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Abstract

We study the hyperbolic scaling limit for a chain of N coupled anharmonic
oscillators. The chain is attached to a point on the left and there is a force (tension)
τ acting on the right. In order to provide good ergodic properties to the system,
we perturb the Hamiltonian dynamics with random local exchanges of velocities
between the particles, so that momentum and energy are locally conserved. We
prove that in the macroscopic limit the distributions of the elongation, momentum
and energy converge to the solution of the Euler system of equations in the smooth
regime.

1. Introduction

The aim of this paper is to study the hydrodynamic limit for a non-equilibrium
system subject to an exterior time dependent force at the boundary. We consider the
most simple mechanical model with non-linear interaction, that is, a one dimen-
sional chain of N anharmonic oscillators. The left side is attached to a fixed point,
while on the right side is acting a force τ (tension). For each value of τ there is a
family of equilibrium (Gibbs) measures parametrized by the temperature (and by
the tension τ ). It turns out that these Gibbs measures can be written as a product.

We are interested in the macroscopic non-equilibrium behavior of this system
as N tends to infinity, after rescaling space and time with N in the same way
(hyperbolic scaling). We also consider situations in which the tension τ depends
slowly on time, such that it changes in the macroscopic time scale. In this way we
can also take the system originally at equilibrium at a certain tension τ0 and push
out of equilibrium by changing the exterior tension.

The goal is to prove that the three conserved quantities (elongation, momentum
and energy) satisfy in the limit an autonomous closed set of hyperbolic equations
given by the Euler system.
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We approach this problem by using the relative entropy method (cf. [11]) as
already done in [8] for a system of interacting particles moving in R

3 (gas dynam-
ics).

The relative entropy method permits one, in general, to obtain such a hydrody-
namic limit if the system satisfies certain conditions:

(A) The dynamic should be ergodic in the sense that the only conserved quantities
that survive the limit as N → ∞ are those that we are looking for the macro-
scopic autonomous behavior (in this case elongation, momentum and energy).
More precisely, the only stationary measures for the infinite system, with finite
local entropy, are given by the Gibbs measures.

(B) The macroscopic equations have smooth solutions.
(C) Microscopic currents of the conserved quantities should be bounded by the

local energy of the system.

We do not know any deterministic Hamiltonian system that satisfies condition
(A), and this is a major, challenging open problem in statistical mechanics. Sto-
chastic perturbation of the dynamics that conserves energy and momentum can give
such an ergodic property and have been used in [8] (cf. also [2,3,7]). We use here
a simpler stochastic mechanism than in [8]: at random independent exponential
times we exchange the momentum of nearest neighbor particles, as if they were
performing an elastic collision. Under this stochastic dynamics, every stationary
measure has the property of being exchangeable in the velocity coordinates, and
this is sufficient to characterize it as a convex combination of Gibbs measures
(cf. [2] and [1]).

Regarding condition (B), it is well known that nonlinear hyperbolic equations in
general develop shocks also starting from smooth initial conditions. The character-
ization and uniqueness of weak solutions in the presence of shock is a challenging
problem in the theory of hyperbolic equations. We expect that a shock will increase
the thermodynamic entropy associated with the profiles of the conserved quantities.

The relative entropy method compares the microscopic Gibbs entropy produc-
tion (associated to the probability distribution of the system at a given time) with
the macroscopic (thermodynamic) entropy production. If no shocks are present
both entropy productions are small. The presence of the boundary force changes
this balance a bit, since one should take into account the (macroscopic) change of
entropy due to the work performed by the force. It turns out that the right choice of
the boundary conditions in the macroscopic equation does compensate this large
entropy production, keeping the time derivative of the relative entropy small. It
would be interesting to prove similar cancellation of entropy productions when this
is caused by shocks, as it would allow one to prove the hydrodynamical limit in these
cases, and provide a microscopic derivation of irreversible thermodynamic adia-
batic transformations, between thermodynamic equilibrium states that increase
the thermodynamic entropy. Recent efforts in this direction use different methods
(cf. [4]). Similar results on isothermal transformation are mathematically easier
(cf. [9]).

As for condition (C), it created a problem in [8]: in the usual gas dynamics
the energy current has the convecting term cubic in the velocities, while energy is
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quadratic. This was fixed in [8] by modifying the kinetic energy of the model: if
the kinetic energy grows linearly as a function of the velocity, the energy current
will also grow linearly. Since we work here in Lagrangian coordinates, our energy
current does not have the cubic convecting term. This allows us to work with the
usual quadratic kinetic energy.

2. The Model and the Main Theorem

We will study a system of N + 1 coupled oscillators in one dimension. Each
particle has the same mass that we set equal to 1. The position of atom i (i =
0, . . . , N ) is denoted by qi ∈ R, while its momentum is denoted by pi ∈ R. We
assume that particle 0 is attached to a fixed point and it does not move, that is,
(q0, p0) ≡ (0, 0), while on particle N we apply a force τ(t) depending on time.
Observe that only the particle 0 is constrained not to move, and that qi can also
assume negative values.

Denote by q := (q0, . . . , qN ) and p := (p0, . . . , pN ). The interaction between
two particles i and i −1 will be described by the potential energy V (qi −qi−1) of an
anharmonic spring relying on the particles. We assume V to be a positive smooth
function that grows quadratically at infinity, that is, there exist strictly positive
constants C+ and C− such that for any r ∈ R:

V ′(r)2 � C+(1 + V (r)), r2 � C−(1 + V (r)), V (0) = 0. (1)

Energy is defined by the following Hamiltonian:

HN (q,p) :=
N∑

i=1

(
p2

i

2
+ V (qi − qi−1)

)
.

Since we focus on a nearest neighbors interaction, we define the distance between
particles by

ri = qi − qi−1, i = 1, . . . , N .

Consequently the phase space is given by (R2)N . We define the energy of particle
i ∈ {1, . . . , N } as

ei := p2
i

2
+ V (ri )

so that HN (r,p) = ∑N
i=1 ei , where r := (r1, . . . , rN ).
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Given a smooth function τ(s) that represents the force applied to particle N at
the macroscopic time s, the dynamics of the system is determined by the generator

N Gτ(t)
N := N Lτ(t)N + Nγ SN . (2)

Here the Liouville operator LτN is given by

LτN =
N∑

i=1

(pi − pi−1)
∂

∂ri
+

N−1∑

i=1

(
V ′(ri+1)− V ′(ri )

) ∂

∂pi

+ (
τ − V ′(rN )

) ∂

∂pN
, (3)

where we used the fact that p0 ≡ 0. Notice that the time scale in the tension is
chosen such that it changes smoothly on the macroscopic scale.

The symmetric operator SN is the generator of the stochastic part of the dynam-
ics that exchanges at random times the velocities of nearest neighbors particles. For
any smooth function f , we define the operator ϒi,i+1 by

ϒi,i+1 = f
(

r,pi,i+1
)

− f (r,p) (4)

where pi,i+1 ∈ R
N is defined from p ∈ R

N by exchanging the coordinates p j and
p j+1

pi,i+1
j =

⎧
⎨

⎩

p j if j �= i, i + 1
pi+1 if j = i
pi if j = i + 1.

Then SN is defined through

SN f (r,p) :=
N−1∑

i=1

(
f
(

r,pi,i+1
)

− f (r,p)
)

= −1

2

N−1∑

i=1

Υ 2
i,i+1 f (r,p). (5)

With this choice of the noise, the three balanced quantities, that is, locally conserved,
are given by ri , pi , ei .

We define ζ (r, p) = (r, p,−e(r, p))T ∈ R
2 × R−, and the Gibbs thermody-

namic potential:

Θ(λ) := log
∫

R2
eλ·ζ (r,p) dr d p. (6)

By the condition imposed on V , this function is always finite.
For ζ ∈ R

2 × R− we define Φ : R
2 × R− → R the Legendre transform of

Θ(λ):

Φ(ζ ) := sup
η∈R2×R+

{η · ζ −Θ(η)} . (7)

We denote by λ(ũ) and ũ(λ) := (r, p,−E)T the corresponding convex conjugate
variables that satisfy
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λ = DΦ(ũ) and ũ = DΘ(λ), (8)

where the operator D is defined by

D f (a) :=
(
∂ f

∂a1
,
∂ f

∂a2
,
∂ f

∂a3

)
(9)

for any C1 function f : R
3 → R and a := (a1, a2, a3) ∈ R

3.
On the one particle state space R

2 we define a family of probability measure

νλ(dr, d p) = eλ·ζ (r,p)−Θ(λ)drd p. (10)

Observe that

Eνλ [ζ (r, p)] = ũ

so we can identify ũ = (r, p,−E)T as, respectively, the average distance, velocity
and (negative) energy. We also define the internal energy e = E − p2/2. We have
the relations

Eνλ(p
2)− p2 = λ−1

3 := β−1, P(r, e) := Eνλ [V ′(r)] = λ1

λ3
:= τ

that identify β−1 as temperature and τ as tension. This thermodynamic terminology
is justified by observing that, for constant τ in the dynamics, and any β > 0, with
the choice λ = (βτ, 0, β) the family of product measures given by:

νN
(τβ,0,β)(dr, dp) =

N∏

i=1

ν(τβ,0,β)(dri , d pi ), β ∈ R
+

is stationary for the dynamics. These are the Gibbs measures at an average temper-
ature β−1, pressure τ and velocity 0. In what follows we also need a Gibbs measure
with average velocity different from 0, and we will use the following notation:

νN
λ :=

N∏

i=1

eλ·ζ i −Θ(λ)dri d pi := gN
λ (r,p)drdp,

where ζ i := (ζi,1, ζi,2, ζi,3)
T := (ri , pi ,−ei )

T.
In a similar way we may introduce the local Gibbs measures. For any continuous

profile ũ(x), x ∈ [0, 1], we have correspondingly a profile of parameters λ(x), and
we define the inhomogeneous product measure

νN
λ(·) :=

N∏

i=1

eλ(i/N )·ζ i −Θ(λ(i/N ))dri d pi ,

that we call Local Gibbs measures.
We are interested in the macroscopic behavior of the elongation, momentum and

energy of the particles, at time t , as N → ∞. Notice that t is already the macroscopic
time, since we have already multiplied the generator by N . Taking advantage of the
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one-dimensionality of the system, we will use lagrangian coordinates, that is, our
space variables will be given by the lattice coordinates {1/N , . . . , (N − 1)/N , 1}.
Also observe that at this time scale, the generator of the process is given by NGτ(t)N .

Consequently, we introduce the (time dependent) empirical measures repre-
senting the spatial distribution (on the interval [0, 1]) of these quantities:

ηN
α (dx, t) := 1

N

N∑

i=1

δ

(
x − i

N

)
ζi,α(t) dx, for α = 1, 2, 3.

We expect the measures ηN
α (dx, t), α = 1, 2, 3 to converge, as N → ∞, to mea-

sures r(x, t)dx , p(x, t)dx,−E(x, t)dx being absolutely continuous with respect
to the Lebesgue measure and with density satisfying the following system of three
conservation laws:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t r − ∂xp = 0

∂tp − ∂x P(r, e) = 0 ,

⎧
⎨

⎩

r0(x)=r(x, 0), p0(x)=p(x, 0), E0(x)= E(x, 0)

p(0, t) = 0, P(r(1, t), e(1, t)) = τ(t)
∂t E −∂x (pP(r, e))=0

(11)

for bounded, smooth initial data r0, p0, E0 : [0, 1] → R and the force τ(t) depend-
ing on time t . Here we denoted by r the specific volume, p the velocity, E the total
energy and e := E − 1

2p2 the internal energy. We also assume that the internal
energy is always positive: e(x, 0) > 0.

We need the solutions of the system (11) to be C2-solutions. To assure this,
the following additional compatibility conditions at the space-time edges (x, t) =
(0, 0) and (x, t) = (1, 0) have to be satisfied:

lim
x→0

p0(x) = p(0, 0) = 0, lim
x→1

P(r0(x), e0(x)) = τ(0) (12)

lim
x→0

d

dx
P(r0(x), e0(x)) = 0, lim

x→1

d

dt
P(r0(x), e0(x)) = τ ′(0) (13)

lim
x→0

d2

(dt)2
p0(x) = 0, lim

x→1

d2

(dt)2
P(r0(x), e0(x)) = τ ′′(0). (14)

A proof of this can be adapted from Chapters 4.3, 7.5 and 3.5 of [6].
For any test function J : [0, 1] → R with compact support in (0, 1) consider

the empirical densities

ηN
α (t, J ) := 〈ηN

α (dx, t); J 〉 = 1

N

N∑

i=1

J

(
i

N

)
ζα,i (t). (15)

Our goal is to show that, starting with an initial distribution such that there exist
smooth functions r0, p0 and E0 satisfying

{ηN
1 (0, J ), ηN

2 (0, J ), ηN
3 (0, J )}

→
{∫

J (x)r0(x)dx,
∫

J (x)p0(x)dx,−
∫

J (x)E0(x)dx

}
(16)
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in probability as N → ∞, then at time t ∈ [0, T ] we have the same convergence
of ηN

α (t, J ), α = 1, 2, 3 to the corresponding profiles r(x, t), p(x, t) and E(x, t)
respectively, that satisfy (11)–(14).

Here is the precise statement of our main result, where we make a stronger
assumption on the initial measure:

Theorem 1. (Main theorem) For any time t � ts, ts being the time at which the
solution u produces the first shock, denote by μN

t the probability measure on the
configuration space R

2N at time t, starting from the local Gibbs measure νN
λ(·,0)

corresponding to the initial profiles ũ0. Then for any smooth function J : [0, 1] → R

and any δ > 0

lim
N→∞μ

N
t

[∣∣∣∣∣
1

N

N∑

i=1

J

(
i

N

)
ζ i −

∫ 1

0
J (x)ũ(x, t) dx

∣∣∣∣∣ > δ

]
= 0, (17)

where u is a C2-solution to the system of conservation laws (11)–(14).

Remark 1. As our proof is based on the relative entropy method of [11], it is only
valid as long as the solution to (11) is C2. Since even for smooth initial data it may
happen that the solution develops shocks, we are forced to restrict our derivation
to a time 0 < t < ts , where ts is the time when the solution to the system of
conservation laws enters the first shock.

Remark 2. A proof for the existence of smooth solutions to the initial-boundary-
value problem (11) can be found in chapters 4.3, 7.5 and 3.5 of [6]. Notice that we
can rewrite the pressure P as a function of specific volume r and entropy s:

P̃(r, s) := P(r, e).

Then we can rewrite the initial boundary value problem (11), in the smooth regime,
in terms of the unknown r, p and s(r, e) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t r − ∂xp = 0

∂tp − ∂x P̃(r, s) = 0

∂ts = 0

,

⎧
⎨

⎩

r0(x)=r(x, 0), p0(x)=p(x, 0), s0(x)=s(x, 0)

p(0, t) = 0, P̃(r(1, t), s(1, t)) = τ(t)
,(18)

where we used the thermodynamic relation

P̃(r, s) = −∂e(r, s)
∂r

.

Hence the specific entropy s does not change in time and for any x ∈ [0, 1] is given
through the initial data s(x, 0) := s0(x).

In the non-conservative form, equation (18) reads as:

∂t

⎛

⎝
r
p
s

⎞

⎠ − A(r, p, s)∂x

⎛

⎝
r
p
s

⎞

⎠ = 0
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where the 3 × 3-matrix A is defined by

A :=
⎛

⎝
0 1 0
∂ P̃
∂r 0 ∂ P̃

∂s
0 0 0

⎞

⎠ = S ·
⎛

⎝
c 0 0
0 −c 0
0 0 0

⎞

⎠ · S−1

with c := c(r, s) =
√
∂ P̃
∂r and

S := S(r, p, s) =
⎛

⎝
1 1 − 1

c
∂ P̃
∂s

c −c 0
0 0 c

⎞

⎠ .

With these notations we can rewrite (18) in the characteristic form

S−1 · ∂t

⎛

⎝
r
p
s

⎞

⎠ −
⎛

⎝
c 0 0
0 −c 0
0 0 0

⎞

⎠ · S−1 · ∂x

⎛

⎝
r
p
s

⎞

⎠ = 0

⇒

⎧
⎪⎨

⎪⎩

c(∂t r − c∂x r)+ (∂tp − c∂xp)+ 1
c
∂ P̃
∂s (∂ts − c∂xs) = 0

c(∂t r + c∂x r)− (∂tp + c∂xp)+ 1
c
∂ P̃
∂s (∂ts + c∂xs) = 0

∂ts = 0.

In this way we can apply the existence proof for C2 solutions to (11)–(14) for short
times from [6].

3. The Hydrodynamic Limit

3.1. The Relative Entropy

On the phase space (R2)N we now have two time-dependent families of prob-
ability measures. One of them is the local Gibbs measure νN

λ(·,t) constructed from
the solution of the system of conservation laws (11)–(14). We denote its density
by

gN
t =

N∏

i=1

eλ(i/N ,t)·ζ i −Θ(λ(i/N ,t)). (19)

On the other hand we have the actual distribution μN
t , whose density f N

t (r,p) is a
solution, in the sense of distributions, of the Kolmogorov forward equation:

⎧
⎪⎨

⎪⎩

∂ f N
t
∂t (r,p) = NGτ(t),�N f N

t (r,p)

f N
0 (r,p) = gN

0 (r,p).
(20)

By Gτ,∗N = Lτ,�N + γ SN we denote the adjoint operator of GτN with respect to the
Lebesgue measure, where Lτ,�N can be computed as Lτ,�N = −LτN .
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The relative entropy of f N
t with respect to gN

t is defined by

HN (t) =
∫

f N
t log

f N
t

gN
t

dr dp. (21)

Our main result will follow from:

Theorem 2. (Relative entropy) Under the same assumptions as in Theorem 1, for
any time t ∈ [0, T ], T < ts,

lim
N→∞

1

N
HN (t) = 0.

Remark. Recall that the relative entropy H(α|β) of a probability measure α with
respect to a probability measure β can be rewritten as

H(α|β) = sup
ϕ

{∫
ϕ dα − log

∫
eϕ dβ

}
(22)

where the supremum is taken over all bounded measurable functions ϕ. It is easy
to see that the relative entropy has the following properties: H(α|β) is positive,
convex, and lower semi continuous function of α. It follows that for any measurable
function F and any σ > 0:

∫
F dα � 1

σ
log

∫
eσ F dβ + 1

σ
H(α|β). (23)

Proof of Theorem 1. A useful special case of the entropy inequality can be stated
if we set F := 1[A] to be the indicator function on a set A. With the choice

σ = log
(

1 + 1
β[A]

)
, we obtain the inequality

Eα[1[A]] = α[A] � 1

σ
logβ[exp(σ1[A])] + 1

σ
H(α|β)

= 1

σ
log

(
β[A](eσ − 1)+ 1

) + 1

σ
H(α|β)

⇒ α[A] � log 2 + H(α|β)
log

(
1 + 1

β[A]
) . (24)

Thus, if we define the set Aδ to be

Aδ :=
{∣∣∣∣∣

1

N

N∑

i=1

J

(
i

N

)
ζ i −

∫ 1

0
J (x)u(x, t) dx

∣∣∣∣∣ > δ

}
,

for any test function J : [0, 1] → R with compact support in (0, 1), then with
inequality (24), to prove that limN→∞ μN

t [Aδ] = 0, it is enough to show that for
each δ > 0

log

(
1 + 1

νN
λ(·,t)

)
� C(δ)N ,
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for some constant C not depending on N , since from Theorem 2 we have that
HN (t) = o(N ). However this is satisfied if νN

λ(·,t)[Aδ] is exponentially small, that
is,

νN
λ(·,t)[Aδ] � 1

eC(δ)N
. (25)

This is a result of the large deviation theory which can be adapted from [1,5,10].

3.2. Time Evolution of the Relative Entropy

In this section we will prove Theorem 2. Notice that by the choice of the initial
distribution

HN (0) = 0.

The strategy is to show that for some constant C

HN (t) � C
∫ t

0
HN (s) ds +

∫ t

0
RN (s) ds (26)

with

lim
N→∞

1

N

∫ t

0
RN (s) ds = 0. (27)

Then it follows by Gronwall’s inequality that limN→∞ HN (t)
N = 0 which concludes

the proof of Theorem 2. We first prove the following inequality:

Lemma 1.

HN (t) � −
∫ t

0
ds

∫
f N
s

(
NGτ(s)N + ∂s

)
log gN

s dr dp (28)

Proof. By convexity of the function φ( f ) = f log f , since Lebesgue measure is
stationary for the dynamics generated by Gτ(t)N , we have that

∫
f N
t+h log f N

t+h dr dp �
∫

f N
t log f N

t dr dp. (29)

Then, since gN
s is smooth and HN (0) = 0, (28) follows.

Before we proceed in the proof, we have to introduce some further notations.
For any C1 function F := ( f1, f2, f3)

T : R
3 → R

3 we define

DF(a) := ((D f1)(a), (D f2)(a), (D f3)(a))T ,

with D fi (a), i = 1, 2, 3 defined by (9). Recall that ũ = (r, p,−E)T, e := E − 1
2p2

and let us denote by

J̃(ũ) := (p, P(r, e),−pP(r, e))T =
(

p,
λ1(r, e)

λ3(r, e)
,−p

λ1(r, e)

λ3(r, e)

)T

(30)
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the flux of (11). Then the equation (11) can be rewritten as

∂t ũ = DJ̃(ũ)∂x ũ

with the Jacobian

DJ̃(ũ)

⎛

⎜⎜⎜⎜⎝

0 1 0

∂P
∂r −p ∂P

∂e
∂P
∂e

−p ∂P
∂r −P + p2 ∂P

∂e −p ∂P
∂e

⎞

⎟⎟⎟⎟⎠
. (31)

With the dual relation (8), λ is solution of the symmetric system

∂t [DΘ(λ)] = ∂x [D�(λ)], (32)

where

�(λ) = λ · J̃(DΘ(λ)).

Equation (32) can be rewritten as

(D2Θ)∂tλ = (D2�)∂xλ.

Since

D2Θ(λ(t, x))−1 = (D2Φ)(ũ(t, x)),

it follows that

∂tλ(D
2Φ) = (D2�)∂xλ.

Since

(D2�) = (D2Φ)(DJ̃(ũ))

the following system of partial differential equations is satisfied:

∂tλ(t, x) = (DJ̃)T(ũ)∂xλ(t, x). (33)

Let us define the microscopic fluxes:

Ji−1,i := (−pi−1,−V ′(ri ), pi−1V ′(ri ))
T i = 1, . . . , N − 1,

JN ,N+1 := (−pN ,−τ(t), pN τ(t))
T. (34)

By the definition of the Liouville operator given by (3),

Lτ(t)N ζ i = Ji−1,i − Ji,i+1.

Finally let us define

v j := (0, p j ,−p2
j/2)

T.

Hence with the definition of the symmetric operator given by (5),

SN (ζ j ) = −2v j + v j+1 + v j−1, j = 2, . . . , N − 1

SN (ζ N ) = −vN + vN−1, SN (ζ 1) = −v1 + v2.
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Lemma 2.

N Lτ(t)N log gN
t =

N∑

i=1

∂xλ

(
i

N
, t

)
· Ji−1,i + Nλ2(1, t)τ (t)+ aN (t) (35)

where aN (t) is such that

lim
N→∞

1

N

∫ t

0

∫
aN (s) f N

s dp dr ds = 0

Proof.

N LτN log gN
t (r,p) = N

N∑

i=1

λ

(
i

N
, t

)
· (Ji−1,i − Ji,i+1

)

= N
N∑

i=1

(
λ

(
i

N
, t

)
−λ

(
i − 1

N
, t

))
· Ji−1,i −λ(0, t) · J0,1+λ(1, t) · JN .N+1

Taking into account the boundary conditions on λ we have

λ(0, t) · J0,1 = λ2(0, t)V ′(r1) = 0 (36)

and

λ(1, t) · JN .N+1 =−pNλ1(1, t)−λ2(1, t)τ (t)+λ3(1, t)τ (t)pN = −λ2(1, t)τ (t)

(37)

because τ(t)λ3(1, t) = λ1(1, t). Since λ is a C2-function, we obtain (35) with

|aN (t)| = C

N

N−1∑

i=1

‖Ji‖.

It remains to show, that limN→∞
∫ t

0

∫ aN (s)
N dμN

s ds = 0. This will be an easy
consequence of Lemma 10.

Lemma 3.

∂t log gN
t =

N∑

i=1

(DJ̃)T
(

ũ

(
i

N
, t

))
∂xλ

(
i

N
, t

)
·
(

ζ i − ũ

(
i

N
, t

))

Proof.

∂

∂t
log gN

t = ∂

∂t

N∑

i=1

(
λ

(
i

N
, t

)
· ζ i −Θ

(
λ

(
i

N
, t

)))

=
N∑

i=1

∂tλ

(
i

N
, t

)
·
(

ζ i − DΘ

(
λ

(
i

N
, t

)))

By (8), DΘ
(
λ( i

N , t)
) = ũ( i

N , t), and (33) the result follows.
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Lemma 4. Recall the definition of the symmetric operator given by (5).

− lim
N→∞

1

N

∫ t

0

∫ (
N SN log gN

s

)
f N
s dp dr ds � lim

N→∞
1

σN

∫ t

0
HN (s) ds,

where σ is a constant independent of N with 0 < 2σ < infx,s λ3(x, s).

Observe that the smoothness of the solution of (11) guarantees inf x,s λ3(x, s) >
0.

Proof.

SN log gN
s

=
N−1∑

i=2

λ

(
i

N
, t

)
· (vi−1 − 2vi + vi+1)+ λ

(
1

N
, t

)
· (−v1 + v2)+ λ(1, t)

·(vN−1 − vN )

=
N−1∑

i=2

(
λ

(
i − 1

N
, t

)
− 2λ

(
i

N
, t

)
+ λ

(
i + 1

N
, t

))
· vi

+
(

λ

(
2

N
, t

)
− λ

(
1

N
, t

))
· v1 +

(
λ

(
N − 1

N
, t

)
− λ(1, t)

)
· vN

In Lemma 10 we will show that the expectation of 1
N

∑
i ‖vi‖ is uniformly bounded

for all N and hence, since λ is in C2, the first term vanishes in the limit as N → ∞.
Recall that by the entropy inequality (23), for any σ > 0 we have for k ∈

{1, . . . , N }:
1

N

∫
p2

k f N
s dp dr � 1

Nσ
log

∫
eσ p2

k νN
λ(·,s) + 1

Nσ
H(s).

Since this inequality is true for any σ > 0, the integral on the right hand side of
the inequality is bounded as long as σ < infx

1
2λ3(x, s) and hence the first term

vanishes as N → ∞. The expected value of pk can be controlled in a similar way.

So far we have from Lemmas 2, 3 and 4

HN (t) �
∫ t

0

∫ N∑

i=1

∂xλ

(
i

N
, s

)

×
[

Ji−1,i − (DJ̃)T
(

ũ

(
i

N
, s

))(
ζ i − ũ

(
i

N
, s

))]
f N
s dp dr ds

−
∫ t

0
Nτ(s)λ2(1, s) ds + 1

σ

∫ t

0
HN (s) ds +

∫ t

0
RN (s) ds (38)

where RN (t) is such that (27) holds.
By (30) we have

∫ 1

0
∂xλ(x, t) · J̃(ũ(x, t)) dx =

∫
∂

∂x

(
λ1(x, t)λ2(x, t)

λ3(x, t)

)
dx = τ(t)λ2(1, t),
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and consequently we can replace −Nτ(t)λ2(1, t) by

−
N∑

i=1

∂xλ

(
i

N
, t

)
· J̃

(
ũ

(
i

N
, t

))

with an error uniformly bounded in N . It follows that from (38) we have

HN (t) �
∫ t

0

∫ N∑

i=1

∂xλ

(
i

N
, s

)

×
[

Ji−1,i − J̃
(

ũ

(
i

N
, s

))
− (DJ̃)T

(
ũ

(
i

N
, s

))

×
(

ζ i − ũ

(
i

N
, s

))]
f N
s dp dr ds

+ 1

σ

∫ t

0
HN (s) ds +

∫ t

0
RN (s) ds. (39)

Our next goal is to prove a weak form of local equilibrium. In view of this we
introduce microscopic averages over blocks of size 2k + 1. In what follows, for
any vector field Yi := (Y1,i ,Y2,i ,Y3,i )

T : (R2)3 → R
3 we denote by Yk

i :=
(Y k

1,i ,Y k
2,i ,Y k

3,i )
T, block averages over blocks of length 2k + 1, where k > 0 is

independent of N . For example

ζ k
i = (ζ k

1,i , ζ
k
2,i , ζ

k
3,i )

T := (rk
i , pk

i ,−ek
i )

T := 1

2k + 1

∑

|i−l|�k

ζ l . (40)

These blocks are microscopically large but on the macroscopic scale they are small,
thus N goes to infinity first and then k goes to infinity. We also need to introduce
another small parameter � and consider small macroscopic blocs of length �N at
the boundaries.

For any smooth and bounded function F : [0, 1] → R and any bounded function
ψ : R

2 → R, we obtain the following summation by parts formula

1

N

N∑

i=1

F

(
i

N

)
ψ(ri , pi ) = 1

N

N−[N�]∑

i=[N�]
F

(
i

N

)
1

2k + 1

∑

| j−i |�k

ψ(r j , p j )

+O
(

k + N�

N

)
. (41)

Here we first restricted the sum to configurations over {[N�], . . . , N − [N�]}, for
some small � > 0, such that � → 0 after N → ∞ and �N >> k. In this way, we
avoid touching the boundary when we introduce the block averages. The error we
made will vanish in the limit since � → 0.

We also need to do some cut off in order to have only bounded variables.
Let Ci,b := {ei−1, ei � b}, and define

Jb
i−1,i := Ji−1,i 1Ci,b and ζ b

i := ζ i 1Ci,b ,
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then these functions are bounded. Also denote as J̃b(ũ) the corresponding expecta-
tion with respect to the Gibbs measure of parameters λ(ũ), that converges to J̃(ũ)
as b → ∞.

Assumptions (1) on the potential assert that by the entropy inequality (23) with
reference measure dνN

λ(·,t), the error we make by the replacement of Ji−1,i and ζ i

by Jb
i−1,i and ζ b

i respectively, is small in N if we can show that 1
N HN (s) → 0 as

N → ∞.
For any σ > 0 small enough

∫ N∑

i=1

∂xλ

(
i

N
, s

)
Ji−1,i 1Cc

i,b
dμN

s

� 1

σ

N∑

i=1

log

(∫
e
σ∂x λ

(
i
N ,s

)
Ji−1,i 1Cc

i,b dνλ(·,t)

)
+ HN (s)

σ

� 1

σ

N∑

i=1

log

(
1 +

∫

Cc
i,b

e
σ∂x λ

(
i
N ,s

)
Ji−1,i dνλ(·,t)

)
+ HN (s)

σ

= NC(b, σ )

σ
+ HN (s)

σ
(42)

where limb→∞ C(b, σ ) = 0 for any σ > 0.
Using that λ and u are in C2 and formula (41), we arrive at

N∑

i=1

∂xλ

(
i

N
, s

)[
Jb

i−1,i − J̃b
(

ũ

(
i

N
, s

))

− (DJ̃)T
(

ũ

(
i

N
, s

))(
ζ b

i − ũ

(
i

N
, s

))]

=
N−[N�]∑

i=[N�]
∂xλ

(
i

N
, s

)

×
⎡

⎣ 1

2k + 1

∑

|l−i |�k

Jb
l−1,l − J̃b

(
ũ

(
i

N
, s

))

− (DJ̃)T
(

ũ

(
i

N
, s

))(
ζ

b,k
i − ũ

(
i

N
, s

))]

+O(k + N�).

The following theorem will be proved in Section 3.3.

Theorem 3. (The one-block estimate) For any �, b:

lim
k→∞ lim

N→∞
1

N

N−[N�]∑

i=[N�]

∫ t

0

∫ ∣∣∣∣∣∣
1

2k + 1

∑

|l−i |�k

Jb
l−1,l − J̃b

(
ζ k

i

)
∣∣∣∣∣∣

f N
s dp dr ds = 0.

(43)
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With this theorem we obtain:

HN (t)

N
� 1

N

N−[N�]∑

i=[N�]

∫ t

0

∫
Ω

(
ζ k

i , ũ

(
i

N
, s

))
f N
s dp dr ds

+
∫ t

0

RN ,k,�,b(s)

N
ds +

∫ t

0

HN (s)

Nσ
ds (44)

for some σ > 0.RN ,k,�,b is such that

lim
b→∞ lim

�→0
lim

k→∞ lim
N→∞

∫ t

0

RN ,k,�,b(s)

N
ds = 0,

and we used (33) to define

Ω(z, ũ) := ∂xλ ·
(

J̃ (z)− J̃
(
ũ
)) − ∂tλ · (z − ũ

)
.

Hence

DzΩ(z, ũ) =
(
(DJ̃)T(z) · ∂xλ − ∂tλ

)
(45)

is equal to zero if z is a solution of (33) and consequently:

Ω(ũ, ũ) = 0, DzΩ(ũ, ũ) = 0.

Applying the entropy inequality (23) on the sum in (44), we obtain that for some
σ > 0 it is bounded above by

1

Nσ

∫ t

0
log

∫
exp

⎧
⎨

⎩σ
N−[N�]∑

i=[N�]
Ω

(
ζ k

i , u

(
i

N
, s

))⎫⎬

⎭ gN
s dp dr ds

+ 1

Nσ

∫ t

0
HN (s) ds. (46)

Hence it remains to prove that the first term of this expression is of order O( 1
N ).

This will be done using the following special case of Varadhan’s lemma:

Theorem 4. (Varadhan’s lemma) Let νn
λ be the product homogeneous measure with

marginals νλ given by (10) and with rate function I : R
2 × R− → R defined by

I (x) := Φ(x)− x · λ +Θ(λ).

Then for any bounded continuous function F on R
2 × R−

lim
n→∞

1

n
log

∫
enF(ζ ) dνn

λ = sup
x

{F(x)− I (x)}.

Proof. A proof of this theorem can be adapted from [1,5,10].
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In order to apply this Theorem we arrange the sum in (46) as sums over disjoint
blocks and then take advantage of the fact that the local Gibbs measures are product
measures. Assume without loss of generality that 2k + 1 divides N − 2[N�], then

N−[N�]∑

i=[N�]
Ω

(
ζ k

i , ũ

(
i

N
, s

))
=

∑

j∈{−k,...,k}

∑

i∈B N−2[N�],k
[N�]

τ jΩ

(
ζ k

i , ũ

(
i

N
, s

))

where B N−2[N�],k
[N�] :=

{
r(2k + 1)+ [N�] + k; r ∈

{
0, . . . , N−2[N�]−2k

2k+1

}}
. In this

way, for any fixed j , the terms in the sum over i ∈ B N−2[N�],k
[N�] depend on configu-

rations in disjoint blocks. Thus the random variables

τ jΩ

(
ζ k

i , ũ

(
i

N
, s

))

are independent under νN
λ(·,s).

Using Hölder inequality, the first term in (46) is bounded above by

1

Nσ

∫ t

0
log

∫ ∏

j∈{−k,...,k}
exp

⎧
⎪⎨

⎪⎩
σ

∑

i∈B N−2[N�],k
[N�]

τ jΩ

(
ζ k

i , u

(
i

N
, s

))
⎫
⎪⎬

⎪⎭
gN

s dp dr ds

� 1

Nσ(2k + 1)

∫ t

0

∑

j∈{−k,...,k}
log

∫
exp

⎧
⎪⎨

⎪⎩
σ(2k + 1)

∑

i∈B N−2[N�],k
[N�]

τ jΩ

(
ζ k

i , ũ

(
i

N
, s

))
⎫
⎪⎬

⎪⎭
gN

s dp dr ds

= 1

Nσ(2k + 1)

N−[N�]∑

i=[N�]

∫ t

0
log

∫
exp

{
σ(2k + 1)Ω

(
ζ k

i , ũ

(
i

N
, s

))}
gN

s dp dr ds.

Then, since all the functions in this expression are smooth and the family of local
Gibbs measures converges weakly, we obtain that

lim
k→∞ lim

N→∞
1

(2k + 1)Nσ

N−[N�]∑

i=[N�]

∫ t

0
log

∫
exp

×
{
σ(2k + 1)Ω

(
ζ k

i , ũ

(
i

N
, s

))}
gN

s dp dr ds

= lim
k→∞

1

σ(2k + 1)

∫ t

0

∫ 1

0
log

∫
exp

{
(2k+1)σΩ(ζ k

i , ũ(x, s))
}

dνλ(x,s) dx ds.

So now for each x ∈ [0, 1], the distribution of the particles in a box of size k is
given by the invariant Gibbs measure with average u(x, s) such that we can apply
Theorem 4 on this product measure to obtain that the last expression is equal to

1

σ

∫ t

0

∫ 1

0
sup
z

{σΩ
(
z, ũ(x, s)

) − I (z)} dx . (47)
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To conclude Theorem 2 it thus remains to show that this is equal to zero. Since I
and Ω are both convex, and both functions and their derivatives are vanishing at
z = ũ, it follows from assumption (1) on the potential that σΩ(z, ũ) � I (z) for σ
small enough. Hence there exists a σ such that the last expression is equal to zero.

This concludes the proof of Theorem 2.
Since

HN (t) � C
∫ t

0
HN (s) ds +

∫ t

0
RN ,k,�,b(s) ds,

for some uniform constant C , it follows by Gronwall inequality that

HN (t) � HN (0)e
Ct +

∫ t

0
RN ,k,�,b(s)e

C(t−s) ds

� eCt
(

HN (0)+
∫ t

0
RN ,k,�,b(s) ds

)
.

Hence the claim follows, since

lim
b→∞ lim

�→0
lim

k→∞ lim
N→∞

∫ t

0

RN ,k,�,b(s)

N
ds = 0.

3.3. The One Block Estimate (Theorem 3)

We define the space-time average of the distribution

f̄ N ,�,k
t = 1

t

∫ t

0

1

[N (1 − 2�)]
N (1−�)∑

i=N�

f N ,k
s,i (r−k, p−k, . . . , rk, pk) ds (48)

where we defined the projections

f N ,k
s,i (r̃−k, p̃−k . . . , r̃k, p̃k)

=
∫

f N
s (r1, p1, . . . , ri−k−1, pi−k−1, r̃−k, p̃−k, . . . , r̃k, p̃k, ri+k+1,

pi+k+1, . . . , rN , pN )
∏

|i−l|>k

drl d pl . (49)

and we denote

dμ̄N ,�,k
t := f̄ N ,�,k

t

∏

|l|�k

drl d pl (50)
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3.3.1. Tightness We have the following:

Lemma 5. (Tightness) For each k fixed , the sequence (μ̄N ,�,k
t )N�1 of probability

measures is tight.

Proof. From the definition of μ̄N ,�,k
t we have

∫ ⎛

⎝ 1

2k + 1

∑

|l|�k

el

⎞

⎠ f̄ N ,�,k
t

∏

|l|�k

drl d pl

= 1

t

∫ t

0

1

[N (1 − 2�)]
N (1−�)∑

i=N�

×
⎛

⎝
∫ ⎛

⎝ 1

2k + 1

∑

|l|�k

el

⎞

⎠ f N ,k
s,i dr−k d p−k . . . drk d pk

⎞

⎠ ds

� 1

t

∫ t

0

∫ (
1

N (1 − 2�)

N∑

l=1

el

)
f N
s

∏

l∈Z

drl d pl ds � C

by Lemma 10, and this implies the tightness.

Lemma 5 asserts that for each fixed k there exists a limit point μ�,kt of the
sequence (μ̄N ,�,k

t )N�1. On the other hand, since the sequence (μ�,kt )k�1 forms a
consistent family of measures, by Kolmogorov’s theorem, for k → ∞, there exists
a unique probability measure μ on the configuration space {(ri , pi )i∈Z ∈ (R2)∞},
such that the restriction of μ on {(r j , p j ) j∈{−k,...,+k} ∈ (R2)2k+1} is μ�,kt .

3.3.2. Proof of the One-Block-Estimate Let us define the formal generator G of
the infinite dynamics by

G := L + γS, (51)

with the antisymmetric part

L :=
∑

j∈Z

{
p j

(
∂

∂r j
− ∂

∂r j+1

)
+ (

V ′(r j+1)− V ′(r j )
) ∂

∂p j

}
(52)

and the symmetric part

S :=
∑

i∈Z

(
f
(

r,p j, j+1
)

− f (r,p)
)
. (53)

In Section 3.3.3 we will prove the following proposition:

Proposition 1. Any limit pointμ of μ̄N ,�,k
t , for N → ∞ and then k → ∞, satisfies

the following properties:

(i) it has finite entropy density: there exists a constant C > 0 such that for all
subsets Λ ⊂ Z
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H
(
μ|Λ

∣∣∣ν|Λ|
(τβ,0,β)

)
� C |Λ|,

(i) it is translation invariant: for any local function F and any j ∈ Z,
∫

F dμ =
∫
(τ j F) dμ

where τ j denotes the spatial shift by j on the configurations.
(i) it is stationary with respect to the operator G: for any smooth bounded local

function F
∫
(GF) dμ = 0.

With this proposition, we can apply the ergodic theorem from [2].

Theorem 5. (Ergodicity) Any limit point μ of μ̄N ,�,k
t (dr, dp) is a convex combina-

tion of Gibbs measures, that is,

μ(dr, dp) =
∏

i∈Z

gλ(ri , pi )dri d pi .

The proof of Theorem 5 is contained in [2], see also [1] for more details. The
idea of the proof is the following: by Proposition 1 one can prove thatμ is separately
stationary for L and S. This implies that the distribution of momenta conditioned
on positionμ(dp|r) is exchangeable. This is the only point where we need the noise
in the dynamics.

Proof of Theorem 3. Recall that we need to prove (43). By Lemma 5 and (ii), (iii)
of Proposition 1, it is enough to show that for each b and �

lim sup
k→∞

sup
μ∈G

∫ ∣∣∣∣∣
1

2k + 1

k∑

l=−k+1

Jb
l−1,l − J̃b

(
1

2k + 1

k∑

l=−k+1

ζ l

)∣∣∣∣∣ dμ = 0

where G is the set of Gibbs measures. But this is just the law of large numbers and
holds in the limit as k → ∞. ��
3.3.3. Proof of Proposition 1

Lemma 6. Any limit probability μ of μ̄N ,�,k
t , for N → ∞ and then k → ∞, is

translation invariant.

Proof. Let F be a bounded, local function depending on configurations only
through −m, . . . ,m for some m � 0. Then there exists for each z ∈ Z an integer
k such that |m + z| � k. Since ( f̄ N ,�,k

t )N is tight, it suffices to prove that for each
z

lim
k→∞ lim

N→∞

∫
(F − τz F) f̄ N ,�,k

t

∏

|l|�k

drl d pl = 0 (54)

that follows easily from the definition (50).
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Lemma 7. Any limit measure μ is stationary in time with respect to the generator
G = L + γS, that means for any bounded smooth local function F(r,p)

∫
GF dμ = 0. (55)

Proof. We have to show that for some k � m

lim
k→∞ lim

N→∞

∫
GF f̄ N ,�,k

t

∏

|l|�k

drl d pl = 0.

With (50), the integral is equal to

1

t

∫ t

0

1

[N (1 − 2�)]
N (1−�)∑

j=N�

∫
GF f N ,k

s, j

∏

|l|�k

drl d pl ds. (56)

Define the space average

F̄ := 1

[N (1 − 2�)]
N (1−�)∑

j=N�

τ j F,

and observe that Gτ(t)N F̄ = G F̄ , then we can rewrite (56) as

1

Nt

∫ t

0

∫
(NGτ(s)N F̄) f N

s dr dp ds = 1

t N

∫ t

0

∫
F̄∂s f N

s dr dp ds

= 1

t N

{∫
F̄ f N

t dr dp −
∫

F̄ f N
0 dr dp

}
.

This expression converges to 0 when N → ∞, since F̄ is a bounded function.

3.3.4. Entropy Density For some integer n � 1, define by Λn a box of length
2n + 1 and by Λn

i a box of length 2n + 1 and centered at i . Furthermore, let

ν∞
(τβ,0,β)(dr, dp) :=

∏

i∈Z

ν(τβ,0,β)(dri , d pi )

and

HΛk (μ|ν∞
(τβ,0,β)) := H(μ|Λk |νk

(τβ,0,β)).

We obtain the following lemma:

Lemma 8. The limit point μ has finite entropy density, that means there exists a
constant C > 0 such that for all subsets Λk

HΛk (μ|ν∞
(τβ,0,β)) � C |Λk |.
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Proof. By convexity of the relative entropy, we have

H
(
μ̄

N ,�,k
t

∣∣∣ νk
(τβ,0,β)

)

� 1

[N (1 − 2�)]
N (1−�)∑

j=N�

H

(
1

t

∫ t

0
f N ,k
s, j dr−k d p−k . . . drk d pk ds

∣∣∣ νk
(τβ,0,β)

)

= 1

[N (1 − 2�)]
N (1−�)∑

j=N�

HΛk
j

(
μ̄N

t

∣∣∣ νN
(τβ,0,β)

)
(57)

where μ̄N
t := f̄ N

t dr dp with

f̄ N
t := 1

t

∫ t

0
f N
s ds. (58)

Relative entropy is superadditive in the following sense (see for example [1]): let
(Λi )i∈I⊂N be a family of disjoint subsets of Z. Then

H⋃
i∈I Λi

(
μ̄N

t

∣∣∣ νN
(τβ,0,β)

)
�

∑

i∈I

HΛi

(
μ̄N

t

∣∣∣ νN
(τβ,0,β)

)
.

The sum in (57) can be rearranged in 2k + 1 sums of sums over disjoint blocks,
then applying the superadditivity (57) is bounded by

(2k + 1)

[N (1 − 2�)] H
(
μ̄N

t

∣∣∣ νN
(τβ,0,β)

)
.

We will prove in Lemma 9 that there exists a finite constant C independent of N ,
such that

H
(
μ̄N

t

∣∣∣ νN
(τβ,0,β)

)
� C N . (59)

By Lemma 5 the sequence (μ̄N ,�,k
t )N is tight. Since by Lemmata 6 and 7 each limit

point μ of (μ̄N ,�,k
t )N is translation invariant and stationary, we can conclude the

proof by the lower semi continuity of the relative entropy.

To complete the proof of Lemma 8 it remains to show (59).

Lemma 9. If

H
(

f N
0 drdp | νN

(τβ,0,β)

)
� C1 N

for some uniform constant C1 > 0, then for any N ∈ N there exists a constant
C2 > 0 such that

H
(
μ̄N

t | νN
(τβ,0,β)

)
� C2 N ,

where μ̄N
t is defined by (58).
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Proof. Recall from Lemma 1 that the relative entropy with respect to Lebesgue
measure is nonincreasing in time since the Lebesgue measure is stationary with
respect to the generator Gτ(t)N (for any t). Therefore, as in the proof of Lemma 1 we
can write

H
(

f N
t dr dp

∣∣ gN
(τβ,0,β) dr dp

)
− H

(
f N
0 dr dp

∣∣ gN
(τβ,0,β)dr dp

)

� −
∫

log gN
(τβ,0,β) f N

t dr dp +
∫

log gN
(τβ,0,β) f N

0 dr dp.

The last line is then equal to

= −
∫ t

0

∫
f N
s N Gτ(s)

N log gN
(τβ,0,β) dr dp ds

= −βN
∫ t

0
τ(s)

∫
f N
s pN dr dp ds.

Since the last line is equal to the expectation ofβ
∑N

j=1(e j (t)−e j (0)), by Lemma 10
it is bounded by C N for some constant C .

Hence, by convexity of H(·|·),

H
(
μ̄N

t | νN
(τβ,0,β)

)
� (C1 + C)N .

3.4. Energy Bound

We prove here a deterministic bound on the total energy inside the system,
independent of the realizations of the noise of the dynamics.

Lemma 10. If the initial configuration satisfy

N∑

j=1

e j (0) � C N

then there exists a constant C̃(t) independent of N such that

N∑

j=1

e j (t) � C̃(t)N (60)

Proof. Define

FN (t) =
N∑

j=1

e j (t)− τ(t)qN (t) =
N∑

j=1

(
e j (t)− τ(t)r j (t)

)
.

Computing the time evolution of this function we have

FN (t) = FN (0)−
∫ t

0
τ ′(s)qN (s) ds. (61)



584 Nadine Braxmeier-Even & Stefano Olla

Consequently

N∑

j=1

e j (t) = τ(t)qN (t)− τ(0)qN (0)+
N∑

j=1

e j (0)−
∫ t

0
τ ′(s)qN (s) ds. (62)

By condition (1), we have that

|qN | �
∑

j

|r j | �
√

N

⎛

⎝
∑

j

|r j |2
⎞

⎠
1/2

� C1/2
−

√
N

⎛

⎝
∑

j

(1 + V (r j ))

⎞

⎠
1/2

� C1/2
−

√
N

⎛

⎝
∑

j

(1 + e j )

⎞

⎠
1/2

.

Then we can estimate
∣∣∣∣
∫ t

0
τ ′(s)qN (s) ds

∣∣∣∣ � ‖τ ′‖∞
∫ t

0
|qN (s)| ds

� ‖τ ′‖∞C1/2
−

√
N

∫ t

0

⎛

⎝
N∑

j=1

(1 + e j (s))

⎞

⎠
1/2

ds.

Defining ēN (t) = 1
N

∑N
j=1 e j (t) we have then

ēN (t) � C1/2
− ‖τ‖∞

(√
ēN (t)+ 1 + √

ēN (0)+ 1
)

+ēN (0)+ ‖τ ′‖∞C1/2
−

∫ t

0

√
ēN (s)+ 1 ds,

which implies (60).
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