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Abstract

We consider the classical Cauchy problem for the three dimensional Navier–
Stokes equation with the initial vorticity ω0 concentrated on a circle, or more
generally, a linear combination of such data for circles with common axis of sym-
metry. We show that natural approximations of the problem obtained by smoothing
the initial data satisfy good uniform estimates which enable us to conclude that the
original problem with the singular initial distribution of vorticity has a solution. We
impose no restriction on the size of the initial data.

1. Introduction

Let us consider the classical Cauchy problem for the Navier–Stokes equation
in R

3 × (0,∞):

ut + div (u ⊗ u)+ ∇ p − ν�u = 0
div u = 0

}
in R

3 × (0,∞), (1.1)

u( ·, 0) = u0 in R
3. (1.2)

We will consider the initial data u0 with vorticity ω0 = curl u0 which is supported
on a circle. In terms of the geometric measure theory, ω0 is a 1-current of strength
κ supported on a smooth circle γ . This means that for any smooth compactly
supported test vector field (or, more precisely, 1-form) ϕ = (ϕ1, ϕ2, ϕ3) we can
write ∫

R3
ω0 · ϕ dx = κ

∫
γ

ϕi (x) dxi , (1.3)

where the last integral is the classical curve integral (summation over the repeated
indices is understood). We will use the notation

ω0 = κδγ (1.4)
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in this situation. The initial velocity field is recovered from ω0 via the Biot–Savart
law

u0(x) = − 1

4π

∫
R3

(x − y) ∧ ω0(y)

|x − y|3 dy = − κ

4π

∫
γ

(x − y) ∧ dy

|x − y|3 . (1.5)

We note that such u0 has infinite kinetic energy:∫
R3

1

2
|u0|2 dx = +∞, (1.6)

due to the contributions from the immediate neighborhood of γ . The initial datum
of this form and its regularized variants are usually referred to as a vortex ring. Their
study goes back to Kelvin. Ifγ is the circle (r0 cos θ, r0 sin θ, 0) (with−π � θ < π )
and κ > 0, we expect from Kelvin’s calculations and the regularization due to the
viscosity that at time t the ring κδγ will “fatten” to thickness ∼ √

νt and will be
moving up along the z-axis at speed roughly

κ

4πr0
log

a√
νt
, (1.7)

where a is a suitable reference length.
Our goal here is to establish the existence of such a solution, although we

will not verify rigorously the detailed behavior suggested by Kelvin’s calculations.
Our estimates will be less precise. On the other hand, our method will be quite
robust, and can handle not only one vortex ring, but also a finite or even continuous
combination (with coefficients of the same sign) of such as long as they have a
common axis of symmetry. The last condition is crucial; our method relies on the
rotational symmetry of the situation.

It is instructive to compare our problem with the situation of parallel recti-linear
vorticies. When the initial vorticity is supported on a line l,

ω0 = κδl , (1.8)

the solution of the problem is given simply by the “heat extension” of the initial
data. When l is the x3-axis, one has the text-book solution

ω(x, t) = (0, 0, κ�2(x1, x2, νt)), (1.9)

where �2(x1, x2, νt) = 1
4πνt e− x2

1 +x2
2

4νt is the two dimensional heat kernel. The non-
linear term vanishes identically on these solutions. Uniqueness is a subtle problem.
The uniqueness has been proved in the class of the solutions of the form

u = (u1(x1, x2, t), u2(x1, x2, t), 0) (1.10)

(two dimensional Navier–Stokes solutions), see [4,5], but uniqueness among the
three dimensional solutions seems to be open.

When the line l is replaced by a collection of parallel lines li and

ω0 =
∑

i

κiδli (1.11)
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or possibly

ω0 =
∫
κiδli dμ(i), (1.12)

whereμ is a probability measure, one no longer has explicit solutions. The existence
problem becomes more difficult and was solved only in the 1980s in [2,7], see also
[1,9]. Uniqueness is again a subtle issue and is known only in the class (1.10) of
two dimensional solutions, see [6].

Another class of existence results was obtained in [8] for small data, see also
[17]. In those papers the authors proved both existence and uniqueness (in suitable
classes of functions) of the Cauchy problem (1.1), (1.2) for example in the case
when the initial data u0 is

ω0 = κδγ , (1.13)

where γ is a smooth closed curve and κ is sufficiently small (with the notion of
smallness depending on γ ). These results are proved by perturbation theory, and
also follow from later works based on perturbation theory, such as [10].

Our main result in this paper is the following:

Theorem 1.1. Let γ be a circle, κ ∈ R and ω0 = κδγ . Then the Cauchy prob-
lem (1.1), (1.2) for the initial data u0 given by ω0 has a global solution which is
smooth for t > 0. The initial condition for the vorticity is satisfied in the following
weak sense: for any ϕ ∈ C∞

0

(
R

3; R
3),

lim
t→0

∫
R

3
ω(x, t) · ϕ(x) dx =

∫
R

3
ω0(x) · ϕ(x) dx, (1.14)

where ω = curl u is the vorticity field.
At the level of the velocity field we have

lim
t→0

||u(·, t)− u0||L p(R3)
→ 0 (1.15)

for each p ∈ (1, 2).

Remark.

1. Our method can be used to show that the same results hold when ω0 =∫
κ(γ )δγ dμ(γ ), where μ is a probability measure supported on the set of

the circles with a given axis of symmetry, and κ(γ ) � 0 is an integrable func-
tion with respect to μ.

2. The sense in which the initial condition u0 is assumed is somewhat weak, see
(1.1). A more precise analysis than ours is needed to determine the optimal
convergence of ω( ·, t) → ω0 as t → 0+.

We now outline the main ideas involved in the proof. By using the following
transformation

u(x, t) 
→ νu(x, νt), p(x, t) 
→ ν2 p(x, νt), (1.16)

we can change the first equation in (1.1) to

ut + div (u ⊗ u)+ ∇ p −�u = 0. (1.17)
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Therefore, without loss of generality, we can assume ν = 1. Let us work with the
vorticity equation (obtained by taking the curl of the Navier–Stokes equations)

ωt + u∇ω − ω∇u = �ω, (1.18)

which simplifies significantly for the axi-symmetric velocity fields with no swirl
which we will be considering. The precise definition is as follows.

Definition 1.2. (Axi-symmetric vector field). A vector field u in R
3 is axi-symmetric

if there is a coordinate frame in which it can be written as

u = ur (r, z)er + uθ (r, z)eθ + uz(r, z)ez, (1.19)

where

er = (x1/r , x2/r , 0), eθ = (−x2/r , x1/r , 0), ez = (0, 0, 1) (1.20)

and (r, θ, z) are the usual cylindrical coordinates associated with the frame. The
components ur , uθ and uz are independent of θ . The component uθ is referred to
as the swirl component of the vector field u (in the given frame). If uθ vanishes, we
say that u has no swirl.

It is easy to check that the curl of an axi-symmetric vector field u = ur er + uzez

with no swirl is of the form

ω = curl u = (
ur,z − uz,r

)
eθ , (1.21)

which has only the eθ component, where ur,z denotes the partial derivative ∂ur/∂z,
etc. We will seek the solution of (1.18) in the form ω = ωθ(r, z, t)eθ and the
velocity field in the form u = ur (r, z, t)er + uz(r, z, t)ez . The vorticity equation
(1.18) simplifies to

(ωθ
r

)
t
+ u∇

(ωθ
r

)
= �

(ωθ
r

)
+ 2

r

(ωθ
r

)
,r
. (1.22)

The right hand side of (1.22) can be interpreted as the Laplacian in R
5 = {(y1, . . . ,

y4, z)} on functions which depend only on r =
√

y2
1 + · · · + y2

4 and z. Therefore

the quantity ωθ
r satisfies a maximum principle, see Lemma 3.4.

There are three main ingredients of the proof:

1. Nash-type estimates for the quantity ωθ
r based on equation (1.22) and the div-

free nature of the field u. These estimates give a good decay of
∥∥∥ωθ (t)r

∥∥∥
L∞

x (R
3)

in terms of t−α for suitable α > 0, even when the initial condition for ωθ is a
Dirac distribution, see (3.28).

2. The use of the conservation of the vorticity flux and momentum, which are,
respectively, the quantities

∫
ωθ(r, z) dr dz and

∫
r2ωθ(r, z) dr dz.

3. Weighted inequalities for axi-symmetric fields with no swirl, such as

‖u‖L∞
x (R

3)
� C ‖rωθ‖

1
4

L1
x (R

3)

∥∥∥ωθ
r

∥∥∥
1
4

L1
x (R

3)

∥∥∥ωθ
r

∥∥∥
1
2

L∞
x (R

3)
. (1.23)
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Step 1 is achieved by application of Nash’s techniques [14] for estimates of
equations with div-free drift. In our case they cannot quite be used directly, due to
the singular behavior of the coefficients of 2

r

(
ωθ
r

)
,r near the z-axis which give extra

terms in the Nash-type estimates. Fortunately, the terms have a good sign, see the
second term on line 6 in (3.25) in the proof of Lemma 3.8. Inequality (1.23) seems
to be of independent interest, and it gives information about u in terms of ωθ , the
quantity for which we have the most control.

Combining the results 1–3, we can then proceed along similar lines as [7]. The
uniqueness of the solutions from the above theorem seems to be a difficult open
problem. We conjecture that it is possible to prove uniqueness in some natural
classes of axi-symmetric solutions without swirl, but uniqueness in the class of all
reasonable three dimensional vector fields may be much harder to prove and one
might perhaps even have counter-examples. We plan to consider these topics in a
future work.

2. Weighted Inequalities

In this section, we present some weighted inequalities. We will have uniform
upper bounds on three quantities related to the vorticity: ‖rω‖L1

x (R
3)
,
∥∥ω

r

∥∥
L1

x (R
3)
,∥∥ω

r

∥∥
L∞

x (R
3)

, and our aim is to obtain further estimates on the velocity u from these
bounds. The inequalities presented in this section will be sufficient for our purposes
in this paper.

Proposition 2.1. Let f : R
3 → R be such that ‖r f ‖L1

x (R
3)
,

∥∥∥ f
r

∥∥∥
L1

x (R
3)

and∥∥∥ f
r

∥∥∥
L∞

x (R
3)

are finite, where r =
√

x2
1 + x2

2 . Then for every 1 � p � 2,

f ∈ L p
x (R

3) and

‖ f ‖L p
x (R

3)
� ‖r f ‖

1
2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1
p − 1

2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1− 1

p

L∞
x (R

3)

.

Proof. We first prove the two cases of p = 1 and p = 2 and then use interpolation
to prove the other cases. We can write

∫
R

3
| f | dx =

∫
R

3
r

1
2 | f | 1

2
| f | 1

2

r
1
2

dx

�
(∫

R
3

r | f | dx

) 1
2
(∫

R
3

| f |
r

dx

) 1
2 = ‖r f ‖

1
2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1
2

L1
x (R

3)

,

which proves the case p = 1.



94 Hao Feng & Vladimír Šverák

Next we consider
(∫

R
3
| f |2 dx

) 1
2 =

(∫
R

3
r | f | | f |

r
dx

) 1
2

�
(∫

R
3

r | f |
∥∥∥∥ f

r

∥∥∥∥
L∞

x (R
3)

dx

) 1
2 = ‖r f ‖

1
2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1
2

L∞
x (R

3)

,

which proves the case p = 2.
Let 1 < p < 2. We have

‖ f ‖L p
x (R

3)
� ‖ f ‖

2
p −1

L1
x (R

3)
‖ f ‖2− 2

p

L2
x (R

3)

�
(

‖r f ‖
1
2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1
2

L1
x (R

3)

) 2
p −1(

‖r f ‖
1
2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1
2

L∞
x (R

3)

)2− 2
p

= ‖r f ‖
1
2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1
p − 1

2

L1
x (R

3)

∥∥∥∥ f

r

∥∥∥∥
1− 1

p

L∞
x (R

3)

.

�

Remark 2.2. Under the assumption of Proposition 2.1, one cannot control‖ f ‖L p

x (R
3)

for p > 2. It is not hard to exhibit counterexamples.

Corollary 2.3. Assume that ω is a vector field on R
3 such that

‖rω‖L1
x (R

3)
< ∞,

∥∥∥ω
r

∥∥∥
L1

x (R
3)
< ∞,

∥∥∥ω
r

∥∥∥
L∞

x (R
3)
< ∞. (2.1)

Let u be the vector field constructed from ω via the Biot–Savart law,

u(x) = − 1

4π

∫
R3

x − y

|x − y|3 × ω(y) dy. (2.2)

Then for any 3
2 < q � 6, u ∈ Lq

x (R
3) and

‖u‖Lq
x (R

3)
� ‖rω‖

1
2

L1
x (R

3)

∥∥∥ω
r

∥∥∥
1
q − 1

6

L1
x (R

3)

∥∥∥ω
r

∥∥∥
2
3 − 1

q

L∞
x (R

3)
. (2.3)

Proof. By Proposition 2.1 and (2.1), for any 1 � p � 2, we have

‖ω‖L p
x (R

3)
� ‖rω‖

1
2

L1
x (R

3)

∥∥∥ω
r

∥∥∥
1
p − 1

2

L1
x (R

3)

∥∥∥ω
r

∥∥∥1− 1
p

L∞
x (R

3)
. (2.4)

Then by the classical Hardy-Littlewood-Sobolev inequality (see for instance [15,
19]), one can get

‖u‖Lq
x (R

3)
� ‖ω‖L p

x (R
3)
, for p ∈ (1, 3) and

1

q
= 1

p
− 1

3
,

which, combining with (2.4), implies (2.3). �




Cauchy Problem for Axi-Symmetric Vortex Rings 95

Remark 2.4. By interpolation, the upper bounds (2.1) imply
∥∥∥ω

r

∥∥∥
L p

x (R
3)
< ∞, for all 1 < p < ∞.

What can we say about the full gradient ∇u from the above bounds and (2.1)? This
question is related to the theory of singular integral operators with weights. Here
we will only consider this question for vector fields which are axi-symmetric.

It is natural to ask whether we can control other Lq
x (R

3) norms of u except
3
2 < q � 6 under the assumptions of Corollary 2.3. The inequality (2.5) below
indicates what can be expected in this situation. We prove this inequality as a
warm-up for the proof of our main inequality (1.23).

Proposition 2.5. Assume f = f (x1, x2, z) = f
(√

x2
1 + x2

2 , z
) : R

3 → R is

smooth and vanishes at infinity. Assume in addition that‖r∇ f ‖L1
x (R

3)
,

∥∥∥∇ f
r

∥∥∥
L1

x (R
3)

and
∥∥∥∇ f

r

∥∥∥
L∞

x (R
3)

are finite. Then we have

‖ f ‖L∞
x (R

3)
� ‖r∇ f ‖

1
4

L1
x (R

3)

∥∥∥∥∇ f

r

∥∥∥∥
1
4

L1
x (R

3)

∥∥∥∥∇ f

r

∥∥∥∥
1
2

L∞
x (R

3)

. (2.5)

Proof. Assume that | f (r, z)| achieves its supremum at (r0, z0), that is,

‖ f ‖L∞
x (R

3)
= | f (r0, z0)| .

By the boundedness of ∇ f
r , ∇ f must vanish at r = 0 (the z-axis). In particular,

∇z f = 0 along the z-axis. Thus, f (0, z) ≡ 0 by the assumption that f vanishes
at infinity. Therefore, without loss of generality, we can assume r0 > 0. By the
fundamental theorem of calculus and Hölder’s inequality

‖ f ‖L∞
x (R

3)
= | f (r0, z0)| =

∣∣∣ f (r0, z0)
2
∣∣∣

1
2 =

∣∣∣∣
∫ ∞

z0

∂z f (r0, z)2 dz

∣∣∣∣
1
2

�
(∫ ∞

z0

| f (r0, z)| |∂z f (r0, z)| dz
) 1

2

=
(∫ ∞

z0

∣∣∣∣
∫ ∞

r0

∂r f (r, z) dr

∣∣∣∣ |∂z f (r0, z)| dz

) 1
2

�
(∫ ∞

z0

∫ ∞

r0

|∂r f (r, z)| dr |∂z f (r0, z)| dz

) 1
2

=
(∫ ∞

z0

∫ ∞

r0

(
r |∂r f (r, z)| 1

2 |∂r f (r, z)| 1
2

1

r

)
dr |∂z f (r0, z)| dz

) 1
2

�
(∫ ∞

z0

∫ ∞

r0

(
r |∂r f (r, z)| 1

2 |∂r f (r, z)| 1
2

)
dr

|∂z f (r0, z)|
r0

dz

) 1
2
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�
(∫ ∞

z0

∫ ∞

r0

r |∂r f (r, z)| 1
2 |∂r f (r, z)| 1

2 dr dz

) 1
2
(

sup
z

|∂z f (r0, z)|
r0

) 1
2

�
(∫ ∞

−∞

∫ ∞

0
r2 |∂r f (r, z)| dr dz

) 1
4
(∫ ∞

−∞

∫ ∞

0
|∂r f (r, z)| dr dz

) 1
4

×
(

sup
R

3

|∂z f (r, z)|
r

) 1
2

� ‖r∇ f ‖
1
4

L1
x (R

3)

∥∥∥∥∇ f

r

∥∥∥∥
1
4

L1
x (R

3)

∥∥∥∥∇ f

r

∥∥∥∥
1
2

L∞
x (R

3)

.

�

In light of (2.5), one might ask whether the following inequality is true:

‖u‖L∞
x (R

3)
� ‖rω‖

1
4

L1
x (R

3)

∥∥∥ω
r

∥∥∥
1
4

L1
x (R

3)

∥∥∥ω
r

∥∥∥
1
2

L∞
x (R

3)
. (2.6)

We do not know whether (2.6) is true for general vector fields, but we will show
that it turns out to be true for the class of axi-symmetric vector fields with no swirl,
which is enough for our purposes here. We will use the axi-symmetric Biot–Savart
law. To introduce it, we start from the so-called axi-symmetric stream function.

In cylindrical coordinates, the class of axi-symmetric vector fields with no swirl
is in the form u = ur (r, z)er +uz(r, z)ez , see Definition 1.2, and the divergence-free
condition divu = 0 turns out to be

(rur ),r + (ruz),z = 0,

which means that

rur = −ψ,z, ruz = ψ,r

for a suitable function ψ = ψ(r, z), called the axi-symmetric stream function,
similar to the two dimensional situation. Hence

ur = −1

r
ψ,z, uz = 1

r
ψ,r . (2.7)

It is easy to check that the curl of an axi-symmetric field u with no swirl is in the
form

curl u = ωθeθ

with ωθ = ur,z − uz,r . Therefore, we obtain

Lψ : = −1

r
ψ,rr + 1

r2ψ,r − 1

r
ψ,zz = ωθ .
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The inverse operator L−1 is given by

ψ(r̄ , z̄) =
∫ ∞

−∞

∫ ∞

0

r̄r

4π

∫ 2π

0

cosϕ dϕ[
r2 + r̄2 − 2r̄r cosϕ + (z − z̄)2

] 1
2

ωθ(r, z) dr dz.

(2.8)

For the axi-symmetric stream function and the derivation of (2.8), we refer the
readers to [16]. We can express (2.8) somewhat more explicitly as

ψ(r̄ , z̄) =
∫ ∞

−∞

∫ ∞

0

√
r̄r

2π

∫ π

0

cosϕ dϕ[
2(1 − cosϕ)+ (r−r̄)2+(z−z̄)2

r̄r

] 1
2

ωθ(r, z) dr dz

=
∫ ∞

−∞

∫ ∞

0

√
r̄r

2π
F

(
(r − r̄)2 + (z − z̄)2

r̄r

)
ωθ(r, z) dr dz,

(2.9)

where the function F : (0,∞) → R is defined by

F(s) : =
∫ π

0

cosϕ dϕ[
2(1 − cosϕ)+ s

] 1
2

. (2.10)

Let

G(r̄ , z̄, r, z) =
√

r̄r

2π
F

(
(r − r̄)2 + (z − z̄)2

r̄r

)
. (2.11)

Then

ψ(r̄ , z̄) =
∫ ∞

−∞

∫ ∞

0
G(r̄ , z̄, r, z) ωθ (r, z) dr dz.

By (2.7) and (2.11), we get

ur (r̄ , z̄) =
∫ ∞

−∞

∫ ∞

0

[
−1

r̄

∂G

∂ z̄
(r̄ , z̄, r, z)

]
ωθ(r, z) dr dz

=
∫ ∞

−∞

∫ ∞

0

z − z̄

π r̄
3
2
√

r
F ′
(
(r − r̄)2 + (z − z̄)2

r̄r

)
ωθ(r, z) dr dz,

(2.12)

uz(r̄ , z̄) =
∫ ∞

−∞

∫ ∞

0

[
1

r̄

∂G

∂ r̄
(r̄ , z̄, r, z)

]
ωθ(r, z) dr dz

=
∫ ∞

−∞

∫ ∞

0
Z (r̄ , z̄, r, z) ωθ (r, z) dr dz, (2.13)

where

Z (r̄ , z̄, r, z) = 1

r̄

∂G

∂ r̄
(r̄ , z̄, r, z).
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The formulae (2.12) and (2.13), representing the relations between ur , uz and ωθ ,
represent the axi-symmetric Biot–Savart law. We calculate the kernel Z . Let d2 =
(r − r̄)2 + (z − z̄)2. Let ξ = ξ(r̄ , z̄, r, z) = d√

r̄r
. Then by (2.11), we have

G(r̄ , z̄, r, z) = d

2πξ
F(ξ2) = d

2π
H(ξ),

where H(t) = F(t2)
t . Direct calculation shows that

H ′(t) = 2F ′(t2)− F(t2)

t2 ,
∂ξ

∂ r̄
= ξ

( r̄ − r

d2 − 1

2r̄

)
, (2.14)

Z = 1

r̄

∂G

∂ r̄
= 1

2π

r̄ − r

r̄
3
2 r

1
2

[H(ξ)

ξ
+ H ′(ξ)

]
− 1

4π
ξ2 H ′(ξ)

√
r

r̄
3
2

= 1

π

r̄ − r

r̄
3
2 r

1
2

F ′(ξ2)+ 1

4π

[
F(ξ2)− 2ξ2 F ′(ξ2)

]√r

r̄
3
2

. (2.15)

In the sequel, we are mainly interested in Z at (r̄ , z̄) = (1, 0). We write it down
explicitly:

Z (1, 0, r, z) = 1 − r

πr
1
2

F ′
(
(r − 1)2 + z2

r

)

+
√

r

4π

[
F

(
(r − 1)2 + z2

r

)
− 2

(r − 1)2 + z2

r
F ′
(
(r − 1)2 + z2

r

)]
.

(2.16)

At first glance, comparing with the usual Biot–Savart law (2.2), the axi-symmetric
Biot–Savart law (2.12) and (2.13) look more complicated and have no advantages.
But (2.12) and (2.13) indeed capture some features of axi-symmetric fields with no
swirl. Although the function F in (2.10) cannot be expressed in terms of elementary
functions, it has nice asymptotic properties near s = 0 and s = ∞. By (2.10), it is
obvious that

|F(s)| �
(1

s

) 1
2
. (2.17)

However, F actually has a slower blow-up at s = 0 and a faster decay at s = ∞
than (2.17) as: |F(s)| � log 1

s near s = 0 and |F(s)| �
(

1
s

) 3
2

near s = ∞. We

will use the following simple properties of F .

Lemma 2.6. For every non-negative integer k, the kth-derivative of F satisfies

∣∣∣F (k)(s)
∣∣∣ �k

1

sk+ 1
2

, (2.18)

for all s ∈ (0,∞).
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Proof. By (2.10),

|F(s)| �
∫ π

0

dϕ

s
1
2

� 1

s
1
2

.

Hence (2.18) is true for the case of k = 0. The first derivative of F is

F ′(s) = −1

2

∫ π

0

cosϕ dϕ[
2(1 − cosϕ)+ s

] 3
2

.

Therefore,

∣∣F ′(s)
∣∣ �

∫ π

0

dϕ

s
3
2

� 1

s
3
2

.

Hence the case of k = 1 is also true. The remaining cases can be proved similarly.
�


Lemma 2.7. There exists an absolute constant 0 < ε0 < 1 such that for all
s ∈ (0, ε0), the kth-derivative of F satisfies

|F(s)| � log
1

s
�τ

1

sτ
, for every τ > 0, if k = 0,

∣∣∣F (k)(s)∣∣∣ �k
1

sk
, if 0 < k ∈ N. (2.19)

Proof. F(s) has the following expansion near s = 0, see for instance [16]

F(s) =
(

log
1

s

)
(a0 + a1s + a2s2 + · · · )+ (b0 + b1s + b2s2 + · · · ),

with a0 = 1
2 and b0 = log 8 − 2. Hence

F(s) = 1

2
log

1

s
+ log 8 − 2 + O

(
s log

1

s

)
, s → 0+.

The estimate (2.19) follows easily from the above expansion. �

Lemma 2.8. There exists an absolute constant N0 > 1 such that for every non-
negative integer k, the kth-derivative of F satisfies

∣∣∣F (k)(s)∣∣∣ �k
1

sk+ 3
2

(2.20)

for all s ∈ (N0,∞).

Proof. This is an easy calculation. �

The estimates in Lemmas 2.7 and 2.8 are local. But those restrictions can be

easily removed with the aid of Lemma 2.6. As a consequence of Lemmas 2.6, 2.7
and 2.8, we have
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Corollary 2.9. For every non-negative integer k, the kth-derivative of F satisfies

|F(s)| �τ min

((1

s

)τ
,
(1

s

) 1
2
,
(1

s

) 3
2
)
, for every 0 < τ <

1

2
, if k = 0,

∣∣∣F (k)(s)
∣∣∣ �k min

((1

s

)k
,
(1

s

)k+ 1
2
,
(1

s

)k+ 3
2
)
, if 0 < k ∈ N,

for all s ∈ (0,∞).

With the aid of Corollary 2.9, controlling the L∞
x (R

3)-norm of u via the upper
bounds (2.1) becomes tractable. We need the following technical lemma.

Lemma 2.10. Let f : R
2 → R be such that ‖ f ‖L1(R2)

< ∞ and ‖ f ‖L∞(R2)
< ∞.

Let K : R
2 → R be such that |K (x)| � C

|x−x0| for some positive constant C, some

point x0 ∈ R
2 and for all x ∈ R

2. Then∣∣∣∣
∫

R
2

K (x) f (x) dx

∣∣∣∣ � 2
√

2πC ‖ f ‖
1
2

L1(R2)
‖ f ‖

1
2

L∞(R2)
.

Proof. For any ρ > 0, we have∣∣∣∣
∫

R
2

K (x) f (x) dx

∣∣∣∣ �
∫

|x−x0|�ρ
C

|x − x0| | f (x)| dx +
∫

|x−x0|>ρ
C

|x − x0| | f (x)| dx

� 2πCρ ‖ f ‖L∞(R2) + C

ρ
‖ f ‖L1(R2) .

After minimizing the last term, we can get the desired result. �

Since an axi-symmetric vector field u with no swirl is of the form u = ur (r, z)er+

uz(r, z)ez , to estimate the L∞
x (R

3) norm of u, it is enough to estimate the L∞ norms
of ur and uz over the r z-plane � := {

r � 0, z ∈ R
}
. We will use the following

simple identities.

‖rω‖L1
x (R

3)
= 2π

∥∥∥r2ωθ

∥∥∥
L1(�)

,

∥∥∥ω
r

∥∥∥
L1

x (R
3)

= 2π ‖ωθ‖L1(�) ,

∥∥∥ω
r

∥∥∥
L∞

x (R
3)

=
∥∥∥ωθ

r

∥∥∥
L∞(�)

.

We first estimate the r -component ur .

Proposition 2.11. Let ur be given by the formula (2.12) with ωθ satisfying∥∥∥r2ωθ

∥∥∥
L1(�)

< ∞, ‖ωθ‖L1(�) < ∞,

∥∥∥ωθ
r

∥∥∥
L∞(�)

< ∞.

Then

‖ur‖L∞(�) � C1

∥∥∥r2ωθ

∥∥∥
1
4

L1(�)
‖ωθ‖

1
4
L1(�)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(�)
, (2.21)

where C1 is an absolute constant.
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Proof. The estimate (2.21) is invariant under the scaling and the translation in the
z variable

ur (r, z) 
→ ur (λr, λz + z0), ωθ (r, z) 
→ λωθ(λr, λz + z0)

for every λ > 0 and every z0 ∈ R, and therefore it is enough to prove

|ur (1, 0)| �
∥∥∥r2ωθ

∥∥∥
1
4

L1(�)
‖ωθ‖

1
4
L1(�)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(�)
. (2.22)

By (2.12)

ur (1, 0) =
∫ ∞

−∞

∫ ∞

0

z

π
√

r
F ′
(
(r − 1)2 + z2

r

)
ωθ(r, z) dr dz. (2.23)

We split the right hand side of (2.23) into two parts. One is on the region

I1 =
{

1

2
� r � 2,−1 � z � 1

}

and the other on the complement I2 = � \ I1.
On I1, by Corollary 2.9 (using

∣∣F ′(s)
∣∣ � 1

s ), the kernel of (2.23) can be esti-
mated as

∣∣∣∣ z

π
√

r
F ′
(
(r − 1)2 + z2

r

)∣∣∣∣ � |z|√
r

r

(r − 1)2 + z2 � 1√
(r − 1)2 + z2

= 1

|(r, z)− (1, 0)| .

Therefore, by Lemma 2.10 and the fact that r ∼ 1 on I1, we obtain

∣∣∣∣
∫∫

I1

z

π
√

r
F ′
(
(r − 1)2 + z2

r

)
ωθ(r, z) dr dz

∣∣∣∣
=
∣∣∣∣
∫∫

z

π
√

r
F ′
(
(r − 1)2 + z2

r

)
ωθ(r, z) χI1 dr dz

∣∣∣∣
� ‖ωθ‖

1
2
L1(I1)

‖ωθ‖
1
2
L∞(I1)

�
∥∥∥r2ωθ

∥∥∥
1
4

L1(I1)
‖ωθ‖

1
4
L1(I1)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(I1)
, (2.24)

where χI1 is the characteristic function of I1.

On I2, by Corollary 2.9, (using
∣∣F ′(s)

∣∣ �
(

1
s

) 5
2
), the kernel of (2.23) can be

estimated as

∣∣∣∣ z

π
√

r
F ′
(
(r − 1)2 + z2

r

)∣∣∣∣ � |z|√
r

(
r

(r − 1)2 + z2

) 5
2

� 1

(r − 1)2 + z2 ,
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which is square-integrable on I2. Therefore, noting that |ωθ | = r
1
2 |ωθ | 1

4 |ωθ | 1
4

|ωθ |
1
2

r
1
2

,

by Hölder’s inequality, we obtain

∣∣∣∣
∫∫

I2

z

π
√

r
F ′
(
(r − 1)2 + z2

r

)
ωθ(r, z) dr dz

∣∣∣∣
�
∥∥∥r2ωθ

∥∥∥
1
4

L1(I2)
‖ωθ‖

1
4
L1(I2)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(I2)
. (2.25)

Clearly, (2.23), (2.24) and (2.25) imply (2.22). The proposition is proved. �

To estimate uz , we need the following technical lemma.

Lemma 2.12. Assume that ωθ is a function on � satisfying

∥∥∥r2ωθ

∥∥∥
L1(�)

< ∞, ‖ωθ‖L1(�) < ∞,

∥∥∥ωθ
r

∥∥∥
L∞(�)

< ∞.

Then

∫ ∞

z=−∞

∫ ∞

r=2
|ωθ(r, z)| r2

[(r − 1)2 + z2] 3
2

dr dz

�
∥∥∥r2ωθ

∥∥∥
1
4

L1(�)
‖ωθ‖

1
4
L1(�)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(�)
. (2.26)

We remark that the integral domain � of the right hand side of (2.26) can be
replaced by

{
r � 2

}
, where

{
r � 2

}
is shorthand for the set

{
r � 2, z ∈ R

}
. But

(2.26) is enough for our purpose.

Proof. We can’t use Hölder’s inequality directly to get (2.26) because on the region{
r � |z|}, the weight r2

[(r−1)2+z2] 3
2

∼ 1

[(r−1)2+z2] 1
2

, which is not square-integrable

on that region. We introduce some notations. Let d2 = r2+z2 and f (r, z) = ωθ (r,z)
r .

To prove (2.26), it is enough to show

∫ ∞

z=−∞

∫ ∞

r=2
| f | r3

d3 dr dz �
∥∥∥r3 f

∥∥∥
1
4

L1(�)
‖r f ‖

1
4
L1(�)

‖ f ‖
1
2
L∞(�) . (2.27)

By the Cauchy–Schwartz inequality, we have

∥∥∥r2 f
∥∥∥

L1(�)
�
∥∥∥r3 f

∥∥∥
1
2

L1(�)
‖r f ‖

1
2
L1(�)

.

Therefore, to prove (2.27), it is enough to prove

∫ ∞

z=−∞

∫ ∞

r=2
| f | r3

d3 dr dz �
∥∥∥r2 f

∥∥∥
1
2

L1({r�2}) ‖ f ‖
1
2
L∞({r�2}) , (2.28)
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since
{
r � 2

} ⊂ �. We may assume that f is a function supported in
{
r � 2

}
and

vanishing elsewhere in�, otherwise, we can just replace f by f χ{r�2}. Under this
assumption, it is enough to prove∥∥∥∥ f

r3

d3

∥∥∥∥
L1(�)

�
∥∥∥r2 f

∥∥∥
1
2

L1(�)
‖ f ‖

1
2
L∞(�) . (2.29)

For λ > 0, let fλ(r, z) = λ2 f (λr, λz). Clearly, fλ is supported on
{
r � 2

λ

}
. It is

easy to check that for every λ > 0, we have∥∥∥∥ fλ
r3

d3

∥∥∥∥
L1(�)

=
∥∥∥∥ f

r3

d3

∥∥∥∥
L1(�)

, ‖ fλ‖L∞(�) = λ2 ‖ f ‖L∞(�) ,
∥∥∥r2 fλ

∥∥∥
L1(�)

= λ−2
∥∥∥r2 f

∥∥∥
L1(�)

.

We find λ0 > 0 so that
∥∥ fλ0

∥∥
L∞(�) = ∥∥r2 fλ0

∥∥
L1(�)

. By calculation,

λ0 =
(∥∥r2 f

∥∥
L1(�)

‖ f ‖L∞(�)

) 1
4

.

To prove (2.29), it is enough to prove∥∥∥∥ fλ0

r3

d3

∥∥∥∥
L1(�)

�
∥∥∥r2 fλ0

∥∥∥
L1(�)

+ ∥∥ fλ0

∥∥
L∞(�) . (2.30)

We distinguish two cases 0 < λ0 � 1 and λ0 > 1.
Case 1. 0 < λ0 � 1.

By definition, fλ0 is supported on
{

r � 2
λ0

}
, which lies in

{
r � 1

}
. On the

support of fλ0 , it is clear that r3

d3 � 1 � r2 and hence (2.30) is true.
Case 2. λ0 > 1.
In this case, we have∥∥∥∥ fλ0

r3

d3

∥∥∥∥
L1(�)

�
∫ ∞

−∞

∫ ∞

2

∣∣ fλ0

∣∣ dr dz + ∥∥ fλ0

∥∥
L∞(�)

∫ ∞

−∞

∫ 2

2
λ0

r3

d3 dr dz

�
∥∥∥r2 fλ0

∥∥∥
L1(�)

+ ∥∥ fλ0

∥∥
L∞(�) .

Therefore (2.30) is true. The lemma is proved. �

We now estimate the z-component uz . The work for uz is similar to that for ur

in Proposition 2.11 but some parts have to be treated differently.

Proposition 2.13. Let uz be given by the formula (2.13) with ωθ satisfying∥∥∥r2ωθ

∥∥∥
L1(�)

< ∞, ‖ωθ‖L1(�) < ∞,

∥∥∥ωθ
r

∥∥∥
L∞(�)

< ∞.

Then

‖uz‖L∞(�) � C2

∥∥∥r2ωθ

∥∥∥
1
4

L1(�)
‖ωθ‖

1
4
L1(�)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(�)
, (2.31)

where C2 is an absolute constant.
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Proof. Since the estimate (2.31) is invariant under the scaling and the translation
in the z variable, it is enough to prove

|uz(1, 0)| �
∥∥∥r2ωθ

∥∥∥
1
4

L1(�)
‖ωθ‖

1
4
L1(�)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(�)
. (2.32)

By (2.13),

uz(1, 0) =
∫ ∞

−∞

∫ ∞

0
Z (1, 0, r, z) ωθ (r, z) dr dz, (2.33)

where Z (1, 0, r, z) is given by (2.16) as

Z (1, 0, r, z) = 1 − r

πr
1
2

F ′
(
(r − 1)2 + z2

r

)

+
√

r

4π

[
F

(
(r − 1)2 + z2

r

)
− 2

(r − 1)2 + z2

r
F ′
(
(r − 1)2 + z2

r

)]

:= Z1(r, z)+ Z2(r, z). (2.34)

We split the right hand side of (2.33) into two parts. One is on the region

I1 =
{

1

2
� r � 2,−1 � z � 1

}

and the other on the complement I2 = � \ I1.
On I1, by Corollary 2.9, Z1 can be estimated as (using

∣∣F ′(s)
∣∣ � 1

s )

|Z1(r, z)| � |1 − r |
r

1
2

r

(r − 1)2 + z2 � 1

|(r, z)− (1, 0)|

and Z2 can be estimated as (using |F(s)| �
(

1
s

) 1
2

and
∣∣F ′(s)

∣∣ �
(

1
s

) 3
2
)

|Z2(r, z)| �
√

r

[(
r

(r − 1)2 + z2

) 1
2 + (r − 1)2 + z2

r

(
r

(r − 1)2 + z2

) 3
2
]

� 1

|(r, z)− (1, 0)| .

Therefore, by Lemma 2.10 and the fact that r ∼ 1 on I1, we obtain∣∣∣∣
∫∫

I1

Z (1, 0, r, z) ωθ (r, z) dr dz

∣∣∣∣
� ‖ωθ‖

1
2
L1(I1)

‖ωθ‖
1
2
L∞(I1)

�
∥∥∥r2ωθ

∥∥∥
1
4

L1(I1)
‖ωθ‖

1
4
L1(I1)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(I1)
. (2.35)

On I2, by Corollary 2.9, Z1 can be estimated as (using
∣∣F ′(s)

∣∣ �
(

1
s

) 5
2
)

|Z1(r, z)| � |1 − r |
r

1
2

(
r

(r − 1)2 + z2

) 5
2

� 1

(r − 1)2 + z2 ,
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which is square-integrable on I2. Therefore, by Hölder’s inequality, we obtain∣∣∣∣
∫∫

I2

Z1(r, z) ωθ (r, z) dr dz

∣∣∣∣ �
∥∥∥r2ωθ

∥∥∥
1
4

L1(I2)
‖ωθ‖

1
4
L1(I2)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(I2)
. (2.36)

Unfortunately, the foregoing argument of Z1 does not work for Z2 because Z2 is
not square-integrable on the region I2. By Corollary 2.9, the best estimate for Z2

on I2 is (using |F(s)| �
(

1
s

) 3
2

and
∣∣F ′(s)

∣∣ �
(

1
s

) 5
2
)

|Z2(r, z)| �
√

r

[(
r

(r − 1)2 + z2

) 3
2 + (r − 1)2 + z2

r

(
r

(r − 1)2 + z2

) 5
2
]

∼ r2

[(r − 1)2 + z2] 3
2

. (2.37)

To overcome this difficulty, we split the region I2 into two parts: “good” part
I21 := I2 ∩ {r � 2

}
and “bad” part I22 := I2 ∩ {r > 2} = {r > 2}. By (2.37), Z2

is clearly square-integrable on I21 and therefore by Hölder’s inequality, we obtain∣∣∣∣
∫∫

I21

Z2(r, z) ωθ (r, z) dr dz

∣∣∣∣ �
∥∥∥r2ωθ

∥∥∥
1
4

L1(I21)
‖ωθ‖

1
4
L1(I21)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(I21)
.

(2.38)

On the “bad” part I22, by Lemma 2.12 and (2.37), we have∣∣∣∣
∫∫

I22

Z2(r, z) ωθ (r, z) dr dz

∣∣∣∣ �
∫ ∞

z=−∞

∫ ∞

r=2
|ωθ(r, z)| r2

[(r − 1)2 + z2] 3
2

dr dz

�
∥∥∥r2ωθ

∥∥∥
1
4

L1(�)
‖ωθ‖

1
4
L1(�)

∥∥∥ωθ
r

∥∥∥
1
2

L∞(�)
. (2.39)

Clearly, (2.33), (2.34), (2.35), (2.36), (2.38) and (2.39) imply (2.32). The proposi-
tion is proved. �


The following proposition concerns the decay as |x | → ∞.

Proposition 2.14. Let u = ur er + uzez with ur given by (2.12) and uz given by
(2.13) and with ωθ satisfying∥∥∥r2ωθ

∥∥∥
L1(�)

< ∞, ‖ωθ‖L1(�) < ∞,

∥∥∥ωθ
r

∥∥∥
L∞(�)

< ∞.

Then for every ε > 0, there exists a R > 0 such that for every x ∈ R
3 with |x | > R,

we have

|u(x)| �
∥∥r2ωθ

∥∥ 1
2
L1(�)

‖ωθ‖
1
2
L1(�)

2(|x | − R)2
+ ε

2
.

In particular, we have

lim|x |→∞
|u(x)| = 0.
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Proof. We can assume∥∥∥r2ωθ

∥∥∥
L1(�)

> 0, ‖ωθ‖L1(�) > 0,
∥∥∥ωθ

r

∥∥∥
L∞(�)

> 0,

otherwise, u ≡ 0 and the assertions are obviously true. For any ε > 0, we can find
a R > 0 so that ω1 : = ωθχ{r2+z2�R2} satisfies

‖ω1‖L1(�) <
ε4

16(C2
1 + C2

2 )
2
∥∥r2ωθ

∥∥
L1(�)

∥∥ωθ
r

∥∥2
L∞(�)

,

where C1 and C2 are the constants from Propositions 2.11 and 2.13. Let ω2 =
ωθ − ω1. Let u1 and u2 be the vector fields constructed from ω1 and ω2 via (2.12)
and (2.13), respectively. Clearly, u = u1 + u2. By Propositions 2.11 and 2.13, we
have

‖u1‖L∞
x (R

3)
�
√

C2
1 + C2

2

∥∥∥r2ω1

∥∥∥
1
4

L1(�)
‖ω1‖

1
4
L1(�)

∥∥∥ω1

r

∥∥∥
1
2

L∞(�)
� ε

2
. (2.40)

We can also express u2 in terms of ω2 via the Biot–Savart law in Cartesian coordi-
nates

u2(x) = − 1

4π

∫
R

3

x − y

|x − y|3 × ω2 eθ dy.

Since ω2 is supported in the ball BR(0), for any |x | > R, we have

|u2(x)| � 1

4π

‖ω2‖L1
x (R

3)

(|x | − R)2
= 1

2

‖rω2‖L1(�)

(|x | − R)2
�
∥∥r2ωθ

∥∥ 1
2
L1(�)

‖ωθ‖
1
2
L1(�)

2(|x | − R)2
.

(2.41)

Clearly, (2.40) and (2.41) imply the first assertion. The second assertion follows
immediately from the first one. �

Remark 2.15. In the statement of Proposition 2.14, the R depends not only on the
norms ∥∥∥r2ωθ

∥∥∥
L1(�)

, ‖ωθ‖L1(�) ,

∥∥∥ωθ
r

∥∥∥
L∞(�)

(2.42)

but also on the distribution of ωθ . For example, let ωθ(r, z) = χ{1�r�2,|z|�1}. Let

ω
z0
θ (r, z) = ωθ(r, z − z0). Let uz0 = uz0

r er + uz0
z ez be the vector field constructed

from ω
z0
θ via (2.12) and (2.13). Obviously, we have

∥∥∥r2ω
z0
θ

∥∥∥
L1(�)

=
∥∥∥r2ωθ

∥∥∥
L1(�)

,
∥∥ωz0

θ

∥∥
L1(�)

= ‖ωθ‖L1(�) ,

∥∥∥∥ω
z0
θ

r

∥∥∥∥
L∞(�)

=
∥∥∥ωθ

r

∥∥∥
L∞(�)

,

uz0
r (r, z) = ur (r, z − z0), uz0

z (r, z) = uz(r, z − z0),
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but u and {uz0}z0∈R do not have a uniform decay since the profile of uz0 is just the
translation of that of u by z0 in the z-direction. Nevertheless, they have the uniform
decay rate in the r -direction. Actually, we can prove the following result that for

any 0 < ε < 1
2 and any x ∈ R

3 with r =
√

x2
1 + x2

2 � 1,

|u(x)| � C

r
1
2 −ε , (2.43)

where the constant C depends only on the size of the norms in (2.42). But it is not
clear whether (2.43) is optimal.

3. Uniform Estimates for Regularized Solutions

In this section, we present the uniform estimates for natural approximate so-
lutions obtained by regularizing the initial data, before which, we introduce the
notations used. The superscript “(ε)” indicates that the quantity (scalar or vector or
tensor-valued) is induced by regularized initial data. Sometimes we use a function
f = f (r, z) defined on [0,∞) × R as a function defined on R

3 in the following
way:

f (x1, x2, z) = f

(√
x2

1 + x2
2 , z

)
, for (x1, x2, z) ∈ R

3.

Let us get back to our problem. The initial vorticity is

ω0 = κδγ , (3.1)

where κ ∈ R and γ is a circle. Without loss of generality, we assume that γ is
(r0 cos θ, r0 sin θ, z0) for some r0 > 0, z0 ∈ R and −π � θ < π . Then (3.1) is
equivalent, in the sense of distribution, to

ω0 = κδr0,z0 eθ , (3.2)

where δr0,z0 is the Dirac mass at (r0, z0) in the r z-plane. We will search for a
solution in the class of axi-symmetric velocity fields with no swirl, which have the
form

u = ur (r, z, t)er + uz(r, z, t)ez . (3.3)

The related vorticity fields have the form

ω = ωθ(r, z, t)eθ (3.4)

with ωθ = ur,z −uz,r . Note that a solution of the form (3.4) is formally compatible
to the initial condition (3.2). The equation for ωθ is

∂tωθ + urωθ,r + uzωθ,z − ur

r
ωθ = ωθ,rr + 1

r
ωθ,r − 1

r2ωθ + ωθ,zz, (3.5)
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which can also be written as:

∂tωθ + u · ∇ωθ − ur

r
ωθ = �ωθ − 1

r2ωθ , (3.6)

where � = ∂2

∂r2 + 1
r
∂
∂r + 1

r2
∂2

∂θ2 + ∂2

∂z2 is the scalar Laplacian in R
3, expressed

in the cylindrical coordinates. u · ∇ωθ = u1ωθ,1 + u2ωθ,2 + uzωθ,z is equal to
urωθ,r + uzωθ,z . In terms of ωθ , the initial condition (3.2) can be formulated as:

ωθ(r, z, 0) = κδr0,z0 . (3.7)

We will not, however, use either (3.5) or (3.6) in our method because these two
equations have a vortex-stretching term − ur

r ωθ . It is easier to work with the quantity
η = ωθ/r , which satisfies

ηt + urη,r + uzη,z = η,rr + 3

r
η,r + η,zz, (3.8)

or

ηt + u · ∇η = �η + 2

r
η,r . (3.9)

Remark 3.1. For a smooth vector field u, the apparent singularity of η = ωθ/r
is only an artifact of the coordinate choice. The quantity η is actually a smooth
function, even across the z-axis, as long as u is smooth, see [13].

3.1. Regularized Initial Data

In terms of η, the initial data (3.7) reads:

η0(r, z):=η(r, z, 0) = ωθ(r, z, 0)

r
= κδr0,z0

r
= κ

r0
δr0,z0 . (3.10)

The last equality of (3.10) holds in the sense of distribution. If we take an arbitrary
test function ψ = ψ(r, z), then(κδr0,z0

r
, ψ
)

=
(
κδr0,z0 ,

ψ

r

)
= κ

ψ(r0, z0)

r0
=
( κ

r0
δr0,z0 , ψ

)
.

Let φ : R
2 → R be the standard mollifier such that φ ∈ C∞

0 (B1(0)), φ � 0
and

∫
R2 φ(y) dy = 1. Let φ(ε)(y1, y2):=ε−2φ(

y1
ε
,

y2
ε
). Here and in the sequel, we

assume 0 < ε < r0
2 . We define η(ε)0 by

η
(ε)
0 (r, z):=(φ(ε) ∗ η0

)
(r, z) = κ

r0
ε−2φ

(r − r0

ε
,

z − z0

ε

)
. (3.11)

Clearly, for every 0 < ε < r0
2 , η

(ε)
0 has a compact support which stays away from

the z-axis at least r0
2 . It is easy to check that

π |κ| �
∥∥∥η(ε)0

∥∥∥
L1

x

� 3π |κ| ,
π

4
|κ| r2

0 � 2π |κ|
r0

(r0 − ε)3 �
∥∥∥r2η

(ε)
0

∥∥∥
L1

x

� 2π |κ|
r0

(r0 + ε)3 � 27π

4
|κ| r2

0 .

(3.12)
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Remark 3.2. Note that
∥∥∥η(ε)0

∥∥∥
L1

x

∼ |κ| and
∥∥∥r2η

(ε)
0

∥∥∥
L1

x

∼ |κ| r2
0 . The bounds

for
∥∥∥η(ε)0

∥∥∥
L1

x

depend only on the strength |κ| of the ring κδr0,z0 eθ but the bounds

for
∥∥∥r2η

(ε)
0

∥∥∥
L1

x

depend on both the strength and r0. Nevertheless, they are both

independent of ε and will serve the uniform bounds. The inequalities in (3.12) are
dimensionally consistent.

Corresponding to η(ε)0 , the initial vorticity field ω(ε)0 and velocity field u(ε)0 are

ω
(ε)
0 :=r η(ε)0 eθ and u(ε)0 (x):= − 1

4π

∫
R3

x − y

|x − y|3 × ω
(ε)
0 (y) dy, (3.13)

respectively and ω(ε)0 has compact support.

3.2. Approximate Solutions for Regularized Initial Data

Obviously the velocity u(ε)0 in (3.13) is axi-symmetric and swirl-free, and for

each ε, u(ε)0 ∈ Hk
x (R

3) for any k � 0 and satisfies

div u(ε)0 = 0, curl u(ε)0 = ω
(ε)
0 . (3.14)

Remark 3.3. We don’t have a uniform bound for Hk
x (R

3) norms of u(ε)0 , not even

for the L2
x (R

3) norms of u(ε)0 .

Then by the result of [11,12,20], there exists a unique global-in-time smooth so-
lution u(ε) for three dimensional Navier–Stokes equations satisfying the initial
condition

u(ε)(0) = u(ε)0 . (3.15)

Moreover u(ε) is axi-symmetric with no swirl, that is, in cylindrical coordinates,

u(ε) = u(ε)r (r, z, t)er + u(ε)z (r, z, t)ez .

We shall show that a subsequence of
{

u(ε)
}

0<ε< r0
2

converges to a smooth solution

with the ring κδr0,z0 eθ as initial vorticity. Corresponding to u(ε), the vorticity field
ω(ε) and the scalar quantity η(ε) are

ω(ε) = curl u(ε) =
(

u(ε)r,z − u(ε)z,r

)
eθ and η(ε) = u(ε)r,z − u(ε)z,r

r
, (3.16)

respectively. As a result of (3.13), (3.14), (3.15) and (3.16), ω(ε) and η(ε) satisfy
the initial data in (3.13)

ω(ε)(0) = ω
(ε)
0 , η(ε)(0) = η

(ε)
0 . (3.17)

By (3.9) and Remark 3.1, η(ε) is a smooth solution of the following equation:

η
(ε)
t + u(ε) · ∇η(ε) = �η(ε) + 2

r
η(ε),r , in R

3 × (0,∞). (3.18)
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3.3. Uniform Estimates for Approximate Solutions

The following lemma says that η(ε) enjoys the strong maximum priciple, which
is crucial for our arguments of obtaining the uniform estimates.

Lemma 3.4. If κ > 0 (or,< 0), then η(ε)(r, z, t) > 0 (or,< 0) for any r � 0, z ∈ R

and t > 0.

Proof. We just prove the case of κ > 0. The case of κ < 0 can be proved similarly.
We cannot apply the maximum principle directly to (3.18) since the coefficient
of 2

r η
(ε)
,r is singular. Recalling that the Laplacian of a radially symmetric function

v(r) defined on R
n is �v = v′′(r) + n−1

r v′(r), the right hand side of (3.18) can
be appropriately interpreted as the Laplacian in R

5 and we can recast (3.18) in
R

5 × (0,∞). To this end, we introduce some notations. Define

η̂(ε)(x1, x2, x3, x4, z, t) := η(ε)
(√

x2
1 + x2

2 + x2
3 + x2

4 , z, t
)
,

û(ε)(x1, x2, x3, x4, z, t) := u(ε)r

(√
x2

1 + x2
2 + x2

3 + x2
4 , z, t

)
êr

+u(ε)z

(√
x2

1 + x2
2 + x2

3 + x2
4 , z, t

)
êz,

where

r =
√

x2
1 + x2

2 + x2
3 + x2

4 , êr =
( x1

r
,

x2

r
,

x3

r
,

x4

r
, 0
)
, êz =

(
0, 0, 0, 0, 1

)
.

Then by (3.11), (3.17) and (3.18), we have
{
η̂
(ε)
t + û(ε) · ∇5η̂

(ε) = �5η̂
(ε), in R

5 × (0,∞),

η̂(ε)(0) � 0, and �≡ 0 in R
5,

where,

∇5 =
( ∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂z

)
, �5 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

+ ∂2

∂x2
4

+ ∂2

∂z2 .

By strong maximum principle, we get

η̂(ε) > 0, in R
5 × (0,∞),

which implies

η(ε) > 0.

Thus the lemma is proved. �

One of the important uniform estimates is the conservation of momentum.

Lemma 3.5. (Conservation of momentum). For all t � 0, we have
∥∥∥rω(ε)(t)

∥∥∥
L1

x

=
∥∥∥rω(ε)(0)

∥∥∥
L1

x

� 27π

4
|κ| r2

0 . (3.19)
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Proof. By ω(ε) = rη(ε)eθ , (3.19) is identical to

∥∥∥r2η(ε)(t)
∥∥∥

L1
x

=
∥∥∥r2η(ε)(0)

∥∥∥
L1

x

� 27π

4
|κ| r2

0 . (3.20)

The “inequality” part of (3.20) follows from (3.12) and (3.17). It remains to prove
the “equality” part, which is actually the conservation of momentum.

Since the initial vorticity fieldω(ε)0 in (3.13) is smooth and compactly supported,
the vorticity fieldω(ε) remains Schwartz (smooth and having fast decay in all spatial
derivatives) for all of the time. Therefore the momentum can be defined by using
the vorticity as

1

2

∫
R

3

(
x × ω(ε)(x, t)

)
dx ,

and moreover, the momentum is conserved globally in time, that is

1

2

∫
R

3

(
x × ω(ε)(x, t)

)
dx = 1

2

∫
R

3

(
x × ω(ε)(x, 0)

)
dx, for all t > 0,

(3.21)

which can be checked by the vorticity equations (1.18), integration by parts and,
the Schwartz property of the vorticity field ω(ε).

By ω(ε) = rη(ε)eθ ,

x × ω(ε) = x × rη(ε)eθ

= (x1, x2, x3)×
(
−x2η

(ε), x1η
(ε), 0

)

=
(
−x1x3η

(ε),−x2x3η
(ε), r2η(ε)

)
.

Noting that the first two components are odd in x1 and x2, respectively, we thus
have ∫

R
3

(
x × ω(ε)(x, t)

)
dx =

(
0, 0,

∫
R

3
r2η(ε)(x, t) dx

)
, (3.22)

which, combining with (3.21), implies
∫

R
3

r2η(ε)(x, t) dx =
∫

R
3

r2η(ε)(x, 0) dx, for all t > 0.

Finally by Lemma 3.4, η(ε)(x, t) is nonnegative if κ > 0 (or, nonpositive if κ < 0)
for all points (x, t) ∈ R

3 ×[0,∞) and therefore we can get
∫

R
3

∣∣∣r2η(ε)(x, t)
∣∣∣ dx =

∫
R

3

∣∣∣r2η(ε)(x, 0)
∣∣∣ dx .

We get (3.20) and the lemma is proved. �
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Remark 3.6. The lemma says
∥∥rω(ε)(t)

∥∥
L1

x
� |κ| r2

0 . (3.22) implies the total mo-
mentum of the fluid flow is in the z-direction. This is due to the special structure of
axi-symmetric velocities with no swirl.

The following lemma claims that the L1
x norms of ω

(ε)

r are uniformly bounded
from above, which thus gives the second uniform estimate.

Lemma 3.7. For all t � 0, we have,
∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
L1

x

� 3π |κ| .

Proof. By ω(ε) = rη(ε)eθ , it suffices to prove
∥∥∥η(ε)(t)∥∥∥

L1
x

� 3π |κ| , for all t � 0.

We just prove the case of κ > 0. The case of κ < 0 can be proved similarly.
By Lemma 3.4, η(ε) � 0, direct calculation shows that

d

dt

∥∥∥η(ε)(t)∥∥∥
L1

x (R
3)

= d

dt

∫
R3
η(ε)

(
x1, x2, z, t

)
dx1 dx2 dz

=
∫

R3

(
�η(ε) − u(ε) · ∇η(ε) + 2

r
η(ε),r

)
dx1 dx2 dz

=
∫

R3

2

r
η(ε),r dx1 dx2 dz

= 4π
∫ ∞

−∞

∫ ∞

0
η(ε),r (r, z, t) dr dz = −4π

∫ ∞

−∞
η(ε)(0, z, t) dz

� 0.

Thus
∥∥η(ε)(t)∥∥L1

x
is decreasing in time. Combining this with (3.12), we get

∥∥∥η(ε)(t)∥∥∥
L1

x

�
∥∥∥η(ε)(0)∥∥∥

L1
x

=
∥∥∥η(ε)0

∥∥∥
L1

x

� 3π |κ| .

The lemma is proved. �


By Nash’s method, we will now get uniform estimates of the L p
x norms of ω

(ε)

r ,
for all 1 � p � ∞. Nash’s method has been generalized in [3]. The key point in
the proof below is that the drift term 2

r η
(ε)
,r has a good sign.

Lemma 3.8. For every 1 � p � ∞, we have,
∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
L p

x

� C pt−
3
2 (1− 1

p ), t ∈ (0,∞), (3.23)

where the constants C p are independent of ε.
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Proof. Note that (3.23) is valid for p = 1 with C1 = 3π |κ| by Lemma 3.7. Again
by ω(ε) = rη(ε)eθ , it suffices to prove

∥∥∥η(ε)(t)
∥∥∥

L p
x

� C pt−
3
2 (1− 1

p ), t ∈ (0,∞). (3.24)

Under the spirit of the energy method, for p = 2n with nonnegative integers n,
we define

E (ε)p (t):=
∥∥∥η(ε)(t)

∥∥∥p

L p
x

=
∫

R3

∣∣∣η(ε)(x, t)
∣∣∣p dx .

For p = 2n with n � 1, direct calculation yields that

− dE (ε)p

dt
= − d

dt

∫
R3

∣∣∣η(ε)
∣∣∣p dx = − d

dt

∫
R3

(
η(ε)

)p
dx = −

∫
R3

p
(
η(ε)

)p−1
η
(ε)
t dx

= −
∫

R3
p
(
η(ε)

)p−1(
�η(ε) + 2

r
η(ε),r − u(ε)∇η(ε)

)
dx

= −
∫

R3

{
p
[
η(ε)

]p−1
�η(ε) + 2

r

[
(η(ε))p

]
,r

− u(ε)∇
[
(η(ε))p

]}
dx

=
∫

R3
p(p − 1)

[
η(ε)

]p−2 ∣∣∣∇η(ε)∣∣∣2 dx − 4π
∫ ∞

−∞

∫ ∞

0

[
(η(ε))p

]
,r

dr dz

=
∫

R3
p(p − 1)

∣∣∣∣∣
[
η(ε)

] p−2
2 ∇η(ε)

∣∣∣∣∣
2

dx − 4π
∫ ∞

−∞

[
(η(ε))p

]r=∞
r=0

dz

=
∫

R3
p(p − 1)

∣∣∣∣ 2

p
∇
[
(η(ε))

p
2

]∣∣∣∣
2

dx + 4π
∫ ∞

−∞

[
(η(ε))p

]
r=0

dz

� 4(p − 1)

p

∫
R3

∣∣∣∇[(η(ε)) p
2

]∣∣∣2 dx . (3.25)

Recall Nash’s inequality [14, P936]

∫
R3

|∇u|2 dx � M
(∫

R3
|u|
)− 4

3
(∫

R3
|u|2

) 5
3
. (3.26)

For p = 2n with n � 1, by Nash’s inequality, we get the following iteration scheme
from (3.25),

−dE (ε)p

dt
� 4(p − 1)

p

∫
R3

∣∣∣∇[(η(ε)) p
2

]∣∣∣2 dx

� 4(p − 1)

p
M
(∫

R3

∣∣∣(η(ε)) p
2

∣∣∣)− 4
3
(∫

R3

∣∣∣(η(ε)) p
2

∣∣∣2)
5
3

= 4(p − 1)

p
M
(

E (ε)p/2

)− 4
3
(

E (ε)p

) 5
3
.

(3.27)
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We first prove (3.24) for p = 2n with nonnegative integers n by induction. Assume
(3.24) is valid for q = 2k with k � 0. Let p = 2k+1. By (3.27), we have,

−dE (ε)p

dt
� 4(p − 1)

p
M
(

E (ε)q

)− 4
3
(

E (ε)p

) 5
3

� 4(p − 1)

p
M
(

Cq
q t−

3
2 (q−1)

)− 4
3
(

E (ε)p

) 5
3
.

Thus,

3

2

[
(E (ε)p )−

2
3

]
t
= −

d E (ε)p
dt(

E (ε)p

) 5
3

� 4(p − 1)

p
MC

− 4q
3

q t2(q−1)

= 4(p − 1)

p
MC

− 2p
3

q t p−2.

Integration gives

(E (ε)p )−
2
3 (t) � (E (ε)p )−

2
3 (t)− (E (ε)p )−

2
3 (0) � 8(p − 1)

3p
MC

− 2p
3

q

∫ t

0
s p−2ds

= 8M

3p
C

− 2p
3

q t p−1,

which implies
∥∥∥η(ε)(t)∥∥∥

L p
x

= E (ε)p (t)
1
p �

( 3p

8M

) 3
2p

Cqt−
3
2 (1− 1

p ).

Hence (3.24) is valid for p = 2k+1 with C p =
(

3p
8M

) 3
2p

Cq . In fact, C p is uniformly

bounded from above:

C p =
( 3

8M

) 3
2k+2

2
3(k+1)
2k+2 C2k �

( 3

8M

)∑ 3
2i+2

2
∑ 3(i+1)

2i+2 C1 =: C∞.

Therefore we obtain ∥∥∥η(ε)(t)∥∥∥
L∞

x

� C∞t−
3
2 .

For other p, we can prove (3.24) by interpolation. The lemma is proved. �

Remark 3.9. From the proof of Lemma 3.8, we see the constants C p in (3.23)
linearly depend on C1 = 3π |κ|. In particular,

C∞ =
( 3

8M

)∑ 3
2i+2

2
∑ 3(i+1)

2i+2 C1 � |κ| ,∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
L∞

x

� C∞t−
3
2 � |κ| t−

3
2 , (3.28)

which gives us the third uniform estimate, where M is the absolute constant in
Nash’s inequality (3.26).
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Remark 3.10. If the fluid is inviscid, then η(ε) satisfies

ηt + u(ε) · ∇η = 0, in R
3 × (0,∞). (3.29)

Since η(ε) is conserved along particle trajectories, η(ε) keeps its sign in later time.
We still have the uniform estimates of the L1

x norms:

∥∥∥η(ε)(t)∥∥∥
L1

x

=
∥∥∥η(ε)(0)∥∥∥

L1
x

=
∥∥∥η(ε)0

∥∥∥
L1

x

� 3π |κ| .

However, the argument in Lemma 3.8 yields: for any 1 < p � ∞,

∥∥∥η(ε)(t)∥∥∥
L p

x
=
∥∥∥η(ε)(0)∥∥∥

L p
x

=
∥∥∥η(ε)0

∥∥∥
L p

x
,

which will blow up as ε goes to 0. Therefore we lose uniform controls of the L p
x

norms in the inviscid case.

We now use the weighted inequalities of the previous section and the three
uniform estimates from Lemmas 3.5, 3.7 and Remark 3.9 to get further estimates
on vorticity, the gradient of velocity, velocity and pressure.

Lemma 3.11. For 0 < t < ∞, we have the following estimates:

(i) for any 1 � p � 2

∥∥∥ω(ε)(t)
∥∥∥

L p
x

� |κ| r0t−
3
2

(
1− 1

p

)
, (3.30)

(ii) for any 1 < p � 2

∥∥∥∇u(ε)(t)
∥∥∥

L p
x

� |κ| r0t−
3
2

(
1− 1

p

)
, (3.31)

(iii) for any 3
2 < q � 6

∥∥∥u(ε)(t)
∥∥∥

Lq
x

� |κ| r0t−
(

1− 3
2q

)
, (3.32)

(iv) for any 1 < q � 3

∥∥∥p(ε)(t)
∥∥∥

Lq
x

� |κ|2 r2
0 t−

(
2− 3

2q

)
, (3.33)

(v)

∥∥∥u(ε)(t)
∥∥∥

L∞
x

� |κ| r
1
2

0 t−
3
4 . (3.34)
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Proof.

(i) By Proposition 2.1, for any 1 � p � 2, we have

∥∥∥ω(ε)(t)
∥∥∥

L p
x

�
∥∥∥rω(ε)(t)

∥∥∥
1
2

L1
x

∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
1
p − 1

2

L1
x

∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
1− 1

p

L∞
x

. (3.35)

Then (3.30) is an easy consequence of (3.35), Lemmas 3.5, 3.7 and (3.28) in
Remark 3.9.

(ii) By div u(ε)=0, curl u(ε)=ω(ε) = (ω
(ε)
1 , ω

(ε)
2 , ω

(ε)
3 ) and the Fourier transform,

one can get

∇u(ε) =
⎡
⎢⎣

R1 R2ω
(ε)
3 − R1 R3ω

(ε)
2 R2 R2ω

(ε)
3 − R2 R3ω

(ε)
2 R2 R3ω

(ε)
3 − R3 R3ω

(ε)
2

R1 R3ω
(ε)
1 − R1 R1ω

(ε)
3 R2 R3ω

(ε)
1 − R1 R2ω

(ε)
3 R3 R3ω

(ε)
1 − R1 R3ω

(ε)
3

R1 R1ω
(ε)
2 − R1 R2ω

(ε)
1 R1 R2ω

(ε)
2 − R2 R2ω

(ε)
1 R1 R3ω

(ε)
2 − R2 R3ω

(ε)
1

⎤
⎥⎦ ,

where R j , j = 1, 2, 3 are the classical Riesz transformations, which are
well-defined and continuous on L p

x (R
3) for all 1 < p < ∞, see for instance

[15,19]. Therefore
∥∥∥∇u(ε)(t)

∥∥∥
L p

x
�
∥∥∥ω(ε)(t)

∥∥∥
L p

x
,

which, combining with (3.30), implies (3.31).
(iii) By Corollary 2.3, for any 3

2 < q � 6,

∥∥∥u(ε)(t)
∥∥∥

Lq
x

�
∥∥∥rω(ε)(t)

∥∥∥
1
2

L1
x

∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
1
q − 1

6

L1
x

∥∥∥∥∥
ω(ε)(t)

r

∥∥∥∥∥
2
3 − 1

q

L∞
x

. (3.36)

Then (3.32) is an easy consequence of (3.36), Lemmas 3.5, 3.7 and (3.28).

(iv) Recall that the pressure p(ε) and the velocity u(ε) =
(

u(ε)1 , u(ε)2 , u(ε)3

)
satisfy

the following equation (which can be easily obtained from Navier–Stokes
equations and divergence-free condition div u(ε)=0):

�p(ε) = −∂ j∂k(u
(ε)
j u(ε)k ). (3.37)

Then by (3.32), we can use the Riesz transformation R j to solve (3.37) to get

p(ε) = R j Rk(u
(ε)
j u(ε)k ).

Hence

∥∥∥p(ε)(t)
∥∥∥

Lq
x

�
∥∥∥u(ε)(t)

∥∥∥2

L2q
x
,

which, combining with (3.32), implies (3.33).
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(v) By Propositions 2.11 and 2.13,
∥∥∥u(ε)(t)

∥∥∥
L∞

x

�
∥∥rω(ε)(t)

∥∥ 1
4
L1

x

∥∥∥ω(ε)(t)r

∥∥∥
1
4

L1
x

∥∥∥ω(ε)(t)r

∥∥∥
1
2

L∞
x

. (3.38)

Then (3.34) is an easy consequence of (3.38), Lemma 3.5, Lemma 3.7 and
(3.28). �


By Lemma 3.11 and the subcritical theory of Navier–Stokes equations, we can
control the spatial and time derivatives of the velocity and pressure of any order
pointwise.

Lemma 3.12. For any k, h � 0 and for any 0 < s < T , we have the following
pointwise estimate∥∥∥∇k

x ∇h
t u(ε)

∥∥∥
C0

x,t (R
3 ×[s,T ]) � C,

∥∥∥∇k
x ∇h

t p(ε)
∥∥∥

C0
x,t (R

3 ×[s,T ]) � C,

where C is independent of ε and depends only on k, h, s, T, |κ| , r0.

Proof. This lemma is a consequence of the subcritical well-posedness theory of
Navier–Stokes equations. Fix 0 < s < T . By (3.32), we have the following sub-
critical estimate ∥∥∥u(ε)(t)

∥∥∥
L6

x

� |κ| r0t−
3
4 , (3.39)

since L6
x (R

3) is a subcritical space for Navier–Stokes equations with respect to the
scaling

u(x, t) 
−→ λu(λx, λ2t), p(x, t) 
−→ λ2 p(λx, λ2t).

By the standard subcritical theory, see for instance [7], there exists a local-in-time

unique solution v(ε) for Navier–Stokes equations with u(ε)
(

s
2

)
as initial velocity

in the space C
([ s

2 , Tε
)
, L6

x (R
3)
)

for some s
2 < Tε � ∞. v(ε) coincides with u(ε)

on the time interval [ s
2 , Tε) by weak-strong uniqueness. The decay property (3.39)

implies Tε = ∞. Hence u(ε) = v(ε) for all t ∈ [ s
2 ,∞). Again by the subcritical

theory, u(ε) satisfies ∥∥∥∇k
x ∇h

t u(ε)
∥∥∥

L∞
t L6

x (R
3 ×[s,T ]) � C, (3.40)

where C depends only on k, h, s, T,
∥∥∥u(ε)

(
s
2

)∥∥∥
L6

x

. Then by Sobolev embedding,

we prove the first estimate. The second estimate is a consequence of (3.40) and
(3.37). �


The estimate (3.32) in Lemma 3.11 implies that the set
{
u(ε)

}
0<ε< r0

2
has weak

compactness in Lebesgue spaces. To show the strong convergence of
{
u(ε)

}
0<ε< r0

2
,

we need to establish certain uniform weak continuity of u(ε) as functions of time
t . To this end, we use the Aubin–Lions theorem, see [2,18]. Let H−2

x (R3) be the
dual space of H2

x (R
3).
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Lemma 3.13. Let 0 < T < ∞. Then we have∥∥∥∥∥
∂u(ε)

∂t

∥∥∥∥∥
L

5
4
t

(
0,T ;H−2

x (R3)
) � C, (3.41)

where the constant C is independent of ε and depends on T .

Proof. Let φ ∈ H2
x (R

3). By Navier–Stokes equations and Lemma 3.11, we have

∣∣∣∣∣
(∂u(ε)

∂t
, φ
)∣∣∣∣∣ =

∣∣∣(−div(u(ε) ⊗ u(ε))− ∇ p(ε) +�u(ε), φ
)∣∣∣

�
∣∣∣(u(ε) ⊗ u(ε),∇φ)

∣∣∣+ ∣∣∣(p(ε), divφ)
∣∣∣+ ∣∣∣(u(ε),�φ)∣∣∣

�
∥∥∥u(ε)(t)

∥∥∥
L

p1
x

∥∥∥u(ε)(t)
∥∥∥

L
p2
x

‖∇φ‖L
p3
x

+
∥∥∥p(ε)(t)

∥∥∥
L

q1
x

‖∇φ‖L
q2
x

+
∥∥∥u(ε)(t)

∥∥∥
L2

x

‖�φ‖L2
x

� |κ|2 r2
0 t

−2+ 3
2p1

+ 3
2p2 ‖∇φ‖L

p3
x

+ |κ|2 r2
0 t

−2+ 3
2q1 ‖∇φ‖L

q2
x

+ |κ| r0t−
1
4 ‖φ‖H2

x
,

where

1

p1
+ 1

p2
+ 1

p3
= 1,

3

2
< p1, p2 � 6,

1

q1
+ 1

q2
= 1, 1 < q1 � 3.

One can take, for example,

p1 = p2 = 12

5
, p3 = 6, q1 = 6

5
, q2 = 6.

Then by Sobolev embedding, we have for 0 < t � T ,

∣∣∣∣∣
(∂u(ε)

∂t
, φ
)∣∣∣∣∣ � |κ|2 r2

0 t−
3
4 ‖∇φ‖L6

x
+ |κ|2 r2

0 t−
3
4 ‖∇φ‖L6

x
+ |κ| r0t−

1
4 ‖φ‖H2

x

�
(
|κ|2 r2

0 t−
3
4 + |κ| r0t−

1
4

)
‖φ‖H2

x
.

Hence ∥∥∥∥∥
∂u(ε)

∂t
(t)

∥∥∥∥∥
H−2

x

� |κ|2 r2
0 t−

3
4 + |κ| r0t−

1
4 .

Finally, integrating with respect to time from (0, T ) yields the desired result. �


Lemma 3.14. For any 0 < T < ∞,
{

u(ε)
}

0<ε< r0
2

is precompact in L
8
5
t
(
0, T ;

L2
x,loc(R

3)
)
.
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Proof. By Lemma 3.11, one has
∥∥∥u(ε)(t)

∥∥∥
L

8
5
x

� |κ| r0t−
1
16 ,

∥∥∥∇u(ε)(t)
∥∥∥

L
8
5
x

� |κ| r0t−
9
16 ,

which implies that

{
u(ε)

}
0<ε< r0

2

is a bounded set of L
8
5
t
(
0, T ; W

1, 8
5

x (R3)
)
. (3.42)

Then (3.42), Lemma 3.13 and Theorem 2.1 of [18, Chap. III] imply the desired
result. �


4. Proof of Theorem 1.1

We first show that we can pass to the limit in the regularized solutions to get a
smooth solution for the Navier–Stokes equations. (3.32) implies

∥∥∥u(ε)(t)
∥∥∥

L2
x

� |κ| r0t−
1
4 , (4.1)

which in turn implies that

{
u(ε)

}
is a bounded set in L

8
3
t L2

x

(
R

3 ×(0, T )
)
, for any 0 < T < ∞. (4.2)

Arzela–Ascoli’s theorem, Lemmas 3.12, 3.14 and (4.2) allow us to extract a sub-
sequece of

{
u(ε), p(ε)

}
, still denoted as

{
u(ε), p(ε)

}
such that for a smooth vector

field u and a smooth scalar function p, for any nonnegative integers k, h and for
any 0 < T < ∞, we have

u(ε) → u in L
8
5
t
(
0, T ; L2

x,loc(R
3)
)
,

u(ε) ⇀ u in L
8
3
t L2

x

(
R

3 ×(0, T )
)
, (4.3)

and

∇k
x ∇h

t u(ε) ⇒ ∇k
x ∇h

t u locally in R
3 ×(0,∞),

∇k
x ∇h

t p(ε) ⇒ ∇k
x ∇h

t p locally in R
3 ×(0,∞), (4.4)

which imply that the limit
(
u, p

)
is a global-in-time smooth solution of the Navier–

Stokes equations in R
3 ×(0,∞) and that u is axi-symmetric with no swirl. Secondly

we prove the initial condition (1.14). Take a ϕ ∈ C∞
0

(
R

3; R
3) with its support

contained in BR(0). By Navier–Stokes equations, we have

∫ T

0

∫
R

3

{(
u(ε) ⊗ u(ε)

) · ∇curlϕ + u(ε) ·�curlϕ

}
dx dt

=
∫

R
3
ω(ε)(x, T ) · ϕ(x) dx −

∫
R

3
ω
(ε)
0 (x) · ϕ(x) dx . (4.5)
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We claim that we are able to pass to the limit in (4.5) to get

∫ T

0

∫
R

3

{(
u ⊗ u

) · ∇curlϕ + u ·�curlϕ

}
dx dt

=
∫

R
3
ω(x, T ) · ϕ(x) dx −

∫
R

3
κδr0,z0 eθ · ϕ dx . (4.6)

To this end, it suffices to check the nonlinear term in (4.5) and (4.6). By (4.2) and
(4.3), we have
∣∣∣∣
∫ T

0

∫
R

3

(
u(ε) ⊗ u(ε)

) · ∇curlϕ dx dt −
∫ T

0

∫
R

3

(
u ⊗ u

) · ∇curlϕ dx dt

∣∣∣∣
�
∥∥∥u(ε) − u

∥∥∥
L

8
5
t L2

x

(
BR(0)×(0,T )

)
(∥∥∥u(ε)

∥∥∥
L

8
3
t L2

x

(
R

3 ×(0,T )
)+‖u‖

L
8
3
t L2

x

(
R

3 ×(0,T )
)
)

× ‖∇curlϕ‖L∞
x
,

which goes to 0 as ε → 0. Thus (4.6) is obtained. Fatou’s lemma and (4.1) imply

‖u(t)‖L2
x

� |κ| r0t−
1
4 . (4.7)

Hence in view of (4.6) and (4.7), we have
∣∣∣∣
∫

R
3
ω(x, T ) · ϕ(x) dx −

∫
R

3
κδr0,z0 eθ · ϕ dx

∣∣∣∣
=
∣∣∣∣
∫ T

0

∫
R

3

{(
u ⊗ u

) · ∇curlϕ + u ·�curlϕ

}
dx dt

∣∣∣∣
�
∫ T

0
|κ|2 r2

0 t−
1
2 dt +

∫ T

0
|κ| r0t−

1
4 dt � |κ|2 r2

0 T
1
2 + |κ| r0T

3
4 ,

(4.8)

which implies (1.14). This concludes the proof of the statement concerning the
vorticity. The convergence of the velocity field (1.15) is a consequence of the
vorticity, our uniform estimates and Lemma 4.2 below.

Remark 4.1. Theorem 1.1 is also true if we replace the initial condition by finite
many vortex rings

ω(·, 0) =
n∑

i=1

κiδri ,zi eθ , (4.9)

where all κi > 0 (or, all κi < 0), or more generally, by

ω(·, 0) = μeθ , (4.10)

where μ is a positive or negative finite measure with a compact support in the r z-
plane. Without any modification, the preceding proof for a single vortex ring also
works for the cases of (4.9) and (4.10).
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Lemma 4.2. Let γ0 be a circle in the x1x2-plane with its center at the origin and
let ω0 be given by (1.4). Let u0 be the velocity field generated by ω0 from the Biot–
Savart law. Assume that ωk is sequence of axi-symmetric vector fields of the form
ωk ∼ ωk(r, z)eθ satisfying (2.1) with bounds uniform in k such that ωk → ω0
weakly, in the sense of (1.14). Then the velocity fields uk generated from the Biot–
Savart law by ωk converge strongly to u0 in L p(R3) for any p ∈ (1, 2).

Proof. Let us denote by Ur,z the velocity field generated by the Biot–Savart law
via the vorticity field δγ r,z , where γ r,z is the circle (r cos θ, r sin θ, z), θ ∈ [0, 2π).
We will also set Ur = Ur,0 and U = U 1. Similarly, we will write γ r for γ r,0 and
γ for γ 1. We have

|U (x)| = O(|x |−3), |x | → ∞, (4.11)

and

|U | ∼ 1

dist(x, γ )
, x → γ. (4.12)

In particular, we see that

U ∈ L p(R3) p ∈ (1, 2). (4.13)

We note that

Ur = 1

r
U
( x

r

)
. (4.14)

Letting

Ap = ||U ||L p(R3)
, (4.15)

we see that

||Ur,z ||L p(R3)
= Apr

3
p −1

, p ∈ (1, 2). (4.16)

In what follows we will assume (without loss of generality) that γ0 = γ and
u0 = U . Let

O =
{

x, dist(x, γ ) <
1

2

}
. (4.17)

By a slight abuse of notation, we can also consider O as a subset of the (r, z)-
coordinate plane � = {(r, z), r > 0}. We claim that

lim
k→∞

∥∥∥∥
∫
�\O

Ur,zωk(r, z) dr dz

∥∥∥∥
L p(R3)

= 0. (4.18)

For this it is enough to show that

lim
k→∞

∫
�\O

||Ur,z||L p(R3)
ωk(r, z) dr dz = Ap lim

k→∞

∫
�\O

r
3
p −1

ωk(r, z) dr dz = 0.

(4.19)
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This follows easily from the uniform bounds on ωk , together with the weak conver-
gence of ωk to δγ as k → ∞. In view of (4.18) we can assume for the remainder of
the proof that ωk are supported in O. Let ϕε(x) = ε−3ϕ( x

ε
) be a standard mollifier

in R
3 and let

Ur,z
ε = Ur,z ∗ ϕε. (4.20)

In view of the weak convergence of ωk to ω0 and the assumption which we now
can make that the support of ωk is in O, it is clear that the fields

uk
ε =

∫
Ur,z
ε ωk(r, z) dr dz (4.21)

converge as k → ∞ to u0ε = Uε in L p(R3) for p ∈ (1, 2). At the same time, for
p ∈ (1, 2) we have

||Ur,z
ε − Ur,z ||L p(R3)

→ 0, ε → 0 (4.22)

uniformly in (r, z) ∈ O, and the result follows easily. �
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