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Abstract

This paper concerns the well-posedness theory of the motion of a physical vac-
uum for the compressible Euler equations with or without self-gravitation. First,
a general uniqueness theorem of classical solutions is proved for the three dimen-
sional general motion. Second, for the spherically symmetric motions, without im-
posing the compatibility condition of the first derivative being zero at the center of
symmetry, a new local-in-time existence theory is established in a functional space
involving less derivatives than those constructed for three-dimensional motions in
(Coutand et al., Commun Math Phys 296:559–587, 2010; Coutand and Shkoller,
Arch Ration Mech Anal 206:515–616, 2012; Jang and Masmoudi, Well-posedness
of compressible Euler equations in a physical vacuum, 2008) by constructing suit-
able weights and cutoff functions featuring the behavior of solutions near both the
center of the symmetry and the moving vacuum boundary.
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1. Introduction

Due to its great physical importance and mathematical challenges, the motion of
a physical vacuum in compressible fluids has received much attention recently (cf.
[26–28,32,41]), and significant progress has been made particularly on the Euler
equations (cf. [5,7,8,14–16]). Physical vacuum problems arise in many physical
situations naturally, for example, in the study of the evolution and structure of
gaseous stars (cf. [3,9]), for which vacuum boundaries are natural boundaries. This
paper is concerned with the evolving boundary of stars (the interface of fluids and
vacuum states) in a compressible self-gravitating gas flow, which is modeled by

∂tρ + div(ρu) = 0 in �(t),

∂t (ρu)+ div(ρu ⊗ u)+ ∇x p(ρ) = −κρ∇x� in �(t),

ρ > 0 in �(t),

ρ = 0 on �(t) := ∂�(t),

V(�(t)) = u · n,

(ρ,u) = (ρ0,u0) on � := �(0).

(1.1)

Here (x, t) ∈ R
3 ×[0,∞), ρ, u, p and� denote, respectively, the space and time

variable, density, velocity, pressure and gravitational potential given by

�(x, t) = −G
∫
�(t)

ρ(y, t)

|x − y| dy satisfying 	� = 4πGρ in �(t) (1.2)

with the gravitational constant G taken to be unity; �(t) ⊂ R
3, �(t), V(�(t))

and n represent, respectively, the changing volume occupied by a fluid at time t ,
moving interface of fluids and vacuum states, normal velocity of �(t) and exterior
unit normal vector to �(t); κ = 1 or 0 corresponds to the Euler equations with or
without self-gravitation. We consider a polytropic star: the equation of state is then
given by

p(ρ) = Aργ for γ > 1 (1.3)
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with the adiabatic constant A > 0 set to be unity. Let c = √
p′(ρ) be the sound

speed, the following condition:

− ∞ < ∇n(c
2) < 0 on �(t), (1.4)

defines a physical boundary (cf. [5,8,16,26–28]). Equations (1.1)1,2 describe the
balance laws of mass and momentum, respectively; conditions (1.1)3,4 state that
�(t) is the interface to be investigated; (1.1)5 indicates that the interface moves
with the normal component of the fluid velocity; and (1.1)6 is the initial conditions
for the density, velocity and domain.

The physical vacuum appears in the stationary solutions of system (1.1) natu-
rally. Since for a stationary solution one has

∇x p(ρ) = −ρ∇x�,

which yields that in many physical situations

∇N(c
2) = − (γ − 1)

γ
∇N� ∈ (−∞, 0)

on the interface, where N is the exterior unit normal to the interface pointing from
fluids to vacuum. The physical vacuum makes the study of free boundary problems
of compressible fluids challenging and very interesting, because standard methods
of symmetric hyperbolic systems (cf. [18]) do not apply directly. Recently, impor-
tant progress has been made in the local-in-time well-posedness theory for the one-
and three-dimensional compressible Euler equations (cf. [5,7,8,15,16]), but for the
three-dimensional compressible Euler–Poisson equations, the gravitational poten-
tial � defined by (1.2) is non-local and depends on the unknown domain �(t).
This will cause certain difficulties in the analysis. Moreover, the self-gravitation
leads to very rich and interesting physical phenomena for compressible fluids with
a vacuum (cf. [3,17,22,30,31,35]).

First, we address the uniqueness of classical solutions for the above free bound-
ary problem. The uniqueness problem of free boundary problems for the equations
of compressible fluids is subtle. This is particularly so in the presence of vacuum
states. For the physical vacuum free boundary problem of the three-dimensional
compressible Euler equations, a uniqueness theorem is proved in [8] in functional
spaces which are smoother by one more degree than the spaces in which the exis-
tence theorems are established. This functional space in [7] involves the weighted
Sobolev norms of solutions. In the present paper, we prove a general uniqueness
theorem of classical solutions for 1 < γ � 2 (the most physically relevant regime)
only requiring that the derivatives appearing in the equations are continuous (in-
deed, we can only require that the solutions are in W 1,∞ in the whole domain and
C1 in a neighborhood of the boundary). The strategy is to extend the solutions of
(1.1) to those of Cauchy problems, for which the physical vacuum (1.4) is crucial.
Due to the vacuum, the uniqueness of the extended solutions to the Cauchy prob-
lem is nontrivial because the standard symmetrization method of hyperbolic system
does not apply in the presence of a physical vacuum. We use the relative entropy
argument (cf. [10]) and potential estimates (cf. [1]). The advantage of the relative
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entropy argument is making the full use of the nonlinear structure of the equations
and requiring less regularity as realized by DiPerna (cf. [12]). The proof of the
uniqueness theorem is valid for both the compressible Euler–Poisson equations
and the compressible Euler equations without self-gravitation. The above approach
works for the case when 1 < γ � 2. For the general case of γ > 1, we study the
vacuum dynamics of free boundary problems of the compressible Euler equations
without self-gravitation for spherically symmetric motions, and prove the unique-
ness theorem in the class of C1 ∩ W 1,∞({x ∈ R

3 : 0 < |x| � R(t)}) without
requiring that the solutions are differentiable at the center of symmetry. Here the
ball BR(t) is the moving domain. It should be noted that we do not require the
vacuum boundary to be physical in this case.

We now turn to the existence problem. For a gaseous star, it is important to con-
sider spherically symmetric motions since the stable equilibrium configurations are
spherically symmetric which minimizes the energy among all possible configura-
tions (cf. [22]). As aforementioned, there have been some existence theories avail-
able for the free boundary problems of the three-dimensional compressible Euler
equations with a physical vacuum (cf. [8,16]). However, for spherically symmetric
motions, if the compatibility condition of the first derivatives of solutions being zero
at the center of the symmetry is not imposed for the initial data, the initial data are
C1 only in the region excluding the origin as 3-spatial dimensional functions, but
may not be differentiable at the origin. In this case, the general existence theories
in the three spatial-dimensions in [8,16] do not apply. Moreover, without imposing
this compatibility condition at the center of symmetry, the coordinate singularity is
very strong and the equation becomes very degenerate near the center of the sym-
metry. Indeed, the initial density, ρ0, appears as the coefficients in Equation (3.8)
in the Lagrangian coordinates. This gives tremendous difficulties when we use the
elliptic estimates to estimate the derivatives in the direction normal to the boundary.
In those estimates, whether the first-order derivatives of the initial density is zero
at the origin or not makes a distinct difference since we differentiate the system
in the direction normal to the boundary in the elliptic estimates. We will choose
deliberately a cut-off function whose effective width depends on the initial density
to capture more singular behavior of the solutions near the origin for the case of the
non-zero first derivatives of the initial density. The spherically symmetric solution
we construct in this paper without imposing the above mentioned compatibility
condition at origin is C1 smooth only in the region excluding the origin, but W 1,∞
in the region including the origin as the functions of 3-spatial dimensional functions.
Therefore, the solution constructed in this paper is different from those in [8,16] and
exhibits some especially interesting features. For instance, in the currently avail-
able well-posedness theory for the free boundary problems of the three-dimensional
compressible Euler equations with a physical vacuum, it requires by [16] or [8] a

weighted norm involving ∇2[1/(γ−1)]+9
x u|t=0 or ∂7+	(2−γ )/(γ−1)


t ∇xu|t=0 to be
finite. However, for the three-dimensional spherically symmetric motion without
imposing the compatibility condition of the first order derivatives of solutions being
zero at the center of the symmetry, we find in the present work a new well-posedness
theory with the initial data less regular than those required in [8,16].
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As mentioned above, one of interesting features and challenges in the explo-
ration of spherically symmetric motions is to deal with the difficulty caused by
the coordinates singularity at the origin (the center of the symmetry), besides the
one caused by a physical vacuum on the boundary. This is particularly so with-
out imposing the compatibility condition of the first order derivatives of the so-
lution being zero at the center of symmetry. Indeed, in the well-posedness theory
for spherically symmetric motions of viscous gaseous stars modeled by the com-
pressible Navier–Stokes–Poisson equations with a vacuum boundary was shown in
[14], a higher-order energy functional was constructed which consists of two parts,
called the Eulerian energy near the origin expressed in Eulerian coordinates and
the Lagrangian energy described in Lagrangian coordinates away from the origin.
This indicates the subtlety of the behavior of solutions near the origin and vacuum
boundary. In this paper, we find a uniform way to construct a higher-order energy
functional only in Lagrangian coordinates by choosing suitable weights and cutoff
functions which work for both the origin and the physical vacuum boundary of
which the construction is elaborative. It is noted that such a strategy works also for
the compressible Navier–Stokes–Poisson equations.

It should be noted here that the detailed proofs of the existence theorems in
[8,16] are given for a initial flat domain of the form T

2 × (0, 1), where T
2 is a

two-dimensional period box in x1 and x2. Initially, the reference vacuum boundary
is the top boundary �(0) = {x3 = 1} while the bottom boundary {x3 = 0} is fixed.
The moving vacuum boundary is given by �(t) = η(t)(�(0)) with the flow map
η(t). In principle, it would be feasible to extend flat domains to general non-flat
ones, for example, utilizing local coordinate charts and changes of coordinates to
straighten out the boundary for each chart. However, it seems quite complicated
and technically involved. In this article, we give a direct proof for non-flat initial
domains (balls) of the existence theorem for the free boundary problem with a
physical vacuum. It should be noted that the general approach we use here is
motivated by [16], in particular on the choice of the weights near the vacuum
boundary.

Before closing this introduction, we would like to review some prior results
on the free boundary problems besides the ones aforementioned. There has been
a recent explosion of interest in the analysis of inviscid flows, one may refer to
[13,23,25,27–29,32] for compressible motions and to [2,6,21,24,36,42] for in-
compressible motions. Among these works, it should be mentioned that in [27]
a smooth existence theory (for the sound speed c, cα is smooth across the inter-
face with 0 < α � 1) was developed for the one-dimensional Euler equations
with damping, based on the adaptation of the theory of symmetric hyperbolic sys-
tems which is not applicable to physical vacuum boundary problems for which
only c2, the square of sound speed in stead of cα ( 0 < α � 1) , is required to
be smooth across the interface); in [13] the well-posedness of the physical vacuum
free boundary problem is investigated for the one-dimensional Euler–Poisson equa-
tions, using the methods motivated by those in [7] for the one-dimensional Euler
equations; existence and uniqueness for the three-dimensional compressible Euler
equations modeling a liquid rather than a gas were established in [25] by using
Lagrangian variables combined with Nash–Moser iteration to construct solutions.
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For a compressible liquid, the density is assumed to be a strictly positive constant
on the moving boundary. As such, the compressible liquid provides a uniformly
hyperbolic, but characteristic, system. An alternative proof for the existence of
a compressible liquid was given in [37], employing a solution strategy based on
symmetric hyperbolic systems combined with Nash–Moser iteration. As for viscous
flows, there have been many results on the free-boundary Navier–Stokes equations
which cause quite different difficulties in analyses from that for inviscid flows, so
we do not discuss the works in that regime here.

The rest of this paper is organized as follows. In the next section, we present
and prove the uniqueness of classical solutions to the three-dimensional physical
vacuum problem (1.1) when 1 < γ � 2. The rest is devoted to the study of
spherically symmetric motions. In Section 3, we formulate the three-dimensional
spherically symmetric problem and state the main existence result. Sections 4–8
are devoted to the case of γ = 2. In Section 4, we describe a degenerate parabolic
approximation to the original degenerate hyperbolic system. The uniform estimates
for the higher-order energy functional are given in Sections 5–7: some preliminaries
are presented in Section 5, the energy estimates in the tangential directions are
given in Section 6, and the elliptic estimates in the normal direction for interior and
boundary regions are presented respectively in Section 7. With those estimates, the
existence can be shown in Section 8. In Sections 9 and 10, we will outline, but
with enough details, the existence theory for the cases of 1 < γ < 2 and γ > 2,
respectively. Section 11 is devoted to the uniqueness theorem of classical solutions
for the vacuum free-boundary problem of the compressible Euler equations without
the self-gravitation in the spherical symmetry setting for all the values of γ > 1,
without assuming that the vacuum boundary is physical in the sense of (1.4).

2. Uniqueness for Three-Dimensional Euler–Poisson Equations with Physical
Vacuum when 1 < γ � 2

For the three-dimensional free-boundary problem (1.1) with a physical vacuum,
we prove the following quite general uniqueness theorem for 1 < γ � 2 in a natural
functional space. It should be remarked that the uniqueness theorems proved in [7,8]
are in the functional spaces which are one more derivative smoother than the spaces
in which the existence theorems are established. Before stating the uniqueness
theorem, we give a definition of classical solutions to problem (1.1).

Definition 2.1. A triple (ρ,u,�(t)) is called a classical solution to the physical
vacuum free boundary problem (1.1) on [0, T ] for T > 0 if the following conditions
hold:

1. �(t) = ∪m
k=1�

k(t) ⊆ R
3 is an open bounded set and ∂�(0) ∈ C2, where

�k(t) (k = 1, . . . ,m) are the connected component of �(t) satisfying

� j (t) ∩ �k(t) = ∅, 1 � j �= k � m, t ∈ [0, T ]; (2.1)

2. (ρ,u) ∈ C1(D̄) satisfies system (1.1) and the physical vacuum condition:

− ∞ < ∇n

(
ργ−1

)
< 0 on �(t) = ∂�(t), (2.2)
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where n is the spatial unit outer norm to �(t) and

D = {(x, t) : x ∈ �(t), t ∈ [0, T ]}, D̄ = D ∪ ∂D.

Due to the regularities of the solution u ∈ C1(D̄) and ∂�(0) ∈ C2 in the definition
above, we can see easily that

⋃
0�t�T

�(t) =
⋃

0�t�T

∂�(t) =: ∂̃D ∈ C2. (2.3)

Indeed, the interface �(t) is moving with the fluids given by V(�(t)) = u · n on
∂�(t), where V(�(t)) is the normal velocity of �(t); which is equivalent to saying
that ∂̃D is foliated by the integral curves of the vector fields ∂t + u · ∇x .

The uniqueness theorem is as follows:

Theorem 2.2. (Uniqueness for the three-dimensional problem) Suppose 1 < γ �
2. Let (ρ1,u1,�1(t)) and (ρ2,u2,�2(t)) be two classical solutions to problem
(1.1) on [0, T ] for T > 0 in the sense of Definition 2.1, then for t ∈ [0, T ],
�1(t) = �2(t) and (ρ1,u1)(x, t)=(ρ2,u2)(x, t), x ∈ �1(t) = �2(t), (2.4)

provided that (2.4) holds for t = 0.

Remark 2.3. It follows easily from the proof that the uniqueness result stated in
Theorem 2.2 holds true for the solutions to (1.1) as stated in Definition 2.1 but with
the regularity condition (ρ,u) ∈ C1(D̄) replaced by a less regular one:

(ρ,u) ∈ W 1,∞(D̄) and (ρ,u) ∈ C1(Dδ ∪ ∂Dδ), (2.5)

where Dδ ⊂ D is a neighborhood of ∂̃D.

Proof of Theorem 2.2. The proof is divided into two steps. In step 1, we extend
the solutions of (1.1) to those of Cauchy problems. After that, we use the relative
entropy argument and potential estimates to prove the uniqueness.

Step 1 (extension). Suppose that the triple (ρ,u,�(t)) is a classical solution to
problem (1.1) on [0, T ] in the sense of Definition 2.1. We will first extend the
solution (ρ,u) from the domains�(t) to the whole domain R

3 for t ∈ [0, T ] such
that the extended functions (ρ̃, ũ) satisfy

(ρ̃, ũ)(x, t) ∈ W 1,∞(R3 × [0, T ]), (2.6)

and solve the Euler–Poisson equations.

Step 1.1. The extension of ρ is clearly given by

ρ̃(x, t) = ρ(x, t) in D and ρ̃(x, t) ≡ 0 in R
3 × [0, T ]\D. (2.7)

The extension of the vector field u is more complicated. In what follows, we extend
it from �(t) to a neighborhood of �(t), and then to the rest of the region.
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It follows from the condition (2.1) that there exists a small positive constant ε
such that

� j
ε (t) ∩�k

ε(t) = ∅, 1 � j �= k � m, t ∈ [0, T ],
where

� j
ε (t) = � j (t) ∪ {x̄ + sn(x̄, t) : x̄ ∈ ∂� j (t), 0 � s � ε}, 1 � j � m.

Moreover, ε > 0 is chosen so small that the exponential map:

∂� j (t)× [0, ε] → R
3 : (x̄, s) �→ x̄ + sn(x̄, t) (2.8)

is injective for 1 � j � m (that is, ε is less than the injectivity radius of ∂� j (t)).
It should be noted that the number ε > 0 can be chosen uniformly for t ∈ [0, T ],
because ∂̃D ∈ C2 (see (2.3) for details). Indeed, denote the second fundamental
form of ∂�(t) by θ(x̄, t), then ‖θ(x̄, t)‖C(∂̃D) � KT for some positive constant KT

which may depends on T . Therefore, the injectivity radius of ∂�(t) has a positive
lower bound for t ∈ [0, T ] (cf. [4]).

Let η ∈ C∞([0, ε]) be a cut-off function satisfying

0 � η � 1, η(s) = 1 for 0 � s � ε

3
, η(s) = 0 for

2ε

3
� s � ε.

For any x ∈ � j
ε (t)\� j (t), define the extension of u as

ũ (x, t) = ũ(x̄ + sn(x̄, t), t) = η(s) [u(x̄, t)+ s∇xu(x̄, t) · n(x̄, t)]

= η(s) [u(x̄, t)+ ∇xu(x̄, t) · (x − x̄)] , 0 � s � ε.

(2.9)

So, we have extended the vector field u from �(t) to ∪m
j=1�ε(t) =: �ε(t), a

neighborhood of �(t). For the rest of the region, we simply define

ũ(x, t) = u(x, t) in D, ũ(x, t) = 0 for x ∈ R
3\�ε(t) and t ∈ [0, T ].

(2.10)

Step 1.2. Next, we verify that the extended functions (ρ̃, ũ)(x, t) defined on R
3 ×

[0, T ] satisfy (2.6). The key is the differentiability across the boundary ∂̃D :=
∪0�t�T ∂�(t).

Before doing so, some notations are needed. For any point (x̄, t̄) ∈ ∂̃D, let
(τ0, τ1, τ2) be a basis of the space-time tangent space of ∂̃D at (x̄, t̄) and N = n(x̄, t̄)
be the spatial unit outer normal to ∂�(t̄) at x̄. Then (τ0, τ1, τ2,N) forms a basis
of R

4. So ∇τ j ( j = 0, 1, 2) and ∇N determine all the derivatives ∂t and ∇x at the
point (x̄, t̄). For t ∈ [0, T ], denote the interior and exterior sides of ∂̃D (or ∂�(t))
by ∂̃D− (or ∂�(t)−) and ∂̃D+ (or ∂�(t)+), respectively.

For ρ̃, it follows from

ρ̃ ∈ C1(D̄) and ρ̃ = 0 on R
3 × [0, T ]\D
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that ∇τi ρ̃ = 0 on both ∂̃D− and ∂̃D+ for i = 0, 1, 2; which implies that the tan-
gential derivatives of ρ̃ is continuous across ∂̃D. For the spatial normal derivative,
it follows from the physical vacuum condition:

−∞ < ∇N(ρ̃
γ−1) < 0 on ∂�(t)−,

that

∇N(ρ̃) = 0 if 1 < γ < 2 and − ∞ < ∇N(ρ̃) < 0 if γ =2 on ∂�(t)−;
because of ρ̃ = 0 on ∂̃D and the fact

∇N(ρ̃) = 1

γ − 1
ρ̃2−γ∇N(ρ̃

γ−1).

As on ∂̃D+, it is easy to see that both the tangential and normal derivatives of ρ̃
are zero due to ρ̃ = 0 in R

3 × [0, T ]\D. Thus, we have the following regularity of
ρ̃:⎧⎨
⎩
ρ̃ ∈ C1

(
R

3 × [0, T ]) ∩ W 1,∞ (
R

3 × [0, T ]) , if 1 < γ < 2,

ρ̃ ∈ C1
(
D
) ∩ C1

(
R3 × [0, T ]\D

)
∩ W 1,∞ (

R
3 × [0, T ]) , if γ = 2.

(2.11)

For ũ, it follows from ũ ∈ C1(D̄) and (2.9) that ũ is continuous across the
interface ∂̃D which implies that the tangential derivatives of ũ are continuous
across ∂̃D, and that ∇Nũ is continuous across ∂̃D. Therefore, it holds that

ũ ∈ C1(R3 × [0, T ]) ∩ W 1,∞(R3 × [0, T ]). (2.12)

Step 1.3 We now verify that (ρ̃, ũ)(x, t) solves the isentropic Euler–Poisson
equations point-wisely. Note that

ρ̃(·, t) ∈ C1
(
�(t)

)
∩ C(R3) and ρ̃ ≡ 0 in R

3\�(t), t ∈ [0, T ],
then we have, by the potential theory (cf. [1]), that for each t ∈ [0, T ],

ψ̃(x, t) = −
∫
�(t)

ρ̃(y, t)

|x − y| dy = −
∫

R3

ρ̃(y, t)

|x − y| dy ∈ C1(R3) ∩ W 1,∞(R3).

(2.13)

In view of (2.11), (2.12) and (2.13), we see that the extended functions (ρ̃, ũ) solves
the Euler–Poisson equations in R

3 × [0, T ]\D, since ρ̃ ≡ 0 in this region. As in
D, by Definition 2.1, (ρ̃, ũ) of course solves the Euler–Poisson equations.

The remaining task is to verify this on ∂̃D. Since the vector field ∂t + ũ · ∇x is
tangential to ∂̃D and ρ̃ = 0 on ∂̃D, then

(∂t + ũ · ∇x) ρ̃ = 0 on ∂̃D + and ∂̃D − .

It follows from (2.12) and ρ̃ = 0 on ∂̃D that

ρ̃divũ = 0 on ∂̃D + and ∂̃D − .
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Therefore, the equation of conservation of mass is verified. Similarly, we have

ρ̃(∂t + ũ · ∇x )̃u = 0 on ∂̃D. (2.14)

Moreover, for any tangent vector τ to ∂̃D, we have

∇τ P(ρ̃) ≡ 0 on ∂̃D, (2.15)

because of ρ̃ ≡ 0 on ∂̃D. For any spatial normal N to ∂�(t), it holds that

∇N P(ρ̃) = ∇N(ρ̃
γ ) = γ

γ − 1
ρ̃∇N(ρ̃

γ−1)

and

−∞ < ∇N(ρ̃
γ−1) < 0 on ∂̃D−, ρ̃ = 0 on ∂̃D.

Thus, we have

∇N P(ρ̃) = 0 on ∂̃D − .

This, together with (2.15), verifies that

∇x P(ρ̃) ≡ 0 on ∂̃D − . (2.16)

Since

ρ̃ ≡ 0 in R
3 × [0, T ]\D,

then

∇N P(ρ̃) = 0 on ∂̃D+,
which together with (2.15) implies that

∇x P(ρ̃) ≡ 0 on ∂̃D + . (2.17)

Therefore, it follows from (2.14), (2.16) and (2.17) that the left-hand side of the
equation of the balance law of the momentum is zero on ∂̃D. On the other hand, in
view of (2.13) and the fact that ρ̃ ≡ 0 on ∂̃D, the right-hand side is also zero on
∂̃D.

Step 2 (uniqueness). Now, let (ρ1,u1,�1(t)) and (ρ2,u2,�2(t)) be two classical
solutions of problem (1.1) on [0, T ] for T > 0 in the sense of Definition 2.1.
We extend those solutions as above by replacing (ρ,u,�(t)) by (ρi ,ui ,�i (t))
(i = 1, 2), and denote these extended functions still by (ρi ,ui ) (i = 1, 2). It is easy
to see that, for i = 1, 2,

∂tρi + div(ρi ui ) = 0 in R
3 × (0, T ],

∂t (ρi ui )+ div(ρi ui ⊗ ui )+ ∇x p(ρi ) = −κρi∇x�i in R
3 × (0, T ],

ρi > 0 in �i (t),

ρi = 0 in R
3\�i (t),

(2.18)
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where

�i (x, t) = −
∫

R3

ρi (y, t)

|x − y| dy, x ∈ R
3, t ∈ [0, T ], (2.19)

κ = 0 or 1, and (2.6), (2.11), (2.12), (2.13) hold for (ρ̃, ũ,�(t), ψ̃)=(ρi ,ui ,

�i (t), ψi ), i = 1, 2. In what follows, we define the relative entropy-entropy flux
pairs and derive some potential estimates.

Step 2.1. For i = 1, 2, set

ui =
(

u1
i , u2

i , u3
i

)T
, mi =

(
m1

i ,m2
i ,m3

i

)T
and Ui =

(
U 0

i ,U
1
i ,U

2
i ,U

3
i

)T
,

where

m j
i = ρi u

j
i , U 0

i = ρi , U j
i = m j

i , j = 1, 2, 3.

Here and thereafter (·)T denotes the transpose. Equations (2.18)1,2 can be written
as

∂t Ui +
3∑

j=1

∂x j F j (Ui ) = Ri , i = 1, 2, (2.20)

where Ri = κ(0,−ρi (∇x�i )
T)T and the flux functions F j = (F0

j , F1
j , F2

j , F3
j )

T

are given by

F1(Ui ) =
(

m1
i ,

m1
i m1

i

ρi
+ p(ρi ),

m1
i m2

i

ρi
,

m1
i m3

i

ρi

)T

,

F2(Ui ) =
(

m2
i ,

m1
i m2

i

ρi
,

m2
i m2

i

ρi
+ p(ρi ),

m2
i m3

i

ρi

)T

,

F3(Ui ) =
(

m3
i ,

m1
i m3

i

ρi
,

m2
i m3

i

ρi
,

m3
i m3

i

ρi
+ p(ρi )

)T

.

Denote the entropy η and entropy flux function q = (q1, q2, q3)T by

η(Ui )= |mi |2
2ρi

+ 1

γ − 1
ρ
γ

i and q(Ui ) =
( |mi |2

2ρi
+ γ

γ − 1
ρ
γ

i

)
mi

ρi
, i =1, 2.

(2.21)

(For x ∈ R
3\�i (t) and t ∈ [0, T ] where ρi = 0, we set (mi/ρi ) (x, t) =

ui (x, t), i = 1, 2.) Then, we have

Dη(Ui )DF j (Ui ) = Dq j (Ui ), j = 1, 2, 3, i = 1, 2,
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where

Dη(Ui ) =
(
∂η(Ui )

∂U 0
i

,
∂η(Ui )

∂U 1
i

,
∂η(Ui )

∂U 2
i

,
∂η(Ui )

∂U 3
i

)
,

Dq j (Ui ) =
(
∂q j (Ui )

∂U 0
i

,
∂q j (Ui )

∂U 1
i

,
∂q j (Ui )

∂U 2
i

,
∂q j (Ui )

∂U 3
i

)
,

and DF j (Ui ) represents the Jacobian matrix whose (k, l) element is ∂Fk
j (Ui )/∂Ul

i .

Easily, one can derive the equation for the entropy η when Ui ∈ W 1,∞:

∂tη(Ui )+
3∑

j=1

∂x j q
j (Ui )+ κmi · ∇x�i = 0, i = 1, 2. (2.22)

We can therefore define the relative entropy-entropy flux pairs by

η∗(U1,U2) = η(U2)− η(U1)− Dη(U1)(U2 − U1),

q∗ j (U1,U2) = q j (U2)− q j (U1)− Dη(U1)(F j (U2)− F j (U1)), j = 1, 2, 3.

where η and q are defined by (2.21). It follows from (2.18), (2.20) and (2.22) that

∂tη
∗ +

3∑
j=1

∂x j q
∗ j = [Dη(U2)− Dη(U1)] R2 − D2η(U1) (R1,U2 − U1)

−
3∑

j=1

D2η(U1)
(
∂x j U1,F j (U2)− F j (U1)− DF j (U1)(U2 − U1)

)

= κρ2(u1 − u2) · ∇x(�2 −�1)

−
3∑

j=1

D2η(U1)
(
∂x j U1,F j (U2)− F j (U1)− DF j (U1)(U2 − U1)

)
, (2.23)

where

D2η(U1) =

⎛
⎜⎜⎝

|m1|2/(ρ1)
3 + γ (ρ1)

γ−2 −m1
1/(ρ1)

2 −m2
1/(ρ1)

2 −m3
1/(ρ1)

2

−m1
1/(ρ1)

2 1/ρ1 0 0
−m2

1/(ρ1)
2 0 1/ρ1 0

−m3
1/(ρ1)

2 0 0 1/ρ1

⎞
⎟⎟⎠.

Step 2.2. Next, we will estimate the terms on the right-hand side of (2.23). Note
that

η∗ = 1

γ − 1

[
ρ
γ
2 − ρ

γ
1 − γρ

γ−1
1 (ρ2 − ρ1)

]
+ 1

2
ρ2|u2 − u1|2 (2.24)
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and

3∑
j=1

D2η(U1)
(
∂x j U1,F j (U2)− F j (U1)− DF j (U1)(U2 − U1)

)

= [p(ρ2)− p(ρ1)− p′(ρ1)(ρ2 − ρ1)]
3∑

j=1

∂x j u
j
1

+1

2

3∑
i, j=1

ρ2(u
i
2 − ui

1)(u
j
2 − u j

1)(∂x j u
i
1 + ∂xi u

j
1).

Then, we have∣∣∣∣∣∣
3∑

j=1

D2η(U1)
(
∂x j U1,F j (U2)− F j (U1)− DF j (U1)(U2 − U1)

)
∣∣∣∣∣∣

� C ‖∇xu1(·, t)‖L∞ η∗,

for some constant C > 0. Therefore, we can integrate (2.23) to get
∫

R3
η∗(x, t) dx �

∫
R3
η∗(x, 0) dx + κ

∫ t

0

∫
R3
ρ2(u1 − u2) · ∇x(�2 −�1) dx dτ

+C sup
0�τ�t

||∇xu1(·, τ )||L∞
∫ t

0

∫
R3
η∗(x, τ ) dx dτ. (2.25)

To bound the second term on the right-hand side of (2.25), we need a lemma
presented in [1]: suppose h ∈ L∞(R3) is a function having a compact support, then
∥∥∥∥∇x

∫
R3

h(y)
|x − y| dy

∥∥∥∥
2

L2(R3)

� C

(∫
R3

|h(x)|4/3 dx
)(∫

R3
|h(x)| dx

)2/3

< ∞,

where C is a universal constant. By applying this fact and noting (2.19), we obtain∫
R3

|∇x(�2 −�1)(x, τ )|2 dx

� C

(∫
R3

|ρ2 − ρ1|4/3(x, τ ) dx
)(∫

R3
|ρ2 − ρ1|(x, τ ) dx

)2/3

� C

(∫
S(τ )

|ρ2 − ρ1|4/3(x, τ ) dx
)(∫

S(τ )
|ρ2 − ρ1|(x, τ ) dx

)2/3

(2.26)

for any τ ∈ [0, T ], where

S(τ ) := {x : |ρ1 − ρ2|(x, τ ) > 0}, τ ∈ [0, T ].
By virtue of Hölder’s inequality, one gets
∫

S(τ )
|ρ2 − ρ1|4/3(x, τ ) dx �

(∫
S(τ )

|ρ2 − ρ1|2(x, τ ) dx
)2/3

(VolS(τ ))1/3
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and
(∫

S(τ )
|ρ2 − ρ1|(x, τ ) dx

)2/3

�
(∫

S(τ )
|ρ2 − ρ1|2(x, τ ) dx

)1/3

(VolS(τ ))1/3 .

We thus achieve, using (2.26), that
∫

R3
|∇x(�2 −�1)(x, τ )|2 dx � C

(∫
S(τ )

|ρ2 − ρ1|2(x, τ ) dx
)
(VolS(τ ))2/3 .

Note from (2.24) that for 1 < γ � 2,

η∗(x, τ ) � C(γ ) (||ρ2(·, τ )| |L∞ + ||ρ1(·, τ )| |L∞)γ−2 (ρ2 − ρ1)
2

+1

2
ρ2|u2 − u1|2 � 0. (2.27)

Then, it yields that∫
R3

|∇x(�2 −�1)(x, τ )|2 dx

� C (||ρ2(·, τ )| |L∞ + ||ρ1(·, τ )| |L∞)2−γ (VolS(τ ))2/3
∫

R3
η∗(x, τ ) dx.

Using this and the Cauchy inequality, we have∣∣∣∣
∫

R3
ρ2(u1 − u2) · ∇x(�2 −�1) dx

∣∣∣∣
�
∫

R3
ρ2 |u1 − u2|2 dx +

∫
R3
ρ2 |∇x(�2 −�1)(x, τ )|2 dx

� C(1 + Z(τ ))
∫

R3
η∗(x, τ ) dx, (2.28)

where

Z(τ ) = ||ρ2(·, τ )| |L∞ (||ρ2(·, τ )| |L∞ + ||ρ1(·, τ )| |L∞)2−γ (VolS(τ ))2/3 .

Now, it follows from (2.25) and (2.28) that for t ∈ [0, T ],
∫

R3
η∗(x, t) dx �C sup

0�τ�T
(||∇xu1(·, τ )||L∞ + Z(τ ))

∫ t

0

∫
R3
η∗(x, τ ) dx dτ,

when

�1(0) = �2(0) and (ρ1,u1)(x, 0) = (ρ2,u2)(x, 0).

So, one concludes from (2.6), (2.27) and Grownwall’s inequality that∫
R3
η∗(x, t) dx = 0, (x, t) ∈ R

3 × [0, T ],

and

ρ1(x, t) = ρ2(x, t), (x, t) ∈ R
3 × [0, T ].
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In particular,

Sptρ1(·, t) = Sptρ2(·, t), t ∈ [0, T ],
where

Sptρi (·, t) = {x ∈ R
3 : ρi (x, t) > 0}.

This implies that

�1(t) = �2(t), t ∈ [0, T ].
In view of (2.27) and (2.18)3,4, we then see that

u1(x, t) = u2(x, t), (x, t) ∈ �1(t)× [0, T ].
This finishes the proof of Theorem 2.2.

3. Formulation and Main Existence Results for Spherically Symmetric
Motions

Starting from this section, we will focus on spherically symmetric motions. For
a three-dimensional spherically symmetric motion, that is,

ρ(x, t) = ρ(r, t), u(x, t) = u(r, t)x/r, where u ∈ R and r = |x|, (3.1)

system (1.1) can be written as follows: for 0 � t � T ,

∂t (r
2ρ)+ ∂r (r

2ρu) = 0 in (0, R(t)) ,

ρ(∂t u + u∂r u)+ ∂r p + 4πρr−2
∫ r

0
ρ(s, t)s2 ds = 0 in (0, R(t)) ,

ρ > 0 in [0, R(t))

ρ(R(t), t) = 0, u(0, t) = 0,

Ṙ(t) = u(R(t), t) with R(0) = 1,

(ρ, u) = (ρ0, u0) on I := (0, 1).

(3.2)

Here (3.2)3,4 state that r = R(t) is the free boundary and the center of the symmetry
does not move; (3.2)5 describes that the free boundary issues from r = 1 and moves
with the fluid velocity; the initial conditions are prescribed in (3.2)6. The initial
domain is taken to be a unit ball {0 � r � 1}. And the initial density of interest is
supposed to satisfy

ρ0(r) > 0 for 0 � r < 1 and ρ0(1) = 0; (3.3)

and the physical vacuum condition:

− ∞ < ∂r

(
ρ
γ−1
0

)
< 0 at r = 1. (3.4)



778 Tao Luo, Zhouping Xin & Huihui Zeng

To fix the boundary, we transform system (3.2) into Lagrangian variables. With-
out abusing notations and for convenience, we use x (0 � x � 1) as the initial
reference variable, and define the Lagrangian variable r(x, t) by

∂t r(x, t) = u(r(x, t), t) for t > 0 and r(x, 0) = x . (3.5)

Thus (3.2)1 implies that∫ r(x,t)

0
ρ(s, t)s2 ds =

∫ x

0
ρ0(y)y

2 dy.

Define the Lagrangian density and velocity by

f (x, t) = ρ(r(x, t), t) and v(x, t) = u(r(x, t), t).

Then the Lagrangian version of system (3.2) can be written on the reference domain
I as

∂t (r2 f )+ r2 f (∂xv)/(∂xr) = 0 in I × (0, T ],
f ∂tv + ∂x ( f γ )/(∂xr)+ 4π f r−2

∫ x
0 ρ0(y)y2 dy = 0 in I × (0, T ]

f (1, t) = 0, v(0, t) = 0 on (0, T ],
( f, v) = (ρ0, u0) on I × {t = 0}.

(3.6)

It follows from solving (3.6)1 that

f (x, t) =
( x

r

)2 ρ0(x)

∂xr(x, t)
,

so that system (3.6) can be rewritten as

ρ0
( x

r

)2
∂tv + ∂x

[(
x2

r2
ρ0
∂x r

)γ ]+ 4πρ0
x2

r4

∫ x
0 ρ0 y2 dy = 0 in I × (0, T ],

v(0, t) = 0 on {x = 0} × (0, T ],
v(x, 0) = u0(x) on I × {t = 0},

(3.7)

where the initial densityρ0 satisfying (3.3) and (3.4) has been viewed as a parameter.
With the notations

σ(x) := ρ
γ−1
0 x and φ(x) := 4πx−3

∫ x

0
ρ0 y2 dy,

and the fact r, ρ0 > 0 in I × (0, T ], Equation (3.7)1 can be rewritten as

xσ∂tv + ∂x

[
σ 2
( x

r

)2γ−2
(

1

∂xr

)γ ]
− 2

σ 2

x

( x

r

)2γ−1
(

1

∂xr

)γ−1

+φσ x2
( x

r

)2 + 2 − γ

γ − 1
σ x∂x

(σ
x

) ( x

r

)2γ−2
(

1

∂xr

)γ
= 0, in I × (0, T ].

(3.8)

As γ = 2, Equation (3.8) becomes relatively simple. However, it should be noted
that the essential parts for γ = 2 and γ �= 2 are the same (see Equations (7.4)
and (9.6) later), so that the analysis for γ = 2 is applicable for general γ . Therefore,
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we first present the main results for γ = 2 in the rest of this section, following the
proof of the results we will then discuss the case for general γ in Sections 9 and 10.

For γ = 2, we will consider a higher-order energy functional. To this end, we
choose a cut-off function ζ satisfying

ζ = 1 on [0, δ], ζ = 0 on [2δ, 1], |ζ ′| � s0/δ,

for some constant s0, where δ = δ(ρ0) is a small positive constant depending only
on the initial density ρ0 to be determined in Section 7.1.1. The higher-order energy
functional is defined to be

E(v, t) := ∥∥σ∂4
t v(·, t)

∥∥2
1 + ∥∥∂4

t v(·, t)
∥∥

0 +
2∑

j=1

{∥∥∥σ∂4−2 j
t v(·, t)

∥∥∥2

j+1

+
∥∥∥∂4−2 j

t v(·, t)
∥∥∥2

j
+
∥∥∥∥∥
∂

4−2 j
t v

x
(·, t)

∥∥∥∥∥
2

j−1

+
∥∥∥σ 3/2∂

5−2 j
t ∂

j+1
x v(·, t)

∥∥∥2

0

+
∥∥∥σ 1/2∂

5−2 j
t ∂

j
x v(·, t)

∥∥∥2

0
+
∥∥∥∂5−2 j

t v(·, t)
∥∥∥2

j−1/2
+
∥∥∥∥∥
∂

5−2 j
t v

x
(·, t)

∥∥∥∥∥
2

j−1

⎫⎬
⎭

+
2∑

j=1

{∥∥∥ζσ∂5−2 j
t v(·, t)

∥∥∥2

j+1
+
∥∥∥ζ∂5−2 j

t v(·, t)
∥∥∥2

j

}
. (3.9)

Here and thereafter, we use ‖ · ‖s to denote the norm of the standard Sobolev space
‖ · ‖Hs (I ) for s � 0; and define the polynomial function M0 by

M0 = P(E(v, 0)), (3.10)

where P denotes a generic polynomial function of its argument. Now, we are ready
to state the main result.

Theorem 3.1. (existence for γ = 2) Given initial data (ρ0, u0) such that M0 < ∞,
conditions (3.3) and (3.4) hold and ρ0 ∈ C3([0, 1]), there exists a solution v(x, t)
to problem (3.7) on [0, T ] for T > 0 taken sufficiently small such that

sup
0�t�T

E(v, t) � 2M0. (3.11)

This section will be closed by several comments. First, the time derivatives
of v(x, t) at time t = 0 involved in the definition of M0 can be given in terms
of the corresponding spatial derivatives of the initial data ρ0 and u0 due to the
compatibility conditions of Equation (3.7)1. Second, the solution to the spherically
symmetric problem (3.2) in Eulerian coordinates can be obtained from the solution
constructed in Theorem 3.1, since the Lagrangian variable r ∈ H2 and ∂xr has a
positive lower-bound. Finally, we can transform the solution of problem (3.2) back
to solve the three-dimensional problem (1.1) in W 1,∞(DT ), where

DT = {(x, t) : x ∈ �(t), t ∈ [0, T ]} and �(t) = {x ∈ R
3 : |x| < R(t)}.
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In fact, one can obtain a function ρ(x, t) and a vector field u(x, t) via (3.1) for
(x, t) ∈ DT since u(0, t) = 0, and verify that (ρ,u) ∈ C1(D0

T ) ∩ W 1,∞(DT ) and
(1.1) holds in D0

T , where

D0
T = DT \{0} × [0, T ].

However, (ρ,u) may not be in C1(DT ) if the compatibility condition of the first
derivative being zero at the origin is not required.

4. Parabolic Approximations

Let γ = 2 from this section to Section 8. Equation (3.7)1 reads

xσ∂tv +
[
x2σ 2/(r2r ′2)

]′ − 2x2σ 2/(r3r ′)+ x4φσ/r2 = 0, in I × (0, T ],
(4.1)

where and in what follows, the notation ′ denotes the ∂x . For μ > 0, we use the
following degenerate parabolic problem to approximate (3.7):

xσ∂tv+
[
σ 2 x2

r2r ′2

]′
− 2

σ 2

x

x3

r3r ′ +x2φσ
x2

r2 = 2μ

x

[
(xσ)2

(v
x

)′]′
in I ×(0, T ],

v(0, t)=0 on (0, T ],
v(x, 0)=u0(x) on I.

(4.2)

As in [7,8], one can show easily the existence and uniqueness of the solution vμ
to the above degenerate parabolic problem in a time interval [0, Tμ] with sufficient
smoothness for which our later arguments are legitimate by smoothing the initial
data and using the fixed point argument. Next, we will give the uniform estimates
independent of μ to obtain the compactness of the sequence {vμ} and a common
time interval [0, T ] in which the problem (4.2) is solvable for any μ > 0, that is,

Lemma 4.1. For any fixed μ > 0, let vμ be the smooth solution of (4.2) in [0, Tμ].
Then there exist constants C > 0 and T ∈ (0, Tμ] independent of μ such that for
the higher-order energy functional

E(t) := E(vμ, t) (4.3)

defined in (3.9) satisfies the inequality

sup
t∈[0,T ]

E(t) � M0 + CT P

(
sup

t∈[0,T ]
E(t)

)
, (4.4)

where P(·) denotes a generic polynomial function of its argument, and M0 is defined
in (3.10).

We will establish the energy estimates in the tangential directions of the bound-
aries and the elliptic estimates in the normal direction to prove this lemma. In what
follows, for the sake of notational convenience, we omit μ in vμ, that is, we denote
vμ by v without ambiguity. Before performing the detailed estimate, we list some
preliminaries which will be often used later.
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5. Some Preliminaries

In this section, we will present some embedding estimates for weighted Sobolev
spaces, and derive some bounds which follows directly from the definition of the
high order energy functional (3.9) and the a priori assumption.

Embedding of weighted Sobolev spaces. Set

d(x) = dist(x, ∂ I ) = min{x, 1 − x} for x ∈ I. (5.1)

For any a > 0 and nonnegative integer b, the weighted Sobolev space Ha,b(I ) is
given by

Ha,b(I ) :=
{

da/2 F ∈ L2(I ) :
∫

da |Dk F |2 dx < ∞, 0 � k � b

}

with the norm

‖F‖2
Ha,b :=

b∑
k=0

∫
da |Dk F |2 dx .

Here and thereafter, we use
∫

dx := ∫
I dx to denote the spatial integral over the

interval I . Then for b � a/2, it holds the following embedding (cf. [20]):

Ha,b(I ) ↪→ Hb−a/2(I )

with the estimate

‖F‖b−a/2 � C‖F‖Ha,b . (5.2)

In particular, we have

‖F‖2
1−a/2 � C

∫
d(x)a

(
|F(x)|2 + |DF(x)|2

)
dx, a = 1 or 2. (5.3)

Some consequences of (3.9). It follows from conditions (3.3) and (3.4) that σ(x)
is equivalent to the distance function d(x) defined in (5.1). Hence, the definition of
the energy norm (3.9) and the embedding (5.2) yield that
∥∥∥
(
σ∂3

t v
′, σ∂tv

′′) (·, t)
∥∥∥2

1/2
+
∥∥∥
(
σ∂3

t v
)
(·, t)

∥∥∥2

3/2
+ ‖(σ∂tv) (·, t)‖2

5/2 � C E(t).

(5.4)

Therefore, it holds that for any p ∈ (1,∞),∥∥∥
(

x−1v, v′, σv′′, x−1∂tv, σ∂tv
′, ∂2

t v, σ∂
2
t v

′, σ∂3
t v, σ∂

4
t v
)
(·, t)

∥∥∥
L∞

+
∥∥∥
(
∂tv

′, σ∂tv
′′, ∂3

t v, σ∂
3
t v

′) (·, t)
∥∥∥

L p
� C

√
E(t), (5.5)

where one has used the fact that in one space dimension, ‖ · ‖L∞ � C‖ · ‖1 and
‖ · ‖L p � C‖ · ‖1/2 (1 < p < ∞). Besides, another type of estimates are also
needed. Noting from (3.9), (5.4), and the simple fact that for any norm,
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∥∥∥∂ j
t v(·, t)

∥∥∥ =
∥∥∥∥∂ j

t v(·, 0)+
∫ t

0
∂

j+1
t v(·, s) ds

∥∥∥∥
�
∥∥∥∂ j

t v(·, 0)
∥∥∥+

∫ t

0

∥∥∥∂ j+1
t v(·, s)

∥∥∥ ds

�
∥∥∥∂ j

t v(·, 0)
∥∥∥+ t sup

s∈[0,t]

∥∥∥∂ j+1
t v(·, s)

∥∥∥ , j = 0, 1, 2, 3;

one can get

3∑
j=0

{∥∥∥
(
σ∂

j
t v
)
(·, t)

∥∥∥2

(5− j)/2
+
∥∥∥∂ j

t v(·, t)
∥∥∥2

(3− j)/2

}

+
∥∥∥∥
(
∂2

t v

x

)
(·, t)

∥∥∥∥
2

0
+
∥∥∥∥
(
∂tv

x

)
(·, t)

∥∥∥∥
2

0
+
∥∥∥
(v

x

)
(·, t)

∥∥∥2

1
� M0

+ Ct P

(
sup
[0,t]

E

)
; (5.6)

which implies in the same way as in the derivation of (5.5) that for p ∈ (1,∞),
∥∥∥
(

x−1v, σv′, ∂tv, σ∂tv
′, σ∂2

t v, σ∂
3
t v
)
(·, t)

∥∥∥2

L∞

+
∥∥∥
(
v′, σv′′, ∂2

t v, σ∂
2
t v

′) (·, t)
∥∥∥2

L p
� M0 + Ct P

(
sup
[0,t]

E

)
. (5.7)

It should be noted that this paper concerns the local existence, so we always assume
the time variable t � 1.

The a priori assumptions. Let M > 0 be a large constant (for instance, M =
2M0 + 1). Suppose that for T ∈ (0,M/2],

‖v(·, t)‖2 � M, t ∈ [0, T ].
Then it holds that for (x, t) ∈ (0, 1)× [0, T ],

1

2
� r(x, t)

x
� 3

2
,

1

2
� r ′(x, t) � 3

2
. (5.8)

This can be achieved by noticing that r(x, 0) = x and for any (x, t) ∈ (0, 1) ×
(0, T ],

∣∣∣ r
x

− 1
∣∣∣ =

∣∣∣∣
∫ t

0

v(x, s)

x
ds

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫ 1

0
v′(θx, s) dθ ds

∣∣∣∣
� t sup

s∈[0,t]
‖v′(s)‖1 � MT � 1

2
,

∣∣r ′ − 1
∣∣ =

∣∣∣∣
∫ t

0
v′(x, s) ds

∣∣∣∣ � t sup
s∈[0,t]

‖v′(s)‖1 � MT � 1

2
.

In the proof of Lemma 4.1, the time t > 0 is taken sufficiently small so that the
bounds (5.8) are always true.
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6. Energy Estimates

The purpose of this section is to derive a bound for

sup
[0,t]

(∥∥∥√xσ∂5
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v

∥∥∥2

1
+
∥∥∥∂4

t v

∥∥∥2

0

)
.

It should be noted that the estimate ‖∂4
t v‖0 is needed because the solution,we

seek, satisfies v(·, t) ∈ C1(I ). By the Sobolev embedding, one needs to estimate
‖v(·, t)‖2. Due to the degeneracy of the equation, one time derivative of the solution
is equivalent to the half of the spatial derivative.

We first derive a general equation for time derivatives. Taking the (k + 1)-th
time derivative of Equation (4.2)1 gives

xσ∂k+2
t v − 2

{
σ 2
[

x3

r3r ′2
∂k

t v

x
+ x2

r2r ′3 ∂
k
t v

′
]}′

+ 2
σ 2

x

[
3

x4

r4r ′
∂k

t v

x
+ x3∂k

t v
′

r3r ′2

]

= 2μ

x

[
(xσ)2

(
∂k+1

t v

x

)′]′
+ 2

{
σ 2 [I11 + I12]

}′ − 2
σ 2

x
[3I21 + I22]

−φσ x2∂k+1
t

(
x2

r2

)
, (6.1)

where

I11 = ∂k
t

(
x3

r3r ′2
v

x

)
− x3

r3r ′2
∂k

t v

x
=

k−1∑
α=0

Ck−1
α ∂k−α

t

(
x3

r3r ′2

)(
∂αt v

x

)
,

I12 = ∂k
t

(
x2v′

r2r ′3

)
− x2

r2r ′3 ∂
k
t v

′ =
k−1∑
α=0

Ck−1
α ∂k−α

t

(
x2

r2r ′3

)
(∂αt v

′),

I21 = ∂k
t

(
x4

r4r ′
v

x

)
− x4

r4r ′
∂k

t v

x
=

k−1∑
α=0

Ck−1
α ∂k−α

t

(
x4

r4r ′

)(
∂αt v

x

)
,

I22 = ∂k
t

(
x3v′

r3r ′2

)
− x3∂k

t v
′

r3r ′2 =
k−1∑
α=0

Ck−1
α ∂k−α

t

(
x3

r3r ′2

)
(∂αt v

′).

(6.2)

Here and thereafter, Ck−1
α = (k − 1)!/[(k − 1 − α)!α!].

Multiplying (6.1) with k = 4 by ∂5
t v and integrating the resulting equation with

respect to space and time yield, by virtue of integration by parts, that
∫ {

xσ

2

(
∂5

t v
)2 + x2

r2r ′

[
1

r ′2 (σ∂
4
t v

′)2 + 3
x2

r2

(σ
x
∂4

t v
)2

+2
x

rr ′
(σ

x
∂4

t v
)
(σ∂4

t v
′)
]}

dx

∣∣∣∣
t

0
+ 2μ

∫ t

0

∫ [
xσ

(
∂5

t v

x

)′]2

dx ds

=
∫ t

0

∫ {
∂t

(
x2

r2r ′3

)
(σ∂4

t v
′)2 + 3∂t

(
x4

r4r ′

)(σ
x
∂4

t v
)2
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+2∂t

(
x3

r3r ′2

)(σ
x
∂4

t v
)
(σ∂4

t v
′)
}

× dx ds − 2
∫ t

0

∫ [
σ 2(I11 + I12)(∂

5
t v

′)

+(σ/x)σ (3I21 + I22)(∂
5
t v)

]
dx ds −

∫ t

0

∫
φx2σ∂5

t

(
x2/r2

)
(∂5

t v) dx ds

=: J1 − 2J2 − J3. (6.3)

In order to estimate the terms on the right-hand side of (6.3), we notice that for
all nonnegative integers m and n,

∣∣∣∣∂k+1
t

(
xm

rmr ′n

)∣∣∣∣ � CJk, k = 0, . . . , 4, (6.4)

which follows from simple calculations and the a priori bounds (5.8). Here

J0 = |x−1v| + |v′|, J1 = |x−1∂tv| + |∂tv
′| + J2

0,

J2 = |x−1∂2
t v| + |∂2

t v
′| + J1J0,

J3 = |x−1∂3
t v| + |∂3

t v
′| + J2J0 + J2

1, J4 = |x−1∂4
t v| + |∂4

t v
′| + J3J0 + J2J1.

It follows from (3.9), (5.5), the Hölder inequality and ‖(σ, ρ0)‖L∞ � C that

‖J0‖L∞ �
∥∥x−1v

∥∥
L∞ +∥∥v′∥∥

L∞ � C E1/2,

‖J1‖L p �
∥∥x−1∂tv

∥∥
L∞ +∥∥∂tv

′∥∥
L p +‖J0‖2

L∞ � C P(E1/2),

‖J2‖0 �
∥∥x−1∂2

t v
∥∥

0+∥∥∂2
t v

′∥∥
0+‖J1‖0 ‖J0‖L∞ � C P(E1/2),

‖σJ2‖L p � C
∥∥∂2

t v
∥∥

L∞ +∥∥σ∂2
t v

′∥∥
L∞ +C ‖J1‖L p ‖J0‖L∞ � C P(E1/2),

‖σJ3‖L p � C
∥∥∂3

t v
∥∥

L p +∥∥σ∂3
t v

′∥∥
L p +‖σJ2‖L p ‖J0‖L∞ +C ‖J1‖2

L2p � C P(E1/2),

‖σJ4‖0 � C
∥∥∂4

t v
∥∥

0+∥∥σ∂4
t v

′∥∥
0+‖σJ3‖0 ‖J0‖L∞ +‖σJ2‖L4 ‖J1‖L4 � C P(E1/2),

(6.5)

for any p ∈ (1,∞). Here and thereafter P(·) denotes a generic polynomial function.
In particular, we have for m � 1 and k = 0, . . . , 4,

∣∣∣∣∂k+1
t

(
xm

rm

)∣∣∣∣ � CIk satisfying ‖xI4‖0 � C P(E1/2), (6.6)

where Ik equals Jk modular the terms involving spatial derivatives such as ∂ i
t v

′
(i = 1, 2, 3, 4). Similarly, one can use (5.6) and (5.7) to show that for p ∈ (1,∞),

‖J0(t)‖2
L p +‖J1(t)‖2

0+‖σJ2(t)‖2
L p +‖σJ3(t)‖2

0 � M0+Ct P

(
sup
[0,t]

E

)
, (6.7)

‖I0(t)‖2
L∞ + ‖I1(t)‖2

0 + ‖xI1(t)‖2
L∞ + ‖I2(t)‖2

0 + ‖xI3(t)‖2
0

� M0 + Ct P

(
sup
[0,t]

E

)
. (6.8)
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Next, we estimate the terms on the right-hand side of (6.3). For J1, it follows
from (6.4), (6.5)1 and the Cauchy inequality that

J1 �C
∫ t

0

{
‖J0‖L∞

∫ [
(σ∂4

t v
′)2+

(σ
x
∂4

t v
)2
]

dx

}
ds �Ct

(
sup
[0,t]

E3/2

)
.

(6.9)

For J2, an integration by parts leads to

J2 =
∫ [

σ(I11 + I12)(σ∂
4
t v

′)+ σ(3I21 + I22)
(σ

x
∂4

t v
)]

dx

∣∣∣∣
t

0

−
∫ t

0

∫ [
σ(∂t I11 + ∂t I12)(σ∂

4
t v

′)+ σ(3∂t I21 + ∂t I22)
(σ

x
∂4

t v
)]

dx ds

=: J21 − J22. (6.10)

For J22, noting from (6.2) and (6.4) that

|∂t I11| =
4∑
α=0

Cα

∣∣∣∣∂5−α
t

(
x3

r3r ′2

)(
∂αt v

x

)∣∣∣∣ � C
4∑
α=0

∣∣∣∣J4−α
(
∂αt v

x

)∣∣∣∣ ;

we can then obtain, using (5.5), (6.5) and the Hölder inequality, that

‖σ∂t I11‖0 � C ‖J0‖L∞
∥∥∥∂4

t v

∥∥∥
0
+ C ‖J1‖L4

∥∥∥∂3
t v

∥∥∥
L4

+ C ‖J2‖0

∥∥∥∂2
t v

∥∥∥
L∞

+ C ‖σJ3‖0

∥∥∥x−1∂tv

∥∥∥
L∞ + C ‖σJ4‖0

∥∥∥x−1v

∥∥∥
L∞

� C P(E1/2)E1/2. (6.11)

Similarly, one can show that

‖σ∂t I21‖0 � C P(E1/2)E1/2. (6.12)

It follows from (6.4), (5.5), (6.5) and the Hölder inequality that

‖σ∂t I12‖0 + ‖σ∂t I22‖0

� C ‖J0‖L∞
∥∥∥σ∂4

t v
′
∥∥∥

0
+ C ‖J1‖L4

∥∥∥σ∂3
t v

′
∥∥∥

L4

+ C ‖J2‖0

∥∥∥σ∂2
t v

′
∥∥∥

L∞ + C ‖σJ3‖L4

∥∥∂tv
′∥∥

L4 + C ‖σJ4‖0

∥∥v′∥∥
L∞

� C P(E1/2)E1/2. (6.13)

Therefore, it follows from (6.10)–(6.13) and the Hölder inequality that

|J22| � C
∫ t

0

[
(‖σ∂t I11‖0 + ‖σ∂t I12‖0)

∥∥∥σ∂4
t v

′
∥∥∥

0

+ (‖σ∂t I21‖0 + ‖σ∂t I22‖0)

∥∥∥(σ/x)∂4
t v

∥∥∥
0

]
ds � Ct P

(
sup
[0,t]

E

)
.

(6.14)
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The term J21 can be estimated as

|J21| � M0 + ε

(∥∥∥σ∂4
t v

′(t)
∥∥∥2

0
+
∥∥∥(σ/x)∂4

t v(t)
∥∥∥2

0

)

+ C(ε) ‖σ(|I11| + |I12| + |I21| + |I22|)(t)‖2
0

� M0 + ε

(∥∥∥σ∂4
t v

′(t)
∥∥∥2

0
+
∥∥∥(σ/x)∂4

t v(t)
∥∥∥2

0

)

+ C(ε)
3∑
α=0

(∥∥∥σ
x

J3−α(t)∂αt v(t)
∥∥∥2

0
+ ∥∥σJ3−α(t)∂αt v′(t)

∥∥2
0

)
,

where ε is a small positive constant to be determined later. Here we have used (5.2),
(6.4), the Holder inequality and the Cauchy inequality. By virtue of (3.9), (5.5),
(6.5) and (6.7), we obtain

∥∥J0(t)∂
3
t v(t)

∥∥
0+∥∥J0(t)σ∂

3
t v

′(t)
∥∥

0 =
∥∥∥∥J0(t)

(
∂3

t v(0)+
∫ t

0
∂4

t v(s) ds

)∥∥∥∥
0

+
∥∥∥∥J0(t)

(
σ∂3

t v
′(0)+

∫ t

0
σ∂4

t v
′(s) ds

)∥∥∥∥
0

� ‖J0(t)‖L4
(∥∥∂3

t v(0)
∥∥

L4 +∥∥σ∂3
t v

′(0)
∥∥

L4

)

+
∫ t

0

(∥∥∂4
t v(s)

∥∥
0+∥∥σ∂4

t v
′(s)

∥∥
0

)
ds ‖J0(t)‖L∞

� M0+Ct P

(
sup
[0,t]

E

)
.

Similarly, one can show that

2∑
α=0

(∥∥∥σ
x

J3−α(t)∂αt v(t)
∥∥∥

0
+ ∥∥σJ3−α(t)∂αt v′(t)

∥∥
0

)

� ‖J1‖0

(∥∥∥∂2
t v(0)

∥∥∥
L∞ +

∥∥∥σ∂2
t v

′(0)
∥∥∥

L∞

)

+
∫ t

0

(∥∥∥∂3
t v(s)

∥∥∥
L4

+
∥∥∥σ∂3

t v
′(s)

∥∥∥
L4

)
ds ‖J1‖L4

+‖σJ2‖L4

(∥∥∥∥∂tv(0)

x

∥∥∥∥
L4

+ ∥∥∂tv
′(0)

∥∥
L4

)

+
∫ t

0

(∥∥∥∥∂
2
t v(s)

x

∥∥∥∥
0
+
∥∥∥∂2

t v
′(s)

∥∥∥
0

)
ds ‖σJ2‖L∞

+‖σJ3‖0

(∥∥∥∥v(0)x

∥∥∥∥
L∞

+ ∥∥v′(0)
∥∥

L∞

)

+
∫ t

0

(∥∥∥∥∂tv(s)

x

∥∥∥∥
L∞

+ ∥∥∂tv
′(s)

∥∥
L4

)
ds ‖σJ3‖L4

� M0 + Ct P

(
sup
[0,t]

E

)
.
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Therefore, we have arrived at

|J21| � C(ε)

[
M0 + Ct P

(
sup
[0,t]

E

)]
+ ε

(∥∥∥σ∂4
t v

′(t)
∥∥∥2

0
+
∥∥∥(σ/x)∂4

t v(t)
∥∥∥2

0

)
.

(6.15)

It remains to bound J3. Note from (6.6) that

|J3| �
∫ t

0
‖φ‖L∞

∥∥∥x∂5
t

(
x2/r2

)
(s)
∥∥∥

0

∥∥∥xσ∂5
t v(s)

∥∥∥
0

ds

� C ‖ρ0‖L∞

(
sup

s∈[0,t]

∥∥∥xσ∂5
t v(s)

∥∥∥
0

)∫ t

0

∥∥∥x∂5
t

(
x2/r2

)
(s)
∥∥∥

0
ds

� C(ε)

(∫ t

0

∥∥∥x∂5
t

(
x2/r2

)
(s)
∥∥∥

0
ds

)2

+ ε

(
sup
[0,t]

∥∥∥xσ∂5
t v

∥∥∥
0

)2

� C(ε)t P

(
sup
[0,t]

E

)
+ ε sup

[0,t]

∥∥∥xσ∂5
t v

∥∥∥2

0
, (6.16)

where ε > 0 is a small constant to be determined later.
In view of (6.3), (6.9), (6.10), (6.14), (6.15) and (6.16), we see that

∫ {
xσ

2

(
∂5

t v
)2 + x2

r2r ′

[
1

r ′2 (σ∂
4
t v

′)2 + 3
x2

r2

(σ
x
∂4

t v
)2

+2
x

rr ′
(σ

x
∂4

t v
)
(σ∂4

t v
′)
]}

dx
∣∣∣t
0
+ 2μ

∫ t

0

∫ [
xσ

(
∂5

t v

x

)′]2

dx ds

� C(ε)

[
M0 + Ct P

(
sup
[0,t]

E

)]

+ε
(∥∥∥σ∂4

t v
′
∥∥∥2

0
+
∥∥∥(σ/x)∂4

t v

∥∥∥2

0
+ sup

[0,t]

∥∥∥xσ∂5
t v

∥∥∥2

0

)
.

Since
∥∥(√xσ∂5

t v
)
(·, 0)

∥∥2
0 can be bounded by M0 due to (6.1) with k = 3, and

x2

r2r ′

[
1

r ′2 (σ∂
4
t v

′)2 + 3
x2

r2

(σ
x
∂4

t v
)2 + 2

x

rr ′
(σ

x
∂4

t v
)
(σ∂4

t v
′)
]

= x2

r2r ′

[
1

2r ′2 (σ∂
4
t v

′)2 + x2

r2

(σ
x
∂4

t v
)2 +

(
1√
2r ′ (σ∂

4
t v

′)+ √
2

x

r

(σ
x
∂4

t v
))2

]

� x2

r2r ′

[
1

2r ′2 (σ∂
4
t v

′)2 + x2

r2

(σ
x
∂4

t v
)2
]

� C
[
(σ∂4

t v
′)2 + (σ x−1∂4

t v)
2
]
,
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where the a priori lower bounds for 1/r ′ and x/r were used; then we have

∥∥∥√xσ∂5
t v(t)

∥∥∥2

0
+ ∥∥σ∂4

t v
′(t)
∥∥2

0 + ∥∥σ x−1∂4
t v(t)

∥∥2
0 + μ

∫ t

0

∫ [
xσ

(
∂5

t v

x

)′]2

dx ds

� C(ε)

[
M0 + Ct P

(
sup
[0,t]

E

)]

+ Cε

(∥∥σ∂4
t v

′(t)
∥∥2

0 +
∥∥∥σ

x
∂4

t v(t)
∥∥∥2

0
+ sup

[0,t]

∥∥∥xσ∂5
t v

∥∥∥2

0

)
,

which implies, by choosing ε suitably small, that

sup
[0,t]

(∥∥∥√xσ∂5
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v
′
∥∥∥2

0
+
∥∥∥(σ/x)∂4

t v

∥∥∥2

0

)
+ μ

∫ t

0

∥∥∥∥∥xσ

(
∂5

t v

x

)′
(s)

∥∥∥∥∥
2

ds

� M0 + Ct P

(
sup
[0,t]

E

)
. (6.17)

The weighted Sobolev embedding (5.3) implies

∥∥∥∂4
t v

∥∥∥2

0
� C

(∥∥∥σ∂4
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v
′
∥∥∥2

0

)

= C

(∥∥∥x(σ/x)∂4
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v
′
∥∥∥2

0

)

� C

(∥∥∥(σ/x)∂4
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v
′
∥∥∥2

0

)
,

and we then obtain that

sup
[0,t]

(∥∥∥√xσ∂5
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v
′
∥∥∥2

0
+
∥∥∥∂4

t v

∥∥∥2

0

)
+ μ

∫ t

0

∥∥∥∥∥xσ

(
∂5

t v

x

)′
(s)

∥∥∥∥∥
2

ds

� M0 + Ct P

(
sup
[0,t]

E

)
,

or equivalently

sup
[0,t]

(∥∥∥√xσ∂5
t v

∥∥∥2

0
+
∥∥∥σ∂4

t v

∥∥∥2

1
+
∥∥∥∂4

t v

∥∥∥2

0

)
+ μ

∫ t

0

∥∥∥∥∥xσ

(
∂5

t v

x

)′
(s)

∥∥∥∥∥
2

ds

� M0 + Ct P

(
sup
[0,t]

E

)
. (6.18)
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7. Elliptic Estimates

In order to estimate the derivatives in the normal direction (the spatial derivatives
in Lagrangian coordinates) which cannot be obtained by energy estimates as in the
last section, we employ the equation to perform the elliptic estimates. Since the
degeneracy of the equation near the origin x = 0 and the boundary x = 1 is of
different orders, for example, in Equation (4.1), the coefficient of ∂tv is of the order
x2 as x → 0, and of the order (1 − x) as x → 1, we separate the interior estimates
and the estimates near the boundary by choosing suitable cut-off functions. To this
end, we first identify the leading terms and lower order terms of the equation. Notice
that

−
{
σ 2
[

x3

r3r ′2
∂k

t v

x
+ x2

r2r ′3 ∂
k
t v

′
]}′

+ σ 2

x

[
3

x4

r4r ′
∂k

t v

x
+ x3

r3r ′2 ∂
k
t v

′
]

= −σ(H0 + H1 + H2), (7.1)

where

H0 = σ∂k
t v

′′ + σ

(
∂k

t v

x

)′
+
[
2σ ′ − σ

x

]
∂k

t v
′ +

[
2σ ′ − 3

σ

x

] ∂k
t v

x

= H0 + 4
(σ

x

)′
∂k

t v,

H1 =
{

2σ ′
(

x3

r3r ′2 − 1

)
− 3σ

x

(
x4

r4r ′ − 1

)}
∂k

t v

x

+
{

2σ ′
(

x2

r2r ′3 − 1

)
− σ

x

(
x3

r3r ′2 − 1

)}
∂k

t v
′,

H2 = σ

[(
x3

r3r ′2

)′
∂k

t v

x
+
(

x2

r2r ′3

)′
∂k

t v
′ +

(
x3

r3r ′2 − 1

)(
∂k

t v

x

)′

+
(

x2

r2r ′3 − 1

)
∂k

t v
′′
]

(7.2)

and

H0 = σ∂k
t v

′′ + 2σ ′∂k
t v

′ − 2σ ′∂k
t v/x = 1

xσ

[
(xσ)2

(
∂k

t v

x

)′]′
. (7.3)

We can then rewrite (6.1) as

H0 + μ∂t H0 = 1

2
x∂k+2

t v − 4
(σ

x

)′
∂k

t v − H1 − H2 − 1

σ

[
σ 2(I11 + I12)

]′

+
(σ

x

)
(3I21 + I22)+ 1

2
φx2∂k+1

t

(
x2

r2

)
=: G, (7.4)

where I11, I12, I21 and I22 are given by (6.2).
In order to obtain estimates independent of the regularization parameter μ, we

will also need the following lemma, whose proof can be found in [7]:
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Lemma 7.1. Let μ > 0 and g ∈ L∞(0, T ; Hs(I )) be given, and let f ∈ H1(0, T ;
Hs(I )) be such that

f + μ ft = g, in (0, T )× I.

Then

‖ f ‖L∞(0,T ;Hs (I )) � C max
{‖ f (0)‖s, ‖g‖L∞(0,T ;Hs (I ))

}
. (7.5)

As an immediate consequence of (7.4) and (7.5), we see that for any smooth function
β(x),

sup
[0,t]

‖βH0‖0 � C

(
‖βH0(0)‖0 + sup

[0,t]
‖βG‖0

)
, (7.6)

sup
[0,t]

‖βH ′
0‖0 � C

(
‖βH ′

0(0)‖0 + sup
[0,t]

‖βG′‖0

)
. (7.7)

Clearly, the weighted norm of ∂k
t v

′′ (or ∂k
t v

′′′) can be derived from the corresponding
weighted norm of ∂k+2

t v (or ∂k+2
t v′). Based on the energy estimate (6.18), we can

then obtain the estimates of ∂3
t v

′′ and ∂2
t v

′′ associated with weights. Furthermore,
with the estimates of spatial derivatives of ∂3

t v and ∂2
t v, one can get the weighted

estimates of higher-order spatial derivatives of ∂tv and v.

7.1. Elliptic estimates: interior estimates

For the elliptic estimates, since the degeneracy of the equation near the origin
x = 0 and the boundary x = 1 are of different orders, we will first choose a suitable
cut-off function to separate the interior and boundary estimates. The key is to match
the interior and boundary norms in the intermediate region.

7.1.1. Interior cut-off functions The interior cut-off function ζ(x) is chosen to
satisfy

ζ = 1 on [0, δ], ζ = 0 on [2δ, 1], |ζ ′| � s0/δ, (7.8)

for some constant s0, where δ is a constant to be chosen so that the estimates (7.13)
and (7.19) below hold for all k = 0, 1, 2, 3. The choice of δ will depend on the
initial density ρ0. Since

σ ′(x) = ρ0(x)− xρ′
0(x), σ ′(0) = ρ0(0) > 0,

there exists a constant δ0 (depending only on ρ0(x)) such that for all x ∈ [0, δ0],
m0 � ρ0(x) � 3m0, m0 � σ ′(x) � 3m0, where m0 = ρ0(0)/2; (7.9)

and then

m0x � σ(x) � 3m0x, x ∈ [0, δ0]. (7.10)



Well-Posedness for the Motion of Physical Vacuum 791

Set m1 = max0�x�δ0
{|ρ′

0(x)|, |ρ′′
0 (x)|}. Then for all x ∈ [0, δ0],

∣∣σ(x)/x − σ ′(x)
∣∣ = ∣∣xρ′

0(x)
∣∣ � m1x,

∣∣σ ′′(x)
∣∣ � 3m1. (7.11)

Analysis for H0. To this end, we rewrite H0 as

H0 = σ f ′′ + 2σ ′ f ′ − 2σ ′ f

x
, where f = ∂k

t v. (7.12)

Multiplying H0 by the cut-off function ζ with δ ∈ [0, δ0/2], one may get

‖ζH0‖2
0 = ∥∥ζσ f ′′∥∥2

0 + 4
∥∥ζσ ′ f ′∥∥2

0 + 4

∥∥∥∥ζσ ′
(

f

x

)∥∥∥∥
2

0
+ 4

∫
ζσ f ′′ζσ ′ f ′ dx

− 4
∫
ζσ f ′′ζσ ′

(
f

x

)
dx − 8

∫
ζσ ′ f ′ζσ ′

(
f

x

)
dx .

Observing that

2
∫
ζσ f ′′ζσ ′ f ′ dx = − ∥∥ζσ ′ f ′∥∥2

0 −
∫ (

ζ 2σ ′)′ σ ∣∣ f ′∣∣2 dx

� − ∥∥ζσ ′ f ′∥∥2
0 − C(m0, s0)

∫ 2δ

δ

∣∣ f ′∣∣2 dx − C(m0,m1)δ
∥∥ζ f ′∥∥2

0

and

−
∫
ζσ f ′′ζσ ′

(
f

x

)
dx =

∫ (
ζ 2σ ′)′ σ

(
f

x

)
f ′ dx +

∫
ζ 2σ ′ (σ ′− σ

x

)( f

x

)
f ′ dx

+ ∥∥ζσ ′ f ′∥∥2
0 +

∫
ζ 2σ ′ (σ

x
−σ ′) ∣∣ f ′∣∣2 dx

�
∥∥ζσ ′ f ′∥∥2

0−C(m0, s0)

∫ 2δ

δ

(∣∣ f ′∣∣2 +
∣∣∣∣ f

x

∣∣∣∣
2
)

dx

−C(m0,m1)δ

[∥∥∥∥ζ
(

f

x

)∥∥∥∥
2

0
+ ∥∥ζ f ′∥∥2

0

]
,

we have, using the fact σ ′(x) � m0 on [0, 2δ], that

‖ζH0‖2
0 �

∥∥ζσ f ′′∥∥2
0 + 2

3

∥∥ζσ ′ f ′∥∥2
0 +

∥∥∥∥ζσ ′
(

f

x

)∥∥∥∥
2

0

+
(

16

3

∥∥ζσ ′ f ′∥∥2
0 + 3

∥∥∥∥ζσ ′
(

f

x

)∥∥∥∥
2

0
− 8

∫
ζσ ′ f ′ζσ ′

(
f

x

)
dx

)

− C(m0, s0)

∫ 2δ

δ

(∣∣ f ′∣∣2 +
∣∣∣∣ f

x

∣∣∣∣
2
)

dx

− C(m0,m1)δ

[∥∥∥∥ζ
(

f

x

)∥∥∥∥
2

0
+ ∥∥ζ f ′∥∥2

0

]
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�
∥∥ζσ f ′′∥∥2

0 + 2

3
m2

0

∥∥ζ f ′∥∥2
0 + m2

0

∥∥∥∥ζ
(

f

x

)∥∥∥∥
2

0

−C(m0, s0)

∫ 2δ

δ

(∣∣ f ′∣∣2 +
∣∣∣∣ f

x

∣∣∣∣
2
)

dx

−C(m0,m1)δ

[∥∥∥∥ζ
(

f

x

)∥∥∥∥
2

0
+ ∥∥ζ f ′∥∥2

0

]
.

Therefore, there exists a positive constant δ1 = δ1(m0,m1) such that if δ �
min{δ0/2, δ1},

‖ζH0‖2
0 �

∥∥ζσ f ′′∥∥2
0 + 1

3
m2

0

∥∥ζ f ′∥∥2
0 + 1

2
m2

0

∥∥∥∥ζ
(

f

x

)∥∥∥∥
2

0

−C(m0, s0)

∫ 2δ

δ

(∣∣ f ′∣∣2 +
∣∣∣∣ f

x

∣∣∣∣
2
)

dx;

or equivalently

∥∥∥ζσ∂k
t v

′′
∥∥∥2

0
+
∥∥∥ζ∂k

t v
′
∥∥∥2

0
+
∥∥∥∥ζ
(
∂k

t v

x

)∥∥∥∥
2

0

� C(m0) ‖ζH0‖2
0 + C(m0, s0)

∫ 2δ

δ

[
(∂k

t v
′)2 +

(
∂k

t v

x

)2
]

dx . (7.13)

Analysis for H ′
0. To estimate H ′

0, one needs also to compute the 1st spatial deriv-
ative of H0. Clearly,

H ′
0 + 2σ ′′

(
f

x
− f ′

)
=σ f ′′′+3σ ′ f ′′−2σ ′

(
f

x

)′
=: H̃0, where f = ∂k

t v.

(7.14)

For any function f = f(x, t), it holds that

∂
j
x f = ∂

j
x

(
x

f

x

)
= x∂ j

x

(
f

x

)
+ j∂ j−1

x

(
f

x

)
, j = 1, 2, 3; (7.15)

so H̃0 can be rewritten as

H̃0 = σ xg′′ + 3 (σ x)′ g′ + 4σ ′g, where g =
(

f

x

)′
=
(
∂k

t v

x

)′
.

Thus,

H̃0 − 3
(
σ ′x − σ

)
g′ =σ xg′′ + 6σg′ + 4σ ′g. (7.16)

Multiplying this equality by the cut-off function ζ with δ ∈ [0, δ0] and taking the
L2-norm of the product yield



Well-Posedness for the Motion of Physical Vacuum 793

∥∥ζ H̃0 + 3ζ
(
σ ′x − σ

)
g′∥∥2

0 = ∥∥ζσ xg′′∥∥2
0 + 36

∥∥ζσg′∥∥2
0 + 16

∥∥ζσ ′g
∥∥2

0

+ 12
∫
ζσ xg′′ζσg′ dx + 8

∫
ζσ xg′′ζσ ′g dx

+ 48
∫
ζσg′ζσ ′g dx . (7.17)

The last three terms on the right-hand side of (7.17) can be bounded as follows:

−2
∫
ζσ xg′′ζσg′ dx =

∫ (
ζ 2σ 2x

)′ ∣∣g′∣∣2 dx

= 3
∥∥ζσg′∥∥2

0 + 2
∫
ζ ζ ′x

∣∣σg′∣∣2 dx

+2
∫
ζ 2σ(σ ′x − σ)

∣∣g′∣∣2 dx,
∫
ζσ xg′′ζσ ′g dx =

∫
ζ 2σ

(
σ ′x − σ

)
g′′g dx +

∫
ζ 2σ 2g′′g dx

=
∫
ζ 2σ

(
σ ′x − σ

)
gg′′ dx − 2

∫
ζ ζ ′σ 2gg′ dx

−2
∫
ζ 2σσ ′gg′ dx − ∥∥ζσg′∥∥2

0

and

−2
∫
ζ 2σσ ′gg′ dx = ∥∥ζσ ′g

∥∥2
0 + 2

∫
ζ ζ ′σσ ′g2 dx +

∫
ζ 2σσ ′′g2 dx .

It then follows from (7.17) that∥∥ζσ xg′′∥∥2
0 + 10

∥∥ζσg′∥∥2
0

= ∥∥ζ H̃0 + 3ζ
(
σ ′x − σ

)
g′∥∥2

0

+12

[∫
ζ ζ ′x

∣∣σg′∣∣2 dx +
∫
ζ 2σ(σ ′x − σ)

∣∣g′∣∣2 dx

]

−8

[∫
ζ 2σ

(
σ ′x − σ

)
gg′′ dx − 2

∫
ζ ζ ′σ 2gg′ dx

]

+24

[
2
∫
ζ ζ ′σσ ′g2 dx +

∫
ζ 2σσ ′′g2 dx

]

� 2
∥∥ζ H̃0

∥∥2
0 + C(m0,m1)δ

[∥∥ζσ xg′′∥∥2
0 + ∥∥ζσg′∥∥2

0 + ‖ζg‖2
0

]

+ C(m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx .

Therefore, there exists a constant δ2 = δ2(m0,m1) such that for δ � min{δ0/2, δ2},
it holds that

1

2

∥∥ζσ xg′′∥∥2
0 + 5

∥∥ζσg′∥∥2
0 � 2

∥∥ζ H̃0
∥∥2

0 + C(m0,m1)δ ‖ζg‖2
0

+ C(m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx . (7.18)
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To handle the term ‖ζg‖2
0, we need an additional estimate which follows from

(7.16), that is

∥∥ζσ ′g
∥∥2

0 � C(m0)
[∥∥ζ H̃0

∥∥2
0 + ∥∥ζσ xg′′∥∥2

0 + ∥∥ζσg′∥∥2
0

]

� C(m0)
∥∥ζ H̃0

∥∥2
0 + C(m0,m1)δ ‖ζg‖2

0

+C(m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx,

where we have used (7.18). Hence, it holds that

∥∥ζσ xg′′∥∥2
0 + ∥∥ζσg′∥∥2

0 + ∥∥ζσ ′g
∥∥2

0

� C(m0)
∥∥ζ H̃0

∥∥2
0 + C(m0,m1)δ ‖ζg‖2

0 + C(m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx .

Thus, there exists a constant δ3 = δ3(m0,m1) such that

∥∥ζσ xg′′∥∥2
0 + ∥∥ζσg′∥∥2

0 + 1

2
‖ζg‖2

0

� C(m0)
∥∥ζ H̃0

∥∥2
0 + C(m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx,

provided δ � min{σ0/2, δ2, δ3}; where we have used the fact σ ′(x) � m0 on
[0, δ0]. It then follows from (7.15) and (7.14) that

∥∥∥ζσ∂k
t v

′′′∥∥∥2

0
+
∥∥∥ζ∂k

t v
′′∥∥∥2

0
+
∥∥∥∥∥ζ
(
∂k

t v

x

)′∥∥∥∥∥
2

0

� C(m0)
∥∥ζ H̃0

∥∥2
0 + C(m0, s0)

∫ 2δ

δ

⎡
⎣∣∣∣∂k

t v
′′∣∣∣2 +

∣∣∣∣∣
(
∂k

t v

x

)′∣∣∣∣∣
2
⎤
⎦ dx

� C(m0)
∥∥ζH ′

0

∥∥2
0 + C(m0,m1)

(∥∥∥ζ∂k
t v

′∥∥∥2

0
+
∥∥∥∥ζ ∂

k
t v

x

∥∥∥∥
2

0

)

+ C(m0, s0)

∫ 2δ

δ

⎡
⎣∣∣∣∂k

t v
′′∣∣∣2 +

∣∣∣∣∣
(
∂k

t v

x

)′∣∣∣∣∣
2
⎤
⎦ dx . (7.19)

A Choice of δ. Choose

δ = min{δ0/2, δ1, δ2, δ3}, (7.20)

then the estimates (7.13) and (7.19) hold for all k = 0, 1, 2, 3.
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7.1.2. Interior estimates for ∂3
t v and ∂2

t v Consider Equation (7.4) with k = 3,
that is

H0 + μ∂t H0 = 1

2
x∂5

t v − 4
(σ

x

)′
∂3

t v − H1 − H2 − 1

σ

[
σ 2(I11 + I12)

]′

+
(σ

x

)
(3I21 + I22)+ 1

2
φx2∂4

t

(
x2

r2

)
. (7.21)

In order to bound ‖ζH0‖ by applying (7.6) with β = ζ given by (7.8), we need
to estimate the L2-norm of the right-hand side of (7.21) term by term. For this
purpose, we first derive some estimates which will be used later. In addition to
(5.5), (5.6) and (5.7), we have some interior bounds:

∥∥∥
(
ζ∂tv

′, ζσ∂tv
′′, ζ ∂3

t v, ζσ∂
3
t v

′) (·, t)
∥∥∥

L∞ � C
√

E(t),
∥∥∥
(
ζ∂2

t v
)
(·, t)

∥∥∥2

1
+
∥∥∥
(
ζσ∂2

t v, ζv
)
(·, t)

∥∥∥2

2
+ ‖(ζσv) (·, t)‖2

3

� M0 + Ct P

(
sup
[0,t]

E

)
,

∥∥∥
(
ζv′, ζσv′′, ζ ∂2

t v, ζσ∂
2
t v

′) (·, t)
∥∥∥2

L∞ � M0 + Ct P

(
sup
[0,t]

E

)
; (7.22)

which implies

‖ζJ1‖L∞ �
∥∥∥x−1∂tv

∥∥∥
L∞ + ∥∥ζ∂tv

′∥∥
L∞ + ‖J0‖2

L∞ � C P(E1/2),

‖ζJ0(t)‖2
L∞ � 2

(∥∥∥x−1v

∥∥∥2

L∞ + ∥∥ζv′∥∥2
L∞

)
� M0 + Ct P

(
sup
[0,t]

E

)
,

‖ζJ2(t)‖2
0 � C

(∥∥∥x−1∂2
t v

∥∥∥2

0
+
∥∥∥ζ∂2

t v
′
∥∥∥2

0
+ ‖J1‖2

0 ‖ζJ0‖2
L∞

)

� M0 + Ct P

(
sup
[0,t]

E

)
.

This, together with (6.5) and (6.7), yields that for p ∈ (1,∞),

‖J0‖L∞ + ‖J1‖L p + ‖ζJ1‖L∞ + ‖J2‖0 � C P(E1/2),

‖J0(t)‖2
L p + ‖ζJ0(t)‖2

L∞ + ‖J1(t)‖2
0 + ‖ζJ2(t)‖2

0 � M0 + Ct P

(
sup
[0,t]

E

)
.

(7.23)

In a similar way as the derivation of (6.4), we have that for nonnegative integers m
and n,

∣∣∣∣∂k+1
t

(
xm

rmr ′n

)′∣∣∣∣ � CLk, k = 0, 1, 2; (7.24)
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where

L0 = ∣∣v′′∣∣+
∣∣∣∣
(v

x

)′∣∣∣∣+ R0J0, with R0 =
∣∣∣∣
( r

x

)′∣∣∣∣+
∣∣r ′′∣∣ ,

L1 = ∣∣∂tv
′′∣∣+

∣∣∣∣
(
∂tv

x

)′∣∣∣∣+ R0J1 + L0J0,

L2 =
∣∣∣∂2

t v
′′
∣∣∣+

∣∣∣∣∣
(
∂2

t v

x

)′∣∣∣∣∣+ R0J2 + L0J1 + L1J0.

It can be checked (see the Appendix) that the following estimates hold:

‖R0‖0+‖σR0‖L∞ � Ct sup
[0,t]

√
E,

‖L0‖2
0+‖σL0‖2

L∞ +‖σL1‖2
L p +‖ζσL1‖2

L∞ +‖σL2‖2
0 � C P (E(t))+Ct P

(
sup
[0,t]

E

)
,

‖ζL0‖2
0+‖σL0‖2

L p +‖ζσL0‖2
L∞ +‖σL1‖2

0+‖ζσL2‖2
0 � M0+Ct P

(
sup
[0,t]

E

)
,

(7.25)

with ‖ · ‖ denoting ‖ · (t)‖.
Next, we will bound ‖ζH0‖ by the terms on the right-hand side of (7.21). It

follows from (5.6), (6.18) and the lower bound of ρ0(x) in the interior region that
∥∥∥∥ζ
(

1

2
x∂5

t v − 4
(σ

x

)′
∂3

t v

)
(t)

∥∥∥∥
2

0
� C

∥∥∥∥ζ
√

x
σ

ρ0
∂5

t v(t)

∥∥∥∥
2

0
+ C

∥∥∥∂3
t v(t)

∥∥∥2

0

� C
∥∥∥√xσ∂5

t v(t)
∥∥∥2

0
+ C

∥∥∥∂3
t v(t)

∥∥∥2

0

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.26)

For H1, noting from (5.5) that∥∥∥∥ x

r(x, t)
− 1

∥∥∥∥
L∞

+
∥∥∥∥ 1

r ′(x, t)
− 1

∥∥∥∥
L∞

�
∥∥∥ x

r

(
1 − r

x

)∥∥∥
L∞ +

∥∥∥∥ 1

r ′
(
1 − r ′)∥∥∥∥

L∞

� C
∫ t

0

(∥∥∥v
x

∥∥∥
L∞ + ∥∥v′∥∥

L∞

)
ds

� Ct

(
sup
[0,t]

√
E

)
, (7.27)

we have

‖ζH1(t)‖2
0 � C

{∥∥∥∥ x4

r4r ′ − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}

×
{∥∥∥∥∂

3
t v

x

∥∥∥∥
2

0
+
∥∥∥ζ∂3

t v
′
∥∥∥2

0

}
� Ct P

(
sup
[0,t]

E

)
. (7.28)
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For H2, it follows from (3.9), (7.27) and (7.25)1 that

‖ζH2(t)‖2
0 �

{∥∥∥∥ x3

r3r ′2 −1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 −1

∥∥∥∥
2

L∞

}⎧⎨
⎩
∥∥∥∥∥ζσ

(
∂3

t v

x

)′∥∥∥∥∥
2

0

+∥∥ζσ∂3
t v

′′∥∥2
0

⎫⎬
⎭

+C ‖σR0‖2
L∞
(∥∥∂3

t v/x
∥∥2

0 + ∥∥ζ∂3
t v

′∥∥2
0

)
� Ct P

(
sup
[0,t]

E

)
, (7.29)

since ∥∥∥∥∥ζσ
(
∂3

t v

x

)′∥∥∥∥∥
0

� C

∥∥∥∥∥ζ x

(
∂3

t v

x

)′∥∥∥∥∥
0

= C

∥∥∥∥ζ∂3
t v

′ − ζ

(
∂3

t v

x

)∥∥∥∥
0
.

Next, we will handle the terms involving I11 and I12 as follows,
∥∥∥∥ζ 1

σ

[
σ 2(I11 + I12)

]′∥∥∥∥
2

0
� C ‖ζ(I11 + I12)‖2

0 + C
∥∥ζσ (I11 + I12)

′∥∥2
0

� C
2∑
α=0

∥∥ζJ2−α
(∣∣∂αt v/x

∣∣+ |∂αt v′|)∥∥2
0

+ C
2∑
α=0

∥∥ζσL2−α
(|∂αt v/x | + |∂αt v′|)∥∥2

0

+ C
2∑
α=0

∥∥∥ζJ2−α
(∣∣∣σ (∂αt v/x

)′∣∣∣+ |σ∂αt v′′|
)∥∥∥2

0

� C
2∑
α=0

{∥∥ζJ2−α
(∣∣∂αt v/x

∣∣+ |∂αt v′| + |σ∂αt v′′|)∥∥2
0

+ ∥∥ζσL2−α
(|∂αt v/x | + |∂αt v′|)∥∥2

0

}
.

Here we have used (6.4) and (7.24). It follows from (3.9), (5.5), (5.6), (7.22)1 and
(7.23) that

2∑
α=0

∥∥ζJ2−α(t)
(∣∣∂αt v′(t)

∣∣+∣∣x−1∂αt v(t)
∣∣)∥∥

0

� ‖ζJ0‖L∞

(∥∥∥∥∂
2
t v(0)

x

∥∥∥∥
0
+∥∥∂2

t v
′(0)

∥∥
0

)
+
∫ t

0

(∥∥∥∥∂
3
t v

x

∥∥∥∥
0
+∥∥ζ∂3

t v
′∥∥

0

)
ds ‖J0‖L∞

+‖J1‖0

(∥∥∥∥∂tv(0)

x

∥∥∥∥
L∞

+∥∥ζ∂tv
′(0)

∥∥
L∞

)
+
∫ t

0

(∥∥∥∥∂
2
t v

x

∥∥∥∥
0
+∥∥∂2

t v
′∥∥

0

)
ds ‖ζJ1‖L∞

+‖ζJ2‖0

(∥∥∥∥v(0)x

∥∥∥∥
L∞

+∥∥v′(0)
∥∥

L∞

)
+
∫ t

0

(∥∥∥∥∂tv

x

∥∥∥∥
L∞

+∥∥ζ∂tv
′∥∥

L∞

)
ds ‖J2‖0

� M0+Ct P

(
sup
[0,t]

E

)
. (7.30)
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Similarly,

2∑
α=0

∥∥ζJ2−α(t)
(
σ∂αt v

′′) (t)∥∥0 � M0 + Ct P

(
sup
[0,t]

E

)
;

and
2∑
α=0

∥∥ζσL2−α(t)
(|∂αt v/x | + |∂αt v′|) (t)∥∥2

0 �M0 + Ct P

(
sup
[0,t]

E

)
.

Here we have used (7.25)2,3 to derive the last inequality. Therefore, it holds that
∥∥∥∥ζ 1

σ

[
σ 2(I11 + I12)

]′
(t)

∥∥∥∥
2

0
� M0 + Ct P

(
sup
[0,t]

E

)
. (7.31)

In view of (7.30), we obtain

∥∥∥ζ σ
x
(3I21 + I22)(t)

∥∥∥2

0
� C

2∑
α=0

∥∥∥∥ζJ2−α(t)
(∣∣∂αt v′∣∣+

∣∣∣∣∂
α
t v

x

∣∣∣∣
)
(t)

∥∥∥∥
0

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.32)

Noting from (6.6) and (6.8) that
∥∥∥∥φx2∂4

t

(
x2

r2

)
(t)

∥∥∥∥
2

0
�C ‖xI3(t)‖2

0 � M0 + Ct P

(
sup
[0,t]

E

)
,

one then derives from (7.6), (7.21), (7.26), (7.28), (7.29), (7.31)-(7.32) that

sup
[0,t]

‖ζH0‖2
0 � M0 + Ct P

(
sup
[0,t]

E

)
.

In view of (7.13) and (5.6), we can therefore obtain, for any s ∈ [0, t],
∥∥∥ζσ∂3

t v
′′(s)

∥∥∥2

0
+
∥∥∥ζ∂3

t v
′(s)

∥∥∥2

0
+
∥∥∥∥ζ ∂

3
t v(s)

x

∥∥∥∥
2

0

� C(m0) ‖ζH0(s)‖2
0 + C(m0, s0)

∫ 2δ

δ

[
(∂3

t v
′(s))2 +

(
∂3

t v(s)

x

)2
]

dx

� C sup
[0,t]

‖ζH0‖2
0 + C

∫ 2δ

δ

[
(σ∂3

t v
′(s))2 +

(
∂3

t v(s)
)2
]

dx

� M0 + Ct P

(
sup
[0,t]

E

)
+ M0 + Cs P

(
sup
[0,s]

E

)

� M0 + Ct P

(
sup
[0,t]

E

)
,

where we used the fact that σ(x) � m0δ on [δ, 2δ]. This, together with (5.6),
implies that
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sup
[0,t]

(∥∥∥ζσ∂3
t v

∥∥∥2

2
+
∥∥∥ζ∂3

t v

∥∥∥2

1
+
∥∥∥∥ζ
(
∂3

t v

x

)∥∥∥∥
2

0

)
�M0 + Ct P

(
sup
[0,t]

E

)
. (7.33)

It follows from (7.33) and (3.9) that

sup
[0,t]

(∥∥∥ζσ∂2
t v

∥∥∥2

2
+
∥∥∥ζ∂2

t v

∥∥∥2

1
+
∥∥∥∥ζ
(
∂2

t v

x

)∥∥∥∥
2

0

)
�M0 + Ct P

(
sup
[0,t]

E

)
. (7.34)

7.1.3. Interior estimates for ∂tv and v Consider (7.4) with k = 1. The basic
idea is to apply (7.7) with β = ζ . As before, we first list some useful estimates here
and then deal with

∥∥ζH ′
0

∥∥
0 later. Note that for all nonnegative integers m and n,

∣∣∣∣∂t

(
xm

rmr ′n

)′′∣∣∣∣ � CQ, (7.35)

where

Q =
∣∣∣∣
(v

x

)′′∣∣∣∣+
∣∣v′′′∣∣+ R0L0 +

(
R1 + R2

0

)
J0 with R1 = ∣∣r ′′′∣∣+

∣∣∣∣
( r

x

)′′∣∣∣∣ .
It follows from (3.9), (5.6), (7.15) and (7.22)2 that
∥∥∥∥σ
(v

x

)′′
(t)

∥∥∥∥
0
+ ∥∥σv′′′(t)

∥∥
0 � C

∥∥∥∥v′′ − 2
(v

x

)′∥∥∥∥
0
+ ∥∥σv′′′∥∥

0 � C
√

E(t),

∥∥∥∥ζσ
(v

x

)′′
(t)

∥∥∥∥
2

0
+ ∥∥ζσv′′′(t)

∥∥2
0 � 2C

∥∥∥∥ζv′′(t)− 2ζ
(v

x

)′
(t)

∥∥∥∥
2

0
+ 2

∥∥ζσv′′′(t)
∥∥2

0

� M0 + Ct P

(
sup
[0,t]

E

)
.

We then have, by (7.23)1 and (7.25)1,2, that

‖σR1(t)‖0 �
∫ t

0

(∥∥∥∥σ
(v

x

)′′∥∥∥∥
0
+ ∥∥σv′′′∥∥

0

)
ds � Ct P

(
sup
[0,t]

√
E

)
, (7.36)

‖σQ(t)‖0 � C

∥∥∥∥σ
(v

x

)′′
(t)

∥∥∥∥
0
+ ∥∥σv′′′(t)

∥∥
0 + ‖σR0(t)‖L∞ ‖L0(t)‖0

+ (‖σR1(t)‖0 + ‖σR0(t)‖L∞ ‖R0(t)‖0) ‖J0(t)‖L∞

� C
√

E(t)+ Ct P

(
sup
[0,t]

√
E

)
, (7.37)

‖ζσQ(t)‖2
0 � C

∥∥∥∥ζσ
(v

x

)′′
(t)

∥∥∥∥
2

0
+ C

∥∥ζσv′′′(t)
∥∥2

0 + C ‖σR0(t)‖2
L∞ ‖L0(t)‖2

0

+ C (‖σR1(t)‖0 + ‖σR0(t)‖L∞ ‖R0(t)‖0)
2 ‖J0(t)‖2

L∞

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.38)
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Now, we are ready to deal with
∥∥ζH ′

0

∥∥
0. For H1, it follows from (3.9), (7.27),

(5.5), (7.22)1 and (7.25)1 that

∥∥ζH′
1(t)

∥∥2
0 � C

{∥∥∥∥ x4

r4r ′ − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}

×
(∥∥∥∥∂tv

x

∥∥∥∥
2

1
+ ∥∥∂tv

′∥∥2
0 + ∥∥ζ∂tv

′′∥∥2
0

)

+ C ‖R0‖2
0

{∥∥ζ∂tv
′∥∥2

L∞ + ‖∂tv/x‖2
L∞
}

� Ct P

(
sup
[0,t]

E

)
. (7.39)

For H2, it follows from (3.9), (5.5), (7.25)1, (7.22) and (7.36) that∥∥ζH′
2(t)

∥∥2
0

� C ‖R0‖2
0

{
‖∂tv/x‖2

L∞ + ∥∥ζ∂tv
′∥∥2

L∞ + ∥∥ζσ (∂tv/x)′
∥∥2

L∞ + ∥∥ζσ∂tv
′′∥∥2

L∞
}

+ C
(
‖R0‖2

0 ‖σR0‖2
L∞ + ‖σR1‖2

0

) {
‖∂tv/x‖2

L∞ + ∥∥ζ∂tv
′∥∥2

L∞
}

+ C

{∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}{∥∥∥∥ζσ
(
∂tv

x

)′′∥∥∥∥
2

0

+ ∥∥ζσ∂tv
′′′∥∥2

0 +
∥∥∥∥
(
∂tv

x

)′∥∥∥∥
2

0
+ ∥∥ζ∂tv

′′∥∥2
0

}
� Ct P

(
sup
[0,t]

E

)
, (7.40)

since ∥∥ζσ (∂tv/x)′
∥∥

L∞ � C
∥∥ζ x(∂tv/x)′

∥∥
L∞ � C

∥∥ζ (∂tv
′ − ∂tv/x

)∥∥
L∞ ,∥∥∥∥ζσ

(
∂tv

x

)′′∥∥∥∥
0

� C

∥∥∥∥ζ x

(
∂tv

x

)′′∥∥∥∥
0

� C
∥∥ζ∂tv

′′ − 2ζ(∂tv/x)′
∥∥

0 .

For the term involving I11 and I12, we have from (6.4), (7.24) and (7.35) that∥∥∥∥ζ
{

1

σ

[
σ 2(I11 + I12)

]′}′∥∥∥∥
0

� C ‖ζ(I11 + I12)‖0 + C
∥∥ζ(I11 + I12)

′∥∥
0 + ∥∥ζσ (I11 + I12)

′′∥∥
0

� C
∥∥ζσQ (|v/x | + ∣∣v′∣∣)∥∥

0 + C
∥∥ζL0

(|v/x | + ∣∣v′∣∣+ |σ(v/x)′| + ∣∣σv′′∣∣)∥∥
0

+C
∥∥ζJ0

(|v/x | + |v′| + |(v/x)′| + ∣∣v′′∣∣+ |σ(v/x)′′| + ∣∣σv′′′∣∣)∥∥
0 .

Note that ∥∥ζσQ(t) (|v/x | + ∣∣v′∣∣) (t)∥∥2
0 � 2 ‖ζσQ(t)‖2

0 ‖v(t)/x‖2
L∞

+2

(
‖ζσQ(t)‖0

∥∥v′(0)
∥∥

L∞ + ‖σQ‖0

∫ t

0

∥∥ζ∂tv
′∥∥

L∞ ds

)2

� M0 + Ct P

(
sup
[0,t]

E

)
,
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where we have used (5.5), (5.7), (7.22)1, (7.37) and (7.38);

∥∥ζL0(t)
(|v/x | + ∣∣v′∣∣+ |σ(v/x)′| + ∣∣σv′′∣∣) (t)∥∥2

0 � M0 + Ct P

(
sup
[0,t]

E

)
,

due to (7.25)2,3; and
∥∥ζJ0(t)

(|v/x | + |v′| + |(v/x)′| + ∣∣v′′∣∣+ |σ(v/x)′′| + ∣∣σv′′′∣∣) (t)∥∥2
0

� M0 + Ct P

(
sup
[0,t]

E

)
,

since

|σ(v/x)′′| � C |x(v/x)′′| = C |v′′ − 2(v/x)′|
and

∥∥ζJ0(t)
(|v′′| + ∣∣σv′′′∣∣) (t)∥∥2

0 �
[

‖ζJ0(t)‖L∞
(∥∥v′′(0)

∥∥
0 + ∥∥σv′′′(0)

∥∥
0

)

+‖J0(t)‖L∞
∫ t

0

(∥∥ζ∂tv
′′∥∥

0+∥∥ζσ∂tv
′′′∥∥

0

)
ds

]2

� M0 + Ct P

(
sup
[0,t]

E

)
.

Then, we have arrived at
∥∥∥∥ζ
{

1

σ

[
σ 2(I11 + I12)

]′}′
(t)

∥∥∥∥
2

0
� M0 + Ct P

(
sup
[0,t]

E

)
. (7.41)

In a similar but easier way as for (7.41), one can show

∥∥ζ [(σ/x)(3I21 + I22)]
′ (t)

∥∥2
0 � M0 + Ct P

(
sup
[0,t]

E

)
. (7.42)

Finally, the last term in ζG′ can be bounded as
∥∥∥∥∥ζ
[
φx2∂2

t

(
x2

r2

)]′
(t)

∥∥∥∥∥
2

0

� C

∥∥∥∥ζ x∂2
t

(
x2

r2

)∥∥∥∥
2

0
+ C

∥∥∥∥∥ζ x2∂2
t

(
x2

r2

)′∥∥∥∥∥
2

0

� C ‖ζ xJ1‖2
0 + C

∥∥∥ζ x2L1

∥∥∥2

0

� C ‖ζJ1‖2
0 + C

∥∥∥ζ(x2/σ)σL1

∥∥∥2

0
� M0

+Ct P

(
sup
[0,t]

E

)
, (7.43)

due to (7.23)2, (7.25)3 and the lower bound of ρ0 in the interior region.
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It follows from (7.7), (7.4), (7.33), (7.39), (7.40), (7.41)–(7.43) that

sup
[0,t]

∥∥ζH ′
0

∥∥2
0 � M0 + Ct P

(
sup
[0,t]

E

)
+ C sup

[0,t]

∥∥∥ζ∂3
t v

∥∥∥2

1
� M0 + Ct P

(
sup
[0,t]

E

)
.

In view of (7.19) and (5.6), we can then obtain

sup
[0,t]

(∥∥ζσ∂tv
′′′∥∥2

0 + ∥∥ζ∂tv
′′∥∥2

0 + ∥∥ζ (∂tv/x)′
∥∥2

0

)

� C sup
[0,t]

[∥∥ζH ′
0

∥∥2
0 + ‖ζ∂tv/x‖2

0 + ∥∥ζ∂tv
′∥∥2

0

]

+C(δ) sup
[0,t]

[∥∥σ∂tv
′′∥∥2

0 + ∥∥∂tv
′∥∥2

0 + ‖∂tv‖2
0

]

� M0 + Ct P

(
sup
[0,t]

E

)
,

where we used the fact that σ(x) � m0δ on [δ, 2δ]. This, together with (5.6) and
(7.22)2 produces that

sup
[0,t]

(
‖ζσ∂tv‖2

3 + ‖ζ∂tv‖2
2 +

∥∥∥∥ζ
(
∂tv

x

)∥∥∥∥
2

1

)
�M0 + Ct P

(
sup
[0,t]

E

)
. (7.44)

Then we can derive from (7.44) and (3.9) that

sup
[0,t]

(
‖ζσv‖2

3 + ‖ζv‖2
2 +

∥∥∥ζ
(v

x

)∥∥∥2

1

)
� M0 + Ct P

(
sup
[0,t]

E

)
. (7.45)

7.2. Elliptic estimates: boundary estimates

For the boundary estimates, we introduce a cut-off function χ(x) satisfying

χ = 1 on [δ, 1], χ = 0 on [0, δ/2], |χ ′| � s0/δ, (7.46)

for some constant s0, where δ is given by (7.20). Let

B = σ∂k
t v

′′ + 2σ ′∂k
t v

′ = H0 + 2σ ′∂k
t v/x . (7.47)

Since for any function h = h(x, t) and integer i � 2, it holds that

∥∥χσh′∥∥2
0 + ∥∥χσ ′h

∥∥2
0 �

∥∥χ (σh′ + iσ ′h
)∥∥2

0 + C
∥∥∥σ 1/2h

∥∥∥2

0
,

∥∥∥χσ 3/2h′
∥∥∥2

0
+
∥∥∥χσ 1/2σ ′h

∥∥∥2

0
� 4

∥∥∥χσ 1/2 (σh′ + iσ ′h
)∥∥∥2

0
+ C ‖σh‖2

0 .

(7.48)
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We can see that

∥∥∥χσ 3/2∂3
t v

′′
∥∥∥2

0
+
∥∥∥χσ 1/2σ ′∂3

t v
′
∥∥∥2

0
� 4

∥∥∥χσ 1/2 B
∥∥∥2

0
+ C

∥∥∥σ∂3
t v

′
∥∥∥2

0
, k = 3;

∥∥∥χσ∂2
t v

′′
∥∥∥2

0
+
∥∥∥χσ ′∂2

t v
′
∥∥∥2

0
� ‖χB‖2

0 + C
∥∥∥σ 1/2∂2

t v
′
∥∥∥2

0
, k = 2;

∥∥∥χσ 3/2∂tv
′′′
∥∥∥2

0
+
∥∥∥χσ 1/2σ ′∂tv

′′
∥∥∥2

0
� 4

∥∥∥χσ 1/2 (B ′ − 2σ ′′∂tv
′)∥∥∥2

0

+C
∥∥σ∂tv

′′∥∥2
0 , k = 1;

∥∥χσv′′′∥∥2
0+∥∥χσ ′v′′∥∥2

0 �
∥∥χ (B ′−2σ ′′v′)∥∥2

0+C
∥∥∥σ 1/2v′′

∥∥∥2

0
, k =0.

(7.49)

Thus, we need to deal with‖σ 1/2χB‖0 when k = 3, ‖χB‖0 for k = 2, ‖σ 1/2χB ′‖0
when k = 1 and ‖χB ′‖0 for k = 0. The proof of (7.48) is left to the appendix.

7.2.1. Boundary estimates for ∂2
t v To estimate ‖χB‖0 with k = 2, we consider

Equation (7.4) with k = 2. To this end, we will first list some useful facts. Similar
to (5.6), one can obtain also

∥∥∥
(
σ 1/2∂2

t v
′, σ 3/2∂2

t v
′′, σ 1/2v′′, σ 3/2v′′′) (·, t)

∥∥∥2

0
� M0 + Ct P

(
sup
[0,t]

E

)
.

(7.50)

Setting ‖ · ‖ = ‖ · (t)‖, we can summarize from (6.5), (6.7), (7.25), (7.36) and
(7.27) that

‖x/r −1‖L∞ +∥∥1/r ′−1
∥∥

L∞ +‖R0‖0+‖σR0‖L∞ +‖σR1‖0 �Ct P

(
sup
[0,t]

√
E

)
,

‖J0‖2
L∞ + ‖J1‖2

L4 + ‖σL0‖2
L∞ + ‖σL1‖2

L4 � C P (E(t))+ Ct P

(
sup
[0,t]

E

)
,

‖J0‖2
L4 + ‖J1‖2

0 + ‖σL0‖2
L4 + ‖σL1‖2

0 � M0 + Ct P

(
sup
[0,t]

E

)
. (7.51)

Next, we will deal with the terms on the right-hand side of (7.4). It follows
from (5.6) and (6.18) that

∥∥∥∥χ
(

1

2
x∂4

t v − 4
(σ

x

)′
∂2

t v

)
(t)

∥∥∥∥
2

0
� C

∥∥∥∂4
t v(t)

∥∥∥2

0
+ C(δ)

∥∥∥∂2
t v(t)

∥∥∥2

0

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.52)
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For H1 and H2, by virtue of (7.51)1, (3.9), and Hardy’s inequality, one has

‖χH1(t)‖2
0 � C

{∥∥∥∥ x4

r4r ′ − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}∥∥∥∂2
t v

∥∥∥2

1

� Ct P

(
sup
[0,t]

E

)
, (7.53)

‖χH2(t)‖2
0 � C ‖σR0‖2

L∞
∥∥∥∂2

t v

∥∥∥2

1
+
{∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}

×
(∥∥∥σ∂2

t v

∥∥∥2

2
+
∥∥∥∂2

t v

∥∥∥2

1

)

� Ct P

(
sup
[0,t]

E

)
. (7.54)

For the term involving I11 and I12, we derive from (6.4) and (7.24) that

∥∥∥∥χ 1

σ

[
σ 2(I11+ I12)

]′
(t)

∥∥∥∥
2

0
� C

∑
α=0,1

{∥∥χJ1−α(t)
(∣∣∂αt v

∣∣+|∂αt v′|+|σ∂αt v′′|) (t)∥∥2
0

+∥∥χσL1−α(t)
(|∂αt v|+|∂αt v′|) (t)∥∥2

0

}

� M0+Ct P

(
sup
[0,t]

E

)
. (7.55)

Indeed, it follows from (5.5), (5.7) and (7.51) that

∑
α=0,1

(∥∥J1−α(t)∂αt v(t)
∥∥2

0 + ∥∥σL1−α(t)∂αt v(t)
∥∥2

0

)

� C
(‖J1(t)‖2

0+‖σL1(t)‖2
0

) ‖v(t)‖2
L∞ +C

(‖J0(t)‖2
0+‖σL0(t)‖2

0

) ‖∂tv(t)‖2
L∞

� M0 + Ct P

(
sup
[0,t]

E

)
,

∑
α=0,1

∥∥J1−α(t)
(∣∣∂αt v′∣∣+ ∣∣σ∂αt v′′∣∣) (t)∥∥0

� ‖J0(t)‖L4
(∥∥∂tv

′(0)
∥∥

L4 + ∥∥σ∂tv
′′(0)

∥∥
L4

)

+
∫ t

0

(∥∥∂2
t v

′∥∥
0 + ∥∥σ∂2

t v
′′∥∥

0

)
ds ‖J0(t)‖L∞ + ‖J1(t)‖0

(∥∥v′(0)
∥∥

L∞

+ ∥∥σv′′(0)
∥∥

L∞
)+

∫ t

0

(∥∥∂tv
′∥∥

L4 + ∥∥σ∂tv
′∥∥

L4

)
ds ‖J1(t)‖L4

� M0 + Ct P

(
sup
[0,t]

E

)
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and

∑
α=0,1

∥∥σL1−α(t)∂αt v′(t)
∥∥2

0 � M0 + Ct P

(
sup
[0,t]

E

)
,

so (7.55) follows. Similarly, one can also obtain

‖χ(σ/x)(3I21 + I22)(t)‖2
0 � M0 + Ct P

(
sup
[0,t]

E

)
. (7.56)

Finally, one has

∥∥∥∥χφx2∂3
t

(
x2

r2

)
(t)

∥∥∥∥
2

0
� C ‖I2(t)‖2

0 � M0 + Ct P

(
sup
[0,t]

E

)
. (7.57)

Here (6.6) and (6.8) have been used. Applying (7.6) with k = 2 and β = χ , with
the help of (7.4), (7.52)–(7.57), we obtain

sup
[0,t]

‖χH0‖2
0 � M0 + Ct P

(
sup
[0,t]

E

)
.

In view of (7.47) and (5.6), one can thus get

sup
[0,t]

‖χB‖2
0 � 2 sup

[0,t]
‖χH0‖2

0 + C(δ) sup
[0,t]

∥∥∥∂2
t v

∥∥∥2

0
� M0 + Ct P

(
sup
[0,t]

E

)
.

It follows from this, (7.49)2 and (7.50) that

sup
[0,t]

(∥∥∥χσ∂2
t v

′′
∥∥∥2

0
+
∥∥∥χσ ′∂2

t v
′
∥∥∥2

0

)
� sup

[0,t]

(
‖χB‖2

0 + C
∥∥∥σ 1/2∂2

t v
′
∥∥∥2

0

)

� M0 + Ct P

(
sup
[0,t]

E

)
.

This, together with (5.6), yields that

sup
[0,t]

(∥∥∥χσ∂2
t v

∥∥∥2

2
+
∥∥∥χ∂2

t v

∥∥∥2

1

)
� M0 + Ct P

(
sup
[0,t]

E

)
, (7.58)

due to the estimate:

sup
[0,t]

∥∥∥χ∂2
t v

′
∥∥∥2

0
� sup

[0,t]

(
C
∥∥∥χσ∂2

t v
′
∥∥∥2

0
+ C

∥∥∥χσ ′∂2
t v

′
∥∥∥2

0

)
� M0 + Ct P

(
sup
[0,t]

E

)
.
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7.2.2. Boundary estimates for v Consider now (7.4) with k = 0. Our goal is to
bound

∥∥χB ′∥∥
0. It follows from (5.6) and (7.58) that

∥∥∥∥χ
(

1

2
x∂2

t v − 4
(σ

x

)′
v

)′
(t)

∥∥∥∥
2

0
� C

∥∥∥χ∂2
t v(t)

∥∥∥2

1
+ C ‖v(t)‖2

1

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.59)

For H1 and H2, it follows from (3.9), (5.5) and (7.51)1 that

∥∥χH′
1(t)

∥∥2
0 � C

{∥∥∥∥ x4

r4r ′ − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}
‖v‖2

2

+C ‖R0‖2
0

{∥∥v′∥∥2
L∞ + ‖v‖2

L∞
}

� Ct P

(
sup
[0,t]

E

)
(7.60)

and

∥∥χH′
2(t)

∥∥2
0 � C ‖R0‖2

0

{
‖v‖2

L∞ + ∥∥v′∥∥2
L∞ + ∥∥σv′′∥∥2

L∞
}

+C
(
‖R0‖2

0 ‖σR0‖2
L∞ + ‖σR1‖2

0

) {
‖v‖2

L∞ + ∥∥v′∥∥2
L∞
}

+C

{∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}{∥∥σv′′′∥∥2
0 + ‖v‖2

2

}

� Ct P

(
sup
[0,t]

E

)
. (7.61)

Using (5.6), one has

∥∥∥∥∥χ
[
φx2∂t

(
x2

r2

)]′
(t)

∥∥∥∥∥
2

0

�C(δ) ‖v(t)‖2
1 � M0 + Ct P

(
sup
[0,t]

E

)
. (7.62)

It yields from (7.7), (7.4), (7.59)–(7.62) that

sup
[0,t]

∥∥χH ′
0

∥∥2
0 � M0 + Ct P

(
sup
[0,t]

E

)
.

In view of (7.47) and (5.6), one gets

sup
[0,t]

∥∥χB ′∥∥2
0 � 2 sup

[0,t]
∥∥χH ′

0

∥∥2
0 + C(δ) sup

[0,t]
‖v‖2

1 � M0 + Ct P

(
sup
[0,t]

E

)
.
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We can then obtain, using (7.49)4, (5.6) and (7.50), that

sup
[0,t]

(∥∥χσv′′′∥∥2
0 + ∥∥χσ ′v′′∥∥2

0

)
� sup

[0,t]

(∥∥χ (B ′ − 2σ ′′v′)∥∥2
0 + C

∥∥∥σ 1/2v′′
∥∥∥2

0

)

� C sup
[0,t]

(∥∥χB ′∥∥2
0 + ∥∥v′∥∥2

0 +
∥∥∥σ 1/2v′′

∥∥∥2

0

)

� M0 + Ct P

(
sup
[0,t]

E

)
.

This, together with (5.6), yields

sup
[0,t]

(
‖χσv‖2

3 + ‖χv‖2
2

)
� M0 + Ct P

(
sup
[0,t]

E

)
, (7.63)

since

sup
[0,t]

∥∥χv′′∥∥2
0 � sup

[0,t]

(
C
∥∥χσv′′∥∥2

0 + C
∥∥χσ ′v′′∥∥2

0

)
� M0 + Ct P

(
sup
[0,t]

E

)
.

7.2.3. Boundary estimates for ∂3
t v Consider Equation (7.4) with k = 3. As

before, we list here some estimates which will be used later. First, it follows from
(7.34), (7.58), (7.45) and (7.63) that

sup
[0,t]

(
‖σv‖2

3 + ‖v‖2
2 +

∥∥∥σ∂2
t v

∥∥∥2

2
+
∥∥∥∂2

t v

∥∥∥2

1

)
� M0 + Ct P

(
sup
[0,t]

E

)
. (7.64)

Moreover, we have the following estimates for ∂tv and ∂3
t v:

∥∥∥
(
σ 1/2∂tv

′, σ 1/2∂3
t v
)
(·, t)

∥∥∥2

L∞ +
∥∥∥
(
σ 3/2∂tv

′′, σ 3/2∂3
t v

′) (·, t)
∥∥∥2

L∞ � C E(t);
(7.65)

and those for J and L:
∥∥∥σ 1/2 (J1, σL1) (·, t)

∥∥∥2

L∞ � C P (E(t)) , ‖(J0, σL0) (·, t)‖2
L∞

+‖(J1, σL1) (·, t)‖2
0 + ‖(J2, σL2) (·, t)‖2

0

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.66)

The proofs of (7.65) and (7.66) will be given in the appendix.
We are now ready to do the estimates. First, (5.6) and (6.18) imply that

∥∥∥∥χσ 1/2
(

1

2
x∂5

t v−4
(σ

x

)′
∂3

t v

)
(t)

∥∥∥∥
2

0
�C(δ)

(∥∥∥(xσ)1/2∂5
t v(t)

∥∥∥2

0
+
∥∥∥∂3

t v(t)
∥∥∥2

0

)

� M0 + Ct P

(
sup
[0,t]

E

)
. (7.67)
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For H1 and H2, it follows from (3.9) and (7.51)1 that

∥∥∥χσ 1/2H1(t)
∥∥∥2

0
� C

{∥∥∥∥ x4

r4r ′ − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}

×
{∥∥∥σ 1/2∂3

t v

∥∥∥2

0
+
∥∥∥σ 1/2∂3

t v
′
∥∥∥2

0

}

� Ct P

(
sup
[0,t]

E

)
; (7.68)

∥∥∥χσ 1/2H2(t)
∥∥∥2

0
� C ‖σR0‖2

L∞

(∥∥∥σ 1/2∂3
t v

∥∥∥2

0
+
∥∥∥σ 1/2∂3

t v
′
∥∥∥2

0

)

+ C

{∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}

∥∥∥σ 3/2
(
∂3

t v, ∂
3
t v

′, ∂3
t v

′′)∥∥∥2

0

� Ct P

(
sup
[0,t]

E

)
. (7.69)

For the term involving I11 and I12, one can derive from (6.4) and (7.24) that

∥∥∥∥χσ 1/2 1

σ

[
σ 2(I11+ I12)

]′∥∥∥∥
2

0
�C

2∑
α=0

{∥∥∥χσ 1/2J2−α
(∣∣∂αt v

∣∣+ |∂αt v′|+|σ∂αt v′′|)
∥∥∥2

0

+
∥∥∥χσ 3/2L2−α

(|∂αt v| + |∂αt v′|)
∥∥∥2

0

}
.

Note that

2∑
α=0

∥∥σ 1/2J2−α(t)
(∣∣∂αt v′∣∣+∣∣σ∂αt v′′∣∣) (t)∥∥0

� ‖J0‖L∞
(∥∥∂2

t v
′∥∥

0+∥∥σ∂2
t v

′′∥∥
0

)+‖J1‖0
(∥∥σ 1/2∂tv

′(0)
∥∥

L∞ +∥∥σ 3/2∂tv
′′(0)

∥∥
L∞
)

+
∫ t

0

(∥∥∂2
t v

′∥∥
0+∥∥σ∂2

t v
′′∥∥

0

)
ds
∥∥σ 1/2J1

∥∥
L∞ +‖J2‖0

(∥∥v′∥∥
L∞ +∥∥σv′′∥∥

L∞
)

� M0+Ct P

(
sup
[0,t]

E

)
,

where we have used (3.9), (7.64)–(7.66) and ‖ · ‖L∞ � C‖ · ‖1. Similarly, one has

2∑
α=0

∥∥∥σ 3/2L2−α(t)∂αt v′(t)
∥∥∥2

0
�

2∑
α=0

∥∥∥σ 1/2 (σL2−α) ∂αt v′
∥∥∥2

0

� M0 + Ct P

(
sup
[0,t]

E

)
,
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and

2∑
α=0

(∥∥∥σ 1/2J2−α(t)∂αt v(t)
∥∥∥2

0
+
∥∥∥σ 3/2L2−α(t)∂αt v(t)

∥∥∥2

0

)

� C
(
‖J2‖2

0 + ‖σL2‖2
0

)
‖v‖2

L∞ + C
(
‖J1‖2

0 + ‖σL1‖2
0

)
‖∂tv‖2

L∞

+C
(
‖J0‖2

L∞ + ‖σL0‖2
L∞
) ∥∥∥∂2

t v

∥∥∥2

0

� M0 + Ct P

(
sup
[0,t]

E

)
,

where we have used (5.6), (5.7), (7.64), (7.66)2 and ‖ · ‖L∞ � C‖ · ‖1. Hence, it
holds that

∥∥∥∥χσ 1/2 1

σ

[
σ 2(I11 + I12)

]′
(t)

∥∥∥∥
2

0
� M0 + Ct P

(
sup
[0,t]

E

)
, (7.70)

Similarly, one can also obtain easily that

∥∥∥χσ 1/2(σ/x)(3I21 + I22)(t)
∥∥∥2

0
� M0 + Ct P

(
sup
[0,t]

E

)
. (7.71)

Finally, one has

∥∥∥∥χσ 1/2φx2∂4
t

(
x2

r2

)
(t)

∥∥∥∥
2

0
� C ‖xI3(t)‖2

0 � M0 + Ct P

(
sup
[0,t]

E

)
. (7.72)

Here (6.6) and (6.8) were used. Now, it follows from (7.4), (7.67)–(7.72), by ap-
plying (7.6) with β = χσ 1/2, that

sup
[0,t]

∥∥∥χσ 1/2 H0

∥∥∥2

0
� M0 + Ct P

(
sup
[0,t]

E

)
.

Thanks to (7.47) and (5.6), one can then get

sup
[0,t]

∥∥∥χσ 1/2 B
∥∥∥2

0
� 2 sup

[0,t]

∥∥∥χσ 1/2 H0

∥∥∥2

0
+C(δ) sup

[0,t]

∥∥∥∂3
t v

∥∥∥2

0
� M0+Ct P

(
sup
[0,t]

E

)
.

It then follows from (7.49)1 and (5.6) that

sup
[0,t]

(∥∥∥χσ 3/2∂3
t v

′′
∥∥∥2

0
+
∥∥∥χσ 1/2σ ′∂3

t v
′
∥∥∥2

0

)
� sup

[0,t]

(
4
∥∥∥χσ 1/2 B

∥∥∥2

0
+ C

∥∥∥σ∂3
t v

′
∥∥∥2

0

)

� M0 + Ct P

(
sup
[0,t]

E

)
.
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This, together with (5.6) and the Sobolev embedding (5.3), yields

sup
[0,t]

(∥∥∥χσ 3/2∂3
t v

′′
∥∥∥2

0
+
∥∥∥χσ 1/2∂3

t v
′
∥∥∥2

0
+
∥∥∥χ∂3

t v

∥∥∥2

1/2

)
� M0 + Ct P

(
sup
[0,t]

E

)
,

(7.73)

because of

sup
[0,t]

∥∥∥χσ 1/2∂3
t v

′
∥∥∥2

0
� sup

[0,t]

(
C
∥∥∥χσ 3/2∂3

t v
′
∥∥∥2

0
+ C

∥∥∥χσ 1/2σ ′∂3
t v

′
∥∥∥2

0

)

� sup
[0,t]

(
C
∥∥∥χσ∂3

t v
′
∥∥∥2

0
+ C

∥∥∥χσ 1/2σ ′∂3
t v

′
∥∥∥2

0

)

� M0 + Ct P

(
sup
[0,t]

E

)

and

sup
[0,t]

∥∥χ∂3
t v
∥∥2

1/2 � sup
[0,t]

(
C
∥∥σ 1/2∂3

t v
∥∥2

0+C
∥∥χσ 1/2∂3

t v
′∥∥2

0

)
� M0+Ct P

(
sup
[0,t]

E

)
.

7.2.4. Boundary estimates for ∂tv Consider Equation (7.4) with k = 1. Our
goal is to bound

∥∥χσ 1/2 B ′∥∥
0. It follows from (5.6) and (7.73) that∥∥∥∥χσ 1/2

(
1

2
x∂3

t v − 4
(σ

x

)′
∂tv

)′
(t)

∥∥∥∥
2

0

� C
∥∥∥∂3

t v(t)
∥∥∥2

0
+
∥∥∥χσ 1/2∂3

t v
′(t)
∥∥∥2

0
+ C(δ) ‖∂tv(t)‖2

1 � M0 + Ct P

(
sup
[0,t]

E

)
.

(7.74)

For H1 and H2, it follows from (3.9), (5.5), (5.7), (7.51)1 and (7.65) that

∥∥∥χσ 1/2H′
1(t)

∥∥∥2

0
� C

{∥∥∥∥ x4

r4r ′ − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}

×
(

‖∂tv‖2
1 + ∥∥∂tv

′∥∥2
0 +

∥∥∥σ 1/2∂tv
′′
∥∥∥2

0

)

+C ‖R0‖2
0

{∥∥∥σ 1/2∂tv
′
∥∥∥2

L∞ + ‖∂tv‖2
L∞

}

� Ct P

(
sup
[0,t]

E

)
(7.75)

and∥∥∥χσ 1/2H′
2(t)

∥∥∥2

0
� C ‖R0‖2

0

{
‖∂tv‖2

L∞ +
∥∥∥σ 1/2∂tv

′
∥∥∥2

L∞ +
∥∥∥σ 3/2∂tv

′′
∥∥∥2

L∞

}

+C
(
‖R0‖2

0 ‖σR0‖2
L∞ + ‖σR1‖2

0

){
‖∂tv‖2

L∞ +
∥∥∥σ 1/2∂tv

′
∥∥∥2

L∞

}
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+C

{∥∥∥∥ x3

r3r ′2 − 1

∥∥∥∥
2

L∞
+
∥∥∥∥ x2

r2r ′3 − 1

∥∥∥∥
2

L∞

}{∥∥∥σ 1/2∂tv
′′
∥∥∥2

0
+
∥∥∥σ 3/2∂tv

′′′
∥∥∥2

0

+‖∂tv‖2
1

}
� Ct P

(
sup
[0,t]

E

)
. (7.76)

For the term involving I11 and I12, it follows from (6.4), (7.24) and (7.35) that
∥∥∥∥χσ 1/2

{
1

σ

[
σ 2(I11+ I12)

]′}′∥∥∥∥
0

� C
∥∥χσ 3/2Q (|v/x |+∣∣v′∣∣)∥∥

0+C
∥∥χσ 1/2L0

(|v/x |+∣∣v′∣∣+|σ(v/x)′|+∣∣σv′′∣∣)∥∥
0

+ C
∥∥χσ 1/2J0

(|v/x |+|v′|+|(v/x)′|+∣∣v′′∣∣+|σ(v/x)′′|+∣∣σv′′′∣∣)∥∥
0

� C
∥∥χσ 3/2Q (|v|+∣∣v′∣∣)∥∥

0+C
∥∥χσ 1/2L0

(|v|+∣∣v′∣∣+∣∣σv′′∣∣)∥∥
0

+ C
∥∥χσ 1/2J0

(|v|+|v′|+∣∣v′′∣∣+∣∣σv′′′∣∣)∥∥
0 .

Note that one can derive from (7.64) and (7.51)1,2 that

‖χL0(t)‖2
0 � C (‖v(t)‖2 + ‖R0(t)‖0 ‖J0(t)‖L∞)2 � M0 + Ct P

(
sup
[0,t]

E

)
,

‖χσQ(t)‖2
0 � C ‖v(t)‖2

2 + C
∥∥σv′′′(t)

∥∥2
0 + C ‖R0(t)‖2

0 ‖σL0(t)‖2
L∞

+C (‖σR1(t)‖0 + ‖σR0(t)‖L∞ ‖R0(t)‖0)
2 ‖J0(t)‖2

L∞

� M0 + Ct P

(
sup
[0,t]

E

)
;

which implies, due to (7.64) and (7.66)2, that

‖χσQ(t)‖2
0 + ‖χL0(t)‖2

0 + ‖χJ0(t)‖2
L∞ + ‖σv(t)‖2

3 + ‖v(t)‖2
2

� M0 + Ct P

(
sup
[0,t]

E

)
.

So, we obtain

∥∥∥∥χσ 1/2
{

1

σ

[
σ 2(I11+ I12)

]′}′
(t)

∥∥∥∥
2

0

� C ‖χσQ‖2
0 ‖v‖2

2+C ‖χL0‖0
(‖v‖2

2+‖σv‖2
3

)+C ‖χJ0‖2
L∞
(‖v‖2

2+‖σv‖2
3

)

� M0+Ct P

(
sup
[0,t]

E

)
, (7.77)

where we have used the fact that ‖ · ‖L∞ � C‖ · ‖1. Similarly, one can show that

∥∥∥χσ 1/2 [(σ/x)(3I21 + I22)]
′ (t)

∥∥∥2

0
� M0 + Ct P

(
sup
[0,t]

E

)
. (7.78)
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It follows from (5.6), (7.25)1 and (7.65) that

∥∥∥∥∥χσ 1/2
[
φx2∂2

t

(
x2

r2

)]′
(t)

∥∥∥∥∥
2

0

� C
(‖∂tv‖1 + ‖v‖L∞ ‖v‖0 + ‖v‖L∞‖v′‖0

)2 + C‖R0‖2
0

(‖∂tv‖L∞ + ‖v‖2
L∞
)2

� C
(‖∂tv‖1 + ‖v‖2

2

)2 + C‖R0‖2
0

(‖∂tv‖1 + ‖v‖2
1

)2 � M0 + Ct P

(
sup
[0,t]

E

)
.

(7.79)

It yields from (7.4), (7.7) and (7.74)–(7.79) that

sup
[0,t]

∥∥∥σ 1/2χH ′
0

∥∥∥2

0
� M0 + Ct P

(
sup
[0,t]

E

)
,

which implies

sup
[0,t]

∥∥∥σ 1/2χB ′
∥∥∥2

0
� sup

[0,t]

(
2
∥∥∥σ 1/2χH ′

0

∥∥∥2

0
+ C(δ) ‖∂tv‖2

1

)
� M0 + Ct P

(
sup
[0,t]

E

)
,

due to (7.47) and (5.6). We can then obtain, using (7.49)3 and (5.6), that

sup
[0,t]

(∥∥∥χσ 3/2∂tv
′′′
∥∥∥2

0
+
∥∥∥χσ 1/2σ ′∂tv

′′
∥∥∥2

0

)

� sup
[0,t]

(
4
∥∥∥χσ 1/2 (B ′ − 2σ ′′∂tv

′)∥∥∥2

0
+ C

∥∥σ∂tv
′′∥∥2

0

)

� C sup
[0,t]

(∥∥∥χσ 1/2 B ′
∥∥∥2

0
+ ∥∥∂tv

′∥∥2
0 + ∥∥σ∂tv

′′∥∥2
0

)
� M0 + Ct P

(
sup
[0,t]

E

)
.

This, together with (5.6) and the Sobolev embedding (5.2), yields

sup
[0,t]

(∥∥∥χσ 3/2∂tv
′′′
∥∥∥2

0
+
∥∥∥χσ 1/2∂tv

′′
∥∥∥2

0
+ ‖χ∂tv‖2

3/2

)
� M0 + Ct P

(
sup
[0,t]

E

)
.

(7.80)

8. Existence for the Case γ = 2

Summing over inequalities (6.18), (7.33), (7.34), (7.44), (7.45), (7.58), (7.63),
(7.73) and (7.80), we find that

sup
[0,t]

E � M0 + Ct P

(
sup
[0,t]

E

)
, t ∈ [0, T ];
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which implies that for small T ,

sup
t∈[0,T ]

E(t) � 2M0. (8.1)

With this μ-independent estimate, one can use the standard compactness argument
[7] to show the existence of the solutions to the problem (3.7) for some time T .

9. Case 1 < γ < 2

In this section, we use similar arguments to those used to deal with the case
for γ = 2 to handle the case for general γ . It should be noted that the value of γ
determines the rate of degeneracy near the vacuum boundary, sinceρ0 appears as the
coefficient in front of ∂tv in (3.7) and the physical vacuum condition indicates that

ρ0(x) ∼ (1 − x)
1

γ−1 as x → 1. Thus the smaller value of γ is, the more degenerate
Equation (3.7) is near the vacuum boundary. Although the rate of degeneracy near
the origin is the same no matter what γ is, we need higher order derivatives in the
energy functional to control the H2-norm of v (and thus the C1-norm of v) for
smaller γ , since we have to match the norms in the intermediate region.

We first define the higher-order energy functional for 1 < γ < 2. Set

ν := (2 − γ )/(2γ − 2) > 0, l := 3 + 2	1/2 + ν
,
where 	·
 is the ceiling function defined for any real number q � 0 as

	q
 := min{m : m � q, m is an integer}.
Define

Ẽ(v, t) :=
∥∥∥σ(σ/x)ν∂ l

t v
′(·, t)

∥∥∥2

0
+
∥∥∥(σ/x)1+ν∂ l

t v(·, t)
∥∥∥2

0

+
l+1

2∑
j=1

⎧⎨
⎩
∥∥∥σ 3/2+ν∂ l−2 j+1

t ∂
j+1
x v(·, t)

∥∥∥2

0
+

j∑
i=0

∥∥∥σ 1/2+ν∂ l−2 j+1
t ∂ i

xv(·, t)
∥∥∥2

0

⎫⎬
⎭

+
l−1

2∑
j=1

⎧⎨
⎩
∥∥∥σ 2+ν∂ l−2 j

t ∂
j+2
x v(·, t)

∥∥∥2

0
+

j∑
i=−1

∥∥∥σ 1+ν∂ l−2 j
t ∂ i+1

x v(·, t)
∥∥∥2

0

⎫⎬
⎭

+
l+1

2∑
j=1

⎧⎨
⎩
∥∥∥ζσ∂ l−2 j+1

t v(·, t)
∥∥∥2

j+1
+
∥∥∥ζ∂ l−2 j+1

t V (·, t)
∥∥∥2

j
+
∥∥∥∥∥ζ
∂

l−2 j+1
t v

x
(·, t)

∥∥∥∥∥
2

j−1

⎫⎬
⎭

+
l−1

2∑
j=1

⎧⎨
⎩
∥∥∥ζσ∂ l−2 j

t v(·, t)
∥∥∥2

j+2
+
∥∥∥ζ∂ l−2 j

t v(·, t)
∥∥∥2

j+1
+
∥∥∥∥∥ζ
∂

l−2 j
t v

x
(·, t)

∥∥∥∥∥
2

j

⎫⎬
⎭, (9.1)

where, as before,

ζ = 1 on [0, δγ ], ζ = 0 on [2δγ , 1], |ζ ′| � s0/δγ .
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Here δγ is a given constant depending on ρ0 and γ which will be determined in
(9.9) later. It follows from the Hardy type embedding for the weighted Sobolev
spaces (5.2) that

‖v‖2
2 � ‖v‖2

l+1
2 −

(
1
2 +ν

) � C

l+1
2∑

i=0

∥∥∥σ 1/2+ν∂ i
xv

∥∥∥2

0
� C Ẽ, (9.2)

which indicates that the high-order energy functional Ẽ is suitable for the study of
the physical vacuum problem (3.7) when γ ∈ (1, 2). In fact, the norm chosen in
(9.1) is in the same spirit of but slightly different from that in (3.9) for γ = 2. Since
the energy estimate gives the bound of

∥∥∥√xσ(σ/x)ν∂ l+1
t v(t)

∥∥∥
0
+
∥∥∥σ(σ/x)ν∂ l

t v
′(t)
∥∥∥

0
+
∥∥∥(σ/x)1+ν∂ l

t v(t)
∥∥∥

0
,

from which we can derive the bound of ‖∂ l
t v‖0 for γ = 2. But for γ ∈ (1, 2),

we cannot improve the spatial regularity as that for γ = 2 due to ν > 0 (or
equivalently, the higher degeneracy of the equation). So, the norm chosen for ∂ l−2i

t v

(i = 1, 2, . . .) is based on ‖∂ l
t v‖0 for γ = 2 and on

∥∥σ(σ/x)ν∂ l
t v

′(t)
∥∥

0 for γ ∈
(1, 2). This is the difference between (3.9) and (9.1).

For μ > 0, we use the following parabolic approximation to (3.7)1:

xσ∂tv +
[
σ 2
( x

r

)2γ−2
(

1

r ′

)γ ]′
− 2

σ 2

x

( x

r

)2γ−1
(

1

r ′

)γ−1

+ φσ x2
(

x2

r2

)

+2 − γ

γ − 1
σ x

(σ
x

)′ ( x

r

)2γ−2
(

1

r ′

)γ
= γμ

x

[
(xσ)2

(σ
x

)2ν (v
x

)′]′
, (9.3)

which is the general form of (4.2)1 for γ = 2. This approximation matches the
energy estimates and elliptic estimates in the sense that one can derive the uniform
estimates with respect to μ. The existence and uniqueness of the solution to the
approximate parabolic problem with the same initial and boundary data as in (3.7)
can be checked easily as before. To reduce the length of this paper, we will only
derive the a priori estimates that guarantees the existence of the solution to problem
(3.7).

9.1. Energy estimates

As for γ = 2, taking the (k + 1)−th time derivative of (9.3) yields

xσ∂k+2
t v −

{
σ 2

[
(2γ − 2)

( x

r

)2γ−1
(

1

r ′

)γ
∂k

t v

x
+ γ

( x

r

)2γ−2
(

1

r ′

)γ+1

∂k
t v

′
]}′

+2
σ 2

x

[
(2γ − 1)

( x

r

)2γ
(

1

r ′

)γ−1
∂k

t v

x
+ (γ − 1)

( x

r

)2γ−1
(

1

r ′

)γ
∂k

t v
′
]

−2νσ x
(σ

x

)′
[
(2γ − 2)

( x

r

)2γ−1
(

1

r ′

)γ
∂k

t v

x
+ γ

( x

r

)2γ−2
(

1

r ′

)γ+1

∂k
t v

′
]
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= {
σ 2 [(2γ − 2)W11 + γW12

]}′ − 2
σ 2

x

[
(2γ − 1)W21 + (γ − 1)W22

]

+2νσ x
(σ

x

)′ [
(2γ − 2)W11 + γW12

]− φσ x2∂k+1
t

(
x2

r2

)
, (9.4)

where

W11 = ∂k
t

(( x

r

)2γ−1
(

1

r ′

)γ
v

x

)
−
( x

r

)2γ−1
(

1

r ′

)γ
∂k

t v

x
,

W12 = ∂k
t

(( x

r

)2γ−2
(

1

r ′

)γ+1

v′
)

−
( x

r

)2γ−2
(

1

r ′

)γ+1

∂k
t v

′,

W21 = ∂k
t

(( x

r

)2γ
(

1

r ′

)γ−1
v

x

)
−
( x

r

)2γ
(

1

r ′

)γ−1
∂k

t v

x
,

W22 = ∂k
t

(( x

r

)2γ−1
(

1

r ′

)γ
v′
)

−
( x

r

)2γ−1
(

1

r ′

)γ
∂k

t v
′.

Comparing it with (6.1) for γ = 2, we have to deal with an additional term, the last
term on the left-hand side of (9.4), which does not appear in (6.1). To do so, we
introduce a weight (σ/x)2ν (or equivalently, ρ2−γ

0 ), which is 1 for γ = 2. Multiply
(9.4) with k = l by (σ/x)2ν∂ l+1

t v and integrate the resulting equation with respect
to time and space to get

∥∥∥√xσ(σ/x)ν∂ l+1
t v(t)

∥∥∥2

0
+
∥∥∥σ(σ/x)ν∂ l

t v
′(t)
∥∥∥2

0
+
∥∥∥(σ/x)1+ν∂ l

t v(t)
∥∥∥2

0

� M̃0 + Ct P

(
sup
[0,t]

Ẽ

)
, (9.5)

provided that t is small. Here M̃0 = P(Ẽ(0, v)) is determined by the initial density
ρ0. It should be noted that (9.5) is the energy estimate parallel to (6.18) for γ = 2.

Based on this energy estimate, we can derive the higher-order spatial derivative
of ∂ l−1

t v and ∂ l−2
t v associated with weights, respectively. Inductively, the weighted

spatial derivative of ∂ l−2i+1
t v and ∂ l−2i

t v (i = 2, 3, . . .) can then be achieved.
Next, we use elliptic estimates to obtain the other norms in the higher-order energy
functional. This is done by the interior and boundary estimates.

9.2. Elliptic estimates: interior part

To obtain the interior estimates, the key is to choose a suitable cut-off function
to separate the whole region into interior and boundary regions such that the energy
norms can be matched in the intermediate regions. For this purpose, note that

1

σ

{
σ 2

[
(2γ − 2)

∂k
t v

x
+ γ ∂k

t v
′
]}′

−2
σ

x

[
(2γ−1)

∂k
t v

x
+(γ−1)∂k

t v
′
]

+2γ νx
(σ

x

)′
∂k

t v
′

= γ H0 + (6γ − 4)(σ/x)′∂k
t v + 2γ νx

(σ
x

)′
∂k

t v
′



816 Tao Luo, Zhouping Xin & Huihui Zeng

= γ
[

H0 + 2νx(σ/x)′∂k
t v

′ − 2ν(σ/x)′∂k
t v
]

+ (6γ − 4 + 2νγ )(σ/x)′∂k
t v

= γ (xσ)−1
[
(xσ)2 (σ/x)2ν

(
∂k

t v/x
)′]′

+ (6γ − 4 + 2νγ )(σ/x)′∂k
t v,

where H0 is defined in (7.3). Then Equation (9.4) reads

γ

[
H0 + 2νx

(σ
x

)′
∂k

t v
′ − 2ν

(σ
x

)′
∂k

t v

]

= x∂k+2
t v − (6γ − 4 + 2νγ )

(σ
x

)′
∂k

t v

− 1

σ

{
σ 2 [(2γ − 2)W11 + γW12

]}′ + 2
σ

x

[
(2γ − 1)W21 + (γ − 1)W22

]

−2νx
(σ

x

)′ [
(2γ − 2)W11 + γW12

]+ φx4∂k+1
t

(
1

r2

)

− 1

σ

{
σ 2
[
(2γ − 2)

[( x

r

)2γ−1
(

1

r ′

)γ
− 1

]
∂k

t v

x

+γ
[( x

r

)2γ−2
(

1

r ′

)γ+1

− 1

]
∂k

t v
′
]}′

+2
σ

x

[
(2γ − 1)

[( x

r

)2γ
(

1

r ′

)γ−1

− 1

]
∂k

t v

x

+(γ − 1)

[( x

r

)2γ−1
(

1

r ′

)γ
− 1

]
∂k

t v
′
]

−2νx
(σ

x

)′ [
(2γ − 2)

( x

r

)2γ−1
(

1

r ′

)γ
∂k

t v

x

+γ
[( x

r

)2γ−2
(

1

r ′

)γ+1

− 1

]
∂k

t v
′
]
. (9.6)

In the interior region, one can see easily that the main part of the left-hand side of
(9.6) is H0. So, we analyze H0 to determine the length of the interior region, δγ .
Taking the i-th (i � 2) spatial derivative of H0 (i = 0, 1 has been treated in the
case of γ = 2) leads to

H (i)
0 −H0i =σ f (i+2) + (i + 2)σ ′ f (i+1)−2σ ′

(
f

x

)(i)
=: H̃0i , where f =∂k

t v

(9.7)

and

H0i =
i∑

α=2

Ci
ασ

(α) f (i+2−α) + 2
i∑

α=1

Ci
ασ

(α+1) f (i+1−α)

−2
i∑

α=1

Ci
ασ

(α+1)
(

f

x

)(i−α)
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is the lower-order term. Here g(i) denotes ∂ i
xg(x, t) for any function g(x, t). Note

that

f ( j) =
(

x
f

x

)( j)

= x

(
f

x

)( j)

+ j

(
f

x

)( j−1)

, j = 1, 2, . . . .

Then H̃0i (i = 2, 3, . . .) can be rewritten as

H̃0i =σ xg′′+(i + 2) (σ x)′ g′+i(i +3)σ ′g, where g =
(

f

x

)(i)
=
(
∂k

t v

x

)(i)
;

or equivalently,

H̃0i − (i + 2)
(
σ ′x − σ

)
g′ = σ xg′′ + 2(i + 2)σg′ + i(i + 3)σ ′g.

Therefore, we obtain that

∥∥ζ H̃0i − (i + 2)ζ
(
σ ′x − σ

)
g′∥∥2

0 = ∥∥ζσ xg′′∥∥2
0 + 4(i + 2)2

∥∥ζσg′∥∥2
0

+i2(i + 3)2
∥∥ζσ ′g

∥∥2
0 + 4(i + 2)

∫
ζσ xg′′ζσg′ dx

+2i(i + 3)
∫
ζσ xg′′ζσ ′g dx + 4i(i + 2)(i + 3)

∫
ζσg′ζσ ′g dx,

and
∥∥ζσ xg′′∥∥2

0 + 2
[
(i + 1)2 + 1

] ∥∥ζσg′∥∥2
0 + i(i + 3)

(
i2 + i − 2

) ∥∥ζσ ′g
∥∥2

0

= ∥∥ζ H̃0i − (i + 2)ζ
(
σ ′x − σ

)
g′∥∥2

0

+4(i + 2)

[∫
ζ ζ ′x

∣∣σg′∣∣2 dx +
∫
ζ 2σ(σ ′x − σ)

∣∣g′∣∣2 dx

]

−2i(i + 3)

[∫
ζ 2σ

(
σ ′x − σ

)
gg′′ dx − 2

∫
ζ ζ ′σ 2gg′ dx

]

+2i(i + 2)(i + 3)

[
2
∫
ζ ζ ′σσ ′g2 dx +

∫
ζ 2σσ ′′g2 dx

]

� 2
∥∥ζ H̃0i

∥∥2
0 + C(i,m0,m1)δ

[∥∥ζσ xg′′∥∥2
0 + ∥∥ζσg′∥∥2

0 + ‖ζg‖2
0

]

+C(i,m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx .

So, there exist constants δ̄i = δ̄i (i,m0,m1) (i = 2, 3, . . .) such that for δ �
min{δ0/2, δ̄i },

1

2

∥∥ζσ xg′′∥∥2
0 +

[
(i + 1)2 + 1

] ∥∥ζσg′∥∥2
0 + 1

2
i(i + 3)

(
i2 + i − 2

)
m2

0 ‖ζg‖2
0

� 2
∥∥ζ H̃0i

∥∥2
0 + C(i,m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx,
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where one has used the fact σ ′(x) � m0 on [0, δ0]. Consequently,

∥∥ζσ xg′′∥∥2
0 + ∥∥ζσg′∥∥2

0 + ‖ζg‖2
0 � C(i,m0)

∥∥ζ H̃0i
∥∥2

0

+C(i,m0, s0)

∫ 2δ

δ

[
(σg′)2 + g2

]
dx .

It then follows from (9.7) that, for each i � 2,

∥∥∥∥ζσ
(
∂k

t v
)(i+2)

∥∥∥∥
2

0
+
∥∥∥∥ζ
(
∂k

t v
)(i+1)

∥∥∥∥
2

0
+
∥∥∥∥∥ζ
(
∂k

t v

x

)(i)∥∥∥∥∥
2

0

� C(i,m0)

[∥∥∥ζH (i)
0

∥∥∥2

0
+ ‖ζH0i‖2

0

]

+C(i,m0, s0)

∫ 2δ

δ

⎡
⎣
∣∣∣∣
(
∂k

t v
)(i+1)

∣∣∣∣
2

+
∣∣∣∣∣
(
∂k

t v

x

)(i)∣∣∣∣∣
2
⎤
⎦ dx . (9.8)

Choose

δγ = min
{
δ0/2, δ1, δ2, δ3, δ̄2, . . . , δ̄ l−1

2

}
. (9.9)

(Thus δγ depends on the initial density ρ0(x) and γ .) With this δγ , we can derive
from (9.8), (9.6) and (9.5) that

l+1
2∑

j=1

⎧⎨
⎩
∥∥∥ζσ∂ l−2 j+1

t v

∥∥∥2

j+1
+
∥∥∥ζ∂ l−2 j+1

t v

∥∥∥2

j
+
∥∥∥∥∥ζ
∂

l−2 j+1
t v

x

∥∥∥∥∥
2

j−1

⎫⎬
⎭ (t)

+
l−1

2∑
j=1

⎧⎨
⎩
∥∥∥ζσ∂ l−2 j

t v

∥∥∥2

j+2
+
∥∥∥ζ∂ l−2 j

t v

∥∥∥2

j+1
+
∥∥∥∥∥ζ
∂

l−2 j
t v

x

∥∥∥∥∥
2

j

⎫⎬
⎭ (t)

� M̃0 + Ct P

(
sup
[0,t]

Ẽ

)
. (9.10)

This completes the interior estimates. Next, we show the boundary estimates using
the same argument as that in Section 7.2.

9.3. Elliptic estimates: boundary part

As before, we can introduce a cut-off function as

χ = 1 on [δγ , 1], χ = 0 on [0, δγ /2], |χ ′| � s0/δγ ,

for some constant s0, where δγ is given by (9.9). Note that in the boundary region,
x ∈ [δγ /2, 1], the main part of the left-hand side of (9.6) is

Bγ := σ∂k
t v

′′ + (2 + 2ν)σ ′∂k
t v

′.
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Taking the i-th (i � 0) spatial derivative of Bγ yields

B(i)γ − Bγ i = σ∂k
t v
(i+2) + (i + 2 + 2ν)σ ′∂k

t v
(i+1) =: B̃γ i ,

where

Bγ i =
i∑

α=2

Ci
ασ

(α)∂k
t v
(i+2−α) + 2(1 + ν)

i∑
α=1

Ci
ασ

(α+1)∂k
t v
(i+1−α)

denotes the lower-order term. Since for any function h = h(x, t) and integer i � 0,
it holds that
∥∥∥χσ 3/2+νh′

∥∥∥2

0
+
∥∥∥χσ 1/2+νσ ′h

∥∥∥2

0
� 4

∥∥∥χσ 1/2+ν (σh′ + (i + 2 + 2ν)σ ′h
)∥∥∥2

0

+C
∥∥∥σ 1+νh

∥∥∥2

0
,

∥∥∥χσ 2+νh′
∥∥∥2

0
+
∥∥∥χσ 1+νσ ′h

∥∥∥2

0
� 4

∥∥∥χσ 1+ν (σh′ + (i + 3 + 2ν)σ ′h
)∥∥∥2

0

+C
∥∥∥σ 3/2+νh

∥∥∥2

0
;

then we have

l+1
2∑

j=1

{∥∥∥χσ 3/2+ν∂ l−2 j+1
t ∂

j+1
x v

∥∥∥2

0
+
∥∥∥χσ 1/2+ν∂ l−2 j+1

t ∂
j
x v

∥∥∥2

0

}

� M̃0 + Ct P

(
sup
[0,t]

Ẽ

)

l−1
2∑

j=1

{∥∥∥χσ 2+ν∂ l−2 j
t ∂

j+2
x v

∥∥∥2

0
+
∥∥∥χσ 1+ν∂ l−2 j

t ∂
j+1
x v

∥∥∥2

0

}

� M̃0 + Ct P

(
sup
[0,t]

Ẽ

)
. (9.11)

This yields the desired is elliptic estimates on the boundary.

9.4. Existence for case 1 < γ < 2

It follows from (9.1), (9.5), (9.10) and (9.11) that

Ẽ(t) � M̃0 + Ct P

(
sup

s∈[0,t]
Ẽ(s)

)
, t ∈ [0, T ];

which implies that for small T ,

sup
t∈[0,T ]

Ẽ(t) � 2M̃0.
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With this a priori estimate, one can then obtain the local existence of smooth so-
lutions in the functional space for which supt∈[0,T ] Ẽ(v, t) < ∞ provided that
Ẽ(v, 0) < ∞ (Ẽ(v, 0) is determined by the initial data and their spatial derivatives
via the equation), by using the parabolic approximation in (9.3) in a similar way as
before.

10. Case γ > 2

In this section, we deal with the case when γ > 2, which is easier than the case
when 1 < γ < 2 because the rate of degeneracy of Equation (3.7)1 near vacuum
states is lower and less derivatives are needed to control the H2-norm of v. Set

ν = (2 − γ )(2γ − 2) ∈ (−1/2, 0).

The higher-order energy norm is chosen as follows:

Ê(v, t) =
∥∥∥σ(σ/x)ν∂4

t v
′(·, t)

∥∥∥2

0
+
∥∥∥(σ/x)1+ν∂4

t v(·, t)
∥∥∥2

0

+
2∑

j=1

⎧⎨
⎩
∥∥∥σ 3/2+ν∂5−2 j

t ∂
j+1
x v(·, t)

∥∥∥2

0
+

j∑
i=0

∥∥∥σ 1/2+ν∂5−2 j
t ∂ i

xv(·, t)
∥∥∥2

0

⎫⎬
⎭

+
2∑

j=1

⎧⎨
⎩
∥∥∥σ 2+ν∂4−2 j

t ∂
j+2
x v(·, t)

∥∥∥2

0
+

j∑
i=−1

∥∥∥σ 1+ν∂4−2 j
t ∂ i+1

x v(·, t)
∥∥∥2

0

⎫⎬
⎭

+
2∑

j=1

⎧⎨
⎩
∥∥∥ζσ∂5−2 j

t v(·, t)
∥∥∥2

j+1
+
∥∥∥ζ∂5−2 j

t v(·, t)
∥∥∥2

j
+
∥∥∥∥∥ζ
∂

5−2 j
t v

x
(·, t)

∥∥∥∥∥
2

j−1

⎫⎬
⎭

+
2∑

j=1

⎧⎨
⎩
∥∥∥ζσ∂4−2 j

t v(·, t)
∥∥∥2

j+2
+
∥∥∥ζ∂4−2 j

t v(·, t)
∥∥∥2

j+1
+
∥∥∥∥∥ζ
∂

4−2 j
t v

x
(·, t)

∥∥∥∥∥
2

j

⎫⎬
⎭ .

(10.1)

Here ζ is defined in (7.8). It follows from Sobolev embedding (5.2) that

‖v‖2
2 � ‖v‖2

2−ν �
3∑

i=0

‖σ 1+ν∂ i
xv‖0 � C Ê .

As before, we can show

Ê(t) � P(Ê(0))+ Ct P

(
sup

s∈[0,t]
Ê(s)

)
, t ∈ [0, T ];

which implies that for small T ,

sup
t∈[0,T ]

Ê(t) � 2P(Ê(0)).

With the above estimates, one can then obtain the local existence of smooth solutions
in the functional space supt∈[0,T ] Ê(t) < ∞.
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11. Uniqueness of Spherically Symmetric Motions for the
Three-Dimensional Compressible Euler Equations

For the free-boundary problem of the compressible Euler equations without
self-gravitation, we can prove that the uniqueness theorem is true for all values of
γ > 1 in a natural functional space for the spherically symmetric motion. (Indeed,
a similar argument can be extended to the general three-dimensional motion.) In
this case, problem (3.7) becomes

ρ0

( x

r

)2
∂tv + ∂x

[(
x2

r2

ρ0

∂xr

)γ]
= 0 in I × (0, T ],

v(0, t) = 0 on {x = 0} × (0, T ],
v(x, 0) = u0(x) on I × {t = 0},

(11.1)

where the initial densityρ0 satisfies (3.3). For problem (11.1), we have the following
result:

Theorem 11.1. (Uniqueness for Euler equations) Suppose γ > 1. Let v1 and v2 be
two solutions to the problem (11.1) on [0, T ] for T > 0 with

ri (x, t) = x +
∫ t

0
vi (x, s) ds, i = 1, 2.

If there exist some positive constants w1, w2 and w3 such that

w1 � r ′
i (x, t)�w2 and |v′

i (x, t)|�w3, (x, t) ∈ [0, 1] × [0, T ], i = 1, 2,

(11.2)

then

v1(x, t) = v2(x, t), (x, t) ∈ [0, 1] × [0, T ] (11.3)

provided that v1(x, 0) = v2(x, 0) for x ∈ [0, 1].
The solution to the spherically symmetric problem of Euler equations in Eulerian

coordinates can be obtained from the solution to (11.1). Denote this solution by
(ρ, u)(r, t) (0 � r � R(t), 0 � t � T ). For (x, t) ∈ R

3 × [0, T ] with |x| < R(t),
we set

ρ(x, t) = ρ(|x|, t), u(x, t) = u(|x|, t)x/|x|. (11.4)

Then (ρ,u, R(t)) is a solution of the following free boundary problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0, 0 < |x| < R(t), t ∈ [0, T ],
∂t (ρu)+ div(ρu ⊗ u)+ ∇x(ρ

γ ) = 0, 0 < |x| < R(t), t ∈ [0, T ],
ρ > 0, 0 � |x| < R(t), t ∈ [0, T ],
ρ = 0, |x| = R(t), t ∈ [0, T ],
u(0, t) = 0, t ∈ [0, T ],
V(∂BR(t)) = u|∂BR(t) · n, t ∈ [0, T ],
(ρ,u)(x, 0) = (ρ0,u0)(|x|), |x| � R0,

(11.5)



822 Tao Luo, Zhouping Xin & Huihui Zeng

where R0 > 0 is a constant, BR(t) = {x ∈ R
3 : |x| < R(t)}, V(∂BR(t)) and

n represent, respectively, the normal velocity of ∂BR(t) and exterior unit normal
vector to ∂BR(t).

As a direct consequence of Theorem 11.1, we have

Corollary 11.2. Let γ > 1. The solutions (ρ,u, R(t)) of the form (11.4) to the free
boundary problem (11.5) are unique provided they satisfy the following regularity
conditions:

R(t) ∈ C1 ([0, T ]) and (ρ,u) ∈ C1 ∩ W 1,∞(
{(x, t) ∈ R

3 × [0, T ] : 0 < |x| � R(t)}
)
.

Proof of Theorem 11.1. We first present the proof for the case of γ = 2 for
simplicity. When γ = 2, Equation (11.1)1 reduces to

xσ∂2
t r +

[
σ 2 x2

r2r ′2

]′
− 2

σ 2

x

x3

r3r ′ = 0 in I × (0, T ].

Set

θ(x, t) = r2(x, t)− r1(x, t),

then

xσ∂2
t θ−

[
σ 2

(
x2

r2
1 r ′

1
2 − x2

r2
2 r ′

2
2

)]′
+2

σ 2

x

(
x3

r3
1r ′

1

− x3

r3
2r ′

2

)
=0 in I × (0, T ].

(11.6)

Multiplying (11.6) by ∂tθ and integrating the resulting equation with respect to
x , we have

1

2

d

dt

∫
xσ (∂tθ)

2 dx = −
∫
σ 2

(
x2

r2
1 r ′

1
2 − x2

r2
2 r ′

2
2

) (
∂tθ

′) dx

−2
∫
σ 2

x

(
x3

r3
1r ′

1

− x3

r3
2r ′

2

)
(∂tθ) dx .

Note that

x2

r2
1 r ′

1
2 − x2

r2
2 r ′

2
2 = A1θ

′ + A2(θ/x) and
x3

r3
1r ′

1

− x3

r3
2r ′

2

= A3θ
′ + A4(θ/x),

where

A1 =
(

x
r1

)2 (
1
r ′

1
+ 1

r ′
2

)
1

r ′
1r ′

2
, A2 =

(
1
r ′

2

)2 (
x
r1

+ x
r2

)
x
r1

x
r2
,

A3 =
(

x
r1

)3
1

r ′
1r ′

2
, A4 = 1

r ′
2

[(
x
r1

)2 + x
r1

x
r2

+
(

x
r2

)2
]

x
r1

x
r2
.
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Since ri (0, t) = 0 and vi (0, t) = 0 (i = 1, 2) for t ∈ [0, T ], the bounds in (11.2)
give the following bounds:

w1 � ri (x, t)/x � w2 and |vi (x, t)/x | � w3,

(x, t) ∈ [0, 1] × [0, T ], i = 1, 2.

Then, using the integration by parts and the Cauchy inequality, we can get that

1

2

d

dt

∫ {
xσ (∂tθ)

2 + σ 2
[
A1(θ

′)2 + 2A2(θ/x)θ ′ + 2A4(θ/x)2
]}

dx

=
∫
σ 2
[

1

2
(∂tA1)(θ

′)2 + (∂tA2)(θ/x)θ ′ + (∂tA4)(θ/x)2
]

dx

+
∫
σ 2(A2 − 2A3)(∂tθ/x)θ ′ dx

� C(w1, w2, w3)

∫
σ 2
[
(θ ′)2 + (θ/x)2

]
dx+2w3

∫
σ 2 |A2−2A3|

∣∣θ ′∣∣ dx,

(11.7)

where C(w1, w2, w3) is a positive constant depending on w1, w2, w3; because

|∂tA1| + |∂tA2| + |∂tA4| � C(w1, w2)
(|v1/x | + |v2/x | + |v′

1| + |v′
2|
)

� C(w1, w2, w3)

and

|∂tθ/x | = |(v2 − v1)/x | � 2w3.

To estimate (11.7), we need the following a priori assumption: there exists a
small positive constant ε0 such that

|θ ′(x, t)| + |(θ/x)(x, t)| � ε0 for all (x, t) ∈ (0, 1)× [0, T ]. (11.8)

Thus, a simple calculation yields that

A1 � (2 − C(w1, w2)ε0)

(
x

r1

)2 ( 1

r ′
1

)3

� 7

4

(
x

r1

)2 ( 1

r ′
1

)3

,

A2 � (2 + C(w1, w2)ε0)

(
x

r1

)3 ( 1

r ′
1

)2

� 9

4

(
x

r1

)3 ( 1

r ′
1

)2

,

A4 � (3 − C(w1, w2)ε0)

(
x

r1

)4 1

r ′
1

� 11

4

(
x

r1

)4 1

r ′
1
;

which implies that for (x, t) ∈ (0, 1)× [0, T ],
A1(θ

′)2 + 2A2(θ/x)θ ′ + 2A4(θ/x)2

� 1

4

(
x

r1

)2 ( 1

r ′
1

)3

(θ ′)2 + 17

8

(
x

r1

)4 1

r ′
1

(
θ

x

)2

� k1(θ
′)2 + k2(θ/x)2. (11.9)



824 Tao Luo, Zhouping Xin & Huihui Zeng

Here k1 and k2 are positive constants depending on w1 and w2. We use the cancel-
lation of the leading terms to estimate of

∫
σ 2|A2 − 2A3||θ ′| dx . Note that

A2 = 2

(
x

r1

)3 ( 1

r ′
1

)2

+ C(w1, w2)

(∣∣∣∣θx
∣∣∣∣+ |θ ′|

)
,

A3 =
(

x

r1

)3 ( 1

r ′
1

)2

+ C(w1, w2)|θ ′|.

It then follows from the Cauchy’s inequality that

∫
σ 2 |A2 − 2A3|

∣∣θ ′∣∣ dx � C(w1, w2)

∫
σ 2
[
(θ ′)2 + (θ/x)2

]
dx . (11.10)

In view of (11.7), (11.9) and (11.10), we see that

1

2

∫ [
xσ (∂tθ)

2 + k1(σθ
′)2 + k2(σθ/x)2

]
dx(t)

� 1

2

∫ {
xσ (∂tθ)

2 + σ 2
[
A1(θ

′)2 + 2A2(θ/x)θ ′ + 2A4(θ/x)2
]}

dx(t = 0)

+C(w1, w2, w3)

∫ t

0

∫ [
(σθ ′)2 + (σθ/x)2

]
dx

� C(w1, w2, w3)

∫ t

0

∫ [
(σθ ′)2 + (σθ/x)2

]
dx,

provided that v1(x, 0) = v2(x, 0). So, it gives from Grownwall’s inequality that
for t ∈ [0, T ],
∫ [

xσ (∂tθ)
2 + k1(σθ

′)2 + k2(σθ/x)2
]
(x, t) dx

� exp {C(w1, w2, w3)T }
∫ [

xσ (∂tθ)
2+k1(σθ

′)2+k2(σθ/x)2
]
(x, 0) dx =0,

if v1(x, 0) = v2(x, 0); which implies directly that

v2 − v1 = ∂tθ = θ ′ = θ/x = 0, (x, t) ∈ (0, 1)× [0, T ],

because of σ(x) > 0 for all x ∈ (0, 1). This verifies the a priori assumption (11.8)
and completes the proof of Theorem 11.1 when γ = 2.

When γ �= 2, Equation (11.1)1 reduces to

xσ∂2
t r +

[
σ 2
( x

r

)2γ−2
(

1

r ′

)γ ]′
− 2

σ 2

x

( x

r

)2γ−1
(

1

r ′

)γ

+2 − γ

γ − 1
σ x

(σ
x

)′ ( x

r

)2γ−2
(

1

r ′

)γ
= 0,
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which implies that

xσ∂2
t θ −

[
σ 2
(

x

r1

)2γ−2 ( 1

r ′
1

)γ
− σ 2

(
x

r2

)2γ−2 ( 1

r ′
2

)γ]′

+2
σ 2

x

[(
x

r1

)2γ−1 ( 1

r ′
1

)γ
−
(

x

r2

)2γ−1 ( 1

r ′
2

)γ]

−2 − γ

γ − 1
σ x

(σ
x

)′
[(

x

r1

)2γ−2 ( 1

r ′
1

)γ
−
(

x

r2

)2γ−2 ( 1

r ′
2

)γ]
= 0.

Set

ν := (2 − γ )/(2γ − 2).

Multiply the preceding equation with (σ/x)2ν∂tθ and integrate the product with
respect to time and space. Then using the same argument as for the proof of γ = 2,
we can show that (11.3) is true for γ �= 2.

This finishes the proof of Theorem 11.1.
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Appendix

In this appendix, we verify (7.25), (7.48), (7.65) and (7.66).
Verification of (7.25). For R0, it follows from (3.9) and (5.5) that

‖R0(t)‖0 �
∫ t

0

(∥∥∥∥
(v

x

)′∥∥∥∥
0
+ ∥∥v′′∥∥

0

)
ds � Ct sup

[0,t]

√
E,

‖σR0(t)‖L∞ �
∥∥∥∥
∫ t

0
σ
(v

x

)′
ds

∥∥∥∥
L∞

+
∥∥∥∥
∫ t

0
σv′′ ds

∥∥∥∥
L∞

� C

∥∥∥∥
∫ t

0
x
(v

x

)′
ds

∥∥∥∥
L∞

+
∥∥∥∥
∫ t

0
σv′′ ds

∥∥∥∥
L∞

� C
∫ t

0

(∥∥∥v′ − v

x

∥∥∥
L∞ + C

∥∥σv′′∥∥
L∞

)
ds � Ct sup

[0,t]

√
E .

Next, we will show (7.25)2. It follows from (7.23)1, (5.5) and (7.22)1 that for
p ∈ (1,∞),

‖L0(t)‖0 �
∥∥v′′∥∥

0 + ∥∥(v/x)′
∥∥

0 + ‖R0‖0 ‖J0‖L∞ � C
√

E(t)+ Ct sup
[0,t]

E,

‖σL0(t)‖L∞ �
∥∥σv′′∥∥

L∞ + C
∥∥∥v′ − v

x

∥∥∥
L∞ + ‖σR0‖L∞ ‖J0‖L∞

� C
√

E(t)+ Ct sup
[0,t]

E,
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‖σL1(t)‖L p �
∥∥σ∂tv

′′∥∥
L p + C

∥∥∥∥∂tv
′ − ∂tv

x

∥∥∥∥
L p

+ ‖σR0‖L∞ ‖J1‖L p

+‖σL0‖L∞ ‖J0‖L∞ � C P
(√

E(t)
)

+ Ct P

(
sup
[0,t]

√
E

)
,

‖ζσL1(t)‖L∞ �
∥∥ζσ∂tv

′′∥∥
L∞ + C

∥∥∥∥ζ
(
∂tv

′ − ∂tv

x

)∥∥∥∥
L∞

+ ‖σR0‖L∞ ‖ζJ1‖L∞

+‖σL0‖L∞ ‖J0‖L∞ � C P
(√

E(t)
)

+ Ct P

(
sup
[0,t]

√
E

)
,

‖σL2(t)‖0 �
∥∥∥σ∂2

t v
′′
∥∥∥

0
+ C

∥∥∥∥∂2
t v

′ − ∂2
t v

x

∥∥∥∥
0
+ ‖σR0‖L∞ ‖J2‖0

+‖σL0‖L∞ ‖J1‖0 + ‖σL1‖0 ‖J0‖L∞

� C P
(√

E(t)
)

+ Ct P

(
sup
[0,t]

√
E

)
.

We now turn to the proof of (7.25)3. It follows from (5.6), (5.7), (7.23)2 and (7.22)2,3
that

‖ζL0(t)‖2
0 �

(∥∥ζv′′∥∥
0 + ∥∥ζ(v/x)′

∥∥
0 + ‖R0‖0 ‖J0‖L∞

)2

� M0 + Ct P

(
sup
[0,t]

E

)
,

‖σL0(t)‖2
L p �

(∥∥σv′′∥∥
L p + C

∥∥v′ − v/x
∥∥

L p + ‖σR0‖L∞ ‖J0‖L p
)2

� M0 + Ct P

(
sup
[0,t]

E

)
,

‖ζσL0(t)‖2
L∞ �

(∥∥ζσv′′∥∥
L∞ + C

∥∥ζv′ − ζv/x
∥∥

L∞ + ‖σR0‖L∞ ‖ζJ0‖L∞
)2

� M0 + Ct P

(
sup
[0,t]

E

)
,

‖σL1(t)‖2
0 �

(∥∥σ∂tv
′′∥∥

0 + C
∥∥∂tv

′ − (∂tv)/x
∥∥

0 + ‖σR0‖L∞ ‖J1‖0

+‖σL0‖L4 ‖J0‖L4
)2 � M0 + Ct P

(
sup
[0,t]

E

)
,

‖ζσL2(t)‖2
0 �

(∥∥∥ζσ∂2
t v

′′
∥∥∥

0
+ C

∥∥∥ζ
(
∂2

t v
′ − (∂2

t v)/x
)∥∥∥

0
+ ‖σR0‖L∞ ‖ζJ2‖0

+‖ζσL0‖L∞ ‖J1‖0 + ‖σL1‖0 ‖ζJ0‖2
L∞
)2

� M0 + Ct P

(
sup
[0,t]

E

)
.

Verification of (7.48). Note that
∥∥χ (σh′ + iσ ′h

)∥∥2
0 = ∥∥χσh′∥∥2

0 + i2
∥∥χσ ′h

∥∥2
0 + 2i

∫
χ2σσ ′hh′ dx
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and

2i
∫
χ2σσ ′hh′ dx = −i

∫ (
χ2σσ ′)′

h2 dx

� −i
∥∥χσ ′h

∥∥2
0 − C(i)

∥∥∥χσ 1/2h
∥∥∥2

0
− C(i, δ)

∫ δ

δ/2
χσh2 dx

� −i
∥∥χσ ′h

∥∥2
0 − C(i, δ)

∥∥∥σ 1/2h
∥∥∥2

0
.

Then we have for i � 2 that

∥∥χσh′∥∥2
0 + ∥∥χσ ′h

∥∥2
0 �

∥∥χσh′∥∥2
0 + i(i − 1)

∥∥χσ ′h
∥∥2

0 �
∥∥χ (σh′ + iσ ′h

)∥∥2
0

+C
∥∥∥σ 1/2h

∥∥∥2

0
.

This is (7.48)1. Next, we will show (7.48)2. Note that
∥∥∥σ 1/2χ

(
σh′ + iσ ′h

)∥∥∥2

0
=
∥∥∥χσ 3/2h′

∥∥∥2

0
+ i2

∥∥∥χσ 1/2σ ′h
∥∥∥2

0
+ 2i

∫
χ2σ 2σ ′hh′ dx

and

2i
∫
χ2σ 2σ ′hh′ dx = −i

∫ (
χ2σ 2σ ′)′

h2 dx

� −2i
∥∥∥χσ 1/2σ ′h

∥∥∥2

0
−C(i) ‖χσh‖2

0−C(i, δ)
∫ δ

δ/2
χσ 2h2 dx

� −2i
∥∥∥χσ 1/2σ ′h

∥∥∥2

0
− C(i, δ) ‖σh‖2

0 .

Then, one has for i � 2

∥∥∥χσ 3/2h′
∥∥∥2

0
�
∥∥∥χσ 3/2h′

∥∥∥2

0
+ i(i − 2)

∥∥∥χσ 1/2σ ′h
∥∥∥2

0

�
∥∥∥χσ 1/2 (σh′ + iσ ′h

)∥∥∥2

0
+ C ‖σh‖2

0 .

Since the estimate on‖χσ 1/2σ ′h‖0 is missed, one has to use Minkowski’s inequality
to find it again. That is,

∥∥∥χσ 1/2σ ′h
∥∥∥2

0
� i2

∥∥∥χσ 1/2σ ′h
∥∥∥2

0
�
(∥∥∥χσ 1/2 (σh′ + iσ ′h

)∥∥∥
0
+
∥∥∥χσ 3/2h′

∥∥∥
0

)2

� 2

(∥∥∥χσ 1/2 (σh′ + iσ ′h
)∥∥∥2

0
+
∥∥∥χσ 3/2h′

∥∥∥2

0

)

� 3
∥∥∥χσ 1/2 (σh′ + iσ ′h

)∥∥∥2

0
+ C ‖σh‖2

0 ,

provided that i � 1. Therefore, we obtain

∥∥∥χσ 3/2h′
∥∥∥2

0
+
∥∥∥χσ 1/2σ ′h

∥∥∥2

0
� 4

∥∥∥χσ 1/2 (σh′ + iσ ′h
)∥∥∥2

0
+ C ‖σh‖2

0 .
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Verification of (7.65). In view of (3.9), one has

∥∥∥
(
σ 3/2∂tv

′′, σ 3/2∂3
t v

′) (·, t)
∥∥∥2

1
� C E(t),

which implies

∥∥∥
(
σ 3/2∂tv

′′, σ 3/2∂3
t v

′) (·, t)
∥∥∥2

L∞ � C E(t).

Using the embedding W 1,4/3(R) ⊂ W 3/4,2(R), one has

∥∥∥σ 1/2∂3
t v(t)

∥∥∥
L∞ � C

∥∥∥σ 1/2∂3
t v

∥∥∥
3/4

= C
∥∥∥σ 1/2∂3

t v

∥∥∥
W 3/4,2

� C
∥∥∥σ 1/2∂3

t v

∥∥∥
W 1,4/3

� C
∥∥∥σ 1/2∂3

t v

∥∥∥
L4/3

+ C

∥∥∥∥
(
σ 1/2∂3

t v
)′∥∥∥∥

L4/3
� C

√
E(t),

since
∥∥∥σ 1/2∂3

t v(t)
∥∥∥

L4/3
�
∥∥∥σ 1/2∂3

t v

∥∥∥
L2

‖1‖L4 � C
∥∥∥∂3

t v

∥∥∥
0

� C
√

E(t)

and
∥∥∥∥
(
σ 1/2∂3

t v
)′
(t)

∥∥∥∥
L4/3

�
∥∥∥σ 1/2∂3

t v
′
∥∥∥

L4/3
+ C

∥∥∥σ−1/2∂3
t v

∥∥∥
L4/3

�
∥∥∥σ 1/2∂3

t v
′
∥∥∥

0
+ C

∥∥∥σ−1/2
∥∥∥

L5/3

∥∥∥∂3
t v

∥∥∥
L20/3

�
∥∥∥σ 1/2∂3

t v
′
∥∥∥

0
+ C

∥∥∥∂3
t v

∥∥∥
1/2

� C
√

E(t).

Here we have used the Hölder inequality and the fact ‖ · ‖L p � C‖ · ‖1/2 for any
p ∈ (1,∞). Similarly,

∥∥∥σ 1/2∂tv
′
∥∥∥

L∞ � C
√

E(t).

Verification of (7.66). One can obtain (7.66)1 by using (5.5), (7.65) and (7.51)1,2,
since
∥∥∥σ 1/2J1(t)

∥∥∥
L∞ � C‖∂tv/x‖L∞ +

∥∥∥σ 1/2∂tv
′
∥∥∥

L∞ + ‖J0‖2
L∞ � P

(√
E(t)

)
,∥∥∥σ 3/2L1(t)

∥∥∥
L∞ � C

(∥∥∥σ 3/2∂tv
′′
∥∥∥

L∞ +
∥∥∥σ 1/2 (∂tv

′ − ∂tv/x
)∥∥∥

L∞ + ‖∂tv‖L∞

+‖σR0‖L∞
∥∥∥σ 1/2J1

∥∥∥
L∞ + ‖σL0‖L∞ ‖J0‖L∞

)

� C P
(√

E(t)
)

+ Ct P

(
sup
[0,t]

√
E

)
.



Well-Posedness for the Motion of Physical Vacuum 829

For (7.66)2, it follows from (7.64), (5.6), (6.7) and ‖ · ‖L∞ � ‖ · ‖1 that

‖J0(t)‖2
L∞ � C

(
‖v/x‖2

L∞ + ∥∥v′∥∥2
L∞
)

� C
(
‖v/x‖2

1 + ‖v‖2
2

)

� M0 + Ct P

(
sup
[0,t]

E

)
,

‖J1(t)‖2
0 � M0 + Ct P

(
sup
[0,t]

E

)
,

‖J2(t)‖2
0 � C

(∥∥∥∂2
t v/x

∥∥∥2

0
+
∥∥∥∂2

t v
′
∥∥∥2

0
+ ‖J0‖2

L∞ ‖J1‖2
0

)

� M0 + Ct P

(
sup
[0,t]

E

)
,

and

‖σL0(t)‖2
L∞ � C

(∥∥σv′′∥∥2
L∞ + ∥∥v′ − v/x

∥∥2
L∞ + ‖σR0‖2

L∞ ‖J0‖2
L∞
)

� C
(
‖σv‖2

3 + ‖v‖2
2 + ‖v/x‖2

1 + ‖σR0‖2
L∞ ‖J0‖2

L∞
)

� M0 + Ct P

(
sup
[0,t]

E

)
,

‖σL1(t)‖2
0 � M0 + Ct P

(
sup
[0,t]

E

)
,

‖σL2(t)‖2
0 � C

(∥∥∥σ∂2
t v

′′
∥∥∥

0
+
∥∥∥∂2

t v
′ − ∂2

t v/x
∥∥∥

0
+ ‖σR0‖L∞ ‖J2‖0

+‖σL0‖L∞ ‖J1‖0 + ‖σL1‖0 ‖J0‖L∞)2

� M0 + Ct P

(
sup
[0,t]

E

)
,

where we have used (7.25)1,3.
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