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Abstract

In this paper we study the fully nonlinear free boundary problem

{
F(D2u) = 1 almost everywhere in B1 ∩ �

|D2u| � K almost everywhere in B1 \ �,

where K > 0, and � is an unknown open set. Our main result is the optimal
regularity for solutions to this problem: namely, we prove that W 2,n solutions are
locally C1,1 inside B1. Under the extra condition that � ⊃ {Du �= 0} and a
uniform thickness assumption on the coincidence set {Du = 0}, we also show
local regularity for the free boundary ∂� ∩ B1.

1. Introduction and Main Result

1.1. Background

Since the seminal work of Caffarelli [2] on the analysis of free boundaries
in the obstacle problem, many new techniques and tools have been developed to
treat similar types of free boundary problems. The linear theory, that is, when the
operator is the Laplacian, has been completely resolved in [7,16] for the Lipschitz
right hand side f and when the equation is satisfied outside the set where u vanishes
(this corresponds to the obstacle problem):

�u = f χ{u �=0} in B1. (1.1)
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Passing below the Lipschitz threshold was a challenging task, as the previous
techniques were using monotonicity formulas which failed when f ∈ Cα . The
main difficulty has been to prove the C1,1-regularity of solutions. On the other
hand, the regularity of the free boundary for the Laplacian case was still feasible
(even in low-regularity cases) due to the fact that after blow-up the right hand side
becomes a constant, and hence the monotonicity tool applies again. (We refer to
the above reference for more details.)

A generalization of the problem towards a fully nonlinear operator F(D2u) =
χ{u �=0} for the signed-problem (that is, u � 0) was completely done by Lee [13]
and later partial results were obtained by Lee–Shahgholian [14] in the case of
the no-sign obstacle problem. Here, two challenging problems were left: (i) C1,1-
regularity of u; (ii) Classification of global solutions.

Recently, using the harmonic analysis technique, Andersson–Lindgren–
Shahgholian [1] could prove a complete result for the Laplacian case, with f
satisfying a Dini-condition. Actually their argument shows that if the elliptic equa-
tion �v = f admits a C1,1-solution in B1, then the corresponding free boundary
problem also admits a C1,1-solution. From here, the free boundary regularity fol-
lows as in the classical case. The heart of the matter in [1] lies in their Proposition 1
(due to John Andersson) which is a dichotomy between the growth of the solution
and the decay of the volume of the coincidence set. Indeed, one can show that if
(close to a free boundary point) the growth of the solution is not quadratic, then the
volume of the complement set Br (x0)\� decays fast enough to make the potential
of this set twice differentiable at the origin. From this fact, they can then achieve
the optimal growth.

In [1] the authors strongly relied on the linearity of the equation to consider
projections of the solution onto the space of second order harmonic polynomials.
Also, the linearity of the equation plays a crucial role in several of their estimates.
Here, we introduce a suitable “fully nonlinear version” of this projection operation,
and we are able to circumvent the difficulties coming from the nonlinear structure
of the problem to prove C1,1 regularity of the solution. Using this result, we can
also show C1-regularity of the free boundary under uniform thickness assumptions
on the “coincidence set”, which proves, in particular, that Lipschitz free boundaries
are smooth. Nevertheless, a complete regularity of the free boundary still remains
open due to a lack of new techniques to classify global solutions.

1.2. Setting of the Problem

Our aim here is to provide an optimal regularity result for solutions to a very
general class of free boundary problems which include both the obstacle problem
(that is, the right hand side is given by χ{u �=0}) and the more general free boundary
problems studied in [8] (where the right hand side is of the form χ{∇u �=0}).

To include these examples in a unique general framework, we make the weakest
possible assumption on the structure of the equation: we suppose that u solves a
fully nonlinear equation inside an open set �, and in the complement of � we only
assume that D2u is bounded.
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Notice that, in the above mentioned problems, the first step in the regularity
theory is to show that viscosity solutions are W 2,p for any p < ∞ (this is a
relatively “soft” part), and then one wants to prove that actually solutions are C1,1.

Since the first step is already pretty well understood [8,10,15], here we focus on
the second one. Hence, we assume that u : B1 → R is a W 2,n function satisfying

{
F(D2u) = 1 almost everywhere in B1 ∩ �

|D2u| � K almost everywhere in B1 \ �,
(1.2)

where K > 0, and � ⊂ R
n is some unknown open set. Since D2u is bounded

in the complement of �, we see that F(D2u) is bounded inside the whole B1,
therefore u is a so-called “strong Ln solution” to a fully nonlinear equation with
bounded right hand side [5]. We refer to [4] as a basic reference to fully nonlinear
equations and viscosity methods, and to [8,10,15] for several existence results for
strong solutions to free boundary type problems.

Let us observe that, if u ∈ W 2,n , then D2u = 0 almost everywhere inside both
sets {u = 0} and {∇u = 0}, so (1.2) includes as special cases both F(D2u) =
χ{u �=0} and F(D2u) = χ{∇u �=0}.

We assume that:

(H0) F(0) = 0.
(H1) F is uniformly elliptic with ellipticity constants λ0, λ1 > 0, that is

P−(Q − P) � F(Q) − F(P) � P+(Q − P)

for any P, Q symmetric, where P− and P+ are the extremal Pucci opera-
tors:

P−(M) := inf
λ0 Id�N�λ1 Id

trace(N M), P+(M) := sup
λ0 Id�N�λ1 Id

trace(N M).

(H2) F is either convex or concave.

Under assumptions (H0)–(H2) above, strong Ln solutions are also viscosity solu-
tions [5], so classical regularity results for fully nonlinear equations [3] show that
u ∈ W 2,p

loc (B1) for all p < ∞. In addition, by [6], D2u belongs to BMO.
Our primary aim here is to prove uniform optimal C1,1-regularity for u. This is

a key step in order to be able to perform an analysis of the free boundary.

Remark 1.1. In order to keep the presentation simple and to highlight the main
ideas in the proof, we decided to restrict ourselves to the “clean” case F(D2u) = 1
inside �. However, under suitable regularity assumptions on F and f , we expect
our arguments to work for the general class of equations F(x, u,∇u, D2u) = f
inside �.
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1.3. Main Results

Our main result in this paper concerns optimal regularity of solutions to (1.2). In
order to simplify the notation and avoid dependence of constants on ‖u‖L∞(B1), we
call a constant universal if it depends on the dimension, K , the ellipticity constants
of F , and ‖u‖L∞(B1) only.

Theorem 1.2. (Interior C1,1 regularity) Let u : B1 → R be a W 2,n solution of
(1.2), and assume that F satisfies (H0)–(H2). Then there exists a universal constant
C̄ > 0 such that

|D2u| � C̄, in B1/2.

In order to investigate the regularity of the free boundary, we need to restrict
ourselves to a more specific situation than the one in (1.2). Indeed, as discussed in
Section 3, even if we assume that D2u = 0 outside �, non-degeneracy of solutions
(a key ingredient to study the regularity of the free boundary) may fail. As we
will see, a sufficient condition to show non-degeneracy of solutions is to assume
that � ⊃ {∇u �= 0}. Still, once non-degeneracy is proved, the lack of strong
tools (available in the Laplacian case) such as monotonicity formulas makes the
regularity of the free boundary a very challenging issue.

To state our result we need to introduce the concept of “thickness”. Set � :=
B1 \�, and for any set E let MD(E) denote the smallest possible distance between
two parallel hyperplanes containing E . Then, we define the thickness of the set �

in Br (x) as

δr (u, x) := MD(� ∩ Br (x))

r
.

We notice that δr enjoys the scaling property δ1(ur , 0) = δr (u, x), where ur (y) =
u(x + r y)/r2.

Our result provides regularity for the free boundary under a uniform thickness
condition. As a corollary of our result, we deduce that Lipschitz free boundaries
are C1, and hence smooth [11].

Theorem 1.3. (Free boundary regularity) Let u : B1 → R be a W 2,n solution of
(1.2). Assume that F is convex and satisfies (H0)–(H1), and that one of the following
conditions holds:

- � ⊃ {∇u �= 0} and F is of class C1;
- � ⊃ {u �= 0}.
Suppose further that there exists ε > 0 such that

δr (u, z) > ε ∀ r < 1/4, z ∈ ∂� ∩ Br (0).

Then ∂� ∩ Br0(0) is a C1-graph, where r0 depends only on ε and the data.
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The important difference between this theorem and previous results of this form
is that here we assume thickness of � in a uniform neighborhood of the origin rather
than at the origin only. The reason for this fact is that this allows us to classify global
solutions arising as blow-ups around such “thick points”. Once this is done, then
local regularity follows in pretty standard way.

The paper is organized as follows: In Section 2 we prove Theorem 1.2. Then
in Section 3 we investigate the non-degeneracy of solutions, and classify global
solutions under a suitable thickness assumption. In Section 4 we show directional
monotonicity for local solutions, that gives a Lipschitz regularity for the free bound-
ary. This Lipschitz regularity can then be improved to C1. The details of such an
analysis are by-now classical and only indicated briefly in Section 5.

2. Proof of Theorem 1.2

2.1. Technical Preliminaries

In this section we shall gather some technical tools that are interesting in their
own right, and may even be applied to other problems. Throughout all of the section,
we assume that F satisfies (H0)–(H2).

With no loss of generality, here we will perform all our estimates at the origin,
and later on we will apply such estimates at all points where u is twice differentiable,
showing that D2u is universally bounded at all such points. This will give a complete
optimal regularity for u; see Section 2.2.

For all r < 1/4, we define

Ar := {x : r x ∈ Br \ �} = Br \ �

r
⊂ B1. (2.1)

We recall that, by [6, Theorem A] (see also [9, Appendix] for a simpler proof
of this estimate in the more general context of parabolic equations),

‖D2u‖B M O(B3/4) � C

for some universal constant C , which implies in particular that

sup
r∈(0,1/4)

∫
−

Br (0)

|D2u(y) − (D2u)r,0|2 dy � C, (D2u)r,0 :=
∫
−

Br (0)

D2u(y) dy.

(2.2)

Here we first show that in (2.2) we can replace (D2u)r,0 with a matrix in F−1(1)

(a direct proof of this result is also given in [9, Appendix]).

Lemma 2.1. There exists C > 0 universal such that

min
F(P)=1

∫
−

Br (0)

|D2u(y) − P|2 dy � C ∀ r ∈ (0, 1/4). (2.3)
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Proof. Set Qr := (D2u)r,0. Since F(D2u) is bounded inside B1 and F is λ1-
Lipschitz (this is a consequence of (H1)), using (2.2) we get

|F(Qr )| =
∣∣∣∣
∫
−

Br (0)

F
(

Qr − D2u(y) + D2u(y)
)

dy

∣∣∣∣
�

∫
−

Br (0)

(∣∣∣F(D2u(y))

∣∣∣ + λ1

∣∣∣Qr − D2u(y)

∣∣∣) dy

� C

(
1 +

√∫
−

Br (0)

|D2u(y) − (D2u)r,0|2 dy

)
� C.

Thus we have proved that F(Qr ) is universally bounded. By ellipticity and conti-
nuity [see (H1)] we easily deduce that there exists a universally bounded constant
β ∈ R such that F(Qr + β Id) = 1. Since∫

−
Br (0)

|D2u(y) − (Qr + β Id)|2 dy � 2
∫
−

Br (0)

|D2u(y) − Qr |2 dy + 2β2,

this proves the result. �
For any r ∈ (0, 1/4), let Pr ∈ F−1(1) denote a minimizer in (2.3) (although

Pr may not be unique, we just choose one).
We first show that Pr cannot change too much on a dyadic scale:

Lemma 2.2. There exists a universal constant C0 such that

|P2r − Pr | � C0 ∀ r ∈ (0, 1/8).

Proof. By the estimate∫
−

Br (0)

|D2u(y) − Pr |2 dy +
∫
−

B2r (0)

|D2u(y) − P2r |2 dy � C

[see (2.3)], we obtain

|P2r − Pr |2 � 2
∫
−

Br (0)

|D2u(y) − Pr |2 dy + 2
∫
−

Br (0)

|D2u(y) − P2r |2 dy

� 2
∫
−

Br (0)

|D2u(y)−Pr |2 dy+2n+1
∫
−

B2r (0)

|D2u(y) − P2r |2 dy �C,

which proves the result. �
The following result shows that if Pr is bounded, then (up to a linear function)

so is |u|/r2 inside Br .

Lemma 2.3. Assume that u(0) = ∇u(0) = 0. Then there exists a universal con-
stant C1 such that

sup
Br (0)

∣∣∣∣u − 1

2
〈Pr y, y〉

∣∣∣∣ � C1r2 ∀ r ∈ (0, 1/8). (2.4)

In particular

sup
Br (0)

|u| � (C1 + |Pr |)r2. (2.5)
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Proof. By Lemma 2.1 we know that
∥∥∥∥D2 u(r y)

r2 − Pr

∥∥∥∥
L2(B1)

� C,

that is the function ūr (y) := u(r y)/r2 − 1
2 〈Pr y, y〉 satisfies

∥∥∥D2ūr

∥∥∥
L2(B1)

� C.

By Poincaré inequality, this implies that there exists a linear function � : R
n → R

such that

‖ūr − �‖L2(B5/6)
� C.

Let us define û := ūr − �. Since F(Pr + D2û(y)) = F(D2u(r y)) ∈ L∞(B1) and
F(Pr ) = 1, by [4, Theorem 4.8(2)] applied to the subsolutions û+ and û− of the
elliptic operators Q �→ F(Pr + Q)− 1 and Q �→ 1 − F(Pr − Q) respectively, we
obtain that

‖û‖L∞(3/4) � C.

Then, by interior C1,α estimates (see for instance [4, Chapter 5.3] and [3, Theorem
2]) we deduce that

‖û‖C1,α(B1/2)
� C,

so in particular (by the definition of û)

|ūr (0) − �(0)| + |∇ūr (0) − ∇�(0)| � C.

Since by assumption ūr (0) = ∇ūr (0) = 0, this implies that the linear function �

is uniformly bounded inside B1/2, hence

sup
Br/2(0)

∣∣∣∣∣
u − 1

2 〈Pr y, y〉
r2

∣∣∣∣∣ = ‖ūr‖L∞(B1/2) � ‖û‖L∞(B1/2) + ‖�‖L∞(B1/2) � C.

(2.6)

To prove that we can actually replace r/2 with r in the equation above [see (2.4)],
we first apply (2.6) with 2r in place of r to get

sup
Br (0)

∣∣∣∣∣
u − 1

2 〈P2r y, y〉
(2r)2

∣∣∣∣∣ � C,

and then we conclude by Lemma 2.2. �
We now prove that if |Pr | is sufficiently large then the measure of Ar [see (2.1)]

has to decay in a geometric fashion.
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Proposition 2.4. There exists M > 0 universal such that, for any r ∈ (0, 1/8), if
|Pr | � M then

|Ar/2| � |Ar |
2n

.

Proof. Set ur (y) := u(r y)/r2, and let

ur (y) = 1

2
〈Pr y, y〉 + vr (y) + wr (y), (2.7)

where vr is defined as the solution of{
F(Pr + D2vr ) − 1 = 0 in B1,

vr = ur (y) − 1
2 〈Pr y, y〉 on ∂ B1,

(2.8)

and by definition wr := ur − 1
2 〈Pr y, y〉 − vr .

Set fr := F(D2ur ) ∈ L∞(B1) [recall that |D2ur | � K almost everywhere
inside Ar , see (1.2)]. Notice that, since fr = 1 outside Ar ,

F(D2ur ) − F(Pr + D2vr ) = ( fr − 1)χAr ,

so it follows by (H1) that wr solves{
P−(D2wr ) � ( fr − 1)χAr � P+(D2wr ) in B1,

wr = 0 on ∂ B1.
(2.9)

Hence, since fr is universally bounded, we can apply the ABP estimate [4, Chapter
3] to deduce that

sup
B1

|wr | � C‖χAr ‖Ln(B1(0)) = C |Ar |1/n . (2.10)

Also, since F(Pr ) = 1 and vr is universally bounded on ∂ B1 [see (2.4)], by Evans–
Krylov’s theorem [4, Chapter 6] applied to (2.8) we have

‖D2vr‖C0,α(B3/4(0)) � C. (2.11)

This implies that wr solves the fully nonlinear equation with Hölder coefficients

G(x, D2wr )=( fr − 1)χAr in B3/4, G(x, Q) := F(Pr + D2vr (x) + Q) − 1.

Since G(x, 0) = 0, we can apply [3, Theorem 1] with p = 2n, and using (2.10)
we obtain∫

B1/2(0)

|D2wr |2n � C
(
‖wr‖L∞(B3/4) + ‖χAr ‖L2n(B3/4(0))

)2n
� C |Ar | (2.12)

(recall that |Ar | � |B1|).
We are now ready to conclude the proof: since |D2ur | � K almost everywhere

inside Ar (by (1.2)), recalling (2.7) we have∫
Ar ∩B1/2(0)

|D2vr + D2wr + Pr |2n =
∫

Ar ∩B1/2(0)

|D2ur |2n � K 2n|Ar |.
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Therefore, by (2.11) and (2.12),

|Ar ∩ B1/2(0)| |Pr |2n =
∫

Ar ∩B1/2(0)

|Pr |2n

� 32n
(∫

Ar ∩B1/2(0)

|D2vr |2n +
∫

Ar ∩B1/2(0)

|D2wr |2n + K 2n|Ar |
)

� 32n
(

|Ar ∩ B1/2(0)| ‖D2vr‖2n
L∞(B1/2(0)) +

∫
B1/2(0)

|D2wr |2n + K 2n|Ar |
)

� C |Ar ∩ B1/2(0)| + C |Ar |.
Hence, if |Pr | is sufficiently large we obtain

|Ar ∩ B1/2(0)| |Pr |2n � C |Ar | � 1

4n
|Pr |2n|Ar |.

Since |Ar/2| = 2n|Ar ∩ B1/2(0)|, this gives the desired result. �

2.2. Proof of Theorem 1.2

Since by assumption |D2u| � K almost everywhere outside �, it suffices to
prove that |D2u(x0)| � C for almost everywhere x0 ∈ �̄ ∩ B1/2, for some C > 0
universal.

Fix x0 ∈ �̄ ∩ B1/2 such that u is twice differentiable at x0, and x0 a Lebesgue
point for D2u (these properties hold at almost every point). With no loss of gener-
ality we can assume that x0 = 0 and that u(0) = ∇u(0) = 0.

Let M > 0 as in Proposition 2.4. We distinguish two cases:

(i) lim infk→∞ |P2−k | � 3M .
(ii) lim infk→0 |P2−k | � 3M .

Using (2.5) and the fact that u is twice differentiable at 0, in case (i) we imme-
diately obtain

|D2u(0)| � lim inf
k→∞ sup

B2−k (0)

2|u|
2−2k

� 2(C1 + 3M).

In case (ii), let us define

k0 := inf
{

k � 2 : |P2− j | � 2M ∀ j � k
}
.

By the assumption that lim infk→0 |P2−k | � 3M , we see that k0 < ∞. In addition,
since P1/4 is universally bounded, to enlarge M we can assume that k0 � 3.

Let us observe that, since by definition |P2−k0−1 | � 2M , by Lemma 2.2 we
obtain

|P2−k0 | � 2M + C0. (2.13)
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We now define the function ū0 := 4k0
u(2−k0 x) − 1

2 〈P2−k0 x, x〉. Observe that
ū0 is a solution of the fully nonlinear equation

G(D2ū0) = ( f2−k0 − 1)χA
2−k0

in B1, (2.14)

where G(Q) := F(P2−k0 + Q)−1 and f2−k0 (x) := F(D2u(2−k0 x)) is universally
bounded. In addition, since |P2−k | � 2M for all k � k0, Proposition 2.4 gives

|A2−k0+ j | � 2− jn|A2−k0 | � 2− jn|B1| ∀ j � 0,

from which we deduce that ( f2−k0 − 1)χA
2−k0

decays in Ln geometrically fast:∫
−

Br

∣∣( f2−k0 − 1)χA
2−k0

∣∣n � C
∫
−

Br

|χA
2−k0

| � Crn ∀ r ∈ (0, 1).

Hence, since G(0) = 0, we can apply [3, Theorem 3] to deduce that ū0 is C2,α at
the origin, with universal bounds. In particular this implies

|D2ū0(0)| � C.

Since D2u(0) = D2ū0(0) + P2−k0 and P2−k0 is universally bounded [see (2.13)],
this concludes the proof.

3. Non-degeneracy and Global Solutions

3.1. Local Non-degeneracy

Non-degeneracy is a corner-stone for proving smoothness of the free boundary.
This property says that the function grows quadratically (and not slower) away from
the free boundary points, that is, supBr (x0) |u − u(x0) − (x − x0) · ∇u(x0)| � r2

for any x0 ∈ �. However, while in the case �u = χ{u �=0} or �u = χ{∇u �=0} non-
degeneracy is known to hold true, in the case �u = χ{D2u �=0} non-degeneracy may
fail.

To see this, one can consider the one dimensional problem u′′ = χ{u′′ �=0}. Every
solution is obtained by linear functions and quadratic polynomial glued together in
a C1,1 way. In particular, if {I j } j inN is a countable family of disjoint intervals, the
function

u(t) :=
∫ t

0

∫ s

0
χ�(τ) dτ ds, � := ∪ j I j

satisfies u′′ = χ� = χ{u′′ �=0}, and if we choose I j such that

|� ∩ (−r, r)|
2r

→ 0 as r → 0,

then it is easy to check that u(r) = o(r2) as r → 0.
A possible way to rule out the above counterexample may be to consider only

points in � such that � has a uniform density inside Br (x0). We will not investigate
this direction here. Instead, we show that non-degeneracy holds under the additional
assumption that � ⊃ {∇u �= 0} (which is sufficient to include into our analysis the
cases F(D2u) = χ{u �=0} and F(D2u) = χ{∇u �=0}).
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Lemma 3.1. Let u : B1 → R be a W 2,n solution of (1.2), assume that F satisfies
(H0)–(H2), and that � ⊃ {∇u �= 0}. Then, for any x0 ∈ � ∩ B1/2,

max
∂ Br (x0)

u � u(x0) + r2

2nλ1
∀ r ∈ (0, 1/4).

Proof. By approximation, it suffices to prove the estimate for x0 ∈ �. In addition,
since D2u = 0 almost everywhere inside the set {∇u = 0}, F(D2u) = 1 in �∩ B1,
and F(0) = 0 [by (H0)], we see that {∇u = 0} has measure zero inside � ∩ B1.
This implies that the set � ∩ {∇u �= 0} ∩ B1 is dense inside � ∩ B1, and so we
only need to prove the result when x0 ∈ � ∩ {∇u �= 0} ∩ B1.

Let us define the C1,1 function (recall that u ∈ C1,1 because of Theorem 1.2)

v(x) := u(x) − |x − x0|2
2nλ1

.

By (H1) we see that

F(D2v) = F
(
D2u − Id /(nλ1)

)
� F(D2u) − P+(

Id /(nλ1)
)

� 0 in � ∩ B1.

(3.1)

We claim that

max
∂ Br (x0)

v = sup
Br (x0)

v. (3.2)

Indeed, if there exists an interior maximum point y ∈ Br (x0), then

0 = ∇v(y) = ∇u(y) − y − x0

nλ1
. (3.3)

Since by assumption x0 ∈ {∇u �= 0} we have ∇u(x0) �= 0, so by (3.3) y �= x0. In

particular ∇u(y) = y−x0

nλ1
�= 0, and thus y ∈ �. Recalling that v is a subsolution

for F inside � ∩ B1 [see (H0) and (3.1)], by the strong maximum principle v is
constant in a neighborhood of y. Thus, the set of maxima of v is both relatively open
and closed in Br (x0), which implies that v is constant there and (3.2) is trivially
satisfied.

Thanks to the claim we obtain

max
∂ Br (x0)

u − r2

2nλ1
= max

∂ Br (x0)
v � v(x0) = u(x0),

which proves the result. �

3.2. Classification of Global Solutions

Now that non-degeneracy is proven, we can start considering blow-up solutions
and try to classify them. We shall treat the case � ⊃ {∇u �= 0}. Our results would
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work also for the case � ⊃ {D2u �= 0} if the assumptions are strengthened in a
way that solutions stay stable/invariant in a blow-up regime.

Since we will use the thickness to measure sets, we need some facts about its
stability properties: Let us first recall the definition for δr (u, x):

δr (u, x) := MD(� ∩ Br (x))

r
, � := B1 \ �.

We remark that, for polynomial global solutions P2 = ∑
a j x2

j (with a j such that

F(D2 P2) = 1), one has

δr (P2, 0) = 0. (3.4)

Indeed, the zeros of the gradient of a second degree homogeneous polynomial P2
always lie on a hyperplane.

The next observation is the stability of δr (u, x) under scaling: more precisely,
if x ∈ ∂� ∩ B1 and we rescale u as ur (y) := u(x+r y)−u(x)

r2 (notice that ∇u(x) = 0
for all x ∈ ∂�), then

δr (u, x) = δ1(ur , 0) (3.5)

which along with the fact that lim supr→0 �(ur ) ⊂ �(u0) whenever ur converges
to some function u0 (see [15, Proposition 3.17 (iv)]) gives

lim sup
r→0

δr (u, x0) � δ1(u0, 0). (3.6)

Since any limit of ur will be a global solution of (1.2) [that is, it solves (1.2) in the
whole R

n], we are interested in classifying global solutions.
In the next proposition we classify global solution with a “thick free boundary”.

Proposition 3.2. Let u : R
n → R be a W 2,n solution of (1.2) inside R

n, assume
that F is convex and satisfies (H0)–(H1), and that � ⊃ {∇u �= 0}. Assume that
there exists ε0 > 0 such that

δr (u, x0) � ε0 ∀ r > 0, ∀ x0 ∈ ∂�. (3.7)

Then u is a half-space solution, that is, up to a rotation, u(x) = γ [(x1)+]2/2 + c,
where γ ∈ (1/λ1, 1/λ0) is such that F(γ e1 ⊗ e1) = 1 and c ∈ R.

Proof. We first prove that u is convex. Suppose by contradiction that u is not, and
set

m := inf
z∈�, e∈Sn−1

∂eeu(z) < 0.

Observe that, thanks to Theorem 1.2, u is globally C1,1 in R
n , so m is finite.

Let us consider sequences y j ∈ � and e j ∈ S
n−1 such that

∂e j e j u(y j ) → m as j → ∞.
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Rescale u at y j with respect to d j := dist(y j , ∂�), that is,

u j (x) := u(d j x + y j ) − u(y j ) − d j∇u(y j ) · x

d2
j

.

Notice that, since ∇u = 0 on ∂�, ∇u j = � j on ∂� j , where � j := (� − y j )/d j

and � j := −∇u(y j )/d j ∈ R
n .

Also, |� j | � C (by the C1,1 regularity of u), up to a subsequence � j → �∞. By
rotating the system of coordinates, we can assume that (again up to subsequences)
e j → e1. Then the functions u j still satisfy (1.2) and they converge to another
global solution u∞ which satisfies ∂11u∞(0) = −m. Let us observe that, by the
convexity of F, ∂11u∞ is a supersolution of the linear operator Fi j (D2u∞)∂i j .
Hence, since ∂11u∞(z) � −m inside B1(0), by the strong maximum principle we
deduce that ∂11u∞ ≡ −m inside the connected component containing B1(0) (call
it �∞).

Notice that, by replacing u∞(x) with u∞(x) − �∞ · x , we can assume that
∇u∞(x) = 0 on ∂�∞. Also, since ∂eeu∞(z) � −m inside B1(0) for any e ∈ S

n−1,
it follows that e1 is an eigenvector of D2u at every point (which corresponds to the
smallest eigenvalue). In particular, this implies that ∂1 j u∞ = 0 for any j = 2, . . . , n
inside �∞. Hence, integrating u∞ in the direction e1 gives

u∞(x) = P(x) inside �∞, (3.8)

where

P(x) := −mx2
1/2 + ax1 + b(x ′), x ′ = (x2, . . . , xn).

We now observe that the set where ∂1 P vanishes corresponds to the hyperplane
{x1 = a/m}. Hence, since ∇u∞ = 0 (in particular ∂1u∞ = 0) on ∂�∞, we deduce
that ∂�∞ ⊂ {x1 = a/m}. We now distinguish two cases:

– If ∂�∞ �= {x1 = a/m} then the set �∞ contains R
n \ {x1 = a/m} (since ∂1u∞

cannot vanish anywhere else), and so F(D2u∞) = 1 almost everywhere in R
n .

Then we apply Evans–Krylov’s Theorem [4, Chapter 6] to u∞(Ry)/R2 inside
B1 (notice that these functions are uniformly bounded inside B1 thanks to the
global C1,1 regularity) to deduce that

sup
x,z∈BR

|D2u∞(x) − D2u∞(z)|
|x − z|α � C

Rα
.

Letting R → ∞ we obtain that D2u∞ is constant, and so u∞ is a second order
polynomial.

– If ∂�∞ = {x1 = a/m}, since ∇u∞ = 0 on ∂�∞ we get that ∇x ′ P = 0 on the
hyperplane {x1 = a/m}. Hence b is constant and so

u∞ = −mx2
1/2 + ax1 + b inside {x1 > a/m},

which contradicts (H0) and (H1) (because F(D2u∞) = 1 while D2u∞ = −mId
is negative definite).
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In conclusion we have proved that if u is not convex, then u∞ is a second order
polynomial. Invoking the thickness assumption (3.7) and the stability properties
(3.5)–(3.6) along with (3.4) (notice that the stability properties, although stated in
a slightly different context, still hold in this situation), we conclude that u∞ cannot
be a second degree polynomial, and thus a contradiction.

Hence, we have proved that u is convex, which implies that {∇u = 0} is a convex
set (since for a convex function any critical point is a minimum, and the set of minima
is convex). Recall that, since F(D2u) = 1 in �, we have |� \ {∇u �= 0}| = 0,
and by convexity of {∇u = 0} and the thickness assumption it is easy to see that
� = {∇u �= 0} (notice that, since u ∈ C1,1, the set {∇u �= 0} is open).

We now show that the set �(u) = {∇u = 0} is a half-space. For simplicity we
may assume the origin is on the free boundary. Consider a blow-down u∞ obtained
as a limit (up to a subsequence) of u(Ry)/R2 as R → ∞. It is not hard to realize
that �(u∞) = {x ∈ �(u) : t x ∈ �(u) ∀ t > 0}. In other words, the coincidence
set for the blow-down is convex, and coincides with the largest cone (with vertex
at the origin) in the coincidence set of the function u. Assume by contradiction that
�(u∞) is not a half-space. Then, in some suitable system of coordinates,

�(u∞) ⊂ Cθ0 := {
x ∈ R

n : x = (ρ cos θ, ρ sin θ, x3, . . . , xn), θ0 � |θ | � π
}

for some θ0 > π/2. Hence, if we choose θ1 ∈ (π/2, θ0) and set α := π/θ1, then it
is easy to check that, for β > 0 sufficiently large (the largeness depending only on
θ1 and the ellipticity constants of F), the function

v = rα
(
e−β sin(αθ) − e−β

)

is a positive subsolution for the linear operator Fi j (D2u)∂i j inside R
n \ C1 (see for

instance [13]), and it vanishes on ∂Cθ1 . Hence, because ∂1u∞ > 0 inside R
n \ Cθ0

(by convexity of u∞) and θ0 > θ1, by the comparison principle we deduce that

v � ∂1u∞.

However, since α < 1, this contradicts the Lipschitz regularity of ∂1u∞ at the
origin.

So �(u∞) is a half space, and since �(u∞) ⊂ �(u) and the latter set is convex,
we deduce that �(u) is a half-space as well.

Finally, to conclude the proof, we apply Krylov’s boundary C2,α estimates [12]
(see also the recent results in [17]) inside the half-ball B1 \ �(u) to the uniformly
bounded functions u(Ry)/R2 to get

sup
x,z∈BR\�(u)

|D2u(x) − D2u(z)|
|x − z|α � C

Rα
.

Letting R → ∞ we obtain that D2u is constant, and so u is a second order
polynomial inside the half-space R

n \ �(u). Since ∇u = 0 on the hyperplane
∂�(u), it is immediate to check that u has to be a half-space solution. �
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4. Local Solutions and Directional Monotonicity

In this section we shall prove a directional monotonicity for solutions to our
equations. In the next section we will use Lemmas 4.1 and 4.2 below to show that,
if u is close enough to a half-space solution γ [(x1)+]2 in a ball Br , then for any
e ∈ S

n−1 with e · e1 � s > 0 we have C0∂eu − u � 0 inside Br/2.

4.1. The Case � ⊃ {u �= 0}
Lemma 4.1. Let u : B1 → R be a W 2,n solution of (1.2) with � ⊃ {u �= 0}.
Assume that C0∂eu − u � −ε0 in B1 for some C0, ε0 � 0, and that F is convex
and satisfies (H0)–(H1). Then C0∂eu − u � 0 in B1/2 provided ε0 � 1/(8nλ1).

Proof. Since F is convex, for any matrix M we can choose an element P M inside
∂ F(M) (the subdifferential of F at M) in such a way that the map M �→ P M

is measurable. Then, since that u ∈ C2,α
loc (�) (by Evans–Krylov’s Theorem [4,

Chapter 6]), we can define the measurable uniformly elliptic coefficients

ai j (x) := (P D2u(x))i j ∈ ∂ F(D2u(x)).

We now notice two useful facts: first of all, since ai j ∈ ∂ F(D2u), by convexity of
F we deduce that, for any x ∈ � and h > 0 small such that x + he ∈ �,

ai j (x)
∂i j u(x + he) − ∂i j u(x)

h
� F(D2u(x + he)) − F(D2u(x))

h
= 0,

so, by letting h → 0,

ai j∂i j∂eu � 0 in �. (4.1)

Also, again by the convexity of F and recalling that F(0) = 0, we have

ai j∂i j u � F(D2u) − F(0) = 1 in �. (4.2)

Now, let us assume by contradiction that there exists y0 ∈ B1/2 such that
C0∂eu(y0) − u(y0) < 0, and consider the function

w(x) := C0∂eu(x) − u(x) + |x − y0|2
2nλ1

.

Thanks to (4.1), (4.2), and assumption (H1) (which implies that λ0 Id � ai j �
λ1 Id) we deduce that w is a supersolution of the linear operator L := ai j∂i j .
Hence, by the maximum principle,

min
∂(�∩B1)

w = min
�∩B1

w � w(y0) < 0,

where the first inequality follows from the fact that y0 ∈ �∩ B1/2 (since u = ∇u =
0 outside �).

Since w � 0 on ∂� and |x − y0|2 � 1/4 on ∂ B1, it follows that

0 > min
∂ B1

w � −ε0 + 1

8nλ1
,

a contradiction if ε0 < 1/(8nλ1). �
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4.2. The Case � ⊃ {∇u �= 0}

Lemma 4.2. Let u : B1 → R be a W 2,n solution of (1.2) with � ⊃ {∇u �= 0}.
Assume that C0∂eu−|∇u|2 � −ε0 in B1 for some C0, ε0 � 0, and that F is convex,
of class C1, and satisfies (H0)–(H1). Then C0∂eu − |∇u|2 � 0 in B1/2 provided
ε0 � λ0/(4n2λ3

1).

Proof. By differentiating the equation F(D2u) = 1 inside �, we deduce that

Fi j (D2u)∂i j∇u = 0. (4.3)

We now observe that, since Fi j ∈ C0 (because F ∈ C1) and D2u ∈ C2,α
loc (�)

(by Evans–Krylov’s Theorem [4, Chapter 6]), ∇u solves a linear elliptic equation
with continuous coefficients, so by standard elliptic theory ∇u ∈ W 2,p

loc (�) for any

p < ∞. Hence, we can apply the linear operator Fi j (D2u)∂i j to the W 2,p
loc function

|∇u|2, and using (4.3) we obtain

Fi j (D2u)∂i j |∇u|2 = 2
(

Fi j (D2u)∂i j∂ku
)

· ∂ku + 2Fi j (D2u)∂i j u∂iku

= 2Fi j (D2u)∂i j u∂iku.

Now, if for every point x ∈ � we choose a system of coordinates so that D2u is
diagonal, since Fii (D2u) � λ0 for all i = 1, . . . , n [by (H1)] we obtain

Fi j (D2u(x))∂i j |∇u|2(x) = 2Fii (D2u(x)) (Dii u(x))2 � 2λ0|D2u(x)|2,

where |D2u(x)| :=
√∑

i j

(
Di j u(x)

)2 =
√∑

i (Dii u(x))2 (since D2u(x) is diag-
onal). Using (H1) again, we also have

1 = F(D2u) − F(0) �
√

nλ1|D2u| inside �,

so by combining the two estimates above we get

Fi j (D2u))∂i j |∇u|2 � 2λ0/(nλ2
1). (4.4)

Thanks to (4.3) and (4.4), we conclude exactly as before, considering now the
function

w(x) := C0∂eu(x) − |∇u|2(x) + λ0|x − y0|2
n2λ3

1

.

�
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5. Proof of Theorem 1.3

As already mentioned in the introduction, once we know that blow-up solu-
tions around “thick points” are half-space solutions (Proposition 3.2) and we can
improve almost directional monotonicity to full directional monotonicity (Lem-
mas 4.1 and 4.2), then the proof of Theorem 1.3 becomes standard. For convenience
of the reader, we briefly sketch it here.

We consider only the case when � ⊃ {u �= 0} (the other being analogous).
Take x ∈ ∂� ∩ B1/8, and rescale the solution around x , that is, consider

ur (y) := [u(x + r y) − u(x)]/r2. Because of the uniform C1,1 estimate provided
by Theorem 1.2, we can find a sequence r j → 0 such that ur j converges locally
in C1 to a global solution u0 satisfying u0(0) = 0. Moreover, by our thickness
assumption on the free boundary of u and (3.6), it follows that the minimal diame-
ter property holds for all r > 0 and all points on the free boundary ∂�(u0). Then,
by Proposition 3.2 we deduce that u0 is of the form u0(y) = γ [(y · ex )+]2/2 with
γ ∈ [1/λ1, 1/λ0] and ex ∈ S

n−1.
Notice now that, for any s ∈ (0, 1), we can find a large constant Cs such that

Cs∂eu0 − u0 � 0 inside B1

for all directions e ∈ S
n−1 such that e · ex � s. Since ur j → u0 in C1

loc, we deduce
that, for j sufficiently large (the largeness depending on s), the assumptions of
Lemma 4.1 are satisfied with u = ũr j . Hence

Cs∂eur j − ur j � 0 in B1/2, (5.1)

and since ur j (0) = 0 a simple ODE argument shows that ur j � 0 in B1/4 (see the
proof of [15, Lemmas 4.4 and 4.5]).

Using (5.1) again, this implies that ∂eur j � 0 inside B1/4, and so in terms of u
we deduce that there exists r = r(s) > 0 such that

∂eu � 0 inside Br (x)

for all e ∈ S
n−1 such that e · ex � s.

A simple compactness argument shows that r is independent of the point x ,
which implies that the free boundary is s-Lipschitz. Since s can be taken arbitrarily
small (provided one reduces the size of r ), this actually proves that the free boundary
is C1 (compare, for instance with [15, Theorem 4.10]). Higher regularity follows
from the classical work of Kinderlehrer–Nirenberg [11].
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