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Abstract

We introduce a notion of viscosity solutions for a general class of elliptic–
parabolic phase transition problems. These include the Richards equation, which is
a classical model in filtration theory. Existence and uniqueness results are proved via
the comparison principle. In particular, we show existence and stability properties
of maximal and minimal viscosity solutions for a general class of initial data. These
results are new, even in the linear case, where we also show that viscosity solutions
coincide with the regular weak solutions introduced in Alt and Luckhaus (Math Z
183:311–341, 1983).

1. Introduction

Let Ω ⊂ R
n be a smooth bounded domain and let T > 0. Let us denote

Q = Ω × (0, T ]. We are interested in the following problem: find a function
u(x, t), u : Q → R, that solves

⎧
⎪⎨

⎪⎩

∂t b(u)− F(D2u, Du, u) = 0 in Q,

u = g ≡ −1 on ∂Ω × [0, T ],
u(·, 0) = u0 on Ω,

(1.1)

where Du denotes the spatial gradient of u, D2u is the spatial Hessian, and
F(M, p, z) : Sn × R

n × R → R is a fully nonlinear, uniformly elliptic oper-
ator (see Section 1.1 for precise assumptions on F). For the function b : R → R

we assume that:

(a) b is increasing and Lipschitz,
(b) b(s) = 0 for b � 0, b ∈ C(R) ∩ C1([0,∞)),
(c) there exists a constant c > 0 such that b′(s) > c for s ∈ (0,∞).
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The nonlinear operators F we consider include:

– the uniformly elliptic operator of non-divergence form

F(D2u, Du, u) = − tr(A(Du)D2u)+ H(u, Du), (1.2)
where A satisfies the uniform ellipticity condition

λ|q|2 � A(p)q · q � Λ|q|2 for all p, q ∈ R
n, for some λ,Λ > 0, (1.3)

as well as the Bellman–Isaacs operators arising from stochastic optimal control
and differential games

F(D2u, Du, u) = inf
α∈A

sup
β∈B

{L αβu},

where L αβ is a two-parameter family of operators of the form (1.2) satisfying
(1.3); we refer to [10,15] for further examples.

– a divergence-form operator. To simplify our discussion, we restrict our attention
to operators of the form

F(D2u, Du, u) = ∇ · (Ψ (b(u))Du), (1.4)

where Ψ ∈ C1([0,∞)) is a positive function. The class of operators given in
(1.4) is of particular interest, since in that case the problem (1.1) represents the
well-known Richards equation, which serves as a basic model for the filtration
of water in unsaturated soils (see for example [13,22,24]).

Our aim is to study the well-posedness of (1.1). Note that, due to the regularity
theory for uniformly elliptic nonlinear operators [6,28], solutions of (1.1) satisfy
interior C1,α estimates in the sets {u > 0} and {u < 0}. Hence, the challenge
in the study of the problem lies in the behavior of a solution near the transition
boundary between the positive and the negative phases. For example, as illustrated
in Example 1.2, discontinuities of solutions in time across the set {u = 0} are
generic.

Problem (1.1) can be understood as the limiting equation for the evolution of
two phases with different time scales of diffusion and with the threshold value
at u = 0. In particular, as verified in Section 6, the problem can be viewed as a
singular limit of a family of uniformly parabolic problems (6.1), where b(s) in
(1.1) is regularized. Hence, it is expected that a maximum principle holds for the
solutions, and that the theory of viscosity solutions may be applicable for the study
of pointwise behavior of solutions near the transition boundary {u = 0}. This
is, indeed, our approach; in this paper we will introduce the notion of viscosity
solutions for (1.1) and discuss existence, uniqueness and stability properties, and
compare them to the notion of weak solutions (see the discussion below). Such
results have been established for Stefan-type problems (see [7,20], for example),
but significant challenges in the analysis arise due to the implicit nature of the
boundary motion law in (1.1) and the generic nature of discontinuities in u (as in
Example 1.2); see an extended discussion on this in Section 3. We aim to present
the proof of the comparison principle for fully nonlinear operators in more detail,
both to illustrate the flexibility of the viscosity solution approach and to make the
results readily available for applications in a general context.
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It should be pointed out that our approach treats the transition boundary Γ :=
∂{u > 0} between the elliptic and parabolic regions as a “free boundary” and
constructs barriers based on its movement. Hence, our approach may not be optimal
for other problems such as fast diffusion (when b′(0) = 0,) where the transition
boundary moves with infinite speed (see [25], for example), but strong regularity
properties for the solutions are expected (see [3]).

Although our presentation is mainly focused on the problem with fully nonlinear
operators whose structure assumption requires a linear growth in terms of |Du|,
the results of this paper extend to the case of divergence-form operators of the
form (1.4), as well. We point out the necessary modifications in the text where
appropriate.

Literature review. Let us briefly discuss previously known results on (1.1), all
of which, including (1.4), concern divergence-form operators. The weak solutions
are defined via integration by parts in the important paper of Alt and Luckhaus [1],
which shows existence [1, Theorem 1.7] of weak solutions for the general class
of elliptic–parabolic phase transition problems with divergence-form operators.
Uniqueness results are, however, rather limited. For F given by (1.4), when Ψ (s)
is a positive constant (that is, when F is linear), the authors prove that regular weak
solutions (in the sense ∂t b(u) ∈ L2) can be constructed by the Galerkin method
[1, Theorem 2.3], and show that regular weak solutions satisfy the comparison
principle and are unique given the initial data [1, Theorem 2.2]. Indeed, whenΨ (s)
is a positive constant, it is known that b(u) is continuous in a local setting as long
as u is bounded (see [12]). Continuity of b(u) seems to be the optimal result for
this problem with general initial data, since u may become discontinuous in time in
the elliptic phase (see Example 1.2, and also [12]). The proof of continuity in [12]
is based on the weak Harnack inequality, making use of the linearity of the elliptic
operator with respect to u. We also refer to [5] and [9], who use an entropy solution
approach to define weak solutions as well as to prove the comparison principle
in L1 for the relevant model. This approach, while powerful, does not fit into our
setting, where we have a non-vanishing elliptic phase.

Even for the quasi-linear F given in (1.4), there are no uniqueness or stability
results except for the aforementioned linear case and the one-dimensional case (see
[3,26]); this serves as a motivation of our analysis in this paper. Mannucci and
Vazquez [23] studied viscosity solutions of (1.1) for divergence-form operators
in one dimension. Their approach avoids possible complications at the transition
boundary ∂{u > 0} by relying on previously known regularity properties of weak
solutions in one dimension.

Summary of the main results. In this section we summarize the main results
obtained in this paper. In all statements, F is assumed to be either a fully nonlinear
operator satisfying the assumptions in Section 1.1 or a quasilinear divergence-form
operator of the form (1.4).

Our main theorem is the following comparison principle:

Theorem 1. (Theorems 3.1 and 3.24) Let u be a viscosity subsolution and v a
viscosity supersolution of (1.1) on Q = Ω × (0, T ] for some T > 0. If u < v on
the parabolic boundary ∂P Q, then u < v on Q.
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Equipped with the comparison principle, we use Perron’s method to show the
following existence and stability theorem.

Theorem 2. For initial data u0 ∈ P (see the definition of P in Section 4, by
(4.1)–(4.2)), the following holds:

(a) (Theorem 4.2) There exists a minimal and a maximal viscosity solution u and
u of (1.1) with initial data u0.

(b) (Theorem 4.3) u and u are stable under perturbations of initial data with appro-
priate ordering.

(c) (Corollary 6.3) u and u can be obtained as a limit of solutions solving the
regularized parabolic equation (6.1).

This theorem states that the maximal and minimal viscosity solutions are sta-
ble. Unfortunately, we are only able to show the uniqueness of general viscosity
solutions (that is, the coincidence of minimal and maximal viscosity solutions) in
several restricted settings. The coincidence of the minimal and the maximal vis-
cosity solutions with general initial data remains open, except for the linear case.

Theorem 3. For given initial data u0 ∈ P , the following holds:

(a) (Theorem 5.6) If F is linear, that is, if F(M, p, z) = F(M) = tr M, then there
exists a unique viscosity solution u with initial data u0, and u coincides with
the unique weak solution defined in [1].

(b) (Theorem 5.8) If u0 is either star-shaped or if u decreases at t = 0, then there
exists a unique viscosity solution of (1.1).

Remark 1.1. As mentioned above, our approach may not be optimal if b(s) degen-
erates at s = 0. On the other hand, we expect that our approach can be extended to
non-Lipschitz b(s) and produce results similar to the above. The difficulty in the
analysis lies in the corresponding degeneracy of the elliptic operator in the positive
phase, when we write the equation in terms of b(s).

Example 1.2. (Discontinuous solution) Here we briefly discuss an example which
illustrates discontinuities in the solutions. Set

b(u) = u+ := max(0, u),

then consider (1.1) with negative boundary data and with initial data that are positive
on some open set. As the solution evolves, the positive phase disappears in finite
time, at which point the solution jumps to the stationary solution. Nevertheless,
one expects b(u) to be continuous. We refer the reader to [1, p. 312] for an explicit
formula.

1.1. Assumptions on the Nonlinear Operator F

Let Sn be the space of symmetric n × n matrices. For given 0 < λ � Λ, we
define the Pucci extremal operators M ± : Sn → R as in [6,27]:

M +(M) = sup
A∈[λI,ΛI ]

tr AM, M −(M) = inf
A∈[λI,ΛI ] tr AM, (1.5)
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where [λI,ΛI ] = {
A ∈ Sn : λI � A � ΛI

}
. Alternatively, the Pucci operators

can be expressed using the eigenvalues e1, . . . , en of matrix M :

M +(M) = Λ
∑

ei>0

ei + λ
∑

ei<0

ei , M −(M) = λ
∑

ei>0

ei +Λ
∑

ei<0

ei .

With the Pucci operators at hand, we shall assume the following structural
condition on the operator

F(M, p, z) : Sn × R
n × R → R :

(i) There exist 0 < λ < Λ and δ0, δ1 � 0 such that

M −(M − N )− δ1 |p − q| − δ0 |z − w| � F(M, p, z)− F(N , q, w)

� M +(M − N )+ δ1 |p − q| + δ0 |z − w| (1.6)

for all M, N ∈ Sn, p, q ∈ R
n and z, w ∈ R.

(ii) F is proper, that is,

z 
→ F(M, p, z) is nonincreasing in z. (1.7)

(iii) Finally, to guarantee that u ≡ 0 is a solution of both the parabolic and the
elliptic problems, we assume that

F(0, 0, 0) = 0. (1.8)

1.2. Notation

• In this paper, we work in a fixed space dimension n � 2. For a point x ∈ R
n

and time t ∈ R, the pair (x, t) ∈ R
n × R represents a point in space-time.

• For a given r > 0, we define the open balls

Br :=
{
(x, t) : |x |2 + |t |2 < r2

}
, Bn

r := {x : |x | < r},

the space disk

Dr := Bn
r × {0} = {(x, 0) : |x | < r},

and the flattened set

Er :=
{
(x, t) : |x |3 + |t |2 < r2

}
.

Finally, we define the domain that is used in the definition of regularizations of
solutions,

Ξr := Dr + Er .

Here + is the Minkowski sum. Note that Ξr ∈ C2 (in contrast with Dr + Br ,
which is only C1,1).
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Fig. 1. The boundary ∂Ξr of the set Ξr

• We ask the reader to forgive a slight abuse of notation:

∂Dr := Dr − Dr = ∂Bn
r × {0} = {(x, 0) : |x | = r}.

• It will also be advantageous to introduce the (open) top and bottom flat pieces
of ∂Ξr ,

∂�Ξr := {(x, r) : |x | < r}, ∂⊥Ξr = {(x,−r) : |x | < r},
and the (open) lateral boundary of Ξr ,

∂LΞr := ∂Ξr \ ∂�Ξr ∪ ∂⊥Ξr .

These sets are sketched in Fig. 1.
• The translation of a set A ∈ R

n ×R by a vector (x, t) ∈ R
n ×R will be denoted

as

A(x, t) := (x, t)+ A.

The translation A(x) of a set A ⊂ R
n is defined similarly.

• We will often need to consider timeslices (cross sections at a fixed time) of a
given set. To simplify the notation, let us define the timeslice of a set A ⊂ R

n×R

at time t as

A|t := {x : (x, t) ∈ A}.
We often write At if there is no ambiguity.

• Let E ⊂ R
n × R. Then U SC(E) and L SC(E) are, respectively, the sets of

all upper semi-continuous and lower semi-continuous functions on E . For a
locally bounded function u on E , we define the semi-continuous envelopes

u∗,E := inf
v∈U SC(E)

v�u

v, u∗,E := sup
v∈L SC(E)
v�u

v. (1.9)

These envelopes are used throughout most of the article with E = Q, and
therefore we simply write u∗ and u∗ if the set E is understood from the context.
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2. Viscosity Solutions

In this section we define the notion of viscosity solutions of problem (1.1).
Formally, viscosity solutions are the functions that satisfy a local comparison prin-
ciple on parabolic neighborhoods with barriers which are the classical solutions of
the problem. We refer the reader to [7,8,10,20] and references therein for other
examples of this approach.

Definition 2.1. (Parabolic neighborhood and boundary) A nonempty set E ⊂ R
n×

R is called a parabolic neighborhood if E = U ∩ {
t � τ

}
for some open set

U ⊂ R
n × R and some τ ∈ R. Let us denote ∂P E := E \ E , the parabolic

boundary of E (see [27] for a more general definition).

Definition 2.2. (Classical subsolution) Let E be a parabolic neighborhood. Func-
tion ϕ is called a classical subsolution of problem (1.1) in a parabolic neighborhood
E if ϕ ∈ C(U ) on an open set U ∈ R

n × R such that E = U ∩ {t � τ
}

for some
τ ∈ R, and the following holds:

(i) ϕ ∈ C2,1
x,t ({ϕ > 0}) and C2,1

x,t ({ϕ < 0}),
(ii) {ϕ = 0} ⊂ ∂{ϕ > 0} ∩ ∂{ϕ < 0} and

∣
∣Dϕ±∣∣ > 0 on {ϕ = 0},

(iii) b(ϕ)t − F(D2ϕ, Dϕ, ϕ) � 0 on {ϕ > 0} and {ϕ < 0},
(iv)

∣
∣Dϕ+∣∣ �

∣
∣Dϕ−∣∣ on {ϕ = 0}.

Here {ϕ > 0} := {(x, t) ∈ U : ϕ(x, t) > 0} etc., and

Dϕ±(ξ, τ ) := lim
(x,t)→(ξ,τ )
(x,t)∈{±ϕ>0}

Dϕ(x, t).

We say that ϕ is a strict classical subsolution if the inequalities in (iii) and (iv)
are strict.

Classical supersolutions are defined similarly by flipping the inequalities in
Definition 2.2 (iii)–(iv).

Now, we define viscosity solutions. Note that we set g ≡ −1 on ∂Ω × [0, T ]
throughout the paper.

Definition 2.3. (Viscosity subsolution) Let Q = Ω×(0, T ] be a parabolic cylinder.
Function u ∈ U SC(Q) is a viscosity subsolution of (1.1) in Q if u(·, 0) � u0 on
Ω, u � g on ∂Ω ×[0, T ], and if u < ϕ on E for any strict classical supersolution
ϕ on any parabolic neighborhood E ⊂ Q for which u < ϕ on ∂P E .

One can define viscosity supersolutions accordingly, as a function in L SC(Q),
by switching the directions of the inequality signs in the previous definition.

Definition 2.4. (Viscosity solution) Locally bounded function u is a viscosity solu-
tion of (1.1) on Q if u∗,Q is a viscosity subsolution on Q and u∗,Q is a viscosity
supersolution on Q.
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Remark 2.5. We test viscosity solutions only by strict classical barriers. It is there-
fore possible to narrow the choice of E in Definition 2.3 to include only parabolic
cylinders of the form Q′ = Ω ′ × (t1, t2] ⊂ Q, where Ω ′ has a smooth boundary,
instead of all parabolic neighborhoods. Indeed, suppose that E ⊂ Q is a parabolic
neighborhood, ϕ is a strict classical supersolution on E, u < ϕ on ∂P E , but u � ϕ

at some point in E . Define τ := sup
{
σ : u < ϕ on E ∩ {t � σ

}} ∈ R. The set

A := {
x : (x, τ ) ∈ E, u � ϕ

}

is compact and therefore δ := dist(A × {τ }, ∂P E) > 0. Define the parabolic
cylinder Q′ = (A+ Bδ/2)× (τ −δ/2, τ ]. Clearly Q′ ⊂ E and u < ϕ on ∂P Q′. The
boundary of A + Bδ/2 can be easily regularized. This observation will be useful in
Section 5, where we will show that regular weak solutions are viscosity solutions.

3. Comparison Principle

This section is devoted to the proof of the following “weak” comparison prin-
ciple.

Theorem 3.1. Let u be a viscosity subsolution and let v be a viscosity supersolution
of (1.1) on Q = Ω × (0, T ] for some T > 0, and assume that u < v on ∂P Q.
Then u < v on Q.

To simplify the exposition of the proof of this theorem, we shall assume that T =
∞. In fact, it is always possible to extend u and v fromΩ × (0, T ] toΩ × (0,∞).
Moreover, we will only consider b(u) of the form b(u) = u+ := max(u, 0). The
problem (1.1) with a fully nonlinear operator F and a more general b can always
be rewritten in this way. Indeed, the differentiation b(u)t = b′(u)ut for u > 0 is
justified by the regularity of b, and b′(u) can be absorbed into F .

Heuristic arguments. The comparison principle for classical subsolutions and
supersolutions u and v of (1.1) can be proved using the following formal argument.
We would like to show that

{u(·, t) > 0} ⊂ {v(·, t) > 0} for all t > 0, (3.1)

since the conclusion then follows due to the standard elliptic and parabolic compar-
ison principle. Hence, suppose (3.1) fails at some time. Since |Du|, |Dv| > 0 on the
boundary of their respective positive phases, the sets {u(·, t) > 0} and {v(·, t) > 0}
have smooth boundaries and evolve continuously in time with respect to the Haus-
dorff distance. Therefore, it follows that there exists the first time t0 > 0 where
∂{u(·, t) > 0} intersects ∂{v(·, t) > 0}, let’s say at x = x0. Since

{u > 0} ∩ {t � t0} ⊂ {v > 0} ∩ {t � t0} and u0 < v0,

the comparison principle applied to u and v, respectively, in the sets {u > 0} and in
{v < 0} yields that u � v up to t = t0. In particular, since u(x0, t0) = v(x0, t0) = 0,
this means that

|Du+|(x0, t0) � |Dv+|(x0, t0) and |Dv−|(x0, t0) � |Du−(x0, t0)|.
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Furthermore, due to the regularity of ∂{u(·, t > 0} and ∂{v(·, t) > 0} and
Hopf’s lemma for uniformly parabolic and elliptic operators, it turns out that the
above inequalities are, in fact, strict. This contradicts the flux-matching condi-
tion for the classical sub- and supersolution (Definition 2.2(iv)), that is, the fact
that

|Du+| � |Du−| and |Dv+| � |Dv−| at (x0, t0).

Unfortunately, the rigorous version of the above heuristic argument is rather
lengthy. One faces many difficulties in the general setting, where u and v are merely
semi-continuous functions. As is always the case in the theory of weak solutions,
one should translate the above heuristics onto appropriate test functions or, to be
more precise in our case, barriers. Our argument relies on a certain regularization
procedure (see Section 3.2) which ensures that, at a contact point (x0, t0) of the
regularized solutions, the phase boundaries of each regularized solution are both
locally C1,1 in space. Such regularity of the phase boundary would enable us to
construct appropriate barriers which would allow us mimic the heuristic argument
above. This technique was pioneered by Caffarelli and Vázquez [8] in their treatment
of viscosity solutions for the porous medium equation. It was later applied to several
one phase free boundary problems in [4,17,18], and later extended to two-phase
Stefan problems by the authors in [20] (see also [7]).

In contrast to the aforementioned results for free boundary problems, the analy-
sis of our problem presents several new challenges. The most obvious challenge
arises from the flux matching condition of (1.1) on the transition boundary. While
the regularization procedure provides regularity information in space variables, one
should still show the finite propagation property of the phase boundary. In the afore-
mentioned free boundary problems, the free boundary motion law prescribes the
normal velocity of the free boundary in terms of the gradient of the solution, which
links the space regularity to the time regularity of the solution. Here, one does not
have such a direct relationship between time and space regularity of the transition
boundary. Indeed, the flux matching condition of (1.1) turns out to be more delicate
than the prescribed gradient condition in flame propagation type problems, since
one has to account for the possibility that the fluxes from both sides will either
degenerate to zero or diverge to infinity. This is overcome by the observation that
with the regularization we can rule out the scenarios of a sudden extinction of the
elliptic phase (Lemma 3.12), or a sudden shrinkage/discontinuous expansion of the
parabolic phase (Lemmas 3.13 and 3.19) at a contact point. Note, however, that
even with regularized solutions, the elliptic phase might instantly become extinct
away from a contact point.

We point out that, to allow for the regularization procedure, the strict ordering
of u and v on ∂P Q in the statement of Theorem 3.1 is necessary. We also point
out that a proof via doubling of variables, a classical tool in the theory of viscosity
solutions (see [10]), is not available for phase transition-type problems, including
(1.1).

We shall present the proof by splitting it into a number of smaller intermediate
results, which will be collected later in Sect. 3.6, below.
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3.1. Properties of Solutions

In this section we clarify what we mean by the parabolic and the elliptic prob-
lems. We refer the reader to [10] for the precise definitions and the detailed overview
of the standard viscosity theory.

Definition 3.2. We say that w(x, t) is a solution (respectively subsolution, super-
solution) of the parabolic problem in an open set Q′ ⊂ R

n × R if w is the standard
viscosity solution (respectively subsolution, supersolution) of

wt − F(D2w, Dw,w) = 0 in Q′.

Similarly, we callw(x) a solution (respectively sub/supersolution) of the elliptic
problem in an open setΩ ′ ⊂ R

n ifw is the standard viscosity solution (respectively
sub/supersolution) of

−F(D2w, Dw,w) = 0 in Ω ′.

Now with the help of the previous definition, we can rigorously express the
intuitive fact that the problem (1.1) is parabolic in the positive phase and elliptic in
the negative phase.

Lemma 3.3. If u is a viscosity subsolution of (1.1) in Q, then u+ is a subsolution
of the parabolic problem in Q. Similarly, if v is a viscosity supersolution of (1.1)
in Q, then −v−(·, t) is a supersolution of the elliptic problem inΩ for each t > 0.

Proof. 1. The first claim follows easily, since u+ = max {u, 0} and 0 solves

ut − F(D2u, Du, u) = 0

[see (1.8)].
2. To prove the second claim for −v− := min {v, 0}, suppose it is not a super-

solution of −F(D2u, Du, u) = 0 at time t = t0 > 0. Let us denote
ζ(x) = −v−(x, t0). Then there is a function ϕ ∈ C2, ϕ < 0, and an open
(space) ball B ⊂ {ζ < 0} such that −F(D2ϕ, Dϕ, ϕ) < 0 on B, ϕ � ζ in B
and ϕ < ζ on ∂B, but ϕ = ζ at some point in B. Due to the continuity of F ,
there exists η0 > 0 such that −F(D2ϕ, Dϕ, ϕ−η) < 0 in B for all η ∈ [0, η0].
For any δ > 0, we set

Qδ := B × (t0 − δ, t0].

Since v is lower semi-continuous, there exists a small δ > 0 such that Qδ ⊂
{v < 0}, ϕ < v(·, t) on ∂B for t ∈ [t0 − δ, t0], and v(x, t)− ϕ(x) > −η0 on Qδ .
Let us define the barrier ψ(x, t) = ϕ(x)+ η0

δ
t . Observe that −F(D2ψ, Dψ,ψ) <

0 and ψ < 0 in Qδ and, therefore, it is a strict classical subsolution of (1.1).
Furthermore, ψ < v on ∂P Qδ , while ψ = v at some point in Qδ . This contradicts
the fact that v is a supersolution of (1.1). ��
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3.2. Regularizations

In this section, we define regularizations of the subsolution u and the super-
solution v, and prove some of their properties that are applied in the proof of the
comparison theorem.

For a given r ∈ (0, 1), define the regularizations

Z(x, t) := sup
Ξ r (x,t)

u,

W (x, t) := inf
Ξ r (x,t)

v.
(3.2)

Functions Z and W are well-defined on the parabolic cylinder Qr ,

Qr := {
(x, t) ∈ Q | Ξ r (x, t) ⊂ Q

} = Ωr × (r,∞),

where

Ωr :=
{

x ∈ Ω | dist(x,Ωc) > r + r2/3
}
.

Remark 3.4. Ωr has the uniform exterior ball property (with radius r + r2/3),
therefore it is a regular domain for the elliptic problem.

Remark 3.5. The main advantage of regularizing over the setΞr instead of the ball
Br is that the appropriate level sets of Z and W have both space-time and space
interior balls, see Proposition 3.10.

Remark 3.6. DefiningΞ = D + E , instead of D + B as in the previous paper [20],
has the consequence that the parabolic boundary of Ξ is not C1,1/2

x,t at the top flat

piece ∂�Ξ , and thus it is not a regular set for the heat equation (see [7]). We can
therefore expect that the gradient of a positive caloric function in Ξ , which is zero
on the lateral boundary of Ξ , will blow up at the lateral boundary as we approach
∂�Ξ , see Lemma 3.13. A similar effect of a vanishing gradient is expected when the
solution is positive onΞ c but zero inΞ , see Lemma 3.16. This is the necessary new
ingredient required in the proof of the “finite speed of propagation” in Lemma 3.19.

Proposition 3.7. Suppose that v is a viscosity supersolution on Q = Ω × (0,∞).
Then W is a viscosity supersolution on Qr . Similarly, if u is a viscosity subsolution
on Q, then Z is a viscosity subsolution on Qr .

The strict separation of u and v on the parabolic boundary of Q allows us to
separate Z and W on the parabolic boundary of Qr .

Proposition 3.8. Suppose that u ∈ U SC and v ∈ L SC in Q such that u < v on
∂P Q. Then there exists r0 > 0 such that Z < W on ∂P Qr for all 0 < r � r0.

Proof. Standard from semicontinuity. ��
Arguably the most important feature of regularizations Z and W is the interior

ball property of their level sets, as well as of the time-slices of their level sets. We
formalize this fact by introducing the notion of dual points.
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Definition 3.9. Let r > 0, u ∈ U SC(Ω) and let Z be its sup-convolution. Let
P ∈ Qr . We say that P ′ ∈ Q is a sup-dual point of P with respect to u

if P ′ ∈ Ξ(P) and u(P ′) = Z(P).

Let us define Πu(P) to be the set of all sup-dual points of P with respect to u,

Πu(P) = {
P ′ ∈ Ξ r (P) : u(P ′) = Z(P)

}
.

Similarly, we can define inf-dual pointsΠv(P) for v ∈ L SC(Ω) byΠv(P) :=
Π−v(P).

In what follows, we shall use the following convenient notation for various level
sets of u and Z :

{
u � 0

} = {
(x, t) ∈ Q : u(x, t) � 0

}
,

{u < 0} = {(x, t) ∈ Q : u(x, t) < 0},
which is contrasted with

{
Z � 0

} = {
(x, t) ∈ Qr : Z(x, t) � 0

}
,

{Z < 0} = {(x, t) ∈ Qr : Z(x, t) < 0}.

Sets
{
v � 0

}
, {v > 0}, {W � 0

}
and {W > 0} are defined in a similar fashion.

This choice guarantees that sets with � and � are closed, while sets with< and >
are open.

We first make a few simple observations about Πu and Πv .

Proposition 3.10. Let u ∈ U SC(Q). Then for all P ∈ Qr :

(i) Πu(P) �= ∅,
(ii) Ξ r (P ′) ∩ Qr ⊂ {

Z � Z(P)
}

for all P ′ ∈ Πu(P),
(iii) if P ∈ ∂{Z � 0

}
, thenΠu(P) ⊂ ∂Ξr (P)∩ ∂

{
u � 0

}
andΞr (P) ⊂ {u < 0}.

Since the closed sets
{
W � 0

}
and

{
Z � 0

}
have closed space and space-time

interior balls at each point, they have no points that are isolated from their interior:

Lemma 3.11. The level sets of the functions W and Z defined above have the
following properties:

int
{
W � 0

} = {
W � 0

}
, int

{
Z � 0

} = {
Z � 0

}
.

Moreover, this holds true for every time-slice t (with space closure and interior).

Proof. This follows from the interior ball property in Proposition 3.10. Fix time t
and for simplicity define E = {

W � 0
}

t . Pick any point x ∈ E . Then there is an

open ball B = Br (y) such that x ∈ B and B ⊂ E . But B is open, so B ⊂ int E
and, therefore, x ∈ B ⊂ int E . ��
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Fig. 2. Space cross section of the situation in the proof of Lemma 3.12

Another important property of the regularized supersolution W is that each point
of the time-slice

{
W � 0

}

t is connected to the boundary ∂Ωr with nonpositive
values of W by a wide “trunk” of finite length:

Lemma 3.12. Let W be the inf-convolution of a supersolution v. Then for every
(ξ, σ ) ∈ {W � 0

}
there is a piecewise linear continuous curve γ : [0, 1] → Ωr ,

with finite length such that γ (1) ∈ Ωc
r and

ξ ∈
⋃

s∈[0,1]
Br/2(γ (s)) ∩Ωr ⊂ {

W � 0
}∣
∣
t=σ .

Proof. Pick P = (ξ, σ ) ∈ {
W � 0

}
. By Proposition 3.10, there exists a point

P ′ = (ξ ′, σ ′) on Πv(P) such that (ξ, σ ) ∈ Ξ r (ξ
′, σ ′) ⊂ {

W � 0
}
. Therefore, we

can also find ξ̂ such that ξ ∈ ∂Br/2(ξ̂ ) and Br/2(ξ̂ ) ⊂ {
W � 0

}

σ
. The situation is

depicted in Fig. 2.
Let us denote H = {

v � 0
}∣
∣
t=σ ′ . Since H is compact we can select a finite

subcover from the open cover

H ⊂
⋃

x∈H

Br/2(x).

Let us denote the balls in the finite subcover by B1, . . . , Bk , with centers x1, . . . , xk .
Suppose that there exists a permutation ( j1, . . . , jk) of (1, . . . , k) and q ∈ N

such that
⎛

⎝
⋃

1�l�q

B jl

⎞

⎠ ∩
⎛

⎝∂Ω ∪
⋃

q<l�k

B jl

⎞

⎠ = ∅.

Let us denote G = ⋃
1�l�q B jl and C = H ∩ G. Note that G is open and C is

nonempty. By definition, v > 0 on ∂G × {
σ ′} and therefore there is δ > 0 such

that v > 0 on ∂G × (σ ′ − δ, σ ′] ({v > 0} is open by v ∈ L SC). In particular,
since −v−(·, t) is a supersolution of the elliptic problem for every t (Lemma 3.3),
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an application of the elliptic comparison principle (Proposition A.1) yields that
v � 0 in G × (σ ′ − δ, σ ′]. In addition, a straightforward barrier argument (barrier
constructed in Lemma B.4) shows that in fact v > 0 on G × {

σ ′}. This is a
contradiction with v(x j1 , σ

′) � 0 at x j1 ∈ G.
Therefore we conclude that we can find i1, . . . , im distinct with ξ ′ ∈ Bi1 , Bim ∩

∂Ω �= ∅ and

Bil ∩ Bil+1 �= ∅, 1 � l < m.

Since we observe that Br (xi ) ⊂ {
W � 0

}

σ
for all 1 � i � k, we can choose the

curve γ as the piecewise linear curve connecting the points ξ̂ , xi1 , . . . , xim . ��
Now we present two results, Lemmas 3.13 and 3.16, that justify the shape of

the domain Ξr chosen in the definition of the regularizations Z and W .

Lemma 3.13. Let v be a viscosity supersolution of (1.1) on Ξ, Ξ = Ξr (ξ, σ ) for
some (ξ, σ ) ∈ R

n ×R, and v > 0 inΞ . Then there exists f ∈ C([0, r ]), f (0) = 0,
f > 0 on (0, r ] and f (s)

s → ∞ as s → 0+ such that

v(x, t) � f (r − |x − ξ |) for |x − ξ | < r, t ∈ [σ + r/2, σ + r ].
Proof. We prove only that v(x, σ + r) � f (r − |x − ξ |). The full result follows
from the simple observation that

Ξr/2(x, t) ⊂ Ξr for |x | � r

2
, t ∈

[
− r

2
,

r

2

]
.

Let us fix a point (ζ, σ + r) ∈ Dr (ξ, σ + r). Since the argument is invariant
under translation and space rotation, we can assume that (ζ, σ + r) = (0, 0). Let
s = r − |ζ − ξ |. Our goal is to show that v(0, 0) = v(ζ, σ + r) � f (s) for some
function f . The situation is depicted in Fig. 3.

It is straightforward to estimate the distance of the lateral boundary ∂LΞ at each
time, ∂Ξ |t , from the origin x = 0 for t ∈ (−r, 0):

dist(0, ∂Ξ |t ) = s + 3
√

r2 − (t + r)2 = s + 3
√

−2r t − t2 > s + 3
√−r t . (3.3)

Fig. 3. Iterations in the proof of lower bound in Lemma 3.13
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Since v ∈ L SC is positive in Ξ , it has a positive minimum on the compact set

K :=
{
(x, t) : |x − ξ | � r + 3

√−r t, t ∈ [−7r/8,−r2/256]
}

as K ⊂ Ξ .
Let us set

γ := min

{
1

16nλ+ 8δ1 + 2δ0
, 1

}

,

and let us define the barrier

ϕ(x, t) =
(

− 1

2γ
t − 4 |x |2 + 1

)

+
. (3.4)

Clearly, ϕ is a viscosity subsolution of the parabolic problem due to (1.6), and
ϕ(0, γ ) = 1

2ϕ(0, 0) = 1
2 . Let us define a sequence of parabolic cylinders

Q j = Ba j × (h j − (1 + γ )a2
j , h j ), j � 0,

where

h j = −
j−1∑

i=0

a2
i , j � 1, h0 = 0.

The a j terms are defined in accordance with (3.3) as

a j = 3
√−rh j + s, j � 1, a0 = min

{
s,

r

16

}
.

Writing h j+1 = h j − a2
j , we can derive the recurrence relation

a j+1 = 3
√

ra2
j + (a j − s)3 + s, j � 0. (3.5)

Note that a j ’s were chosen in such a way that Q j ⊂ Ξ for all j for which h j+1 < r ,
due to (3.3).

First assume that s < r/16. From (3.5) we estimate

a j+1 � r1/3a2/3
j , j � 0,

which yields

a j � r
( s

r

)
(

2
3

) j

→ r as j → ∞. (3.6)

We want to estimate the minimal k = k(s) that guarantees

∂B Qk = Dak (0, hk − (1 + γ )ak) ⊂ K .

We first observe that if a j � r
2 + s for some j � 0 then k � j . Therefore (3.6)

yields the upper bound
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k �
log

[
log s

r

log 1
2

]

log 3
2

+ 1. (3.7)

To show that such a k indeed exists, suppose that h j > −r2/8 for some j . Then
a j < r/2 + s and

h j − (1 + γ )a2
j � −r2

8
− 2

( r

2
+ s

)2 = −r2

8
− r2

2
− 2rs − 2s2 � −7r

8
,

since s < r/16 and γ � 1.
If s � r/16 then we set k = 0.
Next we iteratively define, for j = k, . . . , 0, the rescaled barriers

ϕ j (x, t) = κ jϕ(a
−1
j x, a−2

j (t − h j )+ 1 + γ ),

where

κ j =
{

minK v > 0 j = k,

minBa j /2
ψ j+1(·, h j+1 − γ a2

j ) j < k,

and the functions ψ j , j = k, . . . , 0, are the unique solutions of the parabolic
problem with boundary data ψ j = ϕ j on ∂P Q j . We observe that ψ j � ϕ j in Q j

due to the parabolic comparison (Proposition A.2), since ϕ j is a subsolution of the
parabolic problem.

Now, the parabolic Harnack inequality (Proposition A.4 applied with t1 = γ

and t2 = 1 + γ ) yields

κ j−1 = inf
Ba j−1/2

ψ j (·, h j − γ a2
j−1) � inf

Ba j /2×[h j −γ a2
j−1,h j ]

ψ j

� 1

c
sup
Ba j /2

ψ j (·, h j+1) � 1

2c
sup
Ba j /2

ψ j (·, h j+1 − γ a2
j )

= 1

2c
κ j . (3.8)

Finally, we realize that, by definition, v � ϕk = ψk on ∂P Qk and thus an
application of the parabolic comparison shows that v � ψk in Qk . Since we chose
ψ j so that ψ j � ψ j+1 on Q j ∩ Q j+1, we can apply the comparison principle
iteratively to conclude that v � ψ j in Q j for j = k, . . . , 1. The case j = 0,
however, has to be considered separately, because we know only that v > 0 in Ξ ,
that is, in Q0 ∩ {t < 0}. Therefore, the parabolic comparison can only show that
v � ψ0 in Q0 ∩ {t < 0}. Nevertheless, since ψ0(0, 0) > 0 and v is bounded from
below onΞ , a straightforward barrier argument using a strict classical subsolution of
(1.1), that can be constructed in the form similar to (3.4), extended in negative phase
using a strict subsolution of the elliptic problem, shows that v(0, 0) � ψ0(0, 0).
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Now let α = 1
2c . Then a simple induction of (3.8) using the bound (3.7) yields

the lower bound

v(0, 0) � ψ0(0, 0) � α

(
log s

r

log 1
2

) logα

log 3
2

min
K
v =: f (s), s ∈ (0, r ].

A straightforward computation verifies that f (s) → 0 and f (s)/s → ∞ as s ↘ 0+
since α < 1. ��
Corollary 3.14. (Continuous expansion of

{
v � 0

}
) If v is a viscosity supersolution

of (1.1), then the set
{
v � 0

}
cannot expand discontinuously, that is,

{
v � 0, t < s

} = {
v � 0, t � s

}
,

for any s.

Proof. Suppose that the claim is not true, that is, there is a point

(ξ, τ ) ∈ {v � 0, t � τ
} \ {v � 0, t < τ

}
.

That means that there is ρ > 0 such that

Ξρ(ξ, τ − ρ) ∩ {v � 0, t < τ
} = ∅,

and thus v > 0 inΞρ(ξ, τ − ρ). Lemma 3.13 then yields v(ξ, τ ) > 0, a contradic-
tion. ��
Remark 3.15. Note that the set

{
u � 0

}
of a subsolution u can expand discontin-

uously when a part of the set {u < 0} is pinched off by a collision of two “fingers”
of
{
u � 0

}
.

Lemma 3.16. Let u � 0 be a bounded subsolution of the parabolic problem in a
parabolic neighborhood of Ξ , with Ξ = Ξr (ξ, σ ) for some (ξ, σ ) ∈ R

n × R and
r ∈ (0, 1). Assume that u = 0 onΞ . Then there exists ε > 0 and g ∈ C1([0, r +ε))
with g = g′ = 0 on [0, r ] such that

0 � u(x, t) � g(|x − ξ |) for |x − ξ | < r + ε, t ∈ [σ, σ + r ].
Proof. Let us choose (y, s) ∈ Br (x)× [σ, σ + r ]. For a given ε > 0, η ∈ (0, ε),
we define the barrier

ψε,η(x, t) := 4M

ε
(4nΛt + |x |2 + η),

on

Eε,η :=
(

Bε1/2 ×
(
− ε

8nΛ
, 0
])

∩ {ψε,η(x, t) > 0
}
.

Note that:

(i) Due to (1.6), ψε,η is a strict supersolution of the parabolic problem in Eε,η as
long as ε1/2 < 2nΛ

3(δ0+δ1)
, and ψε,η � 2M on ∂Bε1/2 × [− ε

8nΛ, 0].



992 Inwon C. Kim & Norbert Požár

(ii) ψε,η > 0 if and only if t > − η
4nΛ or |x | > √−4nΛt − η.

(iii) 3
√−r t >

√−4nΛt when t ∈ (− r
8nΛ, 0) and 3

√
− rε

8nΛ > ε1/2 for small ε > 0.

(i)–(iii) verify that for small ε > 0 and all η ∈ (0, ε), we have the ordering

u(x, t) � ψε,η(x − y, t − s) on ∂P Eε,η + (y, s),

and hence by the parabolic comparison (Proposition A.2) the ordering holds in
Eε,η + (y, s). Therefore, there exists a constant ε > 0 such that

u(x, t) � g(|x − ξ |) := inf
η>0
ζ∈Br

ψε,η(x − ζ, 0)

for (x, t) ∈ Br+ε × [σ, σ + r ]. ��

3.3. Z and W Cross

We proceed with the proof of the comparison principle (Theorem 3.1) for the
regularized solutions Z and W , in place of u and v. To argue by contradiction, we
investigate the situation when Z and W cross in Qr , that is, there is a finite first
crossing time t0, defined by

t0 := sup
{
τ | Z(·, t) < W (·, t) for 0 � t � τ

}
. (3.9)

Since
{
W � 0

}
cannot expand discontinuously due to Lemma 3.14, we can

prove that a certain ordering of level sets of W and Z is preserved up to the crossing
time t0.

Lemma 3.17. Let Z and W be the regularized solutions defined in (3.2) and let t0
be the crossing time defined in (3.9). Then

{
Z � 0

}

t0
∩ {W � 0

}

t0
= ∂

({
Z � 0

}

t0

)
∩ ∂

({
W � 0

}

t0

)
. (3.10)

In particular,

int
({

Z � 0
}

t0

)
∩ int

({
W � 0

}

t0

)
= ∅. (3.11)

Proof. First observe that
{
W � 0

}

t ⊂ {Z < 0}t for t < t0 (or equivalently
{

Z � 0
}

t ⊂ {W > 0}t for t < t0).

Step 1. We claim that int
{
W � 0

}

t0
⊂ {Z < 0}t0 .

Pick any ξ ∈ int
{
W � 0

}

t0
. Due to continuous expansion of

{
W � 0

}
(Corol-

lary 3.14), there exists δ > 0 such that Bδ(ξ) ⊂ int
{
W � 0

}

t for a short time
before t0, t ∈ [t0 − δ, t0]. Lemma 3.12 yields that Bδ(ξ) is connected to ∂Ωr with
non-positive values of W (and thus negative Z ) through a wide “trunk”

G = (γ ([0, 1])+ Br/2) ∩Ωr ,

and Bδ(ξ) ⊂ G ⊂ {
W � 0

}

t0
. The continuous expansion of

{
W � 0

}
again guar-

antees that G can be chosen so that G ⊂ {
W � 0

}

t for a short time before t0.
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Finally, we recall that Z < W in G × [0, t0). Therefore, we can construct a strict
classical supersolution of (1.1) up to the time t0 that will stay above Z and is nega-
tive in Bδ(ξ). Indeed, we solve the elliptic problem in G with zero on ∂G ∩Ωr and
negative data on ∂G ∩ ∂Ωr . Since G has a uniform interior ball property at points
∂G ∩Ωr , we can proceed as in the proof of Lemma 4.1. We conclude Z(ξ, t0) < 0.

Step 2. Since
{

Z � 0
} ∩ Qr = {Z < 0}c ∩ Qr , we have

int
({

W � 0
}

t0

)
∩ {Z � 0

}

t0
= ∅, (3.12)

which together with Lemma 3.11 also gives

int
({

Z � 0
}

t0

)
∩ {W � 0

}

t0
= ∅. (3.13)

Step 3. Now (3.12) clearly implies

{
Z � 0

}

t0
∩ {W � 0

}

t0
⊂ {

W � 0
}

t0
\ int

({
W � 0

}

t0

)
= ∂

({
W � 0

}

t0

)
.

Using (3.13) symmetrically concludes the proof of the lemma. ��
Corollary 3.18. Let Z ,W and t0 be defined as above, and let

ξ ∈ {Z � 0
}

t0
∩ {W � 0

}

t0
.

Then there is a unique unit vector ν such that ν is the unit outer normal to
{

Z � 0
}

t0
at ξ and the unit outer normal vector to {W > 0}t0 at ξ .

Proof. Due to Lemma 3.17, ξ ∈ ∂
({

Z � 0
}

t0

)
∩∂

({
W � 0

}

t0

)
. Moreover, there

are dual points

(ξu, σu) ∈ Πu(P) ⊂ ∂
{
u � 0

}
and (ξv, σv) ∈ Πv(P) ⊂ ∂

{
v � 0

}

(see Proposition 3.10).

Let Bu = int
(
Ξ r (ξu, σu)

∣
∣
t=t0

)
and Bv = int

(
Ξ r (ξv, σv)

∣
∣
t=t0

)
. Due to the

definition of Ξr , Bu and Bv are balls in R
n , centered at ξu and ξv , respectively,

of radius greater than or equal to r . Observe that Bu ⊂ int
{
W � 0

}

t0
and Bv ⊂

int
{

Z � 0
}

t0
. Therefore,

Bu ∩ Bv ⊂
(

int
{
W � 0

}

t0

)
∩
(

int
{

Z � 0
}

t0

)
= ∅,

while Bu ∩ Bv = {ξ}. This is true for an arbitrary choice of dual points. Therefore,
the outer unit normal of ν of Bu (respectively inner unit normal of Bv) at ξ is
uniquely determined, and can be taken as

ν = ξ − ξu

|ξ − ξu | = ξv − ξ

|ξv − ξ | .

��
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3.4. Finite Speed of Expansion

Our goal in this section is to use the ordering of the support to prove the ordering
of the functions Z and W at the contact time t = t0. This needs a careful analysis
since Z and W are merely semi-continuous.

From Lemma 3.3 we know that Z+ is a parabolic subsolution, and −W− is
an elliptic supersolution for each time. We also know that W is a parabolic super-
solution in {W > 0} (open set) and Z is an elliptic subsolution for each time in
{Z < 0} (open set). Therefore, we can invoke the standard comparison principle
(Propositions A.1 and A.2) in the open sets {W > 0} and {Z < 0}t , if we know that
the functions are ordered on the boundaries of these sets. This is not completely
obvious, however, and we have to pay special attention to the situation at the contact
point.

Lemma 3.19. (Finite speed of expansion at the contact point) Let Z , W be the
regularizations and t0 be the crossing time as defined in (3.9). Then for any ξ ∈{

Z � 0
}

t0
∩ {W � 0

}

t0
,

Πu(ξ, t0) ∪Πv(ξ, t0) ⊂ ∂LΞr (ξ, t0).

Proof. We split the proof into a number of shorter steps. Here we use the simplified
notation Ξ = Ξr (ξ, t0) (and analogously, Πu and Πv).

Step 1. Πv ∩ ∂�Ξ = ∅.
For the sake of argument, suppose that this does not hold and there, indeed, is a

point P ′ = (ξ ′, σ ′) ∈ Πv ∩ ∂�Ξ . Note that σ ′ = t0 + r . We observe that v > 0 in
Ξ due to (3.10) and Proposition 3.10(iii), and thus we can apply Lemma 3.13 for
v on Ξ . The first consequence is

∣
∣ξ ′ − ξ

∣
∣ = r , that is,

P ′ ∈ ∂Dr (ξ, t0 + r).

Let ν be the unit normal from Corollary 3.18. We choose ρ0 = min( r
4 , ρ̂c) (ρ̂c

is defined in Proposition B.3) and set

ζ = ξ ′ − ρ0ν, σ̂ = σ ′, â = 2, b̂ = −1 and ω̂ = 0.

Proposition B.3 provides us with a radially symmetric subsolution of (1.1) with
parameters â, b̂ and ω̂ega. We denote by ϕ̂ its translation by (ζ, σ̂ ), which is
defined on the cylinder

K = {
ρ0 − ε < |x − ζ | < ρ0 + ε, t ∈ [σ̂ − ε, σ̂ ]}, (3.14)

for some ε > 0. The situation is depicted in Fig. 4, which is a part of the larger
picture in Fig. 5.

Let us define ϕ = μϕ̂, where μ > 0 is picked large enough to ensure that
minK ϕ < minK v. Furthermore, since v(x, t) � f (r − |x − ξ |) for |x − ξ | < r ,
with f (s)/s → ∞ as s → 0+, there exists ε1 > 0 for which v > ϕ on

{
ρ0 − ε1 � |x − ζ | < ρ0, t ∈ [σ̂ − ε, σ̂ ]}.
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Fig. 4. Construction of a test function ϕ in Lemma 3.19

Fig. 5. Situation at P = (ξ, t0) ∈ {Z � 0
} ∩ {W � 0

}

We shall compare v and ϕ on a cylinder Σ ,

Σ := {
ρ0 − ε1 < |x − ζ | < ρ0 + ε, t ∈ (σ̂ − ε, σ̂ ]} ⊂ K .

So far, we have shown that v > ϕ on all of ∂PΣ except on
{
(x, σ̂ − ε) : ρ0 � |x − ζ | < ρ0 + ε

} ⊂ Ξ,

where clearly ϕ � 0 while v > 0.
Therefore, ϕ < v on ∂PΣ while ϕ � v at P ′ ∈ Σ , and we arrive at a contra-

diction, since ϕ is a strict classical subsolution of (1.1) on Σ .

Step 2. Πu ∩ ∂�Ξ = ∅.
The proof of step 2 is similar to that of step 1. Choose P ′ ∈ Πu ∩ ∂�Ξ . Due

to (3.11), Lemma 3.12 and Hopf’s lemma (Proposition A.3), we have

lim inf
h↘0+

−Z(ξ + νh)

h
= 2c > 0.

Therefore, there is h0 > 0 for which

u(x, t)� Z(ξ+νh, t0) < −ch <0 for h � h0, (x, t) ∈ Ξ r (ξ+νh, t0). (3.15)
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Proceeding as in the proof of step 1, we have ϕ̂, ε ∈ (0, h0) and K , this time with
ζ = ξ ′ +ρ0ν, σ̂ gma = σ ′. In contrast with step 1, we define ϕ = −μϕ̂, and (3.15)
lets us choose μ > 0 small, for which ϕ > u on
{|x − ζ | = ρ0 − ε, t ∈ [σ̂ − ε, σ̂ ]} ∩ {ρ0 − ε � |x − ζ | � ρ0, t = σ̂ − ε

}
.

Now we find ε1 > 0 such that ϕ > u on
{|x − ζ | = ρ0 + ε1, t ∈ [σ̂ − ε, σ̂ ]};

again, this is possible thanks to Lemma 3.16 applied to u on Ξ .
Finally, define

Σ := {
ρ0 − ε < |x − ζ | < ρ0 + ε1, t ∈ (σ̂ − ε, σ̂ ]}.

Since clearly ϕ � 0 and u < 0 on
{
ρ0 � |x − ζ | < ρ0 + ε, t = σ̂ − ε

}
, we have

succeeded in showing that ϕ > u on ∂PΣ while 0 = ϕ � u at P ′ ∈ Σ , a
contradiction.

Step 3. Πu ∩ ∂⊥Ξ �= ∅, then Πv ∩ ∂�Ξ = ∅ (and also if we swap Πu and Πv).
Indeed, this follows from (3.11) and the definition of t0 in (3.9), which together

yield that, for any Pu ∈ Πu and Pv ∈ Πv , we have

Ξ r (Pu) ∩Ξ r (Pv) ∩ {t � t0
} = (ξ, t0) = P.

Step 4. To finish the proof, we simply realize that steps 2 and 3 used together imply
that Πu ∩ ∂⊥Ξ = ∅, and similarly steps 1 and 3 imply Πv ∩ ∂⊥Ξ = ∅. ��
Remark 3.20. Lemma 3.19 shows that the situation at any P = (ξ, t0) ∈{

Z � 0
} ∩ {W � 0

}
looks like Fig. 5.

Now we have enough regularity to show the following:

Lemma 3.21. For Z , W, t0 defined above, we have

Z = W = 0 on
{

Z � 0
}

t0
∩ {W � 0

}

t0
.

Proof. We will only show this result for Z . A similar, simpler argument applies to
W , as well. See also [20, Lemma 3.6].

Let M = 2 max{t�t0} Z < ∞ and P = (ξ, t0) ∈ {
Z � 0

} ∩ {W � 0
}
. We

can also choose Pv ∈ Πv(P). Let ν be the unit normal from Corollary 3.18.
Lemma 3.19 guarantees that there exists mv ∈ R such that (ν,mv) is an interior
normal of ∂Ξ(Pv) at P , see Fig. 5. This is why we call Lemma 3.19 the “finite
speed of expansion”.

We recall that Z < W � 0 inΞ(Pv)∩{t < t0}. Furthermore, the argument from
step 2 of the proof of Lemma 3.19, using (3.11), Lemma 3.12 and Proposition A.3,
verifies that Z < 0 in Ξ(Pv) ∩ {t = t0}, as well.

As in the proof of Lemma 3.19, we can construct a strict classical supersolution
of (1.1) with the help of Proposition B.3. Let us again choose ρ0 small enough so
that for â = 2, b̂ = −1, ω̂ = max {0, 2mv}, ζ = ξ +ρ0ν, there is a strict classical
supersolution −ϕ̂(· − ζ, · − t0), defined on the set

K = {
ρ0 − ε � |x − ζ | � ρ0 + ε, t ∈ (t0 − ε, t0]

}
,

for some ε > 0.
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Fig. 6. Construction of a test function ϕ in Lemma 3.21

For τ > 0 and h = τ 2, let us define

Στ = {
ρ0 < |x − ζ | − (t − t0)ω̂ < ρ0 + h, t ∈ (t0 − τ, t0]

}
,

see Fig. 6.
We can take τ small enough so that

(a) Στ ⊂ K ,
(b) Στ ∩ {t = t0 − τ } ⊂ Ξ(P ′).

Now we find μ > 0 large enough so that

−μϕ̂ > 2M on
{|x | = ρ0 + h + tω̂, t ∈ [−τ, 0]}.

For η > 0, set ϕη(x, t) = −μϕ̂(x − ζ − ην, t − t0). Since Z is a subsolution of
(1.1) and Z < ϕ on ∂PΣ+ (ην, 0) for small η, we also have Z < ϕ inΣ+ (ην, 0).
We conclude by sending η → 0,

Z(ξ, t0) � lim
η→0+ϕη(ξ, t0) = ϕ0(ξ, t0) = 0.

��
Lemmas 3.17 and 3.21 have the following consequence:

Corollary 3.22. Let Z , W and t0 be as above. Then

Z � W at t = t0.

Furthermore,

{Z = 0}t0 ∩ {W = 0}t0 �= ∅.
Proof. We apply the comparison principle for elliptic equations (Proposition A.1)
and compare Z(·, t0) and W (·, t0) on the open set {Z < 0}t0 . Indeed, we can
set Z = 0 on ∂{Z < 0} to ensure that Z � 0. The modified Z(·, t0) is clearly
in U SC({Z < 0}t0) and a subsolution of the elliptic problem in int {Z < 0}t0
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(= {Z < 0}t0 by Lemma 3.11). Then Z � W on ∂
({Z < 0}t0

)
due to Lemma 3.21

and the elliptic comparison applies.
The same can be done using the comparison principle for the parabolic equation

(Proposition A.2) in the parabolic neighborhood
{
W > 0, t � t0

}
.

Finally, if {Z = 0}t0 ∩ {W = 0}t0 = ∅, then in the view of Lemmas 3.17 and
3.21,

{
Z � 0, t � t0

} ∩ {W � 0, t � t0
} = ∅.

Since these sets are compact, they have positive distance and the comparison in the
first part of the proof yields Z < W at t = t0, a contradiction with the definition of
t0 and Z − W ∈ U SC . ��

3.5. Ordering of Gradients at the Contact Point

Here we will show that, at a contact point P , the “gradients” of Z (respectively
W ) follow the flux ordering given in Definition 2.2(iv) (respectively its supersolu-
tion counterpart). As mentioned in the beginning of Section 3, this ordering would
readily yield a contradiction with the fact that Z crosses W from below at P .

Lemma 3.23. Let Z , W and t0 be as defined above, let
P = (ξ, t0) ∈ {Z � 0

} ∩ {W � 0
}

be a contact point at time t0, and let ν be
the unique spatial unit normal vector at P obtained in Corollary 3.18. Then

lim inf
h↘0+

Z(ξ − hν, t0)

h
+ lim inf

h↘0+
Z(ξ + hν, t0)

h
� 0,

lim sup
h↘0+

W (ξ − hν, t0)

h
+ lim sup

h↘0+
W (ξ + hν, t0)

h
� 0.

Proof. We prove the result for Z . The proof for W is similar.
Let us again write Ξ = Ξr (P) ≡ Ξr (ξ, t0) throughout the proof. Denote

a := lim inf
h↘0+

Z(ξ − hν, t0)

h
, b := lim inf

h↘0+
Z(ξ + hν, t0)

h
.

Note that b � 0 � a. A simple barrier argument, following the one in the proof of
Lemma 3.21 and taking advantage of the room provided by Lemma 3.19, shows
that a < ∞. Furthermore, the inequality a + b � 0 is satisfied trivially if b = 0.
Thus we may replace b by −2a, if necessary, and assume that −∞ < b < 0.

Suppose that the result does not hold, in other words, a + b < 0. In that case,
we set κ := a−b

2 > 0, and we note that

a < κ, b < −κ.
Let us choose η > 0 such that

a + 3η < κ, b + 3η < −κ.
We shall use this to construct a barrier that crosses u from above at an arbitrary

fixed point Pu = (ξ ′, σ ′) ∈ Πu(P), yielding a contradiction. As in the proof of
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Lemma 3.21, since Pu ∈ ∂LΞ thanks to Lemma 3.19, there is mu ∈ R such that
(ν,mu) ∈ R

n × R is an interior normal vector to ∂Ξ at Pu (see Fig. 5).
Following the proof of Lemma 3.19, we can construct a radial supersolution

of (1.1) with the help of Proposition B.3. Let us again choose ρ0 small so that for
â = a + 3η and b̂ = b + 3η, ω̂ = max(0, 2m), ζ = ξ ′ + ρ0ν, and σ̂ = σ ′, there
is ϕ = −ϕ̂, a strict classical supersolution of (1.1) translated by (ζ, σ̂ ), defined on
K as in (3.14), and ϕ = 0 at Pu .

From the definition of a and b, and Z , for every τ ∈ (0, 1) there are h1, h2 ∈
(0, τ 2) such that

sup
Ξ r (ξ−h1ν,t0)

u = Z(ξ − h1ν, t0) < (a + η)h1, (3.16)

sup
Ξ r (ξ+h2ν,t0)

u = Z(ξ + h2ν, t0) < (b + η)h2. (3.17)

For a given choice of τ, h1, h2, let us define

Στ := {
ρ0 − h2 < |x − ζ | − (t − σ̂ )ω̂ < ρ0 + h1, t ∈ (σ̂ − τ, σ̂ ]},

see Fig. 4 for a sketch of a similar construction. We shall choose τ ∈ (0, 1) small
enough so that the following holds:

(a) Στ ⊂ K ,
(b) ϕ > (a + η)h1 on A := {|x − ζ | − (t − σ̂ )ω̂ = ρ0 + h1, t ∈ [σ̂ − τ, σ̂ ]},
(c) ϕ > (b + η)h2 on ∂PΣτ \ A,
(d) A ⊂ Ξ r (ξ − h1ν, t0),
(e) ∂PΣτ \ A ⊂ Ξ r (ξ + h2ν, t0).

Indeed, ϕ satisfies (b) and (c) for small τ due to its smoothness in the positive
and negative phases, and (a), (d) and (e) are a consequence of the choice of ω̂ega
and the definition of Στ . Since ϕ > u on ∂PΣτ [thanks to (b)+(d)+(3.16) and
(c)+(e)+(3.17)] while 0 = ϕ = u at Pu ∈ Στ , we get a contradiction. ��

3.6. Proof of Theorem 3.1

Now we are ready to prove Theorem 3.1. The proof proceeds by showing the
comparison for the regularizations Z and W defined in (3.2). We choose r > 0
such that Z < W on ∂P Qr (Proposition 3.8).

Suppose that there is a point in Q where u � v. Since u � Z and W � v, we
see that there must be a point in Qr where Z � W . Then t0 in (3.9) is finite. We
recall that Z � W at t = t0 by Corollary 3.22.

Corollary 3.22 also guarantees the existence of a contact point at t = t0:

P = (ξ, t0) ∈ ∂{Z � 0
} ∩ {W � 0

}
with Z(P) = W (P) = 0.

At the point P , the boundaries ∂
{

Z � 0
}

and ∂
{
W � 0

}
are C1,1, in the sense that

they have space-time and space balls from both sides (Proposition 3.10(iii)). Let ν
be the unique unit normal vector to the space balls at ξ given by Corollary 3.18.
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Set Ω ′ to be the connected component of the open set {Z < 0}t0 that contains
ξ on its boundary. Lemma 3.12 guarantees that

Z(·, t0) �≡ W (·, t0) on Ω ′.

We recall that Z(·, t0) is a subsolution of the elliptic problem onΩ ′ and −W −(·, t0)
is a supersolution of the elliptic problem (Lemma 3.3). We can apply the elliptic
Hopf’s lemma (Proposition A.3) to Z(·, t0) and W (·, t0) on Ω ′ at ξ , which yields

lim inf
h↘0+

−Z(ξ + hν, t0)

h
> lim inf

h↘0+
−W (ξ + hν, t0)

h
.

Finally, the “weak gradients” are ordered at ξ by Lemma 3.23, which leads to
a contradiction (we write Z(·) instead of Z(·, t0), all limits are h ↘ 0+):

lim inf
Z(ξ − hν)

h
� lim sup

−Z(ξ + hν)

h
� lim inf

−Z(ξ + hν)

h
Hopf
> lim inf

−W (ξ + hν)

h
� lim sup

W (ξ − hν)

h

� lim inf
Z(ξ − hν)

h
.

Therefore, t0 cannot be finite and we conclude that u < v in Q. This finishes
the proof of Theorem 3.1. ��

3.7. Remarks on the Proof of Theorem 3.1 for Divergence-Form Operators

The arguments in the proof of Theorem 3.1 also hold for the divergence-form
operator F given by (1.4). The only difference lies in the references on the properties
of solutions of the parabolic and elliptic problems, which have been used throughout
Section 3 and which are proved or referred to in Appendix A, as well as the specific
barriers constructed in Appendix B.1.

Since the barriers for the divergence-form operator are constructed in Appen-
dix B.2, here we only point out the references for the regularity properties of solu-
tions of the parabolic and elliptic problems (in the sense of Definition 3.2). More
precisely, we have used the parabolic Harnack inequality (Proposition A.4) and the
elliptic Hopf’s lemma (Proposition A.3). For a divergence-form operator F given
by (1.4), Proposition A.4 is shown in [21, Chapter V] and Proposition A.3 is shown
in [11].

Having all of the above properties and test functions, one can proceed as in
Section 3 to prove the following:

Theorem 3.24. Theorem 3.1 holds for F given in (1.4).
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4. Existence and Stability of Viscosity Solutions

Let F and Ω be given as before. In this section we show the existence of
viscosity solutions of (1.1) via the Perron’s method. We say that a continuous
function u0 : Ω → R is in P if the following conditions hold:

u0 = −1 on ∂Ω and − F(D2u0, Du0, u0) = 0 in {u0 < 0}. (4.1)

Γ (u0) := ∂{u0 > 0} = ∂{u0 < 0} is locally a C1,1-graph. (4.2)

Note that (4.2) and the boundedness of Ω guarantee that there exists R0 > 0 such
that ∂{u0 > 0} has both an interior and an exterior ball of radius R0 at each point.

First, we ensure, by constructing suitable barriers, that the solutions with initial
data u0 ∈ P evolve continuously at the initial time.

Lemma 4.1. Suppose u0 ∈ P . Then there exist at least one viscosity subsolution
U and one supersolution V of (1.1) with initial data u0. Moreover, there exists
a constant C > 0 and a small time t0 > 0 depending only on the maximum of
u0, N , d and R0 such that, for 0 < t < t0, we have

d(x, Γ ), d(y, Γ ) � t1/4 for x ∈ ∂{U (·, t) > 0} and y ∈ ∂{V (·, t) < 0}.
Proof. 1. First we construct a supersolution V . Let us set

O+(t) := {x : d(x, {u0 > 0}) < t1/4},
and let V (x, t) solve

⎧
⎨

⎩

Vt − F(D2V, DV, V ) > 0 in O+(t)
V = 0 on Γ (t) := ∂O+(t)
−F(D2V, DV, V ) > 0 in O−(t) := Ω \ O+(t),

with the initial and lateral boundary data u0 and −1, respectively. Note that,
due to the regularity assumption (4.2) on Γ , the positive phase O+(t) has the
exterior ball property with radius R0 − t1/4 for small time t . In particular, it
follows from the uniform ellipticity of the operator in the negative phase that
there exists t0 > 0 such that we have |DV | > c0 on Γ (t) for 0 < t < t0, where
c0 > 0 is independent of t .
Now a barrier argument, which takes advantage of the barrier constructed in
the proof of Lemma 3.16, yields the existence of a function c(t) such that

|DV +| � c(t) with c(t) → 0 as t → ∞.

Hence, we can choose t0 sufficiently small such that |DV +| < |DV −| on
Γ (t) for 0 � t � t0, and therefore V is a viscosity supersolution of (1.1)
for 0 � t � t0. For t > t0 we take V (·, t) = ψ , where ψ(x) is a viscosity
supersolution of the elliptic problem −F(D2ψ, Dψ,ψ) = 0 in Ω with the
boundary data −1, and ψ > V (·, s) for 0 � s � t0.
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2. The construction of a subsolution U is similar: we replace O+(t) in the con-
struction of V by

O+(t) := {x : d(x, {u0 < 0}) > t1/4}.
It follows from a barrier argument in the proof of Lemma 3.13 that

|DU+| � C(t) on Γ (t), with C(t) → ∞ as t → 0.

On the other hand, due to the exterior ball property |DU−| � C0 on Γ (t), where
C0 is independent of time. Hence, we can choose t0 sufficiently small such that
|DU+| > |DU−| on Γ (t), and thus U is a viscosity subsolution of (1.1) for
0 � t � t0. For t > t0 we take O+(t) := ∅. ��

Using V and U constructed above, the minimal solution u can be constructed
as

u = inf{z : viscosity supersolution of (1.1) such that U � z},
and the maximal solution u can be constructed as

u = sup{w : viscosity subsolution of (1.1) such that w � V }.
Theorem 4.2. u and u are viscosity solutions of (1.1) with initial data u0, and
u = u∗, u = u∗. Moreover, if v is a viscosity solution of (1.1) with initial data u0,
then u � v � u.

Proof. The proof follows from standard arguments in Perron’s method (see for
example the proof of Theorem 1.2 in [19]. Also see [10, section 4]). ��

Lastly, we show stability properties of the maximal (and minimal) solutions
under perturbation of initial data.

For a family of functions {uε}ε>0, let us define the half-relaxed limits

lim sup∗
ε→0

uε(x, t) := lim sup
ε→0

(y,s)→(x,t)

uε(y, s)

and

lim inf∗
ε→0

uε(x, t) := lim inf
ε→0

(y,s)→(x,t)

uε(y, s).

Theorem 4.3. Let u be the maximal viscosity solution of (1.1) with initial data u0.
Let uε0 be a sequence of functions decreasing in ε → 0, such that

(i) u0 < uε0 and uε0 converges uniformly to u0 as ε → 0,
(ii) uε0 and Γ ε := ∂{uε0 > 0} = ∂{uε0 < 0} satisfy Assumptions (4.1) and (4.2)

uniformly in ε > 0,
(iii) Γ ε converges uniformly to Γ (u0) with respect to the Hausdorff distance.
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Let uε be a viscosity solution with initial data uε0. Then uε converges to u in the
following sense: both U1 := lim sup∗

ε→0 uε and U2 := lim inf∗
ε→0 uε satisfy

(Ui )
∗ = u and (Ui )∗ = u∗.

Corresponding results hold for the minimal solutions, if one replaces the condition
u0 < uε0 in (i) with uε0 < u0, and uε0 is increasing as ε → 0.

Remark 4.4. Note that the convergence in the sense of the above theorem is optimal
for semi-continuous functions.

Proof. 1. First, observe that Theorem 3.1 yields that

u∗ < (uε)∗ for any ε > 0. (4.3)

On the other hand, due to the standard stability property of viscosity solutions,
lim sup∗

ε→0 uε(y, s) is a subsolution of (1.1). Hence by a barrier argument (one
may use the supersolution V ε constructed as V in the proof of Lemma 4.1 but for
the initial data uε0), we can show that

lim sup∗
ε→0

uε � V . (4.4)

Therefore, by definition of u we have

lim sup∗
ε→0

uε � u. (4.5)

Putting (4.3) and (4.5) together, we conclude. ��

From the above theorem we have the following “regularity” information on the
minimal and maximal viscosity solutions.

Corollary 4.5.

(u∗)∗ = u and (u∗)∗ = u. (4.6)

5. Uniqueness Properties

Recall that our comparison principle, Theorem 3.1, requires strictly separated
initial data. We saw in the previous section that the theorem yields existence (and
uniqueness, by definition) of maximal and minimal viscosity solutions. In this
section we will discuss uniqueness properties of general viscosity solutions.
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5.1. Viscosity Solutions Coincide with Regular Weak Solutions

In this section we consider a linear uniformly elliptic operator F of the form
F(M, p, z) = tr M . We show that, in this case, the viscosity solutions of (1.1) are
precisely the regular weak solutions introduced in [1]. As a corollary, it follows
that viscosity solutions are unique for this class of operators.

For completeness of the paper we revisit the notion of regular weak solutions
and its properties. We refer to Section 1.4 and Definition 2.1 of [1] for the definition
of weak solutions, subsolutions and supersolutions of (1.1), which are, as usual,
defined in L2(0, T ; H1(Ω)) via integration by parts.

Theorem 5.1. ([1], Theorem 2.2: simplified version) Suppose that

F(M, p, z) = tr M,

and let Q = Ω × (0, T ], where Ω is a bounded domain with Lipschitz boundary.
Suppose that u1 is a weak subsolution and u2 a weak supersolution of (1.1), with
initial data b0

1, b0
2, and boundary data u D

1 , u D
2 , respectively, such that

∂t b(u1), ∂t b(u2) ∈ L2(Q). (5.1)

If b0
1 � b0

2 a.e. in Ω and u D
1 � u D

2 a.e. on ∂L Q, then u1 � u2 a.e. in Q.

We call u a regular weak solution if u is a weak solution and satisfies the
additional regularity (5.1). It is shown in [1, Theorem 2.3] that for linear F there
exists a regular weak solution with initial data u0 ∈ P .

Observing that the test functions U and V constructed in the proof of Lemma 4.1
are, respectively, a classical subsolution and a classical supersolution of (1.1) for
0 < t < t0, Theorem 5.1 yields the following:

Lemma 5.2. Let u0 ∈ H1(Ω) satisfy assumptions (4.1)–(4.2). Then any regular
weak solution u of (1.1) with initial data u0 uniformly converges to u0 as t → 0.

Furthermore, the following holds due to the estimates derived in the proof of
Theorem 2.3 in [1]:

Lemma 5.3. Regular weak solutions are stable under perturbation of initial data in
H1(Ω). More precisely, if the sequence of initial data u0

n converges to u0 in H1(Ω),
then the corresponding regular weak solutions un with respect to the initial data u0

n
converges to the regular weak solution of u with initial data u0 in L2(0, T ; H1(Ω)).

Given a weak solution u ∈ L∞(Q), we want to find a representative v = u a.e.
that is a suitable candidate for a viscosity solution. We shall find it using a weaker
notion of semi-continuous envelopes. To this end, let us state an elementary lemma.

Lemma 5.4. Let E ⊂ R
n such that |E ∩ Bδ(x)| > 0 for all x ∈ E and δ > 0. If

f � g a.e. in E, then

f∗,E � g∗,E .
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Given a function u ∈ L∞(Q), where Q = Ω × (0, T ], define the essential
semi-continuous envelopes

u�(x, t) = inf
v=u a.e.

v∗,Q(x, t) = inf
r>0

ess sup
Br (x,t)∩Q

u,

u�(x, t) = sup
v=u a.e.

v∗,Q(x, t) = sup
r>0

ess inf
Br (x,t)∩Q

u.

Here v∗,Q and v∗,Q are as defined in (1.9).

It follows from the definition that u� ∈ U SC(Q) and u� ∈ L SC(Q), and due
to Lemma 5.4 we have

u� � u�.

We claim that u� � u � u� a.e. To see this, we have for a.e. P = (x, t) by the
Lebesgue’s differentiation theorem

u�(P) = inf
v=u a.e.

v∗(P) = inf
v=u a.e.

inf
r>0

sup
Br (P)

v

= inf
r>0

inf
v=u a.e.

sup
Br (P)

v

� lim
r→0

1

|Br (P)|
∫

Br (P)
u = u(P), a.e. P.

Next we introduce a candidate function for the viscosity solution.

Lemma 5.5. Given a function u ∈ L∞(Q), define

v = max(min(u, u�), u�).

Then v = u a.e., v∗ = u� and v∗ = u�.

Proof. Observe that u� � v � u� since u� � u�. In fact, since u� � u � u� a.e.
we also have that v = u a.e. Now, u� ∈ U SC implies v∗ � u� and the definition
of u� as the infimum yields u� � v∗. Similarly u� = v∗. ��

Now we are ready to state the main result in this subsection:

Theorem 5.6. Let P be the class of regular initial data as defined in Section 4 and
let u be the unique regular weak solution with initial data u0 ∈ P . Then v as given
in Lemma 5.5 is a viscosity solution of (1.1) for the initial data u0.

Proof. The proof is based on the local comparison principle, Theorem 5.1, that
regular weak solutions satisfy. First note that v uniformly converges to u0 at t = 0
due to Theorem 5.1, and the barrier arguments using the barriers V and U con-
structed in Lemma 4.1.



1006 Inwon C. Kim & Norbert Požár

We show only that v∗ is a viscosity supersolution; parallel arguments apply to
the subsolution part. Let φ be a strict classical subsolution in a cylindrical domain
Q′ := Ω ′ × (t1, t2] ⊂ Q such that φ < v∗ on ∂P Q′.

Our goal is to show that φ < v∗ in Q′. Thus, assume that this does not hold and
there exists (x0, t0) ∈ Q′ with φ � v∗ at (x0, t0).

We claim that we can perturb φ into a strict classical subsolution φ̃ with φ̃ > φ

at (x0, t0) and φ̃ < v∗ on ∂P Q′. To this end, let θ ∈ C∞
c (R

n), θ � 0, be the
standard smooth mollifier with support B

n
1. For ε, η > 0 let θε,η(x) := εθ(η−1x)

and define φ̃ as

– if φ(x0, t0) = 0: φ̃(x, t) = φ(x + θε,η(x)ν, t), where ν is the unit outer normal
of {φ > 0}t0 at x0,

– if φ(x0, t0) �= 0: φ̃(x, t) = φ(x, t)+ θε,η(x − x0).

If ε and η are chosen small enough, a straightforward differentiation shows that the
perturbation φ̃ has the required properties.

There is also δ, η > 0 such that φ̃ + δ < v∗ on an η-neighborhood of ∂P Q′,
that is, on the set

{
(x, t) ∈ Q

′ : dist((x, t), ∂P Q′) < η
}
.

Finally, v∗ � u a.e. in Q′ by definition. We conclude that:

(i) φ̃(·, t) � u(·, t) on ∂Ω ′ for a.e. t ∈ (t1, t2] in the sense of trace on H1(Ω ′);
(ii) due to regularity (5.1), b(u) ∈ C(t1, t2; L2(Ω ′)) (see [14, §5.9.2 Theorem 3]

or [16, Chapter IV, Theorem 1.17]) and therefore there is a unique b′
0 ∈ L2(Ω ′)

such that b(u(t)) → b′
0 strongly in L2(Ω ′) as t → t1, and φ̃(·, t1) � b′

0 a.e.
on Ω ′.

A simple computation shows that φ̃ is a regular weak subsolution in the sense of
[1, Definition 2.1]. Therefore, by Theorem 5.1, we have φ̃ � u a.e. in Q′ and hence
φ < φ̃ = φ̃� � u� = v∗ at (x0, t0), a contradiction. Therefore v∗ is a viscosity
supersolution of (1.1) due to Remark 2.5. ��

Theorem 4.3 and Lemma 5.3 yield the following:

Corollary 5.7. Let F(M, p, z) = tr M and let u0 ∈ P . Then there exists a unique
viscosity solution v of (1.1) with initial data u0, which coincides a.e. in Q =
Ω × (0,∞] with the regular weak solution with initial data u0.

5.2. Discussion of Uniqueness for Nonlinear Operators

At the moment, the uniqueness results for fully nonlinear operators are unfortu-
nately quite limited to initial data and domains under special geometries. Here we
illustrate an example. The authors suspect that uniqueness holds in most settings,
but it remains an open question.

When

b(u) = u+, F = F(M) with F(μM) = μF(M) for μ > 0, (5.2)

the following holds.
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Let Γ0 := ∂{u0 > 0} = ∂{u0 < 0} be a locally C1,1 graph, and suppose the
initial data u0 satisfy one of the following:

(A) (Initially decreasing: only possible) u0 is C1 in {u0 > 0} with

−F(D2u0) > 0 in {u0 > 0} and |Du+
0 | < |Du−

0 | on Γ0;
(B) (Star-shaped) g = −1, Ω is a star-shaped domain, and u0((1 + ε)x) < u0(x)

for all x ∈ (1 + ε)−1Ω except at x = 0 for any ε > 0.

Theorem 5.8. Suppose that (A) or (B) holds. Then for the operator of the form
(5.2) there exists a unique viscosity solution of (1.1) with initial data u0.

Proof. 1. In the case of (A), let us define uε0(x) := (u0 − ε)+ in {u0 > ε} and let
uε0 be the solution of

−F(D2u) = 0 in {u0 < ε}
with the boundary data g. Since u0 is C1 and D(u−

0 ) changes continuously with
respect to the change of the domain (due to the ellipticity of F and the regularity
of the domain), if ε is sufficiently small we have |D(uε0)+| < |D(u0)

−|.
Now let us define V (x, t) := ut

0(x). Then for a small time, V (x, t) is a viscosity
supersolution of (1.1). It follows then that, for sufficiently small ε > 0,

u(x, ε) < u(x, 0) in Ω, (5.3)

and there exists a constant cε → 0+ as ε → 0 such that (1 + cε)u(x, ε) <
u(x, 0) in Ω. Let u and v be two viscosity solutions of (1.1) with initial data
u0. In case of (A) we perturb by (1 + c0ε)u(x, t + ε) for given ε > 0 and apply
(5.3) as well as Theorem 3.1 to show that u � v.

2. In case of (B), first note that from the star-shapedness assumption it follows
that u0(0) > 0. Hence for given ε > 0

(1 + cε)u((1 + ε)x, (1 + ε)2t) � v in (1 + ε)−1Ω × [0,∞).

Since ε is arbitrary, we conclude that u � v. ��

6. Approximation by Uniformly Parabolic Problems

In this section we show that our problem (1.1) can be obtained as a singu-
lar limit of uniformly parabolic problems. Consider bn ∈ C2(R) to be a smooth
approximation of b(s) = s+ with the following properties:

(a) 0 < b′
n < 1 on R,

(b) bn → b locally uniformly on R,
(c) b′

n → 0 locally uniformly on (−∞, 0],
(d) b′

n → 1 locally uniformly on (0,∞).
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For example, one can choose

bn(s) = 1

n2 log
en + en2s

en + 1
.

Remark 6.1. The interval in condition (c) includes 0. This moves the irregularity
of b′

n into the positive phase and thus simplifies the proof of Proposition 6.2, but it
is not an essential assumption.

For n � 1, let un be the unique solution of the smooth parabolic problem
{

bn(un)t − F(D2un, Dun, un) = 0, in Q := Ω × (0,∞),

un = g on ∂P Q.
(6.1)

Here we assume that g is a bounded Lipschitz continuous function on ∂P Q.
Due to the maximum principle, un’s are bounded uniformly in n and therefore

problem (6.1) is uniformly parabolic for each n. Note that un is C1,α in Q for each
n due to [21] [for F given as in (1.4)] and [28] (for nonlinear F). Also note that
one cannot directly use the results from [10], since the operator does not converge
uniformly. Indeed, b′ is discontinuous in our setting.

Define the half-relaxed limits

ω := lim sup∗
n→∞

un, ω := lim inf∗
n→∞ un .

Proposition 6.2. ω and ω are, respectively, a viscosity subsolution and a viscosity
supersolution of (1.1) in Q.

Proof. Let us denote u = ω. The goal is to show that u is a viscosity subsolution
of (1.1).

1. Suppose not. By definition, there exists δ > 0 and a strict classical supersolution
φ of (1.1) in a parabolic neighborhood E = U ∩ {t � τ

} ⊂ Q, satisfying
(i) −F(D2φ, Dφ, φ) � δ if φ < 0,

(ii) φt − F(D2φ, Dφ, φ) � δ if φ > 0,
(iii) |Dφ+| + 3δ < |Dφ−| on {φ = 0},
such that u < φ on ∂P E while φ � u at some point of P ∈ E . By increasing
τ if necessary, we may assume that P ∈ {t < τ }, and by perturbing φ as in the
proof of Theorem 5.6, we may assume that, in fact, φ < u at P ∈ E . Therefore,
for large n we have un < φ on ∂P E while un > φ at some point of E .

2. For large n, due to the continuity of un , we can find (xn, tn) ∈ E with un −φ = 0
at (xn, tn) and un − φ < 0 in {t < tn}. Compactness of E allows us to select a
subsequence, also denoted n, such that (xn, tn) → (x0, t0) ∈ E . Since u < φ

on ∂P E we conclude that (x0, t0) ∈ E . Moreover, observe that φ(x0, t0) = 0,
since otherwise (i)–(ii) and the locally uniform convergence of b′

n to b′ on R\{0}
yield a contradiction.
The regularity of un and the condition (iii) on φ ensure that φ(xn, tn) �= 0.
Next, suppose that along a subsequence we have φ(xn, tn) < 0. Since, also,

[
bn(φ)t − F(D2φ, Dφ, φ)

]
(xn, tn) � 0,

the uniform convergence of b′
n to b′ in (−∞, 0] contradicts (i).
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3. Therefore, we can assume that φ(xn, tn) > 0. Let us first observe that
φ+

t (x0, t0) > 0: this can be verified by adding the two inequalities
[
φt − F(D2φ, Dφ, φ)

]
(xn, tn) � δ

[
−b′

n(φ)φt + F(D2φ, Dφ, φ)
]
(xn, tn) � 0,

and by using the fact that b′
n ∈ (0, 1). In particular, this implies that {φ > 0} is

expanding at (x0, t0).

Let ν be the unit outer normal of ∂{φ > 0}t0 at x0. Due to the regularity
of {φ = 0}, it is possible to choose ρ0 > 0 small enough such that Bρ0(ζ0) ∩
{φ > 0}t0 = {x0}, where ζ0 = x0 + ρ0ν. For small enough ρ0, Proposition B.3
provides a strict classical supersolution ψ of (1.1), with parameters

â = ∣
∣Dφ+(x0, t0)

∣
∣+ δ, b̂ = − ∣∣Dφ−(x0, t0)

∣
∣+ δ and ω̂ = 0,

in a neighborhood K of ∂Bρ0 × {0}. Since ω̂ega = 0, ψ is independent of time,
and thus it is a classical strict supersolution of the elliptic problem in each phase.
Let us define ψ̂η(x, t) := ψ(x − ζ0 + ην, t). Choose δ1 > 0 and η > 0 sufficiently
small so that ψ̂η(x, t) > φ(x, t) on ∂PΣδ1 and Σδ1 ⊂ K + (ζ, t0), where

Σδ1 = Bδ1(x0)× (t0 − δ1, t0].
This is possible due to the gradient ordering condition (iii) of φ and due to the fact
that φ+

t > 0 at (x0, t0).
Note that ψ̂η < φ at (x0, t0). Therefore, there is again a subsequence of n, and

some other sequence (xn, tn) ∈ Σδ1 , where un −ψ̂η has a maximum zero at (xn, tn)
in Σδ1 ∩ {t � tn

}
. As before, regularity of un ensures that ψ(xn, tn) �= 0 and so

we have
[
b′

n(ψ)ψt − F(D2ψ, Dψ,ψ)
]
(xn, tn) � 0.

This contradicts the fact that ψ satisfies −F(D2ψ, Dψ,ψ)(xn, tn) > 0. ��
Corollary 6.3. (For nonlinear F) Let u0 ∈ P and uε0 be as given in Theorem 4.3,
and choose a sequence εk → 0. Then, for a given T > 0 there exists nk → ∞
such that {unk } solving (6.1) with initial data uεk

0 converges to the maximal viscosity
solution u of (1.1) with initial data u0. More precisely, both

U1 := lim sup∗
k→∞

unk and U2 := lim inf∗
k→∞ unk

satisfy

(Ui )
∗ = u and (Ui )∗ = u∗.

Parallel statements hold for the minimal viscosity solution.
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Proof. The main challenge in this proof is to ensure thatω andω assume the correct
boundary and initial data. Let us denote M := max {|u0|, 1} as the uniform bound
on |un| obtained by the maximum principle.

1. We first construct barriers to control un near the lateral boundary data. Consider
ϕ(·, t), which solves F(D2ϕ, Dϕ, ϕ) = 0 in Ω for each t � 0 with boundary
data g(·, t). This gives a uniform bound from below on un at the lateral boundary
∂L Q. Next, define ϕ(x, t) = ψ(x) where ψ solves F(D2ψ, Dψ,ψ) = 0 in
Σδ := {x : d(x, ∂Ω) < δ} with boundary data g on ∂Ω and M on {x :
d(x, ∂Ω) = δ}. Here, δ > 0 is chosen small enough so that ψ � g(·, 0). Then
un � ϕ in the setΣδ and we obtain the uniform bound from above on un at the
lateral boundary ∂L Q.

2. To obtain estimates on un near the initial data, one can consider barriers which
are defined for short time 0 � t � t0 as follows. For a given δ > 0, let V (x, t; δ)
be the strict supersolution of (1.1) for 0 � t � t0, constructed as in the proof
of Lemma 4.1, with the initial data uδ0 := u0 + δ, boundary data δ on Γ (t) and

O+(t) = {x : d(x, {u0 > 0}) < t1/4} = {x : d(x, {uδ0 > δ}) < t1/4}.
Note that then we have

O+(t) = {V > δ} and O−(t) := Ω − O+(t) = {V � δ}.
We observe that Vt � 0 in O−(t), since V solves the elliptic equation with
boundary data δ in O−(t) and the set shrinks in time. Moreover, as mentioned
in the proof of Lemma 4.1, due to the uniform ellipticity of the operator in the
set O−(t), we have

|DV +| < |DV −| on Γ (t). (6.2)

Now ϕ(x, t) := V (x, t; δ) satisfies

ϕt − F(D2ϕ, Dϕ, ϕ) > −F(D2ϕ, Dϕ, ϕ) > 0 in O−(t)

and

ϕt − F(D2ϕ, Dϕ, ϕ) > 0 in O+(t).

The above inequalities, as well as (6.2), yield that ϕ is a supersolution of (6.1)
for 0 � t � t0, if n is sufficiently large with respect to δ. Since ϕ(x, 0) =
u0 + δ > u0, it follows from the comparison principle for (6.1) that un � ϕ for
0 � t � t0 and for sufficiently large n. Therefore, we haveω(x, 0) � u0(x)+δ,
and we conclude that ω(x, 0) � u0(x).
To show that ω(x, 0) � u0(x), one can argue similarly as above to construct a
subsolution of (6.1), with U in the proof of Lemma 4.1 and with the initial data
u0 − δ.
3. Now we construct nk as follows. Note that, for any sequence nk → ∞,
Proposition 6.2 as well as the boundary data estimates given in steps 1.–2. yield
that

lim sup∗
k→∞

unk � u∗.
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For a given εk , choose nk such that unk satisfies

uεk
− εk � unk for 0 � t � T,

where uεk
is the minimal viscosity solutions of (1.1) with initial data uεk

0 : such
nk exists due to Proposition 6.2. Now we conclude by applying Theorem 4.3
to uεk

. ��
Corollary 6.4. (For nonlinear F) Under the setting of Theorem 5.8, {un} converges
to u in the sense of Corollary 6.3.

Corollary 6.5. Suppose u0 ∈ P and F is as given in Corollary 5.7. Then un with
the initial data un

0 converges to the unique viscosity solution u of (1.1) with initial
data u0 in the sense of Corollary 6.3.
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Appendix

Appendix A. Elliptic and Parabolic Theory

In this section we collect a few classical results from the theory of fully nonlinear
elliptic and parabolic operators used throughout this article.

Proposition A.1. (Elliptic comparison) Let Ω ⊂ R
n be a bounded domain and

let F satisfy (1.6) and (1.7). Suppose that u ∈ U SC(Ω) is a viscosity sub-
solution and v ∈ L SC(Ω) is a viscosity supersolution of the elliptic problem
−F(D2u, Du, u) = 0 in Ω , and u � v on ∂Ω . Then u � v in Ω .

Proof. This is a consequence of an ABP estimate applied to u − v, see [2, Propo-
sition 2.17]. ��
Proposition A.2. (Parabolic comparison) LetΣ ⊂ R

n ×R be a bounded parabolic
domain and let F satisfy (1.6) and (1.7). Suppose that u ∈ U SC(Σ) is a viscosity
subsolution and v ∈ L SC(Σ) is a viscosity supersolution of the parabolic problem
ut − F(D2u, Du, u) = 0 on Σ such that u � v on ∂PΣ . Then u � v in Σ .

Proof. See for instance [10, Theorem 8.2] or [27, Corollary 3.15]. ��
Proposition A.3. (Elliptic Hopf’s lemma) Let u and v be, respectively, a subso-
lution and a supersolution of −F(D2u, Du, u) = 0, u � v on a domain Ω and
u �≡ v. If u = v at x0 ∈ ∂Ω and Ω has an interior ball touching x0, then

lim inf
h↘0+

u(x0)− u(x0 − hξ)

h
> lim inf

h↘0+
v(x0)− v(x0 − hξ)

h
, (A.1)
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for any ξ, ξ · ν > 0, where ν is the unit outer normal to the interior ball at x0,
provided that the right-hand side is finite.

Proof. 1. For ω = u − v, we first show that

lim inf
h↘0+

ω(x0)− ω(x0 − ξh)

h
> 0. (A.2)

Indeed, (1.6) yields

−M −(M + N )− δ1 |p + q| − δ0 |z + w| � F(−N ,−q,−w)− F(M, p, z).

Since −v is a subsolution of −G(D2v, Dv, v) = 0, where

G(N , q, w) = −F(−N ,−q,−w),

we can use [2, Proposition 2.14] to conclude thatω = u +(−v) is a subsolution
of

−M −(D2ω)− δ1 |Dω| − δ0 |ω| = 0.

Thus Hopf’s lemma [2, Proposition 2.15] applied toω at x0 (recall thatω(x0) =
0) yields (A.2).

2. Using the property of lim inf, we rewrite

lim inf
h↘0+

u(x0)− u(x0 − hξ)

h
� lim inf

h↘0+
v(x0)− v(x0 − hξ)

h

+ lim inf
h↘0+

ω(x0)− ω(x0 − hξ)

h
,

which together with (A.2) implies (A.1). ��
Proposition A.4. (Parabolic Harnack’s inequality) Suppose that F satisfies the
structural condition (1.6), is proper (1.7), and F(0, 0, 0) = 0. Let t1, t2 satisfy
0 < t1 < t2. Then there exists a constant c, depending only on λ, Λ, δ1, δ0, t1, t2
and n, such that

sup
Dε(0,ε2t1)

u � c inf
Dε(0,ε2t2)

u

for any ε ∈ (0, 1) and any nonnegative continuous solution u of the parabolic
problem on Qε = Bε × (0, ε2t2].
Proof. The main goal is to show that c does not depend on ε. Let ε ∈ (0, 1) and
let u � 0 be a continuous solution of the parabolic problem on Qε. Let us define
the rescaled function uε(x, t) = u(εx, ε2t) defined on Q1. We will show that we
can apply Harnack’s inequality to uε.
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Let ϕ be a smooth function and suppose that uε − ϕ has a strict maximum zero
at (x0, t0) ∈ Q1. Then u − ϕ1/ε has a strict maximum at (εx0, ε

2t0), and by (1.6)
and (1.7) at (x0, t0),

ε−2
(
ϕt − M +(D2ϕ)− δ1 |Dϕ|

)
� ε−2ϕt − ε−2M +(D2ϕ)− ε−1δ1 |Dϕ|
= ϕ

1/ε
t − M +(D2ϕ1/ε)− δ1

∣
∣
∣Dϕ1/ε

∣
∣
∣

� ϕ
1/ε
t − F(D2ϕ1/ε, Dϕ1/ε, ϕ1/ε) � 0.

Therefore, u ∈ S (δ1, 0, 0) as defined in [27].
Similarly, if u − ϕ has a strict minimum zero at (x0, t0), then

ε−2
(
ϕt − M −(D2ϕ)+ δ1 |Dϕ| + δ0 |ϕ|

)

� ε−2ϕt − ε−2M −(D2ϕ)+ ε−1δ1 |Dϕ| + δ0 |ϕ|
� ϕ

1/ε
t − F(D2ϕ1/ε, Dϕ1/ε, ϕ1/ε) � 0.

that is, u ∈ S (δ1, δ0, 0).
Therefore, we can apply the Harnack’s inequality [27, Theorem 4.18] to uε,

since its proof relies on the weak Harnack’s inequality [27, Corollary 4.14] and
the local maximum estimate [27, Theorem 4.16], and the function uε satisfies the
hypotheses of both. ��

Appendix B. Construction of Barriers

In this section we construct necessary radially symmetric barriers for (1.1) used
throughout the paper, first for fully nonlinear operators and then for the divergence-
type operators.

Appendix B.1. Fully Nonlinear Operator

Given a radially symmetric function ϕ of the form

ϕ(x) = ψ(|x |),
its Hessian can be expressed as

D2ϕ(x) = 1

|x |
(

I − x ⊗ x

|x |2
)

ψ ′(|x |)+ x ⊗ x

|x |2 ψ ′′(|x |),

where (x ⊗ x)i j = xi x j .
Note that

(D2ϕ(x))(x) = ψ ′′(|x |)x,
(D2ϕ(x))(y) = 1

|x |ψ
′(|x |)y for all y, y ⊥ x
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Therefore, the eigenvalues of D2ϕ(x) are

e1 = · · · = en−1 = 1

|x |ψ
′(|x |), en = ψ ′′(|x |), (B.1)

and the eigenvector for en is x
|x | .

Example B.1. Indeed, we can express the Laplacian of a radially symmetric func-
tion as

Δϕ(x) = tr D2ϕ(x) = n − 1

|x | ψ ′(|x |)+ ψ ′′(|x |).

Example B.2. Ifψ(ρ) is increasing and concave, then the Pucci extremal operators
can be expressed as

M −(D2ϕ) = λ(n − 1)
ϕ′(|x |)

|x | +Λϕ′′(|x |)

M +(D2ϕ) = Λ(n − 1)
ϕ′(|x |)

|x | + λϕ′′(|x |).

Of course, if ψ(ρ) is decreasing and convex, we simply swap M + and M −.

Now we state two propositions that guarantee the existence of barriers used in
the proof of the comparison theorem in Section 3.

Proposition B.3. (Radial solutions) Let F in (1.1) satisfy (1.6) with given constants
λ, Λ, δ1, δ0, and (1.8). There is a constant ρc = ρc(λ,Λ, δ1, n) such that for any
ρ0 ∈ (0, ρc], â > 0 > b̂, â + b̂ > 0, and ω̂ � 0, there exists ε > 0 and a radially
symmetric function ϕ̂(x, t), decreasing in |x |, and the following hold:

(i) μϕ̂ (respectively −μϕ̂) is a classical subsolution (respectively supersolution)
of (1.1) for any μ > 0 on

K = {x : ρ0 − ε < |x | < ρ0 + ε} × (−ε, ε),
(ii)

∣
∣Dϕ̂+∣∣ = â and

∣
∣Dϕ̂−∣∣ = −b̂ at |x | = ρ0, t = 0,

(iii) the zero set moves with velocity ω̂, that is
{

x : ϕ̂(x, t) = 0
} = {

x : |x | = ρ0 + ω̂t
}

for t ∈ (−ε, ε).
Proof. To construct an increasing subsolution of the parabolic problem, we con-
sider the radially symmetric positive function

ϕ(x, t) = ct + ψ(ρ) := ct + α
(
ρ−γ − ρ

−γ
0

)
+ β

(
ρ2 − ρ2

0

)

for some α, β, c, γ positive. α and β are chosen so that ϕ is decreasing in ρ. A
straightforward calculation yields

ψ ′′ = αγ (γ + 1)ρ−γ−2 + 2β > 0, ψ ′ = ρ
(
−αγρ−γ−2 + 2β

)
< 0.
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Then, using (B.1) and (1.5), we have at ρ = ρ0 and t = 0,

ϕt − F(D2ϕ, Dϕ, ϕ) � c − M −(D2ϕ)+ δ1 |Dϕ| (+δ0 |ϕ| − F(0, 0, 0))

= c − α(λ(γ + 1)− (n − 1)Λ− δ1ρ0)γρ
−γ−2
0

−2β(λ+ (n − 1)Λ− δ1ρ0)

=: c − ατ1 − βτ2. (B.2)

The term τ2 is positive for any ρ0 that satisfy

0 < ρ0 � λ+ (n − 1)Λ

2δ1
=: ρc. (B.3)

Furthermore, for ρ0 in this range, one can choose γ large enough depending only
on λ,Λ, δ1 and n so that τ1 is also positive. If c < βτ2 as well, we observe that
due to the continuity, ϕ with such parameters is a strict subsolution of the parabolic
problem (and also the elliptic problem) in a neighborhood of {(x, 0) : |x | = ρ0}.

Given a < 0, ω > 0 and ρ0 satisfying (B.3), we can choose parameters α, β
and c in such a way that |Dϕ| = |a| , Dϕ ·ν = a and Vν = ω at t = 0 and |x | = ρ0.
Indeed, since ϕ is smooth, decreasing in ρ and increasing in t , we can express the
normal velocity Vν on the zero level set {|x | = ρ0} at t = 0 as

Vν = ϕt

|Dϕ| = c

2βρ0 − αγρ
−γ−1
0

.

The conditions Vν = ω and |Dϕ| = |a| yield c = ω |a|. Then we find β

large enough so that c < βτ2 and a < 2βρ0 and, finally, we solve for α > 0
from |a| = |Dϕ| = 2βρ0 − αγρ

−γ−1
0 . Therefore, (B.2) is strictly negative on

{(x, 0) : |x | = ρ0}, and continuity yields that ϕ is, in fact, a strict subsolution of the
parabolic problem on a neighborhood of this set. In fact, due to th smoothness ofψ , it
is possible to replace the term ct by the unique smooth increasing function of t, τ (t),
with τ ′(0) = c, which guarantees that {x : ϕ(x, t) = 0} = {x : |x | = ρ + ωt} for
t in a neighborhood of t = 0, while at the same time ϕ is still a strict supersolu-
tion. Finally, since the right-hand side in (B.2) applied to μϕ is 1-homogeneous in
μ > 0, μϕ is also a subsolution on the same neighborhood.

The above construction also provides a subsolution of the elliptic problem for
any c ∈ R and β � 0. Moreover, function ϕ̃ = −ϕ is a decreasing supersolution of
the parabolic problem or a supersolution of the elliptic problem since M −(M) =
−M +(−M). ��

The free boundary of a solution of (1.1) can propagate arbitrarily fast in some
situations. In particular, if a supersolution is positive on a boundary of an open
set G, then it will immediately become positive in G, as observed in the proof of
Lemma 3.12. We show this using a barrier constructed in the following lemma in
the form of the fundamental solution for the heat equation in one dimension.

Lemma B.4. Suppose that F satisfies (1.6) with constants λ,Λ, δ1, δ0. Let G be a
bounded open set and let c, δ > 0 be given positive constants. Then there exists a
classical strict subsolution ϕ of (1.1) on Σ, Σ := G × (0, δ], such that ϕ < c on
Σ, ϕ(·, 0) < 0 on G and ϕ(·, δ) > 0 on G.
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Proof. We can assume that G �= ∅. Let us define d := diam G. By translating G,
if necessary, we can also assume that G ⊂ {x : d < x1 < 2d}. We shall consider φ
of the form

φ(x, t) = ψ(x1, t)− ε, ψ(x1, t) := t−1/2 exp

[

− x2
1

4kt

]

for suitable constants k, ε > 0 chosen below.
First, note that ψ(·, t) is convex for x2

1 > 2kt . Then (1.6) and (1.5) yield

φt − F(D2φ, Dφ, φ) � φt − M −(D2φ)+ δ1 |Dφ| + δ0 |φ|
= α

(
ψt − λψx1x1 + δ1

∣
∣ψx1

∣
∣+ δ0 |ψ − ε|)

� α

[
(x2

1 − 2kt)(k − λ)

4k2t2 + δ1 |x1|
2kt

+ δ0

]

ψ.

By choosing k, 0 < k � min( d2

4δ , λ), we can guarantee that the bracketed quantity
is negative for all t ∈ (0, 2δ), x1 ∈ [d, 2d].

Observe thatψ(·, t) is decreasing when x1 > 0. Moreover, for the fixed k, there
are η ∈ (0, δ) small and ε > 0 such that

η−1/2 exp

[

− d2

4kη

]

< ε < (δ + η)−1/2 exp

[

− d2

k(δ + η)

]

,

since the left-hand side goes to 0 and the right-hand side is bounded from
below as η → 0. With this choice of k, η and ε we see that φ(·, η) < 0 in
G ⊂ {

x : d � x1 � 2d
}

and φ(·, δ + η) > 0 on G.
Now it is easy to verify that the function

ϕ(x, t) = αφ(x, t + η)+ − α

2
φ(x, t + η)−,

where α > 0 is sufficiently small so that ϕ < c on Σ , has the properties asserted
in the statement of the lemma. ��

Appendix B.2. Divergence-Form Operator

Next, we consider the operator

b(u)t − ∇ · (Ψ (b(u))∇u) = 0, (B.4)

where b and Ψ satisfy the assumptions from the introduction. Since this operator is
not positively homogeneous of degree one in u as the Pucci operators, it is necessary
to construct barriers analogous to Proposition B.3 in two steps. In particular, the
barrier of Proposition B.5 is used in the proof of Lemma 3.21. We do not present
a modified version of Lemma B.4, since the barrier for problem (B.4) can be
constructed in a similar way.
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Proposition B.5. For a given ω � 0, ρ0 > 0 and M > 0, there exists η0 > 0 such
that for all η ∈ (0, η0) there is a strict classical supersolution ϕ of the divergence
form problem (B.4) on

Σ := {
(x, t) : ρ0 + ωt � |x | � ρ0 + ωt + η, t ∈ (−τ,∞)

}
,

with τ = ρ0
2ω if ω > 0 and τ = ∞ if ω = 0. Furthermore ϕ(x, t) = 0 for

|x | = ρ0 + ωt and ϕ(x, t) > 2M for |x | = ρ0 + ωt + η.

Proof. Let us set

k1 := max
s∈[0,3M]

ωb′(s)
Ψ (b(s))

+ 2(n − 1)

ρ0
> 0, k2 := max

s∈[0,3M]

∣
∣Ψ ′(b(s))

∣
∣ b′(s)

Ψ (b(s))
.

(B.5)

Set η0 := k−1
1 . Now we can fix any η ∈ (0, η0), and for such η choose k > k2 large

enough so that

k − k2

kk1
− 1

k
> η and k−1 log

k − k2

k1
< 2M. (B.6)

Finally, we choose a > 1 large enough such that

2M < k−1 log(akη + 1) < 3M.

Note that this is always possible since k−k2
kk1

− 1
k → η0 > η and k−1 log k−k2

k1
→ 0

as k → ∞, and kη + 1 < k−k2
k1

.
We will show that the function ϕ of the form

ϕ(x, t) = ψ(|x | − ωt − ρ0), ψ(s) = log(aks + 1)

k
, (B.7)

is the sought supersolution of (B.4).
Indeed, recall that |x | > ρ0/2 and ϕ(x, t) ∈ [0, 3M) in Σ . With the help of

k1, k2 defined in (B.5), we can estimate

1

Ψ (b(ϕ))
(b(ϕ)t − ∇ · (Ψ (b(ϕ))∇ϕ))

= − ωb′(ϕ)
Ψ (b(ϕ))

ψ ′ − Ψ ′(b(ϕ))b′(ϕ)
Ψ (b(ϕ))

ψ ′2 − n − 1

|x | ψ ′ − ψ ′′

� −ψ ′(k1 + k2ψ
′)− ψ ′′.

A straightforward differentiation of ψ defined in (B.7) then yields

−ψ ′(s)(k1 + k2ψ
′(s))− ψ ′′(s)

= − a

aks + 1

(

k1 + k2
a

aks + 1

)

+ a2k

(aks + 1)2

= a

aks + 1

(
a(k − k2)

aks + 1
− k1

)

> 0,

for all s = |x | − ωt − ρ0 ∈ (0, η) due to the choice of k in (B.6) and a > 1. ��
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The barrier constructed in Proposition B.5 is suitable for the construction of a
barrier for the Richards problem similar to Proposition B.3.

Proposition B.6. For any ρ0 > 0, â > 0 > b̂, â + b̂ > 0, and ω̂ � 0, there
exists ε > 0 and a radially symmetric function ϕ̂(x, t), decreasing in |x |, and the
following hold:

(i) ϕ̂ is a strict classical subsolution of (1.1) in the divergence form (B.4) on

K = {x : ρ0 − ε < |x | < ρ0 + ε} × (−ε, ε),
(ii)

∣
∣Dϕ̂

∣
∣ = â and

∣
∣Dϕ̂

∣
∣ = −b̂ on |x | = ρ0 + ωt ,

(iii) the zero set of ϕ̂ moves with velocity ω̂, that is,

{x : ϕ(x, t) = 0} = {
x : |x | = ρ0 + ω̂t

}
.

Proof. We will use the function constructed in the proof of Proposition B.5. Let
ω = ω̂ and M = 1. Choose any k > k2, where k2 was defined in (B.5), and set
a = â. Let ψ(s) be as defined in (B.7) and for some δ > 0 and t ∈ (−δ, δ) let us
set

ϕ̂(x, t) =
{−ψ(s) for s ∈ (−δ, 0],

b̂|x |2−n

(2−n)(ρ0+ωt)1−n + s2 for s > 0,

where s = |x | − ρ0 − ωt . Then due to the computation in that proof, we can find
δ > 0 such that

– ψ(s) is well-defined and −ψ(s) � 1 = M for s ∈ (−δ, 0),
– ϕ̂ is a strict classical subsolution of (B.4) in

{(x, t) : |x | − ρ0 − ωt ∈ (−δ, 0), t ∈ (−δ, δ)},
–
∣
∣Dϕ̂+∣∣ = â,

∣
∣Dϕ̂−∣∣ = −b̂ on |x | = ρ0 + ωt .

We finish the proof by choosing ε ∈ (0, δ) small enough so that

K ⊂ {(x, t) : |x | − ρ0 − ωt ∈ (−δ,∞), t ∈ (−δ, δ)}.
��
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