,

and again Cauchy–Schwartz inequality together with bound (17), we see that∣∣∣∣
∫

[√g11〈ψ1, ∂xψ1〉 + √
g22〈ψ2, ∂xψ2〉]∂x (x gR) dx

∣∣∣∣ � Cε. (55)
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Let ψ0,1, ψ0,2 be the components of the initial condition ψ0. Thanks to bound
(55), we have∣∣∣∣

∫
R

gR0(x)x
(√

g11(|ψ1|2 − |ψ0,1|2)+ √
g22(|ψ2|2 − |ψ0,2|2)

)
dx

∣∣∣∣
= 2

∣∣∣∣
∫ t

0

∫
R

[√g11〈iψ1, ∂xψ1〉 + √
g22〈iψ2, ∂xψ2〉]∂x (x gR) dx

∣∣∣∣
� Cε. (56)

This last inequality together with (52) and (53) concludes the proof of the claim
provided it holds that |α(t)| < 1

2 for all t ∈ [0, 1]. This is a consequence of the
continuity of the flow with respect to ρA as in [3]. ��

6. Domain Walls Under a Small Localized Potential

We shall now consider persistence and stability of the domain wall solutions
in the presence of a small localized potential. Domain walls in this case satisfy the
system of differential equations (19). We provide details for the symmetric case
(2), but the same phenomena may be investigated for more general equations, such
as (8) with only minor modifications. We note that the linearized operators around
the symmetric domain wall solution U (x) ∈ X in this case may be represented as
follows:

L+�R :=
(−∂2

x + 3u2
1 + γ u2

2 − 1 2γ u1u2

2γ u1u2 −∂2
x + γ u2

1 + 3u2
2 − 1

)(
ϕ1,R
ϕ2,R

)
, (57)

and

L−�I :=
(−∂2

x + u2
1 + γ u2

2 − 1 0
0 −∂2

x + γ u2
1 + u2

2 − 1

)(
ϕ1,I
ϕ2,I

)
. (58)

Proof of Theorem 1.6. Let us write

U (x + s) = U0(x)+ W (x), (59)

where the leading term U0 = (u1, u2) ∈ X is the heteroclinic solution of the system
(2) in Theorem 2.1 satisfying the symmetry reduction

u2(x) = u1(−x) for all x ∈ R,

the parameter s ∈ R is to be uniquely determined from the condition 〈U ′
0,W 〉 = 0,

and the perturbation term W = (w1, w2) satisfies the perturbed system

L+W = −εV (x + s)(U0 + W ), (60)

where L+ is given by (57). By Theorem 3.1, zero is the simplest and smallest
eigenvalue of L+ with Ker(L+) = span{U ′

0}, whereas the rest of the spectrum of
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L+ is bounded away from zero. To invert L+ on the right-hand side of (60), we
add the bifurcation equation

F(s) := −ε〈U ′
0, V (x + s)(U0 + W )〉 = 0. (61)

If F(s) = 0 and V ∈ L2(R), the inhomogeneous equation (60) is closed for
W ∈ H2(R) and the implicit function theorem can be applied for sufficiently small
ε. As a result, there exists a unique solution of (60) for W ∈ H2(R) subject to the
orthogonality condition 〈U ′

0,W 〉 = 0 such that ‖W‖H2(R) � C |ε| for some C > 0.
Because the nonlinearity is polynomial, the solution W is a smooth (C∞) function
of ε.

Using this solution for W in the bifurcation equation (61) and integrating by
parts, we obtain

F(s) = 1

2
ε

∫
R

V ′(x + s)(u2
1 + u2

2 − 1) dx + O(ε2) = 0.

Since V ∈ C2(R) and conditions (20) and (21) are assumed, the implicit func-
tion theorem for scalar functions yields that there exists a unique solution of the
bifurcation equation (61) near x0 such that |s − x0| � C |ε| for some C > 0. This
construction completes the proof of the theorem. Bound (22) follows by the triangle
inequality and the Sobolev embedding of H2(R) to L∞(R). ��

To consider stability of persistent domain wall solutions in the small localized
potential, we need a technical result that ensures that property (b) of Theorem 2.1
persists for small values of ε.

Lemma 6.1. In addition to the conditions of Theorem 1.6, assume that V ∈ L1(R).

Then, the heteroclinic solutions in Theorem 1.6 satisfy 0 � u1(x), u2(x) � 1 for
all x ∈ R.

Proof. Since γ > 1, the decay of the unperturbed domain wall solution U0 =
(u1, u2) of the system (2) to the equilibrium states a and b is exponential with the
decay rates

u1(x) ∼ e
√
γ−1x , 1 − u2(x) ∼ e

√
2x , as x → −∞

(see property (d) in Theorem 2.1). If the perturbation term W = (w1, w2) in the
decomposition (59) also decays exponentially to zero with the same decay rate,
the assertion of the lemma follows from the smallness of W in the bound (22)
and the property (b) of Theorem 2.1 for the unperturbed solution. However, since
V ∈ L1(R), the exponential decay of W to zero with the decay rates

w1(x) ∼ e
√
γ−1x , w2(x) ∼ e

√
2x , as x → −∞

follows from Levinson’s theorem for differential equations (Proposition 8.1 in
[7]). ��
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Proof of Theorem 1.7. Spectral stability is considered again in the framework of
the linear eigenvalue problem

L+(ε)�R = −λ�I , L−(ε)�I = λ�R, (62)

where L±(ε) include the perturbed domain wall solution U = (u1, u2) as well as
the small potential εV . In particular, L±(ε) are given by

L+(ε) :=
(−∂2

x + εV + 3u2
1 + γ u2

2 − 1 2γ u1u2

2γ u1u2 −∂2
x + εV + γ u2

1 + 3u2
2 − 1

)
(63)

and

L−(ε) :=
(−∂2

x + εV + u2
1 + γ u2

2 − 1 0
0 −∂2

x + εV + γ u2
1 + u2

2 − 1

)
. (64)

These operators admit the power expansion L±(ε) = L±(0) + εL ′±(0) + O(ε2)

thanks to the smoothness of U in ε in Theorem 1.6.
We first show that for small values of ε, the operator L+(ε) is strictly positive

and bounded away from zero if σ > 0 and has exactly one negative eigenvalue with
the rest of spectrum bounded away from zero if σ < 0. Since 0 is the simplest and
smallest eigenvalue of L+, the result follows from the perturbation expansions. In
particular, let us define solutions of the linear inhomogeneous equations

−w′′
1(x)+

(
3u2

1 + γ u2
2 − 1

)
w1 + 2γ u1u2w2 = −V u1,

−w′′
2(x)+

(
γ u2

1 + 3u2
2 − 1

)
w2 + 2γ u1u2w1 = −V u2.

⎫⎪⎬
⎪⎭ x ∈ R, (65)

where (u1, u2) is the unperturbed domain wall solution of the system (2). Then, we
have

L ′+(0) =
(

V + 6u1w1 + 2γ u2w2 2γ u1w2 + 2γ u2w1
2γ u1w2 + 2γ u2w1 V + 2γ u1w1 + 6u2w2

)
.

The isolated zero eigenvalue of L+(0) becomes positive (negative) eigenvalue of
L+(ε) for small values of ε if σ > 0 (σ < 0), where

σ = 〈U ′, L ′+(0)U ′〉
=

∫
R

(
V (u′

1)
2 + V (u′

2)
2 + 6u1w1(u

′
1)

2 + 6u2w2(u
′
2)

2
)

dx

+
∫

R

(
2γ u2w2(u

′
1)

2 + 2γ u1w1(u
′
2)

2 + 4γ u1w2u′
1u′

2 + 4γ u2w1u′
1u′

2

)
dx .

Differentiating the inhomogeneous system (65) in x and projecting it to U ′, we
reduce the previous expression for σ to the form

σ = −
∫

R

V ′(u1u′
1 + u2u′

2) dx = 1

2

∫
R

V ′′(u2
1 + u2

2 − 1) dx,

where integration by parts has been performed for V ∈ C2(R). Thus, the assertion
on the spectrum of L+(ε) is proven.
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Next, the spectrum of L−(ε) is not affected for any small ε compared to the
statement of Theorem 3.1 because L−(ε) is a diagonal composition of Schrödinger
operators and L−(ε)�1,2 = 0 with�1 = (u1, 0) and�2 = (0, u2), where u1,2 are
positive according to Lemma 6.1. As a result, σ(L−(ε)) = [0,∞) as follows from
the Sturm’s theorem.

As in the proof of Theorem 1.2, we construct the generalized eigenvalue problem

L−(ε)�I = −λ2L−1+ (ε)�I , (66)

where L−1+ (ε) exists without any projection operators for any ε �= 0. If σ > 0, then
L−1+ (ε) is strictly positive implying

−λ2 = inf
�∈Dom(L−(ε)),� �=0

〈L−(ε)�,�〉
〈L−1+ (ε)�,�〉 � 0,

as in [8, p.468]. This yields stability of the heteroclinic solutions. If σ < 0, L−1+ (ε)

has exactly one negative eigenvalue. As in Theorem 3.1 in [4], this condition implies
that there exists exactly one negative eigenvalue −λ2 of the generalized eigenvalue
problem (66). This yields instability of the heteroclinic solutions. ��
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