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Abstract

In ionic solutions, there are multi-species charged particles (ions) with different
properties like mass, charge etc. Macroscopic continuum models like the Poisson–
Nernst–Planck (PNP) systems have been extensively used to describe the transport
and distribution of ionic species in the solvent. Starting from the kinetic theory
for the ion transport, we study a Vlasov–Poisson–Fokker–Planck (VPFP) system
in a bounded domain with reflection boundary conditions for charge distributions
and prove that the global renormalized solutions of the VPFP system converge to
the global weak solutions of the PNP system, as the small parameter related to the
scaled thermal velocity and mean free path tends to zero. Our results may justify
the PNP system as a macroscopic model for the transport of multi-species ions in
dilute solutions.

1. Introduction

The transport of ions in different biological environments is very important in
our life and it has attracted more and more attention recently [25,26,36,37,56]. In
biological problems, the ionic solutions usually consist of charged particles (ions)
like sodium Na+, potassium K+, calcium Ca2+ and chloride Cl− etc., which have
different but comparable masses, charge valencies and sizes. These differences have
dramatic effects on the dynamics of multi-species ions which produce the functions
of cells in biological system, for example, the ion channels. To study the dynamics
of multi-species ions, molecular dynamics simulations (MD) using microscopic
models (from Newton’s laws) to describe charge particle trajectories are popular
and useful but expensive because the models are usually huge and the numerical
computation time is very long (see, for instance, [36, Chapter 10]).

To increase the efficiency of numerical simulations, one may use the (multi-
species) Poisson–Nernst–Planck (PNP) system [19,27,28,54,62], which is a
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macroscopic model to describe multi-species ion transport. Conventionally, the
PNP system consists of coupled diffusion-convection equations and the Poisson
equation, being represented as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂t ci = ∇ · Ji ,

Ji = di

(
∇ci + qi

kB T ci∇φ
)
,

−∇ · (ε∇φ) = ∑N
i=1 qi ci + D(x).

(1.1)

Here, ci (i = 1, 2, . . . , N ) stand for densities of charged particles in the ionic
solution and φ is the self-consistent electric potential. In addition, qi are the (pos-
itive or negative) charges of particles, Ji are the ionic flux densities, di are their
diffusion coefficients, ε is the dielectric coefficient, kB is the Boltzmann constant,
T is the temperature and D(x) is the permanent charge density in the domain.
The PNP system (1.1) is also one of the fundamental macroscopic models in the
study of transport of carriers in semiconductors, see, for example, [31,43,47,48].
Concerning the mathematical analysis, the initial value problem and the initial
boundary value problem of the PNP system have been extensively studied, we refer
to [2,4,5,30–32,42,48] and the references cited therein.

The PNP system (1.1) provides a continuum description of the evolution of
charged particles via macroscopic (averaged) quantities, for example, the parti-
cle density, the current density etc., which have cheaper costs for numerics. Such
continuum models can be (formally) derived from kinetic models by coarse grain-
ing methods, like the moment method, the Hilbert expansion method and so on
[42,48,50]. Although many results for the PNP systems have been obtained, it
seems that none of them can reveal basic principles like gating and selectivity of
ion channels. Recently, new PNP type systems have been derived and the selectiv-
ity of ion channels have been simulated successfully [27,38–40,46,63]. In order
to justify these continuum models, here we develop the kinetic theory for the PNP
system like (1.1) as the first step of the work. Our goal in the present paper is to rig-
orously justify the PNP system for dilute ionic solutions consisting of multi-species
charged particles by studying the diffusion limit of a suitable kinetic system. We
will continue to study the kinetic theory for those new PNP type systems as in
[27,38–40,46,63] in the near future.

In this paper, we consider the case that the motion of multi-species charged
particles is governed by the electrostatic force coming from their (self-consistent)
Coulomb interaction. We also assume that the momentum of charged particles with
collision is small and ignorable. Then the collision term in the kinetic equation may
be approximated by the Fokker–Planck operator that describes the Brownian force
[18], and the resulting kinetic system becomes the Vlasov–Poisson–Fokker–Planck
(VPFP) system as follows:

∂t fi + v · ∇x fi − zi q

mi
∇xφ · ∇v fi = 1

τi
Li

FP( fi ), (1.2)

−ε0�xφ = q

(
N∑

i=1

zi

∫

Rd
fi dv + D(x)

)

, (1.3)
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where Li
FP (i = 1, . . . , N ) are the Fokker–Planck operators such that

Li
FP( fi ) = ∇v · (v fi + θi∇v fi ) .

Here, ε0 > 0 is the vacuum permittivity, q > 0 is the positive elementary charge.
For i = 1, . . . , N , the state of each species is given by a distribution function
fi (t, x, v) � 0, that is, a probability density in the (x, v)-phase space at time t
( fi dxdv is the number of the i-th species charged particles at time t located at
a volume element dx about the position x and having velocities in a volume dv
about the value v). Furthermore, zi ∈ Z are the valencies for the N -species charged
particles, mi are the masses, τi are relaxation time due to collisions of the particles

with the thermal bath,
√
θi are the thermal velocities given by

√
θi =

√

2kB Tbm−1
i

and Tb is the temperature of the thermal bath.
In plasma physics, the VPFP system (1.2)–(1.3) with N = 1 (that is, the single

species case) is reasonable because the mass ratio between the ions and electrons
is huge; only the evolution of the electrons is described in terms of a distribution
function in the resulting system, and those ‘heavy’ ions are supposed to be static. For
such a case, the existence and uniqueness of solutions to the initial value problem
or the initial boundary value problem of the VPFP system have been investigated
in the literature. We refer to [7,58,61] for results on the classical solutions and
to [8,10,11,60] for weak solutions and their regularity. Concerning the long-time
behavior of the VPFP system, we refer to [6,9,12]. Instead of the single species case
with N = 1, here we study the system (1.2)–(1.3) with N � 2 for multi-species
charged particles, which is more complicated due to the (nonlocal) interactions
between particles via the Poisson equation (1.3) (that is, the Coulomb interaction).

Suitable scalings of the VPFP system should be introduced in order to study its
diffusion limit. Let L be the characteristic length. We denote by N0 the characteristic
value for the concentration of particles and by�0 the characteristic variation of the
electric potential over L . Since we have to treat multiple species of charged particles
that have different masses and charges, it is convenient to introduce a ‘reference
particle’ with mass mref , electric charge zrefq (with zref = 1), relaxation time τref
and thermal velocity θref . The microscopic variation as well as the drift velocity for
the reference particle are given by Vref = √

θref , Uref = τref
q

mref

�0
L , respectively.

Choosing the following scaling (with respect to the reference particle) t → T0t ′,
x → Lx ′, v → Vrefv

′, T0 = L
Uref

and the change of unknowns fi (t, x, v) =
N0V −d

ref f ′
i (t

′, x ′, v′), φ(t, x, v) = �0φ
′(t ′, x ′, v′), D(x) = N0 D′(x ′), we obtain

the rescaled VPFP equations (drop the prime for simplicity):

∂t fi + νv · ∇x fi − κi zi

ε
∇xφ · ∇v fi = ζiν

ε
∇v · (v fi + κi∇v fi ), i = 1, . . . , N ,

−��xφ =
N∑

i=1

zi

∫

Rd
fi dv + D(x),

where the dimensionless parameters ν (the ‘scaled’ thermal velocity), ε (the ‘scaled’
thermal mean free path), � and the ratios κi , ζi are given by

ν = Vref

Uref
, ε = τref Vref

L
, � = ε0�0

q N0 L2 , κi = mref

mi
, ζi = τref

τi
.
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The case we are interested in this paper is called the low field limit (or the
parabolic limit), which means that the drift velocity is small compared with the
thermal velocity, while the thermal velocity is small compared to the relaxation
velocity, and the two ratios have the same order of magnitude (cf. [1,29,33,57]):

ν � ε−1 and ε � 1.

For ε > 0, taking ν = ε−1 (just for the sake of simplicity), we arrive at the rescaled
VPFP system under low field scaling, which will be investigated in the remaining
part of this paper:

∂t f εi + 1

ε
v · ∇x f εi − κi zi

ε
∇xφ

ε · ∇v f εi = ζi

ε2 Li
FP( f εi ), (1.4)

−��xφ
ε =

N∑

i=1

zi

∫

Rd
f εi (t, x, v) dv + D(x), (1.5)

where the rescaled Fokker–Planck operators are given by

Li
FP( f εi ) = ∇v · (v f εi + κi∇v f εi ). (1.6)

We recall that the diffusion limit of the VPFP system has been studied
extensively in the literature (cf. [29,33,34,55,57] and the references therein). In
[29,33,57], the authors studied the low field limit and proved the convergence
of suitable solutions to the single species VPFP system towards a solution to the
drift–diffusion–Poisson model in the whole space. In [57], under a suitable regular-
ity assumption on the initial data, the convergence result was obtained globally in
time in two dimensions and locally in time for the three dimensional case. Later, the
author proved in [33] a global convergence result in the two dimensional case, with-
out any restriction on the time interval and the assumptions on the initial data were
weakened with bounds only on the associated entropy and energy. Quite recently,
in [29] the authors established a global convergence result, without any restriction
on the time interval or on the spatial dimensions, by working with the renormalized
solutions (or free energy solutions, cf. [22,24]). As pointed out in [29], the notion
of renormalized solutions is natural for the problem, because the free energy of the
VPFP system seems to be the only quantity that is uniformly bounded with respect
to the small parameter ε (that is, the ‘scaled’ mean free path). Even one works with
more regular initial data such that the solutions can be defined in the usual weak
sense without the need of renormalizing, one still has to use renormalization tech-
niques to pass to the limit as ε → 0. Besides, the use of renormalization techniques
together with an averaging lemma helps to remove the restriction on spatial dimen-
sions and treat the nonlinear term ∇xφ ·∇v f , where the main difficulty comes from
(we refer to [29] for more details).

In this paper, we rigorously prove that for the multi-species case, the VPFP
system (1.4)–(1.5) converges to a rescaled PNP system as ε tends to zero in the low
field limit. We generalized the techniques introduced in the previous works [29,49,
53], to the case involving multiple species of charged particles in a bounded region
with reflection boundary conditions [10,15,53]. The specific boundary conditions
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recover the classical no-flux boundary conditions of the PNP system. Different
from the single species case in the literature, the previous arguments have to be
modified in order to deal with the nonlocal interactions between different species
of particles through the Poisson equation for the electric potential φ. In order to
deal with the integrals on the boundary, we shall make use of the Darrozès–Guiraud
information [21], which helps to obtain the energy dissipation. Finally, effects
of different but comparable quantities like masses and valencies of the charged
particles will become obvious in our mathematical analysis.

Our results support the PNP system (1.1) as a suitable model for multi-species
charged particles in a dilute solution. As we mentioned before, several variants of
the PNP system (1.1) have recently been derived by using the energetic variational
approaches [41] to model important physical ingredients such as size (steric) effects
for non-diluted solutions (cf. for example, [27,38–40,46,63]) that are crucial in the
study of the selectivity of ion channels in cell membranes [19,36,45]. The total
energy for these modified PNP systems consists of the entropic energy induced
by the Brownian motion of ions, the electrostatic potential energy representing
the coulomb interaction between the charged ions, and in particular, the repulsive
potential energy caused by the excluded volume effect (for example, the singular
Lennard–Jones potential). Our result can be viewed as a starting point for the
further investigation on the case of crowded ions. It would be interesting to study
the diffusion-limit of suitable kinetic systems to obtain the modified PNP systems
[27,39].

The remaining part of this paper is organized as follows. In Section 2, we present
the definition of renormalized solutions and state the main result on the diffusion
limit of the VFFP system (1.4)–(1.5) (Theorem 2.1). In Section 3, after deriving
the energy dissipation of the VFFP system in bounded domain (Proposition 3.1),
which yields the necessary uniform estimates (Lemmas 3.1, 3.2, 3.3), we proceed
to prove our main result by using the renormalization techniques.

2. Preliminaries and Main Result

2.1. Boundary and Initial Conditions

Let 
 ⊂ R
d (d � 2) be a sufficiently smooth bounded domain. For instance,

the outward unit normal vector n(x) at x ∈ ∂
 satisfies n ∈ W 2,∞(
,Rd). The
Lebesgue surface measure on ∂
 will be denoted by dS.

Then we introduce the boundary conditions for the distribution functions. As in
Cercignani’s work [13–16] (see also [6,53]), we define the sets of outgoing (�x+) and
incoming (�x−) velocities at point x ∈ ∂
 such that�x± := {v ∈ R

d : ±v ·n(x) >
0} and denote the boundary sets �± = {(x, v) : x ∈ 
, v ∈ �x±}. Let γ h be
the trace of function h and γ±h = 1(0,+∞)×�±γ h. Reflection boundary conditions
for the kinetic equations take the form of integral (balance) relations between the
densities of the particles on the outgoing and incoming velocity subsets of the
boundary ∂
 at a given time [14–16]. For instance, given x ∈ ∂
 and t > 0, we
have (cf. [6]):
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γ− f (t, x, v) =
∫

�x+
R(t, x; v, v∗)γ+ f (t, x, v∗) dv∗, v ∈ �x−, (2.1)

where R represents the probability that a particle with velocity v∗ at time t striking
the boundary on x reemerges at the same instant and location with velocity v. If
we consider v′ = −v for any v ∈ �x− and take R(t, x; v, v∗) = δv′ being the Dirac
measure centered at v∗ = v′, then we have γ− f (t, x, v) = γ− f (t, x,−v) on �−,
which is the classical (local) inverse reflection boundary condition. Similarly, if
we take v′ = v − 2(v · n(x))n(x), then we arrive at the classical (local) specular
reflection boundary condition, see [6,10]. We refer to [6] for possible minimal
assumptions on R such that (2.1) is well-defined, that is, R is nonnegative and it
verifies the normalization condition as well as the reciprocity principle. Detailed
discussions on the boundary conditions can be found in [14–16].

Here, we are more interested in the so-called diffuse reflection according to a
Maxwellian with temperature of the thermal bath, which is nonlocal. Denote by
Mi (v) the Maxwellians for charged particles

Mi (v) = 1

(2π)
d−1

2 κ
d+1

2
i

e
− 1

2κi
|v|2
, i = 1, . . . , N . (2.2)

We note that Mi are the zeros of the rescaled Fokker–Planck operators Li
FP given

in (1.6), that is, Li
FP(Mi ) = 0, (i = 1, . . . , N ). Then we can choose a special form

of R in (2.1) and propose the following boundary conditions for the distribution
functions (cf. [15,53]), which are special cases of the so-called Maxwell boundary
condition [50,53]: for given x ∈ ∂
 and t > 0,

γ− f εi = Mi (v)
∫

v·n(x)<0 |v · n(x)|Mi (v) dv

∫

v∗·n(x)>0
(γ+ f εi )v

∗ · n(x) dv∗, on �x−.

(2.3)

For the electric potential φε, we simply impose the zero-outward electric field
condition such that

∇xφ
ε · n = 0, on ∂
. (2.4)

In summary, below we will consider the rescaled VPFP system (1.4)–(1.5) on
(0, T ) × 
 × R

d subject to boundary conditions (2.3)–(2.4) and the initial data
(depending on the parameter ε):

f εi (t, x, v)|t=0 = f εi0(x, v). (2.5)

We remark that the boundary conditions (2.3) allow us to preserve mass conser-
vation and obtain proper energy and entropy balance laws of the VPFP system
(1.4)–(1.5). Denote by

nεi (t, x) =
∫

Rd
f εi (t, x, v) dv and J εi = 1

ε

∫

Rd
v f εi dv, (2.6)
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the densities as well as the current densities associated to the distribution functions
for the i-th species, respectively. Multiplying (2.3) by v · n(x) and integrating over
�x−, we easily deduce the (macroscopic) boundary conditions for the fluxes such
that

J εi · n = 0, on ∂
, (2.7)

which imply that all the particles that reach the boundary are reflected (no particle
goes out nor enters in the domain
) and thus the mass

∫



nεi (t, x) dx is conserved

for all time. On the other hand, in order to uniquely determine the solution φε to
the Poisson equation (1.5) with homogeneous Neumann boundary condition (2.4),
we require the global neutrality condition

N∑

i=1

zi

∫




∫

Rd
f εi dv dx +

∫




D(x) dx = 0 (2.8)

and the zero-mean constraint
∫



φε dx = 0.

2.2. Main Result

We first introduce the definition of renormalized solutions in the spirit of [29,
49]:

Definition 2.1. The set ( f εi , φ
ε) ∈ L∞(0, T ; (L1(
×R

d))N × H1(
)) is a renor-
malized solution to the VPFP system (1.4)–(1.5) with initial and boundary condi-
tions (2.3)–(2.5), if

(1) For all functions βi ∈ C2(R), i = 1, . . . , N satisfying

|βi (s)| � C(s
1
2 + 1), |β ′

i (s)|�C(1 + s)−
1
2 , |β ′′

i (s)| � C(1 + s)−1, ∀ s �0,

the set (βi ( f εi ), φ
ε) is a weak solution to the system

ε∂tβi ( f εi )+ v · ∇xβi ( f εi )− κi zi∇xφ
ε · ∇vβi ( f εi ) = ζi

ε
Li

FP( f εi )β
′
i ( f εi ), (2.9)

−��xφ
ε =

N∑

i=1

zi

∫

Rd
f εi dv + D(x), (2.10)

with initial data

βi ( f ε0 )|t=0 = βi ( f εi0) (2.11)

and boundary conditions

γ−βi ( f εi ) = Mi (v)
∫

v·n(x)<0 |v · n(x)|Mi (v) dv

∫

v∗·n(x)>0
γ+βi ( f εi )v

∗ · n(x) dv∗,

(2.12)

∇xφ
ε · n = 0. (2.13)



426 Hao Wu, Tai-Chia Lin & Chun Liu

(2) For any λ > 0, the functions θ i
ε,λ = ( f εi + λM̃i )

1
2 satisfy

ε∂tθ
i
ε,λ + v · ∇xθ

i
ε,λ − κi zi∇v · (∇xφ

εθ i
ε,λ) = ζi

2εθ i
ε,λ

Li
FP( f εi )+

ziλM̃i

2θ i
ε,λ

v · ∇xφ
ε,

(2.14)

where M̃i are the normalized Maxwellians [comparing with (2.2)]

M̃i (v) =
( κi

2π

) 1
2

Mi (v) such that
∫

Rd
M̃i (v) dv = 1, i = 1, . . . , N .

(2.15)

Remark 2.1. Due to the regularity of renormalized functions βi , the corresponding
boundary conditions (2.12) for the renormalized distribution functions make sense.
We refer to [3,17,59] (see also [6,53]) for more detailed discussions about the
traces of distribution functions on the boundary.

Next, we consider the rescaled version of the PNP system (1.1):

∂t ni + ∇x · Ji = 0, (2.16)

−��xφ =
N∑

i=1

zi ni + D(x), (2.17)

with density currents given by

Ji = − 1

ζi
∇x ni − zi

ζi
ni∇xφ (2.18)

and subject to the following boundary conditions and initial conditions:

Ji · n = ∇xφ · n = 0, on (0, T )× ∂
, (2.19)

ni |t=0 = ni0, in 
. (2.20)

Moreover, we require that

∫




φ dx = 0 and
∫




(
N∑

i=1

zi ni + D(x)

)

dx = 0.

Then we introduce the weak formulation of the PNP system (2.16)–(2.20).

Definition 2.2. We say that the set (ni , φ) is a weak solution to the initial boundary
value problem of the PNP system (2.16)–(2.20), if

ni ∈ L∞(0, T ; L log L(
)),
√

ni ∈ L2(0, T ; H1(
)),

∂t ni ∈ L1(0, T ; W −1,1(
)), φ ∈ L2(0, T ; H1(
)),

where the function space L log L(
) is given by

L log L(
) :=
{

n : n � 0,
∫




n(1 + | log n|) dx < +∞
}
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and the PNP system (2.16)–(2.17) is satisfied in the weak sense: for any u ∈
C∞([0, T ]; C∞(
)), ψ ∈ L2(0, T ; (H1(
))′),
∫




ni (t, ·)u(t, ·) dx −
∫




ni0u(0, ·) dx

=
∫ t

0

∫




ni∂t u dx dτ − 1

ζi

∫ t

0

∫




(∇x ni + zi ni∇xφ) · ∇x u dx dτ, t ∈ [0, T ],

�

∫ T

0

∫




∇xφ · ∇xψ dx dt =
∫ T

0

∫




(
N∑

i=1

zi ni + D(x)

)

ψ dx dt.

Moreover, the weak solution (ni , φ) satisfies the following energy inequality

e(t)+
N∑

i=1

∫ t

0

∫




1

ζi
ni

∣
∣
∣∇

(
ln ni + ziφ

)∣
∣
∣
2

dx dt � e(0), t ∈ [0, T ],

with e(t) :=
∫




(
N∑

i=1

ni ln ni + �

2
|∇φ|2

)

dx .

Now we are in a position to state the main result of this paper.

Theorem 2.1. Let the background charge D be independent of time and satisfy
D(x) ∈ L∞(
). We assume that the initial data ( f εi0, φ

ε
0) satisfy the following

assumptions

f εi0 � 0,
∫




∫

Rd
f εi0(1 + |v|2 + | log f εi0|) dv dx � C0, (2.21)

‖φε0‖H1(
) � C0,

∫




φε0 dx = 0, (2.22)

for some constant C0 > 0 independent of the parameter ε, and the global neutrality
condition holds

N∑

i=1

zi

∫




∫

Rd
f εi0 dv dx +

∫




D(x) dx = 0, ∀ ε > 0. (2.23)

Let ( f εi , φ
ε) be a free energy (renormalized) solution of the VPFP system (1.4)–

(1.5) with corresponding initial and boundary conditions (2.3)–(2.5) (cf. Defini-
tion 2.1). Then, as ε tends to zero, up to a subsequence if necessary, we have the
strong convergence results

f εi (t, x, v) → ni (t, x)M̃i (v) in L1(0, T ; L1(
× R
d)), (2.24)

φε(t, x) → φ(t, x) in L2(0, T ; W 1,p(
)), 1 � p < 2. (2.25)

Moreover, nεi strongly converge in L1(0, T ; L1(
)) towards ni and (ni , φ) is a
weak solution to the PNP system (2.16)–(2.20) (cf. Definition 2.2) with initial data
ni |t=0 = ni0 = ∫

Rd fi0 dv, such that fi0 are the weak limits of f εi0.
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Remark 2.2. We would like to mention that the PNP system (2.16)–(2.20) can also
be derived from diffusion limits of other types of kinetic equations, for example,
the Boltzmann–Poisson system. We refer to [49] for the one species case and we
believe that their argument can also be extended to the multi-species case.

Remark 2.3. We remark that different types of scalings can be chosen for the
VPFP system. For instance, if we assume that the drift and thermal velocities are
comparable, but both are small comparing with the relaxation velocity, for example,
ν = O(1) and ε � 1, then we arrive at a different rescaled VPFP system

{
∂t f εi + v · ∇x f εi − κi zi

ε
∇xφ

ε · ∇v f εi = ζi
ε

Li
FP( f εi ),

−��xφ
ε = ∑n

i=1 zi
∫

Rd f εi dv + D(x).

This is usually called drift-collision balance scaling or high field scaling in the
literature. Taking the hydrodynamic limit as ε → 0 (the high field limit or the
hyperbolic limit), the above VPFP system will lead to a first-order hyperbolic system
for the density of particles coupled with the Poisson equation, cf. for example,
[1,11,34,55].

3. Proof of Theorem 2.1

3.1. Uniform Estimates and Existence

The free energy of the VPFP system (1.4)–(1.5) is defined as follows

E(t) =
N∑

i=1

∫




∫

Rd

( |v|2
2κi

f εi + H( f εi )

)

dv dx + �

2

∫




|∇xφ
ε|2 dx, (3.1)

where the function H takes the form H(s) = s log s for s � 0. The entropy
productions of the VPFP system are given by

Di (w) =
∫




∫

Rd
(v

√
w + 2κi∇v√w)2 dv dx

= 4
∫




∫

Rd

∣
∣
∣
∣
∣
∇v

√

we
1

2κi
|v|2

∣
∣
∣
∣
∣

2

e
− 1

2κi
|v|2

dv dx, i = 1, . . . , N . (3.2)

Moreover, we introduce the Darrozès–Guiraud information on the boundary (cf.
for example, [21]) such that

I i (w) =
∫

�x+
H (w) dμi

x − H
(∫

�x+
w dμi

x

)

, i = 1, . . . , N ,

where dμi
x (v) = Mi (v)|v·n(x)|dv are probability measures on�x± by the particular

choice of the normalized Maxwellians Mi [cf. (2.2)].
First, we derive the energy dissipation property of the VPFP system (1.4)–(1.5)

with initial and boundary conditions (2.3)–(2.5).
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Proposition 3.1. (Energy dissipation) The renormalized solution of the VPFP sys-
tem (1.4)–(1.5) with described initial data and boundary conditions satisfies

∂t n
ε
i + ∇x · J εi = 0, (3.3)

where nεi and J εi are given in (2.6). Moreover, the following dissipative energy
inequality holds

E(t)+ 1

ε2

N∑

i=1

ζi

κi

∫ t

0
Di ( f εi ) ds + 1

ε

N∑

i=1

∫ t

0

∫

∂


I i
(
γ+ f εi
Mi (v)

)

dS ds

� E(0), ∀ t � 0. (3.4)

Proof. We just present a formal calculation which leads to (3.4). For i = 1, . . . , N ,
multiplying the i-th equation in (1.4) of the VPFP system by 1

2 |v|2 and integrating
the result with respect to v and x , we get

d

dt

∫




∫

Rd

1

2
|v|2 f εi dv dx +

∫




∫

Rd

1

2ε
|v|2v · ∇x f εi dv dx

−
∫




∫

Rd

κi zi

2ε
|v|2∇xφ

ε · ∇v f εi dv dx

=
∫




∫

Rd

ζi

2ε2 |v|2Li
FP( f εi ) dv dx,

integrating by parts, we see that

∫




∫

Rd

1

2ε
|v|2v · ∇x f εi dv dx = 1

2ε

∫

∂


∫

Rd
(v · n)|v|2γ f εi dv dS,

−
∫




∫

Rd

1

2ε
|v|2∇xφ

ε · ∇v f εi dv dx = 1

ε

∫




∫

Rd
(v · ∇xφ

ε) f εi dv dx

= −
∫




φε∇x · J εi dx +
∫

∂


γ φε J εi · n dS

=
∫




φε∂t n
ε
i dx,

and
∫




∫

Rd

1

2ε2 |v|2Li
FP( f εi ) dv dx = − 1

ε2

∫




∫

Rd
(v f εi + κi∇v f εi ) · v dv dx .

As a result, for i = 1, . . . , N we obtain that

d

dt

∫




∫

Rd

1

2κi
|v|2 f εi dv dx + zi

∫




φε∂t n
ε
i dx

= − 1

2κiε

∫

∂


∫

Rd
(v · n)|v|2γ f εi dv dS− ζi

κiε2

∫




∫

Rd
(v f εi +κi∇v f εi ) · v dv dx .

(3.5)
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Next, multiplying the i-th Equation (1.4) of the VPFP system by log f εi and inte-
grating the result with respect to v and x , we get

d

dt

∫




∫

Rd
H( f εi ) dv dx +

∫




∫

Rd

1

ε
(v · ∇x f εi ) log f εi dv dx

−
∫




∫

Rd

κi zi

ε
(∇xφ

ε · ∇v f εi ) log f εi dv dx

=
∫




∫

Rd

ζi

ε2 Li
FP( f εi ) log f εi dv dx,

after integrating by parts, we see that
∫




∫

Rd

1

ε
(v · ∇x f εi ) log f εi dv dx

= −1

ε

∫




∫

Rd
(v · ∇x f εi ) dv dx + 1

ε

∫

∂


∫

Rd
(v · n)γ f εi log γ f εi dv dS

= −
∫

∂


J εi · n dS + 1

ε

∫

∂


∫

Rd
(v · n)γ f εi log γ f εi dv dS

= 1

ε

∫

∂


∫

Rd
(v · n)γ f εi log γ f εi dv dS,

−
∫




∫

Rd

1

ε
(∇xφ

ε · ∇v f εi ) log f εi dv dx = 0,

and
∫




∫

Rd

ζi

ε2 Li
FP( f εi ) log f εi dv dx = − ζi

ε2

∫




∫

Rd
(v f εi + κi∇v f εi ) · ∇v f εi

f εi
dv dx .

As a consequence, we get

d

dt

∫




∫

Rd
H( f εi ) dv dx = −1

ε

∫

∂


∫

Rd
(v · n)γ f εi log γ f εi dv dS

− ζi

ε2

∫




∫

Rd
(v f εi + κi∇v f εi ) · ∇v f εi

f εi
dv dx .

(3.6)

Moreover, we see that for f εi
∫




∫

Rd
(v f εi + κi∇v f εi ) ·

(

v + κi∇v f εi
f εi

)

dv dx = Di ( f εi ). (3.7)

Due to the Poisson equation (1.5), we have

∫




φε∂t

(
N∑

i=1

zi n
ε
i

)

dx = −�
∫




φε∂t�xφ
ε dx = �

2

d

dt

∫




|∇xφ
ε|2 dx .

(3.8)
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Then we conclude from (3.5)–(3.8) that

d

dt
E(t)+

N∑

i=1

ζi

κiε2 Di ( f εi )+ 1

ε

N∑

i=1

∫

∂


∫

Rd
(v · n) (3.9)

×
(

1

2κi
|v|2 + log γ f εi

)

γ f εi dv dS = 0.

Recall that dμi
x (v) = Mi (v)|v · n(x)|dv are probability measures on �x± [see the

definition of Mi (v) (2.2) and (2.15)]. Then for the boundary terms, we can apply
the Darrozès–Guiraud inequality [21], namely, thanks to (2.3), the convexity of
H(s) = s log s and the Jensen inequality we deduce that (see also [53])

∫

∂


∫

Rd
(v · n)

(
1

2κi
|v|2 + log γ f εi

)

γ f εi dv dS

=
∫

∂


∫

�x+
H

(
γ+ f εi
Mi (v)

)

dμi
x dS −

∫

∂


∫

�x−
H

(
γ− f εi
Mi (v)

)

dμi
x dS

=
∫

∂


∫

�x+
H

(
γ+ f εi
Mi (v)

)

dμi
x dS −

∫

∂


H
(∫

�x+

γ+ f εi
Mi (v)

dμi
x

)

dS

=
∫

∂


I i
(
γ+ f εi
Mi (v)

)

dS

� 0.

As a consequence,

d

dt
E(t)+ 1

ε2

N∑

i=1

ζi

κi
Di ( f εi )+ 1

ε

N∑

i=1

∫

∂


I i
(
γ+ f εi
Mi (v)

)

dS � 0. (3.10)

Integrating (3.10) with respect to time, we arrive at our conclusion (3.4). ��
The energy dissipation (3.4) yields the following global estimates that are uni-

form in the parameter ε, which enable us to take the diffusion limit as ε → 0:

Lemma 3.1. For any T > 0, there exists a constant C depending on C0, ζi , κi ,

�, but independent of ε and t ∈ [0, T ] such that

∫




∫

Rd
(1 + |v|2 + | log( f εi )|) f εi dv dx � C,

∫




|∇xφ
ε|2 dx � C,

1

ε2

∫ t

0
Di ( f εi ) ds � C,

1

ε

∫ t

0

∫

∂


I i
(
γ+ f εi
Mi (v)

)

dS ds � C.
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The functions f εi are weakly relatively compact in L1((0, T )×
× R
d) and fulfill

‖∇v
√

f εi ‖L2((0,T )×
×Rd ) � C.

Concerning the fluxes, we have

‖J εi (t, ·)‖L1(
) � 1

2ε2 Di ( f εi )+ 1

2
‖ f εi0‖L1(
×Rd ).

Proof. The proof is similar to [29, Propositions 5.1, 5.2, 5.3], based on the energy
inequality (3.4). Since we are now dealing with the bounded domain, we do not need
to estimate terms like

∫




∫

Rd |x | f εi dv dx as in [29]. The L1 weak compactness of
f εi follows from the well-known Dunford–Pettis theorem. ��

We recall that the initial boundary value problem of a full Vlasov–Poisson–
Fokker–Planck–Boltzmann system (subject to more general reflection boundary
conditions for the distribution function but only for one species of charged parti-
cles) has been studied in the recent paper [53]. The author proved the existence
of DiPerna–Lions renormalized solutions by using the approximation procedure in
[51] with some crucial trace theorems previously introduced by the same author
for the Vlasov equations [52] and some new results concerning weak-weak con-
vergence (the renormalized convergence and the biting L1-weak convergence). For
the current case with multiple species of charged particles, the coupling between
different species is somewhat weak, that is, only via the Poisson equation. As a
result, based on the energy dissipation property Proposition 3.1 and Lemma 3.1,
we are able to prove the following existence result on renormalized solutions to
the VPFP system (1.4)–(1.5), by adapting the argument in [53] (see also [9,49,51])
with minor modifications. The details are thus omitted.

Theorem 3.1. (Existence of renormalized solution) Suppose that the assumptions
(2.21)–(2.23) on the initial data are satisfied. For arbitrary but fixed ε > 0, the
initial boundary value problem of the VPFP system (1.4)–(1.5) admits at least
one (renormalized) solution ( f εi , φ

ε) in the sense of Definition 2.1, which satisfies
Proposition 3.1.

3.2. Low Field Limit as ε → 0

The proof of Theorem 2.1 mainly follows the arguments in [29] for the VPFP
system that concerns only one single species of particles in the whole space. How-
ever, for the present problem involving multiple species of charged particles, we
need to modify the previous argument to deal with nonlocal interactions between
particles as well as the boundary conditions. In what follows, we state the essential
steps and point out the possible differences in the proof.

Step 1. Strong convergence of the electric potential φε.
Based on the uniform estimates in Lemma 3.1, it is straightforward to argue as

[49, Propisition 3.3] to conclude that

Lemma 3.2. The renormalized solution ( f εi , φ
ε) satisfies the following properties:
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(1) for i = 1, . . . , N , nεi (t, x) = ∫

Rd f εi (t, x, v) dv are weakly relatively compact
in L1((0, T )×
),

(2) φε(t, x) is relatively compact in L2(0, T ; W 1,p(
)) with 1 � p < 2.

Therefore, the strong convergence of φε (2.25) (up to a subsequence) is a direct
consequence of Lemma 3.2.

Step 2. Strong convergence of the charge densities nεi .
Lemma 3.2 also implies the weak compactness of densities nεi . Indeed, we

can show the convergence of density functions in the strong sense. By using the
definition of renormalized solutions (cf. Definition 2.1) and a velocity averaging
lemma (cf. [49, Lemma 4.2], also [23]), we are able to obtain the compactness
of the densities (cf. [29, Proposition 6.1]) such that the densities nεi are relatively
compact in L1((0, T ) × 
), namely, there exist ni ∈ L1((0, T ) × 
) and up to a
subsequence if necessary,

nεi → ni , in L1((0, T )×
) and almost everywhere as ε → 0. (3.11)

The above result and the simple inequality (
√

a − √
b)2 � |a − b| imply that

√

nεi →√
ni , in L2((0, T )×
) and almost everywhere as ε→0. (3.12)

Step 3. Strong convergence of the distribution functions f εi .
We recall the classical Csiszar–Kullback inequality (cf. [20, Theorem 3.1, Sec-

tion 4, pp. 314], see also [44]) that for all non-negative u ∈ L1(Rd , dμ) (where
dμ is a probability measure) with

∫

Rd u dμ = 1, it holds

‖u − 1‖L1(Rd , dμ) � 2

(∫

Rd
(u log u − u + 1) dμ

) 1
2

.

Choose in the above inequality

u = f εi
nεi M̃i (v)

, dμ = M̃i (v) dv,

which easily implies
(∫




∫

Rd
| f εi − nεi M̃i (v)| dv dx

)2

� 4

(∫




nεi dx

)∫




∫

Rd
f εi log

(
f εi

nεi M̃i (v)

)

dv dx . (3.13)

Next, we proceed to estimate the second factor in the righthand side of (3.13).
Recalling the logarithmic Sobolev inequality (cf. for example, [35, Corollary 4.2])

∫

Rd
|h(v′)|2 log |h(v′)| dμ(v′)

�
∫

Rd
|∇v′h(v′)|2 dμ(v′)+ ‖h(v′)‖2

L2(Rd , dμ(v′)) log ‖h(v′)‖L2(Rd , dμ(v′)),
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where dμ(v′) is the Gauss measure dμ(v′) = (2π)− d
2 e− |v′ |2

2 dv. Making the simple
change of variable v′ → v√

κ
and denoting hκ(v) = h(v′), we have

dμ(v′) =
( κ

2π

) d
2

e− 1
2κ |v|2 dv := dμκ(v), ‖h(v′)‖L2(Rd ,dμ(v′))

= ‖hκ(v)‖L2(Rd ,dμκ(v)),

which yields that
∫

Rd
|hκ(v)|2 log |hκ(v)| dμκ(v)

� κ

∫

Rd
|∇vhκ(v)|2 dμκ(v)+ ‖hκ(v)‖2

L2(Rd , dμκ(v))
log ‖hκ(v)‖L2(Rd , dμκ(v)).

In the above inequality, we set

κ = κi , hκ(v) =
√

f εi
M̃i (v)

, dμκ(v) = M̃i (v) dv.

Then we infer from the definition (2.6) that ‖hκ‖2
L2(Rd , dμκ(v))

= nεi , which yields

∫




∫

Rd
f εi log

(
f εi

nεi M̃i (v)

)

dv dx

=
∫




(

2
∫

Rd
|hκ(v)|2 log |hκ(v)| dμκ(v)− 2‖hκ(v)‖2

L2(Rd , dμκ(v))

× log ‖hκ(v)‖L2(Rd , dμκ(v))

)

dx

� 2κi

∫




∫

Rd

∣
∣
∣
∣
∣
∇v

√
f εi

M̃i (v)

∣
∣
∣
∣
∣

2

M̃i (v) dv dx

= κi

2
Di ( f εi ). (3.14)

As a consequence, we infer from the entropy dissipation in (3.4), the uniform
estimates in Lemma 3.1 and the estimates (3.13) and (3.14) that when ε → 0,

f εi − nεi M̃i → 0, in L1((0, T )×
× R
d) and almost everywhere

Combing the above results with the convergence result of nεi (3.11), we conclude
that as ε → 0

f εi → ni M̃i , in L1((0, T )×
× R
d) and almost everywhere (3.15)

Here and below, the convergence results are always understood to be up to a sub-
sequence.
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Step 4. Weak convergence of the fluxes J εi .
We introduce the auxiliary functions

rεi =
√

f εi −
√

nεi M̃i (v)

ε

√

M̃i (v)

, i = 1, . . . , N . (3.16)

In analogy to [49, Proposition 3.4] and [29, Proposition 5.5], we have

Lemma 3.3. For arbitrary T > 0, the following uniform estimates hold

∫ T

0

∫




∫

Rd

(
|rεi |2 M̃i + ε|rεi |2|v|2 M̃i + √

ε|rεi |2|v|M̃i

)
dv dx dt � C,

where C is a constant that may depend on C0, ζi , κi , � , but independent of ε and
t ∈ [0, T ].

Using the expressions of rεi [cf. (3.16)], we have

f εi = nεi M̃i + 2εM̃i

√

nεi rεi + ε2|rεi |2 M̃i . (3.17)

Due to the simple facts
∫

Rd vM̃i (v)dv = 0, it follows from (2.6), (3.12) and
Lemma 3.3 that as ε → 0

J εi = 2
√

nεi

∫

Rd
rεi vM̃i dv + √

ε

∫

Rd

√
ε|rεi |2vM̃i dv

→ 2
√

ni

∫

Rd
rivM̃i dv, weakly in L1((0, T )×
),

where ri are the weak limits of rεi , for i = 1, . . . , N .
It remains to identify the limit function of J εi , which can be done by using a

similar argument as in [29, Proposition 7.2]. The strong convergence of f εi [see
(3.15)] implies that for any fixed λ > 0,

θ i
ε,λ →

√

(ni + λ)M̃i , as ε → 0.

On the other hand, it follows from (3.17) that for any λ > 0, when ε → 0, we have

ζi

2ε
Li

FP( f εi ) = ζi Li
FP

(
M̃i

√

nεi rεi + ε

2
|rεi |2 M̃i

)
→ ζi

√
ni Li

FP(ri M̃i ).

As a consequence, in the renormalized formula (2.14), first for any fixed λ > 0
passing to the limit as ε → 0 and then letting λ → 0, we obtain that

(
∇x

√
ni + zi

2
∇xφ

√
ni

)
· vM̃i = ζi Li

FP(ri M̃i ), (3.18)

where φ is the limit of φε [recall (2.25)].
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On the other hand, it follows from [29, Proposition 3.1] that χ j = −v j M̃i

(i = 1, . . . , N , j = 1, . . . , d) is the unique solution to the equation Li
FPχ j = v j M̃i

in R(Li
FP) ∩ D(Li

FP), where

L2
M̃i
(Rd) = L2(Rd; M̃−1

i dv),

R(Li
FP) =

{

f ∈ L2
M̃i
(Rd) :

∫

Rd
f (v) dv = 0

}

,

D(Li
FP) =

{

f ∈ L2
M̃i
(Rd) : ∇v ·

(
e
− 1

2κi
|v|2∇v(e

1
2κi

|v|2
f )

)
∈ L2

M̃i
(Rd)

}

.

Since −Li
FP is a self-adjoint operator on L2

M̃i
(Rd), using (3.18), we have

Ji = 2
√

ni

∫

Rd
rivM̃i dv

= 2
√

ni

∫

Rd
(ri M̃i )L

i
FP(−vM̃i )M̃

−1
i dv

= 2
√

ni

∫

Rd
Li

FP(ri M̃i )(−vM̃i )M̃
−1
i dv

= 2

ζi

√
ni

∫

Rd

[(
∇x

√
ni + zi

2
∇xφ

√
ni

)
· vM̃i

]
(−vM̃i )M̃

−1
i dv

= − 2

ζi

√
ni

(∫

Rd
v ⊗ vM̃i dv

) (
∇x

√
ni + zi

2
∇xφ

√
ni

)

= − 2

ζi

√
ni

(
∇x

√
ni + zi

2
∇xφ

√
ni

)
.

where we use the fact that
∫

Rd v⊗vM̃i dv = I. Therefore, we can see that as ε → 0

J εi → Ji := − 2

ζi

√
ni

(
∇x

√
ni + zi

2
∇xφ

√
ni

)
(3.19)

in the distribution sense.
Step 5. Passage to the limit in the PDE system.
In order to recover the PNP system (2.16)–(2.20), we state a regularity result

for the density functions ni in the spirit of [49, Lemma 7.1]:

Lemma 3.4. Let
 be a smooth bounded and open set in R
d . Assume ni are positive

functions belonging to L∞(0, T ; L1(
)) and φ ∈ L2(0, T ; H1(
)) that satisfy

∇x
√

ni + zi

2
∇xφ

√
ni = Gi ∈ L2(0, T ; L2(
)), i = 1, . . . , N , (3.20)

−��xφ =
N∑

i=1

zi ni + D(x).

Then we have

√
ni ∈ L2(0, T ; H1(
)),

N∑

i=1

zi ni ∈ L2(0, T ; L2(
)), ∇xφ
√

ni ∈ L2(0, T ; L2(
)).
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Proof. As in [49, Corollary 3.2], we take βδ(s) = δ−1β(δs) where β ∈ C∞(R)
satisfying β(s) = s for −1 � s � 1, 0 � β ′(s) � 1 for s ∈ R and β(s) = 2 for
|s| � 3. Then we renormalize the equations (3.20) for

√
ni such that

∇xβδ(
√

ni )+ zi

2
∇xφβ

′
δ(

√
ni )

√
ni =Giβ

′
δ(

√
ni )∈ L2(0, T ; L2(
)). (3.21)

For any δ > 0, due to our choice of β and the given regularity for ∇xφ, we have

‖∇xφβ
′
δ(

√
ni )

√
ni‖L2(0,T ;L2(
)) � 3

δ
‖∇xφ‖L2(0,T ;L2(
)),

which together with (3.21) implies that ∇xβδ(
√

ni ) ∈ L2(0, T ; L2(
)). Then we
can take L2 norm on both sides of the Equation (3.21), summing up with respect
to i = 1, . . . , N , we have

N∑

i=1

‖∇xβδ(
√

ni )‖2
L2(0,T ;L2(
))

+
N∑

i=1

z2
i

4
‖∇xφβ

′
δ(

√
ni )

√
ni‖2

L2(0,T ;L2(
))

+
N∑

i=1

∫ T

0

∫




[
ziβ

′
δ(

√
ni )

√
ni∇xβδ(

√
ni )

] · ∇xφ dx dt

�
N∑

i=1

‖Gi‖2
L2(0,T ;L2(
))

,

where the right-hand side is independent of δ. For the crossing term on the left hand
side, using integration by parts, we have

N∑

i=1

∫ T

0

∫




[
ziβ

′
δ(

√
ni )

√
ni∇xβδ(

√
ni )

] · ∇xφ dx dt

=
N∑

i=1

∫ T

0

∫




∇x

[
zi β̃δ(

√
ni )

]
· ∇xφ dx dt

= 1

�

∫ T

0

∫




N∑

i=1

zi β̃δ(
√

ni ) ·
(

N∑

i=1

zi ni + D(x)

)

dx dt

where β̃ satisfies

β̃(s) =
∫ s

0
τβ ′(τ )2 dτ, β̃δ(s) = δ−2β̃(δs), β̃δ(s) → s2

2
, as δ → 0.
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Let δ → 0, we infer from the above estimates that

N∑

i=1

‖∇x
√

ni‖2
L2(0,T ;L2(
))

+
N∑

i=1

z2
i

4
‖∇xφ

√
ni‖2

L2(0,T ;L2(
))

+ 1

2�

∫ T

0

∫




(
N∑

i=1

zi ni

)2

dx dt

�
N∑

i=1

‖Gi‖2
L2(0,T ;L2(
))

+ 1

2�

∣
∣
∣
∣
∣

∫ T

0

∫




D(x)

(
N∑

i=1

zi ni

)

dx dt

∣
∣
∣
∣
∣

�
N∑

i=1

‖Gi‖2
L2(0,T ;L2(
))

+ 1

4�

∫ T

0

∫




|D(x)|2 +
(

N∑

i=1

zi ni

)2

dx dt,

which easily yields the required regularity estimate. The lemma is proved. ��
Finally, using the above regularity lemma and the convergence result (3.19),

we are able to write the currents Ji as in (2.18). Then we can pass to the limit
as ε → 0 in the weak form of Equation (3.3) as well as in the Poisson equation
(2.10) to conclude that the limit functions (ni , φ) satisfy the rescaled PNP system
(2.16)–(2.20).

The proof of Theorem 2.1 is complete.
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