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Abstract

We prove the absence of anomalous dissipation of energy for long time averaged
solutions of the forced critical surface quasi-geostrophic equation in two spatial
dimensions.
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1. Introduction

Anomalous dissipation of energy in three dimensional turbulence is one of the
basic statements of physical theory [55]. It has been verified experimentally to
a large degree [75], but not mathematically. The statement is about the average
behavior of the energy dissipation rate

ε = ν〈|∇u|2〉
as ν → 0. Here ν is kinematic viscosity, u is the velocity (assumed to have mean
zero), ∇ are spatial gradients and 〈. . . 〉 represents an ensemble average or space-
time average. The assertion of turbulence theory is that ε is a positive number,
and that it does not vanish with viscosity, in the limit of zero viscosity. The term
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“anomalous dissipation” was imported from field theory in physics and it refers to
the fact that, in the limit of vanishing viscosity, there is still remanent dissipation,
even though the limit equation conserves energy.

There are two distinct approaches to the question of anomalous dissipation. In
the first, the limit of zero viscosity is taken on solutions of the initial value problem
with fixed initial data. Under appropriate conditions this leads to a solution of
the corresponding initial value problem of the inviscid equation. This equation
conserves energy if solutions are smooth, but might dissipate energy if solutions
are not sufficiently smooth. This circle of ideas, and specifically the precise degree
of smoothness needed, goes by the name of the “Onsager conjecture” [9,14,35–
39,47–49,59]. This approach is therefore about the initial value problem for the
limit equations and it requires lack of smoothness of solutions. The blow up problem
is open for three dimensional incompressible Euler equations, and this allows one to
envision the possibility of the existence of dissipative solutions arising from smooth
initial data. Anomalous dissipation of energy can be proven for incompressible 2D
Euler equations as well, for very rough solutions, although in 2D non-smooth
solutions cannot arise spontaneously from smooth ones. The class of dissipative
solutions of the inviscid equations is very large indeed.

The second way of looking at the anomalous dissipation issue is to take long time
averages first, in order to achieve a “permanent regime” of the viscous equations,
and only then send the viscosity to zero. This second approach is espoused in this
paper. Denoting by S(ν)(t, u0) the solution of the viscous equation at time t � 0
which started at time t = 0 from the initial data u0, the second approach looks at

〈|∇u|2〉 = lim
T →∞

1

T

∫ T

0

∫
Rd

|∇(S(ν)(t, u0))|2 dx dt

and asks if limν→0 ν〈|∇u|2〉 = ε is positive or not. A significant question is that
of dependence of forcing and initial data. In the absence of forcing the long time
limit vanishes even for Leray weak solutions of three dimensional Navier–Stokes
equations: the “permanent regime” is trivial, and turbulence is decaying. One must
then take finite time averages, with times of durations that diverge with vanishing
viscosity, but not too fast, nor too slow. This unforced case is perhaps the only case
in which a general global, a priori upper bound on ε that is viscosity independent
is rigorously known.

The long time averaged dissipation has a chance of being not trivial if the
flow is forced, either at boundaries or if body forces stir the flow. A conceptual
difficulty arises then because there exist situations in which the rate of dissipation,
as defined, is infinite. There are rigorous studies [33,34,41] where bounds for ε
are expressed in terms of the average kinetic energy of the solutions in the case
of forced Navier–Stokes equations; however, there are no viscosity (or Reynolds
number) -independent a priori bounds on the average kinetic energy. The question
of obtaining examples and a characterization of flows with uniform upper bounds
for ε is open. In fact, the opposite situation can be easily found: ε can be unbounded
when we consider spatially periodic 2D forces that are eigenfunctions of the Stokes
operator. We write the Navier–Stokes equation symbolically as
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∂t u + νAu + B(u, u) = f

where A = −P� is the Stokes operator with P the projector on divergence-free
vectors and B(u, u) = P(u · ∇u) is the quadratic nonlinearity. We take A f =
λ f with f and u periodic, divergence-free functions of two spatial variables. We
consider u f = 1

νλ
f . This is a smooth, time independent solution. Indeed, u f

satisfies the time-independent, unforced Euler equation B(u f , u f ) = 0, and, of
course, νAu f = f as well. If u0 = u f then 〈|∇u f |2〉 = ν−2λ−1‖ f ‖2

L2 , where f
does not depend on ν. This makes the limit of ε infinite as viscosity vanishes. The
steady solutions u f are perfectly admissible as three dimensional periodic flows
as well. They are unstable if λ is not the first eigenvalue of the Stokes operator,
but stable in 2D if λ is the first eigenvalue. Incidentally, the upper bound ε �
C(U 3

√
λ + νλU ) (with U = ‖u f ‖L2 ) of [41] is true in this case as well, and

it is imprecise, with both left and right hand side diverging as ν → 0, but at
different rates. An interesting recent asymptotics and numerical study [56] reports
finding solutions of the 2D Navier–Stokes equation that “settle” to a condensate
that has a nontrivial component in the first eigendirection of the corresponding
Stokes operator and has bounded amplitude as viscosity vanishes. This of course
is impossible for all initial data, as demonstrated above, but it is an intriguing
possibility for parts of the phase space. It is known that if we assume that an initial
data u0 is smooth enough then the solution of the Navier–Stokes equations with
smooth forcing (even if not an eigenfunction of the Stokes operator) converges
to the corresponding solution of the forced Euler equation u(t) = S(0)(t, u0) on
[0, T ], for any T , a function that solves

∂t u + B(u, u) = f

with initial data u0. For Kolmogorov forcing (forces which are eigenfunctions of
the Stokes operator) the putative existence of time independent solutions u(ν) which
are uniformly bounded in ν in energy norm, implies the convergence of (a subse-
quence of) u(ν) to a time independent solution u0 of the forced incompressible Euler
equations, B(u0, u0) = f . If the solutions S(ν)(t, u0) are at a bounded distance
from u(ν) uniformly in time, for large time, one can prove that S(0)(t, u0) are at the
same bounded distance from u0 for large time. In particular, if S(ν)(t, u0) converge
uniformly in time to u(ν), then S(0)(t, u0) converge in time to u(0). Smooth steady
solutions B(u(0), u(0)) = f of forced Euler equations with Kolmogorov forcing
can be easily constructed, but determining for which initial data the corresponding
solutions converge to them is another matter. Such behavior, if it exists at all, must
be rather special.

The dynamics of the forced Euler equation, the existence of bounded sequences
of stationary solutions of the periodic, forced Navier–Stokes equations, and even
of solutions with bounded average dissipation of energy are open problems.

Bounds can be obtained for 2D forced Navier–Stokes equations with bottom
drag (friction)

∂t u + γ u + νAu + B(u, u) = f,
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where the friction coefficient γ > 0 is kept fixed. Then the energy is bounded (in
terms of γ ) uniformly for small ν and actually even the enstrophy (H1 norm) is
bounded uniformly in ν. Consequently, there is no anomalous dissipation of energy.
The absence of anomalous dissipation of enstrophy is more subtle because there
are no upper bounds for the average H2 norm, for arbitrary forces. The paper [19]
proves nevertheless that the dissipation of enstrophy vanishes in the limit of zero
viscosity, for arbitrary time-independent forces.

In this paper we prove absence of anomalous dissipation of energy for surface
quasi-geostrophic (SQG) equations. These equations have generated a lot of atten-
tion in recent years [1,3–8,11,13,16–18,21–32,40,42–46,50,51,54,57,58,60–
67,69–74,77–80].

We are interested in the question of anomalous dissipation for forced, viscous
critical SQG. We consider the equation

∂tθ + (R⊥θ) · ∇θ + γDθ − ν�θ = f

in R
2, where D = I+ (−�) 1

2 is the damping operator, R⊥ = (−R2, R1) are Riesz
transforms, f ∈ L∞(R2) ∩ L1(R2) is time independent deterministic forcing,
γ > 0 is fixed and ν > 0. We prove that there is no dissipative anomaly,

lim
ν→0

ν〈|∇θ |2〉 = 0

where 〈· · · 〉 is space-time average on solutions. The proof of absence of anomalous
dissipation follows the same blueprint as the proof in [19]. We establish first that the
viscous semi-orbits are relatively compact in the phase space. Then we introduce
the adequate statistical solutions for both viscous (ν > 0) and inviscid (ν = 0)
equations. These are measures in phase space, arising naturally as long time limits
on solutions. The next step is to prove that the zero viscosity limits of statistical
solutions of the viscous equations are statistical solutions of the inviscid equations,
and that these preserve the energy balance. Once this is achieved, the absence of
anomalous dissipation follows by an argument by contradiction. There are a number
of technical difficulties encountered in the proof for SQG that are not present in
the case of 2D Navier–Stokes. In order to obtain the uniform integrability property
on positive semiorbits we use nonlocal calculus identities. The weak continuity
of the nonlinear term is proved using a commutator structure of the nonlinearity,
a structure that was used already in [72]. The energy balance is proved using a

formula for nonlinear fluxes [14] and a bound in H
1
2 that is available for critical

SQG, and that replaces the Besov space argument of [9,14].
If f is assumed to be smoother, one has a viscosity independent bound for long

time averages of the H1 norm, and thus O(ν) bounds for the energy dissipation can
be obtained with some additional effort. These bounds can be obtained from the
new proof of global regularity given in [20], but possibly other methods [4] might
be used in this direction as well. The method we present here works for a more
general class of equations, when uniform bounds for the energy dissipation are not
available.

The rest of the paper is organized as follows. In Section 2 we make more pre-
cise the comments about Kolmogorov forced Navier–Stokes and Euler equations. In
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Section 3 we present the forced viscous SQG equations and prove some properties
of solutions, including the relative compactness of positive semiorbits. In Section 4
we introduce the notion of stationary statistical solutions of the viscous equations.
In Section 5 we prove that inviscid limits of stationary statistical solutions are sta-
tionary statistical solutions of the forced critical SQG equations which preserve the
energy dissipation balance. In Section 6 we construct stationary statistical solutions
using time averages and in Section 7 we present the argument by contradiction and
concluding remarks.

2. 2D Forced Navier–Stokes Equations

We consider 2D periodic incompressible Navier–Stokes equations

∂t u − ν�u + u · ∇u + ∇ p = f

where u : [−πL , πL]2 ×[0,∞) → R
2 is divergence-free, ∇ ·u = 0, and periodic,

u(x ± 2πLei , t) = u(x, t) (here ei , i = 1, 2 is the canonical basis of R
2). We take

time independent f : [−πL , πL]2 → R
2 that is divergence-free∇· f = 0, periodic

of the same period 2πL , f (x ±2πLei ) = f (x), and an eigenfunction of the Stokes
operator, which in the case of divergence-free periodic function is just the Laplacian
on each component, −� f = λ f . We refer to such forcing as “Kolmogorov forcing”.
We choose to measure lengths in units of L , and because the force plays an important

role and has units of [ f ] = length × time−2, we measure time in units of T =
√

L
F

where F is the RMS force, F2 = (2πL)−2
∫
|xi |�πL , i=1,2 | f (x)|2dx . Rescaling,

i.e considering u = L
T ũ( x

L ,
t
T ), f = F f̃ ( x

L ), p = L2

T 2 p̃( x
L ,

t
T ) and ν = L2

T ν̃, and
dropping tildes, we have thus

∂t u − ν�u + u · ∇u + ∇ p = f, ∇ · u = 0 (1)

with u : [−π, π ]2 × [0,∞) → R
2, f : [−π, π ]2 → R

2 of period 2π , with
normalized L2 norm equal to 1, and ν nondimensional, in fact the inverse Reynolds
number. We still have ∇ · f = 0 and

−� f = λ f (2)

with the nondimensional (new) λ equal to the dimensional (old) λ multiplied by
L2. The Fourier series representation of u is

u(x, t) =
∑
j∈Z2

û( j, t)ei j ·x (3)

with û : Z
2 × [0,∞) → C

2. Without loss of generality the average of u vanishes,
û(0, t) = 0. Because ∇ · u = 0 and we are in two dimensions, without loss of
generality

û( j, t) = u j (t)
j⊥

| j | (4)
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where j⊥ = (− j2, j1)∗ and v∗ is the transpose. Now u j (t) is a scalar complex
valued function of time, and the requirement that u be real valued implies the
requirement that u j = −u− j (from û( j) = û(− j)). We note that the stream
function, defined by the relation u = ∇⊥ψ

ψ(x, t) =
∑
j∈Z2

ψ̂( j, t)ei j ·x ,

has Fourier coefficients

ψ̂( j, t) = −i | j |−1u j ,

or, in other words u j = i | j |ψ̂( j). If u is divergence-free, it does not necessarily
follow that u · ∇u is divergence-free as well. The projector on divergence-free
functions is computed for 2D Fourier series

v(x) =
∑

j∈Z2\{0}
v̂( j)ei j ·x

as

Pv(x) =
∑

j∈Z2\{0}
P j v̂( j)ei j ·x

with

P jv =
(
v · j⊥

| j |
)

j⊥

| j | .

The Stokes operator, denoted A, is

A = −P� (5)

and the projection of the bilinear term is

B(u, v) = P(u · ∇v). (6)

Using our convention that mean-free, divergence-free vectors are written as

v(x) =
∑

j∈Z2\{0}
v j

j⊥

| j | ei j ·x

with v j complex scalars, we obtain for divergence-free u and v,

[B(u, v)]l = i
∑

j+k=l, j,k,l =0

u jvk

(
j⊥

| j | · k

) (
k⊥

|k| · l⊥

|l|
)
. (7)

In particular

[B(u, u)]l = i
∑

j+k=l, j,k,l =0

u j uk( j⊥ · k)(k · l)
1

| j ||k||l| (8)
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and because of the antisymmetry of u j uk( j⊥ · k) 1
| j ||k| in j, k at fixed l, we have

[B(u, u)]l = i

2

∑
j+k=l, j,k,l =0

u j uk( j⊥ · k)(|k|2 − | j |2) 1

| j ||k||l| (9)

This shows that the only contributions to B(u, u) come from distinct energy shells,
that is | j | = |k|. In particular, any function whose Fourier support is on a single
energy shell, solves B(u, u) = 0. This is the case for eigenfunctions of the Stokes
operator. In terms of the vorticity, if u = ∇⊥ψ and �ψ = λψ , it follows that
u · ∇ω = 0 because the vorticity ω = ∇⊥ · u is given by ω = �ψ . The 2D
incompressible unforced Euler equation can be written in vorticity formulation as

∂tω + u · ∇ω = 0

and therefore, if �ψ = λψ , we obtain time independent solutions of the Euler
equations. Another way of seeing that eigenfunctions of the Stokes operator are
steady solutions of unforced Euler equations is via the identity

AB(u, u) = B(u, Au)− B(Au, u). (10)

This is proven by observing that for 2D divergence-free vectors u,

�(u · ∇ui )− u · ∇�ui +�u · ∇ui = 2∂k((det∇u)δik).

Thus, if Au = λu then B(u, u) = 0, because A is invertible. In particular, if
A f = λ f then the time-independent u = u f given by u f = 1

νλ
f solves the

Navier–Stokes equation (1). Let us consider now solutions u(t) of the initial value
problem (1) with divergence-free smooth initial data (it is enough to consider H1

initial data). These are unique, exist for all time, become instantly infinitely smooth,
and converge in time to a compact, finite dimensional attractor [15]. The attractor
contains u f and its unstable manifold. In particular, it follows that the largest norm
of functions in the attractor (any norm) diverges with ν. If the diameter of the
attractor would be bounded, then ε would diverge as ν → 0, for any space time
average on trajectories.

Let us remark that if we fix smooth, divergence-free initial data u0 ∈ Hs, s > 2
then

lim
ν→0

S(ν)(t, u0) = S0(t, u0)

holds where S(0)(t, u0) is the unique global solution of

∂t u + B(u, u) = f (11)

with initial data u0. The convergence is in C([0, T ], Hs′
), s′ < s, for any T . This

follows from the global existence of smooth solutions of the forced Euler equations
and from convergence as long as these solutions are smooth [2,10,68]. This result
does not need f to be an eigenfunction of the Stokes operator, only to be smooth
enough. The long time behavior of S(0)(t, u0) and that of S(ν)(t, u0) for small ν can
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be very different. In fact, if f = 0, the behavior is different, because the inviscid
solution conserves the initial energy, while the viscous solution converges to zero.

Let us consider now Kolmogorov forcing and any family of steady solutions
u(ν) of the forced Navier–Stokes equations

νAu(ν) + B(u(ν), u(ν)) = f. (12)

Taking the scalar product with u(ν) and then with Au(ν), we have

ν‖u(ν)‖2
H1 = ( f, u(ν))L2

and

ν‖Au(ν)‖2
L2 = λ( f, u(ν))L2

where we used the notation ( f, u)L2 = 1
(2π)2

∫
[−π,π ]2( f · u)dx and the facts that

‖u‖2
H1 = (u, Au)L2 , A f = λ f, (B(u, u), u)L2 = 0, and (B(u, u), Au)L2 = 0.

Subtracting we have

‖Au(ν)‖2
L2 = λ‖u(ν)‖2

L2 . (13)

Using the straightforward inequality

‖u‖2
H1

‖u‖2
L2

�
‖Au‖2

L2

‖u‖2
H1

and assuming that the family is uniformly bounded in L2:

‖u(ν)‖2
L2 � E, (14)

it follows that

‖Au(ν)‖2
L2 = λ‖u(ν)‖2

H1 � λ2 E . (15)

Now we can pass to a convergent subsequence, first weakly convergent in L2, but
because of compact embedding of H1, strongly in L2, and by the same argument,
weakly in H2 and strongly in H1. There is therefore enough control to show that
the limit u(0) is a steady solution of the forced Euler equations,

B(u(0), u(0)) = f. (16)

Similarly, for time dependent solutions of (1), u(t) = S(ν)(t, u0), we bound the
difference ‖u‖2

H1 − λ‖u‖2
L2 . Indeed, the evolution of the L2 and H1 norms are

given by

d

2dt
‖u‖2

L2 + ν‖u‖2
H1 = ( f, u)L2 (17)

and

d

2dt
‖u‖2

H1 + ν‖Au‖2
L2 = λ( f, u)L2 (18)
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and subtracting we have

d

2dt
[‖u‖2

H1 − λ‖u‖2
L2 ] + ν[‖Au‖2

L2 − λ‖u‖2
H1 ] = 0. (19)

Let us denote

δ(t) = ‖u‖2
H1 − λ‖u‖2

L2 (20)

and

μ(t) = ‖u‖2
H1

‖u‖2
L2

. (21)

Let us observe that

μ(t) � λ1 = 1

where λ1 is the smallest eigenvalue of A, and that

‖Au‖2
L2 − μ2‖u‖2

L2 = ‖u‖2
L2

∥∥∥∥(A − μ)
u

‖u‖L2

∥∥∥∥
2

L2

Adding and subtracting ν‖u‖2
L2μ

2, (19) becomes

d

2dt
δ(t)+ ν‖u‖2

L2

∥∥∥∥(A − μ)
u

‖u‖L2

∥∥∥∥
2

L2
+ νμ(t)δ(t) = 0. (22)

In particular

d

dt
δ + 2νμδ � 0 (23)

and therefore

δ(t) � δ(0)e−2ν
∫ t

0 μ(s) ds . (24)

Note that if δ(0) � 0 then this implies that δ(t) � 0 for all t . If δ(0) > 0 then the
right hand side of (24) decays fast to zero. In either case (24) shows that δ(t) is
bounded on solutions,

δ(t) � δ+(0) = max{0, δ(0)}.
This implies an automatic viscosity independent and time independent bound on
‖u‖H1 given a viscosity independent and time independent bound on ‖u‖L2 . Let us
assume that

sup
ν>0,t�0

‖S(ν)(t, u0)‖2
L2 � E . (25)

Then, we have that

sup
ν>0,t�0

‖S(ν)(t, u0)‖2
H1 � λE + δ+(0). (26)
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Let us assume now that the solutions S(ν)(t, u0) have the property that

‖Sν(t, u0)− u(ν)‖L2 � γ

for t � T , for fixed γ . Then, by passing to the limit, (on a subsequence for u(ν)) at
each fixed t � T , we obtain that

‖S(0)(t, u0)− u(0)‖L2 � γ

for all t � T . If γ → 0 as T → ∞ we obtain convergence in time of S(0)(t, u0)

to a solution of the steady forced Euler equations. The same thing will happen in
higher norms, under the corresponding assumptions. It is relatively easy to construct
Kolmogorov forces f such that the forced, time independent Euler equation

B(u, u) = f

has solutions. It is enough to take two eigenfunctions u1 and u2 corresponding to
distinct eigenvalues of the Stokes operator,

Aui = ai ui , i = 1, 2,

with a1 < a2 and with orthogonal spectral support, that is j ⊥ k if û1( j) =
0, û2(k) = 0. After rotation of axes, this means u1 is a function of one variable and
u2 a function of the orthogonal variable, for example

ui = ∇⊥ψi

with

ψi = αi sin(ki x1)+ βi cos(ki xi ), i = 1, 2

a1 = k2
1 < a2 = k2

2. Set u = u1 + u2 Then f = B(u, u) is an eigenfunction of the
Stokes operator with eigenvalue λ = a1 + a2. In general f = 0.

3. Forced, Viscous Critical SQG

We consider the equation

∂tθ + u · ∇θ + γDθ − ν�θ = f (27)

for a scalar valued θ : R
2 × [0,∞) → R. Here

u = R⊥θ (28)

with R⊥ = (−R2, R1), and R = ∇(−�)− 1
2 the Riesz transforms. The damping

operator D is given by

D = �+ 1 (29)

with � = (−�) 1
2 . The coefficient γ > 0 is fixed throughout the work and the

coefficient ν > 0 is a parameter that we will let vary. The force f ∈ L1(R2) ∩
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L∞(R2) is fixed and time independent. We recall here that � is defined at the
Fourier transform level by

�̂φ(ξ) = |ξ |φ̂(ξ)

where

φ̂(ξ) =
∫

R2
e−i x ·ξφ(x) dx

and also

�φ(x) = cP.V .
∫

R2

φ(x)− φ(y)

|x − y|3 dy

for an appropriate constant c and smooth enough φ. We will use also the pointwise
identity [12,25]

2φ(x) ·�φ(x) = �(|φ|2)(x)+ D[φ](x) (30)

with

D[φ](x) = c
∫

R2

(φ(x)− φ(y))2

|x − y|3 dy. (31)

Proposition 1. Let ν > 0, f ∈ L1(R2) ∩ L∞(R2), θ0 ∈ L1(R2) ∩ L∞(R2). The
solution θ(x, t) = S(ν)(t, θ0) of (27) exists for all time, is unique, satisfies the
energy equation

d

2dt
‖θ‖2

L2(R2)
+ γ ‖θ‖2

H
1
2 (R2)

+ ν‖∇θ‖2
L2(R2)

= ( f, θ)L2(R2) (32)

and the bounds

‖θ(·, t)‖L p(R2) � e−γ t
{
‖θ0‖L p(R2) − 1

γ
‖ f ‖L p(R2)

}
+ 1

γ
‖ f ‖L p(R2) (33)

for 1 � p � ∞. Moreover the positive semi-orbit

O+(θ0) = {θ = θ(·, t) | t � 0} ⊂ L2(R2)

is uniformly integrable: for every ε > 0, there exists R > 0 such that

∫
|x |�R

|θ(x, t)|2 dx � ε (34)

holds for all t � 0.
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We used the notation

( f, g)L2(R2) =
∫

R2
f (x)g(x) dx

and we note that

‖θ‖2

H
1
2 (R2)

= (Dθ, θ)L2(R2).

The proof of existence, uniqueness and regularity follows along well established
lines and will not be presented here. The bounds (33) follow from the maximum
principles and nonlocal calculus identities of which (30) is the quadratic example
[25] and which imply that

∫
R2
φ p−1�φ dx � 0

if p is even or if φ is nonnegative. The uniform integrability property (or “no-travel”
property [19]) is proved here below. We consider the function

YR(t) =
∫

R2
χ

( x

R

)
θ2(x, t) dx

where χ is a nonnegative smooth function supported in {x ∈ R
2 | |x | � 1

2 }
and identically equal to 1 for |x | � 1. We take (27), multiply by 2χ( x

R )θ(x) and
integrate. The more challenging term we encounter is

2γ
∫

R2
(�θ(x))χ

( x

R

)
θ(x, t) dx .

Using (30) we have

2γ
∫
R2(�θ(x))χ

( x
R

)
θ(x, t) dx � γ

∫
R2 �(θ(x)2)

(
1 − (

1 − χ
( x

R

)))
dx

= −γ ∫
R2(θ(x)2)�

(
1 − χ

( x
R

))
dx

where�(1−χ) is well defined because 1−χ ∈ C∞
0 . Moreover 1−χ ( x

R

) = φ
( x

R

)
and therefore, in view of the fact that �(φ( x

R )) = 1
R (�φ)(

x
R ) and |�φ(x)| � C ,

2γ
∫

R2
(�θ(x))χ

( x

R

)
θ(x, t)dx � −Cγ

R
‖θ(·, t)‖2

L2(R2)

The contribution of the nonlinear term u · ∇θ is bounded by integrating by parts
and using

‖u‖L3(R2) � C‖θ‖L3(R2).

The contribution of the forcing term is bounded by

2

∣∣∣∣
∫

R2
f χθ dx

∣∣∣∣ � C‖θ(·, t)‖L2(R2)

√ ∫
|x |� R

2

| f (x)|2 dx
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We obtain

d

dt
YR(t)+ 2γYR(t)

� C

R
[‖θ(·, t)‖3

L3(R2)
+ γ ‖θ(·, t)‖2

L2(R2)
] + Cν

R2 ‖θ(·, t)‖2
L2(R2)

+ C‖θ(·, t)‖L2(R2)

√ ∫
|x |� R

2

| f (x)|2 dx .

Because of (33) and the fact that f 2 is integrable, the right hand side is as small as
we wish, uniformly in time, provided R is chosen large enough. The choice of R
depends only on γ, f and on norms of θ0 in L2 and L3, and can be made uniformly
in ν for bounded ν, although we do not need this. Once we chose R so that the
right-hand side is less than γ ε we have the inequality

YR(t) � e−2γ t YR(0)+ ε

2

and the uniform integrability follows from the fact that YR(0) is small for large R.

4. Stationary Statistical Solutions

We introduce first the notion of stationary statistical solution for forced viscous
SQG, in the spirit of [19,52,53].

Definition 1. A stationary statistical solution of (27) is a Borel probability measure
μ(ν) on L2(R2) such that

∫
L2(R2)

‖θ‖2
H1 dμ(ν)(θ) < ∞ ((a))

∫
L2(R2)

(N (ν)(θ),� ′(θ))L2(R2) dμ(ν)(θ) = 0 ((b))

for all � ∈ T , and
∫

E1�‖θ‖
H

1
2
�E2

(γ ‖θ‖2

H
1
2

+ ν‖∇θ‖2
L2(R2)

− ( f, θ)L2(R2)) dμ(ν)(θ) � 0 ((c))

for all E1 � E2.

Here

N (ν)(θ) = R⊥θ · ∇θ + γDθ − ν�θ − f (35)

and the class of cylindrical test functions T is defined by
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Definition 2. � ∈ T if there exist N , w1, . . . , wN ∈ C∞
0 (R

2), ε � 0 and ψ :
R

N → R, smooth, such that

�(θ) = ψ((Jε(θ), w1)L2(R2), . . . , (Jε(θ), wN )L2(R2))

with Jε a standard mollifier, that is convolution with ε−2 j ( x
ε
), j ∈ C∞

0 (R
2), j �

0, j (−x) = j (x),
∫
R2 j (x)dx = 1, if ε > 0, and Jε = I if ε = 0.

We note that the test functions are locally bounded and sequentially weakly contin-
uous in L2(R2). We remind the elementary but important fact that weak continuity
of real valued functions implies strong continuity, but in general continuity does
not imply weak continuity. We identify � ′(θ) as an element of L2(R2) defined by

(φ,� ′(θ))L2(R2) =
N∑

k=1

(
∂ψ

∂yk
(y(θ))

)
(Jε(φ),wk)L2(R2) (36)

with

y(θ) = ((Jε(θ), w1)L2(R2), . . . , (Jε(θ), wN )L2(R2)), (37)

that is

� ′(θ)(x) =
N∑

k=1

(
∂ψ

∂yk
(y(θ))

)
(Jεwk)(x). (38)

We extend the definition (36) to more general φ: this is the sense in which
(N (ν)(θ),� ′(θ))L2(R2) is computed,

(N (ν)(θ),� ′(θ))L2(R2) = F1(θ)+ νF2(θ)+ F3(θ) (39)

with

F1(θ) = γ (θ,D� ′(θ))L2(R2) − ( f, � ′(θ))L2(R2), (40)

F2(θ) = (θ, (−�)� ′(θ))L2(R2) (41)

and

F3(θ) = −(θR⊥θ,∇� ′(θ))L2(R2). (42)

Let us note that the Borel σ -algebra associated to the strong topology in L2(R2) is
the same as the Borel σ algebra associated to the weak topology because any open
ball is a countable union of closed balls, which are convex, hence weakly closed.
The function θ �→ ‖θ‖2

H1(R2)
is a Borel measurable function in L2(R2) because it is

everywhere the limit of a sequence of continuous functions θ �→ ‖Jεθ‖2
H1(R2)

. The

same of course applies to ‖θ‖2

H
1
2 (R2)

. Therefore conditions (a) and (c) in Definition

1 make mathematical sense. Moreover, condition (c) implies that μ(ν) is supported
in the ball

‖θ‖
H

1
2 (R2)

� 1

γ
‖ f ‖L2(R2) (43)

as it is easily seen by taking E1 � γ−1‖ f ‖L2(R2). The integrand in condition (b)
is locally bounded and weakly continuous:
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Lemma 1. For any fixed � ∈ T the maps

θ �→ Fi (θ)

i = 1, 2, 3 are locally bounded in L2(R2) and weakly continuous in L2(R2) on
bounded sets of L2(R2) ∩ L p(R2), 1 � p < 2. In particular

θ �→ (N (ν)(θ),� ′(θ))L2(R2)

is locally bounded and weakly continuous on bounded sets of L2(R2)∩L p(R2), 1 �
p < 2.

After inspection of the definitions (40, 41, 42) it is clear that the only nontrivial
statement is about F3. It is only for F3 also that we need the bound in L p(R2) for
p < 2. If θn is weakly converging to θ in L2(R2), then the vectors y(θn) defined in
(37) converge to the vector y(θ) and because the sequence θn is bounded in L2(R2),
it follows that y(θn) belong to a fixed compact set in R

N . The functions ∂ψ
∂yk

are
continuous, so all we need to check is the convergence

(θn R⊥θn,∇ Jεwk)L2(R2) → (θR⊥θ,∇ Jεwk)L2(R2).

In order to do this we make use of the assumed bound

sup
n

‖θn‖L p(R2) � Ap.

We note first that θ , the weak limit in L2(R2), also obeys

‖θ‖L p(R2) � Ap.

This follows by essentially restricting θ p−1 (or sign θ if p = 1) on large compacts,
integrating against θn , passing to the limit in n and then letting the compacts grow
to the whole space. The weak continuity of the nonlinearity in SQG is proved using
the representation [72]

(θR⊥θ,∇φ)L2(R2) = 1

2

∫
R2
(�−1θ)(x) [�,∇φ] (R⊥(θ)(x) dx (44)

for smooth compactly supported φ, with [�, a]b = �(ab)−a�b, the commutator
of the operators � and of multiplication by a. In our case φ = Jεwk .

In order to make sense of the terms in (44) let us recall that the Riesz potential
is given by [76]

�−1θ(x) = c
∫

R2

θ(x − y)

|y| dy

for an appropriate constant c. If θ ∈ L p(R2) ∩ L2(R2) then �−1θ ∈ L2(R2) +
L∞(R2). Indeed,

sup
x

∣∣∣∣∣
∫

|y|�1

1

|y|θ(x − y) dy

∣∣∣∣∣ � C‖θ‖L p(R2)
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because |y|−1 ∈ Lq(|y| � 1), q > 2, q−1 + p−1 = 1, and∥∥∥∥∥
∫

|y|�1

1

|y|θ(x − y) dz

∥∥∥∥∥
L2(dx)

� C‖θ‖L2(R2)

as it is easily seen by duality or by Fourier transform. Then, we note that

�(ab)(x)− a(x)�b(x) = cP.V .
∫

R2
b(y)

a(x)− a(y)

|x − y|3 dy

and therefore, if a is compactly supported in a ball of radius L and if |x | � 2L ,
then, pointwise

|�(ab)(x)− a(x)�b(x)| � C |x |−3‖a‖L2(R2)‖b‖L2(R2).

Thus, if L is the radius of a ball in R
2 containing the support of φ = Jεwk and we

denote

Cφ(θ)(x) = [�,∇φ] · R⊥θ
we have, for ρ � 2L ,∣∣∣∣∣

∫
|x |�ρ

(�−1θ)(x)Cφ(θ)(x)dx

∣∣∣∣∣ � Cρ−1‖θ‖L p(R2)‖θ‖L2(R2) + Cρ−2‖θ‖2
L2(R2)

.

We have thus ∣∣∣∣∣
∫

|x |�ρ
(�−1θn)(x)Cφ(θn)(x) dx

∣∣∣∣∣ � ε

uniformly for all n and also for θ , provided ρ is large enough so that ρ � 2L and

Cρ−1 Ap A2 + Cρ−2 A2
2 � ε

where A2 is the bound on ‖θn‖L2(R2). It is well-known and easy to show that

θ �→ Cφ(θ) = [�,∇φ] R⊥θ
is a bounded linear operator in L2(R2) for fixed φ ∈ C∞

0 (R
2). Thus,∣∣∣∣∣

∫
|x |�ρ

(�−1θ)(x)Cφ(θ)(x) dx

∣∣∣∣∣ � C‖�−1θ‖L2(B(0,ρ))‖θ‖L2(R2)

The proof of the identity (44) is best explained by denoting ψ = �−1θ and u =
R⊥θ = ∇⊥ψ . Then we have

(θR⊥θ,∇φ)L2(R2) =
∫

R2
(�ψ)(u · ∇φ) dx

=
∫

R2
ψ ([�,∇φ] · u) dx +

∫
R2
ψ∇φ ·�u dx

=
∫

R2
ψ ([�,∇φ] · u) dx +

∫
R2
ψ∇φ · ∇⊥θ dx

=
∫

R2
ψ ([�,∇φ] · u) dx − (θR⊥θ,∇φ)L2(R2).
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In order to obtain the last term we integrated by parts and used ∇⊥ · ∇φ = 0. Now
the weak continuity follows by writing
∫

R2
(�−1θn)(x)Cφ(θn)(x) dx −

∫
R2
(�−1θ)(x)Cφθ(x) dx

=
∫

B(0,ρ)
(�−1(θn − θ))(x)Cφ(θn)(x) dx+

∫
B(0,ρ)

(�−1θ)(x)Cφ(θn − θ)(x) dx

+
∫

|x |�ρ
(�−1θn)(x)Cφ(θn)(x) dx −

∫
|x |�ρ

(�−1θ)(x)Cφθ(x) dx .

We pick ε > 0 and fix it. We choose ρ > 0 large enough so that the last two terms
are less than ε each. We fix ρ. The function (�−1θ)χB(0,ρ) is a fixed function in
L2(R2) (here χB(0,ρ) is the characteristic function), and, because Cφ is a bounded
linear operator in L2(R2) the sequence Cφ(θn − θ) converges weakly to zero in
L2(R2). Thus, letting n → ∞ the ante-penultimate term converges to zero. Finally,
for the first term∣∣∣∣

∫
B(0,ρ)

(�−1(θn − θ))(x)Cφ(θn)(x) dx

∣∣∣∣ � C A2‖�−1(θn − θ)‖L2(B(0,ρ))

and this converges to zero because θn − θ converges weakly to zero in L2(R2)

and is bounded in L p(R2), p < 2. Indeed, by the previous considerations about
�−1, for χ ∈ C∞

0 (R
2) we have that χ�−1(θn − θ) is bounded in H1(R2) and

converges weakly to 0 in L2(R2). Thus�−1(θn − θ) converges strongly to zero in
L2(B(0, ρ)) implying that the first term converges to zero. We conclude that the
limit difference is in absolute value less than 2ε and ε is arbitrary.

Definition 3. A stationary statistical solution of the forced critical SQG equation

∂tθ + R⊥θ · ∇θ + γDθ = f (45)

is a Borel probability measure μ on L2(R2) such that
∫

L2(R2)

‖θ‖2

H
1
2 (R2)

dμ(θ) < ∞, (46)

and the equation
∫

L2(R2)

(N (θ),� ′(θ))L2(R2) dμ(θ) = 0 (47)

holds for all cylindrical test functions � ∈ T , where

N (θ) = R⊥θ · ∇θ + γDθ − f. (48)

We say that the stationary statistical solution satisfies the energy dissipation balance
if ∫

L2(R2)

{
γ ‖θ‖2

H
1
2 (R2)

− ( f, θ)L2(R2)

}
dμ(θ) = 0. (49)
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Theorem 1. Letμ(ν) be a sequence of stationary statistical solutions of the viscous
forced critical SQG equation (27) with f ∈ L1(R2)∩ L2(R2), with ν → 0. Assume
that there exists 1 � p < 2 and Ap such that the supports of the measures μ(ν) are
included in

Bp = {θ ∈ L p(R2) ∩ L2(R2) | ‖θ‖L p(R2) � Ap}. (50)

Then there exists a subsequence, denoted also μ(ν) and a stationary statistical
solution μ of the forced critical SQG equation (45) such that

lim
ν→0

∫
L2(R2)

�(θ) dμ(ν)(θ) =
∫

L2(R2)

�(θ) dμ(θ) (51)

holds for all weakly continuous, locally bounded real valued functions �.

As we saw in (43) the support of the measures μ(ν) is included in

B =
{
θ ∈ H

1
2 (R2) | ‖θ‖

H
1
2 (R2)

�
‖ f ‖L2(R2)

γ

}
. (52)

The set Ap = B ∩ Bp is weakly closed in L2(R2) and it is a separable metriz-
able compact space with the weak L2(R2) topology. By Prokhorov’s theorem the
sequence μ(ν) is tight and therefore has a weakly convergent subsequence. The
limit μ is a Borel probability on Ap. The extension of μ to L2(R2), denoted again
by μ and given by μ(X) = μ(X ∩ Ap) is a Borel measure because Ap is weakly
closed. The measure μ satisfies (46) because it is supported in B. The Equation
(47) is satisfied because we may pass to the limit in (b) of Definition 1 in view of
Lemma 1.

5. Inviscid Limit and Energy Dissipation Balance

In this section we prove

Theorem 2. Let μ(ν) be a sequence ν → 0 of stationary statistical solutions of the
forced viscous SQG equation (27) supported in

A=
{
θ | ‖θ‖L p(R2) � Ap, ‖θ‖L∞(R2) � A∞, ‖θ‖

H
1
2 (R2)

�
‖ f ‖L2(R2)

γ

}
. (53)

Letμ be any weak limit ofμ(ν) in L2(R2). Thenμ is a stationary statistical solution
of the forced critical SQG equation (45) that satisfies the energy dissipation balance
(49).

In fact, by Theorem 1, we know that any weak limit is a stationary statistical solution
of the forced critical SQG equation. We check that it is supported on A. The set A
is weakly closed in L2(R2), and because its complement U is weakly open and

μ(U ) � lim inf
ν→0

μ(ν)(U ) = 0
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it follows that μ is supported in the set A. The rest of the proof is done by showing
that (47) and the fact that μ is supported in A imply (49).

We take a sequence w j ∈ C∞
0 (R

2) that is an orthonormal basis of L2(R2). We
fix ε > 0 and consider the sequence of test functions

�m(θ) = 1

2

m∑
k=1

(Jε(θ), w j )
2
L2(R2)

,

that is we take ψ(y) = 1
2

∑m
k=1 y2

k in Definition 2. We note that

(N (θ),� ′
m(θ))L2(R2) =

m∑
k=1

(Jε(θ), w j )L2(R2)(Jε(N (θ)), w j )L2(R2).

This is uniformly bounded in m because
∣∣(N (θ),� ′

m(θ))L2(R2)

∣∣ � ‖Jεθ‖L2(R2)‖JεN (θ)‖L2(R2).

On A, the right hand side is bounded uniformly in θ
∣∣(N (θ),� ′

m(θ))L2(R2)

∣∣ � A2((2 + ε−
1
2 )‖ f ‖L2(R2) + ε−1 A2 A∞)

and, by Parseval, it converges to (Jε(θ), Jε(N (θ)))L2(R2) pointwise, as m → ∞.
So, we deduce from (47) and the Lebesgue dominated convergence theorem that∫

L2(R2)

(Jε(θ), Jε(N (θ)))L2(R2) dμ(θ) = 0

for any ε > 0. This can be written as

Iε + Kε = 0 (54)

where the two terms are

Iε =
∫

L2(R2)

(Jε(θ), Jε(γDθ − f ))L2(R2) dμ(θ) (55)

and

Kε =
∫

L2(R2)

(Jε(θ), Jε((R
⊥θ) · ∇θ))L2(R2) dμ(θ). (56)

Now

(Jε(θ), Jε(u) · ∇ Jε(θ))L2(R2) = 0

in view of the incompressibility of u = R⊥θ , so

Kε =
∫

L2(R2)

(Jε(θ),∇ · ρε(u, θ))L2(R2) dμ(θ), (57)

where

ρε(u, θ) = Jε(uθ)− (Jε(u))(Jε(θ)). (58)
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We show that limε→0 Kε = 0. We use the identity [14]

ρε(u, θ) = rε(u, θ)− (u − Jε(u))(θ − Jε(θ))

with

rε(u, θ)(x) =
∫

R2
j (z)(δεz(u)(x))(δεz(θ)(x)) dz,

δεz(u)(x) = u(x − εz)− u(x)

and

δεz(θ)(x) = θ(x − εz)− θ(x).

Clearly also

(Jεu − u)(Jεθ − θ) =
∫

R4
j (z1) j (z2)(δεz1 u)(δεz2θ) dz1 dz2.

The inequality

‖δεzθ‖2
L4(R2)

� C(ε|z|) 1
2 ‖θ‖L∞(R2)‖θ‖H

1
2 (R2)

. (59)

and its consequence (because of the boundedness of R⊥ in L4(R2))

‖δεz R⊥θ‖2
L4(R2)

� C(ε|z|) 1
2 ‖θ‖L∞(R2)‖θ‖H

1
2 (R2)

(60)

follow from the elementary inequality

‖δεzθ‖L2(R2) � C(ε|z|) 1
2 ‖θ‖

H
1
2 (R2)

(61)

which is proved by Fourier transform. Consequently,

‖ρε(R⊥θ1, θ2)‖L2(R2) � Cε
1
2 ‖θ1‖

1
2
L∞(R2)

‖θ2‖
1
2
L∞(R2)

‖θ1‖
1
2

H
1
2 (R2)

‖θ2‖
1
2

H
1
2 (R2)

.

(62)

The integrand in Kε is bounded
∣∣(∇ Jε(θ), ρε(u, θ))L2(R2)

∣∣ � C‖θ‖L∞(R2)‖θ‖2

H
1
2 (R2)

(63)

and converges to 0 as ε → 0, for fixed θ ∈ H
1
2 (R2)∩ L∞(R2). Indeed, the trilinear

map

(θ1, θ2, θ3) �→ (∇ Jε(θ1), ρε(R
⊥θ1, θ2))L2(R2)

is separately continuous from H
1
2 (R2) to R uniformly on A and uniformly in ε.

This can be seen from the expression

(∇ Jε(θ3), ρε(R
⊥θ1, θ2))L2(R2) = −1

ε

∫
∇z j (z)(δεzθ3, ρε(R

⊥θ1, θ2))L2(R2) dz
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and the bound obtained from (61) and (62)

|(∇ Jε(θ3), ρε(R
⊥θ1, θ2))L2(R2)|

� C‖θ3‖
H

1
2 (R2)

‖θ1‖
1
2
L∞(R2)

‖θ2‖
1
2
L∞(R2)

‖θ1‖
1
2

H
1
2 (R2)

‖θ2‖
1
2

H
1
2 (R2)

. (64)

This explains (63) and also shows the pointwise vanishing of the integrand in Kε
as ε → 0: the integrand in (57) obviously tends to zero for smooth θ , and θ in A

can be approximated in the norm of H
1
2 (R2) by smooth functions. Therefore, from

the Lebegue dominated convergence theorem

lim
ε→0

Kε = 0.

It remains to consider the limit of Iε , but this is quite straightforward,

lim
ε→0

Iε =
∫

L2(R2)

(γ ‖θ‖2

H
1
2 (R2)

− (θ, f )L2(R2)) dμ(θ)

and thus the proof is complete.

6. Long Time Averages

In this section we consider long time averages of solutions and the stationary
statistical solutions they generate. We start by recalling the concept of generalized
(Banach) limit:

Definition 4. A generalized limit (Banach limit) is a bounded linear functional

Limt→∞ : BC([0,∞)) → R

such that

1. Limt→∞(g) � 0, ∀g ∈ BC([0,∞)), g � 0.
2. Limt→∞(g) = limt→∞ g(t) whenever the usual limit exists.

The space BC([0,∞)) is the Banach space of all bounded continuous real valued
functions defined on [0,∞) endowed with the sup norm. It can be shown that the
generalized limit always satisfies

lim inf
t→∞ g(t) � Limt→∞(g) � lim sup

t→∞
g

for all g ∈ BC([0,∞)). Moreover, given a fixed g0 ∈ BC([0,∞)) and a sequence
t j → ∞ for which lim j→∞ g0(t j ) = l exists, a generalized limit can be found
which satisfies Limt→∞(g0) = l. This implies that one can choose a generalized
limit that obeys Limt→∞(g0) = lim supt→∞ g0(t). With this language at our dis-
posal, we now state the result about long time averages of viscous forced critical
SQG.
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Theorem 3. Let f ∈ L1(R2)∩ L∞(R2) and θ0 ∈ L1(R2)∩ L∞(R2). Let Limt→∞
be a Banach limit. Then the map

� �→ Limt→∞
1

t

∫ t

0
�(S(ν)(s, θ0)) ds (65)

for � ∈ C(L2(R2)) (strongly continuous, real valued) defines a stationary statis-
tical solution μ(ν) of the viscous forced SQG equation (27):

∫
L2(R2)

�(θ) dμ(ν)(θ) = Limt→∞
1

t

∫ t

0
�(S(ν)(s, θ0)) ds. (66)

The measure is supported in the set

A =
{
θ | ‖θ‖

H
1
2 (R2)

�
‖ f ‖L2(R2)

γ
, ‖θ‖L p(R2) � Ap, 1 � p � ∞

}
(67)

with

Ap = ‖θ0‖L p(R2) + ‖ f ‖L p(R2)

γ
, 1 � p � ∞.

The inequality
∫

L2(R2)

[
ν‖∇θ‖2

L2(R2)
+ γ ‖θ‖2

H
1
2 (R2)

− ( f, θ)L2(R2)

]
dμ(ν)(θ) � 0 (68)

holds.

The positive semiorbit

O+(θ0) = {θ | ∃s � 0, θ = S(ν)(s, θ0)}
is relatively compact in L2(R2) because it is bounded in H1(R2) and uniformly
integrable by Proposition 1, (34). For any � ∈ C(O+(θ0)) the function t �→
1
t

∫ t
0 �(S

(ν)(s, θ0)) ds is a bounded continuous function on [0,∞) so we may
apply Limt→∞ to it. (Of course, C(L2(R2)) ⊂ C(O+(t0, θ0)).) The map

� �→ Limt→∞
1

t

∫ t

0
�(S(ν)(s, θ0)) ds

is a positive functional on C(O+(θ0)). Because of the Riesz representation theorem
on compact spaces, it follows that there exists a Borel measure representing it, that
is (66) holds. The measure is supported on O+(θ0). We take a test function� ∈ T .
Then∫

L2(R2)

(N (ν)(θ),� ′(θ))L2(R2) dμ(ν)(θ) = Limt→∞
1

t

∫ t

0

d

ds
�(S(ν)(s, θ0)) ds

holds and the right hand side vanishes, verifying (b) of Definition (1). Because of
(33) the semiorbit is included in the set

{θ | ‖θ‖L p(R2) � Ap, 1 � p � ∞}.
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The fact that the support of μ(ν) is included in A follows as shown before from
property (c) of Definition 1. In order to check (a), (c) of Definition 1 we would like
to take long time averages in the energy balance (32). In order to do so, we first
mollify the equation. This is due to the fact that ‖∇θ‖2

L2(R2)
is not continuous in

L2(R2). We put

θε(x, t) = Jε(S
(ν)(t, θ0))(x), uε(x, t) = JεR⊥(S(ν)(t, θ0)),

and applying Jε to (27), multiplying by θε and integrating we deduce

1

t

∫ t

0

[
γ ‖θε(s)‖2

H
1
2 (R2)

− (Jε f, θε(s))L2(R2) + ν‖∇θε(s)‖2
L2(R2)

]
ds

= 1

2t

[
‖θε(0)‖2

L2(R2)
− ‖θε(t)‖2

L2(R2)

]
+ 1

t

∫ t

0
(ρ(uε(s), θε(s)),∇θε(s))L2(R2) ds.

We obtain∫ [
γ ‖Jεθ‖2

H
1
2 (R2)

− (Jε f, Jεθ)L2(R2) + ν‖∇ Jεθ‖2
L2(R2)

]
dμ(ν)(θ)

= Limt→∞
1

t

∫ t

0
(ρ(uε(s), θε(s)),∇θε(s))L2(R2) ds. (69)

Because of (32) and (33)

lim sup
t→∞

1

t

∫ t

0

[
γ ‖S(ν)(s, θ0)‖2

H
1
2 (R2)

+ ν‖∇S(ν)(s, θ0)‖2
L2(R2)

ds

]

� 1

γ
‖ f ‖2

L2(R2)
(70)

and because Jε does not increase L2 norms, we deduce from (70) that

sup
0<ε

∫
L2(R2)

[
γ ‖Jεθ‖2

H
1
2 (R2)

+ ν‖∇ Jεθ‖2
L2(R2)

]
dμ(ν)(θ) � 1

γ
‖ f ‖2

L2(R2)
.

The functions ‖θ‖2

H
1
2 (R2)

and ‖∇θ‖2
L2(R2)

are Borel measurable and so, by Fatou,

we obtain (a) of Definition 1. Using the H1 ∩ L∞ information we have

‖ρε(R⊥θ, θ)‖L2(R2) � C
√
ε‖θ‖L∞(R2)‖∇θ‖L2(R2)

and thus

Limt→∞ 1
t

∫ t
0 ρ(uε(s)θε(s)),∇θε(s))L2(R2) ds

� Cε
[
‖θ0‖L∞(R2) + 1

γ
‖ f ‖L∞(R2)

]
1
νγ

‖ f ‖2
L2(R2)

.

This implies that the right hand side of (69) converges to zero as ε → 0. This proves
(68) by Fatou. In order to prove (c) of Definition 1 we take χ ′(y), a smooth, nonneg-
ative, compactly supported function defined for y � 0. Then χ(y) = ∫ y

0 χ
′(e)de

is bounded on R+ and

d

dt
χ(‖θε(t)‖2

L2(R2)
) = χ ′(‖θε(t)‖2

L2(R2)
)

d

dt
‖θε(t)‖2

L2(R2)
.
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We proceed as above and obtain
∫

L2(R2)

χ ′(‖θ‖2
L2(R2)

)

{
ν‖∇θ‖2

L2(R2)
+γ ‖θ‖2

H
1
2 (R2)

−( f, θ)L2(R2)

}
dμ(ν)(θ) � 0.

We let χ ′(y) converge pointwise to the characteristic function of the interval
[E2

1 , E2
2 ] with 0 � χ ′(y) � 2. This proves (c) of Definition 1 and concludes

the proof of this theorem.

7. Conclusion

Theorem 4. Let θ0, f ∈ L1(R2) ∩ L∞(R2). Then

lim
ν→0

ν

(
lim sup

t→∞
1

t

∫ t

0
‖∇S(ν)(s, θ0)‖2

L2(R2)
ds

)
= 0.

We argue by contradiction. If the conclusion were false, then there would exist
δ > 0, a sequence νk → 0, and, for each νk , a sequence of times t j → ∞ such that

νk

t j

∫ t j

0
‖∇S(νk )(s, θ0)‖2

L2(R2)
ds � δ

holds for all t j . Because of (32)

δ � νk

t j

∫ t j

0
‖∇S(νk )(s, θ0)‖2

L2(R2)
ds

= 1

t j

∫ t j

0

[
−γ ‖S(νk )(s, θ0)‖2

H
1
2 (R2)

+ ( f, S(νk )(s, θ0))L2(R2)

]
ds

+ 1

2t j

[
‖θ0‖2

L2(R2)
− ‖S(νk )(t, θ0)‖2

L2(R2)

]
.

It follows that

lim sup
t→∞

1

t

∫ t

0

[
−γ ‖S(νk )(s, θ0)‖2

H
1
2 (R2)

+ ( f, S(νk )(s, θ0))L2(R2)

]
ds � δ. (71)

By Theorem 3 there exists a stationary statistical solution of the forced viscous
SQG equation, μ(νk ) supported in A such that

∫
L2(R2)

{
−γ ‖θ‖2

H
1
2 (R2)

+ ( f, θ)L2(R2)

}
dμ(νk )(θ) � δ > 0. (72)

Passing to a weakly convergent subsequence (denoted again μ(νk )), we find
using Theorems 1 and 2 a stationary statistical solution μ of the forced criti-
cal SQG equation that satisfies the energy dissipation balance (49). The function
θ �→ ( f, θ)L2(R2) is weakly continuous, so

lim
k→∞

∫
L2(R2)

( f, θ) dμ(νk )(θ) =
∫

L2(R2)

( f, θ) dμ.
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On the other hand, by Fatou
∫

L2(R2)

‖θ‖2

H
1
2

dμ(θ) � lim inf
k→∞

∫
L2(R2)

‖θ‖2

H
1
2

dμ(νk )(θ).

Using (72) we obtain
∫

L2(R2)

[
γ ‖θ‖2

H
1
2

− ( f, θ)L2(R2)

]
dμ(θ) � −δ < 0,

contradicting (49). This concludes the proof of the theorem.
The forced critical SQG equation is dissipative, and the main result here shows

that additional viscous dissipation does not leave any anomalous remanent dissi-
pation. The same result is true for spatially periodic boundary conditions, and for
additional dissipation of the type ν(−�)α . The problem of the absence of anom-
alous dissipation is open for the forced SQG equation without the� term in D, that
is with friction that does not grow like |k| for high wave-numbers k.

The method of proof of [19] and of this paper is quite general, and is applicable
for a large class of equations where no uniform bound on the dissipation is readily
available. The main ingredients necessary for the success of the method are: an
energy dissipation balance for viscous solutions, relative compactness of viscous
semiorbits, weak continuity of the nonlinearity, and enough bounds to control the
nonlinear fluxes. The forced SQG equation with wave-number independent friction
and the supercritical forced SQG equation have all the mentioned ingredients,
except the last one, so what is missing is proving the energy dissipation balance for
the long time averages of solutions of the inviscid equation.
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