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Abstract

The spatial gradient of solutions to nonlinear degenerate parabolic equations
can be pointwise estimated by the caloric Riesz potential of the right hand side
datum, exactly as in the case of the heat equation. Heat kernels type estimates
persist in the nonlinear case.
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1. Results

In this paper we are going to consider nonlinear, possibly degenerate parabolic
equations whose model is given by

u; — div (|Du|P~>Du) = (1.1)

where p denotes in the most general case a Borel measure with finite total mass.
Although the kind of problems considered are nonlinear our goal is to provide a
suitable linear potential theory aimed at describing, in a sharp way, the regularity
properties of the gradient Du in terms of those of 1. More precisely, our description
shows that sharp gradient pointwise estimates can be given in terms of classical
Riesz caloric potentials of the right hand side u. We will see that, surprisingly
enough, bounds similar to those that hold for the heat equation
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Uy — Au = (1.2)

actually hold for solutions to (1.1) and, more generally, for solutions to quasilinear
equations of the type

u; —diva(x,t, Du) = u in 27 = 2 x (=T, 0), (1.3)

provided suitable, actually optimal, regularity assumptions are made on the partial
map (x,1) — a(t, x,z). Here 2 C R" is an open subset, n = 2 and T > O.
Specifically, we shall consider a Carathéodory vector field a: 27 x R" — R"
which is C!-regular in the third variable and satisfying the following parabolicity
and continuity conditions:

la(x,t,z)| + |0.a(x,t, z)|(|z|2 +52)1/2 < L(|Z|2 +s2)(p_1)/2
v(I22 + sHPDR21ER < (d.a(x, 1, 2)E, ) 14
la(x,,z) —a(xo, 1, 2)| < Lo(|x — xo])(|z]? + s2)P—D/2

whenever z, & € R",x,xg € 2,t € (—T,0), where 0 < v < L are positive
numbers and p = 2. The symbol w(-) denotes a modulus of continuity meaning
that w: [0, co) — [0, 1] is a nondecreasing concave function such that w (0) = 0.
In the following, s = 0is a parameter that will be used to distinguish the degenerate
case (s = 0), which covers the model equation in (1.1), from the non-degenerate
one (s > 0); the analysis made in the following will see no difference between
these two cases. In the rest of the paper we shall assume that the partial map

a(x,t,z)
r= (|z]2 + s2)(P=D/2

is Dini-continuous in the sense that

1 d 0
w(p) — < oo. (1.5)
0 0

This assumption is optimal for the estimates we are going to derive in the following;
see the comments at the beginning of Section 1.3. We remark anyway that, every-
where in this paper, we only assume measurability of the partial mapt — a(x, ¢, z),
in other words we assume that time coefficients are merely measurable. However,
in this paper we shall always consider the case

P22

as the case p < 2 has already been treated elsewhere [26] and involves an analysis
which is different and somewhat simpler than the one which is necessary here. For
more notation we refer the reader to Section 2 and to the rest of this introductory
section.

Remark 1. (On the notion of solution) Throughout the paper, when considering
weak solutions to (1.3) and unless otherwise stated, we shall mean energy weak
solutions. An energy weak solution u# belongs to the parabolic energy space, that is

ueCOU=T,0; L>(2) N LP(~=T,0; WhP(£2)), (1.6)
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and it is a distributional solution to (1.3) in the sense that

—/ ugo,dxdt—}—/ (a(x,t, Du), Dp) dx dt :/ pdu (1.7)
Qr Qr fr

holds whenever ¢ € C2°(£27). In view of the available approximation theory we
shall assume that 1 € L' without loss of generality, while upon letting in a standard
way i|gn+1\ o, = 0, we shall finally consider the case

w e LY(RMY). (1.8)

Assumptions (1.6) and (1.8) will then finally be removed in Section 1.2. There we
shall deal with solutions to general measure data problems, where both (1.6) and
(1.8) are no longer in force. In other words, we pursue the usual path that consists of
first deriving a priori estimates for more regular problems and solutions, and then
recovering the general case by approximation. Notice that under the assumptions
(1.6) and (1.8) by standard density arguments the identity in (1.7) remains valid
whenever ¢ € WP (£27) N L*(827) has a compact support.

1.1. Intrinsic and Explicit Riesz Potential Estimates

Very recently, in [27,28,33] (see [11] for the subquadratic case), it has been
shown that, surprisingly enough, the regularity theory of possibly degenerate qua-
silinear elliptic equations of the type

—diva(Du) = u
completely reduces to that of standard Poisson equation
—Au=pu (1.9)

up to the C'-level, that is up to the gradient continuity. Moreover, in some sense
the regularity theory can be actually linearized via Riesz potentials. In particular,
the gradient of solutions can be pointwise bounded via classical Riesz potentials
exactly as it happens for solutions to (1.9), that is, the inequality

p—1
1Du(xo) P! < el (xo, 1) + ¢ (]é (|Du| + ) dx) (1.10)

(x0,7)

holds for almost everywhere point x(, where

-
1 (g, r) = / IMI(BS?, 0)) do
0 Q Q
denotes the standard truncated Riesz potential of | |. We refer to [30] for a descrip-
tion of the current status of the theory.

Our aim here is to build a related theory for general degenerate parabolic prob-
lems of the type in (1.1) and (1.3). The main challenge here is to match the antici-
pated a priori Riesz potential estimate with the inhomogeneous nature of equations
such as (1.1); it will be indeed part of the work to find the proper formulation,
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suited to the geometry of the equations considered, making this possible. We also
remark that, even when applied to the stationary case, our results turn out to be
more general than those contained in [27,28] since the equations considered here
are also allowed to have coefficients, that is the vector field a(-) is allowed to have
an explicit dependence on (x, ¢). The ultimate outcome is that, once again, the
(spatial) gradient regularity theory of solutions to (1.3) can be unified in a natural
way with the one of the usual heat equation (1.2). The analysis here unavoidably
involves the concept of the intrinsic geometry, introduced and widely employed by
DIBENEDETTO [2,7,41]. According to this principle, the lack of scaling (for p # 2)
of equations as

u; — div (|Dul?>Du) = 0 (1.11)

can be locally rebalanced by performing the regularity analysis of the solution
on certain special cylinders adapted to the solution itself, indeed called intrinsic
parabolic cylinders. More precisely, instead of using standard parabolic cylinders

0, (x0, o) := B(xo, 1) x (1o — 1%, 10), (1.12)

one uses cylinders whose time-length is stretched accordingly to the size of the
gradient on the cylinder itself. In other words, one is lead to consider cylinders of
the type

0} (x0. t0) := B(xo.r) x (to — A*"Pr*.19), A >0, (1.13)

on which it simultaneously happens that a condition of the type
][ |Du|dxdr < A (1.14)
Q% (x0,10)

is satisfied. The use of the word intrinsic stems from the very basic fact that the
parameter A appears on both sides of (1.14). Ultimately, this has the effect of
rebalancing the local anisotropic character of the equation allowing for proving
homogeneous regularity estimates: in some sense, the equation (1.11) looks like
the heat equation when considered on Qﬁ‘(xo, tp). For instance, when considering
standard parabolic cylinders, for solutions to (1.11) it is only possible to prove
bounds of the type

sup |Du| £ c¢(n, p) (|Du| + s + HP~ dx dt, (1.15)
Qr/2(x0,10) 0 (x0,0)

whose lack of homogeneity precisely reflects that of the equation. In this sense
the previous estimate is natural. When instead considering intrinsic cylinders with
(1.13)—(1.14) being in force, estimates become dimensionally homogeneous:

1/(p=1)
c(n, p) ][ (IDu| + 5)P~ " dx dt < A= |Du(xo, to)| = A.
0} (x0,10)

(1.16)
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Both (1.15) and (1.16) are basic results of DiBenedetto [7] while we just remark
that intrinsic geometries are nowadays a basic and common tool to treat degenerate
parabolic equations [1,6,8,19,20].

The previous considerations, together with (1.15)—(1.16), are actually the start-
ing point for proving the desired potential estimates. Let us see how. Beside the
usual caloric (truncated) Riesz potentials built upon standard parabolic cylinders
as in (1.12), that is

r ,19)) d
Ig(xo,to;r) ;:/ W—Q, 0<B<SN:=n+2, (1.17)
0 Q e

we introduce the intrinsic Riesz potentials as

. 7 Il(Qh o, 1) do

I 5 (xo, f05 1) /0 o7 2’ (1.18)
where N is called, as usual, the parabolic dimension. Note that in such a way we
have IZ (x0, t0; 1) = IZ’ 1(x0, t0; ). At this stage the word “intrinsic” merely refers
to the fact that the additional parameter A has been considered in the definition in
(1.18), while at the moment no local linkage with solutions of the type in (1.3) has
been considered yet. This will come in a few moments: indeed, the right way to
give an intrinsic formulation of the linear potential bounds is inspired by (1.16) and
it is given in the following.

Theorem 1.1. (Intrinsic Riesz potential bound) Let u be a solution to (1.3) under
the assumptions (1.4), (1.5) and (1.8). There exist a constant ¢ > 1 and a radius
Ry > 0, bothdepending onlyonn, p, v, L, w(-), such that the following implication
holds:

1/(p=1)
Clﬁfk(xo, to;r) +c ][ (|Du| + S)p—l dx dt <A
O} (x0.10)
= |Du(xo, to)] =2 (1.19)

whenever Qﬁ‘ (x0, t0) C 827, (x0, to) is Lebesgue point of Du, and r < Ro. When
the vector field a(-) is independent of x, no restriction occurs onr, thatis, Ry = oo.

Note that, as expected, (1.19) allows one to recover (1.16) when u = O; this is a
first sign of the fact that (1.19) is the “correct intrinsic extension” of (1.10). As a
matter of fact Theorem 1.1 implies a gradient linear potential estimate involving
standard Riesz potentials. Surprisingly enough, this is of the same type as the one
which holds for the standard heat equation; moreover, when p = 0, this reduces
(1.15). We indeed have the following:

Theorem 1.2. (Riesz potential bound in classic form) Let u be a solution to (1.3)
in 27 under the assumptions (1.4), (1.5) and (1.8). There exists a constant c,
depending only onn, p,v, L, w(-), such that

| Dutxo, 10)] < eI (xo. 10; ) +c][ (1Dul +s + )P~V dx ds
0 (x0,10)
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holdswhenever (xg, ty) € 27 is a Lebesgue point of Du and whenever Q, (xg, to) C
27 is a standard parabolic cylinder such that r < Ry; here Ry is the radius intro-
duced in Theorem 1.1.

When applied to the case p = 2 the previous theorem allows to recover the
main parabolic estimate of [10]. An immediate consequence of Theorem 1.2 is the
following global bound via classical, non-truncated caloric Riesz potentials:

Corollary 1.3. Let u be a weak solution to the equation
u; —diva(r, Du) = p in R"*! (1.20)

under the assumptions (1.4) and (1.8); moreover, assume that the global integra-
bilityu € LP~1 (=00, tg; WHP=1(R™)) holds for ty € R. There exists a constant c,
depending only on n, p, v, L, such that the upper bound

d|pl(x, 1)
[Du(xo, to)| = C/
tr<t0} dpar((x, 1), (x0, 10))N 1

holds whenever (xq, to) is a Lebesgue point of Du.

Remark 2. In Corollary 1.3 dp, () denotes the standard parabolic distance in R+
which is defined by

dpar (3 1), (30, 10)) = max {1 = xol, v/l = 1]} .

The previous result shows that Theorems 1.1 and 1.2 play the role of the usual
representation formulae via heat kernels for solutions to the heat equation. In recent
years there has been a large amount of activity devoted to understanding the extent
to which heat kernel estimates are still valid when passing to more general settings,
as for instance Lie groups and manifolds [9,13,36]. In this paper we are interested,
in a dual yet related way, to see the extent to which estimates as those implied by
well-behaving heat kernels can be recovered in the nonlinear degenerate setting.
Our results also connects to those in [31], and concerning the p-superharmonicity
of certain linear Riesz potentials.

The proof of Theorem 1.1 opens the way to an optimal continuity criterion for the
gradient still involving only classical Riesz potentials and that, as such, is again
independent of p.

Theorem 1.4. (Gradient continuity via linear potentials) Let u be a solution to (1.3)
in 21 under the assumptions (1.4), (1.5) and (1.8). If

lim I’f(x, t;r)=0

r—0
locally uniformly with respect to (x, t), then Du is continuous in 2.
An important corollary involves Lorentz spaces:

Corollary 1.5. (Lorentz spaces criterion) Let u be a solution to (1.3) in 27 under
the assumptions (1.4), (1.5). If uw € L(N, 1), that is if
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o0
/ H(x, 1) € 27 |ux,0)] > YV d < oo,
0

then Du is continuous in §27.

Corollary 1.5 substantially improves [23, Theorem 1.3] that only asserts the bound-
edness of the gradient under the assumption € L(N, 1) and when no coefficients
are present in the vector field; see also [5] for a related global boundedness result
in the elliptic case. It might be interesting to note how the above result naturally
extends to the parabolic case the classical gradient continuity results valid in the
elliptic case, starting from those available for the Poisson equation —Au = pu in
domain of R”. For this it is known that the condition u € L(n, 1) is a sufficient
one for the gradient continuity. This is in turn related to, and indeed implied by, a
classical result of STEIN [37] that claims the continuity of a function f whenever
its distributional derivatives belong to L(n, 1). Corollary 1.5 gives the precise non-
linear parabolic analog of such classical facts. As expected, the space dimension n
is replaced by the parabolic one N = n + 2, which is naturally associated to the
standard parabolic metric.

Preliminary to the proof of the continuity criterion, there is another result which
claims the VMO gradient regularity under weaker assumptions on the measure (.

Theorem 1.6. (VMO gradient regularity) Let u be a solution to (1.3) under the
assumptions (1.4), (1.5) and (1.8). IfI’f (x, t; r) is locally bounded in 27 and if

lim [AQr&x. )
m ——— =

e 0 (1.21)

locally uniformly in 21 with respect to (x,t), then Du is locally VM O in 27,
that is

lim  sup ][ |Du — (Du) g, |dxdt =0 (1.22)
R=>0 ,.<g 0,co /0"

for every open subset Q' € $27.

1.2. General Measure Data Problems

Solutions to measure data problems are usually found by approximation pro-
cedures via solutions to more regular problems. These are of the type

(up); —diva(x, t, Dup) = pup € L, h eN, (1.23)

where (1.6) holds for u;, and {11;,} is a sequence of smooth functions obtained via
convolution of © with a sequence of suitable mollifiers (see also Remark 7 below).
The point is that solutions to measure data problems do not belong, in general,
to the energy space. This section is also aimed at justifying that we may actually
work under the apparently additional assumption (1.6). More precisely, the exact
definition of SOLA is given in the following:
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Definition 1. [3,21,22] A SOLA (Solution Obtained as a Limit of Approximations)
to (1.3) is a distributional solution u € LP~1(—T,0; WL-P~1(2)) to (1.3) in 27,
such that u is the limit of solutions

up € CO(=T,0; L>(£2)) N LP (=T, 0; WhP(£2))

to equations as (1.23) in the sense thatu, — uin LP~N=T,0; W'-P=1(£2)), L>® >
un —  weakly in the sense of measures and such that

limhsup lnl(Q) = |l (LQ ] par) (1.24)

for every cylinder Q = B x (t1, t2) C 27, where B C £2 is abounded open subset.

In the right hand side of (1.24) there appears the symbol | Q | par, Which denotes the
parabolic closure of Q defined in (2.1) below. For more on this kind of solution see
Remark 7 below; in particular, requiring (1.24) is neither unnatural nor restrictive.
Our estimates remain valid for SOLA and, in fact, the following holds:

Theorem 1.7. The statements of Theorems 1.1, 1.2, 1.4 and 1.6 continue to hold for
SOLA u € LP~Y(—=T,0; Wh-P=1(2)) to (1.3), under the only assumptions (1.4),
(1.5). As a consequence, the results in Corollaries 1.3 and 1.4 hold for SOLA as
well.

1.3. Comparison with Nonlinear Estimates

Theorem 1.1 improves the previously potential estimates via nonlinear poten-
tials [25], bringing them fo the desired optimal level. Based on elementary dimen-
sion analysis we conjecture that the result of Theorem 1.1 cannot be improved by
the use of any other nonlinear potential. Theorem 1.1 is optimal also with respect
to the regularity assumed on the coefficients dependence x — a(x, -), thatis (1.5).
Indeed, already in the linear elliptic case div (a(x)Du) = 0, Dini-continuity of
elliptic coefficients matrix a(x) is essential in order to get gradient boundedness.
Merely continuous coefficients are not sufficient to ensure that the gradient belongs
even to BMO, see [16].

Now, let us see how Theorem 1.1 improves the previously known estimates
via nonlinear potentials. In [25] a Wolff potential type gradient bound has been
obtained for equations without coefficients, that is of the type u; — diva(Du) = p.
More precisely, in [25] we introduced the following intrinsic Wolff potentials:

1/(p—1
o (@00 )T do
Wi (xo, 105 7) 1= T N=T —
0 APo 0

where N = n + 2 and A > 0. See [14,15,18] for more on Wolff potentials. We
then proved the existence of a universal constant ¢,, = ¢, (n, p, v, L) for which

1/(p—1)
cw W5 (xo, 103 ) + cu (][A (|Du| +s)1’“dxdt) <A
01 (x0,70)

= [Du(xo, )l =2 (1.25)
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holds. Let us now show that (1.19) implies (1.25) for
1/(p=1)
= [4N +!(log 2)2_”c] +4Ne (1.26)

and radii r £ Ry, where ¢ and Ry are the constants appearing in the statement of
Theorem 1.1 [no restriction on radii appears in the case of equations as in (1.20)].
With r; = r/2' for integers i > 0, Holder’s inequality for series (as it is p > 2
here), gives

I, (0. t0:7/2) = z / Mde

Ti+] o

X0, [
< V11 2Z:IMI(Q (x0, 10))
i=1 rl
1/(p-n7 P!
X0, I
< N1 10g2 Z(W(QN(? o)))
i=1 T
1/(p=1) p=1
X0, 1 fi-l d
¥ (log 2" Z(|M|(QN(10 0))) / do
| i=1 Fic1 i @

B 1/(p=1)
X, rri-t (1l (Qh(xo, 10)) d
s B0 (MG) Y
i=1""i

= 4N (log 2)* P2 P [Wh (xo. to; 1) |7~

< 4N(1og2)* PclPa < .
2c
Notice that to derive the second-last estimate we have used the inequality in the first
line of (1.25), while in the last estimate we have used (1.26). Using the inequality in
the last display, again (1.26), and finally the left hand hand side of (1.25), a standard
manipulation gives

1/(p—1)
Iy, (xo, t0;7/2) + ¢ ][ (|Du| + s)?~ " dx dt <A
' Qi\/z(x() 10)

so that the right hand side inequality in (1.25), that is |Du(xg, fp)| < A, follows
applying Theorem 1.1.

The improvement from (1.25) to (1.19) is rather strong both from the viewpoint
of the theoretical significance—as now the regularity theory of quasilinear equations
is unified with that of the heat equation up to spatial gradient continuity—and from
the one of the consequences. For instance, when looking for sharp criteria for
establishing Du € L5 (and eventually in €% in terms of Lorentz spaces, the
result in (1.25) gives that

pweL(N,1/(p—1) = DueL®, (1.27)
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where we recall that © € L(N, 1/(p — 1)) if
o0 ﬂ 1
/ ArT{(x, 1) € 27 @ |u(x, )] > A} ¥r=D dA < 0.
0

The criterion of Corollary 1.5 is clearly stronger that the one in (1.27),as L(N, 1) C
L(N, 1/(p — 1)), this inclusion being strict for p > 2; needless to say, here we
also prove the gradient continuity. For further properties of Lorentz spaces we
refer for instance to [39]. Moreover, it is easy to see that more refined criteria in
terms of density/concentration are provided by (1.19) with respect to (1.25) when
wu is genuinely a measure. We also remark that Wolff potentials play a major role
in the analysis of the fine properties of quasilinear equations (see for instance
[17,18,34,35,40]); since the estimates contained in this paper are stronger than
those involving Wolff potentials, we expect they will have a similar, if not stronger,
impact in the future.

1.4. Techniques

Finally, a few comments on the methods used in this paper. Several new in-
gredients are needed to deal with the parabolic case with respect to the previous
elliptic one [24], and the proofs depart considerably from those proposed before.
The proof of Theorem 1.1 involves a very delicate, double-step induction procedure
based on a few ingredients that re-shuffle, in a pointwise manner, some classical
methods used in linear Calderén—Zygmund theory and combine them with the use
of intrinsic geometry. Extensive use of nonlinear potential theoretic methods and
regularity theory is made throughout. Let us briefly describe the heuristic idea used
here by specializing for simplicity to the model case (1.1) and considering 1« € L';
the essence relies on a careful procedure that allows one to “linearize the equation”
and control the possible degeneracy in a precisely quantified way at every scale. The
following argument will be purely formal. We consider a dyadic shirking sequence
of intrinsic cylinders fori = 0

A A A [
- 0y (x0,10) C Qy; (x0,t0) C Oy, (x0,70) -+ 1i:=0'r

where o € (0, 1) is a constant depending only on n, p and X is as in (1.19). A
suitable exit time argument, together with very careful regularity estimates for
solutions to homogeneous equations, gives

A — “quantified error” < |Du| on Qi‘[ (xo0, to) for i large enough. (1.28)

This is something that in a way we can always assume, starting from an exit time
index, otherwise we are going to get an opposite inequality for the integral averages
|(Du)Q¢. (xo.t0)| < A that eventually leads to an immediate proof of | Du(xo, fo)] <
A, and therefore of (1.19). Assuming (1.28) leads to implement a delicate iteration
procedure whose final outcome is the following inequality:

][ |Du|P~" dx dr < AP~ (1.29)
Qﬁ\j (x0,10)
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that again implies (1.19). Note that proving (1.29) not only allows us to implement
the iteration but also allows us to use, at each scale, the intrinsic geometry methods
[compare with (1.14)]. As emphasized, the key to the proof of Theorem 1.1 is the
lower bound in (1.28); let us now give a formal yet convincing argument showing
how a condition as (1.28) allows us to get (1.19) and why intrinsic Riesz potentials
and conditions such as (1.19) naturally occur. Let us consider then (1.28) to be
satisfied on Qﬁ(xo, to) with a null error, that is, A < |Du|, and let us assume the
first inequality in (1.19). The lower bound & < |Du| in turn allows us to gain
coercivity enough to treat the equation in display (1.1) as a heat equation with a
coefficient, that is u; — div (A?~2Du) = 1 that we can rewrite as

APy, — Au=2"""Pu  in Qi‘(xo, 1o).

Now the effect of the use of intrinsic geometry and of the intrinsic Riesz potential
shows up. Changing variables and introducing

u(xo + rx, to + A2 Pr2r)

r

vix,t) =

and
(x, 1) = 227 Pru(xo + rx, t + A2 Pr?r)
for (x,1) € Q1 = By x (—1,0), we have
v —Av = QL. (1.30)

Next, we apply the standard Riesz potential bound for solutions to (1.30), that is

) 1/(p—1)
1Dv(0,0) <170,0; 1) + (][ |Dv|P~ " dx dt) . (13D

01(0.0)

Changing variables back to i we notice

- 1
10,0, 1) = ,\Z—Pr/ ][ 1 (xo + rx, to + A27Pr2)| dx dr do
0 /0,00

1
=,\2—Pr/ ][ lw(x, £)| dx dr do
0 Qé,r(xo,to)

.
=A2_P/][ | (x, £)| dx dr do
0 JQ%(xo0.10)

= ATPIY (x0. 103 1) S A

where in the last inequality we have used the first line in (1.19). Finally, scaling back
to u, using the previous inequality together with the first line of (1.19), we conclude
with | Du(xg, to)| = |Dv(0, 0)| < A, that is the proof of (1.19). The one outlined in
the last lines is only a heuristic argument used to show how intrinsic Riesz potentials
play a decisive and natural role in this context, but its rigorous implementation is
highly nontrivial and involves a refined double induction argument that exploits
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rather subtle aspects of regularity theory of degenerate parabolic equations. Several
tools are used here. One of the main points is that the analysis of the relevant iterating
quantities must be performed at two different levels, using different energy spaces.
Indeed, since we are dealing essentially with measure data problems, the natural
spaces involved are larger than L?(—T, O; wlr ). This, together with the lack of
reverse Holder type inequalities and homogeneous estimates which is typical when
dealing with degenerate parabolic equations, reflects in a simultaneous use of two
different spaces, namely LY=T,0; Wiy and LP~1(—T, 0; wlr—1), Eventually,
a very delicate interplay between local regularity of solutions to homogeneous
equations and comparison estimates must be exploited in the framework of intrinsic
geometries thanks to exit time arguments and the use of intrinsic Riesz potentials.
The proof of Theorem 1.1 eventually opens the way to the continuity analysis and
in particular to Theorem 1.4. For this we shall readapt the iteration procedure of
Theorem 1.1 to estimate oscillations rather than the size of the gradient. This in
turn imposes consideration of a priori infinitely many exit times arguments used
to control the degeneracy of the equation via the oscillations of the gradient, and
vice-versa.

2. Preparations

2.1. General Notation

In what follows we denote by ¢ a general positive constant, possibly varying
from line to line; special occurrences will be denoted by ¢y, ¢2, ¢1, ¢z or the like.
All these constants will always be larger than or equal to one; moreover relevant
dependencies on parameters will be emphasized using parentheses, that is, ¢ =
c1(n, p, v, L) means that c; depends only on n, p, v, L. We denote by

B(xg,r):={x € R" : |x —xo| <r}

the open ball with center xo and radius » > 0; when not important, or clear from
the context, we shall omit denoting the center as follows: B, = B(xg, r). Unless
otherwise stated, different balls in the same context will have the same center. We
shall also denote B = B; = B(0, 1) if not otherwise specified. In a similar fashion
standard and intrinsic parabolic cylinders with vertex (xo, fo) and width » > 0
have been defined in (1.12) and (1.13), respectively. When the vertex will not be
important in the context or it will be clear that all the cylinders occurring in a
proof will share the same vertex, we shall omit indication of it, simply denoting
Q, and Qﬁ‘ for the cylinders in (1.12) and (1.13), respectively. We recall that if
Q = A x (11, ) is a cylindrical domain, the usual parabolic boundary of Q is
Opar Q = (A x {t1}) U (0A x [t1, 7)), and this is nothing else but the standard
topological boundary without the upper cap A x {,}. Accordingly, we define the
parabolic (topological) closure of Q as

LO]par := O U 9par 0. (2.1

With @ c R**! being a measurable subset with positive measure, and with
g: O — R" being a measurable map, we shall denote by
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©o E][ g(x,)dxdr := L/ g(x,t)dxdr
o 10l Jo

its integral average; here || denotes the Lebesgue measure of O. A similar notation
is adopted if the integral is only in space or time. In the rest of the paper we shall
use several times the following elementary property of integral averages:

1/q 1/q
(][ lg — (&)ol?dx dt) <2 (][ lg — yI?dx dt) , (2.2)
(@] O

whenever y € R" and ¢ = 1. The oscillation of g on O is instead defined as

oscogi=  sup |g(x, 1) —g(X D).
(x,1),(%,H)eO

Finally, we remark that we shall denote the partial derivative with respect to time
of a function u both by u; and by 0,u; moreover, the letter A will always denote a
positive number. Further relevant notation is at the beginning of the next section.

2.2. Comparison Maps

The basic setup in this section is tailored to the needs of the proof of Theorem 1.1
and subsequent results. Therefore we shall consider u to be an energy solution to
(1.3) under the assumptions (1.4), (1.5) and (1.8) until the end of Section 2.4;
only in Section 2.5 shall we discuss the general case, thereby treating SOLA and
discarding assumption (1.8). With a point (xg, fy) € 27 being fixed, and given an
intrinsic cylinder of the type

07 (xo. 10) = B(xo, r) x (tg — >~ "r 19)
such that Qér (x0, t0) C $27, we consider a family of nested parabolic cylinders
Qj =B x Tj = B(xo.rj) x (to — A" Pri 1) S Qr, rj=0o'r, (23)

for a fixed decay parameter o € (0, 1/4). Accordingly, we consider their dyadic,
parabolic dilations

TQ; = Qirj(xo, t0) = tBj x tT; = B(xo, trj) x (to — 2>~ P(zrj)%, t0)
for T > 0; notice that here, slightly abusing the notation, we are denoting
tTj = (1o — 2P (zr)%, 10).

A similar notation will occur several times in rest of the paper. We also notice that,
with respect to (2.3) we always have the inclusions

1
...Q]-CZQ]._] CQj—l"'-
Now, let

wj € COT;; L*(B))) N LP(T;; WP (B)))
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be the unique solution to the Cauchy—Dirichlet problem

2.4)

dwj —diva(x,t, Dw;) =0 in Q;
w; =u onapaer.

After having defined w, we also define
vj € CO(1/2)T;; L*((1/2)B))) N LP((1/2)Tj; WP ((1/2)B)))

as the unique solution to the frozen Cauchy-Dirichlet problem

{Btvj—diva(xo,t, Dvj) =0 in%Qj 25)

vj = w; on dpar (50) -

2.3. A Priori Estimates for Comparison Maps

We now derive various a priori estimates for w; and v;, starting from L*°-
bounds. When turning our attention to w; we need to use the results, recently
established in [29], that allow us to deal with equations with non-constant, Dini-
continuous spatial coefficients. We start with a statement in terms of intrinsic geom-
etry.

Theorem 2.1. (Intrinsic gradient bound) Let w; be as in (2.4). There exists a posi-
tive radius Ry = Ry(n, p,v, L, w(-)) and a constant c; = c1(n, p, v, L) such that
ifo € (0, Ry) and

2—
Q2 (x1, 1) == B(x1,0) x (1 — iy "%, 11) C Q,

then the implication

1/p
C1 ][A (|ij|+s)pdxdt < o
070 (x1,11)

= |[Dw;(x1,1)| = Ao
holds.

Proof. This result has been proved and used in [29, Theorem 1.1, Theorem 1.3,
Theorem 4.1]. The proof is exactly the one given in the proof of [29, Theorem 1.1],
once [29, Lemma 4.3] is used instead of [29, Lemma 4.2], see also [29, Remark
4.1]. We also remark that no restriction on g is necessary when the vector field a(-)
is independent of x.

The pointwise bound of Theorem 2.1 can be turned into an L°°-bound of exactly
the same type proved by DIBENEDETTO [7] for equations with no coefficients, see
also Theorem 2.4 below. Since we are going to cover the case of equations with
measure data, where solutions with a low degree of integrability naturally appear,
we need to lower the p-integrability exponent to (p — 1) to get the correct form of
a priori estimates. All of this is done next.
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Corollary 2.2. Let w; be as in (2.4) and Ry as in Theorem 2.1. There exists a
constant co = cy(n, p, v, L) such that if r € (0, Ry), then

)27P
2
sup |[Dw;|+s = c2(A +5) +

< (|Dw;| + )P~ dx dt
Tm Q] 2n+2(1 )n+2 f /

holds whenever t,, € (0, 1). In particular, we have

sup|Dw,|+s O+ 5) + can?” P][ (IDw;| + )P~ dx dr.
30)

Proof. Define

Ao = Ao(z, 7))

_lsu [Dw;|+ A+ —i—i)@_‘" (IDwj| +s)P "M dx dr

=3° plDw; s oy (Dwj| +s X
Qj QJ

whenever 1, <t/ < 1t < 1, where ¢; = ¢|(n, p, v, L) is as in Theorem 2.1. As
A0 = A and p = 2, we clearly have that for § := t — 7’ the inclusion

03 (x1,11) = B(x1, 8r)) x (11 = Ao " (6r)?, 1) C Q) = 10}, (%0, 10)

holds whenever (x1, ;) € t’Q;. Furthermore, by using the very definition of Ao
we may estimate
1/p

1 ][A (IDwj| + s)? dx dt
050 (x1.11)

1/p
< e2Vrpyl? ][ (IDw;| + 5)P~" dx dt

ng. (x1,11)

1/p

1/p
o 0'?1 . ( (|ij|+s)1’_1dxdt)
sr; (X1 11 Q)

1/p
_Clzl/pf\l/p(anﬂxz p) ( (Dw;|+ )7 ‘dxdz)

1/p
A 8n+2
<6121/p)»1/p e L = Ao.
5"+2A2 p ZC{’)LZ—p

Therefore Theorem 2.1 implies that [Dw;(x1, ;)| = Ao. But this holds for all
(x1,11) € T'Q; and thus

0121/[7)\1/17

1
supIij|<—sup|Dw]|+A+s+ ][ (IDw;| + )P~ " dxds
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follows. Lemma 2.3 below applied with

@(t) = sup | Dw;]|

T Qj
then concludes the proof by properly choosing the constant c;.

The next result is a classical iteration lemma for which we refer to [12, Lemma
6.1].

Lemma 2.3. Let ¢ : [t),, 1] — [0, 00), with t,,, € (0, 1), be a function such that

1
e < E(p(r) + K+ holds for every t,, <t/ <1 <1,

('C _ .[/)n+2
where B, K 2 0. Then ¢(t,) < c(n)K + (1 — 1,,) "B,

Corollary 2.2 obviously holds for v; too, and in this case it is a by now classical
estimate of DIBENEDETTO [7], as already mentioned above. See also, for example
[1,25], for similar bounds. We report the statement for completeness.

Theorem 2.4. Let v; be as in (2.5). For a constant c3 = c3(n, p, v, L) we have

sup [Dvj| +s5 < c3(h+5) + 03)L2_”][1 (IDvj| + )PP dx dr.

10; 20

We now pass to give oscillation estimates for w; and v;. The next result provides
a gradient oscillations estimate for solutions to homogeneous equations with Dini-
continuous coefficients.

Theorem 2.5. (Oscillationreduction) Let w j be as in (2.4), then Dw j is continuous.
Moreover, assume that

sup [Dw;| 45 < A (2.6)
30;

holds for some A = 1. Then, for every 8 € (0, 1) there exists a positive constant
oy =o1(n,p,v,L, A, 8, w(-)) € (0, 1/4) such that

0sCq 0, Dwj = 8. 2.7

Proof. The starting point of the proof is the work in [29], where the continuity of
the gradient of solutions to parabolic equations as in (1.3) has been proved under the
assumption of Dini-continuity of the space coefficients; this by the way immediately
implies the continuity of Dw; claimed in the statement. What we need here is a
quantitative bound on the oscillations of Dw ;. To this end let us briefly recall the
main arguments in [29, proof of Theorem 1.3], where the continuity properties of
Du are formulated and proved in terms of the auxiliary vector field

V(2) = (|z]* +sH P72/
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and the related field V(Dw;). For the use of such maps in the present context
we refer to [29] and related references; the only property we shall use here is the
following inequality:

< Ve V@)
T+ A )2

1
—lz1 (2.8)
Cy
that holds for ¢, = ¢, (n, p) and for all vectors z1, zp € R” which are not simul-
taneously null; see for instance [32]. By following the arguments developed for
[29, (5.15)] it can be proved that for every ¢ € (0, 1) there exists a positive radius

Re =R:.(n, p,v, L, w(-), &) € (0,1/16) such that
[(V(Dw)gpe.iy — (V(IDW)) gpi .| < (AW (2.9)

and
1/2
][ |V(Dw;) — (V(Dw})) gar i |* dx dt < (ANPPe (2.10)
Q4+ (E.0) e

hold whenever (%, f) € ‘—lle and0 < v < ¢ < R,rj; notice that R, is in particular
independent of A, A and the considered cylinder Q. Letting T — 0 in (2.9) and
recalling that V (Dwj) is continuous yields

[V (Dw;(E D) = (V(Dw)) g .| = (AW Vo € (0, Rerj]. (2.11)

We are now ready to finish the proof with the choices

§p/2 B ACG=P/2R,

T c2ragh a2 71T T

The constant ¢, is the one appearing in (2.8) Notice that the dependence of o
upon n, p,v, L, A, 8, w(-), as described in the statement, appears through the one
implicitly contained in R.. Take now (¥, 5), (X,7) € 010 j3 we can assume that
f = § otherwise we can interchange the roles between the two points in the next
lines. It obviously follows that

53 - = 1
Qllgi‘rj/g(y, s) C Qllgfr, *,1) C ZQJ

Using this last fact, thanks to Jensen’s inequality, the one in display (2.10) and using
also (2.2), we have

|(V(ij))Q£?rj/8(5,j) — (V(Dwf))Qéér_,/gGﬂ'

< [V(Dw;) — (V(ij))Q%

= Joar sz
QRgrj /8 .5

)|dxdt

o
/8%

§2][ IV (Dwj) — (V(Dwj) g (s dxd
Qf}?rj/s(i’,i) Qher; 0



744 Tuomo Kuust & GIUSEPPE MINGIONE

316N7[ [V(Dw;) — (V(Dw;)) par - ~|dxdt
- Qfer; (B1) ! I ey (1)
1/2
<16V 7[ [V(Dw;) — (V(Dw;)) par (= =|*dxdt
- Ofer; (B ! 7 Cer; 1)

< 16N (An)P 2.

By using the previous estimate and (2.11) (actually used also for (y, §) instead of
(%, 1)) together with the triangle inequality we easily gain

|V (Dw; (%, 1)) — V(Dw;(F, )| < 48" (AP %. (2.12)
We are now ready to show (2.7) proving that
|Dw; (X, 1) — Dw;(3,35)| < 5A (2.13)

whenever (3, 5), (X,1) € 010 ;- First of all, observe that we can assume that either
|Dw;(X,1)] = 81/2 or |Dw;(¥,5)| = 81/2 holds otherwise we are done. The
inequalities in (2.8) and (2.12) then imply (2.13) as follows:

|Dw; (%, 1) — Dw;j(F,5)| < c,48N (AR)P/2(51/2)! P26 = s
and the proof is complete.

Remark 3. The proof of the previous result allows us, in fact, together with the
argument given in [29], to get an explicit modulus of continuity for the gradient of
solutions of equations with Dini-continuous coefficients. Indeed, the choice of the
radius R.7; making (2.9) is made to meet a condition of the form

Rgrj d gb
o(Rer)) +/ o ¥ <t
0 o c

for some positive constants b and ¢ depending only on n, p, v, L, A. This gives a
modulus of continuity involving a power of the function

r dQ
r»—>a)(r)+/ w(o) —
0 Q

which is in accordance to the known results in the classical elliptic regularity theory.

We now collect a few results from [25,26], that is Theorems 2.6 and 2.7 below,
which are aimed to provide oscillation estimates for the functions v ;. Theorems 2.6
and 2.7 have actually been presented in [25,26] for solutions to equations of the

type
u; — diva(Du) = 0. (2.14)

On the other hand, by following the arguments in [25,26] it is not difficult to see
that all the proofs carry out for solutions to equations of the type in display (1.20).
Therefore Theorems 2.6 and 2.7 apply to the functions v; as well, that indeed solve
equations as in (1.20).

The next statement is a slight variant of [25, Theorem 3.1].
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Theorem 2.6. Let v; be as in (2.5). Consider numbers
A,BZ21 and & € (0,1).

Then there exists a constant oo € (0, 1/4) depending only on n, p,v,L, A, B, ¢
such that if

< sup |[Dvj| £ s+ sup |[Dvj| £ A (2.15)
02Q; 10

| >

holds, then

][ |va—(va)TQj|dxdt§§][ |va—(va)(1/4)Qj|dxdt (2.16)
Q; 1/HQ;

Q;

holds too, whenever t € (0, 03].

Remark 4. The essence of the previous result lies in the fact that once the bounds
(2.15) are satisfied, then solutions to evolutionary p-Laplacean type equations sat-
isfy elliptic type decay estimates as in (2.18) when framed in the proper intrinsic
geometry dictated by (2.15). Indeed, let us denote by E(f, Q) the usual excess
functional

E(f. 0) :=]{2|f— (f)ol dxdr 2.17)

which is defined whenever f is an integrable function and Q a measurable set with
positive measure; this functional gives an integral measure of the oscillations of f
in a subset Q. Estimate (2.16) now reads as

E(Dvj,tQ;) < EE(Dvj, (1/4)0Q)). (2.18)

Theorem 2.6 gives the natural analog, when passing to the framework of degen-
erate parabolic equations of p-Laplacean type, of the classical results known for
solutions to the heat equations. Indeed, Theorem 2.6 holds without assuming (2.15)
for solutions to (1.2). This is a classical result of CAMPANATO [4].

Using Theorem 2.6 it is possible to give a proof of the Holder continuity of the
gradient of solutions to frozen equations, as for instance shown in [26, Theorem
3.2]; see also [25, Theorem 3.2].

Theorem 2.7. Let v; be as in (2.5). For every A > 1 there exist constants c4 =
ca(n, p,v,L,A) and o = a(n, p,v, L, A) such that

sup [Dvj| +5 = AL = o0scig,;Dvj = cut®h V1 €(0,1/4).
$Q;
2.4. Comparison Estimates

We start this section by a reformulation of a result established in [25, Lemma
4.1] and [25, (4.5), (4.6)]. We remark that the result there was presented only for
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equations without coefficients as in (2.14). Nevertheless, the proof works directly
for general equations with merely measurable coefficients ; the crucial point is the
strict monotonicity in the gradient variable.

Lemma 2.8. Let u be as in Theorem 1.1 and w; as in (2.4) with j = 0. Let
g € (0, 1/(n + 1)]. There exist constants c; = ¢|(n, p, v, &) and ¢; = ¢c2(n, p, v)
such that

1/q 1 121(0)) (n+2)/[(p—1)n+p]
(][ |Du — Dwj|? dxdt) <& [— il } (2.19)

N—1
J Aor

holds forany 0 < g < p — 1+ 1/(n + 1) — &. Moreover, the inequalities

sup/ = w1, ) dx < pl(Q)) (220)
el J B;
and
Du| 4 |Dw;|)?~2|Du — Dw;|* - '
(Dul +Dw,DPZ1Du = Dyl g < o @° | IO | )
0, (e Ju = w;f §- 1Lz

hold for any a > 0 and & > 1.

We here recall a parabolic Sobolev—Poincaré inequality that will be useful in the
sequel; we refer to [7, Chapter 1, Proposition 3.1] for the proof.

Proposition 2.9. Let v € L*(T;; L™ (B;)) N L(T; Wol’qz(Bj)) for ga,m 2
1. There exists a constant ¢ depending only on n, g2, m such that the following
inequality holds for g1 = q2(n + m)/n:

q2/n
/ lv|?" dx dt < c(/ |Dv|? dx dt)(sup/ lv(x, D" dx) :
0; Q; €T} J B

Using the previous result and Lemma 2.8 we get another comparison estimate.

Lemma 2.10. Let u be as in Theorem 1.1 and wj_1, w; as in (2.4), with j > 1.
Then, forany g € (0, 1/(n+ 1)), there exists a constant ¢z = c3(n, p, v, €, o) such
that the inequality

1/q L1l (n+p)/[(p—Dn+p]
][ w—wifdrdr ) S| -t (2.22)
Q; Aol
holds whenever 0 < g < p— 1+ p/n — & and
1/q (n+2)/[(p—Dn+p]
1 i
][ |Dw;_1 — Dw;|? dx dt < &3 —% (2.23)
Qj A s

holds whenever

1
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Proof. To prove (2.22), we use Proposition 2.9 with the choice m = 1,
1 né
n+1 n+1
and v = u —w; € L™®(T}; L2(B.,~)) N LP2(Tj; Wol’qz(Bj)); recall (2.20). This

yields
1/q1
lu —w;|? dx dt
Qj

1/q2 1/n\ n/(n+1)
§c(|:][ |Du—ij|q2dxdti| |:sup |u—wj|dxi| ) .
0

el JBj
Let ¢| be as in Lemma 2.8 be the constant corresponding to the choice €n/(n + 1)
instead of €. Substituting (2.19) and (2.20) into the previous estimate and computing
the exponents leads to

1/q1
][ lu — w; |7 dx dt
Qj

< ) [, Lpl(Q;)

1+p 3 & 1+
= —_ ——8, = fred —
q1 p 0 q2 n+1611 p

S+

J

n/(n+1)

[Iulcon]"

:| (n+2)/l(p—Dn+p]

_ L |ul(Qj-1)
S Grj-1h [;r}v—_l
j—1
which, together with Holder’s inequality, proves (2.22). Here we have also used
that N — 1 =n + 1, thatr; = or;_; and the identity

n |: n+2 n 1} _ n+p
n+l|l(p—n+p n| (p-—DLn+p
As for (2.23) we instead argue as follows:

/g2
(][ |ij_1 — ij|q2 dx dt)
Qj
. 1/q2 Va2
19,-1 |Du — Dw;_|% dx dt
J
10/ Qj-1
(/.
Q;

N—1 (n+2)/[(p—Dn+p]
_ | 1oy 11ul(Qj-1)
€1 S s ol A ey
0] r; Ao

j—1
- [WKQ,-])

)

:| (n+p)/[(p—Dn+p]

A

/g2
|Du — Dw;|? dx dt)

A

A

PR ’

(n+2)/[(p—Dn+p]
j—1 :|



748 Tuomo Kuust & GIUSEPPE MINGIONE

where we have repeatedly applied (2.19). Now (2.23) follows, again by Holder’s
inequality, as £ is arbitrary.

The following lemma provides one of the key estimates to obtain Theorem 1.1.

Lemma 2.11. Let u be as in Theorem 1.1 and wj_y, w; as in (2.4), with j > 1.
Suppose further that

[l(Qj-1)
rN—_l < (2.24)
j—1
and that the bounds
A
7 S [Dwj_1| £ AX in Q; (2.25)

hold for some A 2 1. Then there exists a constant ¢4 depending only onn, p, v, o
and A such that

£ iou=pujiasar<a [M} .26
Qj Fj—1
Proof. Let us begin by fixing several parameters appearing in the proof:
1 - 1
Y E=142y, ¢€: (2.27)

TAp-Da+ 1) TP

and, throughout the proof, we will apply Lemmas 2.8 and 2.10 with exponents

1

< g = _ — p -
0<g=g=(p—-1)=p 1+2(n+1).

Let ¢y, ¢2, ¢3 be as in Lemma 2.8 and Lemma 2.10, respectively, corresponding to
these choices of o and &; therefore they ultimately depend only on n, p, v, 0. We
also set

_ . wj_l - wj

Wj—1 = Y , W= T
In what follows, constants denoted by ¢ will only depend on n, p, v, o, A and will
in general vary from line to line. We start to estimate the term on the left in (2.26)
with the aid of (2.25) as follows:

(2.28)

]l |[Du — Dw;|dx dt
Qj

< A<p72><1+y>][ D[P0 Dy — Duj| d dr

Qj

< c][ |DW; — Dw;j—1|P~PU) | Dy — Dw;| dx dr

Q)

+c][ |Dw ;| P~ | Dy — Dw;| dx dt. (2.29)

J
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Appealing to Holder’s inequality, together with (2.19) and (2.23), gives us

][ |DWw; — Dwj—1| P72 | Dy — Dw;|dx d

J

(p=2)/(p—1)
< A~ (P=2)(0+y) (][ |ij _ iji1 |([7—1)(1+)/) dx dl)

J

1/(p=1)
. ][ |Du — Dw;|P~" dx dr
Q;

:|[(1+y)(p—2)+1](n+2)/[(p—1)n+p]

_ 1 i
< c(g)églw)(p 2z, |:X |,M|(NQ_J1 1
ris

But now, as

[A+»P - +1]r+2) (p-Dn+2)

> >1 (2.30)
(p—Dn+p (p—Dn+p
precisely for p = 2, (2.24) implies
][ |Dw; — Dwj_| P~ Dy — Dw;|dx dr < c%
Q; rj,]
with ¢ = c(n, p, v, o). Therefore (2.29) gives us
][ |Du — Dw;|dx dt
j
< c][ |Dw ;| P~ Dy — Dw ;| dx dr —i—c%. (2.31)
Qj Fi

‘We then continue to estimate the first term on the right in the above display. Applying
Holder’s inequality, together with (2.21), and recalling that § = 1 4 2y, we obtain
for any @ > 0 that

][ |Dw ;| P~ Dy — Dw;|dx dr
Qj
1/2

g][ [kz_p(wul+|ij|)”_2|Du—ij|2i|
~Jo; (o + |u —wj s

1/2
. |:|ij|(1+27)(17—2)(0[ +lu— wj|)§] dx dr

1/2
, -2 _ 12
<sepaff (DU +1Dw D= Dy
0 (a + lu—wj|)¥

1/2
(][ 1Dw; 5P~ (a + |u — w;])¥ dx dt)
Q.

J
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_ 1/2
< ( 2 )1/20[(1_5)/2 |M|(Q])
“\&E-1 rN

J

1/2
(][ |Dw; 5P (@ + u — w;])¥ dx dt) ) (2.32)
J
As the choice of « is still in our disposal, we set
1/¢
o= (][ 1Dw; 5P |u — w;|* dx dt) +6 (2.33)
J

for some small positive § € (0, 1) to get, enlarging the constants involved

12
(][ |Dw; 5P~ (@ + |u — w;])¥ dx dt)
Q,

J

1/2
<2af/2(][ |Dw,-|f(f’—2>dxdt) +2a5/2,

J

Notice that since w; belongs to the parabolic Sobolev space LP(Tj; W7 (B;))
and £&(p — 1) < p by (2.27), we have that « is finite by Holder’s inequality. The
presence in (2.33) of the parameter §, which shall be sent to zero at the end of the
proof, guarantees that « is positive. In the above display, the integral on the right
can be estimated by means of Lemma 2.10 as

][ |Dw ;|57 dx dr

J

< c][ |Dw;j_1 — Dw;[*P~ dx dr + c][ |Dw; 1|5~ dx dt

J Q]

&(p—2)
pRm—— +cA <c,

< CEg(p—z) |:l [|(Qj-1)
i1

:| E(p—2)(n+2)/[(p—1)n+p]

owing to (2.24) and (2.25), while the last constant ¢ depends only on n, p, v, o, A.
Thus (2.32), together with the last two displays, yields

7[ D wien]”
o :
|Dw;|P~PU+) Dy — Dwj|dxdr ¢ [— |:“N_11:|
Q' rj 7l —

4 J

so that applying Young’s inequality together with an obvious estimation in turn
gives

C i— o
][ |Dw ;| P2 Dy — Dwj|dxdr < —W'(NQ_’l D, P
o | Pooria e
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for all 8 € (0, 1), where ¢ = c(n, p, v, o, A). Inserting this into (2.31) leads to

][ \Du — Dwj|dx dr < 5|“|(NQ_jfl) L P (2.34)
0; B rj-1

again for all 8 € (0, 1), where ¢ = c(n, p, v, 0, A) is in particular independent of
B. We then focus on «, which has been defined in (2.33), and split as follows:

1/¢
c(][ |Dw;j—1 — Dw; 5P|y — w5 dx dt)
Q.

J

1/¢
+c(][ |Dzz)j_1|%'<l’—2>|u—wj|fdxdt) +6
Q;

=1L+ L+ (2.35)

S
[IA

By (2.27), as £&(p — 1) = g, we get by (2.22) and (2.23), together with Holder’s
inequality, that

i (r—2)/q i 1/q
L <c ][ |Du_)j_1—DlZ)j|qud[ ][ |u—wj|qudt
Qj Qj

J

[(p—2)(n+2)+n+p)/[(p—)n+p)
< Pl 1l (Qj-1)
= CC3 rj—l X},N——l
j—1
Since
(P=2+D+ntp _ = 2Ap=2)
(p—Dn+p (p—Dn+p~ "~

precisely for p = 2 we have, in view of (2.24), that

|l (Qj—1)
I] § er,] [N—]l
rj_l

for ¢ = c¢(n, p, v, o). On the other hand, using condition (2.25) we obtain

1/§
L < cApz(][ lu — u)j|§ dx dt) .
Qj

Using Proposition 2.9, estimate (2.20), and Young’s inequality we get

1/& n/(n+1)
][ |u—wj|sdxdt < ][ |u—u)j|("+l)/"dxdt
0; 0Q;

j
n/(n+1)

gc][
0

1/n
|[Du — Dw;|dx dt |:sup/ lu — wj|dx:|
Bj

j U=y
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n/(n+1) | |(Q ) 1/(n+1)
<c ][ |Du — Dw | dx dt ri-i %
0 r

Jj—1

< C”j—1][ |Du — Dw;|dxdt +crj_; [M} .

N-1
J rj—l

Combining the estimates contained in the last three displays with (2.35) leads to

o= C*rj—l][ [Du — Dw;|dx dt + curj_y |:_|M|(NQ_J'1—1)i| P
] r
J

j—1
with ¢, = c(n, p, v, o, A). Inserting this finally into (2.34) with § = 1/(2¢4) and
then reabsorbing terms and sending § to zero finishes the proof.

Next, a comparison estimate between w jand v;.

Lemma 2.12. Let wj and vj be as in (2.4) and (2.5), respectively, with j 2 0. For
every A 2 1 there exists a constant 5 = ¢5(n, p, v, L, A) such that the following
holds:

sup [Dw;| 45 < A
30

= ][1 (|Dw;| +|Dv;)P"|Dw; — Dv;|*dx dr
29

Jr][1 |Dwj — Dv;|? dx di < & [w(r))]* A7 (2.36)

209j
Proof. The result is based on the following estimate:

][l (Dwjl+ |Dv;|)P"*|Dw;j — Dv;|* dx dr

Y

2 Q./

<c [w(rj)]z][1 (IDw;| + s)P dx dt

that has been proved in [29, Lemma 4.3] and [1], with a constant ¢ = c¢(n, p, v, L).
The inequality in display (2.36) follows by trivially estimating

[w(r,-)]zj[1 (1Dwj| +)” dx di <[ ()]’ sup(IDw;| +)? < & [w(r)] 2P
29 30;
and taking into account that p = 2.

Finally, along the lines of Lemma 2.11, we prove yet another comparison estimate,
this time between u and v;.

Lemma 2.13. Let u be as in Theorem 1.1 and let w; and v be as in (2.4) and (2.5),
respectively, with j 2 1. Suppose further that (2.24) holds together with
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sup [Dw;| + s = A

1.
an (2.37)
0 S |Dwj_1| £ Ak in Qj,

for some A 2 1. There exist positive constants ¢¢ = C¢(n, p, v, L, A) and ¢7 =
c7(n, p,v, o, A) such that the following inequality holds:

][ |Du — Dvj|dx dt < Ceo(rj)r + &7 [—W'(NQ'/fl)] :
30, 1

r.

j—1
Proof. We shall keep the notation introduced for Lemma 2.11; in particular, we
recall (2.28). Inequality (2.37); allows us to use (2.36) so that

][ (IDw;| + |Dv; P2 Dw; — Dv;|*dx dt

1.

ZQ./

+][1 |Dw;j — Dv;|P dx di < & [ (r))]* A7 (2.38)
20;

With p’ = p/(p — 1), by (2.37), we continue estimating as
][1 |[Dw; — Dvj|dx dt
29

< A<P—2>/P’][ |Dw;_1|P~2/P | Dw; — Dv;| dx dt
30,
< c][ |Dw;|P~P/P | Dw; — Dvj|dx dr
30,
—i—c][ |Dw;_y — Dw;|P~P/P |Dw; — Dvj|dxdr  (2.39)
30;

with ¢ depending only on p and A and we are using the notation in (2.28). As for
the first term in the right hand side of (2.39), we notice that since p = 2 we have
(p—2)/2 < (p—2)/p’ sothat (2.37); allows us to estimate

][l |Dw;|P~P/P'|Dw; — Dv;| dx dr

29j

< A=DX/Cp) C-p)2 ][1 \Dw;| 27| Dw; — Duj|dx dt

70)

so that, using Holder’s inequality and (2.38) yields

]€ | |Dw;|P~/P | Dw; — Dv;| dx dr

79;
172
< eAP)/2 (][. (IDw;| + |Dv; )P~ Dw; — Dv;|*dx dt)
20
< A PRE G (AP = cor(r)i (2.40)

for ¢ = c(n, p,v, L, A). The second term in the right hand side of (2.39) is es-
timated with the aid of Holder’s inequality, (2.23), (2.38) and finally Young’s in-
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equality, with conjugate exponents (p/2, p/(p — 2)) when p > 2; this means

][1 |Dw;_y — Dw;|P~2/P |Dw; — Dv;| dx dt

20;

1/p
<c ][ |Dw;j_1 — Dw;|P~*dx dt
Qj
1/p
(][ |[Dw; — Dv;|” dx dt)
lQ.

2=J
[(p=2)/pl(p=D)(n+2)

_ , 1 . [n(p—D+pl]
< pDIY gl [_ |11(Qj-1) w7

N—1
A ri
(p—D(n+2)/[n(p—D+pl
Lul(Qj-1)
j—1
for ¢ = c¢(n, p,v, L, o, A). Thanks to (2.24) and (2.30), we get

][ 1Dy — Di;| P27 |Dw; — Dvj|dxdr < é [—"L'(NQ_"I“)} + o)A
30, Tj-1

with ¢ = ¢(n, p, v, L, o, A). By using the last inequality together with (2.39) and
(2.40) we conclude with

]11 |Dw; — Dvj|dxdt € co(rj)r+ ¢ [M}

N—1
29j j—1

forc = c(n,p,v,L,A)and ¢ = ¢(n, p, v, L, o, A). Next, note that the assump-
tions of this lemma fulfill also the assumptions of Lemma 2.11. Appealing then
to (2.26) and and to the triangle inequality finishes the proof.

2.5. Comparison Lemmas for SOLA

In this section we show that the basic comparison Lemmas 2.8 and 2.10 hold
for SOLA in a suitably modified way. This fact ultimately allows us to prove
Theorem 1.7 by means of the same proofs already given for the other theorems
when considered for energy solutions. Before starting, since the setting here is the
one defined in Theorem 1.7, we assume the existence of functions uy, as being local
weak solutions to the equations considered in (1.23) and such that

Duj € L?, Dujy — Du in LP~!
(2.41)

up — u and Dujy — Du almost everywhere

hold. The measures u;, weakly* converge to i and (1.24) holds. Finally, since all the
results we are interested in are local in nature, up to considering subsets compactly
contained in 27, we assume without loss of generality that the convergences in
(2.41) are valid in the whole £27.
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Moreover, in this section we keep the notation already introduced in Section 2.2
about the cylinders Q ;, but the functions w; will be defined in a different way: what
matters here is not that they are solving Cauchy-Dirichlet problems as (2.4), but
rather that they satisfy comparison estimates as in Lemmas 2.8 and 2.10. Indeed,
once these lemmas are available for some suitably regular maps w; then all the
subsequent constructions can be replicated verbatim. More precisely, we have the
following:

Lemma 2.14. Let u be a SOLA to (1.3) as in Theorem 1.7 and let € € (0, 1/(n+1)];
moreover, let { Q ;} be the sequence of cylinders considered in (2.3). Then there exists
a sequence of functions w; such that

—wj € CO(rTj; LZ(TB]')) NLP(tTj; Wl’p(TBj)),forevery Te€(0,1)
— wj is a local weak solution to dyw; — diva(x,t, Dw;) =0in Q;
— There exists a constant ¢ = c¢1(n, p, v, €) such that

1/q
][ |Du — Dw;|? dx dt
Qj

(n+2)/[(p—Dn+p]

1 i 1a

<G _|M|(LQ}der) (2.42)
A r/{v71

holds forany0 <g < p—1+1/n+1)—¢
— There exists a constant ¢; = ¢2(n, p, v)
(IDu| + |Dw;)?~2|Du — Dw;|?
0; (o + |u—wj))f
o' | wl(LQ; ] par)

E—1 e

dx dr

A

2 (2.43)

holds for any o > 0 and & > 1.
— There exists a constant ¢z = c3(n, p, v, &€, o) such that the inequality

1/q
][ lu —w;|?dxds
Qj

1 -
< tyrypp [ L1100, )
oo

(n+p)/[(p—Dn+p]
:| (2.44)

holds whenever 0 < g < p— 1+ p/n — & and

1/q
(][ [Dwj_1 — ij|q dx dl‘)
Q.

J

<o [1 141 (LQ ;1L par)

N—-1
oo

(n+2)/[(p—Dn+pl
] (2.45)

holds whenever 0 < g < p—1+1/(n+1) —¢&.
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Proof. The scheme of the proof is to construct, for every single index j = 0, a
function w; satisfying the conditions of the lemma. Therefore, in what follows,
we fix an index j and build such a map. The function w; is in turn found via
approximation; we confine ourselves to prove (2.42) and (2.43), the proof of the
remaining inequalities being similar. With the cylinder Q ; being fixed, we consider
the sequence of functions {u;} solving (1.23), and appearing in (2.41); then we
define

Wy, € CO(Tj; L*(B))) N LP(T;; WP (B))) (2.46)
as the unique solution to the Cauchy-Dirichlet problem

{ iy, — diva(x,t, Diby) =0 in Q;

Wy = uy, on dpar Q.

Applying Lemma 2.8 in this context gives

1/q L nl(0 ) (n+2)/[(p—D)n+pl
(][ |Dup — Divy|? dx dt) <& [—”h—f] (2.47)

N—1
Qj )\' rj
forany0 < g < p—1+1/(n+ 1) — & and moreover

(IDup| + |Dwp)P 2| Duy, — Dby |*

-~ dx dr
1-¢ .
<% | lml@n (2.48)
§—1 kz_pr;v

From (2.47) and (2.41) it follows that the sequence { Dwj, } is bounded in L” -0 i)
We now notice that wy, is an energy solution by (2.46) and solves an equation with
Dini-continuous coefficients (see Theorem 2.5 and subsequent Remark 3), more-
over all these equations satisfy assumptions (1.4) and (1.5) uniformly in /. Hence,
by interior regularity theory [18] and in particular by Corollary 2.2, it follows that
the sequence { D1y} is uniformly bounded in L}.(Q ;) and L*°(tT}; whr(z Bj))
for every T € (0, 1). Again by interior regularity theory (see for instance the results
in [29] or use directly Theorem 2.5 locally) we have that the maps wy and {Dwy,}
are locally uniformly equicontinuous in Q ;; in particular, they are equicontinuous
intT; x tBj, for every T € (0, 1). Therefore, by Ascoli-Arzela’s theorem and a
standard diagonal argument, we may assume that, up to a not relabeled sequence,
there exists a limit function w such that

w e COcTj; L*(¢Bj)) N LP(xT;; WP (¢ B))),
for every t € (0, 1), and such that

- . 1,
w, — w in sz)c(Tj; WIOCP(BJ-))

Dwy — Dw and wy, — w locally uniformly and almost everywhere.
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As a consequence, w weakly solves d,w — diva(x, t, Dw) = 0in Q;. At this
stage the proof of (2.42) and (2.43) follows taking w; := w, letting h — 00 in
(2.47), (2.48) and using Fatou’s lemma to deal with the left hand sides and (1.24)
to deal with the right hand sides. Inequalities in displays (2.44) and (2.45) can be
similarly proved by approximation starting with the analogs of (2.22) and (2.23),
respectively, when written for uj, and wj, as already done for (2.47) and (2.48).

3. Proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1

The proof goes in several steps and involves a rather delicate induction argu-
ment. In the following we select a Lebesgue point of the spatial gradient (xo, #p) €
27, that is,

lim Du dx dt = Du(xo, 19). 3.1)
=00, (x0,10)

Almost every point in 27, with respect to the Lebesgue measure in R+, satisfies
such a property (see [38, Chapter 1, Page 8]).

Step 1: Choice of Constants and Basic Setup

With (x, fo) being fixed at the beginning we shall verify (1.19) with the cylinder
Q%‘r (xo, to) instead of Qﬁ‘ (x0, to); this of course causes no loss of generality. When
finding constants ¢, Rg such that (1.19) works, we choose positive numbers Hy, H>
appearing in the lower bound for A:

1/(p=1) | N
wl|(Q5(xo, 1)) d

A > H ][ (|Du| + s)P~ ' dx dt +H2/ %—Q,

05, (x0.10) 0 o 0

(3.2)

where r € (0, Ro/2) and Ry is suitably small, to be determined in due course
of the proof. In other cases suitably large constants Hy, H> and A will be chosen
in order to satisfy (3.2). The statement of Theorem 1.1 will be then proved with
¢ = 2max{H;, Hy}. Without loss of generality, we may assume that X is finite,
since otherwise there is nothing to prove. In the rest of the proof certain constants
will be deliberately chosen smaller/larger than necessary to emphasize the fact
that their role is “to be very small/large”. To begin with, having in mind to apply
Theorems 2.5 and 2.6, we set

(3.3)

A :=1000*”" max{c,, ¢3,200} B :=10°
§:=107° £ = 4N+

where ¢c; = c¢(n, p,v, L) and ¢3 = c3(n, p, v, L) are as in Corollary 2.2 and
Theorem 2.4, respectively. In particular, A depends only on n, p, v, L. Let o7 =
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o1(n, p,v,L,w(:)) and oo = o2(n, p, v, L) be as in Theorems 2.5 and 2.6, re-
spectively, both corresponding to the choices in (3.3). Set

o := min{oy, 02, 100077V (p — 1)"YNA=P=2IN 16=NPy € (0, 1/4).  (3.4)

The choices made above guarantee that all fixed parameters A, B, €, §, o depend
only on n, p, v, L, w(-). Furthermore, let c4 and « be as in Theorem 2.7, corre-
sponding to the choice of A in (3.3). In this way they both depend only onn, p, v, L.
Next, let k be the smallest integer satisfying

caoc’® <% and k>2. (3.5)

As all of ¢4, ¢ and o depend only on n, p, v, L, w(-), so does the integer k =
k(n, p,v, L, w(-)). We now proceed with the choice of Hy, H> and Ry. We set

H; = 100N/ P=D 1006 4N, (3.6)

Then, taking ¢y = ¢i(n, p,v,1/(n + 1)) = ¢1(n, p,v) as in Lemma 2.8, ¢3 =
c3(n, p,v,L,1/(n — 1),0) = c3(n, p,v, L, w(-)) from Lemma 2.10, and ¢7 =
ci(n, p,v,L,w(:),0) = ¢7(n, p,v, L, w(:)) from Lemma 2.13 with A, ¢ as in
(3.3) and (3.4), we set

(n(p—1)+p)/(+2)
Hy = (2N o ~NE+9) 1004 max{éy, &, 57}) .

3.7
Notice that since all the constants used to define H; and H; ultimately depend on
n, p,v, L, w(-), we also have Hy, H, = H, H>(n, p, v, L, w(-)). We then pass
to the choice of Ry. Looking then at Lemmas 2.12 and 2.13 and taking cs, c¢
corresponding to the choices of A and o just made in (3.3) and (3.4), we take
Ry = Ry(n, p,v, L, w(-)) to be the largest positive number such that

Ry
&P N0 (Ry) /P + 56(7_(2N+1)/ w(@) — = (3.8)

0 o _2N106

is satisfied. Finally, with R = R (n, p, v, L, w(-)) being as in Theorem 2.1 and
Corollary 2.2, we let

Ry := min{R, R>}/4. 3.9)

From now on, with A as in (3.2), 2r < Ry and Q’2\r (x0, o) C 27, we adopt and
fix the basic set-up described at the beginning of Section 2.2. We therefore denote
rj= olr for j =20, Q= Qﬁ‘i (x0, t0) and the comparison maps w; and v; defined
in (2.4) and (2.5), respectively.

We finally record a few immediate consequences of the choices done so far for
Hy, Hp, Ry. Now let us still set, for any j = 0

S _ A
V] = B
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in such a way that for every j = 0 we have rj 1 < 7; < r;. Then, we observe that
in (3.2) the latter potential term may be further estimated from below as follows
(recall that ro = r):

/2’ |141(Q} (x0, 10)) do

N 1 0

i % (xo. 1 © L7 % (xo. 1

—Z/ IMI(Q (xo 0)) do +Z/ W'(Qéz)v(f? 0) do
e =l e 0
20 IMl(QA(X(),to)) do  [¥0/7 |1l(Qf(x0,10)) do
+/ T / - N-T
8ro/7 o o ro o Q

> Z/’l IILI(QA(XO,IO)) do /2’0 |11(Q} (x0, 1)) do

¢ 8ro/7 oM 4

>§: m(LQlHJpar) ido | Iul(LQolpar) (70 do
5 oo oM fym e

i i

_ 2 [1|(LQi+ 1 par) | log7/4 | [1|(LQ0]par)
—oN 1]0g(1+0)z N+1 par) | e [ r(I)V—lp }

i=0 t+1

z |M|(|.Q Jpar)' (3.10)

The definition of | Q; |par is given in (2.1). We therefore conclude with

1/(p—1
A > H127N/(P*1) ( (|Du _}_S)pfl dx dt) +H Nz |/'L|(|_Q Jpar)'

Qo
(3.11)
The choice of Hj in (3.6) guarantees for instance that
A
s < 3.12
= 200 (3.12)
The choice of H; in (3.7) allows us to deduce that
2 IMI(Q ) < Z IMI(LQ Jpar)
i=0 i i
O’N(k+4) [n(p—1D)+pl/(n+2)
< A
- (2N106A max{ci, C3, 57})
o N(k+4)
A< AL (3.13)

<
=~ 2N10°A max{cy, ¢3, ¢7}

Notice that in the second estimate above we have used the fact that, since p = 2,
then n(p — 1) + p = n + 2, and that the quantity in brackets is smaller than 1.
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Recall now the choice of Ry in (3.9) and the one of R; in (3.8), and observe
that, if r = rp € (0, Ry/4], then

Ry d O rry d Ry d
/ w(o) = = Z/ w(0) = +/ w(e) =
0 o i=0 VTi+1 o ro 0

1 [o,0]
> log (—) > w(rit) + (ogd)e(ro)
o i=0
o0
>0 > o) (3.14)
i=0
holds, so that (3.8) implies
1/ k+4 2 - N
&5/ "o NE D) PP + 6 D w(ri) < TN IG6" (3.15)

i=0

Remark 5. When dealing with equations of the type in (1.20), that is, equations
without dependence on x, Theorem 2.5 is no longer needed and therefore no de-
pendence on w(-) occurs in the constants. Actually, we do not need the comparison
functions w; and we can just use v;.

Remark 6. The computationsin (3.10) and (3.13) are somehow misleading since in
our case j € L! and therefore [1](LQi Ipar) = 1](Q;) for every i = 0. The com-
putations made above will be anyway useful when dealing with genuine measure
data problems in Section 5 below.

Step 2: Exit Time Argument

After having fixed the relevant constants in the previous step, we consider, for
indexes i = 1, the quantities

0

1/(p—1D
C; = Z (][Q |Du|1’_1dxdt) +2U_N][. |Du — (Du) g, | dx dt.
i+m

m=—1 i

By (3.6) and (3.11) it follows that

1/(p—1) A
Ci <607 (][ |Du|p_1dxdt) .
0 1000

[IA

Furthermore, without loss of generality, we may assume that there is an exit time
index i, = 1 such that
A L. A
Ci > —— wheneveri > i, and C;, £ ——.
1000 1000

Indeed, if such an index does not exist, we have—in view of C; < A/1000—a
subsequence (i;); of indexes such that C;, < A/1000 as j — oo. But, as we
assume that (xg, 7o) is a Lebesgue point of Du, then also
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A
|Du(xg, to)| = 11m |(Du)Q | < lim sup Ci; = (3.16)
=00 1000

would hold and the proof would be complete. Thus, from now on, we shall work
under the assumption

A L . A
Ci > m fori e {le + 1,1(3 +2, }, and Cie é m (317)

Note that in (3.16) we are using a limit computed on a sequence of shrinking
intrinsic cylinders, therefore different from those considered in (3.1). On the other
hand, define the set £, as

Ly =1 (x0,t0) € 27 : lim Du dx dt = Du(xog, to)
0=>0.J 9% (x0.10)

for A > 0. Basic properties of maximal operators—see for instance [38, Chapter
1, Page 8]—imply that this set is actually independent of A and, in particular,
L, =Ly =: Lforall 0 < A < oo and therefore (3.16) is completely justified in
view of the assumed property in (3.1).

Step 3: Induction Scheme

Inorder to prove (1.19) using (3.17), we apply an induction argument. To shorten
the notation, we set, fori = 0,

E; :=][ |Du — (Du)g,|dx dt, a; :=|(Du)g;|. (3.18)

We shall consider, in our iterative setting, the following conditions:

/(p=1
Ind; (j) : (][ [Du|”~ ! dx dt) +(][
Qj-1 o

for given integer j = i, and

1/(p=1)
|Du|P~" dx dt) <A

J

. Zj 14 246 Z 247 "2‘2 12101
Indy(j) : E; é E “r— w(”z))“"‘_ N—1
.= - 7
i=i.+1 l—le i=i, i=i,—1 "1

for given integer j > i,. The constants cg, c7 are those defined in Lemma 2.13
with the choices of A and ¢ made in (3.3) and (3.4), respectively; in this way, they
ultimately depend on n, p, v, L, w(-).

The goal is now to show, by induction, that Ind;(j) holds for every integer
J 2 i. and Ind,(j) holds for every integer j > i.. Indeed, this will immediately

prove Theorem 1.1 as
1/(p—1)
|Du|”_ldxdt) <A

J—00

|Du(xq, to)| = l1m a] < hmsup(][

J
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Now let us remark that Ind; (i,) is automatically satisfied since

0

1/(p—1) N
> ][ |Du|P~" dx dr <c, £ —. (3.19)
Qie+m 1 00

m=—1

Therefore, the rest of the proof develops according to the following scheme:

Indi(i,) = Indy(ic+ 1), (3.20)

Ind; (j) ) .
. = Ind(j+1) Vj>i (3.21)

Indz ()
and
Ind; (j)

Ind;(j + 1 ViZi,. 3.22
[Indz(j—l-l) = Indi(j +1) JZie (3.22)

We remark that in the following, unless otherwise stated, whenever we are consid-
ering Ind; (j) we will do it in the general case j = i,, while, when considering
Ind;(j) we will do it for all indexes j > i.

Step 4: Upper Bounds Implied by Ind; (j)

Towards the proof of the induction step, here we assume that Ind; (j) holds for
a certain index j 2 i, and exploit a few consequences of this. With the integer k
being defined as in (3.5), observe that Lemma 2.8 and (3.13) (use in particular the
intermediate inequality) imply that whenever / € {0, 1, ..., k + 1} the following
holds:

1/(p=1)
(][ |Du — Dw;_1|P~" dx dt)
Q-1+
Ny 1/(p—1)
<o T (][ |Du — Dw;_|"~" dx dt)
Q-1

:| (n+2)/[(p=Dn+pl N

< Go~NGE+Dy [lM A (323)

A rN—l

<
3 = 2N106
j—1

Similarly, the inequalities

Ve=b oy
(][Q 1 |Du — Dw;|P~" dx dt) < TR (3.24)
Jj+

hold as well for/ € {0, 1, ..., k + 1}. Using (3.23) with [ = 0 and Ind; (j) we get

1/(p=1)
][ |ij_1|p71dxdt
Q-1

N (p—1)
<7 4+ ][ |Du|P~" dx dr <24
> u X = .
= 2N106 01 -




Riesz Potentials and Nonlinear Parabolic Equations 763

By Corollary 2.2 (applied to w;_1) we then obtain, also recalling (3.12), that

sup 1Dwj1l+5 £ ealh k) + e (Dwj 4P dxa
ror 0
< Ax. (3.25)

In a completely similar way, by using this time (3.24) instead of (3.23), and again
Ind; (j), we can prove

1/(p—1)
(][ |Dw; P~ dx dz) <2 (3.26)
Q.

J

and then

sup [Dwj| +s < AA. (3.27)

30)
Furthermore, keeping (3.15) in mind, estimate (3.27) and Lemma 2.12 allow us to
deduce

1/(p—1)
L p—1 < =l/p ~N12/P
(][1 |Dw;j — Duj| dxdt) <P o] a
20j
o Nk+6) . (3.28)
= 2N 106 '

so that, forl € {1, ...,k + 1} it holds that

(p=1) .
1 o
][ |ij—DUj|p_ dx dr §ﬁ)\,
0+ 2710

Combining the above estimate with (3.24) gives

1/(p=1) v
][ |Du — Dv;|P~ dx dr < (3.29)
Qj+i 10

foralll € {1, ...,k + 1}. Next, observe that (3.26) and (3.28) imply

1/(p=1)
][ |Dv; [P~ dx dr
le

2

1/(p=1) 1/(p=1)
g(][l |ij|p1dxdt) Jr(][l |Dw; — Dv;|P~! dxdt)
50j 50;

J 2%

<N+ 4 <4V

Q

=)

so that Theorem 2.4, (3.3) and (3.12) finally yield

sup [Dvj| 45 < c3(A +5) +C3)»2_p][l (IDv;]| +s5)P7 T dxdr < AX. (3.30)

%Q./ 70
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Step 5: Lower Bounds Implied by Ind; (j)

Here we still exploit a few consequences of assuming Ind; (j) for some j = i,.
In particular, we derive suitable lower bounds for Dw ;1 and Dv;. First, let us first
show a few oscillation reduction estimates. Since we have already established the
upper bound for Dw;_; in (3.25), Theorem 2.5 applied to w;_; (with § = 107>
as in (3.3) and recalling also the choice made in (3.4) that guarantees o < o1 so
that Q; C 01Q ;1) gives

oscg; Dw;j—y (3.31)

=15
For Dv; we instead have (3.30) and hence Theorem 2.7 and (3.5) imply
oN
oscg; , Dv; = cac® ) < 1_()6)“
Using this together with (2.2) and (3.29) gives

20_N][ |Du — (Du)g,,, | dx dt
Qj+k '
< 4a*N][ |Dv; — (Dvj)g,,, | dxdt +4a*N][ |Du — Dv;|dx dt
Qj+k o

Jjtk

A
<40_Nochj+vaj+4a_N][Q |Du—va|dxdt§1—05.
Jjtk

But, as Cj 4 > A/1000 for j = i., we then necessarily have that

0

I/(p—1) N
> ][ |Du|P~ " dx dt >_— (3.32)
Qj+m+k 2000

m=—1

Next, again by using the triangle inequality and (3.23) (for / = k, k 4+ 1), we have

0 1/(p=1)
> (][ |Du|p1dxdt)
m=—1 Qjtm+k
N 0 1/(p—1)
< T > (][ | |Dw; [P~ dx dt) (3.33)
m=—1 Qj+m+k

so that, as k 2 2 and (3.32) holds, we also get

0 1/(p—1)
2sup | Dwj 1| = D] ]l |ij_1|p_1dxdt)
j m=—1 Qjtm+k
> A ro 3

—_— 2 — 3.34
2000 106 = 10* (3:34)
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Arguing as for (3.33), and using (3.29), we this time have

0 1/(p—1)
Z (][ |Du|P~! dxdt)
m=—1 Q j+m+k

0

2 1/(p=1)
— + ][ |Dv; 1P~ dx dr
10 z ( Qjtm+k

m=—1

A

so that, using again (3.32), and recalling that k = 2, we conclude with

0 Voe-n o
2 sup [Dvj| =2 D (][Q |Dv; [P~ dx dt) > 0" (3.35)
J+m+k

Q./+1 m=—1

The inequality in display (3.34) yields the existence of a point (%,7) € Q; such
that [Dw; (X, 7)] = A/ 10* and therefore the oscillation control in (3.31), recalling
also (3.25) and that Q; C $Q;_y, gives

A A .
Finally, (3.35) and (3.30), and the fact that Q ;11 C }‘Qj, give
A A
— = —— =< sup |Dvj| < sup |Dvj| + 5 < AA. (3.37)
B 10° T o, 1,
i+l 19

Step 6: Further Consequences of Ind (j)

We again assume Ind;(j) for an arbitrary chosen j = i,. Now, on one hand
(3.13), (3.27) and (3.36) allow us to apply Lemma 2.13 and obtain

][ |Du — Dv;j|dx dr < Gw(rj)h + &7 [%} . (3.38)
30; iy

On the other hand, recalling that 0 Q; = Q+1, Theorem 2.6 with & = 4=+ js
at our disposal by (3.37) and it yields

][ |Dv; — (Dvj)g,,,|dxdt < 4—<N+4)][I |Dvj = (Dvj)1 o, |dxdr.
Qj+1 19j

(3.39)
Now, by (3.38), recalling the definitions in (3.18) and using (2.2) repeatedly, both
]{ ‘|va—(va)%Qj|dxdt

19Qj

§ 22N+1 f
Q; 20

|Du—(DM)Q_/|dJCdl‘+2N+2][1 |Du — Dvj|dxdt

N-1
rj_l
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and

2]1 |va—(va)Qj+]|dxdt
Qj+1

g][ |Du—(Du)Qj+l|dxdt—o*N][ |Du — Dv;|dx dt
Qj+1 le

“N- Il (Qj-1)
2Ejt1—o Nc6w(rj)k— |:N—jl
s
hold. Combining the inequalities in the last three displays gives
1 2 2C7 [l (Qj—1)
j 1

Step 7: Verification of Indy (i, + 1) and Ind,(j + 1)

Here we prove (3.20) and (3.21). The outcome of Step 6 is that (3.40) holds
whenever Ind; (j) holds, for every j = i,, therefore, since Ind; (i) holds as estab-
lished in (3.19), taking j = i, in (3.40) yields Ind, (i, + 1). We now come to the
proof of (3.21), that is the validity of Ind,(j 4 1); this simply follows by summing
(3.40), that holds by the assumed validity of Ind;(j), to the inequality yielded by
the definition of Ind, (), which is also assumed in (3.21).

Step 8: Bounds for aj and E

It remains to prove (3.22). For this we now assume that Ind; () and Ind>(j + 1)
hold for some j = i, and derive bounds for the quantities defined in (3.18). By
Indz(j + 1) and easy manipulations, we note that (3.13), (3.15), and C;, < 1/1000

imply

j+1
4C7 [l (Qi)
D i S2E; + Zw(”“ N
i=i, i=0 i
N,\ o¥xn oV
<2E, +— <oV, + —— < —= 3.41
= * 1000 = * 7000 = 500 (341

Using this together with the obvious estimation (valid whenever i 2 0)

aiv1 —ai < ][ |Du — (Du)g,| dx dt
Q1+1

< Qi |Du — (Du)g,|dx dt = o~ NE;
[Qi+1l Jo;
we get, after telescoping the previous inequalities and using (3.41), that
!
A A A
< NNTE; — < 3.42
at Sai+0" 2 Ei S 5+ 555 = 500 (3:92)

i=i,
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foralll € {i., ..., j}. Here we also used that, thanks to (3.17), we have

1/(p=1) .
a;, < (][ |Du|P~! dx dt) <G £ ——
Qi

. :;.4:;
¢~ 1000 ( )
Step 9: Verification of Ind|(j + 1)

Here we prove (3.22), thereby concluding the proof. We actually have to prove
that

0

1/(p=1)
> (][ |Du|p1dxdt) <.
m=—1 \Y Qj+m+1

To this end, we estimate using (3.23) (with [ = 1, 2) as follows:

0 1/(p—1)
Z (][ |Du|P~" dx dt)
m=—1 Qj+m+1

(3.44)

0

1/(p—D
Z (][ |Du—ij]|f’—1dxdr)
m=—1 Qj+m+l
0 1/(p—D
+ Z (][ |ij1|”_ldxdt)
m=—1 Qj+m+1

N 0

i 1/(p=1)
— A+ ][ |Dw;_1|7~" dx dt) . (3.45)
2N105 mzzl( Qj+m+l

We further estimate the latter term on the right hand side by simply applying the
triangle inequality as follows:

[IA

<

0

>

m=—1? Qj+m+1

0
< Z][ |Dw;_11P72|(Du) g,y | dx dt
m=—1" Qj+m+1
0
>/

m=—1" Qj+m+1

|Dw;_1|7~" dx dr

|ij_1|p*2 (|Du — (Du)g;, |+ |Du — ij_1|) dx dr.

Using Young’s inequality with conjugate exponents (p — 1)/(p —2) and p — 1
(only when p > 2) we get
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0
S ipur g, ardr

m=—1 Q/+m+1

0
-2
< r—= Z][ |ij_1|p*1 dx dr
p— 1 m=—1 Qj+m+l
1 0
e D 1Du)g, "
P 1 m=—1

Matching the inequalities in the last two displays, reabsorbing terms, and using
(3.25), yields

0 0
S urtaas 3 10w
m=—1" Qj+m+1 m——1
0
+p - D(AVPE > (1Du — (Du)g,, |

m=—1Y Qj+mt1

+|Du — ij_1|) dx dr.

Notice that we have used that Q; C %Q j—1 in order to apply (3.25). Now we
estimate all the terms in the right hand side of the above inequality. Using (3.42)
and (3.43) (this last one only when j = i) from Step 7 we have

: U ply el L\
2 1D, 1" =afy +a] T 22 (m) ’
m=—1
while using (3.41) gives
0 oV
> |Du — (Du)g, | dxdt = Ejp1 + E; < o0
m=—1" Qj+m+1
Finally, using (3.23) (with [ = 1, 2) and Holder’s inequality yields
0 N
o
Z][ |Du — Dw;_j|dxdt £ ——A.
m=—1 Qj+m+1 2 10

Connecting the inequalities in the last four displays, and recalling the very defini-
tions of A and o in (3.3) and (3.4) respectively, gives us

0
m=—1 ‘7[Qj+m+l

A\
|Dw.,_1|p1dxdt§<§) .

Inserting the last inequality into (3.45) leads to (3.44). Therefore (3.22) is verified
and the proof of Theorem 1.1 is complete.
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3.2. Proof of Theorem 1.2

With the standard cylinder Q, = Q,(xo, tp) C 27 being fixed in the statement,
let us consider the function

h(A) i= A — cA(L)

where

=

1/(p—1)
2 1
AQ) == Ar- / (|Du|+s+1)p71dxdt +I’fA(xo,t0; r)
10r| J o2 ’

1/(p—1
= (][QAODM 45+ P ldx dt) + 17, (x0, 05 1)

and ¢ > 1 is again the constant appearing in Theorem 1.1; this only depends
onn, p,v,L,w(-). Here it is Qﬁ = Qﬁ(xo, tp). We are actually considering the
function A (-) to be defined for all those positive A which are such that Qﬁ‘ C L27;
observe that since p = 2 then the domain of definition of 4 (-) includes [1, co) as
Qﬁ C Q, C 27 when A = 1. Moreover, observe that again when A = 1 we have

5 1/(p—1)
A < = (][ (|Du| +s + 1P~ 1 dx dt) + I (xo, to; ). (3.46)
o

The function 4 (-) is obviously continuous and moreover k(1) < 0 since ¢ > 1 and
A()A) 2 1. On the other hand, (3.46) implies that #(A) — oo as A — oo. It follows
that there exists a number A > 1 such that 2(A) = 0 and therefore A = cA(L). In
particular, A satisfies (1.19). Therefore we can apply Theorem 1.1 that gives

A+ |Du(xo, 0)| < 2 = 2cA(N).

Using in turn Young’s inequality with conjugate exponents (p—1, (p—1)/(p—2))
when p > 2 and (3.46), we have

A
2cA(L) < > + 5][ (|Du| + s + HP~Vdxdr + 2c1f (xo, to; 1)
Or

where ¢ depends only on n, p, v, L, w(-). The proof follows connecting the in-
equalities in the last two displays.
4. Proof of Theorems 1.4 and 1.6

4.1. Proof of Theorem 1.6

The proof consists of several steps; some of the arguments of the proof of
Theorem 1.1 will be re-proposed in order to, this time, control the degeneracy rate
of the equation.
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Step 1: Basic Setup and Smallness Conditions

Since we are assuming that I’f (x0, fo; ) is locally bounded for some r > 0 then
by Theorem 1.2 we have that Du is locally bounded in §27, too. Moreover, since we
are proving a local statement, up to passing to open subsets compactly contained in
27, we can assume without loss of generality that the gradient is globally bounded,
therefore letting

A= ||Du||Loo(_QT)-|—S—‘r1 < 00. “.1)

From now on our analysis will proceed on cylinders of the type O} C £27. We
shall prove that for every ¢ € (0, 1), there exists a radius

Fe = rs(n, P V,L,Cl)('), M(.)’S) >0

such that

E(Du, Qg) =][QA |Du — (Du) g dx dr < e 4.2)

e

holds whenever ¢ € (0, r.] and Qg C £27. Once this fact is proved the VMO-
regularity of Du in the sense of Theorem 1.6 follows by an easy change-of-variables
argument as X is now fixed in (4.1).

Towards the application of Theorems 2.5 and 2.6, and with ¢, = c2(n, p, v, L)
and c3 = c3(n, p, v, L) being as in Corollary 2.2 and Theorem 2.4, respectively,
we start fixing

1000*7N max{cs, ¢3, 200} 10°
A= B = —
& &
. N ¢ 4.3)
=108 © T 10V
With the choice in (4.3) we determine o7 = o1(n, p,v, L, w(:),¢) and 0y =

o2(n, p,v, L, &) from Theorems 2.5 and 2.6, respectively. Next, we fix
o := min{oq, 07, 16_N} € (0,1/4) 4.4)

and notice that o only depends on n, p, v, L, w(-), €. Such choices, looking at
Lemmas 2.8, 2.12 and 2.13, determine the constants ¢1, ¢s, C¢ and ¢7 as depending
only onn, p,v, L, w(-), . We again need some limitations on the size of the radii
considered; here Ry = Ri(n, p, v, L, w(-)) still denotes the radius considered in
Theorem 2.1 and Corollary 2.2. Moreover, we select a new radius

R3 = R3(I’l, D v, L’ C()(), /'L()’ 8)

in such a way that the following smallness conditions hold:

|M|(Q2(X, 1) (n+2)/[(p—Dn+p] _ 53N, is
T = Waesis )

sup sup
0<oSR; (x,HERT
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and
5 3N
R P< ————— 4.6
LRIV = 106z 2azery (4.6)
and we this time set Ry := min{R, R3}/4; as a consequence we have Ry =

Ro(n, p,v, L, w(-), u(-), ). Notice only that the possibility of gaining (4.5) fol-
lows directly by the assumption (1.21), and from the fact that, since A = 1 and
p = 2, then Qz(x, 1) C Qp(x,1). We now fix a cylinder Q = Qﬁ‘(xo, t9) C 27
with 7 € (o Ro, Ro], and accordingly to the setup defined in Section 2.2 define the
chain of shrinking parabolic intrinsic cylinders as follows:

Q= 0}, (x0.10), rj=0c'r. wherer € (o Ro. Ro). “D

forevery integer j = 0. The related comparison solutions w j and v, are accordingly
defined as in (2.4) and (2.5), respectively; finally, we denote

E; :=][ [Du — (Du)g,;|dx dr.

Qj

We shall preliminary prove that
Ejt1 <ie YjeNN[l, 00). (4.8)

Now, it is obvious that if for a given j = 1 it occurs that

1/(p—1)
-1 re
]l |Du|P~" dx dr < —, 4.9)
0Qj+1 50

then (4.8) holds, therefore we can confine ourselves to assume that (4.9) does not
hold. To prove (4.8) in this last case we start by proving the following implication,
which is valid whenever j = 1:

1/(p=1) e
][ |Du|P~" dx dr >
Qj+1 50

€ 2¢6 2¢7 | IrI(Qj-1)
j—1
Indeed, as in any case we have E; < 21 and (4.5)—(4.6) hold, it follows that
Ej+1 < e /50 as a direct consequence of (4.10) when (4.9) does not hold. Notice
that we have used that (n + 2)/[(p — 1)n + p] < 1, which holds since we are
considering the case p = 2, to estimate in (4.5), as follows:

= Ej+1 =

Q3. 1) _ [w(Qg(x, r))r“)/ Hp=hrrl

)»QN_l = )»QN_I

Therefore to prove (4.8) we are reduced to checking the validity of (4.10).
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Step 2: Proof of (4.10)

We note that the setting of the shrinking cylinders {Q ;} and related comparison
maps v;, w; defined in (4.7) is completely similar to the one adopted in the proof
of Theorem 1.1, only the choice of the constants differs. To prove (4.10) is in turn
sufficient to prove the following group of inequalities for the choices made in (4.3):

sup [Dwj| + s = AA 4.11)
30;

A

X§|ij_1|§|ij_1|+S§Ak in Q; 4.12)
A

— < sup |Dvj| < sup |[Dvj|+s5 = A (4.13)
B Qj+1 10;

Indeed, taking these for granted, let us see how to conclude with the proof of (4.10).
Inequalities in displays (4.11) and (4.13) are completely analogous to (3.27), (3.36)
and (3.37), respectively. We can therefore exactly argue as in Step 6 of the proof of
Theorem 1.1: using (4.11) and (4.12) we get (3.38) by Lemma 2.13, while (4.13)
allows to use Theorem 2.6 with & = 107>V ¢ thereby yielding

€
C_ , < & o '
][Qm |[Dvj — (Dvj)g;,,|dxds = 107 J1g, |Dv; (DU])%Q].det

which plays the role of (3.39) in this context. Proceeding as in Step 6 we finally
arrive at the inequality in display (4.10), which is the analog of (3.40) in this context.
It remains to prove (4.11)—(4.13). Using Lemma 2.8 and (4.5), we have

1/(p=1)
][ |Du — Dw;_;|"~" dx dt
Qj+1

1/(p=1
_ 2N 1 AE
o pl |Du — Dw;_1|P~" dxdt < —. 414
0 ! 10*
i

By (4.14), keeping (4.1) in mind, and using the triangle inequality we get

1/(p=1)
][ |Dw;_1|P~" dx dr <2
0j-1

so that, applying Corollary 2.2 to w; | we finally come to

A

sup |[Dwj_i|+s < sup [Dwj_1|+s S A) (4.15)

9 701

that proves the right hand side inequality in (4.12). In a completely similar way
we obtain also (4.11). We now prove the left hand side inequality in (4.12). Again
using (4.14), we get
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1/(p=1)
sup [Dwj_i| = ][ |Du|P~ dx dr
o Qj+1
1/(p=1)
—][ |Du — Dw;_|"~" dx dt
Qj+1

A€ A€ > AE

50 10% = 100°

1\

The lower bound in the last display provides the existence of a point (¥,7) € Q;
such that [Dw; (X, f)| 2 Ae/200 while (4.15) allows to apply Theorem 2.5 (to
w;_1in %Qj_l) getting, thanks to the choice of § in (4.3),

rE

OSCQj ij_1 é W

The last two inequalities finally give |[Dw;_1| = Ae/ 10° in Q j- Summarizing,
recalling the choice of A in (4.3) and again (4.15), the proof (4.12) turns out to be
complete. It remains to prove (4.13). Using (4.11), Lemma 2.12 and finally (4.6)
we have

1/(p=1) e
_ -1 2 )
(]{Q |Dw; — Dv;|? ldxdt) §c5/”[w(r,-)] Py < 05
2¥j

Combining the above estimate with (2.19) and (4.5) gives, after a few standard
manipulations,

1

=
max ][ |Du—va|p_ldxdt ,
Qj+1

1

=1
(][ |Du — Dv;|P~ ! dx dt)
30;

+2)/[(p—1Dn+p]
_ o [imlp]"PTI gove
=~ oN A rj{\/—l 106
oV e
o (4.16)

Therefore, using (4.16), Minkowski’s inequality and recalling the definition of A in

(4.1) we have
A
][ |Dv;|P~! dx dr <+

J

so that the right hand side inequality in (4.13) follows by Theorem 2.4. As for the
left hand side, notice that the first inequality in (4.10) and (4.16) imply
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1/(p=1)
sup |Dvj| = ][ |Du|P~ dx dr
Qj+1 Qj+1

(p—1) .
- ][ |Du — Dv; [P~ dx dt S e _oT ke Eh
Qj+1

so that (4.13) is completely proved.

Step 3: Interpolation of Radii

With (4.8) at our disposal we can finally conclude the proof of Theorem 1.6 by
letting r, := o2 Ry. Indeed, consider 0= o2 Ry; this means there exists an integer
m = 2 such that 6" T'Ry < o < 6™ Ry. Therefore we have o = o™ r for some
r € (0 Ry, Ro] and (4.2) follows from (4.8) with this particular choice of r.

4.2. Proof of Theorem 1.4

The proof is now based on a combination of the arguments of Theorem 1.6 with
those which are more typical of the elliptic case; we report everything in full detail
for the sake of completeness and readability, and also because a certain number of
modifications is really needed. We shall therefore keep the notation introduced in
Step 1 of the proof of Theorem 1.6. Essentially, we are going to use the same choices
in (4.3)—(4.6) but using an additional smallness condition on the radii used; in this
way we can use both the inequalities in the proof of Theorem 1.6 and the result of
Theorem 1.6. We consider a cylinder Qo € £27 and prove that for every ¢ > 0 there
exists aradius r, < dpar (Qo, 0827)/2, depending only onn, p, v, L, o(-), u(-), &,
such that

KD”)QQ(Xo,to) — (D”)Q%,(xo,toﬂ < Ae  holds forevery o, p € (0,r:] (4.17)

whenever (xo, fo) € Q. This proves that Du is the local uniform limit of continuous
maps—defined via the averages—and hence it is continuous. The rest of the proof
goes in two steps.

Step 1: Dyadic Sequences and Continuity

To begin with the proof of (4.17) we recall that R is determined in Theorem 2.1.
Moreover Rj3 is determined in (4.5) and (4.6) with the constant ¢y, ¢s, ¢g and ¢7
obtained in Theorem 1.6 and corresponding to the choices made in (4.3) and (4.4).
Next, we take yet another positive radius Ry < dpar (Qo, 0827) /2 such that

R4 Qg (x, 1)) do 4Ry do e
sup / et ) —+/ v L2 @)
(x,1)€eQo Y0 o Q 0 Q Cc6C7
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and, recalling the definition in (2.17)

4N)\.8

A < o
sup sup E(Du, QQ(x, 1) = 0
0<o<Ry (x,1)€Q0 0

(4.19)

Observe that it is possible to make the choice in (4.19) thanks to Theorem 1.6
and in particular to (4.2), that ensures that R4 can be chosen in a way that makes
it depending only on n, p, v, L, w(-), u(-), €. Indeed notice that (1.22) implies
(actually for any choice of a fixed 1) that

lim sup ][ |Du — (Du)g:|dxdt =0
R=0 <R gico /O '

for every open subset Q' € 7. Here it is also necessary to remark that an ele-
mentary argument based on the decomposition in (3.10) ensures that assumption
implies (1.21) implies (1.21), and therefore Theorem 1.6 applies here. Finally, this
time we set ﬁo := min{R|, R3, R4}/2 and take everywhere r < ﬁo so that Iéo ulti-
mately depends again on n, p, v, L, w(-), u(-), € only. The sequence of shrinking
cylinders {Q ;} is now defined as

Qj = 0} (x0,10), rj=0'Ry, forj=0,

while A = 1 is still defined as in (4.1) and o in (4.4). By (4.18), computations
similar to those in (3.10) and (3.14) then give

o0 o0
|11(Qi) oe
i=0 i i=0
In Step 2 we will prove that
A
[(Du)g, — (Du)o,| < 1—; holds whenever 2 < k < h. 4.21)

Here we show how to use (4.21) to finish the proof and to verify (4.17) with the
choice r, := 0> Ry. Indeed, let us fix 0 < p < o < r,. This means that there exist
two integers, 2 < k < h, such that

"Ry <0 < 6FRy and o"'Ry < p < o"'Ry.
Applying (4.19) we get
|(D) g3 (x9,10) = (D) 0y |
é f |DM — (DM)QQ(XOJO)I dx dt
Ok+1

| Q2% (x0, to)]
< Q—][ |Du — (D) i (49 10y dx At
| Qk+1l 0% (x0.10) @

_ re
o N E(Du, 05 (x0. 1)) = 15

A
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and, similarly,
D D < Ag
I( ”)Qg(xo,zo) — (Du) g, | = 10°
Using the inequalities in the last two displays together with (4.21) and the triangle
inequality establishes (4.17) and the proof is complete, modulo the content of the
next and final step.

Step 2: Proof of (4.21)

The preliminary observation to make is that, with the choices made here, (4.10)
holds in this setting as tpis ultimately relies on (4.5) and (4.6), which indeed are in
force by the choice of Ry. To continue, let us consider the set £ defined by

V=D
L:=]jeN: (][ |Du|p1dxdt) <=t
0

50
and, accordingly, we then define the sets
={jeN:igj<i+m, iel, jgLifj>i}
for m € N and, finally, the number j, := min £. Note that it may happen that
Je = 00; in this case L is empty and the first inequality in (4.10) holds for every
Jj 2 1. The idea is now to employ (4.10) on suitable sets C" using the indexes i as
a sort of exit time indexes; the difference is that they can be countably many now.

We can now prove (4.21), obviously assuming k < h. The first case we analyze is
whenk < h < j,; we use (4.10) and the definition of j, to infer that the inequality

J

2¢6 lnl(Qj-1)
Ejs1 < 2E +-5 a)( ,)A+ [ N’l } (4.22)
] 1
holds forevery j € {k—1, ..., h—2}. Summing up the previous inequalities easily
yields
h—1 N
4C7 lwl(Q)) _ o e
Ei<E A <
Z k— 1+ Zw( f) + rN—l = 50
i=k j=0 "]
where we have used (4.19) and (4.20), therefore (4.21) follows since
h—1
[(Du) g, — (Du)g,| < Z [(Du)g,,, — (Du)g,|
i=k
< Z][ |Du — (Du) g, | dx dr
Q1+1
<Z 9] |Du—(Du)Qi|dxdt
[Qit1l
h—1 e
=0 "> E < (4.23)
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The second case we consider is when j. < k < h, where we prove (4.21)

through the inequalities
< re ArE

[(Du)o,| = 7 and [(Du)o,| < > (4.24)

In (4.24), we prove the former, the argument for the latter being the same when

k > je, otherwise |(Du)g,| < Ae/25is trivial if k = j, € L. If h € L, the first

inequality in (4.24) follows immediately from the definition of £. On the other

hand, if » ¢ L, then, as i > j,, it is possible to consider a set Cm” with m;, > 0,

such that i € Cz,,h notice that & > iy as h € L > ij. Then (4.10) gives that (4.22)

holds whenever j € {ij, ..., ip+mp—1}. Summing up and performing elementary
manipulations gives
in+my N
427 <= 11l(Q)) _ oV re
,Z,: E; <2E;, + —Zw(r,)/w 2 e < %
h

where again we have used (4.19) and (4.20). Therefore, as in (4.23), we have

h—1 ip+mp
|(Du)g, — (Du)g, | <0~ NZE <oV Z E; <

=iy i=ip

ke
50

and then, using that KDM)Qih | < Xe/50 as iy € L, we have

AE

[(Du)g,| < 1(Du)g,, | +1(Du)g, — (Du)g,, | < T2
that is (4.24). The last case to consider is when k < j, < h; that can be actually
treated by a combination of the first two. It suffices to prove that the inequalities in
display (4.24) still hold. Indeed, the first inequality in (4.24) follows exactly as in
the second case. As for the second estimate in (4.24), let us remark that, as j, € L,
we have that [(Du)g, | < X&/50. On the other hand, we can use the first case
k < h < j, with h = j,, thereby obtaining

re
[(Du)g,, — (Du)g,] < 55

and therefore the second inequality in (4.24) follows via the triangle inequality.

5. Proof of Theorem 1.7

The proof of Theorem 1.7 is a consequence of a few simple observations once
Lemma 2.14 is at our disposal and the sequence of comparison solutions w; is
introduced. Let’s start with Theorem 1.1. Going back to Section 2.2, after having
introduced the maps {w } in Lemma 2.14 we can introduce the maps {v; } exactly as
in (2.5). It is now easy to see that with this definition all the properties of the maps
{w;} and {v;} described in Sections 2.2-2.4 and used in the proof of Theorem 1.1
hold, and especially Lemma 2.11-2.13. The only difference, which stems from the
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righthand sides in the inequalities in Lemma 2.14, is that the quantities |4 |(| O j | par)
appear instead of | |(Q ;); this is anyway irrelevant in the context of Theorem 1.1,
in view of (3.13). Indeed, this last inequality tells that all the estimates we need for
|11(Q ;) are also valid for |i|(LQ|par). The proof now follows exactly as in the
finite energy case. As a consequence, all the corollaries of Theorem 1.1, starting by
Theorem 1.2, hold for SOLA as well. Next, when passing to Theorems 1.4 and 1.6
the proofs remain completely the same upon using Lemma 2.14; note that this time
the appearance of ||(|Q]par) instead of |1|(Q;) gives no problem at all since
all the proofs are based on the use of smallness conditions as (4.5) and (4.18) [see
also (3.10)].

Remark 7. Definition 1 of SOLA is quite natural, and is motivated by the standard
way of approximating measures with bounded functions in the weak-* convergence,
via parabolic smoothing, that is, using mollifiers that, although acting uniformly in
space, act backward in time. The main difference with the standard elliptic case is
that, instead of getting that

limhsup Il (Q) < 11l(0),

that is an inequality involving the full closure of Q, we get (1.24) so that the upper
part of a cylinder does not play any role in the approximation. This is the advan-
tage that allows us to pass to the limit easily in the pointwise potential estimates.
Moreover, this is in accordance with the fact that, when dealing with evolutionary
equations, the behavior at a certain instant of the solution only depends on what
happened at past times, but not on what happens at that instant. Let us briefly re-
call the procedure. One fixes a family of smooth mollifiers (approximation of the
identity) {¢;,} with ¢, := h"¢(x/h) with ¢ € C°(B1),¢ = 0 and [p[l,1 = 1.

Similarly, we consider another family of smooth mollifiers {#n}, this time in one
variable: q)h = h¢(x/h) with ¢ e C°((—1,1)) and ||¢||L1 = 1. We then define

i =[O+ 1/ + e L,

and notice that the mollification in the time variable is backward. In such a way
we obtain a weakly* convergent sequence (in the sense of measures) and also
(1.24). Such a sequence can be for instance used in [3] to derive the corresponding
existence theorems. The point that we want to stress here is that, in order to give
a more suitable definition of SOLA, it is very often not sufficient to take any
approximation of the measure p via weak* convergence (something that is for
instance sufficient when deriving global estimates). Instead, a more careful way of
approximating measures, tailored to both the geometry of the problem in question
and the degree of fine properties of solutions one wants to derive, must be adopted.
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