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Abstract

It is well known that the linear stability of Lagrangian elliptic equilateral triangle
homographic solutions in the classical planar three-body problem depends on the
mass parameter β = 27(m1m2 + m2m3 + m3m1)/(m1 + m2 + m3)

2 ∈ [0, 9] and
the eccentricity e ∈ [0, 1). We are not aware of any existing analytical method
which relates the linear stability of these solutions to the two parameters directly in
the full rectangle [0, 9] × [0, 1), aside from perturbation methods for e > 0 small
enough, blow-up techniques for e sufficiently close to 1, and numerical studies.
In this paper, we introduce a new rigorous analytical method to study the linear
stability of these solutions in terms of the two parameters in the full (β, e) range
[0, 9]×[0, 1) via theω-index theory of symplectic paths forω belonging to the unit
circle of the complex plane, and the theory of linear operators. After establishing
the ω-index decreasing property of the solutions in β for fixed e ∈ [0, 1), we prove
the existence of three curves located from left to right in the rectangle [0, 9]×[0, 1),
among which two are −1 degeneracy curves and the third one is the right envelope
curve of the ω-degeneracy curves, and show that the linear stability pattern of such
elliptic Lagrangian solutions changes if and only if the parameter (β, e) passes
through each of these three curves. Interesting symmetries of these curves are also
observed. The linear stability of the singular case when the eccentricity e approaches
1 is also analyzed in detail.
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1. Introduction and Main Results

We consider the classical planar three-body problem in celestial mechanics.
Denote by q1, q2, q3 ∈ R2 the position vectors of three particles with masses
m1,m2,m3 > 0 respectively. By Newton’s second law and the law of universal
gravitation, the system of equations for this problem is

mi q̈i = ∂U

∂qi
, for i = 1, 2, 3, (1.1)

where U (q) = U (q1, q2, q3) = ∑
1�i< j�3

mi m j
‖qi −q j ‖ is the potential or force func-

tion by using the standard norm ‖ · ‖ of vector in R2. For periodic solutions with
period 2π , the system is the Euler–Lagrange equation of the action functional

A(q) =
∫ 2π

0

[
3∑

i=1

mi‖q̇i (t)‖2

2
+ U (q(t))

]

dt

defined on the loop space W 1,2(R/2πZ, X̂ ), where

X̂ :=
{

q = (q1, q2, q3) ∈ (R2)3

∣
∣
∣
∣
∣

3∑

i=1

mi qi = 0, qi �= q j , ∀i �= j

}

is the configuration space of the planar three-body problem. The periodic solutions
of (1.1) correspond to critical points of the action functional.

It is a well-known fact that (1.1) can be reformulated as a Hamiltonian system.
Let p1, p2, p3 ∈ R2 be the momentum vectors of the particles respectively. The
Hamiltonian system corresponding to (1.1) is

ṗi = −∂H

∂qi
, q̇i = ∂H

∂pi
, for i = 1, 2, 3, (1.2)

with Hamiltonian function

H(p, q) = H(p1, p2, p3, q1, q2, q3) =
3∑

i=1

‖pi‖2

2mi
− U (q1, q2, q3). (1.3)

In 1772, Lagrange ([7]) discovered some celebrated homographic periodic solu-
tions, now named after him, to the planar three-body problem, namely that the three
bodies form an equilateral triangle at any instant of the motion and at the same time
each body travels along a specific Keplerian elliptic orbit about the center of masses
of the system.

When 0 � e < 1, the Keplerian orbit is elliptic; following Meyer and Schmidt
([15]), we call such elliptic Lagrangian solutions elliptic relative equilibria. Espe-
cially when e = 0, the Keplerian elliptic motion becomes circular motion and then
all the three bodies move around the center of masses along circular orbits with the
same frequency, which are called relative equilibria traditionally.

Our main concern in this paper is the linear stability of these homographic
solutions. For the planar three-body problem with masses m1,m2,m3 > 0, it turns
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out that the stability of elliptic Lagrangian solutions depends on two parameters,
namely the mass parameter β ∈ [0, 9] defined below and the eccentricity e ∈ [0, 1),

β = 27(m1m2 + m1m3 + m2m3)

(m1 + m2 + m3)2
. (1.4)

Note that besides local perturbation method or blow up technique which study only
the case for small enough e > 0 or e < 1 sufficiently close to 1, we are not aware
of any rigorous analytical method dealing with this problem for the major part of
the full range of the (β, e) rectangle [0, 9] × [0, 1), except the recent paper [5]
of the first and the third named authors. Continuing with [4] and [5], the current
paper is devoted to introducing a new rigorous analytical method to study the linear
stability of the elliptic Lagrangian solutions in the full range of the (β, e) rectangle
[0, 9] × [0, 1) via the index theory of symplectic paths and the perturbation theory
of linear operators.

The linear stability of relative equilibria was known more than a century ago
and it is due to Gascheau ([2], 1843) and Routh ([17], 1875), independently. In
this case, using the Floquet theory one can work out all the details explicitly by
hand.

After initial considerations of Danby ([1], 1964), Roberts ([16], 2002) reduced
all the symmetries of the problem and their first integrals and studied the case of
sufficiently small e � 0 by perturbation techniques. He also got a partial stability
bifurcation diagram in this case, where the stability patterns are clearly presented.

In 2005, Meyer and Schmidt (cf. [15]) used heavily the central configuration
nature of the elliptic Lagrangian orbits and decomposed the fundamental solution of
the elliptic Lagrangian orbit into two parts symplectically, one of which is the same
as that of the Keplerian solution and the other is the essential part for the stability.
In the current paper, the fundamental solution of the linearized Hamiltonian system
of the essential part of the elliptic Lagrangian orbit is denoted by γβ,e(t) for t ∈
[0, 2π ], which is a path of 4 × 4 symplectic matrices starting from the identity.
They also did the stability analysis by normal form theory for small enough e � 0.

In 2004–2006, Martínez, Samà and Simó ([12–14]) studied the stability prob-
lem when e > 0 is small enough by using normal form theory, and e < 1 and close
to 1 enough by using blow-up technique in general homogeneous potential. They
further gave a much more complete bifurcation diagram numerically and a beautiful
figure was drawn there for the full (β, e) range, which we repeat here as Fig. 1. It is
one of our primary motivations to understand this diagram globally and analytically
in the present work.

Let U denote the unit circle in the complex plane C. As in [13], the following
notations for the different parameter regions are used in Fig. 1:

• elliptic–elliptic (EE), if γβ,e(2π) possesses two pairs of eigenvalues in U\R;
• elliptic–hyperbolic (EH), if γβ,e(2π) possesses a pair of eigenvalues in U\R

and a pair of eigenvalues in R\{0,±1};
• hyperbolic–hyperbolic (HH), if σ(γβ,e(2π)) ⊂ R\{0,±1};
• complex–saddle (CS), if σ(γβ,e(2π)) ⊂ C\(U ∪ R).

In summary, after these authors, the following results are rigorously proved:
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Fig. 1. Stability bifurcation diagram of Lagrangian equilateral triangular homographic orbits
in the (β, e) rectangle [0, 9] × [0, 1). It is the Fig. 5 in [13]. Here the regions I, II, III, IV, V
and VI are EE, EE, EH, HH, HH and CS respectively

(i) the relative equilibrium, that is, the case of e = 0, is linearly stable if and only
if β < 1; it is only spectrally stable and not linearly stable when β = 1, and
linearly unstable (in fact, CS) when β > 1. More precisely, when e = 0 and
β goes from 0 to 1, the two pairs of elliptic characteristicsω1,ω1, andω2,ω2,
starting from two pairs of characteristics +1, and without loss of generality,
we can assume that both ω1 and ω2 move clock-wisely around the unit circle
with different speeds. One, say ω1, moves faster and arrives at −1 of the unit
circle when β = 3/4 and then continues to move forward around the unit
circle. At the same time, ω2 moves slower along the unit circle. Then ω1
and ω2 as well as ω2 and ω1 collide respectively on somewhere which is not
±1 in the unit circle when β = 1, and then become CS when β > 1. When
β = 9, they become a pair of positive double eigenvalues. So when e = 0 the
only possible bifurcation points in the (β, e) plane are (3/4, 0) and (1, 0).
We refer readers to Section 3.3 and Fig. 3 for more detailed discussions.

(ii) It turns out that if β = 3/4 is fixed and e increases from 0 slightly, the
pair of −1 characteristics switches to a real hyperbolic pair, and two period-
doubling bifurcation curves born out from the point (β, e) = (3/4, 0). When
β = 1, if e increases from 0 slightly, the two pairs of corresponding elliptic
characteristics collide and a Krein collision curve bifurcates from (β, e) =
(1, 0) for such small enough e > 0. An interesting phenomenon occurs
here, namely, when β is slightly larger than 1, some of the elliptic relative
equilibrium with e > 0 small can be linearly stable even though the relative
equilibrium with e = 0 is not.

(iii) When e < 1 and e is close to 1 enough, the relative equilibria are all HH
under some non-degenerate conditions, which is not satisfied at β = 6 by
numerical computations.

(iv) But the major part of the intermediate region in the (β, e) rectangle [0, 9] ×
[0, 1) is totally unknown theoretically, besides numerical results.

Inspired by the second named author’s works on the index iteration theory of
periodic orbits of Hamiltonian systems (cf. [11]), the first and the third named
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authors initiated the program of applying the ideas of index theory and its iteration
theory in calculus of variations (cf. [11]) to the stability problem of periodic orbits
in celestial mechanics, especially the elliptical Lagrangian solutions ([5]) as well
as the celebrated Figure-eight periodic orbits due to Chenciner and Montgomery
in the planar three-body problem ([4]). In [5], the stability of elliptical Lagrangian
solutions is studied and related to the Morse indies of their iterations, that is, The-
orems 2.4 and 2.5 below. But in [5], especially the 1-non-degeneracy of elliptic
Lagrangian solutions is not proved, and the separation curves of different index
regions and thus the stability regions in [0, 9] × [0, 1) are not identified.

In the current paper, we develop a new method using the ω-index theory for
symplectic paths introduced by Conley, Zehnder and Long when ω = 1 (cf. [11])
and by Long when ω ∈ U\{1} in [9] and linear differential operator theory to
understand the linear stability diagram of elliptic Lagrangian solutions theoretically
in the full range of (β, e). Especially the main purpose here is to relate such a linear
stability directly to the two major parameters of the motion: the mass parameter β
and the eccentricity e. For each fixed e ∈ [0, 1), we prove that the ω-index iω(γβ,e)
of the essential part of the elliptic Lagrangian solutions is non-decreasing in β for
all ω ∈ U. Then we use this important property to prove all these solutions are
1-non-degenerate, find the two −1 degeneracy curves and right envelope curve
of all ω-degeneracy curves for ω ∈ U\{1}, and determine the linear stability of
all sub-regions separated by these three curves. This establishes rigorously most
parts of the linear stability properties observed numerically in Fig. 1, and find more
interesting properties. Note that the symplectic coordinate decomposition of Meyer
and Schmidt fits quite well with index theory, and our study will concentrate on the
fundamental solution γβ,e(t) of the linearized Hamiltonian system of the essential
part of the elliptic Lagrangian orbit for (β, e) ∈ [0, 9] × [0, 1).

Denote by Sp(2n) the symplectic group of real 2n × 2n matrices. For any
ω ∈ U and M ∈ Sp(2n), let νω(M) = dimC kerC(M − ωI2n), and M is called
ω-degenerate (ω-non-degenerate respectively) if νω(M) > 0 (νω(M) = 0 respec-
tively). Whenω = 1 and if there is no confusion, we shall simply omit the subindex
1 and say just degenerate or non-degenerate. Let e(M) be the total algebraic mul-
tiplicity of all eigenvalues of M on U. We call M ∈ Sp(2n) spectrally stable if
e(M) = 2n, and linearly stable if M is spectrally stable and semi-simple. A sym-
plectic matrix M is called strongly linearly stable if there is some ε > 0 such that
all symplectic matrices N satisfying ‖M − N‖ < ε are linearly stable. And M is
hyperbolic, if e(M) = 0.

The following is the first part of our main results in this paper.

Theorem 1.1. In the planar three-body problem with masses m1,m2, and m3 > 0,
for the elliptic Lagrangian solution q = (q1(t), q2(t), q3(t)) with eccentricity e
and mass parameter β as given in (1.4), the essential part γβ,e(2π) ∈ Sp(4) of the
monodromy matrix of the fundamental solution along this orbit is non-degenerate
for all (β, e) ∈ (0, 9] × [0, 1); and when β = 0, it is degenerate. Note that the
Maslov-type index satisfies i1(γβ,e) = 0 for all (β, e) ∈ [0, 9] × [0, 1).

In the proof of this theorem, we consider the second order differential operators
A(β, e) (see 2.25) corresponding to the linear variation equation to the essential
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part γβ,e(t) of its fundamental solution along the orbit. The main ingredient of the
proof is the non-decreasing property ofω-index proved in Lemma 4.4 and Corollary
4.5 below for all ω ∈ U, by which we further prove that the operator A(β, e) is
positive definite, and thus 1-non-degenerate.

The rest of this paper, especially Theorems 1.2 and 1.8 below, is devoted to rig-
orous analytical studies on the existence and properties of three distinct curves 
s ,

m and
k locating from left to right in the parameter (β, e) rectangle [0, 9)×[0, 1).
We prove that the linear stability of the essential part γβ,e(2π) of the monodromy
matrix and thus that of the elliptic Lagrange solution changes precisely when (β, e)
passes through each of these three curves, which yields a complete and rigorous
understanding of the linear stability of the elliptic Lagrange solutions. Note that
here γβ,e(2π) is always linearly unstable on its hyperbolic subregion in the (β, e)
rectangle [0, 9]×[0, 1), and our Theorems 1.2 and 1.8 do not distinguish the regions
IV, V, and VI in Fig. 1.

The main idea in the proofs of Theorems 1.2 and 1.8 is the following: by
Theorem 1.1, when (β, e) changes, eigenvalues of γβ,e(2π) can leave from the unit
circle U only at −1 or some Krein collision eigenvalues in U\{±1}. Thus such −1
and Krein collision eigenvalues should correspond to (β, e) points which form the
above mentioned three curves 
s , 
m and 
k . In order to find those (β, e) such
that −1 ∈ σ(γβ,e(2π)), we prove that the −1 index i−1(γβ,e) is non-increasing
in β ∈ [0, 9] for fixed e ∈ [0, 1), and takes values 2 at β = 0 and 0 at β = 9,
thus there must exist two −1 index strictly decreasing curves 
s and 
m , each of
which intersects every horizontal line e = constant only once for e ∈ [0, 1), and
which then yield precisely the two −1 degeneracy curves. Next we prove that the
hyperbolic region of γβ,e(2π) in the (β, e) rectangle [0, 9] × [0, 1) is connected,
and its boundary curve 
k is continuous and thus well defined, which is the third
curve for determining the linear stability. Here the part of 
k which is different
from the curve 
m is also the curve of Krein collision eigenvalues of γβ,e(2π). We
prove also that the two curves 
s and 
m come from two real analytic curves and
bifurcate out from (3/4, 0), the curve 
k starts from (1, 0), and all of them goes
up and tends to the point (0, 1) as e increases from 0 to 1. These three curves were
observed numerically in [13] as shown in the above Fig. 1.

In this paper for any M and N ∈ Sp(2n), we write M ≈ N if M = P−1 N P
holds for some P ∈ Sp(2n), that is, N can be obtained from M by a symplectic
coordinate change. Recall that as defined in Chapter 1 of [11], the normal form
of an M ∈ Sp(2n) is the simplest matrix N ∈ Sp(2n) satisfying N ≈ M (cf.
Theorem 1.7.3 in p. 36 of [11]). Recall also that as introduced in Definition 1.8.9 and
Theorem 1.8.10 in p. 41 of [11] (cf. Definition 2.1 below), the basic normal form of
an M ∈ Sp(2n) is the simplest matrix N ∈ Sp(2n) such that dimC kerC(N −ωI ) =
dimC kerC(M − ωI ) for all ω ∈ U. It yields the homotopically simplest form of
M based on the normal form of M for eigenvalues in U. Note that studies at the
level of basic normal forms of γβ,e(2π) are easier and already powerful enough
for determining the linear stability, but the results at the level of normal forms of
γβ,e(2π) are stronger than basic normal forms and involve more demonstrations.
Here we describe our main results in normal forms in Theorems 1.2 and 1.8 below.
Note that here the symplectic direct sum 	 is given in (2.1) and the normal form
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matrices D(λ), R(θ), N1(λ, a), N2(ω, b) and M2(λ, c) used in Theorems 1.2 and
1.8 can be found in Section 2.1 below.

Theorem 1.2. Using notations in the last theorem, for every e ∈ [0, 1), the −1
index i−1(γβ,e) is non-increasing, and strictly decreasing only on two values of
β = β1(e) and β = β2(e) ∈ (0, 9). Define 
i = {(βi (e), e) | e ∈ [0, 1)} for i = 1
and 2,

βs(e) = min{β1(e), β2(e)} and βm(e) = max{β1(e), β2(e)} for e ∈ [0, 1),

and


s = {(βs(e), e) | e ∈ [0, 1)} and 
m = {(βm(e), e) | e ∈ [0, 1)}.
For every e ∈ [0, 1) we define

βk(e) = sup{β ′ ∈ [0, 9] | σ(γβ,e(2π)) ∩ U �= ∅, ∀ β ∈ [0, β ′]}, (1.5)

and


k = {(βk(e), e) ∈ [0, 9] × [0, 1) | e ∈ [0, 1)}. (1.6)

Then 
s , 
m and 
k form three curves which possess the following properties.

( i) 0 < βi (e) < 9 for i = 1, 2, and both β = β1(e) and β = β2(e) are real
analytic in e ∈ [0, 1);

( ii) β1(0) = β2(0) = 3/4 and lime→1 β1(e) = lime→1 β2(e) = 0. The two
curves 
1 and 
2 are real analytic in e, and bifurcate out from (3/4, 0)
with tangents −√

33/4 and
√

33/4 respectively, thus they are different and
their intersection points must be isolated if there exist when e ∈ (0, 1);
Consequently, 
s and 
m are different piecewise real analytic curves;

( iii) We have

i−1(γβ,e) =
⎧
⎨

⎩

2, if 0 � β < βs(e),
1, if βs(e) � β < βm(e),
0, if βm(e) � β � 9,

(1.7)

and
s and
m are precisely the −1 degeneracy curves of the matrix γβ,e(2π)
in the (β, e) rectangle [0, 9] × [0, 1);

(iv) There holds βs(e) � βm(e) � βk(e) < 9 for all e ∈ [0, 1);
(v) Every matrix γβ,e(2π) is hyperbolic when β ∈ (βk(e), 9] and e ∈ [0, 1), and

there holds

βk(e) = inf{β ∈ [0, 9] | σ(γβ,e(2π)) ∩ U = ∅}, ∀ e ∈ [0, 1). (1.8)

Consequently 
k is the boundary curve of the hyperbolic region of γβ,e(2π)
in the (β, e) rectangle [0, 9] × [0, 1);

(vi) 
k is continuous in e ∈ [0, 1);
(vii) lime→1 βk(e) = 0;

(viii) There exists a point ẽ ∈ (0, 1] such thatβm(e) < βk(e) holds for all e ∈ [0, ẽ).
Therefore the curve 
k is different from the curve 
m at least when e ∈ [0, ẽ).
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(ix) We have γβ,e(2π) ≈ R(θ1)	R(θ2) for some θ1 and θ2 ∈ (π, 2π), and thus it
is strongly linearly stable on the segment 0 < β < βs(e);

( x) We have γβ,e(2π) ≈ D(λ)	R(θ)) for some 0 > λ �= −1 and θ ∈ (π, 2π),
and it is elliptic–hyperbolic, and thus linearly unstable on the segment
βs(e) < β < βm(e).

(xi) We have γβ,e(2π) ≈ R(θ1)	R(θ2) for some θ1 ∈ (0, π) and θ2 ∈ (π, 2π)
with 2π − θ2 < θ1, and thus it is strongly linearly stable on the segment
βm(e) < β < βk(e).

Here and below in Theorem 1.8, we write λ = λβ,e and θ = θβ,e for short, all of
which depend on the parameters β and e.

By the Bott-type iteration formulas of Maslov-type indices, we can decompose
W 2,2([0, 2π ],R2) into two subspaces E1 and E2 (see 7.3 and 7.4 below) according
to the boundary conditions. Then using the operator A(β, e) (see 7.9) corresponding
to the variational equation, we carry out the computations of Morse indices of
A(β, e)|Ei with i = 1 and 2 via those of A(0, 0)|Ei with i = 1 and 2.

As a corollary, we have immediately

Corollary 1.3. For every e ∈ [0, 1), the Lagrangian orbit is strongly linearly stable
if β > 0 is small enough.

Furthermore, we can strengthen the conclusion (v) of Theorem 1.2 to

Proposition 1.4. For the equal mass case, that is, β = 9, the matrix γ9,e(2π) is
always hyperbolic and possesses a pair of positive double eigenvalues λ(e) and
λ(e)−1 �= 1 for every 0 � e < 1. Consequently, the matrix γβ,e(2π) is hyperbolic
whenever β < 9 is sufficiently close to 9.

We establish Proposition 1.4 in Section 4.1 by the Maslov-type index theory
and the theory of linear differential operators. Then we further have the following:

Theorem 1.5. (i) For every ω ∈ U\{1} and e ∈ [0, 1), the ω-index iω(γβ,e) is
decreasing for β ∈ [0, 9].

(ii) There exist precisely two curves in the (β, e) rectangle [0, 9] × [0, 1), on
which the Maslov-type index iω(γβ,e) decreases strictly. These two curves
are given by β = β1(e, ω) and β = β2(e, ω) for 0 � e < 1 respectively,
where both β1(e, ω) and β2(e, ω) are real analytic functions in e ∈ [0, 1)
and satisfy lime→1 β1(e, ω) = lime→1 β2(e, ω) = 0.

This is proved in Theorem 6.3 below. Similar to the idea in the proof of The-
orem 1.2, we know that the ω-Morse indices of A(0, e) and A(9, e) are 2 and 0
respectively. The existence of the two ω-index strictly decreasing curves follows
from the monotonicity of the operators involved. Note thatω-index strictly decreas-
ing is equivalent to the ω-degeneracy of the operator A(β, e) by our Proposition
6.1 below. With the aid of Dunford–Taylor integral, the ω-degeneracy of A(β, e)
is related to the spectral problem of another compact operator B(e, ω) (see 6.5
below), and the real analyticity of the two index degeneracy curves follows from
the theory of operators.
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Fig. 2. Stability bifurcation diagram of Lagrangian triangular homographic orbits in the
(β, e) rectangle [0, 9] × (−1, 1). It is symmetric with respect ro the β-axis. The region IV
is hyperbolic (HH or CS)

Although e < 0 does not have physical meaning, we can extend the fundamental
solution to the case e ∈ (−1, 1)mathematically and some interesting properties of
the two degeneracy curves follows. Namely we get

Theorem 1.6. (i) The identity β1(e,−1) = β2(−e,−1) holds for all e ∈
(−1, 1). For fixed ω ∈ U\{−1} and i = 1 and 2, the function βi (e, ω) is
also even in e ∈ (−1, 1).

(ii) For e ∈ (−1, 1), the function βk(e) is also even in e, that is, βk(−e) = βk(e)
for all e ∈ (−1, 1). Consequently 
k can be continuously extended to the
region [0, 9] × (−1, 1) as a curve symmetric to the segment [0, 9] × {0}.

Theorem 1.6 follows from the fact that A(β, e) is conjugate to A(β,−e) by a
unitary operator. This is proved in Theorems 6.4 and 7.2 below.

Fig. 2 represents the case of ω = −1 in Theorem 1.6. Following Theorem 1.2,
in Fig. 1, the curve separating the regions II and III is 
s and the curve separating
the regions III and the union of I and IV is 
m . The curves 
1 and the mirror of the
curve 
2 in Theorem 1.2 together give one of the analytic curves in Theorem 1.6,
and the another one in the Theorem 1.6 is derived from the curves
2 and the mirror
of 
1 in Theorem 1.2 as indicated in the Fig. 2. So we see that the two seemingly
unrelated index degeneracy curves in Theorem 1.2 are in fact coming from one
degeneracy curve in Theorem 1.6. Note that the curve 
k separates the regions I,
IV and VI in Fig. 1. Numerical studies on ω ∈ U are also given in Fig. 4 in Section
10.
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When e = 1, the operator A(β, 1) is singular and its domain is different from that
of A(β, e)with e < 1, and not convenient to be used. Thus we use the corresponding
sesquilinear forms to study the limiting case when e → 1.

Theorem 1.7. For any fixed 0 < β � 9, the matrix γβ,e(2π) is hyperbolic when
1 − |e| is small enough.

Note that by definition, at least one pair of eigenvalues of the matrix γβ,e(2π)
is located on the unit circle U when β ∈ [0, βk(e)] and e ∈ [0, 1).

For (β, e) located on these three special curves, we have the following

Theorem 1.8. For the normal forms of γβ,e(2π) when (β, e) ∈ 
s , 
m or 
k , we
have the following results.

(i) If βs(e) < βm(e), we have γβs (e),e(2π) ≈ N1(−1, 1)	R(θ) for some θ ∈
(π, 2π), and thus it is spectrally stable and linearly unstable;

(ii) If βs(e) = βm(e) < βk(e), we have γβs (e),e(2π) ≈ −I2	R(θ) for some
θ ∈ (π, 2π), and thus it is linearly stable, but not strongly linearly stable;

(iii) If βs(e) < βm(e) < βk(e), we have γβm (e),e(2π) ≈ N1(−1,−1)	R(θ) for
some θ ∈ (π, 2π), and thus it is spectrally stable and linearly unstable;

(iv) Ifβs(e) � βm(e) < βk(e), we have γβk (e),e(2π) ≈ N2(e
√−1θ , b) for some θ ∈

(0, π) and b =
(

b1 b2
b3 b4

)

satisfying (b2 − b3) sin θ > 0, that is, N2(e
√−1θ , b)

is trivial in the sense of Definition 1.8.11 in p. 41 of [11] (cf. Section 2.1
below). Consequently the matrix γβk (e),e(2π) is spectrally stable and linearly
unstable;

(v) If βs(e) < βm(e) = βk(e), we have either γβk (e),e(2π) ≈ N1(−1, 1)	D(λ)
for some −1 �= λ < 0 and is linearly unstable; or γβk (e),e(2π) ≈ M2(−1, c)
with c1, c2 ∈ R and c2 �= 0, and it is spectrally stable and linearly unstable;

(vi) If βs(e) = βm(e) = βk(e), either γβk (e),e(2π) ≈ M2(−1, c) with c1, c2 ∈ R
and c2 = 0 which possesses basic normal form N1(−1, 1)	N1(−1, 1), or
γβk (e),e(2π) ≈ N1(−1, 1)	N1(−1, 1). Thus γβk (e),e(2π) is spectrally stable
and linearly unstable.

Theorem 1.9. For any fixed e ∈ [0, 1), the set

Ie = {β ∈ (0, 9] ∣∣ the spectrum of γβ,e(2π) is CS}
is a non-empty open set.

Remark 1.10. Note that our above results yield that the two curves 
s and 
m can
have only isolated intersection points, but it is not clear if they do have any when
e ∈ (0, 1). It is not clear so far whether ẽ < 1 in Theorem 1.2 and whether 
m

and 
k coincide completely when e ∈ (ẽ, 1). It is also not clear whether the (β, e)
sub-region in which σ(γβ,e(2π)) is CS is connected or not.

This paper is organized as follows. In Section 2, we give the definitions
of ω-Maslov-type index to fix notations and its relation to the ω-Morse index.
Some basic variational facts on the elliptic Lagrangian solutions are also recalled.
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In Section 3, we study the linear stability along the three boundary segments of
the (β, e) rectangle [0, 9] × [0, 1). In Section 4, we prove the hyperbolicity of the
elliptic Lagrangian solutions in the case of equal masses (Proposition 1.4) and the
non-degeneracy stated in Theorem 1.1. In Section 5, the stability behavior in the
limit case e → 1 is considered by the sesquilinear forms of linear operators, and
Theorem 1.7 is proved. In Section 6, we investigate the ω degeneracy curves for
general ω ∈ U\{1} in the unit circle and establish Theorem 1.5. In Section 7, we
concentrate on the −1 degeneracy curves. In Section 8, we study the non-hyperbolic
region and prove Theorem 1.6 and the first half of Theorem 1.2 including its items
(i)–(iii) and (ix)–(x). Section 9 is on the hyperbolic region, and we prove the second
half of Theorem 1.2 including its items (iv)–(viii) and (xi), as well as Theorems 1.8
and 1.9. Finally in the conclusion, Section 10, we will give more comparisons for
the results of Martínez, Samà and Simó and our theorems as well as some possible
future considerations.

2. Preliminaries

2.1. ω-Maslov-Type Indices and ω-Morse Indices

Let (R2n,) be the standard symplectic vector space with coordinates (x1, . . . , xn,

y1, . . . , yn) and the symplectic form  = ∑n
i=1 dxi ∧ dyi . Let J =

(
0 −In

In 0

)

be the standard symplectic matrix, where In is the identity matrix on Rn .
As usual, the symplectic group Sp(2n) is defined by

Sp(2n) = {M ∈ GL(2n,R) | MT J M = J },
whose topology is induced from that of R4n2

. For τ > 0 we are interested in paths
in Sp(2n):

Pτ (2n) = {γ ∈ C([0, τ ],Sp(2n)) | γ (0) = I2n},
which is equipped with the topology induced from that of Sp(2n). For any ω ∈ U
and M ∈ Sp(2n), the following real function was introduced in [9]:

Dω(M) = (−1)n−1ωn det(M − ωI2n).

Thus for any ω ∈ U the following codimension 1 hypersurface in Sp(2n) is defined
([9]):

Sp(2n)0ω = {M ∈ Sp(2n) | Dω(M) = 0}.
For any M ∈ Sp(2n)0ω, we define a co-orientation of Sp(2n)0ω at M by the positive
direction d

dt Met J |t=0 of the path Met J with 0 � t � ε and ε being a small enough
positive number. Let

Sp(2n)∗ω = Sp(2n)\Sp(2n)0ω,

P∗
τ,ω(2n) = {γ ∈ Pτ (2n) | γ (τ) ∈ Sp(2n)∗ω},

P0
τ,ω(2n) = Pτ (2n)\P∗

τ,ω(2n).
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For any two continuous paths ξ and η : [0, τ ] → Sp(2n) with ξ(τ ) = η(0), we
define their concatenation by:

η ∗ ξ(t) =
{
ξ(2t), if 0 � t � τ/2,
η(2t − τ), if τ/2 � t � τ.

Given any two 2mk × 2mk matrices of square block form Mk =
(

Ak Bk

Ck Dk

)

with

k = 1, 2, the symplectic sum of M1 and M2 is defined (cf. [9,11]) by the following
2(m1 + m2)× 2(m1 + m2) matrix M1	M2:

M1	M2 =

⎛

⎜
⎜
⎝

A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

⎞

⎟
⎟
⎠ , (2.1)

and M	k denotes the k copy 	-sum of M . For any two paths γ j ∈ Pτ (2n j ) with
j = 0 and 1, let γ0	γ1(t) = γ0(t)	γ1(t) for all t ∈ [0, τ ].

As in [11], for λ ∈ R\{0}, a ∈ R, θ ∈ (0, π) ∪ (π, 2π), b =
(

b1 b2
b3 b4

)

with

bi ∈ R for i = 1, . . . , 4, and c j ∈ R for j = 1, 2, we denote respectively some
normal forms by

D(λ) =
(
λ 0
0 λ−1

)

, R(θ) =
(

cos θ − sin θ
sin θ cos θ

)

,

N1(λ, a) =
(
λ a
0 λ

)

, N2(e
√−1θ , b) =

(
R(θ) b

0 R(θ)

)

,

M2(λ, c) =

⎛

⎜
⎜
⎝

λ 1 c1 0
0 λ c2 (−λ)c2

0 0 λ−1 0
0 0 −λ−2 λ−1

⎞

⎟
⎟
⎠ .

Here N2(e
√−1θ , b) is trivial if (b2−b3) sin θ > 0, or non-trivial if (b2−b3) sin θ <

0, in the sense of Definition 1.8.11 in p. 41 of [11]. Note that by Theorem 1.5.1 in
pp. 24–25 and (1.4.7)–(1.4.8) in p. 18 of [11], when λ = −1 there hold

c2 �= 0 if and only if dim ker(M2(−1, c)+ I ) = 1,

c2 = 0 if and only if dim ker(M2(−1, c)+ I ) = 2.

Note that we have N1(λ, a) ≈ N1(λ, a/|a|) for a ∈ R\{0}by symplectic coordinate
change, because

(
1/

√|a| 0
0

√|a|
)(

λ a
0 λ

)(√|a| 0
0 1/

√|a|
)

=
(
λ a/|a|
0 λ

)

.
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Definition 2.1. ([9,11]) For any ω ∈ U and M ∈ Sp(2n), define

νω(M) = dimC kerC(M − ωI2n). (2.2)

For every M ∈ Sp(2n) and ω ∈ U, as in Definition 1.8.5 in p. 38 of [11], we
define the ω-homotopy set ω(M) of M in Sp(2n) by

ω(M) = {N ∈ Sp(2n) | νω(N ) = νω(M)},
and the homotopy set (M) of M in Sp(2n) by

(M) = {N ∈ Sp(2n) | σ(N ) ∩ U = σ(M) ∩ U, and

νλ(N ) = νλ(M) ∀ λ ∈ σ(M) ∩ U}.
We denote by 0(M) (or 0

ω(M)) the path connected component of (M)
(ω(M)) which contains M , and call it the homotopy component (or ω-homotopy
component) of M in Sp(2n). Following Definition 5.0.1 in p. 111 of [11], forω ∈ U
and γi ∈ Pτ (2n) with i = 0, 1, we write γ0 ∼ω γ1 if γ0 is homotopic to γ1 via
a homotopy map h ∈ C([0, 1] × [0, τ ],Sp(2n)) such that h(0) = γ0, h(1) = γ1,
h(s)(0) = I , and h(s)(τ ) ∈ 0

ω(γ0(τ )) for all s ∈ [0, 1]. We write also γ0 ∼ γ1, if
h(s)(τ ) ∈ 0(γ0(τ )) for all s ∈ [0, 1] is further satisfied.

Following Definition 1.8.9 in p. 41 of [11], we call the above matrices D(λ),
R(θ), N1(λ, a) and N2(ω, b) basic normal forms of symplectic matrices. As proved
in [9] and [10] (cf. Theorem 1.9.3 in p. 46 of [11]), every M ∈ Sp(2n) has its basic
normal form decomposition in 0(M) as a 	-sum of these basic normal forms.
This is very important when we derive basic normal forms for γβ,e(2π) to compute
the ω-index iω(γβ,e) of the path γβ,e later in this paper.

We define a special continuous symplectic path ξn ⊂ Sp(2n) by

ξn(t) =
(

2 − t
τ

0
0 (2 − t

τ
)−1

)	n

for 0 � t � τ. (2.3)

Definition 2.2. ([9,11]) For any τ > 0 and γ ∈ Pτ (2n), define

νω(γ ) = νω(γ (τ )). (2.4)

If γ ∈ P∗
τ,ω(2n), define

iω(γ ) = [Sp(2n)0ω : γ ∗ ξn], (2.5)

where the right hand side of (2.5) is the usual homotopy intersection number, and
the orientation of γ ∗ ξn is its positive time direction under homotopy with fixed
end points.

If γ ∈ P0
τ,ω(2n), we let F(γ ) be the set of all open neighborhoods of γ in

Pτ (2n), and define

iω(γ ) = sup
U∈F(γ )

inf{iω(β) |β ∈ U ∩ P∗
τ,ω(2n)}. (2.6)

Then

(iω(γ ), νω(γ )) ∈ Z × {0, 1, . . . , 2n},
is called the index function of γ at ω.
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We refer to [11] for more details on this index theory of symplectic matrix paths
and periodic solutions of Hamiltonian system.

For T > 0, suppose x is a critical point of the functional

F(x) =
∫ T

0
L(t, x, ẋ) dt, ∀ x ∈ W 1,2(R/T Z,Rn),

where L ∈ C2((R/T Z) × R2n,R) and satisfies the Legendrian convexity condi-
tion L p,p(t, x, p) > 0. It is well known that x satisfies the corresponding Euler–
Lagrangian equation:

d

dt
L p(t, x, ẋ)− Lx (t, x, ẋ) = 0, (2.7)

x(0) = x(T ), ẋ(0) = ẋ(T ). (2.8)

For such an extremal loop, define

P(t) = L p,p(t, x(t), ẋ(t)),

Q(t) = Lx,p(t, x(t), ẋ(t)),

R(t) = Lx,x (t, x(t), ẋ(t)).

Note that

F ′′(x) = − d

dt

(

P
d

dt
+ Q

)

+ QT d

dt
+ R. (2.9)

For ω ∈ U, set

D(ω, T ) = {y ∈ W 1,2([0, T ],Cn) | y(T ) = ωy(0)}. (2.10)

We define the ω-Morse index φω(x) of x to be the dimension of the largest negative
definite subspace of

〈F ′′(x)y1, y2〉, ∀ y1, y2 ∈ D(ω, T ),

where 〈·, ·〉 is the inner product in L2. For ω ∈ U, we also set

D(ω, T ) = {y ∈ W 2,2([0, T ],Cn)|y(T ) = ωy(0), ẏ(T ) = ω ẏ(0)}. (2.11)

Then F ′′(x) is a self-adjoint operator on L2([0, T ],Rn)with domain D(ω, T ). We
also define

νω(x) = dim ker(F ′′(x)).

In general, for a self-adjoint operator A on the Hilbert space H , we set ν(A) =
dim ker(A) and denote by φ(A) its Morse index which is the maximum dimension
of the negative definite subspace of the symmetric form 〈A·, ·〉. Note that the Morse
index of A is equal to the total multiplicity of the negative eigenvalues of A.
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On the other hand, x̃(t) = (∂L/∂ ẋ(t), x(t))T is the solution of the correspond-
ing Hamiltonian system of (2.7)–(2.8), and its fundamental solution γ (t) is given
by

γ̇ (t) = J B(t)γ (t), (2.12)

γ (0) = I2n, (2.13)

with

B(t) =
(

P−1(t) −P−1(t)Q(t)
−Q(t)T P−1(t) Q(t)T P−1(t)Q(t)− R(t)

)

. (2.14)

Lemma 2.3. (Long [11, p. 172]) For the ω-Morse index φω(x) and nullity νω(x)
of the solution x = x(t) and the ω-Maslov-type index iω(γ ) and nullity νω(γ ) of
the symplectic path γ corresponding to x̃ , for any ω ∈ U we have

φω(x) = iω(γ ), νω(x) = νω(γ ). (2.15)

A generalization of the above lemma to arbitrary boundary conditions is given
in [4]. For more information on these topics, we refer to [11].

2.2. Stability Criteria via Morse Indices

In this subsection we recall some results of [5].
Gordon’s classical theorem (cf. [3]) says that the Keplerian solution is a mini-

mizer in the loop space under some topological constraint. Regarding the essential
part, a theorem of Venturelli in [18] as well as Zhang and Zhou in [19] tells us
that the Lagrangian solution is the minimizer among the loops in its some homol-
ogy class. Note that, up to now, these are the only known variational facts under
topological constraints on the loop spaces.

By these theorems, we got criteria for the stability in terms of Morse indices.
Let φk = φ1(qk) be the Morse index of the kth iteration qk of the Lagrangian
solution q in the variational problem, and according to [18] and [19], φ1 = 0 holds.

The Lagrangian solution is called linearly stable (spectrally stable) if γ (2π) is
linearly stable(spectrally stable). The first and the third named authors proved the
following:

Theorem 2.4. (Hu–Sun [5]) For the monodromy matrix M corresponding to the
elliptic Lagrangian solution q = (q1(t), q2(t), q3(t)), 2 � φ2 � 4 and,

e(M)/2 � φ2. (2.16)

Moreover

(i) If φ2 = 4, then the Lagrangian solution is spectrally stable;
(ii) If φ2 = 3, then the Lagrangian solution is linearly unstable;

(iii) If φ2 = 2, then the Lagrangian solution is spectrally stable if there exists some
integer k � 3, such that φk > 2(k − 1).

(iv) If φk = 2(k − 1), for all k ∈ N, then the Lagrangian solution is linearly
unstable.



1008 Xijun Hu, Yiming Long & Shanzhong Sun

Moreover, if the essential part γ = γβ,e(t) (cf. Section 2.3 below) of the mon-
odromy matrix at t = 4π is non-degenerate, we can get the normal forms of
γβ,e(2π).

Theorem 2.5. (Hu–Sun [5]) In the same setting of the above theorem, suppose
γβ,e(4π) = γβ,e(2π)2 is non-degenerate.

(i) If φ2 = 4, then γβ,e(2π) ≈ R(2π − θ1)	R(2π − θ2) holds for some θ1 and
θ2 ∈ (0, π), and is linearly stable;

(ii) If φ2 = 3, then γβ,e(2π) ≈ D(λ)	R(2π − θ) for some λ < 0 and θ ∈ (0, π),
and is linearly unstable;

(iii) If φ2 = 2 and there exists some integer k � 3 such that φk > 2(k − 1), then
γβ,e(2π) ≈ R(2π − θ1)	R(θ2) holds with 0 < θ1 < θ2 < π , and is linearly
stable;

(iv) If φk = 2(k −1) for all k ∈ N, then γβ,e(2π) is hyperbolic or spectrally stable
and linearly unstable.

2.3. The Essential Part of the Fundamental Solution of the Elliptic Lagrangian
Orbit

Following Meyer and Schmidt (cf. p. 275 of [15]), the essential part γ = γβ,e(t)
of the fundamental solution of the Lagrangian orbit satisfies

γ̇ (t) = J B(t)γ (t), (2.17)

γ (0) = I4, (2.18)

with

B(t) =

⎛

⎜
⎜
⎜
⎝

1 0 0 1
0 1 −1 0

0 −1 2e cos(t)−1−√
9−β

2(1+e cos(t)) 0

1 0 0 2e cos(t)−1+√
9−β

2(1+e cos(t))

⎞

⎟
⎟
⎟
⎠
, (2.19)

where e is the eccentricity, and t is the truly anomaly.
Let

J2 =
(

0 −1
1 0

)

, Kβ,e(t) =
(

3+√
9−β

2(1+e cos(t)) 0

0 3−√
9−β

2(1+e cos(t))

)

, (2.20)

and set

L(t, x, ẋ) = 1

2
‖ẋ‖2 + J2x(t) · ẋ(t)

+1

2
Kβ,e(t)x(t) · x(t), ∀ x ∈ W 1,2(R/2πZ,R2), (2.21)

where a ·b denotes the inner product in R2. Obviously the origin in the configuration
space is a solution of the corresponding Euler–Lagrange system. By Legendrian
transformation, the corresponding Hamiltonian function is

H(t, z) = 1

2
B(t)z · z, ∀ z ∈ R4.
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Note first that the elliptical Lagrangian solution is a local minimizer of the
action functional A on the homology class of curves with winding number (1, 1, 1)
or (−1,−1,−1) in H1(X̂ ) (cf. [18,19], and Lemma 4.1 of [5]). Note secondly
that curves with winding number not equal to ±1 can not approximate curves
with winding number 1 or −1 in C(R/Z,R2). Therefore the Morse index of A
at the elliptical Lagrangian solution in the whole space X̂ and that restricted in
the homology class of curves with winding number (1, 1, 1) or (−1,−1,−1) in
H1(X̂ ) coincide and take the value zero.

Here note that let γ1 be the fundamental solution of the Kepler orbit. Then
γ1	γβ,e is the fundamental solution of the Lagrangian orbit. By Theorem 7.3.1 in
p. 168 of [11] and the additivity of the index theory (cf. (ii) of Theorem 6.2.7 in p.
147 of [11]), we obtain

φk = i1(γ
k
1 )+ i1(γ

k
β,e), ∀ k ∈ N, (2.22)

where φk is defined at the beginning of Section 2.2. Note that by Proposition 3.6
in p. 110 of [5], we have

i1(γ
k
1 ) = 2(k − 1), ∀ k ∈ N. (2.23)

Thus by our above discussions and (2.22)–(2.23) with k = 1, we obtain

i1(γβ,e) = φ1 = 0, ∀ (β, e) ∈ [0, 9] × [0, 1). (2.24)

2.4. A Modification on the Path γβ,e(t)

In order to transform the Lagrangian system (2.19) to a simpler linear operator
corresponding to a second order Hamiltonian system with the same linear stability
as γβ,e(2π), using R(t) and R4(t) ≡ N2(et

√−1, 0) defined in Section 2.1, we let

ξβ,e(t) = R4(t)γβ,e(t), ∀ t ∈ [0, 2π ], (β, e) ∈ [0, 9] × [0, 1). (2.25)

One can show by direct computation that

d

dt
ξβ,e(t) = J

(
I2 0
0 R(t)(I2 − Kβ,e(t))R(t)T

)

ξβ,e(t). (2.26)

Note that R4(0) = R4(2π) = I4, so γβ,e(2π) = ξβ,e(2π) holds and the linear
stabilities of the systems (2.18) and (2.26) are precisely the same.

By (2.25) the symplectic paths γβ,e and ξβ,e are homotopic to each other
via the homotopy h(s, t) = R4(st)γβ,e(t) for (s, t) ∈ [0, 1] × [0, 2π ]. Because
R4(s)γβ,e(2π) for s ∈ [0, 1] is a loop in Sp(4) which is homotopic to the constant
loop γβ,e(2π), we have γβ,e ∼1 ξβ,e by the homotopy h. Then by Lemma 5.2.2
in p. 117 of [11], the homotopy between γβ,e and ξβ,e can be realized by a homo-
topy which fixes the end point γβ,e(2π) all the time. Therefore by the homotopy
invariance of the Maslov-type index (cf. (i) of Theorem 6.2.7 in p. 147 of [11]) we
obtain

iω(ξβ,e)= iω(γβ,e), νω(ξβ,e)=νω(γβ,e), ∀ω ∈ U, (β, e) ∈ [0, 9] × [0, 1).

(2.27)



1010 Xijun Hu, Yiming Long & Shanzhong Sun

On the other hand, the first order linear Hamiltonian system (2.26) corresponds to
the following second order linear Hamiltonian system

ẍ(t) = −x(t)+ R(t)Kβ,e(t)R(t)
T x(t). (2.28)

For (β, e) ∈ [0, 9)×[0, 1), the second order differential operator corresponding
to (2.28) is given by

A(β, e) = − d2

dt2 I2 − I2 + R(t)Kβ,e(t)R(t)
T

= − d2

dt2 I2 − I2 + 1

2(1 + e cos t)

(
3I2 + √

9 − βS(t)
)
, (2.29)

where S(t) =
(

cos 2t sin 2t
sin 2t − cos 2t

)

, defined on the domain D(ω, 2π) in (2.11). Then

it is self-adjoint and depends on the parameters β and e. By Lemma 2.3, we have for
any β and e, the Morse index φω(A(β, e)) and nullity νω(A(β, e)) of the operator
A(β, e) on the domain D(ω, 2π) satisfy

φω(A(β, e)) = iω(ξβ,e), νω(A(β, e)) = νω(ξβ,e), ∀ω ∈ U. (2.30)

Especially by Lemma 4.1, (55) and (58) of [5] and the above (2.24), we obtain

i1(ξβ,e) = φ1(A(β, e)) = i1(γβ,e) = 0, ∀ (β, e) ∈ [0, 9] × [0, 1), (2.31)

In the rest part of this paper, we shall use both of the paths γβ,e and ξβ,e to study
the linear stability of γβ,e(2π) = ξβ,e(2π). Because of (2.27), in many cases and
proofs below, we shall not distinguish these two paths.

3. Stability on the Three Boundary Segments of the Rectangle [0, 9] × [0, 1)

We need more precise information on stabilities and indices of the three bound-
ary segments of the (β, e) rectangle [0, 9] × [0, 1).

3.1. The Boundary Segment {0} × [0, 1)

When β = 0, this is the case with two zero masses, and the essential part of the
fundamental solution of Lagrangian orbit is also the fundamental solution of the
Keplerian orbits. In fact, when β = 0, without loss of generality, by the definition
(1.4) of β we may assume m2 = m3 = 0 and m1 > 0, and then every elliptic
Lagrangian solution becomes the motion along two Keplerian solutions of the two
points q2 and q3 with zero masses going along their elliptic orbits around fixed point
q1(t) ≡ 0 with mass m1 > 0. When β = 0, the matrix B(t) in (2.19) becomes

B(t) =

⎛

⎜
⎜
⎝

1 0 0 1
0 1 −1 0
0 −1 − 2−e cos(t)

1+e cos(t) 0
1 0 0 1

⎞

⎟
⎟
⎠ , (3.1)
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which coincides with the coefficient matrix B̃(t) in (17) in p. 275 of [15]. Note that
by the different sign choice of the standard symplectic matrices in p. 259 of [15],
the order of the independent variables there are different from that in our system
(2.17)–(2.19).

(A) The case of e = 0.

In this case, the matrix B(t) becomes independent of t :

B ≡ B(t) =

⎛

⎜
⎜
⎝

1 0 0 1
0 1 −1 0
0 −1 −2 0
1 0 0 1

⎞

⎟
⎟
⎠ . (3.2)

Then one can find the fundamental solution γ0,0(t) of the corresponding system
(2.1) with constant coefficient J B explicitly:

γ0,0(t) =

⎛

⎜
⎜
⎝

2 − cos t 3t − 2 sin t 3t − sin t 1 − cos t
− sin t 2 cos t − 1 cos t − 1 − sin t
sin t 2 − 2 cos t 2 − cos t sin t

2 cos t − 2 4 sin t − 3t 2 sin t − 3t 2 cos t − 1

⎞

⎟
⎟
⎠ . (3.3)

Letting

P =

⎛

⎜
⎜
⎝

1 0 0 6π
0 −1/(6π) −1 0
0 0 1 0
0 0 0 −6π

⎞

⎟
⎟
⎠ ,

we then obtain

γ̌ (t) ≡ P−1γ0,0(t)P =

⎛

⎜
⎜
⎝

cos t − 2 sin t
6π − sin t 0

0 1 0 0
sin t 2 cos t−2

6π cos t 0
2−2 cos t

6π
4 sin t−3t

36π2
2 sin t

6π 1

⎞

⎟
⎟
⎠ .

Next for ε ∈ [0, 1] we consider the following homotopy path γ̌ε(t):

γ̌ε(t) =

⎛

⎜
⎜
⎝

cos t −ε 2 sin t
6π − sin t 0

0 1 0 0
sin t ε 2 cos t−2

6π cos t 0
sε 2−2 cos t

6π
4 sin t−3t

36π2 ε 2 sin t
6π 1

⎞

⎟
⎟
⎠ .

Then γ̌ε(t) ∈ Sp(4) and γ̌ε(0) = I4 hold for all t ∈ R and ε ∈ [0, 1]. We have
γ̌1(t) = γ̌ (t) and

γ̌0(t) =

⎛

⎜
⎜
⎝

cos t 0 − sin t 0
0 1 0 0

sin t 0 cos t 0
0 4 sin t−3t

36π2 0 1

⎞

⎟
⎟
⎠ = R(t)	

(
1 0

4 sin t−3t
36π2 1

)

∼ R(t)	
(

1 t
2π

0 1

)

,
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and especially we obtain

γ0,0(2π) =

⎛

⎜
⎜
⎝

1 6π 6π 0
0 1 0 0
0 0 1 0
0 −6π −6π 1

⎞

⎟
⎟
⎠ = P

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

6π 0 1

⎞

⎟
⎟
⎠ P−1 ≈ I2	N1(1, 1).

(3.4)

(B) The case of e ∈ [0, 1).

Note that it is well known that the matrix �(t) with t = f in Lemma 3.1 in
p. 271 of [15] consists of two parts, one of which corresponds to the Keplerian
elliptic solution of the two-body problem and the other of which corresponds to the
coefficient matrix B(t) of the essential part γβ,e(t) in our notations. Especially when
β = 0 (that is, σ = 0 in [15]), both the two parts of the matrix�(t) coincide to each
other, and yields precisely �(t) = B̃(t)	B̃(t) there. Therefore when β = 0, the
essential part γβ,e(t) corresponds to the Keplerian elliptic solution of the two-body
problem.

Thus by Lemma 3.3 and the discussion on (46) of [5], the matrix γ0,e(2π)
satisfies:

γ0,e(2π) ≈ I2	N1(1, 1), ∀ e ∈ [0, 1), (3.5)

and it includes (3.4) as a special case.

(C) The indices iω(γ0,e) for ω ∈ U.

By (2.31) we obtain

φ1(A(0, e)) = i1(ξ0,e) = i1(γ0,e) = 0. (3.6)

By (3.5) and properties of splitting numbers in Chapter 9 of [11], as in (56) of [5],
for ω ∈ U\{1} and M = γ0,e(2π) we obtain

iω(γ0,e) = iω(ξ0,e)

= i1(ξ0,e)+ S+
M (1)− S−

M (ω)

= 0 + S+
I2
(1)+ S+

N1(1,1)
(1)− 0

= 2. (3.7)

For every e ∈ [0, 1), note that (3.5) yields also

νω(γ0,e) = νω(ξ0,e) =
{

3, if ω = 1,
0, if ω ∈ U\{1}. (3.8)

3.2. The Boundary Segment {9} × [0, 1)

This is studied in our Proposition 1.4 and more precisely in Section 4 below. Espe-
cially we have

σ(γ9,e(2π)) ⊂ R+\{1}, ∀ e ∈ [0, 1)



Linear Stability of Elliptic Lagrangian Solutions 1013

and it possesses a pair of double positive real hyperbolic eigenvalues. By (2.31),
we have i1(γ9,e) = 0 for all e ∈ [0, 1). By our studies in Section 4.1, the matrix
γ9,e(2π) always possesses two double positive eigenvalues not equal to 1, thus by
the definition of the splitting number in Section 9.1 of [11], we have S±

M (ω) = 0
for M = γ9,e(2π) with e ∈ [0, 1) and all ω ∈ U. Then for all e ∈ [0, 1) and ω ∈ U
this yields

iω(γ9,e) = iω(γ9,0) = 0, νω(γ9,e) = νω(γ9,0) = 0. (3.9)

3.3. The Boundary Segment [0, 9] × {0}
In this case e = 0. It is considered in (A) of Section 3.1 when β = 0. When
β ∈ (0, 9], this is the case of circular orbits with three positive masses. It was
studied in Section 4 of [16] by Roberts and in pp. 275–276 of [15] by Meyer and
Schmidt. Below, we shall first recall the properties of eigenvalues of γβ,0(2π).
Then we carry out the computations of normal forms of γβ,0(2π), and ±1 indices
i±1(γβ,0) of the path γβ,0 for all β ∈ [0, 9], which are new.

In this case, the essential part of the motion (2.17)–(2.19) becomes an ODE
system with constant coefficients:

B = B(t) =

⎛

⎜
⎜
⎜
⎝

1 0 0 1
0 1 −1 0

0 −1 −
√

9−β+1
2 0

1 0 0
√

9−β−1
2

⎞

⎟
⎟
⎟
⎠
. (3.10)

The characteristic polynomial det(J B − λI ) of J B is given by

λ4 + λ2 + β

4
= 0. (3.11)

Letting α = λ2, the two roots of the quadratic polynomial α2 +α+ β
4 are given by

α = 1
2 (−1 ± √

1 − β). Therefore the four roots of the polynomial (3.11) are given
by

α1,± = ±
√

1

2
(−1 + √

1 − β), α2,± = ±
√

1

2
(−1 − √

1 − β). (3.12)

(A) Eigenvalues of γβ,0(2π) for β ∈ [0, 9].
When 0 � β � 1, by (3.12), we get the four well-known characteristic multi-

pliers of the matrix γβ,0(2π)

ρi,±(β) = e2παi,± = e±2π
√−1θi (β), for i = 1, 2, (3.13)

where

θ1(β) =
√

1

2
(1 − √

1 − β), θ2(β) =
√

1

2
(1 + √

1 − β). (3.14)
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When 1 < β � 9, from (3.12) by direct computation the four characteristic
multipliers of the matrix γβ,0(2π) are given by

ρ±,± = e±π
√√

β−1e±π√−1
√√

β+1. (3.15)

In particular, we obtain the following results:
When β = 0, we have σ(γ0,0(2π)) = {1, 1, 1, 1}, which coincides with (3.5).
When 0 < β < 3/4, in (3.14) the angle θ1(β) increases strictly from 0 to 1/2

as β increases from 0 to 3/4. Therefore ρ1,+(β) = e2π
√−1θ1(β) runs from 1 to

−1 counterclockwise along the upper semi-unit circle in the complex plane C as
β increases from 0 to 3/4. Correspondingly ρ1,−(β) = e−2π

√−1θ1(β) runs from
1 to −1 clockwise along the lower semi-unit circle in C as β increases from 0
to 3/4. At the same time, because θ2(β) decreases strictly from 1 to

√
3/2 as β

increases from 0 to 3/4, therefore ρ2,+(β) = e2π
√−1θ2(β) runs from 1 to e

√−1
√

3π

clockwise along the lower semi-unit circle in C as β increases from 0 to 3/4. Cor-
respondingly ρ2,−(β) = e−2π

√−1θ2(β) runs from 1 to e−√−1
√

3π counterclockwise
along the upper semi-unit circle in C as β increases from 0 to 3/4. Thus we obtain
σ(γβ,0(2π)) ⊂ U\R for all β ∈ (0, 3/4).

When β = 3/4, we have θ1(3/4) = 1/2 and θ2(3/4) = √
3/2. Therefore we

obtain ρ1,±(3/4) = e±√−1π = −1 and ρ2,±(3/4) = e±√−1
√

3π .
When 3/4 < β < 1, the angle θ1(β) increases strictly from 1/2 to

√
2/2 as

β increase from 3/4 to 1. Thus ρ1,+(β) = e2π
√−1θ1(β) runs from −1 to e

√−1
√

2π

counterclockwise along the lower semi-unit circle in C as β increases from 3/4 to 1.
Correspondingly ρ1,−(β) = e−2π

√−1θ1(β) runs from −1 to e−√−1
√

2π clockwise
along the upper semi-unit circle in C as β increases from 3/4 to 1. Because θ2(β)

decreases strictly from
√

3/2 to
√

2/2 as β increases from 3/4 to 1, we obtain
that ρ2,+(β) = e2π

√−1θ2(β) runs from e
√−1

√
3π to e

√−1
√

2π clockwise along
the lower semi unit circle in C as β increases from 3/4 to 1. Correspondingly
ρ2,−(β) = e−2π

√−1θ2(β) runs from e−√−1
√

3π to e−√−1
√

2π counterclockwise
along the upper semi unit circle in C as β increases from 3/4 to 1. Thus we obtain
σ(γβ,0(2π)) ⊂ U\R for all β ∈ (3/4, 1).

When β = 1, we obtain θ1(1) = θ2(1) = √
2/2, and then we have double

eigenvalues ρ1,±(1) = ρ2,±(1) = e±√−1
√

2π .
When 1 < β < 9, using notations defined in (3.15), the four characteristic

multipliers of γβ,0(2π) satisfy σ(γβ,0(2π)) ⊂ C\(U ∪ R) for all β ∈ (1, 9).

When β = 9,
√√

9 + 1π = 2π . By (3.15), we get the two positive double char-
acteristic multipliers of γ9,0(2π) given by ρ±,± = e±√

2πe±√−12π = e±√
2π ∈

R+\{1}, where we denote by R+ = {r ∈ R | r > 0}.
(B) Normal forms of γβ,0(2π) for β ∈ [0, 9].
By our above analysis, the matrix γβ,0(2π) possesses no eigenvalues ±1 for

β ∈ (3/4, 9]. Note also that the matrix γβ,0(2π) is homotopic to N2(ω0, b) with

ω0 = e
√−1π

√
2 and b2 − b3 �= 0 when β = 1, and is hyperbolic when β ∈ (1, 9].

Therefore by Definition 2.1 we have



Linear Stability of Elliptic Lagrangian Solutions 1015

Fig. 3. The pictures of the two paths f+(β) and f−(β) in Sp(2), where the three dark points
are their images at β = 0, 3/4 and 1

γβ,0 ∼±1 γβ0,0, ∀ β ∈ [1, 9] and β0 ∈ (3/4, 1). (3.16)

Thus we are next especially interested in the normal forms of γβ,0(2π) with β ∈
[0, 1).

For that purpose we construct a family of continuous curves f (β)(t) in Sp(4) for
β ∈ [0, 1) and t ∈ [0, 2π ] satisfying f (β)(0) = I such that γβ,0(2π) ∼±1 f (β)
for all β ∈ [0, 1), which implies γβ,0(2π) ≈ f (β) for all β ∈ [0, 1). After that we
shall study the normal forms of γβ,0(2π) for β ∈ [1, 9].

The curve f is defined separately according to β as follows.
(i) Normal forms of γβ,0(2π) when β ∈ [0, 3/4].
Here, we split f into a symplectic sum of two Sp(2)-paths:

f (β) = f+(β)	 f−(β), f±(β) ∈ Sp(2). (3.17)

Using the cylindrical coordinate representation (which is denoted by CCR for short
below) of Sp(2) introduced in [8] (cf. pp. 48–50 of [11], especially Figs. 1 and 2 in
pp. 49–50 there), we can describe the matrix curves in Sp(2)more precisely, which
is shown below in Fig. 3.

Using notations in Section 2 we let

M0 = D(2)R(2π − arcsin(3/5)) =
(

8/5 6/5
−3/10 2/5

)

. (3.18)

Then M0 ≈ N1(1, 1) and thus M0 ∈ Sp(2)01,− ∩ {(r, θ, z) ∈ R3\{z−axis} | z = 0}
in Fig. 2.1.2 in p. 50 of [11]. By (3.3) and our discussions in part (A), we define

f+(0) = I2 and f−(0) = M0. (3.19)

By our analysis in part (A), when β increases from 0 to 3/4 in (0, 3/4), we define

f+(β) = R

(

2π − 4

3
πβ

)

, for β ∈ [0, 3/4]. (3.20)
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Then the matrix curve f+(β) runs from I2 to R(π) = −I2 along the left semi-circle
clockwise in CCR in the left diagram of Fig. 3 below. Then we can choose some
β1 ∈ (0, 3/4) and define

f−(β) = D

(

2 − β

β1

)

R

(

(2π − arcsin(3/5))

(

1 − β

β1

)

+ β
9π

5

)

, for β ∈ [0, β1], (3.21)

and

f−(β) = R

(√
3π − 3/4 − β

3/4 − β1

(√
3 − 9

5

)

π

)

, for β ∈ [β1, 3/4]. (3.22)

Thus the matrix curve f−(β) runs from f−(0) = M0 to f−(β1) = R(9π/5) when
β runs from 0 to β1, and then runs from f−(β1) = R(9π/5) to f−(3/4) = R(

√
3π)

when β runs from β1 to 3/4. The image of f−(β) is shown along the left semi-circle
clockwise in CCR in the right diagram of Fig. 3 below.

Then by adjusting the running speeds of f+(β) and f−(β) according to those
of the corresponding eigenvalues in (3.13) respectively, we can have

f (β) = f+(β)	 f−(β) ≈ γβ,0(2π), for β ∈ [0, 3/4]. (3.23)

Especially when β = 3/4, we obtain

f (3/4) = −I2	R(
√

3π). (3.24)

(ii) Normal forms of γβ,0(2π) when β ∈ [3/4, 1).
For β ∈ [3/4, 1), following part (A), we define

f+(β) = R(4(1 − √
2)πβ + (3

√
2 − 2)π), (3.25)

f−(β) = R(4(
√

2 − √
3)πβ + (4

√
3 − 3

√
2)π). (3.26)

By adjusting the two curves f+(β) and f−(β) suitably when β < 1 and close to
1 and then adjusting their running speeds in β suitably, we can suppose that when
β increases from 3/4 to 1 in (3/4, 1), the matrix curve f+(β) runs from −I2 and
tends to R((2 − √

2)π) along the right semi-circle clockwise in CCR in the left
diagram of Fig. 3 below as β runs from 3/4 and tends to 1. Simultaneously the
matrix curve f−(β) runs from R(

√
3π) and tends to R(

√
2π) along the left semi-

circle clockwise in CCR in the right diagram of Fig. 3 below as β runs from 3/4 and
tends to 1. Here we shall not explain how f (β) = f+(β)	 f−(β) gets to its limit
when β → 1. Note that in this case we have also (3.23) holds when β ∈ [3/4, 1).

(iii) Note that for β ∈ [0, 1), we have f+(β) = R(α(β)), where the value
of α(β) is uniquely given by (3.20) and (3.25). Then every matrix f (β) =
f+(β)	 f−(β) ∈ Sp(4) in (3.17) can be reached by a path starting from I4 in
Sp(4) as follows:

f+(β)(t) = R(α(β)
t

2π
), for 0 � t � 2π, (3.27)

f−(β)(t) =
{

D(2t/π)R((2π − arcsin(3/5))t/π), if 0 � t � π,

f−(β t−π
π
), if π < t � 2π,

(3.28)
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for β ∈ [0, 1), where we have used the expression of the matrix M0 in (3.18).
(iv) The normal form of γβ,0(2π) when β = 1.
Firstly by Corollary 4.5 below, for fixed e ∈ [0, 1) the index iω(γβ,e(2π)) is

non-increasing when β increases from 0 to 9 for ω ∈ U\{1}. By Proposition 6.1
below, the index iω(γβ,e(2π)) can change only when the matrix path γβ,e inβ passes
through an ω degeneracy point and there should be either one or two ω-degeneracy
points and their total ω degenerate multiplicity is 2.

By part (A), β = 1 is a Krein collision point of the matrix path γβ,0(2π) for

β ∈ [0, 9] with σ(γ1,0(2π)) = {ω0, ω0, ω0, ω0} for ω0 = e
√−1

√
2π ∈ U. Note

that by our above discussions, when β increases in the open interval (0, 3/4), the
curve f+(β) passes through each ω singular surface in Sp(2) precisely once for all
ω ∈ U\R, which contributes precisely a 1 to

∑
β∈[0,9] νω(γβ,0(2π)). Therefore

by Proposition 6.1 below we must have

νω0(γ1,0(2π)) ≡ dimC kerC(γ1,0(2π)− ω0 I ) = 1. (3.29)

Then, we must have

γ1,0(2π) ≈ N2(ω0, b) =
(

R(
√

2π) b
0 R(

√
2π)

)

with b =
(

b1 b2
b3 b4

)

, (3.30)

satisfying b2 − b3 �= 0.
(v) Normal forms of γβ,0(2π) when β ∈ (1, 9].
For β ∈ (1, 9), by part (A), we have

γβ,0(2π) ≈
(

eπ
√√

β−1 R(π
√√

β + 1) b

0 e−π
√√

β−1 R(π
√√

β + 1)

)

, (3.31)

for some matrix b = b(β), which is CS-hyperbolic. When β = 9 we get

γ9,0(2π) ≈ D(e
√

2π )	D(e
√

2π ). (3.32)

Remark 3.1. Because B(t) is a constant matrix depending only on β when e = 0,
similarly to what we did for γ0,0(t) it is possible to compute out the funda-
mental matrix path γβ,0(t) explicitly when β > 0. But the computations on
γβ,0(t) when β > 0 are rather delicate and tedious and thus are omitted here.
From this computation, especially when 0 � β < 1 we obtain that γβ,0(t) ≈
R(−2πθ1(β)t)	R(2πθ2(β)t) for some θi (β) with i = 1, 2, and the β-paths
R(−2πθ1(β)) and R(2πθ2(β)) are homotopic respectively to f+(β) and f−(β)
which we constructed above.

(C) Indices i±1(γβ,0) for β ∈ [0, 9].
From the above discussions as well as Fig. 3 we obtain

i1( f+(β)) = 1, ∀β ∈ [0, 1), (3.33)

ν1( f+(β)) =
{

2, if β = 0,
0, if β ∈ (0, 1).

(3.34)

i1( f−(β)) = −1, ∀β ∈ [0, 1), (3.35)

ν1( f−(β)) =
{

1, if β = 0,
0, if β ∈ (0, 1).

(3.36)
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Therefore by (3.17) we get

i1(γβ,0) = 0, ∀β ∈ [0, 9], (3.37)

ν1(γβ,0) =
{

3, if β = 0,
0, if β ∈ (0, 9]. (3.38)

Similarly for the −1 index, we obtain

i−1( f+(β)) =
{

2, if β ∈ [0, 3/4),
0, if β ∈ [3/4, 1).

(3.39)

ν−1( f+(β)) =
{

0, if β ∈ [0, 1)\{3/4},
2, if β = 3/4.

(3.40)

i−1( f−(β)) = 0, ν−1( f−(β)) = 0, if β ∈ [0, 1). (3.41)

Therefore by (3.16) and Proposition 6.1 below, we get

i−1(γβ,0) =
{

2, if β ∈ [0, 3/4),
0, if β ∈ [3/4, 9]. (3.42)

ν−1(γβ,0) =
{

0, if β ∈ [0, 9]\{3/4},
2, if β = 3/4.

(3.43)

The other ω-indices of γβ,0 can be computed similarly for ω �= e±√−1
√

2π ≡ ω0,
and iω0(γβ,0) can be computed using the decreasing property of the index proved in
Corollary 4.5 and its values at β = 0 and β = 9 as we did in the proof of Theorem
1.2 below.

Here we point out especially that β = 1 is the only Krein collision point on the
segment [0, 9] × {0}.

4. Non-Degeneracy of Elliptic Lagrangian Solutions

Note that the complete eigenvalue 1 non-degeneracy implies that there is no linear
stability change near the positive real line in the complex plane C.

4.1. Hyperbolicity of Elliptic Lagrangian Solutions with Equal Masses

In the equal mass case, that is β = 9, we have

A(9, e) = − d2

dt2 I2 − I2 + 3

2(1 + e cos t)
I2. (4.1)

Let

A1(e) = − d2

dt2 − 1 + 3

2(1 + e cos t)
, (4.2)
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which is a self-adjoint operator with domain D(1, 2π) ⊂ W 2,2([0, 2π ],R) under
the periodic boundary conditions x(t) = x(t +2π), ẋ(t) = ẋ(t +2π) for all t ∈ R.
Then

A(9, e) = A1(e)⊕ A1(e). (4.3)

By (2.31), the Morse index of A(9, e) is zero, so A1(e) is a non-negative operator.
Moreover, we have

Proposition 4.1. A1(e) > 0 for all 0 � e < 1 on its domain D(1, 2π).

Proof. It suffices to show ker(A1(e)) = {0} for all 0 � e < 1. We argue by
contradiction. Suppose 0 �= x ∈ ker(A1(e)) is expressed as a Fourier series x =
x(t) = ∑

k∈Z ak exp(
√−1kt). Then we have

0 = 2(1 + e cos t)A1(e)x(t)

= (2 + e exp(
√−1t)+ e exp(−√−1t))

∑

k∈Z

ak(k
2 − 1) exp(

√−1kt)

+
∑

k∈Z

3ak exp(
√−1kt)

=
∑

k∈Z

(2ak(k
2 − 1)

+eak−1((k − 1)2 − 1)+ eak+1((k + 1)2 − 1)+ 3ak) exp(
√−1kt). (4.4)

This implies

2ak(k
2 − 1)+ eak−1((k − 1)2 − 1)+ eak+1((k + 1)2 − 1)+ 3ak = 0

holds for every k ∈ Z. Let k = 0, we have a0 = 0. So x belongs to the subspace
V which is spanned by {exp

√−1kt, k �= 0}. Note that (− d2

dt2 − 1)|V � 0 and
3

2(1+e cos t) > 0, so A1(e) is positive on V , which then implies that x must be zero.
This contradiction completes the proof. ��
Remark 4.2. For e = 1, the operator A1(e) is singular. By the same argument as
above one can show that A1(1)x = 0 also implies that x = 0 in L2([0, 2π ],R).

Proof of Proposition 1.4. Let ξ̄e(t) be the fundamental solution of the first order
linear Hamiltonian system corresponding to A1(e). Then it satisfies

d

dt
ξ̄e(t) = J2

(
1 0
0 1 − 3

2(1+e cos t)

)

ξ̄e(t), (4.5)

ξ̄e(0) = I2. (4.6)

Thus we have

ξ9,e(t) = ξ̄e(t) 	 ξ̄e(t), (4.7)

and so

iω(ξ9,e) = 2iω(ξ̄e), νω(ξ9,e(2π)) = 2νω(ξ̄e(2π)). (4.8)
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By Proposition 4.1, we have

dim ker(ξ̄e(2π)− I2) = 0, ∀ e ∈ [0, 1). (4.9)

Since ξ̄e(2π) is a 2 × 2 symplectic matrix, its eigenvalues are in pair {λ, λ−1} with
λ real and λ �= 1 or λ ∈ U\{1}. Because i1(ξ̄e) = 0 by Proposition 4.1, the matrix

ξ̄e(2π) must have normal form

(
λ 0
0 λ−1

)

with λ > 0 or

(
1 −1
0 1

)

by [11] (cf. pp.

179–183 there). By (4.9), 1 can not be an eigenvalue of ξ̄e(2π) for any e ∈ [0, 1),
so the only possible case is that ξ̄e(2π) has a pair of positive real eigenvalues not
equal to 1, that is λ and λ−1 > 0 and λ �= 1, and the eigenvalues of ξ̄e(2π) depend
continuously on e. So the eigenvalues of ξ̄e(2π) are real positive numbers not equal
to 1 for any e ∈ [0, 1). Especially from (4.7) with t = 2π , (4.8) and the above
discussions, we obtain

iω(ξ9,e) = 2iω(ξ̄e) = 0, νω(ξ9,e(2π)) = 2νω(ξ̄e(2π)) = 0. (4.10)

Thus by (2.27) and (2.30), the Proposition 1.4 is proved. ��
Corollary 4.3. A(9, e) is a positive operator for any ω boundary conditions.

Proof. When β = 9, since i1(ξ̄e) = 0 and ξ̄e(2π) is hyperbolic as we proved
above, we have iω(ξ̄e) = 0 for any ω ∈ U and e ∈ [0, 1). Thus the ω Morse index
iω(ξ9,e) = φω(A(9, e)) = 0, that is, A(9, e) � 0 in any ω boundary conditions.
Then A(9, e) > 0 follows from the fact that A(9, e) is non-degenerate at any ω
boundary conditions by (4.10). ��

4.2. The Non-Degeneracy of Elliptic Lagrangian Solutions for ω = 1

For (β, e) ∈ [0, 9) × [0, 1), let Ā(β, e) = A(β,e)√
9−β . Using (2.29) we can rewrite

A(β, e) as follows

A(β, e) = A(9, e)+
√

9 − β

2(1 + e cos t)
S(t) = √

9 − β

(
A(9, e)√

9 − β
+ S(t)

2(1 + e cos t)

)

= √
9 − β Ā(β, e). (4.11)

Then we have

φω(A(β, e)) = φω( Ā(β, e)), (4.12)

νω(A(β, e)) = νω( Ā(β, e)). (4.13)

Following from Corollary 4.3, that is, the fact that A(9, e) is positive definite for
any ω boundary condition, we get the following important lemma:

Lemma 4.4. (i) For each fixed e ∈ [0, 1), the operator Ā(β, e) is increasing with
respect to β ∈ [0, 9) for any fixed ω ∈ U. Especially

∂

∂β
Ā(β, e)|β=β0 = 1

2(9 − β0)3/2
A(9, e), (4.14)
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for β ∈ [0, 9) is a positive definite operator.
(ii) For every eigenvalue λβ0 = 0 of Ā(β0, e0) with ω ∈ U for some (β0, e0) ∈

[0, 9)× [0, 1), there holds

d

dβ
λβ |β=β0 > 0. (4.15)

Proof. It suffices to prove (ii). Let x0 = x0(t) with unit norm such that

Ā(β0, e0)x0 = 0. (4.16)

Fix e0. Then Ā(β, e0) is an analytic path of strictly increasing self-adjoint operators
with respect to β. Following Kato ([6], p. 120 and 386), we can choose a smooth
path of unit norm eigenvectors xβ with xβ0 = x0 belonging to a smooth path of
real eigenvalues λβ of the self-adjoint operator Ā(β, e0) on D(ω, 2π) such that for
small enough |β − β0|, we have

Ā(β, e0)xβ = λβxβ, (4.17)

where λβ0 = 0. Taking inner product with xβ on both sides of (4.17) and then
differentiating it with respect to β at β0, we get

∂

∂β
λβ |β=β0 =

〈
∂

∂β
Ā(β, e0)xβ, xβ

〉

|β=β0 + 2

〈

Ā(β, e0)xβ,
∂

∂β
xβ

〉

|β=β0

=
〈
∂

∂β
Ā(β0, e0)x0, x0

〉

= 1

2(9 − β0)3/2

〈

A(9, e0)x0, x0

〉

> 0,

where the second equality follows from (4.16), the last equality follows from the
definition of Ā(β, e) and (4.11), the last inequality follows from the positive def-
initeness of A(9, e) given by Corollary 4.3, and the fact x0 �= 0. Thus (4.15) is
proved. ��

Consequently we arrive at

Corollary 4.5. For every fixed e ∈ [0, 1) and ω ∈ U, the index function
φω(A(β, e)), and consequently iω(γβ,e), is non-increasing in β ∈ [0, 9]. When
ω ∈ U\{1}, it decreases from 2 to 0.

Proof. For 0 � β1 < β2 < 9 and fixed e ∈ [0, 1), when β increases from β1 to
β2, it is possible that negative eigenvalues of Ā(β1, e) pass through 0 to become
positive ones of Ā(β2, e), but it is impossible that positive eigenvalues of Ā(β2, e)
pass through 0 to become negative by (ii) of Lemma 4.4. Therefore the first claim
holds. The second claim follows from (3.7), (3.9) and Corollary 4.3. ��

From now on in this section, we will focus on the case of ω = 1. Since
φ1(A(β, e)) = 0, we have Ā(β, e) � 0 for (β, e) ∈ [0, 9) × [0, 1). Furthermore,
we have
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Proposition 4.6. A(β, e) > 0 for all (β, e) ∈ (0, 9) × [0, 1) under the periodic
boundary conditions, that is, on D(1, 2π).

Proof. It suffices to prove Ā(β, e) > 0. This is essentially due to the fact that
ker( Ā(β, e)) = {0} on (β, e) ∈ (0, 9) × [0, 1). In fact, otherwise, there exists an
x0 = x0(t) with unit norm such that (4.16) holds. Then (4.17) implies that there
exists a negative eigenvalue of Ā(β, e0) when β < β0 is sufficiently close to β0,
which contradicts to Ā(β, e) � 0. ��

Proof of Theorem 1.1. Since dim ker(A(β, e)) = dim ker(γβ,e(2π)− I4), we have
proved that the elliptic Lagrangian solutions are all non-degenerate on (β, e) ∈
(0, 9] × ([0, 1). It is degenerate when β = 0, by (3.8). The proof is complete. ��

5. The Limiting Case e → 1

We shall use the sesquilinear form to study the case when e → 1, and please refer
to Chapter 6 of [6] for the details on the sesquilinear form.

In this section we shall deal with the limiting cases e = 1 and −1, then the
term (1 + e cos t) in the denominator of the expression of the operator A(β, e) and
the corresponding functionals will become zero when t = (2k + 1)π if e = 1 or
2kπ if e = −1 with k ∈ Z. Note that the boundary condition x(2π) = ωx(0) is
equivalent to the boundary condition x(t +2π) = ωx(t) for all t ∈ R in the domain
D(ω, 2π)withω ∈ U of the corresponding functionals. Therefore in order to move
the singular times to the end of the boundary points of the integral intervals, in this
section we use the interval �(e) = [−π, π ] to replace [0, 2π ] when we study the
case e → 1, and keep �(e) = [0, 2π ] when we study the case e → −1 for all the
corresponding integrals.

For any (β, e) ∈ [0, 9]×(−1, 1) andω ∈ U, we define the symmetric sesquilin-
ear form 
(β, e) corresponding to the operator A(β, e) in (2.29) by


(β, e)(x, y)

=
∫

�(e)

[

ẋ · ẏ − x · y + 1

2(1 + e cos t)
((3I2 + √

9 − βS(t))x(t)) · y(t)

]

dt,

∀ x, y ∈ D(ω, 2π). (5.1)

where the domain D(ω, 2π) is defined in (2.10). Then we denote by 
(β, e)(x) =

(β, e)(x, x) the corresponding quadratic form. Note that here we have extended
the range of e to (−1, 1), even to the whole complex plan in the next section. This
seems artificial from the point of view of celestial mechanics, however we can
draw some interesting conclusions on the degeneracy curves in the (β, e) rectangle
[0, 9]× (−1, 1) later. Note that our results proved for e ∈ [0, 1) in the previous and
later sections hold also for e ∈ (−1, 1), which we shall not indicate explicitly later.
Since 
(β, e)+ I is equivalent to 
(β, e) with respect to the W 1,2-norm, 
(β, e)
is closed on domain D(ω, 2π) ([6], p. 313).
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For e = ±1, we further define 
(β, e) as in (5.1), but its domain needs to be
modified. More precisely, say, for e = 1, the domain of 
(β, 1) is defined by

D̂(β) =
{

x ∈ W 1,2([−π, π ],R2)

∣
∣
∣

∫ π

−π

( 1

2(1 + cos t)
((3I2

+√
9 − βS(t))x(t)) · x(t)

)
dt < ∞

}

. (5.2)

Since 3I2 + √
(9 − β)S(t) > 0 for 0 < β � 9, we have D̂(β) = D̂(9) for

0 < β � 9 and D̂(0) is different from them. Note that every x ∈ D̂(9)must satisfy
x(π) = x(−π) = 0 which is the vanishing ω boundary condition. And 
(β, 1) is
closed since it is the sum of two closed symmetric forms.

For e ∈ (−1, 1), A(β, e) is the Friedrichs extension operator ([6], Theorem 2.1
in p. 322) of 
(β, e) under the ω boundary condition. Let A(β) be the Friedrichs
extension operator of 
(β, 1). Then it has the form

A(β) = − d2

dt2 I2 − I2 + 3

2(1 + cos t)
I2 +

√
9 − βS(t)

2(1 + cos t)
, (5.3)

with dom(A(β)) ⊂ D̂(β).

Lemma 5.1. For eachβ ∈ (0, 9], A(β) is a self-adjoint operator on L2([−π, π ],R2)

with compact resolvent.

Proof. Since 
(β, 1) is symmetric, A(β) is self-adjoint. It suffices to prove that
A(β) + 2I2 has a compact inverse. Let 
′(x) = 
(β, 1)(x) + 2‖x‖2

W 1,2 . Then
A(β)+2I2 is the Friedrichs extension operator of 
′. By the second representation
theorem ([6], p. 331),


′(x) = 〈(A(β)+ 2I2)
1
2 x, (A(β)+ 2I2)

1
2 x〉. (5.4)

Since ‖x‖2
W 1,2 � 
′(x), a 
′-bounded set must have a convergent subsequence

in L2. This implies that (A(β) + 2I2)
− 1

2 is compact, so (A(β) + 2I2)
−1 is also

compact in L2. ��
Lemma 5.2. For β ∈ (0, 9] and x ∈ D̂(β), we have 
(β, e)(x) → 
(β, 1)(x) as
e → 1.

Proof. Let x ∈ D̂(β) ⊂ D(ω, 2π) and e ∈ [0, 1). By definitions of 
(β, e) and

(β, 1), when cos t > 0, we obtain

∣
∣
∣
∣

(
1

2(1 + e cos t)
− 1

2(1 + cos t)

)

((3I2 + √
9 − βS(t))x(t) · x(t))

∣
∣
∣
∣

= 1

2

∣
∣
∣
∣

(1 − e) cos t

(1 + e cos t)(1 + cos t)
((3I2 + √

9 − βS(t))x(t) · x(t))

∣
∣
∣
∣

� (1 − e)

∣
∣
∣
∣

1

2(1 + cos t)
((3I2 + √

9 − βS(t))x(t) · x(t))

∣
∣
∣
∣ .
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When cos t � 0, we have
∣
∣
∣
∣

1

2(1 + e cos t)
((3I2 + √

9 − βS(t))x(t) · x(t))

∣
∣
∣
∣

�
∣
∣
∣
∣

1

2(1 + cos t)
((3I2 + √

9 − βS(t))x(t) · x(t))

∣
∣
∣
∣ .

Therefore we get
∣
∣
∣
∣

1

2(1 + e cos t)
((3I2 + √

9 − βS(t))x(t) · x(t))

∣
∣
∣
∣

� (2 − e)

∣
∣
∣
∣

1

2(1 + cos t)
((3I2 + √

9 − βS(t))x(t) · x(t))

∣
∣
∣
∣ , (5.5)

for all t ∈ [0, 2π ]. Now the lemma follows from the Lebesgue’s dominated con-
vergence theorem. ��

Since under the periodic boundary condition, 
(β, e) > 0 for e ∈ [0, 1), the
above lemma tells us that
(β, 1) � 0. By Remark 4.2, we have ker(A(9, 1)) = {0},
so 
(9, 1) > 0. By completely the same reasoning as in Proposition 4.6, we have


(β, 1) > 0, ∀β ∈ (0, 9]. (5.6)

For the limiting case e → 1 under general boundary conditions, we consider the
sesquilinear form 
̂(β, e), for β ∈ [0, 9] and e ∈ (−1, 1), by


̂(β, e)(x, y) =
∫ π

−π

[

ẋ · ẏ − x · y +
(

3I2 + √
9 − βS(t)

2(1 + e cos t)
x(t) · y(t)

)]

dt,

∀x, y ∈ W 1,2(R/2πZ,R2). (5.7)

We have the following

Lemma 5.3. For β ∈ (0, 9], we have 
̂(β, e) > 0 when 1 − e is small enough.

Proof. Let δ(β, e) be the largest lower bound of the quadratic form 
̂(β, e) for
e ∈ [0, 1]. Then by (5.6) we have

δ(β, 1) > 0 ∀ β ∈ (0, 9]. (5.8)

We need to show

lim inf
e→1

δ(β, e) > 0. (5.9)

For (β, e) ∈ (0, 9] × [0, 1), we define

fβ,e(t) =
⎧
⎨

⎩

3I2+√
9−βS(t)

2(1+e cos t) if cos t � 0

3I2+√
9−βS(t)

2(1+cos t) if cos t > 0
, (5.10)
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and


̃(β, e)(x) =
∫ π

−π
[
ẋ · ẋ − x · x + fβ,e(t)x(t) · x(t)

]
dt. (5.11)

Let δ̃(β, e) be the largest lower bound of 
̃(β, e) on W 1,2(R/(2πZ),R2) for e ∈
[0, 1].

Then by (5.5) we obtain

lim inf
e→1

δ(β, e) = lim inf
e→1

δ̃(β, e). (5.12)

So it suffices to prove

lim inf
e→1

δ̃(β, e) > 0. (5.13)

For e2 > e1, we have


̃(β, e2)(x)− 
̃(β, e1)(x)

=
∫ π

π/2
+
∫ −π/2

−π

(
(e2 − e1)(− cos t)

(1 + e2 cos t)(1 + e1 cos t)
((3I2

+ √
9 − βS(t))x(t) · x(t))

)
dt.

Note that 3I2 + √
9 − βS(t) is positive definite whenever β ∈ (0, 9]. Thus we

obtain


̃(β, e2) � 
̃(β, e1), if e2 > e1. (5.14)

So δ̃(β, e) is increasing with respect to e. Let

E(β, e) =
{

x ∈ W 1,2(R/(2πZ),R2)

∣
∣
∣ ‖x‖W 1,2 � 1, 
̃(β, e)(x)

� 1

2
δ(β, 1)‖x‖2

L2

}

. (5.15)

Then E(β, e) is closed in the Hilbert space W 1,2(R/2πZ,R2) and E(β, e2) ⊂
E(β, e1) if e2 > e1. Let E(β, 1) = ⋂

0<e<1 E(β, e). We claim

E(β, 1) = {0}. (5.16)

In fact, otherwise, there exists some x ∈ E(β, 1)\{0}. We consider two cases
depending on whether x ∈ D̂(β) or not. If x ∈ D̂(β), then 
̃(β, e)(x) converges to

(β, 1)(x) when e → 1 by an argument similar to that of Lemma 5.2. Therefore
by the definition of δ(β, 1) we obtain


̃(β, e)(x) >
1

2
δ(β, 1)‖x‖2,

when 1 − e is small enough. This contradicts the definition (5.15). On the other
hand, x ∈ E(β, 1)\D̂(β) implies that

∫ π

−π

(
3I2 + √

9 − βS(t)

2(1 + cos t)
x(t) · x(t)

)

dt
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is infinite, which contradicts to the definitions of 
(β, e) and 
(β, 1) as well as
Levi’s theorem. Thus (5.16) holds.

We then further claim that there exists a constant e0 ∈ (0, 1) such that

E(β, e) = {0}, whenever e > e0. (5.17)

In fact, otherwise, there exists an increasing sequence ek ∈ (0, 1) with k ∈ N
such that ek → 1 and there exist xk ∈ E(β, ek) with ‖xk‖W 1,2 = 1. Since xk

is bounded in W 1,2(R/(2πZ),R2), it has a weakly convergent subsequence xnk ,
which converges weakly to some x0. Then we have x0 ∈ E(β, 1). In fact, by the
weakly lower semi-continuity of norms, we obtain

‖x0‖W 1,2 � lim inf
k→∞ ‖xnk ‖W 1,2 .

On the other hand, by the Sobolev compact embedding theorem, xnk converges to
x0 in the L2 space. By definition, x ∈ E(β, e) is equivalent to

‖x‖W 1,2 +
∫ π

−π
( fβ,e(t)x(t) · x(t)) dt �

(
1

2
δ(β, 1)+ 2

)

‖x‖2
L2 . (5.18)

Thus x0 ∈ E(β, enk ) for every k ∈ N implies x0 ∈ E(β, 1). On the other hand,
(5.18) implies that the lower bound of ‖xnk ‖2

L2 is nonzero. So we have x0 �= 0,
which contradicts to (5.16), and proves (5.17).

Now by (5.8), (5.14) and (5.16), for fixed β ∈ (0, 1] and every e > e0 we obtain
δ̃(β, e) � δ(β, 1)/2 > 0, which completes the proof. ��

Since D(ω, 2π) ⊂ W 1,2(R/2πZ,Cn) for anyω ∈ U, then 
̂(β, e) > 0 implies

(β, e) > 0 for any ω ∈ U. Thus we have

Corollary 5.4. For any fixed β ∈ (0, 9], there exists an e∗ ∈ (0, 1) such that for
any ω ∈ U there holds 
(β, e) > 0 for all e ∈ [e∗, 1].
Proof of Theorem 1.7. The proof of the limiting case e → −1 is similar and thus
is omitted. The above lemmas imply that for any fixed β ∈ (0, 9], we have always
A(β, e) > 0 for any ω ∈ U whenever 1 − |e| is small enough. Thus Theorem 1.7
is proved. ��

6. The ω Degeneracy Curves of Elliptic Lagrangian Solutions

For any ω boundary condition, that is on domain D(ω, 2π) of (2.11), A(β, e) is
a closed unbounded operator. If we extend e to the complex plane and denote the
open unit disc by D = {e ∈ C | |e| < 1}, then A(β, e) is holomorphic with respect
to e ∈ D ([6], p. 366). It satisfies A(β, ē) = A(β, e)∗. In fact

A(β, e) = − d2

dt2 I2 − I2 + 1

2

(
3I2 + √

9 − βS(t))(1 − e cos(t)

+ e2 cos2(t)− e3 cos3(t)+ · · ·
)
, (6.1)
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where we have

3I2 + √
9 − βS(t) � 0, for 0 � β � 9,

3I2 + √
9 − βS(t) > 0, for 0 < β � 9.

Let be a small narrow neighborhood of the interval (−1, 1) in the complex plane.
For e ∈ , if its imaginary part �e is small enough, A(9, e) is strictly accretive
([6], p. 281), that is, there exists δ > 0 such that the real part

�(A(9, e)x, x) � δ‖x‖2

for any x in the domain D(ω, 2π) of A(9, e). We get A(9, e)− 1
2 by the Dunford–

Taylor integral ([6], (3.43) in p. 282),

A(9, e)−
1
2 = 1

π

∫ ∞

0
μ− 1

2 (A(9, e)+ μ)−1 dμ, (6.2)

which is bounded and holomorphic in e ([6], p. 398).
By the idea of the proof of Proposition 4.6, we have the following important

results for all ω ∈ U\{1}.
Proposition 6.1. (i) For every (β, e) ∈ (0, 9) × [0, 1) and ω ∈ U\{1}, there

exists ε0 = ε0(β, e) > 0 sufficiently small such that for all ε ∈ (0, ε0] there
holds

iω(γβ−ε,e)− iω(γβ,e) = νω(γβ,e).

(ii) For every e ∈ [0, 1) and ω ∈ U\{1}, the total multiplicity of ω degeneracy of
γβ,e(2π) for β ∈ [0, 9] is always precisely 2, that is,

∑

β∈[0,9]
νω(γβ,e(2π)) = 2, ∀ ω ∈ U\{1}.

Proof. Firstly, for (β, e) ∈ [0, 9)× [0, 1), the operator Ā(β, e) is a bounded per-
turbation of the operator −d2/dt2. Thus as −d2/dt2 the operator Ā(β, e) possesses
only point spectrum, finite Morse index, each of its eigenvalues has finite multi-
plicity, and the only accumulation point of its spectrum is +∞. Consequently its
eigenvalues are all isolated.

(i) Fixω ∈ U\{1} and e ∈ [0, 1). Let η(β) be a unit norm eigenvector belonging
to an eigenvalue λ(β) of the operator Ā(β, e) on D(ω, 2π) for β near some β0 ∈
(0, 9). Then as in Proposition 4.6, we obtain

d

dβ
λ(β)

∣
∣
∣
∣
β=β0

=
〈
∂

∂β
Ā(β, e)η(β), η(β)

〉∣
∣
∣
∣
β=β0

= 1

2(9 − β0)3/2
〈A(9, e)η(β0), η(β0)〉

> 0. (6.3)

Therefore eigenvalues of Ā(β, e) on D(ω, 2π) for β ∈ [0, 9) are strictly increasing
in β.
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Note that by definition the Morse index k− = φω( Ā(β0, e)) is the total multi-
plicity of the negative eigenvalues of Ā(β0, e), which is finite.

Suppose k0 = dim ker( Ā(β0, e)) > 0 holds on the domain D(ω, 2π). By (6.3)
there is a smallest positive eigenvalue λ+(β0) of the operator Ā(β0, e). Because
Ā(β, e) depends analytically on β, we can choose ε > 0 to be small enough so that
all the negative eigenvalues of the operator Ā(β, e) with β ∈ [β0 − 2ε, β0 + 2ε] ⊂
(0, 9) come only from perturbations of negative and zero eigenvalues of Ā(β0, e),
and are not perturbations from any eigenvalues of Ā(β0, e) larger than or equal to
λ+(β0). Therefore by (6.3) we obtain

φω( Ā(β0 − ε, e))− φω( Ā(β0, e)) = dim ker( Ā(β0, e)), (6.4)

together with Lemma 2.3 and (2.30), which yields (i).
(ii) Note first that by Lemma 2.3, (2.30), (3.8) and (3.9), the operator Ā(β, e)

on D(ω, 2π) for β = 0 or 9 and ω ∈ U\{1} is non-degenerate.
Following our discussions in (i), at every β0 ∈ (0, 9) such that Ā(β0, e) is

degenerate, the ω-index must decrease strictly. But by (3.7), (3.9) and Corollary
4.5, there exist at most two values β1 and β2 at each of which theω-index decreases
by 1 if β1 �= β2, or the ω-index decreases by 2 if β1 = β2. Therefore there exist at
most two βs in [0, 9] at which the operator Ā(β, e) degenerates by (i), which we
denote by β1(e) and β2(e) ∈ (0, 9]. Thus by Corollary 4.5 again, we can choose
ε > 0 small enough according to β1(e) and β2(e) in the above way so that we have
φω( Ā(0, e)) = φω( Ā(β1(e) − ε, e)), φω( Ā(β1(e), e)) = φω( Ā(β2(e) − ε, e)),
φω( Ā(9, e)) = φω( Ā(β2(e), e)), and (6.4) holds for β0 replaced by β1(e) and
β2(e). Then this yields

2 = φω( Ā(0, e))− φω( Ā(9, e))

= φω( Ā(β1(e)− ε, e))− φω( Ā(β1(e), e))

+φω( Ā(β2(e)− ε, e))− φω( Ā(β2(e), e))

= dim ker( Ā(β1(e), e))+ dim ker( Ā(β2(e), e))

= νω(γβ1(e),e(2π))+ νω(γβ2(e),e(2π))

=
∑

β∈[0,9]
νω(γβ,e(2π)),

which proves the proposition. ��
Now set

B(e, ω) = A(9, e)−
1
2

1

2(1 + e cos(t))
S(t)A(9, e)−

1
2 . (6.5)

Be aware that B(e, ω) depends on ω, since so is A(9, e) on its domain D(ω, 2π).
Now we have

Lemma 6.2. For any ω boundary condition and e ∈ , A(β, e) is ω degenerate
if and only if −1√

9−β is an eigenvalue of B(e, ω).
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Proof. Suppose for e ∈ , A(β, e)x = 0 holds for some x ∈ D(ω, 2π). Let

y = A(9, e)
1
2 x . Then by (4.11) we obtain

A(9, e)
1
2

(
1√

9 − β
+ B(e, ω)

)

y(t)

=
(

1√
9 − β

A(9, e)+ 1

2(1 + e cos t)
S(t)

)

x(t)

= 1√
9 − β

A(β, e)x

= 0. (6.6)

Conversely, if
(

1√
9−β + B(e, ω)

)
y = 0, then x = A(9, e)− 1

2 y is an eigenfunction

of A(β, e) belonging to the eigenvalue 0 by our computations in (6.6). ��
Theorem 6.3. For any ω ∈ U, there exist two analytic ω degeneracy curves
(βi (e, ω), e) in e ∈ (−1, 1) with i = 1 and 2. In particular, each βi (e, ω) is a
real analytic function in e ∈ (−1, 1), and 0 < βi (e, ω) < 9 and γβi (e,ω),e(2π) is
ω degenerate for ω ∈ U\{1} and i = 1 or 2.

Proof. For ω = 1, we have βi (e, 1) ≡ 0 for i = 1 and 2, by Theorem 1.1 and
(2.31), which is obviously analytic.

For ω ∈ U\{1}, from (3.7) we have φω(A(0, e)) = φω( Ā(0, e)) = 2. On the
other hand, φω(A(9, e)) = 0 by (3.9). Recall that Ā(β, e) = A(9,e)√

9−β , and it is strictly

increasing with respect to β by Lemma 4.4. This shows that, for fixed e ∈ (−1, 1),
there are exactly two values β = β1(e, ω) and β2(e, ω) at which (6.6) is satisfied,
and then Ā(β, e) at these two β values isω degenerate. Note that these two β values
are possibly equal to each other at some e (compare with the figure in [12]), which
is not needed in this proof.

Since β = 9 is ω-non-degenerate for any ω ∈ U, we must have βi (e, ω) �= 9
for i = 1 and 2. By Lemma 6.2, −1√

9−βi (e,ω)
is an eigenvalue of B(e, ω). Note that

B(e, ω) is a compact operator and self-adjoint when e is real. Moreover it depends
analytically on e. By [6] (Theorem 3.9 in p. 392), we know that −1√

9−βi (e,ω)
with

i = 1 or 2 is real analytic in e. This in turn implies that both β1(e, ω) and β2(e, ω)
are real analytic functions of e. ��

Now we can give

Proof of Theorem 1.5. By Theorem 6.3, βi (e, ω) is real analytic on e ∈ [0, 1) for
i = 1 or 2. That βi (e, ω) → 0 as e → 1 for i = 1, 2 follows by the arguments in
the proof of (ii) of Theorem 1.2 below in Section 8. And Corollary 4.5 tells us that
iω(γβ,e) is decreasing with respect to β ∈ [0, 9]. ��

Recall that theω boundary condition is x(t) = ωx(t +2π), ẋ(t) = ωẋ(t +2π).
Let ψ(x)(t) = x(t + π), and obviously, ψ preserves the ω boundary condition.
Also it is a unitary operator and ψ∗ = ψ−1 is given by ψ∗(x)(t) = x(t − π). One
can show that

ψ∗ A(β, e)ψ = A(β,−e). (6.7)
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In fact,

ψ∗ A(β, e)ψx(t)

= ψ∗
(

− d2

dt2 I2 − I2 + 1

2(1 + e cos t)
(3I2 + √

9 − βS(t))

)

x(t + π)

= ψ∗
(

− d2

dt2 I2 − I2 + 1

2(1 − e cos(t + π))
(3I2 + √

9 − βS(t + π))

)

x(t+π)
= A(β,−e)x(t). (6.8)

By this property, we know that the ω degeneracy curve must be symmetric with
respect to e = 0.

When e = 0, the eigenvalues of γβ,0(2π) have been studied in Section 3.3.
A(β, 0), especially, has no multiple eigenvalues for ω ∈ U\{±1} and 0 < β < 9.
So we have

Theorem 6.4. For any fixed ω ∈ U\{±1} and i = 1 or 2, the function βi (e, ω) is
real analytic and even on the interval (−1, 1).

It then follows that ∂
∂eβi (e, ω)|e=0 = 0 when ω ∈ U\{±1}. But it is not the

case when ω = −1, to which we now turn.

7. The −1 Degeneracy Curves of Elliptic Lagrangian Solutions

7.1. The Two ω = −1 Degeneracy Curves

For the ω = −1 boundary condition, denote by g the following operator

g(z)(t) = N z(2π − t), (7.1)

where N =
(

1 0
0 −1

)

. Obviously, g2 = 1 and g is unitary on L2([0, 2π ],R2).

Recall that E = D(−1, 2π) is given by (2.11). One can check directly that

A(β, e)g = g A(β, e). (7.2)

Let E+ = ker(g + I ) and E− = ker(g − I ). Following the studies in Section
2.2 and especially the proof of Theorem 1.1 in [4], the subspaces E+ and E− are
A(β, e)-orthogonal, and E = E+ ⊕ E−. Note that element z = (x, y)T in E−
satisfies

x(2π − t) = x(t), −y(2π − t) = y(t), ∀ t ∈ [0, 2π ].
Thus for all z = (x, y)T ∈ E− we have

x(π + t) = x(π − t), −y(π + t) = y(π − t), ∀ t ∈ [0, 2π ].
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By the definition of z ∈ D(−1, 2π), we have z(2π) = −z(0). Thus we have
x(0) = x(2π) = −x(0) which implies x(0) = 0 and y(π) = 0. Similarly for all
z = (x, y)T ∈ E+ we have

x(π + t) = −x(π − t), y(π + t) = y(π − t), ∀ t ∈ [0, 2π ],
and x(π) = 0 and y(0) = 0.

Therefore by the above discussions, the subspaces E− and E+ are isomorphic
to the following subspaces E1 and E2 respectively:

E1 = {z = (x, y)T ∈ W 2,2([0, π ],R2) | x(0) = 0, y(π) = 0}, (7.3)

E2 = {z = (x, y)T ∈ W 2,2([0, π ],R2) | x(π) = 0, y(0) = 0}. (7.4)

For (β, e) ∈ [0, 9] × [0, 1), restricting A(β, e) to E1 and E2 respectively, we then
obtain

φ−1(A(β, e)) = φ(A(β, e)|E1)+ φ(A(β, e)|E2), (7.5)

ν−1(A(β, e)) = ν(A(β, e)|E1)+ ν(A(β, e)|E2), (7.6)

where the left hand sides are the Morse index and nullity of the operator A(β, e)
on the space D(−1, 2π), that is, the −1 index and nullity of A(β, e); on the right
hand sides of (7.5)–(7.6), we denote by φ(A(β, e)|Ei ) and ν(A(β, e)|Ei ) the usual
Morse index and nullity of the operator A(β, e)|Ei on the space Ei .

By (4.10), we have φ−1(A(9, e)) = 0 and ν−1(A(9, e)) = 0. Because all the
terms in both sides of (7.5) and (7.6) are the Morse indices and nullities which are
nonnegative integers, we have

φ(A(9, e)|E1) = φ(A(9, e)|E2) = 0, ν(A(9, e)|E1) = ν(A(9, e)|E2) = 0.

(7.7)

This shows that A(9, e)|Ei with i = 1 or 2 is positive definite.
Since the operator S(t) commutes also with the operator g, similarly we have

S(t) = S(t)|E1 ⊕ S(t)|E2 . (7.8)

So, for i = 1, 2, we obtain

A(β, e)|Ei = A(9, e)|Ei +
( √

9 − β

2(1 + e cos t)
S(t)

)

|Ei

= √
9 − β

(
A(9, e)|Ei√

9 − β
+ S(t)|Ei

2(1 + e cos t)

)

. (7.9)

Now we want to compute the Morse index of A(0, e)|Ei for i = 1, 2. By (3.7) and
(7.5), we have

φ(A(0, e)|E1)+ φ(A(0, e)|E2) = 2, ∀ e ∈ (−1, 1). (7.10)

So the possible value of φ(A(0, e)|Ei ) can only be 0, 1 and 2. By (3.8) and (7.6),
we obtain

ν(A(0, e)|E1) = ν(A(0, e)|E2) = 0, ∀ e ∈ (−1, 1). (7.11)
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By the property of Morse index, we have

φ(A(0, e)|Ei ) = φ(A(0, 0)|Ei ), ∀ e ∈ (−1, 1), i = 1, 2. (7.12)

From (3.43) and (7.6), we obtain

ν(A(3/4, 0)|E1)+ ν(A(3/4, 0)|E2) = ν−1(A(3/4, 0)) = 2. (7.13)

From the fact that ξE1 = E2 and ξE2 = E1 with ξ defined as in (6.7), we have

ν(A(3/4, 0)|E1) = ν(A(3/4, 0)|E2).

Then we obtain

ν(A(3/4, 0)|Ei ) = 1, for i = 1, 2. (7.14)

By (7.9), for any fixed e ∈ (−1, 1) and i = 1, 2,
A(β,e)|Ei√

9−β is increasing with respect

toβ as proved before. It has the same Morse index and nullity as those of A(β, 0)|Ei .
So we get

φ(A(β, 0)|Ei ) =
{

1, if 0 � β < 3/4,
0, if β � 3/4,

(7.15)

This shows that for −1 < e < 1 and i = 1, 2, by (7.12) we obtain

φ(A(0, e)|Ei ) = 1. (7.16)

By the same idea as in the proof of Theorem 6.3, we get

Proposition 7.1. The ω = −1 degeneracy curve (βi (e,−1), e) is precisely the
degeneracy curve of A(β, e)|Ei for i = 1 or 2.

From the results of [12,15,16], we know that the curves (β1(e,−1), e) and
(β2(e,−1), e) intersect transversely at the point (3/4, 0). By symmetries of the
ω-index gap curves, we have

Theorem 7.2. β1(e,−1) = β2(−e,−1) holds for all e ∈ (−1, 1).

Remark 7.3. We can also compute φ(A(0, 0)|E1) via the relation between Maslov-
type index and Morse index. Let V1 = {(0, x, y, 0) | x, y ∈ R} and V2 =
{(x, 0, 0, y) | x, y ∈ R}. Then both of them are Lagrangian subspaces of the
phase space R4 with standard symplectic structure. From Theorem 1.2 of [4], we
have

φ(A(0, 0)|E1) = μ(V2, γ0,0(t)V1), (7.17)

where the right hand side is the Maslov index for paths of Lagrangian subspaces.
Note that for (β, e) = (0, 0), by (2.19), B(t) ≡ B is a constant matrix. Then
γ0,0(t) = exp(J Bt) and its Maslov-type index can be computed explicitly as we
did in Section 3.3.
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7.2. −1 Degeneracy Curve Bifurcations from (3/4, 0) as e Leaves from 0

By (3.22), −1 is a double eigenvalue of the matrix γ3/4,0(2π). As studied by
Roberts (cf. p. 212 in [16]) and Meyer–Schmidt (cf. Section 3 of [15]), there are
two period doubling curves bifurcating out from (3/4, 0)when e > 0 is sufficiently
small. In [15], the tangent directions of these two curves are computed. Note that
these two curves are precisely the −1 index gap curves found by our Theorem
1.2. For reader’s conveniences, here we give a simple proof on these two tangent
directions based on our above studies.

Proposition 7.4. The tangent directions of the two curves 
s and 
m bifurcating
from (3/4, 0) when e > 0 is small are given by

β ′
s(e)|e=0 = −

√
33

4
, β ′

m(e)|e=0 =
√

33

4
.

Proof. To compute the slope of −1 degeneracy curve bifurcating out from (β, e) =
(3/4, 0), let (β(e), e) be one of the curve (say, the E1 degeneracy curve) with
e ∈ (−ε, ε) for some small ε > 0, and xe ∈ E1 be the corresponding eigenvector,
that is

A(β(e), e)xe = 0. (7.18)

Here the space E1 is defined in (7.3) above. Thus there holds

〈A(β(e), e)xe, xe〉 = 0. (7.19)

Then by direct computations, ker(A(3/4, 0)) ∩ E1 is generated by x0 = R(t)z(t)
with

z(t) =
(

7 − √
33

4
sin(t/2), cos(t/2)

)T

. (7.20)

Differentiating both sides of (7.19) with respect to e yields

β ′(e)
〈
∂

∂β
A(β(e), e)xe, xe

〉

+
(〈

∂

∂e
A(β(e), e

)

xe, xe

〉

+2〈A(β(e), e)xe, x ′
e〉 = 0,

where β ′(e) and x ′
e denote the derivatives with respect to e. Then evaluating both

sides at e = 0 yields

β ′(0)
〈
∂

∂β
A(3/4, 0)x0, x0

〉

+
〈
∂

∂e
A(3/4, 0)x0, x0

〉

= 0. (7.21)

Then by the definition (2.29) of A(β, e) we have

∂

∂β
A(β, e)

∣
∣
∣
∣
(β,e)=(3/4,0)

= R(t)
∂

∂β
Kβ,e(t)

∣
∣
∣
∣
(β,e)=(3/4,0)

R(t)T , (7.22)

∂

∂e
A(β, e)

∣
∣
∣
∣
(β,e)=(3/4,0)

= R(t)
∂

∂e
Kβ,e(t)

∣
∣
∣
∣
(β,e)=(3/4,0)

R(t)T , (7.23)
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where R(t) is given in Section 2.1. By direct computations from the definition of
Kβ,e(t) in (2.20), we obtain

∂

∂β
Kβ,e(t)

∣
∣
∣
∣(β,e)=(3/4,0) = 1

2
√

33

(−1 0
0 1

)

, (7.24)

∂

∂e
Kβ,e(t)

∣
∣
∣
∣(β,e)=(3/4,0) = − cos t

4

(
6 + √

33 0
0 6 − √

33

)

. (7.25)

Therefore from (7.20) and (7.22)–(7.25) we have

〈
∂

∂β
A(3/4, 0)x0, x0

〉

=
〈
∂

∂β
K3/4,0z, z

〉

=
∫ π

0

[
1

2
√

33
cos2(t/2)− 1

2
√

33

(
7 − √

33

4

)2

sin2(t/2)

]

dt

= π

4
√

33

(

1 −
(

7 − √
33

4

)2)

, (7.26)

and

〈
∂

∂e
A(3/4, 0)x0, x0

〉

−
〈
∂

∂e
K3/4,0z, z

〉

=
∫ π

0

[
1

4
(6 + √

33)

(
7 − √

33

4

)2

cos(t) sin2(t/2)

+1

4
(6 − √

33) cos(t) cos2(t/2)

]

dt

= π

16

(

6 − √
33 − (6 + √

33)

(
7 − √

33

4

)2)

. (7.27)

Therefore by (7.21) and (7.26)–(7.27) we obtain

β ′(0) =
√

33

4
. (7.28)

By the above Theorem 7.2, the two −1 degenerate curves are symmetric with
respect to the e = 0 axis. Therefore the claim of the Proposition 7.4 follows from
(7.28). ��

8. Study on the Non-Hyperbolic Regions

Now we give proofs of the first halves of our main Theorems 1.6 and 1.2.

Proof of (i) of Theorem 1.6. It follows from Theorems 6.4 and 7.2. ��
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Proof of the first half of Theorem 1.2. Here we give proofs for items (i)–(iii) and
(ix)–(x) of this theorem.
(i) By Theorem 1.5, for i = 1 and 2 we have got the existence of two curves defined
by (βi (e), e) and lime→1 βi (e) = 0 such that γβ,e(2π) is degenerate with respect to
ω = −1 only on them. Note that here these two curves may coincide somewhere.
In particular we define

0 < βs(e) ≡ min{β1(e), β2(e)} � βm(e)

≡ max{β1(e), β2(e)} < 9, for e ∈ [0, 1). (8.1)

Thus (i) is proved.
(ii) By the studies in Section 3.3, the only −1 degenerate point in the (β, e) segment
[0, 9] × {0} is (β, e) = (3/4, 0), which is a 2-fold −1 degenerate point, and there
hold

i−1(γβ,0) = 2, ν−1(γβ,0) = 0, for β ∈ [0, 3/4), (8.2)

i−1(γ3/4,0) = 0, ν−1(γ3/4,0) = 2, (8.3)

i−1(γβ,0) = 0, ν−1(γβ,0) = 0, for β ∈ (3/4, 9]. (8.4)

Therefore

βi (0) = 3/4, for i = 1 and 2. (8.5)

By Meyer and Schmidt in [15] or our Proposition 7.4, the two −1 degeneracy
curves bifurcating out from (β, e) = (3/4, 0) when e > 0 is sufficiently small
must coincide with our curves 
s and 
m respectively. Because these two curves
bifurcate out from (3/4, 0) in different angles with tangents −√

33/4 and
√

33/4
respectively when e > 0 is small, they are different from each other near (3/4, 0).
By our Theorem 6.4, these two curves 
s and 
m are real analytic with respect to e.
Therefore they are different curves and their intersection points including the point
(3/4, 0) can only be isolated.

By Theorems 6.3 and 1.5, these two curves 
s and 
m must tend to the segment
[0, 9] × {1} from (3/4, 0) as e increases from 0 and tends to 1. By the proof of our
Theorem 1.8 in Section 8 below, for each e ∈ [0, 1) the function βk(e) defined by
(1.5) satisfies 0 < βs(e) � βm(e) � βk(e) < 9, and lime→1 βk(e) = 0. Therefore
the two curves 
s and 
m must tend to (0, 1) as e → 1.

(iii) By our studies on the segments {0} × [0, 1) and {9} × [0, 1) in Section 3
and the definitions of βs(e) and βm(e), the index i−1(γβ,e) must take the claimed
values 2, 1, and 0 in (1.7) respectively when β ∈ [0, 9]\{βs(e), βm(e)} for each
e ∈ [0, 1). Note that when β = βs(e) or βm(e), the −1 index claim (1.7) follows
from (i) of Proposition 6.1. The last claim in (iii) follows from Proposition 6.1.

(ix)–(x) By the Bott-type formula (Theorem 9.2.1 in p. 199 of [11]), we obtain

i1(γ
k
β,e) =

∑

ωk=1

iω(γβ,e), ∀ k ∈ N,

and

ν1(γ
2
β,e) = ν1(γβ,e)+ ν−1(γβ,e) = ν−1(γβ,e),
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where the last equality follows from Theorem 1.1.
Therefore by (1.7), (3.7) and (3.8), for e ∈ [0, 1) we obtain

φ2 =
⎧
⎨

⎩

4, if 0 � β < βs(e),
3, if βs(e) � β < βm(e),
2, if βm(e) � β � 9.

(8.6)

Thus for (β, e) ∈ (0, 9]×[0, 1), the matrix γβ,e(4π) = γ 2
β,e(2π) is non-degenerate

with respect to the eigenvalue 1, whenever (β, e) �∈ 
s ∪ 
m . Therefore by (8.6)
we can apply Theorem 2.5 (that is, Theorem 1.2 of [5]) to get (ix) and (x). The rest
parts of Theorem 1.2 will be proved in the next section. ��

9. Study on the Hyperbolic Region

In this section we study the hyperbolic region of γβ,e(2π) in the rectangle [0, 9] ×
[0, 1). By the first halves of Theorems 1.2 and 1.6 proved in the Section 8, the
function βk(e) defined by (1.5) satisfies

βm(e) � βk(e), ∀ e ∈ [0, 1). (9.1)

We have the following further results.

Lemma 9.1. (i) If 0 � β1 < β2 � 9 and γβ1,e(2π) is hyperbolic, so does γβ2,e(2π).
Consequently, the hyperbolic region of γβ,e(2π) in [0, 9] × [0, 1) is connected.

(ii) For any fixed e ∈ [0, 1), every matrix γβ,e(2π) is hyperbolic if βk(e) <
β � 9 for βk(e) defined by (1.5). Thus (1.8) holds and 
k is the boundary set of
this hyperbolic region.

(iii) We have
∑

β∈[0,βk (e)]
νω(γβ,e(2π)) = 2, ∀ ω ∈ U\{1}. (9.2)

Proof. (i) By Lemma 4.4, for any fixed ω ∈ U and e ∈ [0, 1), the operator
Ā(β, e) = 1√

9−β A(β, e) is self-adjoint on D̄(ω, 2π) and increasing with respect
to β in the sense that

Ā(β1, e) < Ā(β2, e), if β1 < β2. (9.3)

Suppose γβ1,e(2π) is hyperbolic. This implies that A(β1, e) is non-degenerate on
D̄(ω, 2π) for everyω ∈ U. By (ix)–(x) of Theorem 1.2, it also implies βm(e) < β1.
Thus by (2.30), (3.7), Corollary 4.5, and Theorem 1.1, theω-index φω( Ā(β1, e)) =
0 for all ω ∈ U. Then Ā(β1, e) is positive definite on D̄(ω, 2π) for every ω ∈ U.
Therefore by (9.3) the operator Ā(β2, e) is positive definite too, and then is non-
degenerate on D̄(ω, 2π) for all ω ∈ U. Therefore γβ2,e(2π) must be hyperbolic
and so does γβ,e(2π) for all β ∈ [β1, 9).

Recall that along the segment {9} × [0, 1) the matrix γ9,e(2π) is hyperbolic by
our Proposition 1.4. Therefore the hyperbolic region of γβ,e(2π) is connected in
[0, 9] × [0, 1).
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(ii) By the definition of βk(e), there exists a sequence {βi }i∈N satisfying βi >

βk(e), βi → βk(e), and γβi ,e(2π) is hyperbolic. Therefore γβ,e(2π) is hyperbolic
for every β ∈ (βk(e), 9] by (i). Then (1.8) holds and 
k is the envelope curve of
this hyperbolic region.

Now (iii) follows from (ii) and Proposition 6.1, and the proof is complete. ��
Corollary 9.2. For every e ∈ [0, 1), we have

∑

β∈(0,βm (e)]
ν−1(γβ,e(2π)) = 2 and

∑

β∈(βm (e),9]
ν−1(γβ,e(2π)) = 0. (9.4)

Proof. Fix an e ∈ [0, 1). If βs(e) < βm(e), then we obtain
∑

β∈(0,βm (e)]
ν−1(γβ,e(2π)) � ν−1(γβs (e),e(2π))+ ν−1(γβm (e),e(2π)) � 2.

Thus (9.4) follows from (ii) of Proposition 6.1.
If βs(e) = βm(e), then by (i) of Proposition 6.1 we obtain ν−1(γβm (e),e(2π)) =

2. Therefore we have
∑

β∈(0,βm (e)]
ν−1(γβ,e(2π)) � ν−1(γβm (e),e(2π)) = 2.

Thus (9.4) follows also from (ii) of Proposition 6.1. ��
Now we can give the

Proof of the second half of Theorem 1.2. Here we give the proofs for the items
(iv)–(viii) and (xi) of this theorem.

Note that Claims (iv) and (v) of the theorem follow from (9.1) and Lemma 9.1.
(vi) In fact, if the function βk(e) is not continuous in e ∈ [0, 1), then there exist

some ê ∈ [0, 1), a sequence {ei | i ∈ N} ⊂ [0, 1)\{ê} and β0 ∈ [0, 9] such that

βk(ei ) → β0 �= βk(ê) and ei → ê as i → +∞. (9.5)

We continue in two cases according to the sign of the difference β0 − βk(ê).
By the definition of βk(ei ) we have σ(γβk (ei ),ei (2π))∩ U �= ∅ for every ei . By

the continuity of eigenvalues of γβk (ei ),ei (2π) in i and (9.5), we obtain

σ(γβ0,ê(2π)) ∩ U �= ∅.
Then by Lemma 9.1, this would yield a contradiction if β0 > βk(ê).

Now suppose β0 < βk(ê). By Lemma 9.1 for all i � 1 we have

σ(γβ,ei (2π)) ∩ U = ∅, ∀ β ∈ (βk(ei ), 9]. (9.6)

Then by the continuity of βm(e) in e, (9.6) and the definition of β0, we obtain

βm(ê) � β0 < βk(ê).

Let ω0 ∈ σ(γβk (ê),ê(2π)) ∩ U, which exists by the definition of βk(ê).
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Let L = {(β, ê) | β ∈ (βk(ê), 9]}, V = {(9, e) | e ∈ [0, 1)}, and Li =
{(β, ei ) | β ∈ (βk(ei ), 9]} for all i � 1. Note that by (3.9), (4.10), Corollary 4.5,
Proposition 6.1, Lemma 9.1, and the definitions of βk(ei ) and βk(ê), we obtain

iω0(γβ,e) = νω0(γβ,e) = 0, ∀ (β, e) ∈ L ∪ V ∪
⋃

i �1

Li . (9.7)

In particular we have

iω0(γβk (ê),ê) = 0 and νω0(γβk (ê),ê) � 1.

Therefore by Proposition 6.1 and the definition of ω0, there exists β̂ ∈ (β0, βk(ê))
sufficiently close to βk(ê) such that

iω0(γβ̂,ê) = iω0(γβk (ê),ê)+ νω0(γβk (ê),ê(2π)) � 1. (9.8)

This estimate (9.8) in fact holds for all β ∈ [β̂, βk(ê)) too. Note that (β̂, ê) is an
accumulation point of ∪i �1Li . Consequently for each i � 1 there exists (βi , ei ) ∈
Li such that γβi ,ei ∈ P2π (4) is ω0 non-degenerate, βi → β̂ in R, and γβi ,ei → γ

β̂,ê
in P2π (4) as i → ∞. Therefore by (9.7), (9.8), the Definition 5.4.2 of the ω0-index
of ω0-degenerate path γ

β̂,ê in p. 129 and Theorem 6.1.8 in p. 142 of [11], we obtain
the following contradiction

1 � iω0(γβ̂,ê) � iω0(γβi ,ei ) = 0,

for i � 1 large enough. Thus the continuity of βk(e) in e ∈ [0, 1) is proved.
(vii) To prove the claim lime→1 βk(e) = 0, we argue by contradiction, and suppose
that there exist ei → 1 as i → +∞, β0 > 0, such that limi→∞ βk(ei ) = β0. Then
at least one of the following two cases must occur:

(A) There exists a subsequence {êi } of {ei } such that βk(êi+1) � βk(êi ) for all
i ∈ N;

(B) There exists a subsequence {êi } of {ei } such that βk(êi ) � βk(êi+1) for all
i ∈ N.

If Case (A) happens, for this β0 by Theorem 1.7 there exists e0 > 0 sufficiently
close to 1 such that γβ0,e(2π) is hyperbolic for all e ∈ [e0, 1). Then γβ,e(2π) is
hyperbolic for all (β, e) in the region [β0, 9] × [e0, 1) by Lemma 9.1. But by the
monotonicity of Case (A) we obtain

β0 � βk(êi+m) � βk(êi ) ∀ m ∈ N.

Therefore (βk(êi+m), êi+m) will get into this region for sufficiently large m � 1,
which contracts to the definition of βk(êi+m) in (1.5).

If Case (B) happens, fix a subindex i , by Theorem 1.7 and the same argument
as in Case (A) there exists an e0 > 0 sufficiently close to 1 such that γβ,e(2π) is
hyperbolic for all (β, e) in the region [βk(êi ), 9]×[e0, 1). Then by the monotonicity
of Case (B) we obtain

βk(êi ) � βk(êi+m) � β0 ∀ m ∈ N.
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Therefore (βk(êi+m), êi+m) will get into this region for sufficiently large m � 1,
which contracts to the definition of βk(êi+m) in (1.5). Thus (vii) holds.
(viii) By our study in Section 3.3, we have (1, 0) ∈ 
k\
m . Thus there exists an
ẽ ∈ (0, 1] such that βk(e) > βm(e) for all e ∈ [0, ẽ). Therefore 
k is different from

m when e ∈ [0, ẽ).
(xi) Let e0 ∈ [0, 1) and βm(e0) < β0 � βk(e0). Then M ≡ γβ0,e0(2π) is not
hyperbolic by Lemma 9.1 and thus at least one pair of its eigenvalues is on U. Note
also that no eigenvalues of M can be ±1 by Theorem 1.1 and Corollary 9.2. Write

σ(M) = {λ1(β0), λ1(β0)
−1, λ2(β0), λ2(β0)

−1}. (9.9)

Thus we can assume λ1 ≡ λ1(β0) ∈ U\R and the other pair of eigenvalues satisfy
λ2 ≡ λ2(β0) ∈ (U ∪ R)\{±1, 0}.

Claim. λ2(β0) ∈ U\R.
In fact, if not, we assume λ2(β0) ∈ R\{±1, 0}.
In this case, M has normal form R(θ)	D(λ2) ∈ 0(M) for some θ ∈ (0, π)∪

(π, 2π). Thus by (3.6), Theorem 1.1 and (iii) of our Theorem 1.2, we obtain the
following contradiction:

0 = i−1(γβ0,e0)

= i1(γβ0,e0)+ S+
M (1)− S−

M (e
±√−1θ )+ S+

M (e
±√−1θ )− S−

M (−1)

= 0 + 0 − S−
R(θ)(e

±√−1θ )+ S+
R(θ)(e

±√−1θ )− 0

= ±1,

where the last equality follows from Lemma 9.1.6 in p. 192 and 〈5〉 of List 9.1.12
in p. 198 of [11]. Therefore the claim is proved.

Now from λ1(β0) and λ2(β0) ∈ U\R, the matrix M has basic normal form
R(θ1)	R(θ2) ∈ 0(M) for some θ1 and θ2 ∈ (0, π) ∪ (π, 2π). Then by the study
in Section 9.1 of [11], we obtain

0 = i−1(γβ0,e0)

= i1(γβ0,e0)+ S+
M (1)− S−

R(θ1)
(e±√−1θ1)+ S+

R(θ1)
(e±√−1θ1)

−S−
R(θ2)

(e±√−1θ2)+ S+
R(θ2)

(e±√−1θ2)− S−
M (−1)

= −S−
R(θ1)

(e±√−1θ1)+ S+
R(θ1)

(e±√−1θ1)− S−
R(θ2)

(e±√−1θ2)+ S+
R(θ2)

(e±√−1θ2).

(9.10)

By Lemma 9.1.6 in p. 192 and 〈5〉 of List 9.1.12 in p. 198 of [11] again, the right
hand side of (9.10) would be ±2, if both θ1 and θ2 are located in only one interval
of (0, π) and (π, 2π). Thus we must have θ1 ∈ (0, π) and θ2 ∈ (π, 2π). Let
ω = exp(

√−1θ1).
If 2π − θ2 = θ1, we then obtain

∑

0�β�β0

νω(γβ,e0) �
∑

0�β�βm (e0)

νω(γβ,e0)+ νω(γβ0,e0) � 1 + 2.

This is in contradiction to Lemma 9.1 and proves 2π − θ2 �= θ1.
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By the study in Section 9.1 of [11] again, if 2π−θ2 > θ1, forω = exp(
√−1θ1)

we obtain

0 � iω(γβ0,e0) = i1(γβ0,e0)+ S+
M (1)− S−

R(θ1)
(e

√−1θ1) = −S−
R(θ1)

(e
√−1θ1) = −1.

This contradiction proves that the only possible case is 2π − θ2 < θ1.
The proof of Theorem 1.2 is complete. ��
Now we give

The proof of (ii) of Theorem 1.6. By (v) of Theorem 1.2, the curve
k for e ∈ [0, 1)
is the boundary curve of the hyperbolic region of γβ,e(2π) in the (β, e) rectangle
[0, 9]×[0, 1). By the definition (1.5), the curve 
k is also the envelope curve of the
ω degeneracy curves for all ω ∈ U\{1} from the right hand side of the rectangle
[0, 9]×[0, 1). Then (i) of Theorem 1.6 implies that
k can be continuously extended
into [0, 9] × (−1, 0] so that it is symmetric with respect to [0, 9] × {0}. ��

The next lemma is useful in the proof of Theorem 1.8.

Lemma 9.3. If γβ0,e(2π) ≈ M2(−1, c) holds for some c ∈ R2, or it possesses the
basic normal form N1(−1, a)	N1(−1, b) for some (β0, e) ∈ (0, 9)× [0, 1) and a,
b ∈ R, then γβ,e(2π) is hyperbolic for all β ∈ (β0, 9].
Proof. Note that the basic normal form of the matrix M2(−1, c) is either
N1(−1, â)	N1(−1, b̂) or N1(−1, â)	D(λ) for some â, b̂ ∈ R and 0 > λ �= −1.
Thus for any ω ∈ U\{1}, by Corollary 4.5, (2.31), and the study in Section 9.1 of
[11], we obtain

0 � iω(γβ0,e) = i1(γβ0,e)+ S+
M (1)− S−

M (ω) = −S−
M (ω) � 0,

where M = γβ0,e(2π). This proves iω(γβ0,e) = 0 for all ω ∈ U. Note that
φω( Ā(β0, e)) = iω(γβ0,e) and νω( Ā(β0, e)) = νω(γβ0,e(2π)) follow from (2.27),
(2.30), (4.12) and (4.13).

Now from φω( Ā(β0, e)) = 0 and (ii) of Lemma 4.4, we obtain Ā(β, e) > 0 for
allβ ∈ (β0, 9] on D(ω, 2π)withω ∈ U. Therefore νω(γβ,e(2π)) = νω( Ā(β, e)) =
0 holds for all β ∈ (β0, 9] and ω ∈ U, and thus the lemma follows. ��

Now we can give

Proof of Theorem 1.8. (i) Let e ∈ [0, 1) satisfy βs(e) < βm(e). Then Corollary 9.2
implies ν−1(γβs (e),e) = 1. As the limiting case of cases (ix) and (x) of Theorem
1.2, the matrix M = γβs (e),e(2π) must have all eigenvalues in U, and possesses its
normal form either M ≈ M2(−1, c) for some c2 �= 0, or M ≈ N1(−1, 1)	R(θ)
for some θ ∈ (π, 2π), where to get the second case we have used the Fig. 2.1.2 in
p. 50 of [11] and the fact N1(−1, 1) ∈ Sp(2)0−1,− in that figure.

Note that M ≈ M2(−1, c) can not hold for any c2 �= 0 by Lemma 9.3 and the
fact βs(e) < βm(e). The following is a direct proof of this fact. In this case, its
basic normal form is N1(−1, a)	D(λ) for some a ∈ {−1, 1} and 0 > λ �= −1.
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Therefore by Theorem 1.1, (iii) of Theorem 1.2, and 〈3〉 and 〈4〉 of List 9.1.12 in
p. 198 of [11], we obtain the following contradiction

1 = i−1(γβs (e),e) = i1(γβs (e),e)+ S+
M (1)− S−

N1(−1,a)(−1) = −S−
N1(−1,a)(−1) � 0.

Thus M ≈ N1(−1, 1)	R(θ)must hold for some θ ∈ (π, 2π), so M is spectrally
stable and linearly unstable.

(ii) Let e ∈ [0, 1) satisfy βs(e) = βm(e) < βk(e). As the limiting case of the
cases (ix) and (xi) of Theorem 1.2 and Corollary 9.2, the matrix M = γβs (e),e(2π)
must have basic normal form either N1(−1, a)	N1(−1, b) for some a and b ∈
{−1, 1}, or −I2	R(θ) for some θ ∈ (π, 2π), where we have used the Fig. 2.1.2 in p.
50 of [11]. But the first case is impossible by Lemma 9.3. Therefore M ≈ −I2	R(θ)
holds for some θ ∈ (π, 2π), and it is linear stable and not strongly linear stable.

(iii) Let e ∈ [0, 1) satisfy βs(e) < βm(e) < βk(e). As the limiting case of
Cases (x) and (xi) of Theorem 1.2, the matrix M = γβm (e),e(2π)must satisfy either
M ≈ N1(−1,−1)	R(θ) for some θ ∈ (π, 2π), or M ≈ M2(−1, c) with c2 �= 0,
where we have used the Fig. 2.1.2 in p. 50 of [11] and the fact N1(−1,−1) ∈
Sp(2)0−1,+ in that figure. Here the second case is also impossible by Lemma 9.3,
and the conclusion of (iii) follows.

(iv) Let e ∈ [0, 1) satisfy βs(e) � βm(e) < βk(e). As the limiting case of
the cases (v) and (xi) of Theorem 1.2, the matrix M ≡ γβk (e),e(2π) must have

Krein collision eigenvalues σ(M) = {λ1, λ1, λ2, λ2} with λ1 = λ2 = e
√−1θ for

some θ ∈ (0, π) ∪ (π, 2π). Here we have used Theorem 1.1 and Corollary 9.2 to
exclude the possibility of eigenvalues ±1. Therefore for this angle θ , the matrix
M must have its normal form N2(ω, b) for ω = e

√−1θ and some 2 × 2 matrix

b =
(

b1 b2
b3 b4

)

, which is of the form (25)–(27) by Theorem 1.6.11 in p. 34 of [11].

Because (I2	(−I2))
−1 N2(e

√−1θ , b)(I2	(−I2)) = N2(e
√−1(2π−θ), b̂) holds for

b̂ =
(

b1 −b2
−b3 b4

)

, we can always suppose θ ∈ (0, π) without changing the fact

M ≈ N2(ω, b).
Note that by (3.7), (3.9), Corollary 4.5 and Proposition 6.1, we have

iω(γβk (e),e) = 0.
Now if b2 −b3 = 0, by Lemma 1.9.2 in p. 43 of [11], we get νω(N2(ω, b)) = 2,

and then N2(ω, b) has basic normal form R(θ)	R(2π − θ) by the study in case 4
in p. 40 of [11]. Thus we arrive at the following contradiction

0 = iω(γβk (e),e) = i1(γβk (e),e)+ S+
M (1)− S−

R(θ)(ω)− S−
R(θ)(ω) � −1,

by Lemma 9.1.6 in p. 192 and 〈5〉 of List 9.1.12 in p. 198 of [11].
Therefore b2 − b3 �= 0 must hold. Then we obtain

0 = iω(γβk (e),e) = i1(γβk (e),e)+ S+
M (1)− S−

N2(ω,b)
(ω) = −S−

N2(ω,b)
(ω).

By 〈6〉 and 〈7〉 in List 9.1.12 in p. 199 of [11], we obtain that N2(ω, b) must be
trivial as in our discussion in Section 2.1. Then by Theorem 1 of [20], the matrix
M is spectrally stable and is linearly unstable as claimed.
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(v) Let e ∈ [0, 1) satisfy βs(e) < βm(e) = βk(e). Note first that −1 must
be an eigenvalue of M = γβk (e),e(2π) with geometric multiplicity 1 by Corollary
9.2. As the limiting case of cases (v) and (x) of Theorem 1.2, the matrix M must
satisfy either M ≈ M2(−1, b) with b1, b2 ∈ R and b2 �= 0, and thus is spectrally
stable and linearly unstable; or M ≈ N1(−1, a)	D(λ) for some a ∈ {−1, 1} and
−1 �= λ < 0.

Then in the later case we obtain

0 = i−1(γβk (e),e) = i1(γβk (e),e)+ S+
M (1)− S−

N1(−1,a)(−1) = −S−
N1(−1,a)(−1).

Then by 〈3〉 and 〈4〉 in List 9.1.12 in p. 199 of [11], we must have a = 1. This
case can be seen in Fig. 2.1.2 in p. 50 of [11] with the fact N1(−1, 1) ∈ Sp(2)0−1,−.
Thus M is elliptic–hyperbolic (EH) and linearly unstable.

Note that by the above argument, the matrix M2(−1, b) has also the basic
normal form N1(−1, 1)	D(λ) for some −1 �= λ < 0.

(vi) Let e ∈ [0, 1) satisfy βs(e) = βm(e) = βk(e). As the limiting case of
cases (v) and (ix) of Theorem 1.2, −1 must be the only eigenvalue of M =
γβk (e),e(2π) with ν−1(M) = 2 by Corollary 9.2. Thus the matrix M must sat-
isfy M ≈ M2(−1, c) with c2 = 0 and ν−1(M2(−1, c)) = 2 by Section 2.1; or
M ≈ N1(−1, â)	N1(−1, b̂) for some â and b̂ ∈ {−1, 1}. In both cases, M has
basic normal form N1(−1, a)	N1(−1, b) for some a and b ∈ {−1, 1}. Thus we
obtain

0 = i−1(γβk (e),e)

= i1(γβk (e),e)+ S+
M (1)− S−

N1(−1,a)(−1)− S−
N1(−1,b)(−1)

= −S−
N1(−1,a)(−1)− S−

N1(−1,b)(−1).

Then by 〈3〉 and 〈4〉 in List 9.1.12 in p. 199 of [11], we must have a = b = 1 similar
to our above study for (v). Therefore it is spectrally stable and linearly unstable as
claimed.

The proof is complete. ��
We give finally the

Proof of Theorem 1.9. Note first that γβ,e is analytic in both β and e. Since the
property of the spectrum for a 4 × 4 symplectic matrix being complex saddle is an
open condition in Sp(4), the set Ie in the theorem must be open in β for any fixed
e ∈ [0, 1). Thus for any fixed e ∈ [0, 1), it suffices to show Ie �= ∅. We argue by
contradiction and suppose Ie = ∅. Then for any (β, e) ∈ (0, 9] × [0, 1), all the
eigenvalues of γβ,e form two pairs and are located on the union (R\{0}) ∪ U. By
our Theorem 1.1, the matrix γβ,e is non-degenerate when β > 0, and then it has
no eigenvalue 1 at all. But by our Proposition 1.4, the matrix γ9,e(2π) has a pair
of double positive eigenvalues not equal to 1 for all e ∈ [0, 1). Therefore fix an
e ∈ [0, 1). By the continuity of the spectrum in β, the matrix γβ,e(2π) would have
only positive eigenvalues not equal to 1 for all β ∈ (0, 9]. This then contradicts
our Theorem 1.2, which yields the existence of the eigenvalue −1 of γβ,e(2π) for
some β ∈ (0, 9), and completes the proof. ��
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10. More Observations

Here we describe briefly some more results of [14] of Martínez, Samà and Simó
on the Lagrangian triangular homographic solutions in the Newton potential case.

For e < 1 and close to 1, the system is HH for any β except in a neighborhood of
some critical value which, numerically, appears to be equal to 6. Some interesting
tangencies are also observed near the corresponding boundaries.

(i) The tangency at (β, e) = (0, 1) between the e-vertical axis and the curve

which separates the EE and EH domains is of the form e = 1 − Cβ
2
5 ;

(ii) The tangency at (β, e) = (0, 1) between the e = 1 horizontal line and the
curve which separates the EH and HH domains is of the form e = 1 − Cβ4;

(iii) For fixed β ∈ (0, 9), the matrix γβ,e(2π) is HH if 1 − e > 0 is small enough
under a special “non-degenerate” condition, which is defined in their Lemma
5 in p. 663 of [14], that is, dg �= 0 and eg �= 0 there. It seems to us that it is not
easy to verify this non-degenerate condition, and that the point (β, e) = (6, 1)
is a possible degenerate point only checked numerically in [14].

(iv) The tangency at (β, e) = (9, 0) between the β = 9 vertical line and the curve

which separates the HH and CS domains is of the form e = C(9 − β)
1
4 .

In all the above expressions C denotes suitable constants. Furthermore there
is a point of contact of four different types of domains located approximately at
(1.2091, 0.3145).

Fig. 4. ω-Degeneracy curves of Lagrangian triangular homographic orbits in the rectangle
(β, e), β ∈ (0, 2] and e ∈ (−1, 1). From the left top to the right bottom, ω goes from 1
to −1 along the upper half unit circle of U, more precisely, ω = exp(

√−1θ) with θ =
π/100, π/5, 2π/5, 3π/5, 4π/5, π respectively. The last one corresponds to ω = −1. In the
black region, the ω-index is 1
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In the current paper, we have proved the non-degeneracy of the elliptic
Lagrangian triangular solutions. We have also proved the global existence of sep-
aration curves 
s in (i), 
m and 
k in (ii). Our Theorem 1.7 is related to (iii).

For ω ∈ U\{1}, we showed that there are two nontrivial degeneracy curves
(possibly tangential to each other at isolated points) β1(e, ω) and β2(e, ω) (ω = −1
in Theorem 1.2 and general ω in Theorem 1.5) which are real analytic in e ∈ [0, 1).
These ω degeneracy curves actually yield a foliation of the non-hyperbolic region
of γβ,e(2π) in the (β, e) rectangle [0, 9]×(−1, 1), whenω runs through U. We have
conducted numerical computations to see this interesting phenomenon according
to our above analysis for (β, e) ∈ [0, 9]× (−1, 1). Especially in the Fig. 4, we pick
up certain figures from such computations for readers. It is interesting to know how
these degeneracy curves behave under the variation of ω, which we leave for future
studies.

In summary, many problems observed numerically already deserve to be pur-
sued further. For example, more precise properties of degeneracy curves including
their asymptotic behaviors, possible intersections and variations with respect to ω,
including the above mentioned interesting properties. In this paper, we have not
considered separations between HH and CS either. We shall study these problems
in some forthcoming papers, and we believe that the ideas and the methods we have
developed here can also be applied to linear stability problems for other solutions
of the n-body problems and systems with periodic coefficients.
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