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Abstract

We prove sharp regularity theorems for minimisers of a class of variational in-
tegrals whose integrand switches between two different types of degenerate elliptic
phases, according to the zero set of a modulating coefficient a(·). The model case
is given by the functional

w �→
∫

(|Dw|p + a(x)|Dw|q) dx,

where q > p and a(·) � 0.
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1. Introduction and results

In this paper we prove sharp regularity results for a class of integral functionals,
that, originally connected to Homogenization theory [49,53] and to the Lavrentiev
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phenomenon [50,51,53], present very new and interesting features from the view-
point of regularity theory. They fall in the realm of those non-uniformly elliptic
problems characterised by having non-standard growth conditions [27,29,30,34–
37] as described in Section 1.1 below. In this respect they provide basic examples
of energies that cannot be dealt with via the currently available regularity methods
and whose treatment has remained an open problem for a while. The primary model
we have in mind is given by the functional

P(w,Ω) :=
∫

Ω

(|Dw|p + a(x)|Dw|q) dx, (1.1)

which is naturally defined for w ∈ W 1,1(Ω), where Ω ⊂ R
n is a bounded open

domain, n � 2 and

1 < p � q, 0 � a(·) ∈ C0,α(Ω), α ∈ (0, 1]. (1.2)

The significant case occurs when p < q. The main feature of the functional P
is the change of ellipticity/growth type occurring on the zero set {a(x) = 0}.
Indeed, while in those points x where a(x) is positive the energy density of P
exhibits a growth/ellipticity in the gradient which is of order q, on {a(x) = 0} the
energy density has p-growth in the gradient. In his seminal works [48,49,51,52],
Zhikov was the first to introduce and study functionals whose integrands change
their ellipticity rate according to the point, and, in particular, the one in (1.1). Such
functionals provide a useful paradigm for describing the behaviour of strongly
anisotropic materials whose hardening properties—linked to the exponent ruling the
growth of the gradient variable—drastically change with the point. The coefficient
a(·) serves to regulate the mixture between two different materials, with p and
q hardening, respectively. In this class of functionals P appears to be the one
exhibiting the most dramatic phase-transition and therefore the most difficult to
treat.

The functional P appears to be a very interesting one also from the point of view
of regularity theory. Indeed, while in the standard situation p = q the coefficient
a(·) acts in the energy density as a local perturbation of the main elliptic terms,
this is not obviously the case when q > p, since it is a(·) to dictate the ellipticity
rate of the energy density. Coefficients are no longer a perturbation and a new
phenomenon emerges: the rate of Hölder continuity of a(·) interacts with the ratio
q/p in a crucial yet precise way. Indeed, as shown in [15,17], when q/p > 1+α/n,
minimisers, which are initially only in W 1,p, are in general not even locally W 1,q -
regular; moreover, the so called Lavrentiev phenomenon appears (see Theorem 4.1
below). Finally, it is possible to construct a minimiser of the functional in (1.1)
such that the set of its (essential) discontinuity points has a Hausdorff dimension
arbitrarily close to n − p when (1.3) fails. This means that minimisers can be nearly
as bad as any other W 1,p-function and any type of regularity is lost. On the other
hand, even basic regularity issues like continuity or the gradient Hölder continuity
of minimisers have remained unsolved due to substantial technical difficulties. In
this paper we shall therefore consider the natural condition for the regularity of
minima



Regularity for Double Phase Variational Problems 445

q

p
< 1 + α

n
, (1.3)

and prove that this is also a sufficient condition. Indeed, assuming (1.3), we provide
a complete regularity theory for general integral functionals of the type

W 1,1(Ω) � w �→ F(w,Ω) :=
∫

Ω

F(x, w, Dw) dx (1.4)

modelled on (1.1), drawing a full parallel with the classical theory available when
p = q. In fact, when considering the particular case p = q, or a(x) ≡ 0, the results
here recover the known ones valid in the standard case [31–33].

Specifically, we shall consider functionals as in (1.4) where the energy density
F : Ω × R × R

n → R is initially only assumed to be a Carathéodory function
satisfying the following growth conditions:

νH(x, z) � F(x, v, z) � L H(x, z) (1.5)

whenever z ∈ R
n , v ∈ R and x ∈ Ω , where 0 < ν � L . Here and in the rest of the

paper we denote

H(x, z) := |z|p + a(x)|z|q . (1.6)

The function H(x, z), with some ambiguity of notation, will be considered both in
the case z ∈ R

n and z ∈ R (and z ∈ R
N×n in the case we are considering vector

valued minimisers, as for instance in Theorems 1.4–1.5 below). In our situation,
that is assuming (1.5), (local) minimisers of F can be then defined as follows:

Definition 1. A function u ∈ W 1,1(Ω) is a local minimiser of the functional F
defined in (1.4) if and only if H(·, Du) ∈ L1(Ω) and the minimality condition
F(u, supp (u − v)) � F(v, supp (u − v)) is satisfied whenever v ∈ W 1,1

loc (Ω) is
such that supp (u − v) ⊂ Ω .

Similar definitions apply to the case when minimisers are vector valued u : Ω →
R

N , N � 1. The above definition and the structure of the function H(·) imply that
u ∈ W 1,p(Ω). We shall derive several a priori estimates on local minimisers and for
brevity we shall just appeal to them as minimisers. The constants in the estimates
will depend only on the starting quantities assigned in the problem, that is on
n, p, q, ν, L , α, [a]0,α, ‖a‖L∞ , and, as in all other non-uniformly elliptic problems,
on the energy controlled by the coercivity of the functional, that is ‖Du‖L p . No
dependence will appear on ‖Du‖Lq . We shall therefore denote in the following

data ≡ (n, p, q, ν, L , α, [a]0,α, ‖a‖L∞ , ‖Du‖L p ).

Further notation is in Section 2. Our first results are obtained considering only
assumptions (1.5). In particular, measurable dependence of F(·) on the variable x
is allowed, while no convexity in the gradient variable is assumed. Moreover, the
first of the regularity results in the next theorem applies directly to the case we are
dealing with vector valued minimisers.
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Theorem 1.1. (Basic regularity) Let u ∈ W 1,p(Ω) be a local minimiser of the
functional F defined in (1.4), under the assumptions (1.2), (1.3) and (1.5). Then:

– (Gehring’s theory) There exists a positive integrability exponent δg, depending
only on data, such that

H(x, Du) ∈ L
1+δg
loc (Ω) . (1.7)

Moreover, there exists a constant c, again depending only on data, such that
the following reverse inequality holds for every ball BR ⊂ Ω:

(
−
∫

BR/2

[H(x, Du)]1+δg dx

)1/(1+δg)

� c −
∫

BR

H(x, Du) dx . (1.8)

In particular, if p > n/(1 + δg), then u is locally Hölder continuous. Finally,
the result extends to the case the minimiser u is vector valued.

– (De Giorgi’s theory) u is locally bounded. Moreover, when p � n/(1 + δg),
for every open subset Ω ′ � Ω there exists β ∈ (0, 1), depending only on
n, p, q, ν, L , [a]0,α and ‖u‖L∞(Ω ′), such that

u ∈ C0,β
loc (Ω ′). (1.9)

Theorem 1.1 is sharp both with respect to the assumptions and with respect to the
results obtained. Indeed, when q/p > 1+α/n minimisers can be discontinuous (see
Section 4). In particular, on the contrary of what happens in the classical De Giorgi’s
theory, a measurable coefficient a(·) does not ensure the continuity of minimisers.
We observe that (1.8) reduces to the usual reverse Hölder type inequalities when
a(·) ≡ 0 or when p = q. We also remark that in the standard case p = q, the
Hölder continuity exponent β in (1.9) does not depend on the solution u. It is not
the case here, due to the fact that the functional F is not uniformly elliptic and
exhibits measurable dependence on coefficients (x, v). Model examples covered
by Theorem 1.1 are given by functionals of the type

w �→
∫

Ω

( f1(x, w, Dw) + a(x) f2(x, w, Dw)) dx

where f1, f2 : Ω×R×R
n → [0,∞] are Carathéodory functions satisfying double

sided p and q-growth conditions, respectively. All in all, Theorem 1.1 provides a
complete parallel to the classical theory of Giaquinta and Giusti developed in [19]
and based on [12], where p = q.

We now turn to the maximal regularity; assumptions must be stronger, since
under measurable dependence on coefficients and/or with no convexity in the gra-
dient variable z of the energy density F(·), we cannot expect to have more than
Theorem 1.1, already when p = q. For this reason, and also in order to highlight
the main new ideas, we shall this time consider functionals of the type

G(w,Ω) :=
∫

Ω

[ f (Dw) + a(x)g(Dw)] dx . (1.10)
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Here f, g : R
n → [0,∞] are C1(Rn) ∩ C2(Rn \ {0})-regular and satisfy the fol-

lowing growth and ellipticity assumptions:
⎧⎪⎨
⎪⎩

ν|z|p � f (z) � L|z|p

|∂2 f (z)| � L|z|p−2

ν|z|p−2|ξ |2 � 〈∂2 f (z)ξ, ξ 〉
and

⎧⎪⎨
⎪⎩

ν|z|q � g(z) � L|z|q
|∂2g(z)| � L|z|q−2

ν|z|q−2|ξ |2 � 〈∂2g(z)ξ, ξ 〉
(1.11)

for every z ∈ R
n \ {0}, ξ ∈ R

n , actually every z ∈ R
n when p, q � 2, while

0 < ν � L . For the functional G our main result is the following:

Theorem 1.2. (Maximal regularity) Let u ∈ W 1,p(Ω) be a local minimiser of
the functional G defined in (1.10), under the assumptions (1.2), (1.3) and (1.11).
There exists β̃ ∈ (0, 1), depending only on n, p, q, ν, L and α, such that Du ∈
C0,β̃

loc (Ω; R
n).

Theorem 1.2 is again the best possible, both with respect to the bound (1.3)
considered and to the type of regularity obtained. Indeed, by a fundamental result
of Uraltseva [26,46], when a(·) ≡ 0 the gradient Hölder continuity is the best
possible regularity obtainable for minimisers. The analogy goes further; we indeed
obtain a few priori regularity estimates which are the exact counterpart of those
available for the classical p-Laplacean case, and that, as in the case of (1.8), can be
intrinsically formulated using the function H(·). An instance is the following decay
estimate, which is actually a key point in the proof of Theorem 1.2, and that allows
to get further regularity results, as shown in forthcoming work of the authors:

Theorem 1.3. (Morrey type estimate) Let u ∈ W 1,p(Ω) be a local minimiser of
the functional G defined in (1.10), under the assumptions (1.2), (1.3) and (1.11).
For every δ ∈ (0, n), there exists a positive constant c, depending only on data
and δ, such that the decay estimate∫

B	

H(x, Du) dx � c
( 	

R

)n−δ
∫

BR

H(x, Du) dx (1.12)

holds whenever 0 < 	 � R � 1 and BR ⊂ Ω .

Theorem 1.3 already implies that u ∈ C0,β
loc (Ω) for every β ∈ (0, 1). Many of

the methods developed for Theorems 1.2–1.3 are general enough to cover vector
valued minimisers u : Ω → R

N for N � 1:

Theorem 1.4. (Vectorial maximal regularity) Let u ∈ W 1,p(Ω; R
N ) be a local

minimiser of the functional P defined in (1.1), under the assumptions (1.2) and
(1.3). There exists β̃ ∈ (0, 1), depending only on n, N , p, q, ν, L and α, such that

Du ∈ C0,β̃
loc (Ω; R

N×n).

In the vectorial case dependence on the modulus is necessary since otherwise
solutions are known to be discontinuous already in the standard case p = q (see
[41]). Theorem 1.4 is the sharp counterpart of the classical result of Uhlenbeck
[45] valid for the case a(·) ≡ 0. The proof of Theorem 1.4 is essentially the same of
the one for Theorem 1.2; see Remark 6 below. When turning to general functionals,
we have the following result:
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Theorem 1.5. (Higher differentiability for general vectorial functionals) Let u ∈
W 1,p(Ω; R

N ) be a local minimiser of the functional G defined in (1.10), under the
assumptions (1.2), (1.3) and (1.11). Then it holds that

|Du|(p−2)/2 Du ∈ N α,2
loc (Ω, R

N×n)

and

Du ∈ Lnp/(n−2β)
loc (Ω; R

N×n) for every β ∈ (0, α).

The previous theorem—involving the Nikolski space N α,2—sharply extends
previously known differentiability and integrability theorems valid in the p-
Laplacean case [8,24,40,41]. It also improves the differentiability results contained
in [15] up to the optimal fractional differentiability exponent, which is α. The proof
of Theorem 1.5 in the scalar case N = 1 is implicitly contained in the one of Theo-
rem 5.1 in Section 5 below. The proof in the genuine vectorial case N > 1 follows
verbatim and this time the dependence on the modulus of the gradient is not re-
quired on the energy density of the functional. Concerning the proof of Theorem
1.5, this is based on a careful difference quotient argument, where the Hölder con-
tinuity of a(·) is read as fractional differentiability. We remark that this contains
a few technical novelties in the case p < 2. Indeed, already in the standard case
p = q the classical difference quotient technique was not known to work in the
fractional case (that is when coefficients are non-differentiable) since it involved
an integration by parts argument that required differentiability of coefficients [2].
We overcome this point via a delicate mollification argument that seems to be new
already in the classical setting.

The methods developed here are the starting point for more further develop-
ments; in particular, in the forthcoming paper [5], we shall study the regularity
of parabolic problems having as underlying energy the functional P; the gradient
flow of P will be included. Moreover, when proving the gradient Hölder continuity,
more general functionals of the type

w �→
∫

Ω

(γ (x, w)|Dw|p + a(x)|Dw|q) dx

will be considered under specific assumptions on minimisers. Finally, cases in
which equality in (1.3) can be reached are treated in [10].

1.1. Connections with non-uniformly elliptic problems

The functionals P , F and G above belong to the class of integral function-
als having so called (p, q)-growth conditions. These are functionals of the type
in (1.4), where the energy density satisfies ν|z|p � F(x, v, z) � L(|z|q + 1).
The fundamentals of the corresponding regularity theory have been laid in Mar-
cellini’s pioneering papers [35–38]; further relevant contributions are for instance
in [8,9,27–30,43,44,47]. See also [41] for a survey. A main point in the theory is
the lack of regularity results for functionals whose integrand depends on x , pos-
sibly in a non-smooth way. In this respect, functionals as in (1.1) or (1.4) are the
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prototype of the worst kind of interplay between the coefficient x and the (p, q)-
growth. Up to now the only cases that have been treated are those for which the
presence of x causes a modest change in the ellipticity [4,11], or when special
geometries are considered [3]. More can be said when the energy density F(·) is
smoother [6,7] (differentiability with respect to x , non-degeneracy with respect to
the gradient). Similar difficulties occur in relaxation and semicontinuity problems
for integral functionals (see for instance [1,23,34] and in particular [16, Remark
5.4]). Another connection occurs with the non-uniformly elliptic equations, those
for which the ellipticity ratio between the largest and the smallest eigenvalue might
become unbounded. By looking at the Euler–Lagrange equation of the functional
in (1.1), that is

−div (|Du|p−2 Du + (p/q)a(x)|Du|q−2 Du) = 0,

we notice that the ellipticity ratio is proportional to 1 + a(x)|Du|q−p. Therefore,
it blows-up when |Du| blows-up. So, possible loss of uniform ellipticity links to a
subtle interplay between a(·) and Du. It is precisely from this fact that condition
(1.3) stems from. Smallness of a(·) around its zero set (that is taking α large as in
(1.3)) serves now to compensate the potential blow-up of |Du|. In other words, the
transition between the two phases (materials) must be fast enough.

1.2. Gradient continuity, universal threshold and two phases

We shall provide here a brief sketch of the proofs. In this section we first
describe Theorems 1.2–1.3 and refer to the model case (1.1); in these cases ideas
become indeed more transparent. Since singularities of minima can only occur on
{a(x) = 0}, as typical in phase transitions, the natural thing would be in this case to
distinguish between points x0 such that a(x0) = 0 and those for which a(x0) > 0
holds. In the first case—the p-phase—it would be natural to look at the functional

w �→
∫

Ω

|Dw|p dx, (1.13)

and to try to use the corresponding regularity theory of minima. In the case we have
a(x0) > 0—the (p, q)-phase—one is the led to use the regularity of minima of the
“frozen” functional

P0(w,Ω) :=
∫

Ω

(|Dw|p + a0|Dw|q) dx, (1.14)

for a0 = a(x0). Now, while this approach is natural, how to provide a quantitative
version of it is far from being clear. In fact, as the counterexamples show, the two
phases can match together only if (1.3) holds, a fact that must be used in a sharp
way in the estimates. This also tells that a naive perturbation argument would fail.
Moreover, since there is in general a very poor control on the zero set of Hölder
continuous functions, we cannot take a pointwise path. The idea is to reformulate
this alternative on suitable scales, that is balls BR . Indeed we show that there exists
a universal threshold

Ts ≡ Ts(n, p, q, ν, L , [a]0,α) > 0
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independent of the solution u such that, if

sup
x∈BR

a(x)

Rα
� Ts (1.15)

holds, then the functional behaves as the one in (1.13) at the single scale BR .
In this case the term with q-growth in the gradient can be controlled by the one
with p-growth. This is encoded in the fact that a reverse Hölder’s inequality with
quantitative exponent surprisingly holds on BR , that is

(
−
∫

BR/2

|Du|2q−p dx

)1/(2q−p)

�
(

−
∫

BR

|Du|p dx

)1/p

. (1.16)

For functionals with (p, q)-growth reverse inequalities of this type do not in general
hold, for basic homogeneity reasons. Indeed (1.16) holds provided (1.15) is in force.
The drawback is that (1.16) only holds at the scale BR , and it is not possible to
replace BR by another smaller ball B	 ⊂ BR , as it happens in the standard case
p = q. Indeed, (1.15) will be considered in a inductive procedure where (1.15) is
checked at every step. On the other hand if (1.15) fails, then the q-component of
the energy density is large enough, and we are in the (p, q)-phase. Combining the
two alternatives requires that, for a sequence of nested balls

.... Bτ k R0
⊂ Bτ k−1 R0

⊂ .... ⊂ Bτ R0 ⊂ BR0 , (1.17)

we for each ball verify condition (1.15) and perform the related perturbation es-
timates around the p-Laplacean functional (1.13). If this process never ends, we
are approaching the zero set of a(·) and we are done. If this process stops at the
exit time ball Bτm R0 , we enter the (p, q)-phase; we can use the regularity theory
available for (1.14) for a0 = a(x0) and some x0 ∈ Bτm R0 (see Section 11 below).
At this stage we use the fact that the (p, q)-phase is stable: the functional remains
in the (p, q)-phase for all subsequent scales Bτm+h R0

and we again conclude the
proof. With this argument we prove that minimisers are C0,β -regular for every ex-
ponent β < 1 and Theorem 1.3. By using this result and another higher integrability
estimate, that this time holds independently of (1.15) - see (5.3) below - we can
prove the Hölder continuity of Du and Theorem 1.2. This again involves building-
up another version of the same alternative based on (1.15). The implementation of
this heuristic scheme involves a certain number of very delicate technicalities and
it is not straightforward. For instance, in order to prove (1.16), we will need a few
estimates leading to Caccioppoli inequalities in fractional Sobolev spaces taking
precisely into account the size of the coefficient a(·) when (1.15) holds. We will
also use in a direct way the absence of Lavrentiev phenomenon implied by (1.3);
see Theorem 4.1 below.

1.3. Low regularity, Sobolev inequalities, and intrinsic approach

For Theorem 1.1 we introduce an intrinsic approach according to which the
function
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H(x, Du) plays for F the same role that |Du|p plays when considering prob-
lems with standard p-growth. This shorter path has two advantages: it encodes
several features that can be useful in similar situations, and it emphasises the inter-
connections between several aspects of the problem. In fact, we first prove a sort of
intrinsic Sobolev–Poincaré inequality for the quantity in (1.1). This in turn relies
on a maximal inequality—see (3.4) below—which in general is true if and only if
(1.3) holds; see Remark 4 below.

Theorem 1.6. (Sobolev–Poincaré inequality) Let 1 < p � q and α ∈ (0, 1]
verifying (1.3). Then there exist a constant c depending only on n, p, q, [a]0,α and
‖Dw‖L p(BR), and exponents d1 > 1 > d2, depending only on n, p, q, α, such that

(
−
∫

BR

[
H

(
x,

w − (w)BR

R

)]d1

dx

)1/d1

� c

(
−
∫

BR

[H(x, Dw)]d2 dx

)1/d2

(1.18)

holds whenever w ∈ W 1,p(BR), and whenever BR ⊂ Ω is such that R � 1.

For the proof of (1.18) both the specific structure of H(·) and condition (1.3)
are revealed to be crucial. Inequalities similar to the one in (1.18) can be proved
for fractional operators too, see Remark 3 below. A crucial and peculiar feature
of such inequalities is that they seem to lie half-way between classical Sobolev
type inequalities and weighed inequalities involving Muckenhoupt weights. With
Theorem 1.6 available, a modification of the known techniques allows to rapidly get
(1.8) and that minimisers are locally bounded. We then proceed with the oscillation
reduction of u by implementing an exit time argument around {a(x) = 0} as the one
described in Section 1.2, but based this time on very different estimates. We consider
a series of shrinking balls as in (1.17) and we find here another interesting twist:
condition (1.15) also ensures that minimisers satisfy Caccioppoli type inequalities
of the type that hold in the standard case p = q, modulo correction terms; see
Lemma 10.1 below. These terms can be then controlled along the iterations and
therefore we reduce the oscillation of u along the chain (1.17) until we (possibly
never) reach the exit time ball Bτm R0 . At the exit time, if any, we cannot perform
perturbation arguments around the functional P0 defined in (1.14), since we are
now dealing with F , which has measurable coefficients. We instead observe that
on Bτm R0 the original minimiser u becomes a so called Q-minimiser of P0 and use
the related theory for this notion (in the version due to Lieberman [27]) to infer the
needed estimates and conclude with the proof of Hölder continuity. In fact, we take
the opportunity to remark that Theorem 1.1 continues to hold for quasi-minima of
the functional F ; see Section 11 for the definition.

2. Notation and Preliminaries

In what follows we denote by c a general positive constant, possibly varying
from line to line; special occurrences will be denoted by c1, c2, c∗, c̄ or the like.
All such constants will always be larger or equal than one; moreover relevant
dependencies on parameters will be emphasised using parentheses, that is, c1 ≡
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c1(n, p, ν, L) means that c1 depends on n, p, ν, L (or at least on n, p, ν, L if further
dependences are specified). We denote by Br (x0) := {x ∈ R

n : |x − x0| < r}
the open ball with center x0 and radius r > 0; when not important, or clear from
the context, we shall omit denoting the center as follows: Br ≡ Br (x0). Unless
otherwise stated, different balls in the same context will have the same center. We
shall also denote B1 = B1(0) if not differently specified. With B ⊂ R

n being a
measurable subset with positive measure |B| > 0, and with g : B → R

k , k � 1,
being a measurable map, we shall denote by

(g)B ≡ −
∫
B

g(x) dx := 1

|B|
∫
B

g(x) dx

its integral average. With a(·) being fixed in (1.2), in the following we shall as usual
denote

[a]0,α;B := sup
x,y∈B,x �=y

|a(x) − a(y)|
|x − y|α , [a]0,α ≡ [a]0,α;Ω.

For a vector valued function G : R
n → R

k and a vector h ∈ R
n , we define the

finite difference operator

τhG(x) ≡ (τhG)(x) = G(x + h) − G(x) . (2.1)

Given concentric balls B	 ⊂ BR , we shall use the following basic property of finite
differences: ∫

Bρ

|τhG|γ dx � |h|γ
∫

BR

|DG|γ dx, (2.2)

that holds whenever γ � 1, G ∈ W 1,γ (BR) and |h| � R − 	.
Let us now record a few simple consequences of assumptions (1.11). The last

line of (1.11) implies that f and g are convex; this, together with the first line also
implies a bound on the first derivatives

|∂ f (z)| � c f |z|p−1 and |∂g(z)| � cg|z|q−1, (2.3)

for constants c f ≡ c f (n, p, L) and cg ≡ cg(n, q, L). For this see [21, Lemma
5.2]. We shall extensively use the auxiliary vector fields Vp, Vq : R

n → R
n defined

by

Vp(z) := |z|(p−2)/2z and Vq(z) := |z|(q−2)/2z (2.4)

whenever z ∈ R
n . These maps are very convenient to formulate the monotonicity

properties of the vector fields ∂ f (·) and ∂g(·), and more in general, of the vector
field z �→ |z|γ−2z for γ > 1. Indeed, whenever z1, z2 ∈ R

n it holds that
⎧⎪⎪⎨
⎪⎪⎩

|Vp(z1) − Vp(z2)|2 � c〈∂ f (z1) − ∂ f (z2), z1 − z2〉
|Vq(z1) − Vq(z2)|2 � c〈∂g(z1) − ∂g(z2), z1 − z2〉

|Vγ (z1) − Vγ (z2)|2 � c〈|z1|γ−2z1 − |z2|γ−2z2, z1 − z2〉,
(2.5)
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with constants depending on n, ν and p, q, γ , respectively. We shall often use the
inequalities implicit in

|Vγ (z1) − Vγ (z2)| ≈ (|z1| + |z2|)(γ−2)/2|z1 − z2| (2.6)

where the implied constants still depend on n, γ (see [21]). We finally recall that the
upper bounds in (1.11)2 together with standard algebraic lemmas (see for instance
[21, Lemma 8.3]) imply the following local Lipschitz continuity properties, valid
whenever z1, z2 ∈ R

n (not simultaneously null, otherwise by (2.3) there is nothing
to prove):

⎧⎪⎪⎨
⎪⎪⎩

|∂ f (z1) − ∂ f (z2)| � c(n, p, L) (|z1| + |z2|)p−2 |z2 − z1|
|∂g(z1) − ∂g(z2)| � c(n, q, L) (|z1| + |z2|)q−2 |z2 − z1|
||z1|γ−2z1 − |z2|γ−2z2| � c(n, γ ) (|z1| + |z2|)γ−2 |z2 − z1|.

(2.7)

We end this section reporting two by now classical iteration lemmas; see [21,
Lemma 7.3] and [21, Lemma 6.1], respectively.

Lemma 2.1. Let φ : [0, R̃] → [0,∞) be a non-decreasing function, such that the
following inequality holds for some ε � 0 and whenever 0 < 	 � R � R̃

φ(	) � c̃
[( 	

R

)n + ε
]
φ(R) .

Then for every δ ∈ (0, n) there exists ε̄ ≡ ε̄(n, δ, c̃) > 0 such that if ε � ε̄, then

φ(	) � c̄
( 	

R

)n−δ

φ(R)

holds whenever 0 < 	 � R � R̃ and for a constant c̄ ≡ c̄(n, δ, c̃).

Lemma 2.2. Let h : [ρ0, ρ1] → R be a nonnegative and bounded function, and let
θ ∈ (0, 1) and A, B � 0, γ1, γ2 � 0 be numbers. Assume that

h(t) � θh(s) + A

(s − t)γ1
+ B

(s − t)γ2

holds for ρ0 � t < s � ρ1. Then the following inequality holds with c ≡
c(θ, γ1, γ2):

h(ρ0) � cA

(ρ1 − ρ0)γ1
+ cB

(ρ1 − ρ0)γ2
.

Remark 1. In the following we shall use a scaling procedure several times. In order
to prove assertions in a ball BR ≡ BR(x0) for a minimiser u of G (or of F) it will
be convenient to reduce the proof to the case BR(x0) = B1(0) by introducing the
rescaled functions:

ũ(x) := u(x0 + Rx) − (u)BR

R
and ã(x) := a(x0 + Rx),
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for x ∈ B1. Indeed, in the case u : BR(x0) �→ R is for instance a minimiser of the
functional G(·, BR(x0)) defined in (1.10), it is then easy to see that ũ minimises the
functional

W 1,1(B1) � w �→
∫

B1

[ f (Dw) + ã(x)g(Dw)] dx

and that
⎧⎪⎨
⎪⎩

[ã]0,α;B1 = Rα[a]0,α;BR , ‖ã‖L∞(B1) = ‖a‖L∞(BR)

‖Dũ‖L p(B1) = ‖Du‖L p(BR)

Rn/p
, ‖ũ‖L p(B1) = ‖u − (u)BR ‖L p(BR)

Rn/p+1 .

(2.8)

3. Fractional Operators and Theorem 1.6

For the proof of Theorem 1.6 we prefer to give a fully intrinsic approach that
shows the global interplay between Lavrentiev phenomenon, boundedness of max-
imal and fractional operators, and regularity; see also the next section. Indeed, we
start with a proposition building on some hidden facts developed when studying
the Lavrentiev phenomenon [15,42,51] related to functionals as in (1.1). We shall
in the following report the full details.

Proposition 3.1. Given a function f ∈ L p(BR(x)), where BR(x) ⊂ R
n is a ball

such that R � 2, if (1.3) holds, then there exists a constant c, depending only on
n, p, q, such that the following inequality holds:

H
(
x, ( f )BR(x)

)
� c

(
1 + [a]0,α‖ f ‖q−p

L p(BR(x))

)
(H(·, f (·)))BR(x) . (3.1)

Proof. We set

aR(x) := inf
y∈BR(x)

a(y) and HR(x, z) := |z|p + aR(x)|z|q

so that Jensen’s inequality gives

HR
(
x, ( f )BR(x)

)
� −

∫
BR(x)

HR (x, f (y)) dy � −
∫

BR(x)

H(y, f (y)) dy. (3.2)

Now, we observe that

H
(
x, ( f )BR(x)

)
� |a(x) − aR(x)||( f )BR(x)|q + HR

(
x, ( f )BR(x)

)
� [a]0,α Rα|( f )BR(x)|q−p|( f )BR(x)|p + HR

(
x, ( f )BR(x)

)
.

Since by Hölder’s inequality we have

|( f )BR(x)| � −
∫

BR(x)

| f | dy � cR−n/p‖ f ‖L p(BR(x))
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we continue to estimate

H
(
x, ( f )BR(x)

)
� c[a]0,α‖ f ‖q−p

L p(BR(x)) R
pα−n(q−p)

p |( f )BR(x)|p + HR
(
x, ( f )BR(x)

)

� c
(

1 + [a]0,α‖ f ‖q−p
L p(BR(x))

)
HR

(
x, ( f )BR(x)

)

where we have used (1.3) and that R � 2. Last estimate and (3.2) yield (3.1).

We are now ready for Theorem 1.6.

Proof of Theorem 1.6 Step 1: Maximal estimate. We define

M( f )(x) := MΩ( f )(x) := sup
B	(x)⊂Ω,	�2

−
∫

B	(x)

| f (y)| dy, (3.3)

that is the restricted maximal operator, for any open and bounded domain Ω ⊂ R
n

and maps f ∈ L1(Ω; R
k). We notice that M( f ) = M(| f |). Then, for every t � 1

the maximal inequality

∫
Ω

[H(x, M( f ))]t dx � c
(

1 + [a]t
0,α‖ f ‖t (q−p)

L p(Ω)

) ∫
Ω

[H(x, f )]t dx (3.4)

holds whenever f ∈ L p(Ω), for a constant c depending only on the quantities
n, p, q, α and t . We remark that (3.4) in general fails when (1.3) is not satisfied;
for this see Remark 4 below. To prove (3.4), let us define the new function

H̄(x, z) := |z|p/γ + ā(x)|z|q/γ , where ā(x) := [a(x)]1/γ (3.5)

and where the exponent γ ≡ γ (n, p, q, α) ∈ (1, p) is chosen in a such a way that

q/γ

p/γ
= q

p
< 1 + α

γ n
(3.6)

still holds. This is possible since (1.3) is in force. We note that the new function
H̄(·) is of the type of the one in (1.6), but carries now the new coefficient [a(·)]1/γ ,
which is Hölder continuous with exponent α/γ ; it holds that

[a1/γ ]0,α/γ � [a]1/γ
0,α . (3.7)

Moreover, when passing from H(·) to H̄(·), we pass from p and q to p/γ and q/γ ,
respectively. We notice that

[H(x, z)]1/γ � H̄(x, z) � 21−1/γ [H(x, z)]1/γ . (3.8)

By (3.6) we can now apply (3.1) to H̄(·) and | f | in order to get that

H̄(x, M f (x)) � c
(

1 + [a]1/γ
0,α ‖ f ‖(q−p)/γ

L p(Ω)

)
M(H̄(·, f (·))(x) (3.9)
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holds for every x ∈ Ω , with c ≡ c(n, p, q); we have used that the function
t �→ H(·, t) is increasing. Integrating (3.9) over Ω , and applying Hardy–Littlewood
maximal theorem in Lγ t (recall that γ > 1 so that tγ > 1 holds too) yields
∫

Ω

[H̄(x, M( f )(x))]tγ dx � c
(

1 + [a]t
0,α‖ f ‖t (q−p)

L p(Ω)

) ∫
Ω

[M(H̄(·, f (·))(x)]tγ dx

� c
(

1 + [a]t
0,α‖ f ‖t (q−p)

L p(Ω)

) ∫
Ω

[H̄(x, f (x))]tγ dx,

so that (3.4) follows by (3.8).

Step 2: A first Sobolev–Poincaré type inequality. Here we prove

⎛
⎝−
∫

BR

[
H

(
x,

w − (w)BR

R

)] p+q(n−1)
q(n−1)

dx

⎞
⎠

q(n−1)
p+q(n−1)

� c
(

1 + [a]0,α‖Dw‖q−p
L p(BR)

)
−
∫

BR

H(x, Dw) dx, (3.10)

with c ≡ c(n, p, q) and BR ⊂ Ω with R � 1; we assume that the right-hand side
is finite, otherwise there is nothing to prove. We shall use a few arguments due to
Hedberg [22]. The following classical formula holds for almost every x ∈ BR :

|w̃(x)| :=
∣∣∣∣w(x) − (w)BR

R

∣∣∣∣ � c(n)

R

∫
BR

|Dw(y)|
|x − y|n−1 dy. (3.11)

See for instance [20, Lemma 7.16]. We now define D̃ : R
n → R

n as

D̃(y) :=
{

Dw(y) if y ∈ BR

0 if y ∈ R
n \ BR .

(3.12)

Taking ε ∈ (0, 1] and considering the annuli Ai (x) := B2−i εR(x) \ B2−(i+1)εR(x)

for integers i � 0, in (3.11) we split as follows:

|w̃(x)| � c

R

∫
BεR(x)

|D̃(y)|
|x − y|n−1 dy + c

R

∫
BR\BεR(x)

|D̃(y)|
|x − y|n−1 dy

� c

R

[ ∞∑
i=0

(
2i

εR

)n−1 ∫
Ai (x)

|D̃(y)| dy + 1

(εR)n−1

∫
B2R(x)

|D̃(y)| dy

]

� c

[ ∞∑
i=0

ε

2i
−
∫

B2−i εR(x)

|D̃(y)| dy + 1

εn−1 −
∫

B2R(x)

|D̃(y)| dy

]

� cεM(D̃)(x) + c

εn−1 −
∫

B2R(x)

|D̃(y)| dy,

where the maximal operator M(·) ≡ MB3R (·) has been defined in (3.3), and we are
taking Ω ≡ B3R . Since t �→ H(·, t) is an increasing function and since
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H(x, ãs + b̃t) � c[ã p H(x, s) + b̃q H(x, t)] (3.13)

holds for every 0 < ã � 1, b̃ � 1, s, t > 0, then we have

H (x, w̃(x)) � cε p H(x, M(D̃)(x)) + cεq(1−n) H(x, (|D̃|)B2R(x))

for a constant c ≡ c(n, p, q). We equalise the two terms on the right hand side of
the above inequality by choosing

ε :=
[

H(x, (|D̃|)B2R(x))

H(x, M(D̃)(x))

]1/[p+q(n−1)]
.

This choice of ε is admissible; indeed, by the definition of maximal operator in
(3.3) and by the fact that t �→ H(·, t) is increasing, it follows that

H(x, (|D̃|)B2R(x)) � H(x, M(D̃)(x))

(recall that 2R � 2), so that ε � 1. This yields

H(x, w̃(x)) � c[H(x, M(D̃)(x))] q(n−1)
p+q(n−1) [H(x, (|D̃|)B2R(x))]

p
p+q(n−1) .

By (3.1) and (3.12), and recalling that D̃ ≡ 0 outside BR by (3.12), we have

[H(x, w̃(x))] p+q(n−1)
q(n−1)

� cH(x, M(D̃)(x))

[(
1 + [a]0,α‖D̃‖q−p

L p(B2R(x))

)
−
∫

B2R(x)

H(y, D̃(y)) dy

] p
q(n−1)

� cH(x, M(D̃)(x))

[(
1 + [a]0,α‖Dw‖q−p

L p(BR)

)
−
∫

BR

H(y, Dw(y)) dy

] p
q(n−1)

.

Integrating on BR and using (3.4) with t = 1 and Ω = B3R , and again (3.12),
yields

−
∫

BR

[H(x, w̃)] p+q(n−1)
q(n−1) dx � c

(
1 + [a]0,α‖D̃‖q−p

L p(B3R)

)
−
∫

B3R

H(x, D̃) dx

·
[(

1 + [a]0,α‖Dw‖q−p
L p(BR)

)
−
∫

BR

H(x, Dw) dx

] p
q(n−1)

� c
(

1 + [a]0,α‖Dw‖q−p
L p(BR)

) p+q(n−1)
q(n−1)

[
−
∫

BR

[H(x, Dw)] dx

] p+q(n−1)
q(n−1)

from which (3.10) follows.

Step 3: Improved Sobolev–Poincaré inequality and conclusion. We consider H̄(·)
defined in (3.5), for γ ≡ γ (n, p, q, α) ∈ (1, p) satisfying (3.6) and such that

d1 := p + q(n − 1)

γ q(n − 1)
> 1. (3.14)
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We apply (3.10), but replacing H(·) by H̄(·); this is possible as (3.6) is satisfied
(keep also (3.7) in mind). Recalling (3.8), we have

(
−
∫

BR

[
H

(
x,

w − (w)BR

R

)]d1

dx

)1/d1

� c

⎛
⎝−
∫

BR

[
H̄

(
x,

w − (w)BR

R

)] p+q(n−1)
q(n−1)

dx

⎞
⎠

γ q(n−1)
p+q(n−1)

� c
(

1 + [a]0,α‖Dw‖q−p
L p(BR)

) (
−
∫

BR

H̄(x, Dw) dx

)γ

.

Using again (3.8) to estimate the last integral in the above display, (1.18) follow
with d1 > 1 as in (3.14) and d2 := 1/γ < 1.

Remark 2. Under the assumptions and notation of Theorem 1.6 the inequality

(
−
∫

BR

[
H

(
x,

w

R

)]d1
dx

)1/d1

� c
(

1 + [a]0,α‖Dw‖q−p
L p(BR)

) (
−
∫

BR

[H(x, Dw)]d2 dx

)1/d2

(3.15)

holds wheneverw ∈ W 1,1
0 (BR), for d1 > 1 > d2 being the same numbers appearing

in (1.18). The arguments are essentially the same of Theorem 1.6 and rest on the
fact that (3.11) also holds in the case w ∈ W 1,1

0 (BR) (see this time [20, Lemma
7.14]) with w̃(x) := w(x)/R.

Remark 3. The method of proof of Theorem 1.6 allows us to prove various inequal-
ities for fractional operators that can be useful when studying energies modelled
on the one in (1.1). For instance, consider the standard Riesz potential operator
defined by

Iβ( f )(x) :=
∫

Rn

f (y)

|x − y|n−β
dy, 0 < β � n

and let d := [pβ +q(n −β)]/[q(n −β)] > 1. It is possible to prove that whenever
BR ⊂ R

n with R � 1, and f ∈ L1(BR) has compact support in BR , the following
inequality:

(
−
∫

BR

[
H

(
x,

Iβ( f )(x)

Rβ

)]d

dx

)1/d

� c −
∫

BR

H(x, f ) dx

holds, where c depends on n, p, q, [a]0,α, ‖ f ‖L p(BR) and β.
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4. Sharpness, and Lavrentiev Phenomenon

In the sequel we shall use the following:

Theorem 4.1. (Lavrentiev phenomenon [15,17,51]) Let P,F be the functionals
defined in (1.1) and (1.4), respectively, under the assumptions (1.2) and (1.5). The
following holds:

– If q/p � 1 + α/n, then for every function w ∈ W 1,1
loc (Ω) and balls B � B̃ � Ω

such that F(w, B̃) < ∞, there exists a sequence {wm} of W 1,∞-functions such
that wm → w strongly in W 1,p(B) and F(wm, B) → F(w, B).

– For every ε > 0 and ball B ⊂ Ω , there exist p, q satisfying ε > q/p−1−α/n >

0, a coefficient a(·) ∈ C0,α and a boundary datum u0 ∈ W 1,q(B) ∩ L∞(B),
such that

inf
w∈u0+W 1,p

0 (B)

P(w, B) < inf
w∈u0+W 1,p

0 (B)∩W 1,q
loc (B)

P(w, B),

where P has been defined in (1.1). That is, the Lavrentiev phenomenon occurs
between W 1,p(B) and W 1,q

loc (B). In particular, local minimisers are in general

not in W 1,q
loc (B). Moreover, they can be discontinuous.

Now, while we shall use the first part of Theorem 4.1 to prove Theorems 1.2–1.3
via Theorem 5.1 below, the second part can be used to prove their sharpness.

Remark 4. Inequality (3.4) fails in general when (1.3) is not satisfied. This can be
seen by showing that the Lavrentiev phenomenon is absent provided (3.4) holds.
This also gives a proof of the first part of Theorem 4.1. For this, take w ∈ W 1,p(Ω)

such that F(w, B̃) is finite; this in particular means that H(x, Dw) ∈ L1(B̃) by
(1.5). Then, for ε ∈ (0, 1) such that (1 + ε)B ⊂ B̃, we consider the mollified
sequence {wε := w ∗ ρε}, where {ρε} is a family of standard mollifiers; we also
consider the maximal operator M(·) ≡ MB̃(·) as defined in (3.3). It follows that
|Dwε(x)| � cM(Dw)(x), for every x ∈ B and for c independent of ε, so that

H(x, Dwε(x)) � cH(x, M(Dw)(x)) (4.1)

also holds for such ε and x . By (3.4) we know that H(x, M(Dw)) ∈ L1(B̃) too and
therefore we conclude, by (4.1) and Lebesgue’s dominated convergence theorem,
that

H(x, Dwε(x)) → H(x, Dw(x)) in L1(B) (4.2)

(with abuse of notation, with the subscript ε we here denote a not relabelled sub-
sequence). In turn, again by (1.5), (4.2) and a variant of Lebesgue’s dominated
convergence theorem, we have that F(x, wε, Dwε) → F(x, w, Dw) in L1(B),
that is F(wε, B) → F(w, B).
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5. A Reverse Hölder Inequality in the p-Phase

Here we prove a theorem asserting that reverse Hölder inequalities persist when
the functional is in the p-phase. The statement will be also useful for future de-
velopments, in order to obtain further regularity results for the class of operators
considered.

Theorem 5.1. Let u ∈ W 1,p(Ω) be a local minimiser of the functional G defined
in (1.10) under the assumptions (1.2), (1.3) and (1.11). Let BR ⊂ Ω be a ball with
R � 1 and such that the inequality

sup
x∈BR

a(x) � M[a]0,α Rα (5.1)

is satisfied for some number M � 1. Then for every q̃ < np/(n − 2α) there exists
a positive constant c, depending only on data, M and q̃, such that the following
reverse Hölder inequality holds:

(
−
∫

BR/2

|Du|q̃ dx

)1/q̃

� c

(
−
∫

BR

|Du|p dx

)1/p

. (5.2)

Moreover, there exist an exponent b̃ ≡ b̃(n, p, q, α) � 1 and a constant c ≡
c(data, q̃, diam(Ω)), such that the following inequality holds for every ball BR ⊂
Ω (no matter (5.1) is satisfied or not):

(
−
∫

BR/2

|Du|q̃ dx

)1/q̃

� c

(
−
∫

BR

(|Du|p + 1) dx

)b̃/p

. (5.3)

In particular, both (5.2) and (5.3) hold with q̃ ≡ 2q − p and u ∈ W 1,2q−p
loc (Ω).

Proof. The proof is rather delicate since we have to keep track of the role of
the coefficient a(·) in order to use condition (5.1) in an efficient way and get
the reverse inequality (5.2). We will derive higher integrability estimates of the
gradient via fractional Sobolev embedding theorem, after proving that Vp(Du) =
|Du|(p−2)/2 Du belongs to a suitable Nikolski space; this will also involve a careful
convolution argument to treat certain non-differentiable terms. To get the final
estimate we first use an approximation procedure based on the absence of Lavrentiev
phenomenon and then an interpolation argument; both work if and only if (1.3)
holds. To shorten formulas, we shall use the symbol � to write an inequality where
the implied constant c only depends only on n, p, q, L , ν. The proof falls in seven
steps. For the proof of (5.3) see Step 1 while the proof of (5.2) is in Step 7; that is
the only place where (5.1) will be used. We just remark that for (5.2) it is not really
necessary to have that R � 1; when such a bound is not assumed the inequality still
holds but this time the constant c depends also on the diameter of Ω . Moreover,
from the proof below we note that when p = q we have b̃ = 1 and (5.1) is not
needed to obtain a reverse type inequality.
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Step 1: Scaling and proof of (5.3). Given a ball BR ≡ BR(x0) as in the statement of
Theorem 5.1, we begin by proving that for every β ∈ (n(q/p − 1), α) there exists
a positive constant c ≡ c(n, p, q, ν, L , β) such that the inequality

(
−
∫

BR/2(x0)

|Du| np
n−2β dx

) n−2β
n

� c −
∫

BR(x0)

|Du|p dx +
(
‖a‖2

L∞(BR) + R2α[a]2
0,α;BR

)b1
(

−
∫

BR(x0)

|Du|p dx

)b2

(5.4)

holds for (large) exponents

b1 = βp

βp − n(q − p)
� 1, b2 = β(2q − p) − n(q − p)

βp − n(q − p)
� 1 . (5.5)

Notice that the range (n(q/p−1), α) of admissible values for β is non-empty since
(1.3) is in force. We observe that (5.3) directly follows from (5.4), by finding β ∈
(n(q/p −1), α)—close enough to α—in order to guarantee that q̃ � np/(n −2β).
On the hand observe that

β > n

(
q

p
− 1

)
⇐⇒ q < p

(
1 + β

n

)
�⇒ q <

p(n − β)

n − 2β
(5.6)

and

q <
p(n − β)

n − 2β
⇐⇒ 2q − p <

np

n − 2β
<

np

n − 2α
, (5.7)

so that we can take q̃ ≡ 2q − p in (5.2)–(5.3). Now, in order to prove (5.4), we
first use the scaling argument of Remark 1, that is, we rescale the minimiser in B1
and prove the corresponding inequality

‖Dũ‖p

L
np

n−2β (B1/2)

� c
[
‖Dũ‖p

L p(B1)
+ (‖ã‖2

L∞(B1)
+ [ã]2

0,α;B1
)b1‖Dũ‖pb2

L p(B1)

]
,

(5.8)

from which (5.4) follows scaling back to the original minimiser u. We observe that
in proving (5.4) we can without loss of generality assume that BR(x0) � Ω since
all the constants involved in (5.4) are independent of BR(x0). At this point we can
consider another ball BR′(x0) � Ω such that R < R′ so that scaling as in Remark
1 actually gives that the functions ũ and ã can be considered in BR′/R(0) and

|Dũ|p + ã(x)|Dũ|q ∈ L1(BR′/R(0)). (5.9)

Summarising, Steps 2–6 are now devoted to the proof of (5.8) and therefore of
(5.4).

Step 2: Approximation via absence of Lavrentiev phenomenon. By (5.9) we can
apply the first part of Theorem 4.1 with B ≡ B1(0) and B̃ ≡ BR′/R(0). Therefore
we find a sequence {um} ⊂ W 1,2q−p(B1) such that

um → ũ strongly in W 1,p(B1) and F(um, B1) → F(ũ, B1) . (5.10)
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To proceed, we define, for any m ∈ N, x ∈ B1 and z ∈ R
n , the numbers σm and

the integrands F, Fm : B1 × R
n → R as follows:

{
σm :=

(
1 + m + ‖Dum‖2(2q−p)

L2q−p(B1)

)−1

F(x, z) := f (z) + ã(x)g(z), Fm(x, z) := F(x, z) + σm |z|2q−p .
(5.11)

Direct Methods of the Calculus of Variations allow us to define the function vm ∈
um + W 1,2q−p

0 (B1) as the unique solution to the following Dirichlet problem:

⎧⎪⎨
⎪⎩

vm �→ min
w

∫
B1

Fm(x, Dw) dx

w ∈ um + W 1,2q−p
0 (B1) .

In the next step we shall derive uniform estimates for the sequence {Vp(Dvm)}
in Nikolski spaces. We notice that the functional appearing in the above display
has standard polynomial growth of order 2q − p, therefore by standard regularity
theory (see for instance [18,25]) we know that

vm ∈ W 1,∞
loc (B1) . (5.12)

To simplify the notation we shall denote vm ≡ v, ã ≡ a, eventually restoring the
full notation in Step 4.

Step 3: Fractional Caccioppoli inequality and integrability. Here we prove that for
every β ∈ (0, α) there exists a positive constant c ≡ c(n, p, q, ν, L , β) such that

‖Dv‖p
Lnp/(n−2β)(B1/2)

� c‖Dv‖p
L p(B1)

+ c(‖a‖2
L∞(B1)

+ [a]2
0,α;B1

+ σm)‖Dv‖2q−p
L2q−p(B1)

(5.13)

holds. For this we shall use the Euler–Lagrange equation:

∫
B1

〈∂ Fm(x, Dv), Dϕ〉 dx = 0 ∀ ϕ ∈ W 1,2q−p
0 (B1) . (5.14)

Let η ∈ C∞
0 (B3/4) be a cut-off function such that 0 � η � 1, η ≡ 1 in B2/3, and

|Dη|2 + |D2η| � 104. In the following we take h ∈ R
n such that 0 < |h| � 10−4

holds and denote

S(x, h) := |Dv(x + h)| + |Dv(x)|. (5.15)

This function will be in fact considered only for x ∈ B3/4. We take the function
ϕ = τ−h(η2τhv) in (5.14); we recall that the operator τh has been defined in (2.1).
Integration by parts for finite differences yields

∫
B1

〈τh(∂ Fm(·, Dv)), D(η2τhv)〉 dx = 0 . (5.16)
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Using the decomposition

τh(∂ Fm(·, Dv))(x) = [∂ Fm(x + h, Dv(x + h)) − ∂ Fm(x + h, Dv(x))]
+ [∂ Fm(x + h, Dv(x)) − ∂ Fm(x, Dv(x))]

=: A1 + A2 , (5.17)

we rewrite (5.16) as

I0 :=
∫

B1

η2〈A1, τh Dv〉 dx = −
∫

B1

η2〈A2, τh Dv〉 dx

−2
∫

B1

η〈A2, Dη〉τhv dx − 2
∫

B1

η〈A1, Dη〉τhv dx

=: I1 + I2 + I3. (5.18)

We estimate each term in (5.18). For I0 we apply (2.5) with z1 = Dv(x + h),
z2 = Dv(x), γ = p, q, 2q − p and discarding the q-term we obtain

∫
B1

η2|τh[Vp(Dv)]|2 dx + σm

∫
B1

η2|τh[V2q−p(Dv)]|2 dx � I0. (5.19)

To estimate I1 in (5.18) we use the Hölder continuity of a(·) and (2.3). This yields

|I1| � [a]0,α|h|α
∫

B1

η2|Dv|q−1|τh Dv| dx

� [a]0,α|h|α
∫

B1

η2[S(x, h)]q−1|τh Dv| dx,

with S(x, h) that has been defined in (5.15); note that here we take into account that
η ≡ 0 outside B3/4 and that |h| � 10−4 to use S(x, h). In turn, by using Young’s
inequality, for ε ∈ (0, 1) we estimate

|I1| � ε

∫
B1

η2[S(x, h)]p−2|τh Dv|2 dx + |h|2α[a]2
0,α;B1

ε

∫
B3/4

[S(x, h)]2q−p dx

� ε

∫
B1

η2|τh[Vp(Dv)]|2 dx + |h|2α[a]2
0,α;B1

ε

∫
B1

|Dv|2q−p dx .

We have also used (2.6) and that |h| � 10−4. Recalling (5.19), we conclude with

|I1| � ε I0 + |h|2α[a]2
0,α;B1

ε

∫
B1

|Dv|2q−p dx . (5.20)
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I2 can be estimated via (2.3) and then by Young’s and Hölder’s inequalities

|I2| � [a]0,α;B1 |h|α
∫

B3/4

|Dv|q−1|τhv||Dη| dx

� |h|α
(∫

B3/4

|Dv|p−1|τhv| dx + [a]2
0,α;B1

∫
B3/4

|Dv|2q−p−1|τhv| dx

)

� |h|α
(∫

B1

|Dv|p dx

) p−1
p

(∫
B3/4

|τhv|p dx

) 1
p

+[a]2
0,α;B1

|h|α
(∫

B1

|Dv|2q−p dx

) 2q−p−1
2q−p

(∫
B3/4

|τhv|2q−p dx

) 1
2q−p

� |h|2α

(∫
B1

|Dv|p dx + [a]2
0,α;B1

∫
B1

|Dv|2q−p dx

)
. (5.21)

In the last line we have used (2.2) and that |h|1+α � |h|2α since |h| � 10−4. We
are left to estimate I3 in (5.18); this requires much more effort and we are forced
to treat differently the case p � 2 from the case p < 2. If p � 2 we have

|I3| � ‖Dη‖L∞(B1)[I3,p + ‖a‖L∞(B1) I3,q + σm I3,2q−p] , (5.22)

where, for γ ∈ {p, q, 2q − p}, we denote

I3,γ :=
∫

B1

η[S(x, h)]γ−2|τh Dv||τhv| dx . (5.23)

Notice that in making the estimate in (5.22) we have used (2.7) with γ = 2q− p. We
confine ourselves to showing the estimates for I3,q , the treatment of the other terms
being completely similar. By Young’s inequality and (2.6) we have, for ε ∈ (0, 1)

‖a‖L∞(B1) I3,q � ε

∫
B3/4

η2[S(x, h)]p−2|τh Dv|2 dx

+ ‖a‖2
L∞(B1)

ε

∫
B3/4

[S(x, h)]2q−p−2|τhv|2 dx

� ε

∫
B1

η2|τh[Vp(Dv)]|2 dx

+ ‖a‖2
L∞(B1)

ε

∫
B3/4

[S(x, h)]2q−p−2|τhv|2 dx .

In turn, by Hölder’s inequality and (2.2), and recalling that |h| � 10−4, we have
∫

B3/4

[S(x, h)]2q−p−2|τhv|2 dx � ‖S(x, h)‖2q−p−2
L2q−p(B3/4)

‖τhv‖2
L2q−p(B3/4)

� |h|2‖Dv‖2q−p
L2q−p(B1)

.
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By merging the content of the last two displays and using (5.19) we conclude with

‖a‖L∞(B1) I3,q � ε I0 + |h|2‖a‖2
L∞(B1)

ε

∫
B1

|Dv|2q−p dx . (5.24)

The terms I3,p and I3,2q−p can be estimated in exactly the same way:

I3,p + σm I3,2q−p � ε I0 + |h|2
ε

∫
B1

|Dv|p dx + |h|2σm

ε

∫
B1

|Dv|2q−p dx .

(5.25)

Connecting the last display with (5.24) and (5.22), and eventually to (5.18), (5.20)
and (5.21) yields, for every ε ∈ (0, 1)

I0 � ε I0 + |h|2α

ε

∫
B1

|Dv|p dx

+|h|2α

ε
(‖a‖2

L∞(B1)
+ [a]2

0,α;B1
+ σm)

∫
B1

|Dv|2q−p dx, (5.26)

where the implied constant depends as usual only on n, p, q, ν, L . Therefore, choos-
ing ε ≡ ε(n, p, q, ν, L) small enough and recalling (5.19), we conclude with the
following fractional Caccioppoli type inequality:∫

B1

η2|τh[Vp(Dv)]|2 dx

� |h|2α

∫
B1

|Dv|p dx + |h|2α(‖a‖2
L∞(B1)

+ [a]2
0,α;B1

+ σm)

∫
B1

|Dv|2q−p dx .

(5.27)

Remark 5. In (5.19)–(5.21) an ambiguity appears when, for instance, considering
terms of the type [S(x, h)]p−2 and p < 2, since it could be S(x, h) = 0. On the other
hand notice that these terms always multiply |τh Dv|2 so that in the case S(x, h) = 0,
there is no problem in considering [S(x, h)]p−2|τh Dv|2 = 0. Alternatively, when
S(x, h) = 0 all the integrands considered in (5.17) vanish and therefore we can
always restrict the domain of integration of I0, I1, I2 to B1 ∩ {S(x, h) > 0}.

We now proceed in proving (5.27) for the case p < 2. To this purpose we need
to estimate I3 in a different way and begin by splitting as follows:

I3 = −2J3,p − 2J3,q − 2J3,2q−p, (5.28)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

J3,p :=
∫

B1

η〈τh[∂ f (Dv)], Dη〉τhv dx

J3,q :=
∫

B1

η(x)〈τh[∂g(Dv)](x), Dη(x)〉a(x + h)(τhv)(x) dx

J3,2q−p := σm

∫
B1

η〈τh[|Dv|2q−p−2 Dv], Dη〉τhv dx .
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As for the case p � 2, we shall give all the details for J3,q , with short remarks on
the modifications needed for J3,p and J3,2q−p. First, let us notice a general fact: if

G ∈ Lγ /(γ−1)(B1; R
n) and H ∈ W 1,γ

0 (B3/4; R
n) for some γ > 1, we have that

for every h ∈ R
n with 0 < |h| � 10−4 it holds

∫
B1

〈τhG,H〉 dx = −|h|
∫

B1

∫ 1

0
〈G(x + th), ∂h/|h|H(x)〉 dt dx . (5.29)

Indeed, approximating both G and H with smooth functions, we reduce to prove
that (5.29) holds when G ∈ C∞(B1; R

n) and H ∈ C∞
c (B3/4; R

n); in this case it is

G(x + h) − G(x) =
∫ 1

0

d

dt

[
G(x + th)

]
dt = |h|

∫ 1

0
∂h/|h|G(x + th) dt.

Plugging this formula on the left-hand side of (5.29) and integrating by parts we
obtain the right-hand side of (5.29). We would like to apply (5.29) with the choice
G ≡ ∂g(Dv) ∈ Lq/(q−1)(B1; R

n) and H ≡ aτhvηDη, but this is not possible,
since the function a(·) is not differentiable. We overcome this point by replacing
a(·) with new functions a|h|(·), which are obtained by a(·) via convolution with a
mollifier related to the same scale of discrete differentiation |h|; we then estimate the
corresponding correction term. Specifically, we consider a standard non-negative
symmetric mollifier ρ ∈ C∞

c (B1), such that ‖ρ‖L1(Rn) = 1, and let ρ|h|(x) =
|h|−nρ(x/|h|) for |h| � 10−4. Finally, we define a|h| := a ∗ ρ|h| ∈ C∞(B15/16)

(for reasons that are going to be clear in a few lines it is here sufficient to consider
a|h|(·) defined only on B15/16, essentially because it will always appear multiplied
by η, which is zero outside B3/4). The main point here is that the blow-up rate of
‖Da|h|‖L∞ can be quantified when |h| → 0 and indeed we have that

⎧⎨
⎩

|a|h|(x) − a(x)| � [a]0,α,B1 |h|α

|Da|h|(x)| � c[a]0,α,B1 |h|α−1
(5.30)

hold for every x ∈ B15/16. Indeed, the first inequality in (5.30) is a direct conse-
quence of the definition of convolution, while, as for the second, we have

|Da|h|(x)| =
∣∣∣∣∣−

1

|h|n+1

∫
B|h|(x)

a(y)(Dρ)

(
y − x

|h|
)

dy

∣∣∣∣∣
=

∣∣∣∣ 1

|h|
∫

B1

a(x + |h|y)(Dρ)(y) dy

∣∣∣∣
=

∣∣∣∣ 1

|h|
∫

B1

[a(x + |h|y) − a(x)](Dρ)(y) dy

∣∣∣∣
� |B1|‖Dρ‖L∞(B1)

|h| [a]0,α;B1 |h|α

� c(n)[a]0,α;B1 |h|α−1.
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To proceed with the estimates, we further decompose as

|J3,q | �
∫

B1

η|τh[∂g(Dv)](x)||Dη(x)||a(x + h) − a|h|(x)||τhv(x)| dx

+
∣∣∣∣
∫

B1

η〈τh[∂g(Dv)](x), Dη(x)〉a|h|(x)(τhv)(x) dx

∣∣∣∣
=: J3,q,1 + J3,q,2. (5.31)

Observing that by (5.30)1 we have

|a(x + h) − a|h|(x)| � |a(x + h) − a(x)| + |a(x) − a|h|(x)| � 2[a]0,α;B1 |h|α,

and applying in sequence (2.3), Young’s inequality and finally (2.2), yields

J3,q,1 � [a]0,α;B1 |h|α
∫

B3/4

|Dv|q−1|τhv||Dη| dx

� [a]0,α;B1 |h|α
∫

B3/4

|S(x, h)|q−1|τhv||Dη| dx

� |h|α
(∫

B3/4

|S(x, h)|p−1|τhv| dx

+[a]2
0,α;B1

∫
B3/4

|S(x, h)|2q−p−1|τhv| dx

)

� |h|α
(∫

B3/4

|S(x, h)|p dx

) p−1
p

(∫
B3/4

|τhv|p dx

) 1
p

+[a]2
0,α;B1

|h|α
(∫

B3/4

|S(x, h)|2q−p dx

) 2q−p−1
2q−p

·
(∫

B3/4

|τhv|2q−p dx

) 1
2q−p

� |h|2α

(∫
B1

|Dv|p dx + [a]2
0,α;B1

∫
B1

|Dv|2q−p dx

)
. (5.32)

Applying (5.29) with G ≡ ∂g(Dv) ∈ Lq/(q−1)(B1; R
n) and H ≡ ηa|h|τhvDη ∈

W 1,q
0 (B3/4, R

n) we estimate the second term in (5.31) as follows:

J3,q,2 = |h|
∣∣∣∣
∫ 1

0

∫
B1

〈∂g(Dv(x + th)), ∂h/|h|[ηa|h|τhvDη]〉 dx dt

∣∣∣∣
� |h|

∫ 1

0

∫
B1

|Dv(x + th)|q−1[(|Dη|2 + |D2η|)|τhv|a|h|

+ η|Dη||τh Dv|a|h| + η|Dη||τhv||Da|h||
]

dx dt
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�
(|h|‖a‖L∞(B1) + |h|α[a]0,α;B1

) ∫ 1

0

∫
B3/4

|Dv(x + th)|q−1|τhv| dx dt

+ |h|‖a‖L∞(B1)

∫ 1

0

∫
B1

η|Dv(x + th)|q−1|τh Dv| dx dt

=: K1 + K2.

Noticed that we have used the second inequality in (2.3) and (5.30). In turn, by
using Young’s and Hölder’s inequalities, and yet (2.2), we estimate K1 as follows:

K1 � |h|α
[∫ 1

0

∫
B3/4

|Dv(x + th)|p−1|τhv| dx dt

+ (‖a‖2
L∞(B1)

+ [a]2
0,α;B1

)

∫ 1

0

∫
B3/4

|Dv(x + th)|2q−p−1|τhv| dx dt

]

� |h|2α

[∫
B1

|Dv|p dx + (‖a‖2
L∞(B1)

+ [a]2
0,α;B1

)

∫
B1

|Dv|2q−p dx

]
.

Notice that the two integrals in the square bracket above have been estimated as
those appearing in the estimate for J3,q,1, and more precisely as those in (5.32). As
for K2, with ε, κ ∈ (0, 1), we use Young’s inequality to get

K2 � ε

∫
B1

η2[κ + S(x, h)]p−2|τh Dv|2 dx

+|h|2‖a‖2
L∞(B1)

ε

∫ 1

0

∫
B3/4

[κ + S(x, h)]2−p|Dv(x + th)|2(q−1) dx dt.

Again using Young’s inequality, this time with conjugate exponents (2q−p)/(2−p)

and (2q − p)/(2q − 2), letting κ → 0 and finally using (2.6) with γ = p, yields

K2 � ε

∫
B1

η2|τh[Vp(Dv)]|2 dx + |h|2‖a‖2
L∞(B1)

ε

∫
B3/4

[S(x, h)]2q−p dx

+|h|2‖a‖2
L∞(B1)

ε

∫ 1

0

∫
B3/4

|Dv(x + th)|2q−p dx dt

� ε

∫
B1

η2|τh[Vp(Dv)]|2 dx + |h|2‖a‖2
L∞(B1)

ε

∫
B1

|Dv|2q−p dx .

Collecting the estimates found for K1, K2, J3,q,1, J3,q,2 to (5.31) and recalling
(5.19), we finally conclude with

|J3,q | � ε I0 + |h|2α

ε

∫
B1

|Dv|p dx

+|h|2α(‖a‖2
L∞(B1)

+ [a]2
0,α;B1

)

ε

∫
B1

|Dv|2q−p dx . (5.33)
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Estimating J3,p is now very much similar, and actually simpler since the function
a(·) is not involved. Indeed, applying identity (5.29) with the choice G ≡ ∂ f (Dv) ∈
L p/(p−1)(B1; R

n) and H ≡ ητhvDη ∈ W 1,p
0 (B3/4, R

n), we deduce that

|J3,p| � |h|
∣∣∣∣
∫ 1

0

∫
B1

〈∂ f (Dv(x + th)), ∂h/|h|[ητhvDη]〉 dx dt

∣∣∣∣ .
This term can be now estimated exactly as J3,q,2, but taking a|h| ≡ 1 and q = p.
The final estimate is

|J3,p| � ε I0 + |h|2
ε

∫
B1

|Dv|p dx . (5.34)

We finally come to J3,2q−p, and again distinguish between two cases. The first is
when 2q − p < 2; in this case we proceed as for J3,p, thereby getting

|J3,2q−p| � ε I0 + |h|2σm

ε

∫
B1

|Dv|2q−p dx . (5.35)

In the remaining case 2q − p � 2, by using (2.7) we can estimate

|J3,2q−p| � ‖Dη‖L∞(B1)σm I3,2q−p

(see (5.23) for the definition of I3,2q−p). Using the corresponding estimate con-
tained in (5.25), we again arrive at (5.35). Using (5.33)–(5.35) in (5.28) finally
yields

|I3| � ε I0 + |h|2α

ε

∫
B1

|Dv|p dx

+|h|2α(‖a‖2
L∞(B1)

+ [a]2
0,α;B1

+ σm)

ε

∫
B1

|Dv|2q−p dx,

whenever ε ∈ (0, 1). Using this last inequality together with (5.18), (5.20) and
(5.21) (which are valid whenever p > 1), we again arrive at (5.26) and eventually
at (5.27), which therefore holds in the full range of considered exponents 1 <

p < q. We now notice that (5.27) implies that Vp(Dv) belongs to the Nikolski
space N α,2(B2/3); see [24] and references therein for the relevant definitions and
properties. Then, the embedding in fractional Sobolev spaces N α,2 ↪→ W β,2 ∩
L2n/(n−2β) holds for every β < α. We report a local quantitative form of it: if a
map G : B1 → R

n satisfies

sup
0<|h|�10−4

|h|−2α

∫
B2/3

|τhG|2 dx � K 2 (5.36)

for some K � 0, then there exists a positive constant c ≡ c(n, α −β), independent
of K and G, such that the following inequality holds:

‖G‖L2n/(n−2β)(B1/2)
+ ‖G‖Wβ,2(B1/2)

� c
(
K + ‖G‖L2(B1)

)
.
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This statement can be retrieved for instance combining [24, Lemma 2.3] with the
classical fractional Sobolev embedding theorem (notice here that we have β <

α � 1). By (5.27), and recalling that η ≡ 1 on B2/3, we can take G ≡ Vp(Dv)

in (5.36) and therefore conclude that for every β ∈ (0, α) there exists a positive
constant c ≡ c(n, p, q, ν, L , β) such that

‖Vp(Dv)‖2

L
2n

n−2β (B1/2)

� c‖Dv‖p
L p(B1)

+ c‖Vp(Dv)‖2
L2(B1)

+ c(‖a‖2
L∞(B1)

+ [a]2
0,α;B1

+ σm)‖Dv‖2q−p
L2q−p(B1)

is true. Now (5.13) follows observing that |Vp(Du)|2 = |Du|p.

Step 4: Scaling and covering. We now recast the full notation v ↔ vm and a ↔ ã;
see Steps 1 and 2, and define

Tm := ‖ã‖2
L∞(B1)

+ [ã]2
0,α;B1

+ σm . (5.37)

Here we prove that for every β ∈ (0, α) there exists c∗ ≡ c∗(n, p, q, ν, L , β) such
that for every s, t ∈ [1/2, 1], t < s, the inequality

‖Dvm‖p
Lnp/(n−2β)(Bt )

�
c‖Dvm‖p

L p(Bs )

(s − t)2β
+

c∗Tm‖Dvm‖2q−p
L2q−p(Bs )

(s − t)2β
, (5.38)

holds for balls Bt ⊂ Bs concentric to B1 ≡ B1(0). To this end, take s, t as specified
and set r := (s − t)/8. We then consider a covering of Bt with a family of balls
{Br/2(y)}, y ∈ Bt , made of at most c(n)r−n balls, where c(n) is a constant depend-
ing only on n, and such that both the family {Br/2(y)} and the enlarged one {Br (y)}
have the finite intersection property. This means that every ball of a considered
family touches at most c̃(n) different balls belonging to the same family. In every
ball Br ≡ Br (y), we apply (5.13) after scaling as in Remark 1, that is we apply
(5.13) to vm(y + r x)/r , thereby getting (recalling that r2α � 1 and (2.8))

‖Dvm‖p

L
np

n−2β (Br/2)

�
c‖Dvm‖p

L p(Br )

r2β
+

cTm‖Dvm‖2q−p
L2q−p(Br )

r2β

for c ≡ c(n, p, q, ν, L , β). Now (5.38) follows summing up the inequalities in
the last display with respect to the covering {Br/2(y)}, using the finite intersection
property, and the fact that, by construction, we have that the inclusion Br (y) ⊂ Bs

holds for every ball. When summing, we have also used the elementary inequality

(∑
B

aB

)(n−2β)/n

�
∑

B

a(n−2β)/n
B with aB ≡ ‖Dvm‖np/(n−2β)

Lnp/(n−2β)(Br/2(y))
.

Step 5: Interpolation. We prove that for every β ∈ (n(q/p − 1), α) there exists a
positive constant c ≡ c(n, p, q, ν, L , β) such that

‖Dvm‖p

L
np

n−2β (B1/2)

� c‖Dvm‖p
L p(B1)

+ cT b1
m ‖Dvm‖pb2

L p(B1)
(5.39)
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where the exponents b1, b2 have been introduced in (5.5) and Tm is as in (5.37).
Notice that we can always assume that q > p here, since otherwise the previous
inequality coincides with (5.13) (note that b1 = b2 = 1 for p = q). Anyway, all
the forthcoming estimates involve constants that remain stable when q → p. Now,
observe that p < 2q − p holds since q > p while 2q − p < np/(n −2β) is proved
in (5.6)–(5.7). Therefore the interpolation inequality

‖Dvm‖L2q−p(Bs )
� ‖Dvm‖1−θ

L p(Bs )
‖Dvm‖θ

Lnp/(n−2β)(Bs )
(5.40)

holds for θ ∈ (0, 1), found by solving

1

2q − p
= 1 − θ

p
+ (n − 2β)θ

np
, namely θ = n(q − p)

β(2q − p)
. (5.41)

We notice that β > n(q/p − 1) implies that (2q − p)θ < p. Hence we apply
Young’s inequality with exponents p/[θ(2q − p)] and p/[p − (2q − p)θ ] in (5.40)
to have

Tm‖Dvm‖2q−p
L2q−p(Bs )

(s − t)2β
� Tm

(s − t)2β
‖Dvm‖(1−θ)(2q−p)

L p(Bs )
‖Dvm‖θ(2q−p)

Lnp/(n−2β)(Bs )

� ε‖Dvm‖p
Lnp/(n−2β)(Bs )

+ c(ε)

[
Tm

(s − t)2β
‖Dvm‖(1−θ)(2q−p)

L p(Bs )

] p
p−(2q−p)θ

. (5.42)

Recalling the definitions of b1, b2 in (5.5) and that of θ in (5.41), we notice that

b1 = p

p − (2q − p)θ
and b2 = (1 − θ)(2q − p)

p − (2q − p)θ
,

so that using (5.42) in (5.38), and taking ε ≡ ε(n, p, q, ν, L , β) := 1/(2c∗), gives

‖Dvm‖p

L
np

n−2β (Bt )

� 1

2
‖Dvm‖p

L
np

n−2β (Bs )

+ c‖Dvm‖p
L p(B1)

(s − t)2β
+ cT b1

m ‖Dvm‖pb2
L p(B1)

(s − t)2βb1

again for c ≡ c(n, p, q, ν, L , β). We are now in position to apply Lemma 2.2
with ρ0 = 1/2 < 1 − ε =: ρ1, θ = 1/2, γ1 = 2βb1, γ2 = 2β, h(s) =
‖Dvm‖p

Lnp/(n−2β)(Bs )
; upon letting ε → 0, the final outcome is exactly (5.39). No-

tice that Lemma 2.2 is applicable since by (5.12) we have that the function h(·) is
bounded on the interval (0, 1 − ε), for every ε ∈ (0, 1).

Step 6: Letting m → ∞. Using (1.11)1, the minimality of vm and (5.11), we find

ν

∫
B1

|Dvm |p dx �
∫

B1

Fm(x, Dvm) dx

�
∫

B1

Fm(x, Dum) dx

= F(um, B1) + σm‖Dum‖2q−p
L2q−p(B1)

, (5.43)
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so that by (5.10) it follows that the sequence {vm} is bounded in W 1,p(B1). Up to not
relabelled subsequences, we may therefore assume there exists w ∈ ũ + W 1,p

0 (B1)

such that Dvm ⇀ Dw, weakly in L p(B1). Using in (5.43) the convergence of
energies from (5.10) and that σm‖Dum‖2q−p

L2q−p(B1)
→ 0, together with standard

lower semicontinuity theorems for convex functionals, we find
∫

B1

F(x, Dw) dx � lim inf
m

∫
B1

F(x, Dvm) dx �
∫

B1

F(x, Dũ) dx .

In turn, the original minimality of u, and thereby the one of ũ in B1, implies that
there is equality in the previous chain of inequalities. Finally, the strict convexity
of the single integrand f (·) with respect to the variable z implies that ũ ≡ w on
B1. In particular, we have

∫
B1

F(x, Dũ) dx = lim inf
m

∫
B1

F(x, Dvm) dx,

and therefore∫
B1

F(x, Dũ) dx � lim inf
m

∫
B1

f (Dvm) dx + lim inf
m

∫
B1

a(x)g(Dvm) dx .

(5.44)

Again by semicontinuity (and using that ũ = w) we have
∫

B1

f (Dũ) dx � lim inf
m

∫
B1

f (Dvm) dx,

∫
B1

a(x)g(Dũ) dx � lim inf
m

∫
B1

a(x)g(Dvm) dx .

By (5.44) and the last two inequalities we obtain in particular that

lim inf
m

∫
B1

f (Dvm) dx =
∫

B1

f (Dũ) dx .

In turn, this and (1.11)1 imply

lim inf
m

∫
B1

|Dvm |p dx � 1

ν

∫
B1

f (Dũ) dx � L

ν

∫
B1

|Dũ|p dx .

Using this last information and the semicontinuity of the Lnp/(2−2β)-norm, inequal-
ity (5.8) follows passing to the liminf in (5.39).

Step 7: Proof of (5.2). As in the case of (5.3), see Step 1, it is sufficient to prove
(5.2) in the case q̃ = np/(n − 2β) for β ∈ (n(q/p − 1), α). Now, with BR ⊂ Ω

such that R � 1, we rewrite (5.4) as

(
−
∫

BR/2

|Du| np
n−2β dx

) n−2β
np

� cB

(
−
∫

BR

|Du|p dx

)1/p

, (5.45)
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where c ≡ c(n, p, q, ν, L , β) and

B :=
[

1 +
(
‖a‖2

L∞(BR) + R2α[a]2
0,α

)b1
(

−
∫

BR

|Du|p dx

)b2−1
]1/p

� c

[
1 + (M2 + 1)b1 [a]2b1

0,α

R2αb1

Rn(b2−1)

(∫
BR

|Du|p dx

)b2−1
]1/p

.

We have used (5.1) to achieve the last estimate. Recalling the expressions for the
exponents b1, b2 appearing in (5.5) we compute

2αb1 − n(b2 − 1) =
(

2βpn

βp − n(q − p)

) (
1 + α

n
− q

p

)
,

which is a positive exponent by (1.3). Using that R � 1 yields

B � c + c(M2 + 1)b1/p[a]2b1/p
0,α ‖Du‖b2−1

L p(BR)

again with c ≡ c(n, p, q, ν, L , β). This last inequality and (5.45) finally yield (5.2)
with the required dependence on the constants. The proof is complete.

6. Estimates in the two phases

In this section we consider a ball BR and give some rather delicate comparison
and decay lemmas, of different natures, involving a minimiser u of the functional
G defined in (1.10). In Lemmas 6.1 and 6.3, we assume that the functional G is
in the (p, q)-phase, and we make a perturbation around a functional modelled by
P0 in (1.14). In Lemmas 6.2 and 6.4 we instead assume that the functional F is in
the p-phase, through an assumption as (5.1), and we use in a quantitative way the
reverse inequality (5.2) to make perturbation around functionals as in (1.13).

Lemma 6.1. ((p, q)−phase comparison) Let u ∈ W 1,p(Ω) be a local minimiser
of G under the assumptions (1.2), (1.3), and (1.11) and let BR̃(x0) ⊂ Ω be a ball
such that u ∈ W 1,q(BR̃(x0)). With a0 � 0, let v ∈ W 1,p(BR) be the solution to the
following Dirichlet problem:

⎧⎨
⎩

v �→ min
w

∫
BR

( f (Dw) + a0g(Dw)) dx

w ∈ u + W 1,p
0 (BR),

(6.1)

where BR ≡ BR(x0) ⊂ BR̃(x0) with R � R̃. If

a0 > M[a]0,α R̃α and sup
x∈BR

|a(x) − a0| � 2[a]0,α R̃α (6.2)
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hold for a positive constant M, then v ∈ W 1,q(BR) and the inequality
∫

BR

(|Vp(Du) − Vp(Dv)|2 + a0|Vq(Du) − Vq(Dv)|2) dx

� c1

M

∫
BR

(|Du|p + a0|Du|q) dx (6.3)

holds for a constant c1 depending only on n, p, q, ν, L.

Proof. Let us preliminarily observe that the minimality of v and (1.11) easily give
∫

BR

(|Dv|p + a0|Dv|q) dx � L

ν

∫
BR

(|Du|p + a0|Du|q) dx . (6.4)

Since a0 > 0 by (6.2) and u ∈ W 1,q(BR), it follows in particular that v ∈
W 1,q(BR). Since both u and v are minimisers, using the corresponding Euler–
Lagrange equations we compute

D1 :=
∫

BR

〈∂ f (Du) − ∂ f (Dv) + a0(∂g(Du) − ∂g(Dv)), Du − Dv〉 dx

=
∫

BR

〈∂ f (Du) + a0∂g(Du), Du − Dv〉 dx

=
∫

BR

[a0 − a(x)]〈∂g(Du), Du − Dv〉 dx := D2.

We remark that taking u − v as test function in the Euler–Lagrange equations of
the considered functionals is legal by a standard density argument, since u, v ∈
W 1,q(BR) and u − v ∈ W 1,q

0 (BR). Then (2.5) yields
∫

BR

(|Vp(Du) − Vp(Dv)|2 + a0|Vq(Du) − Vq(Dv)|2) dx � cD1 � c|D2|,
(6.5)

where c ≡ c(n, p, q, ν, L). As for D2, by (2.3) and (6.2), we have

|D2| � c
∫

BR

|a(x) − a0||Du|q−1|Du − Dv| dx

� c[a]0,α R̃α

∫
BR

|Du|q−1|Du − Dv| dx

� ca0

M

∫
BR

(|Du|q + |Dv|q) dx

� c

M

∫
BR

(|Du|p + a0|Du|q) dx,

where in the last line we have also used (6.4). Now (6.3) follows by merging the
content of the last two displays.
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Lemma 6.2. (p-Phase comparison) Let u ∈ W 1,p(Ω) be a local minimiser of G
under the assumptions (1.2), (1.3) and (1.11) and let BR ⊂ Ω be a ball such that
R � 1. Let v ∈ W 1,p(BR) be the solution to the following Dirichlet problem:

⎧⎨
⎩

v �→ min
w

∫
BR/2

f (Dw) dx

w ∈ u + W 1,p
0 (BR/2)

(6.6)

and assume that for some constant M � 1 the bound

sup
x∈BR

a(x) � M[a]0,α Rα (6.7)

is satisfied. Then∫
BR/2

|Vp(Du) − Vp(Dv)|2 dx � c(M)Rσ

∫
BR

|Du|p dx (6.8)

holds with

σ := 2n

(
1 + α

n
− q

p

)
> 0, (6.9)

and for a constant c(M) depending only on data and M. In particular, c(M) is
a non-decreasing function of M and (1.3) implies that σ is positive. Moreover, it
follows that v ∈ W 1,2q−p(BR/2) and that the inequality∫

BR/2

|Vp(Du) − Vp(Dv)|2 � cM2[a]2
0,α R2α

∫
BR/2

|Du|2q−p dx (6.10)

holds for a constant c ≡ c(n, p, q, ν, L), but otherwise independent of M.

Proof. This time the premise of a result is on the boundary higher integrability of
minima of functionals as the one in (6.6). From [24, Theorem 7.7] we gain that
there exists a positive constant c ≡ c(n, p, ν, L) such that∫

BR/2

|Dv|2q−p dx � c
∫

BR/2

|Du|2q−p dx (6.11)

holds; notice that [24, Theorem 7.7] applies here since 2q − p < np/(n−2α) holds
by (5.6)–(5.7). Then by Theorem 5.1 we have that u ∈ W 1,2q−p(BR/2) so that the
right-hand side in (6.11) is finite; in particular, this proves that v ∈ W 1,2q−p(BR/2).
The minimality of both u and v, and (2.5), (2.3) and (6.7), yield∫

BR/2

|Vp(Du) − Vp(Dv)|2 dx � c
∫

BR/2

〈∂ f (Dv) − ∂ f (Du), Dv − Du〉 dx

= c
∫

BR/2

〈∂ f (Du), Du − Dv〉 dx

= c
∫

BR/2

a(x)〈∂g(Du), Dv − Du〉 dx

� c∗M[a]0,α Rα

∫
BR/2

|Du|q−1|Du − Dv| dx,
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for a constant c∗ depending only on n, p, q, ν, L . Recalling (2.6) and applying
Young’s inequality we estimate (for ε ∈ (0, 1))

M[a]0,α Rα|Du|q−1|Du − Dv|
� M[a]0,α Rα(|Du| + |Dv|)q−1|Du − Dv|
� cM[a]0,α Rα(|Du| + |Dv|)(2q−p)/2|Vp(Du) − Vp(Dv)|

� ε|Vp(Du) − Vp(Dv)|2 + cM2[a]2
0,α R2α

ε
(|Du| + |Dv|)2q−p.

Combining the content of the last two displays, choosing ε ≡ ε(n, p, q, ν, L) =
1/(2c∗) and reabsorbing terms on the left-hand side yields∫

BR/2

|Vp(Du) − Vp(Dv)|2 � cM2[a]2
0,α R2α

∫
BR/2

(|Du| + |Dv|)2q−p dx

for c ≡ c(n, p, q, ν, L). Estimating the right hand side of the previous inequality
by means of (6.11) yields (6.10). Finally, since (5.1) is in force here, we can apply
(5.2) with the choice q̃ = 2q − p and this yields

R2α

∫
BR/2

|Du|2q−p dx

� c(M)Rn+2α

(
−
∫

BR

|Du|p dx

) 2q−p
p

� c(M)R2α− 2n(q−p)
p

(∫
BR

|Du|p dx

) 2q−2p
p

∫
BR

|Du|p dx

� c(M)Rσ

∫
BR

|Du|p dx .

Combining this last inequality with (6.10) yields (6.8) and the proof is complete.

Accordingly to the two lemmas above, we have two decay estimates. The first
holds for all scales 	 � R � R̃ for which (6.2) holds; the second instead holds for
the scales 	 � R for which (6.13) below hold.

Lemma 6.3. ((p, q)-phase decay at all scales) Let u ∈ W 1,p(Ω) be a local min-
imiser of G under the assumptions (1.2), (1.3) and (1.11), and let BR̃(x0) ⊂ Ω be
such that u ∈ W 1,q(BR̃(x0)). Assume that for every ball BR(x0) ⊂ BR̃(x0) with
R � R̃, the conditions in (6.2) are satisfied for some M � 1 and some a0 � 0.
Then the inequality∫

B	

(|Du|p + a0|Du|q) dx

� c2

[( 	

R

)n + c1

M

] ∫
BR

(|Du|p + a0|Du|q) dx (6.12)

holds whenever 0 < 	 � R � R̃, where c2 ≡ c2(n, p, q, ν, L). The constant c1
has been introduced in Lemma 6.1 and depends only on n, p, q, ν, L.
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Proof. It is sufficient to prove (6.12) for 	 � R/2. We go back to the setting of
Lemma 6.1 and consider the function v defined in (6.1). By using (11.2) below and
the fact that |Vγ (Du)|2 = |Du|γ for γ = p, q, we obtain

∫
B	

(|Du|p + a0|Du|q) dx � c
∫

B	

(|Vp(Dv)|2 + a0|Vq(Dv)|2) dx

+ c
∫

BR

(|Vp(Du) − Vp(Dv)|2 + a0|Vq(Du) − Vq(Dv)|2) dx

� c sup
B	

(|Dv|p + a0|Dv|q) 	n

+ c
∫

BR

(|Vp(Du) − Vp(Dv)|2 + a0|Vq(Du) − Vq(Dv)|2) dx

� c
( 	

R

)n
∫

BR

(|Du|p + a0|Du|q) dx

+ c
∫

BR

(|Vp(Du) − Vp(Dv)|2 + a0|Vq(Du) − Vq(Dv)|2) dx .

The assertion follows using Lemma 6.1 to estimate the last integral.

Lemma 6.4. (p-phase decay at one scale) Let u ∈ W 1,p(Ω) be a local minimiser
of G under the assumptions (1.2), (1.3) and (1.11) and let B	 ⊂ BR ⊂ Ω be
concentric balls with 0 < 	 � R � 1 such that

sup
x∈B	

a(x) � M[a]0,α	α and sup
x∈BR

a(x) � M[a]0,α Rα (6.13)

hold for some M � 1. Then it follows that

∫
B	

H(x, Du) dx � c3(M)
[( 	

R

)n + Rσ
] ∫

BR

H(x, Du) dx (6.14)

holds for a constant c3(M) depending on data and M, and with σ > 0 as in (6.9).

Proof. We observe that

∫
B	

|Du|p dx � c
[( 	

R

)n + c(M)Rσ
] ∫

BR

|Du|p dx (6.15)

holds for c ≡ c(n, p, q, ν, L) whenever 0 < 	 � R, and for this we only need
the first inequality in (6.13). This follows via the same arguments employed for
Lemma 6.3; it this time rests on (6.8). We now prove (6.14) and we can restrict to
the case 	 � R/2. Now, by (6.13) and the Hölder continuity of a(·) we observe
that

sup
x∈B2	

a(x) � sup
x∈B	

a(x) + 3[a]0,α	α � 4M[a]0,α(2	)α .
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We can therefore apply Theorem 5.1 (with 4M instead of M and with BR ≡ B2	);
at this point, since pα − n(q − p) > 0 by (1.3) and 	 < 1, we have

∫
B	

a(x)|Du|q dx � 4M[a]0,α	α|B	| −
∫

B	

|Du|q dx

� c	n+α

(
−
∫

B2	

|Du|p dx

)q/p

� c	
pα−n(q−p)

p

(∫
B2	

|Du|p dx

)(q−p)/p ∫
B2	

|Du|p dx

� c
∫

B2	

|Du|p dx

� c
[( 	

R

)n + c(M)Rσ
] ∫

BR

H(x, Du) dx . (6.16)

To make the last estimate above we have once again used (6.15) an that 2	 � R; the
constant c depends on data and M . Combining (6.16) with (6.15) yields (6.14).

7. Proof of Theorem 1.3

Step 1: Universal choice of the constants. In the following, we shall apply Lemmas
6.1–6.4 for values of a0 being such that a0 � ‖a‖L∞ . We shall also apply Lemma
2.1 with the choice

φ(	) ≡
∫

B	

(|Du|p + a0|Du|q) dx, (7.1)

with c̃ = c2 ≡ c2(n, p, q, ν, L), where c2 is the constant appearing in Lemma 6.3,
and where the number δ ∈ (0, n) is fixed as in the statement of Theorem 1.3. This
allows us to determine the corresponding number ε̄ ≡ ε̄(n, p, q, ν, L , δ) > 0 given
by Lemma 2.1. We now consider c1 ≡ c1(n, p, q, ν, L) coming from Lemma 6.1
and determine M � 4 large enough in order to have

c1

ε̄
� M. (7.2)

Recalling the dependence on n, p, q, ν, L , δ of ε̄ and c1, this fixes M as a quantity
depending only on n, p, q, ν, L , δ. With this value of M we consider Lemma 6.4
and determine the corresponding constant c3(M). This quantity depends only on
data and δ. Accordingly, we take τ ≡ τ(data, δ) ∈ (0, 1/4) such that

2c3(M)τ δ � 1 ⇐⇒ τ �
(

1

2c3(M)

)1/δ

. (7.3)

Finally, we determine the positive radius R1 � 1 in such a way that

R1 � τ n/σ . (7.4)
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Taking the previous dependences into account, R1 depends only on data, δ. In the
next step we shall prove that (1.12) holds whenever R � R1; once this is proved,
estimate (1.12) with any R � 1 follows by enlarging the constant of a factor Rδ−n

1 ,
and recalling again that R1 depends on data and δ.
Step 2: Exit time argument. With R1, τ and M fixed in the previous step as quantities
depending only ondata, δ, we take R0 � R1 and a ball BR0 ⊂ Ω , and finally build
the sequence of nested balls as in (1.17) (all the balls considered are concentric to
BR0 ). We consider the condition

sup
x∈B

τk R0

a(x) � M[a]0,ατ kα Rα
0 , (7.5)

and, accordingly, we define the following exit time index:

m := min {k ∈ N ∪ {∞} : (7.5) fails} . (7.6)

Notice that m is allowed to be infinite. The idea is now as follows: if m < ∞, after
the exit time the functional enters the (p, q)-phase, and then we can use (6.12) from
Lemma 6.3. Before the exit time argument the functional is in the p-phase, and we
shall inductively prove a decay estimate based on (6.14) from Lemma 6.4.
Step 3: Iteration in the (p, q)-phase. Here we assume that m < ∞, otherwise go
directly to Step 4 (on the other hand, if m = 0, then Step 4 can be avoided). By the
very definition in (7.6) we have now that

sup
x∈Bτm R0

a(x) > M[a]0,ατmα Rα
0 .

We are then led to apply Lemma 6.3 (keep also in mind Lemma 6.1) with the choice

a0 := sup
x∈Bτm R0

a(x) and R̃ := τm R0

and these make conditions (6.2) satisfied whenever R � τm R0, when considering
a smaller ball BR concentric to Bτm R0 . Moreover, for x ∈ Bτm R0 we have

a(x) � a0 − |a(x) − a0|
� a0/2 + (M/2)[a]0,α(τm R0)

α − 2[a]0,α(τm R0)
α

� a0/2

(recall we picked M � 4) so that in any case we have

a0 � a(x) � a0/2 for every x ∈ Bτm R0 . (7.7)

In particular, we have that u ∈ W 1,q(Bτm R0) (recall that in the case m = 0 the ball
Bτm R0 can touch ∂Ω). Lemma 6.3 is therefore applicable and we come up with
(6.12), that with the notation in (7.1) reads as

φ(	) � c2

[( 	

R

)n + c1

M

]
φ(R) ,
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and this holds whenever 0 < 	 � R � τm R0. Due to the choice in (7.2), we can
now apply Lemma 2.1 thereby concluding with the following decay estimate:

∫
B	

(|Du|p + a0|Du|q) dx � c

(
	

τm R0

)n−δ ∫
Bτm R0

(|Du|p + a0|Du|q) dx,

that again holds whenever 	 � τm R0, and for a constant c ≡ c(n, p, q, ν, L , δ).
By (7.7) we can conclude with

∫
B	

H(x, Du) dx � c

(
	

τm R0

)n−δ ∫
Bτm R0

H(x, Du) dx (7.8)

for 0 < 	 � τm R0 and c ≡ c(n, p, q, ν, L , δ). This completes the proof of (1.12)
when m = 0, upon renaming R0 by R. When m > 0 it remains to estimate the last
integral appearing in the above display; this will be done in the next step.
Step 4: Iteration in the p-phase. By the previous step we can assume that m � 1.
Notice that m here can be infinite and therefore we distinguish two cases, the first
being the one when m < ∞, the second when m = ∞. We proceed by treating
the former, the modifications for the latter will be done after. We start proving by
induction that for every k ∈ {0, . . . , m − 1} it holds that

∫
B

τk R0

H(x, Du) dx � τ k(n−δ)

∫
BR0

H(x, Du) dx, (7.9)

and we can assume that m � 2 otherwise there is nothing to prove. For k = 0—
induction basis—(7.9) is trivial. Assume that now (7.9) holds for a certain k such
that 0 � k < m − 1. Since k + 1 < m then

sup
x∈B

τk+1 R0

a(x) � M[a]0,α

[
τ k+1 R0

]α

and

sup
x∈B

τk R0

a(x) � M[a]0,α[τ k R0]α.

We can therefore apply Lemma 6.4 with the choice R = τ k R0, 	 = τ k+1 R0, and
we obtain (7.8); using (7.3)-(7.4) and that R0 � R1 we have

∫
B

τk+1 R0

H(x, Du) dx � c3(M)
[
τ n + Rσ

1

] ∫
B

τk R0

H(x, Du) dx

� 2c3(M)τ δτ n−δ

∫
B

τk R0

H(x, Du) dx

� τ n−δ

∫
B

τk R0

H(x, Du) dx .
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Using the induction assumption (7.9) we conclude with
∫

B
τk+1 R0

H(x, Du) dx � τ (k+1)(n−δ)

∫
BR0

H(x, Du) dx

so that, after induction, the family of inequalities in (7.9) holds whenever k ∈
{0, . . . , m − 1}. In turn, the previous inequality implies that

∫
B	

H(x, Du) dx � c

(
	

R0

)n−δ ∫
BR0

H(x, Du) dx (7.10)

holds whenever τm R0 � 	 � R0, and again for c ≡ c(data, δ). Indeed, let us
take 	 ∈ [τm R0, R0); then there exists an index k such that 1 � k � m and
τ k R0 � 	 < τ k−1 R0. We use (7.9) to estimate

∫
B	

H(x, Du) dx �
∫

B
τk−1 R0

H(x, Du) dx

� τ k(n−δ)

τ n−δ

∫
BR0

H(x, Du) dx

� 1

τ n−δ

(
	

R0

)n−δ ∫
BR0

H(x, Du) dx (7.11)

so that (7.10) follows by taking c := τ δ−n , which is a constant that still depends on
data and δ since τ ≡ τ(data, δ) - see (7.3). Therefore, upon renaming R0 by R,
we have established (1.12) in the range τm R0 � 	 � R0. In order to prove (1.12)
for the range 0 < 	 < τm R0 it is sufficient to estimate the right hand side of (7.8)
by (7.10) written in the case 	 = τm R0. This completes the proof in the case the
exit time m is finite. The case m = ∞ is actually simpler: the functional always
remains in the p-phase and by induction, exactly as when m < ∞, we prove that
(7.9) holds for every k ∈ N. Then, estimating as in (7.11), we prove that (7.10)
holds for 	 ∈ (0, R0), so that (1.12) follows (with R0 renamed by R).

8. Proof of Theorem 1.2

Step 1: Morrey type estimate. With Ω ′ � Ω being a open subset, using a standard
covering argument, by Theorem 1.3 for every δ ∈ (0, n) we can find a constant c,
and a radius R1 � min{1, dist(Ω ′, ∂Ω)/100}, both depending only on data, δ,
dist(Ω ′, ∂Ω) and ‖H(·, Du)‖L1(Ω), such that the estimate

∫
Bs

|Du|p dx �
∫

Bs

H(x, Du) dx � csn−δ (8.1)

holds whenever Bs ⊂ Ω is a ball with center in Ω ′ and s � R1.
Step 2: A family of frozen problems. Now, let us take x0 ∈ Ω ′ and consider concen-
tric balls BR ≡ BR(x0) such that 2R � R1; it follows, in particular, that B2R � Ω .
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We set a0 := supx∈BR
a(x) and analyse an alternative on BR . In the first case we

look at Lemma 6.1 and assume that a0 satisfies (6.2) with

R̃ ≡ R and M ≡ 8/Rα/2 . (8.2)

Notice that M � 8, since R � 1. Observe that by the definition of a0, the second
inequality in (6.2) is always verified and therefore if (6.2) is satisfied this means

sup
x∈BR

a(x) >
(

8/Rα/2
)

[a]0,α Rα . (8.3)

We also notice that since B2R � Ω by Theorem 5.1 we have in particular that
u ∈ W 1,q(BR). In this case we define v ∈ W 1,q(BR) as in (6.1) and by Lemma 6.1
with (8.2) we come up with (6.3), that can now be restated as

∫
BR

(|Vp(Du) − Vp(Dv)|2 + a0|Vq(Du) − Vq(Dv)|2) dx

� cR
α
2

∫
BR

(|Du|q + 1) dx,

for a constant c depending only on n, p, q, ν, L . The other case of the alternative is
when (6.2) does not hold and this in turn means that (8.3) fails. Therefore we can
define v ∈ W 1,q(BR/2) as in (6.6) and apply (6.10) from Lemma 6.2 with (8.2).
This gives

∫
BR/2

|Vp(Du) − Vp(Dv)|2 � cRα

∫
BR/2

|Du|2q−p dx

for c ≡ c(n, p, q, ν, L , [a]0,α). All in all, by defining for every R � R1/2 the
coefficient

a0(R) :=
{ ‖a‖L∞(BR) if (8.3) holds

0 if (8.3) does not hold,

we have built a local minimiser v ≡ vR ∈ W 1,q(BR/2(x0)) of the functional

W 1,p(BR/2) � w �→
∫

BR/2

( f (Dw) + a0(R)g(Dw)) dx (8.4)

such that, for c ≡ c(n, p, q, ν, L , [a]0,α), the following inequality is true:

−
∫

BR/2

(|Vp(Du) − Vp(DvR)|2 + a0(R)|Vq(Du) − Vq(DvR)|2) dx

� cRα/2 −
∫

BR

(|Du|2q−p + 1) dx . (8.5)

Moreover, by the way vR has been constructed, using its minimality and the growth
conditions on f (·) and g(·) in (1.11), it follows∫

BR/2

(|DvR |p + a0(R)|DvR |q) dx � L

ν

∫
BR

(|Du|p + a0(R)|Du|q)
dx . (8.6)
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Step 3: Using (8.1) and higher integrability. We estimate the right hand side in (8.5)
by means of (5.3) and then (8.1) as follows

−
∫

BR

(|Du|2q−p + 1) dx � c

(
−
∫

B2R

(|Du|p + 1) dx

)b

� cR−δb (8.7)

with c ≡ c
(
data, δ, dist(Ω ′, ∂Ω), ‖H(·, Du)‖L1(Ω)

)
and b ≡ b(n, p, q, α) � 1;

we shall initially take δ < α/(10b), making further restrictions later. Then (8.5)
yields

−
∫

BR/2

(|Vp(Du) − Vp(DvR)|2 + a0(R)|Vq(Du) − Vq(DvR)|2) dx � cRα/2−bδ.

(8.8)

Now observe that in the case q � 2, (2.6) immediately yields

a0(R) −
∫

BR/2

|Du − DvR |q dx � cRα/2−bδ.

Instead, when q < 2, by using again (2.6) and Hölder’s inequality with exponents
2/q and 2/(2 − q), and also recalling that R � 1, we estimate as

a0(R) −
∫

BR/2

|Du − DvR |q dx

� ca0(R) −
∫

BR/2

|Vq(Du) − Vq(DvR)|q(|Du| + |DvR |)q(2−q)/2 dx

� c

(
−
∫

BR/2

a0(R)|Vq(Du) − Vq(DvR)|2 dx

)q/2

·
(

−
∫

BR/2

a0(R)(|Du| + |DvR |)q dx

)(2−q)/2

� cRα/4−bδ/2 ·
(

−
∫

BR

(|Du|q + 1) dx

)1/2

� cR
α
4 − bδ(3q−p)

4q−2p .

Here we have used (8.6), (8.7) and (8.8). Arguing in a completely similar for the
homologous integrals involving |Du − DvR |p, in any case we conclude that, for
c ≡ c

(
data, δ, dist(Ω ′, ∂Ω), ‖H(·, Du)‖L1(Ω)

)
, the following inequality holds:

−
∫

BR/2

(|Du − DvR |p + a0(R)|Du − DvR |q) dx � cRα/4−bδ . (8.9)

Step 4: Conclusion. For 0 < 	 � R/2 � R1/4 we apply (11.3) from Theorem 11.1
(with BR there replaced by BR/2 here and with a0 ≡ a0(R)) to each vR introduced
in Step 2, which is a minimiser of the functional in (8.4); we have
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−
∫

B	

|Du − (Du)B	 |p dx

� 2p −
∫

B	

|Du − (DvR)B	 |p dx

� c −
∫

B	

|DvR − (DvR)B	 |p dx + c −
∫

B	

|Du − DvR |p dx

� c
( 	

R

)pα̃ −
∫

BR/2

(|DvR |p + a0(R)|DvR |q) dx

+c

(
R

	

)n

−
∫

BR/2

|Du − DvR |p dx

� c
( 	

R

)pα̃ −
∫

BR

(|Du|p + a0(R)|Du|q) dx

+c

(
R

	

)n

−
∫

BR/2

(|Du − DvR |p + a0(R)|Du − DvR |q) dx

� c
( 	

R

)pα̃ −
∫

BR

|Du|p dx + c
( 	

R

)pα̃
(

−
∫

BR

|Du|2q−p dx

)q/(2q−p)

+c

(
R

	

)n

−
∫

BR/2

(|Du − DvR |p + a0(R)|Du − DvR |q) dx,

for a constant c depending on n, p, q, ν, L and ‖a‖L∞ . We now use (8.1), (8.7) and
(8.9) to estimate the last three integrals, respectively. Recalling that R � 1 and that
q/(2q − p) � 1, a few elementary manipulations yield, for 0 < 	 � R/2

−
∫

B	

|Du − (Du)B	 |p dx � c
( 	

R

)pα̃ [
R−δ + R−δb

]
+ c

(
R

	

)n

Rα/4−bδ,

again for c ≡ c(data, δ, dist(Ω ′, ∂Ω), ‖H(·, Du)‖L1(Ω)). Again with the help of
(8.1), the previous inequality continue to hold whenever 0 < 	 � R � R1/2 �
1/2, with B2R as above. We start taking 	 and R linked by 	 = R1+ε for some
positive ε ∈ (0, 1). This yields, again via elementary manipulations

−
∫

B	

|Du − (Du)B	 |p dx � c	
εpα̃−δb

1+ε + c	
α/4−nε−bδ

1+ε .

Choosing, for instance, ε := α/(16n) and δ := α̃α/(32bn), yields

−
∫

B	

|Du − (Du)B	 |p dx � c	α̃α/(64n).

Summarising, the previous estimate holds for any ball B	 with centre in Ω ′ and
whenever 	 � R1+ε

1 with R1 as above. Since Ω ′ � Ω is arbitrary, by a well-
known characterisation of Hölder continuity due to Campanato and Meyers, the
previous inequality implies that Du ∈ C0,β

loc (Ω) for β = α̃α/(64np) and the proof
is complete.
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Remark 6. (Proof of Theorem 1.4) The proof of Theorem 1.4 can be obtained ex-
actly as the proof of Theorem 1.2. Indeed, this last one is essentially based on a
perturbation argument, that extends to the vectorial case verbatim. The only differ-
ence relies in the use of the reference estimates: instead of using Theorem 11.1 we
have to use Theorem 11.2. It is precisely here that the structure condition comes
into the play: direct dependence on the modulus of the gradient of the integrand is
required. It is indeed possible to prove that Theorem 1.4 extends to minimisers of
functionals of the type

W 1,p(Ω; R
N ) � w �→

∫
Ω

[ f̃ (|Dw|) + a(x)g̃(|Dw|)] dx,

where the non-negative functions f (t) and g(t) are close to t p and tq respectively,
in a suitable C2,β -sense.

9. Proof of Theorem 1.1: (1.8)

We prove (1.8), from which

u ∈ C
0,(p−n+pδg)/(p+pδg)

loc (Ω)

follows when p > n/(1 + δg) by Morrey’s embedding theorem, as (1.7) implies

u ∈ W
1,p(1+δg)

loc (Ω). For (1.8) we follow the methods of [19] and [21, Chapter
7]. We start taking a ball BR ⊂ Ω with R � 1; all the subsequent balls will be
concentric to this one. With 	 � t < s � R, we determine a cut-off function
η ∈ C∞

0 (Bs) such that |Dη| � 4/(s − t), 0 � η � 1 and η ≡ 1 on Bt . We set
w := u −η(u − (u)BR ), to be used as a competitor. Notice that H(·, Du) ∈ L1(Ω)

(which follows by the minimality of u) and (3.13), imply also

a(x)|Dw|q + |u|q ∈ L1(Ω) (9.1)

by (1.3) and Sobolev embedding theorem (recall that u ∈ W 1,p(Ω) and that q �
p + pα/n � p∗). The minimality of u then gives F(u, Bs) � F(w, Bs). In turn
(1.5) yields νP(u, Bs) � LP(w, Bs), with P as in (1.1). Since Dw ≡ 0 on Bt we
have ∫

Bs

H(x, Du) dx � c∗
∫

Bs\Bt

H(x, Du) dx

+ c

(s − t)p

∫
Bs

|u − (u)BR |p dx + c

(s − t)q

∫
Bs

a(x)|u − (u)BR |q dx,

with c∗ and c both depending on n, p, q, ν, L . The right hand side of the previous
inequality is finite by (9.1). By “filling the hole”, that is adding to both sides the
quantity

c∗
∫

Bt

H(x, Du) dx
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we come up with
∫

Bt

H(x, Du) dx � θ

∫
Bs

H(x, Du) dx

+ c

(s − t)p

∫
BR

|u − (u)BR |p dx + c

(s − t)q

∫
BR

a(x)|u − (u)BR |q dx,

where θ = c∗/(c∗ + 1) < 1, and for a new constant c. We can now apply Lemma
2.2 with h(t) ≡ ∫

Bt
H(x, Du) dx , γ1 ≡ p and γ2 ≡ q, in order to conclude with

the following intrinsic Caccioppoli estimate:
∫

B	

H(x, Du) dx � c
∫

BR

H

(
x,

u − (u)BR

R − 	

)
dx . (9.2)

Taking 	 = R/2 and passing to averages yields

−
∫

BR/2

H(x, Du) dx � c −
∫

BR

H

(
x,

u − (u)BR

R

)
dx ,

while using (1.18) we conclude that whenever BR ⊂ Ω is such that with R � 1

−
∫

BR/2

H(x, Du) dx � c

(
−
∫

BR

[H(x, Du)]d2 dx

)1/d2

holds for a constant c ≡ c(n, p, q, ν, L , α, [a]0,α, ‖Du‖L p ). Recalling that d2 < 1,
we have that (1.8) follows by a suitable localised version of Gehring’s lemma (see
for instance [21, Chapter 6]). We just remark that the above proof only uses the
growth assumptions (1.5) and the Sobolev–Poincaré inequality of Theorem 1.6.
Therefore the proof works verbatim in the case we are considering vector-valued
variational problems and minimisers u : Ω → R

N , N > 1.

10. Proof of Theorem 1.1: (1.9)

Step 1: Intrinsic Caccioppoli inequality in terms of H(·). Indeed, u satisfies
∫

Bt

H(x, D(u − k)±) dx � c
∫

Bs

H

(
x,

(u − k)±
s − t

)
dx (10.1)

for every k ∈ R, t < s, where c ≡ c(n, p, q, ν, L), whenever Bt ⊂ Bs are
concentric balls with t < s. We are using the standard notation

(u − k)+ := max{u − k, 0} and (u − k)− := max{k − u, 0} .

The proof of (10.1) follows along the lines of (9.2), by this time taking as a competi-
tor w := u−η(u−k)+ in the case we are interested in the version with (u−k)+. As
for the version with (u −k)−, it is sufficient to note that −u is still a local minimiser
of a functional as F with integrand F(x, v, z) replaced by F(x,−v,−z), that still
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satisfies (1.5), and to apply the version with + to this case. See also [19] for more
details. Accordingly, we shall also use the standard notation

A(k, s) := Bs ∩ {u > k} and B(k, s) := Bs ∩ {u < k} .

Step 2: u is locally bounded. We prove that the local estimate

‖u‖L∞(BR/2)

� c
(
n, p, q, ν, L , α, [a]0,α, R, ‖Du‖L p(BR), ‖H(·, u)‖L1(BR)

)
(10.2)

holds whenever BR ⊂ Ω is a ball. As usual we may assume that BR ≡ B1, scaling as
in Remark 1 and considering the new minimiser ũ. Next, take numbers 0 � h < k,
1/2 � 	 < s � 1 and concentric balls B	 ⊂ Bt ⊂ Bs with t := (s + 	)/2.
Then take a related cut-off function η such that η ∈ C∞

0 (Bt ), η ≡ 1 on B	 and
|Dη| � c/(s − 	). Applying (3.15) and Hölder’s inequality yields∫

Bt

H (x, η(ũ − k)+) dx

� c

(s − 	)q−p

(∫
Bt

[
H (x, D(η(ũ − k)+))

]d2 dx

)1/d2

� c

(s − 	)q−p

∫
Bt

H (x, D(η(ũ − k)+)) dx |A(k, t)|d3,

where d2 ≡ d2(n, p, q, α) ∈ (0, 1), d3 := (1 − d2)/d2 > 0 and with c depending
on n, p, q, α, [a]0,α, R−n/p‖Du‖L p , R−n/p−1‖u‖L p (keep (2.8) in mind). On the
other hand, using the properties of H(·) and η we have∫

Bt

H (x, D(η(ũ − k)+)) dx

� c
∫

Bt

H

(
x,

(ũ − k)+
s − 	

)
dx + c

∫
Bt

H(x, D(ũ − k)+) dx . (10.3)

Combining the last two displays with (10.1) and recalling that h < k yields∫
A(k,	)

H (x, ũ − k) dx

� c

(s − 	)q−p

∫
A(h,s)

H

(
x,

ũ − h

s − 	

)
dx |A(k, s)|d3, (10.4)

where c ≡ c(n, p, q, ν, L , α, [a]0,α, R−n/p−1‖u‖W 1,p ). Consider now a sequence
of concentric (to B1) nested balls {B	i }, where 	i := (1 + 2−i )/2 for i � 0 and
for T > 0 to be chosen in a few lines, define the levels ki := 2T (1 − 2−(i+1)). We
apply (10.4) with 	 ≡ 	i+1, s ≡ 	i , k ≡ ki+1 and h ≡ ki . This gives, for i � 0∫

A(ki+1,	i+1)

H (x, ũ − ki+1) dx

� c4iq
∫

A(ki ,	i )

H (x, ũ − ki ) dx |A(ki+1, 	i )|d3 .
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Moreover, we have

Ψi := T −p
∫

A(ki ,	i )

H (x, ũ − ki ) dx � T −p(ki+1 − ki )
p|A(ki+1, 	i )|.

Combining the last two displays and making obvious manipulations, we obtain

Ψi+1 � c44(1+d3)qiΨ
1+d3
i ,

for every i � 0, for a constant c4 depending only on n, p, q, ν, L , α, [a]0,α and
R−n/p−1‖u‖W 1,p . We can now use a standard iteration lemma (see [21, Lemma 7.1])
that tells that Ψi → 0 provided there exists a positive constant c � 1, depending
only on c4, d3, q, such that Ψ0 � 1/c; in this way c finally depends only on
n, p, q, ν, L , α, [a]0,α and R−n/p−1‖u‖W 1,p . This condition can be satisfied by
choosing

T := c
[‖H (·, ũ+) ‖L1(B1)

]1/p

for a suitable constant c depending only on n, p, q, ν, L , α, [a]0,α and the norm
R−n/p−1‖u‖W 1,p . It follows that ũ � 2T almost everywhere on B1/2:

‖ũ+‖p
L∞(B1/2)

� c‖H (·, ũ+) ‖L1(B1)
.

Repeating the same argument for −ũ—which is a local minimiser of a functional
as F with integrand F(x, v, z) replaced by F(x,−v,−z), that still satisfies (1.5)—
estimate (10.2) follows after rescaling.
Step 3: Oscillation reduction in the p-phase. From now on we assume p � n/(1 +
δg) and prove the Hölder continuity of u. All the balls BR considered in the rest
of the proof of Theorem 1.1 will be such that R � 1; we shall recall this fact
several times later. Step 2 implies that u ∈ L∞

loc(Ω). The key fact here is that in the
p-regime then minimisers satisfy a Caccioppoli type inequality similar to the one
that holds for standard functionals with p-growth. The difference appears in terms
of a controllable quantity.

Lemma 10.1. (Almost standard Caccioppoli’s inequality) Let BR � Ω be a ball
such that R � 1 and

sup
BR

a(x) � 4[a]0,α Rα (10.5)

is satisfied. Then the following Caccioppoli’s inequality holds on concentric balls
Bs ⊂ Bt ⊂ BR, whenever 0 < t < s � R and k ∈ R with |k| � 2‖u‖L∞(BR):

∫
Bt

|D(u − k)±|p dx � c

[
1 +

(
R

s − t

)q] ∫
Bs

∣∣∣∣ (u − k)±
R

∣∣∣∣
p

dx (10.6)

where c ≡ c(n, p, q, ν, L , [a]0,α, ‖u‖L∞(BR)).
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Proof. We shall manipulate (10.1); this trivially yields∫
Bt

|D(u − k)±|p dx �
∫

Bt

H(x, D(u − k)±) dx

� c

(
R

s − t

)p ∫
Bs

∣∣∣∣ (u − k)±
R

∣∣∣∣
p

dx

+ c

(
R

s − t

)q ∫
Bs

a(x)

∣∣∣∣ (u − k)±
R

∣∣∣∣
q

dx . (10.7)

To estimate the last term, we observe that the inequality

a(x)

∣∣∣∣ (u(x) − k)±
R

∣∣∣∣
q

� c

∣∣∣∣ (u(x) − k)±
R

∣∣∣∣
p

(10.8)

holds whenever x ∈ BR , for some constant c depending on [a]0,α, ‖u‖L∞(BR).
Indeed, since in this setting we are assuming that p < n, then by (1.3) we have
q − α < p + pα/n − α < p and therefore by (10.5) and R � 1 we can estimate

a(x)

∣∣∣∣ (u − k)±
R

∣∣∣∣
q

�
c[a]0,α‖u‖q−p

L∞(BR)|(u − k)±|p

Rq−α
� c

∣∣∣∣ (u − k)±
R

∣∣∣∣
p

,

so that (10.8) is proved. Now (10.6) follows using the last inequality in (10.7).

We can now obtain two density lemmas which are typical of De Giorgi’s theory in
the standard case. In the following, with BR � Ω , we shall denote

M(R) := sup
BR

u, m(R) := inf
BR

u and osc (u, R) := M(R) − m(R).

All the balls appearing in the same context will be concentric.

Lemma 10.2. Let BR � Ω be a ball such that R � 1 (10.5) holds. Moreover,
assume that the density condition

|A(k0, R)|
|BR | � 1

2

(
resp.

|B(k0, R)|
|BR | � 1

2

)

holds for k0 := (M(R)+m(R))/2. Then there exists a positive constant c, depend-
ing only on n, p, q, ν, L , [a]0,α, ‖u‖L∞(BR), such that

|A(km, R/2)|
|BR/2| � c

m
n(p−1)
p(n−1)

(
resp.

|B(km, R/2)|
|BR/2| � c

m
n(p−1)
p(n−1)

)

whenever m is a positive integer and km := M(R) − 2−mosc (u, R) (respect.
km := m(R) + 2−mosc (u, R)).

Proof. The proof is now identical to the one for the standard case p = q (see
for instance [21, Lemma 7.2]). Indeed, taking t = R/2 and s = R in (10.6), one
obtains the kind of Caccioppoli’s inequality which is needed in [21] to prove the
lemma.

We finally come to the needed oscillation reduction:
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Lemma 10.3. Let BR � Ω be a ball such that R � 1; there exists a number
θ ∈ (0, 1) depending only on n, p, q, ν, L , [a]0,α and ‖u‖L∞(BR) such that if
(10.5) is verified, then it holds that

osc (u, R/4) � θosc (u, R) .

Proof. The lemma is a standard consequence (see for instance [13, page 358]) of
Lemma 10.2 and of the following fact: For every κ ∈ (0, 1), there exists σ ∈ (0, 1)

depending only on n, p, q, ν, L , [a]0,α, ‖u‖L∞(BR) and κ , such that is for some
ε > 0 the density condition

|A(M(R) − εosc (u, R), R)|
|BR | � σ

(
resp.

|B(m(R) + εosc (u, R), R)|
|BR | � σ

) (10.9)

then

u(x) � M(R) − κεosc (u, R), (resp. u(x) � m(R) + κεosc (u, R))(10.10)

holds for almost everywhere x ∈ BR/2. For this, we prove the super-level sets part
of (10.9) using (u − k)+, the treatment for the other ones appearing in parentheses
being completely analogous and using (u − k)−. Once Lemma 10.1 is available,
the proof becomes essentially the same as in the case q = p; we briefly report the
details for completeness. Consider a sequence of nested balls {B	i } concentric to
BR for i � 0, where 	i := R(1 + 2−i )/2 and define also 	̄i := (	i + 	i+1)/2.
Accordingly, we use related cut-off functions ηi ∈ C∞

0 (B	̄i ) such that ηi ≡ 1 on
B	i+1 and |Dηi | � c2i/R. We define the levels

ki = M(R) − κεosc (u, R) − (1 − κ)εosc (u, R)/2i

so that[
(1 − κ)εosc (u, R)

2i+1

]p

|A(ki+1, 	i+1)| = (ki+1 − ki )
p|A(ki+1, 	i+1)|

� c
∫

A(ki ,	̄i )

[ηi (u − ki )+]p dx .

(10.11)

By Sobolev embedding theorem—recall here it is p < n/(1+ δg) < n—and using
(10.6) (similarly to the treatment of (10.3)), we then get, for p∗ = np/(n − p),

∫
A(ki ,	̄i )

[ηi (u − ki )+]p dx �
(∫

B	̄i

[ηi (u − ki )+]p∗
dx

)p/p∗

|A(ki , 	̄i )|p/n

� c
∫

B	̄i

|D[ηi (u − ki )]+|p dx |A(ki , 	̄i )|p/n

� c2qi
∫

A(ki ,	i )

∣∣∣∣u − ki

R

∣∣∣∣
p

dx |A(ki , 	i )|p/n

� c2qi [εosc (u, R)]p |A(ki , 	i )|1+p/n

|B	i |p/n
.
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Using this last estimate together with (10.11), dividing both sides of the resulting
inequality by |B	i | and setting Ξi := |A(ki , 	i )|/|B	i |, we obtain the recursive
estimate

Ξi+1 � c f 4qi

(1 − κ)p
Ξ

1+p/n
i ,

for a constant c f depending only on n, p, q, ν, L , α, [a]0,α and ‖u‖L∞(BR), and for
every integer i � 0. We can now conclude as in standard De Giorgi’s theory: in order
to prove (10.10) we need to check that Ξi → 0. In turn this follows by choosing
Ξ0 < σ , for some small σ depending on c f and κ , and therefore ultimately again
on n, p, q, ν, L , [a]0,α, ‖u‖L∞(BR) and κ . Since Ξ0 � σ is precisely (10.9), then
(10.10) follows by choosing the constant σ small enough.

Step 4: Separation of phases and conclusion. Let us fix Ω ′ � Ω as in the statement
of Theorem 1.1. We consider a ball BR0 ⊂ Ω ′ with R0 � 1 and the conditions

sup
x∈BR0/4k

a(x) � 4[a]0,α

(
R0/4k

)α

. (10.12)

Accordingly, the exit time index is defined by

m := min {k ∈ N ∪ {∞} : (10.12) fails} . (10.13)

We can apply Lemma 10.3 m (possibly m = 0) times to obtain, by induction, that

osc (u, R0/4k) � θkosc (u, R0) for every k ∈ {0, . . . , m}, (10.14)

where θ ∈ (0, 1) depends only on n, p, q, ν, L , [a]0,α, ‖u‖L∞(Ω ′). In the case
m < ∞, condition (10.12) fails at a point x0 ∈ BR0/4m , that is

a(x0) > 4[a]0,α

(
R0/4m)α

. (10.15)

We now want to prove that u is a Q-minimiser—in BR0/4m —of the functional P0
defined in (1.14) for Q = 4L/ν and for the choice a0 = a(x0). This means that

|Du|p + a(x0)|Du|q ∈ L1(BR0/4m ) (10.16)

and that P0(u, K ) � (4L/ν)P0(w, K ) holds whenever w ∈ W 1,1(BR0/4m ) with
|Dw|p + a(x0)|Dw|q ∈ L1(BR0/4m ), and K ⊂ BR0/4m is a compact set such that
supp (u − w) ⊂ K . For this, note that by (10.15), for any x ∈ BR0/4m we have

2a(x) � a(x0) + 4[a]0,α

(
R0/4m)α − 2|a(x) − a(x0)| � a(x0)

and

2a(x0) � a(x) + 4[a]0,α

(
R0/4m)α − |a(x) − a(x0)| � a(x),
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so that (10.16) follows immediately. The minimality of u and (1.5) then yield

P0(u, K ) �
∫

K
(|Du|p + 2a(x)|Du|q) dx

� 2

ν
F(u, K )

� 2

ν
F(w, K )

� 2L

ν

∫
K
(|Dw|p + a(x)|Dw|q) dx

� 2L

ν

∫
K
(|Dw|p + 2a(x0)|Dw|q) dx

� 4L

ν
P0(w, K ).

We can therefore apply Theorem 11.3 below and find τ0 ∈ (0, 1/4), depending
only on n, p, q, ν, L , [a]0,α, ‖u‖L∞(Ω ′), such that

osc (u, τ h
0 R0/4m) � θhosc (u, R0/4m)

holds for every h ∈ N. Using this last inequality together with (10.14) yields

osc (u, τ h
0 R0) � θhosc (u, R0) for every h ∈ N .

This last inequality also holds in the case m = ∞, directly with τ0 = 1/4, by
(10.14). The Hölder continuity (1.9) of u now follows with β = log θ/ log τ0 via a
standard covering argument, since all the previous considerations are independent
of the starting ball BR0 as long as this is contained in Ω ′ and since both τ0 and θ

depend only on n, p, q, ν, L , [a]0,α, ‖u‖L∞(Ω ′).

11. Estimates for frozen functionals

Here we collect the regularity results for minima of frozen functionals used in
the previous sections; they all come from the seminal work of Lieberman [27] as
long as the scalar case is concerned. The results in the vectorial case come instead
from [14]. We start by higher regularity, thereby considering functionals of the type

G0(w,Ω) :=
∫

Ω

( f (Dw) + a0g(Dw)) dx (11.1)

where f, g : R
n → R satisfy assumptions (1.11) and a0 � 0 is a constant.

Theorem 11.1. ([27]) Let v ∈ W 1,p(Ω) be a local minimiser of the functional
G0 defined in (11.1). There exists α̃ ∈ (0, 1), depending only on n, p, q, ν, L, but
otherwise independent of a0 and of the minimiser v, such that Dv ∈ C0,α̃

loc (Ω).
Moreover, whenever BR ⊂ Ω the following inequalities hold:

sup
BR/2

(|Dv|p + a0|Dv|q) � c −
∫

BR

(|Dv|p + a0|Dv|q) dx, (11.2)
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and, for every 0 < 	 � R

−
∫

B	

|Dv − (Dv)B	 |p dx � c
( 	

R

)pα̃ −
∫

BR

(|Dv|p + a0|Dv|q) dx, (11.3)

where again c depends only on n, p, q, ν, L.

Proof. We use the results of [27] when—with the notation adopted there—g(t) =
pt p−1+a0qtq−1, and, accordingly G(t) = t p +a0tq . The equation div Ā(Dv) = 0
considered in [27] is determined by Ā(z) = ∂ f (z) + a0∂g(z). The main point here
is that the crucial uniform ellipticity assumption considered in [27, (4)], that is

0 < δ � g′(t)t
g(t)

� g0 ,

is satisfied for constants δ, g0 which are independent of a0 � 0. Estimate (11.2)
is then [27, (5.3a)] with this particular choice of the functions and of equation.
Estimate (11.3) becomes instead implicit in [27, (5.3b)] and in turn implies that
Dv ∈ C0,α̃

loc (Ω) via a standard characterisation of Hölder continuity due to Cam-
panato and Meyers. We notice that the estimates proposed in [27] are given under
the form of a priori estimates for bounded solutions of more regular equations; any-
way a standard approximation argument (still explained in [27] and that reduces to
a very simple one in our special case) allows us to state the results in the general
case we are considering here.

The vectorial version of the previous result is instead contained in the following:

Theorem 11.2. ([14]) Let v ∈ W 1,p(Ω; R
N ) be a vector-valued local minimiser

of the functional

W 1,p(Ω; R
N ) � w �→

∫
Ω

(|Dw|p + a0|Dw|q)
dx

where Ω ⊂ R
n is a bounded open domain and N � 1 and a0 � 0. There exists

α̃ ∈ (0, 1), depending only on n, N , p, q, ν, L, but otherwise independent of a0

and of the minimiser v, such that Dv ∈ C0,α̃
loc (Ω). Moreover, whenever BR ⊂ Ω ,

the inequalities in (11.2)–(11.3) continue to hold in this case.

Proof. The results follow from [14] upon taking, in the notation of that paper,
ϕ(t) = t p + a0tq . In particular, estimate (11.2) is a consequence of [14, Lemma
2.8], while estimate (11.3) is instead an easy corollary of the one contained in [14,
Theorem 6.4].

The next result deals with the Hölder continuity of the so called quasi-minima
(see [21]) of the functional P0 defined in (1.14). In this setting, a function v ∈
W 1,1(Ω) is a Q-minimiser of P0 for Q � 1, iff |Dv|p + a0|Dv|q ∈ L1(Ω) and
the quasi-minimality condition

P0(v, K ) � QP0(w, K )
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holds for every w ∈ W 1,1(Ω) and compact set K ⊂ Ω , such that supp (v−w) ⊂ K
and |Dw|p + a0|Dw|q ∈ L1(Ω). We then have the next theorem, which follows
from [27, Section 6], for the choice G(t) = t p + a0tq (see also the main result of
[39]):

Theorem 11.3. ([27]) Let v ∈ W 1,p(Ω) be a Q-minimiser of the functional P0
defined in (1.14). Then there exists a positive constant c and an exponent β0 ∈
(0, 1), both depending on n, p, q, Q, but otherwise independent of a0 and of the
Q-minimiser v, such that

osc (v, B	) � c
( 	

R

)β0
osc (v, BR)

holds whenever B	 ⊂ BR ⊂ Ω are concentric balls.
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