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Abstract

In this work we consider local minimizers (in the topology of transport dis-
tances) of the interaction energy associated with a repulsive–attractive potential.
We show how the dimensionality of the support of local minimizers is related to
the repulsive strength of the potential at the origin.

1. Introduction

Given a Borel measurable function W : R
N → (−∞,+∞] that is bounded

from below, the interaction energy of the Borel probability measure μ is given by

EW [μ] := 1
2

∫∫
RN ×RN W (x − y) dμ(x) dμ(y). (1)

Our main goal will be to analyze the qualitative properties of local minimizers of the
energy EW in the set of Borel probability measures with the topology induced by
transport distances. More specifically, we will show that the Hausdorff dimension
of the support of local minimizers is directly related to the behavior at the origin of
ΔW .

The interaction energy EW arises in many contexts. In physical, biological, and
material sciences it is used to model the effects of particles or individuals on each
other via pairwise interactions. Given n particles located at X1, . . . , Xn ∈ R

N ,
their discrete interaction energy is given by

En
W [X1, . . . , Xn] := 1

2n2

n∑

i, j=1
j �=i

W (Xi − X j ). (2)

Formally, for a large number of particles the discrete energy (2) is well approximated
by the continuum energy (1), where dμ(x) is a general distribution of particles at
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location x ∈ R
N . In fact, the continuum energy (1) of the discrete distribution

1
n

∑n
i=1 δXi reduces to (2).

In models arising in material sciences [15,21,32,36,38], particles, nano-
particles, or molecules self-assemble in a way to minimize energies similar to En

W .
Analogously in applications to biological sciences [4,14,27,28,34], individuals in
a social aggregate (for example, swarm, flock, school, or herd) self-organize in
order to minimize similar types of energies. In these applications the potential W is
typically repulsive in the short range so that particles/individuals do not collide, and
attractive in the long range so that the particles/individuals gather to form a group
or a structure. Therefore, one is often led to consider radially symmetric interaction
potentials of the form W (x) = w(|x |), where w : [0,+∞) → (−∞,+∞] is
decreasing on some interval [0, r0) and increasing on (r0,+∞). The function w
may or may not have a singularity at r = 0. We will refer to such potentials as
being repulsive–attractive. Since w has a global minimum at r0, it is obvious that
if we consider only two particles, X1 and X2, in order to minimize E2

W [X1, X2]
the two particles must be located at a distance r0 from one another. While the
situation is simple with two particles, it becomes very complicated for a large num-
ber of particles. Recent works [2,17–19,22,23,31,33,36,37] have shown that such
repulsive–attractive potentials lead to the emergence of surprisingly rich geometric
structures. The goal of the present paper is to understand how the dimensionality
of these structures depends on the singularity of ΔW at the origin.

Let us describe the main results. Consider a repulsive–attractive potential
W (x) = w(|x |). Typically, the Laplacian of such a potential will be negative in a
neighborhood of the origin. We show that if

ΔW (x) ∼ − 1

|x |β as x → 0 (3)

for some 0 < β < N , then the support of local minimizers of EW has Hausdorff
dimension greater than or equal to β. The precise hypotheses needed on W for
this result to be true, as well as the precise meaning of (3), can be found in the
statement of Theorem 1. The exponent β appearing in (3) quantifies how repulsive
the potential is at the origin. Therefore, our result can be intuitively understood as
follows: the more repulsive the potential is at the origin, the higher the dimension
of local minimizers will be.

Potentials satisfying (3) have a singular Laplacian at 0 and we refer to them as
strongly repulsive at the origin. The second main result is devoted to potentials
which are mildly repulsive at the origin, that is, potentials whose Laplacian does
not blow up at the origin. To be more precise, we show that if

W (x) ∼ −|x |α as x → 0 for some α > 2, (4)

then a local minimizer of the interaction energy cannot be concentrated on smooth
manifolds of any dimension except 0-dimensional sets. The exact hypotheses on
W , as well as the precise meaning of (4), can be found in Theorem 2. Note that this
result suggests that local minimizers of the interaction energy of mildly repulsive
potentials have zero Hausdorff dimension—however we are currently unable to
prove this stronger result.
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Table 1. Local minimizers of the interaction energy En
W for various potentials W (x)

(a)

(b) (c)

(d)

In these computations n = 10,000. When ΔW does not blow-up at the origin (Case a) the
Hausdorff dimension of the the support of minimizers is zero. When ΔW ∼ −1/|x |β as
x → 0, 0 < β < N (Cases b, c, d) the Hausdorff dimension of the the support of minimizers
is greater than or equal to β

Summarizing, in this paper we show that if the Laplacian of the potential behaves
like −1/|x |β around the origin, with 0 < β < N , then the dimension of minimizers
is at least β and if the Laplacian does not blow up at the origin, then the dimension
is zero, see the precise statement in Theorems 1 and 2. This is illustrated in the case
of two dimensions (N = 2) in Table 1, where we show some local minimizers of
EW with interaction potentials of the form

W (x) = −|x |α
α

+ |x |γ
γ

α < γ, (5)

so that W (x) ∼ −|x |α
α

and ΔW (x) ∼ − 1
|x |β with β = 2 − α as x → 0.

• Subfigure (a): α = 2.5 and γ = 15. The support of the minimizer has zero
Hausdorff dimension in agreement with Theorem 2. Actually, in this particular
case it is supported on just three points.

• Subfigure (b) and (c): we consider two examples where the potentials have the
same behavior at the origin, α = 1.5, but different attractive long range behavior
(γ = 7 and 2, respectively). Theorem 1 shows that the Hausdorff dimension
of the support must be greater than or equal to β = 2 − α = 0.5. Indeed, the
minimizer for the first example has a one-dimensional support on three curves,
whereas the minimizer for the second example has a two-dimensional support.
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• Subfigure (d): α = 0.5 and γ = 5. Theorem 1 proves that the Hausdorff dimen-
sion of the support must be greater than β = 2 − α = 1.5. The numerical
simulation demonstrates that it has dimension two.

In our extensive numerical experiments using gradient descent methods we never
observed minimizers with a support that might be of non-integer Hausdorff dimen-
sion.

In most of this paper, we will consider local minimizers for the topology induced
by the transport distance d∞ (see Section 2 for a definition of d∞). This topology
is, indeed, the natural one to consider. In particular, gradient descent numerical
methods based on particles typically lead to local minimizers for the d∞-topology.
Moreover, the topology induced by d∞ is the finest topology among the ones
induced by dp, 1 � p � ∞ (see Section 2 for a definition of dp). As a consequence,
local minimizers in the dp-topology are automatically local minimizers in the d∞-
topology, and thus they are also covered by our study. In Section 5 we will discuss
these questions in more detail.

Finally, let us mention that the gradient flow of the energy EW in the Wasserstein
sense d2 [1,12,13] has been extensively studied in recent years [2,3,5–11,17,18,
24,31]. It leads to the nonlocal interaction equation

∂μ

∂t
+ div(μv) = 0, v = −∇W ∗ μ, (6)

where μ(t, x) = μt (x) is the probability or mass density of particles at time
t and at location x ∈ R

N , and v(t, x) is the velocity of the particles. Stability
properties of steady states for (6) with repulsive–attractive potentials have only
been analyzed very recently. In [2] we gave conditions for radial stability/instability
of particular local minimizers. We should also mention that the one-dimensional
case was analyzed in detail in [17,18]. Well-posedness theories for these repulsive–
attractive potentials in various functional settings have been provided in [1,2,8,9,
11,24]. Stable steady states of (6) under certain set of perturbations are expected
to be local minimizers of the energy functional (1) in a topology to be specified.
Actually, this topology should determine the set of admissible perturbations. As
already mentioned, the d∞-stability is the one typically studied by performing
equal mass particles simulations.

Finally, we can now interpret our dimensionality result in terms of the nonlocal
evolution equation (6). The heuristic idea behind the implication, that (3) with
0 < β < N implies dimensionality larger than β of the support of local minimizers
of EW , can be understood in terms of the divergence of the velocity field in (6). In
fact, it is straightforward to check that the divergence of the velocity field generated
by a uniform density localized over a smooth manifold of dimension k is +∞ on
the manifold if and only if k < β (this is equivalent to non-integrability of −ΔW
on manifolds of dimension k). Heuristically, if div v = −ΔW ∗ μ associated to μ
diverges on its support, the density has a strong tendency to spread, the configuration
is not stable and then μ is not a local minimizer. Therefore, we can reinterpret our
result in Theorem 1 as follows: local minimizers of (1) have to be supported on
manifolds where the divergence of their generated velocity field is not +∞.
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The plan of the paper is as follows. Section 2 will be devoted to the necessary
background in optimal transport theory and notation. Strongly repulsive potentials
are treated in Section 3, while mildly repulsive potentials are analyzed in Section 4.
In Section 5, for the smaller subset of local minimizers in the d2-topology, we show
that we can use an Euler–Lagrange approach in the spirit of [4] to derive some
properties of these minimizers. Extensive numerical tests as well as details of the
algorithm used in order to minimize En

W are reported in Section 6.

2. Preliminaries in Transport Distances

We denote by B(RN ) the family of Borel subsets of R
N . Given a set A ∈

B(RN ), its Lebesgue measure is denoted by |A|. We denote by M(RN ) the set of
(nonnegative) Borel measures on R

N and by P(RN ) the set of Borel probability
measures on R

N . The support of μ ∈ M(RN ), denoted by supp(μ), is the closed
set defined by

supp(μ) := {x ∈ R
N : μ(B(x, ε)) > 0 for all ε > 0}.

A measure ρ ∈ M(RN ) is said to be a part ofμ if ρ(A) � μ(A) for all A ∈ B(RN )

and it is not identically zero. This terminology is justified by the fact that ifρ is a part
ofμ, thenμ can be writtenμ = ρ+ν for some ν ∈ M(RN ) (ν = μ−ρ, to be more
precise). We will say that a probability measure μ ∈ P(RN ) can be decomposed
as a convex combination of μ0, μ1 ∈ P(RN ) if there exist 0 � m0,m1 � 1 with
m0 + m1 = 1 such that μ = m0μ0 + m1μ1.

Let us introduce some notation related to the interaction potential energy. We
denote by BW : P(RN )× P(RN ) → (0,+∞] the bilinear form defined by

BW [μ1, μ2] := 1

2

∫∫

RN ×RN
W (x − y) dμ1(x) dμ2(y). (7)

Obviously, we have that EW [μ] = BW [μ,μ]. Let us define the shortcut notation

TW [μ1, μ2] := EW [μ1] − 2BW [μ1, μ2] + EW [μ2],
which will occur in several computations. For notational simplicity, we will drop
the subscript for EW , BW , and TW in detailed proofs while keeping it in the main
statements.

Let us give a brief self-contained summary of the main concepts related to
distances between measures in optimal transport theory; we refer to [20,26,35] for
further details. A probability measure π on the product space R

N × R
N is said to

be a transference plan between μ ∈ P(RN ) and ν ∈ P(RN ) if

π(A × R
N ) = μ(A) and π(RN × A) = ν(A) (8)

for all A ∈ B(RN ). If μ, ν ∈ P(RN ), then

Π(μ, ν) := {π ∈ P(RN × R
N ) : (8) holds for all A ∈ B(RN )}
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denotes the set of admissible transference plans between μ and ν. Informally, if
π ∈ Π(μ, ν) then dπ(x, y)measures the amount of mass transferred from location
x to location y. With this interpretation in mind, note that sup(x,y)∈supp(π) |x − y|
represents the maximum distance that an infinitesimal element of mass from μ is
moved by the transference plan π . We will work with the ∞-Wasserstein distance
d∞ between two probability measures μ, ν defined by

d∞(μ, ν) = inf
π∈Π(μ,ν) sup

(x,y)∈supp(π)
|x − y| , (9)

which can take infinite values, though it is obviously finite for compactly supported
measures. This distance induces a complete metric structure restricted to the set
of probability measures with finite moments of all orders, P∞(RN ), as proven in
[20].

We recall that for 1 � p < ∞ the distance dp between two measures μ and ν
is defined by

d p
p (μ, ν) = inf

π∈Π(μ,ν)

{∫∫

RN ×RN
|x − y|p dπ(x, y)

}

.

Note that dp(μ, ν) < ∞ for μ, ν ∈ Pp(R
N ), the set of probability measures with

finite moments of order p. Since dp(μ, ν) is increasing as a function of 1 � p < ∞,
one can show that it converges to d∞(μ, ν) as p → ∞. Since the distances are
ordered with respect to p, it is obvious that the topologies are also ordered. More
precisely, open sets for dp are always open sets for d∞, and thus, d∞ induces the
finest topology among dp, 1 � p � ∞. More properties of the distance d∞ can be
seen in [26].

Given T : R
N −→ R

N measurable, we say that ν is the push-forward of μ
through T , ν = T #μ, if ν[A] := μ[T −1(A)] for all measurable sets A ⊂ R

N ,
equivalently

∫

RN
ϕ(x) dν(x) =

∫

RN
ϕ(T (x)) dμ(x)

for all ϕ ∈ Cb(R
N ). In case there is a map T : R

N −→ R
N transporting μ onto ν,

that is T #μ = ν, we immediately obtain

d∞(μ, ν) � sup
y∈supp(μ)

|y − T (y)| .

This comes from (9), by using the transference plan πT = (1RN × T )#μ.

Lemma 1. Assume thatμ, μ̃ ∈ P(RN ) are two convex combinations:μ = m0μ0+
m1μ1 and μ̃ = m0μ̃0 + m1μ1, where μ0 and μ̃0 are supported in B(x0, ε) for
some x0 ∈ R

N and ε > 0. Then d∞(μ, μ̃) � 2ε.

Proof. Let π1 ∈ Π(μ1, μ1) be the transport plan induced by the identity map, that
is,

∫∫

RN ×RN
φ(x, y) dπ1(x, y) =

∫

RN
φ(x, x) dμ1(x),
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and let π0 ∈ Π(μ0, μ̃0) be any transport plan between μ0 and μ̃0. Note that
the transference plan π = m0π0 + m1π1 ∈ Π(μ, μ̃) and supp(π) = supp(π0) ∪
supp(π1). Sinceπ1 is supported on the diagonal, we have sup(x,y)∈supp(π1)

|x − y| =
0. On the other hand, supp(π0) ⊂ supp(μ0)×supp(μ̃0) ⊂ B(x0, ε)× B(x0, ε) and
therefore sup(x,y)∈supp(π0)

|x − y| � 2ε. We conclude that sup(x,y)∈supp(π) |x − y| �
2ε which implies infπ∈Π(ν,ρ) sup(x,y)∈supp(π) |x − y| � 2ε.

3. Lower Bound on the Hausdorff Dimension of the Support

In this section we consider potentials which are strongly repulsive at the origin
and we prove that if ΔW ∼ −1/|x |β as x → 0, 0 < β < N , then the Hausdorff
dimension of the support of local minimizers of the interaction energy is greater
than or equal to β. Actually, our result is slightly stronger: we prove that if μ
is a local minimizer, then the support of any part of μ has Hausdorff dimension
greater than or equal to β. Let us illustrate the importance of controlling not only the
dimension ofμ, but also the dimensions of the parts ofμ. Suppose, for example, that
ΔW ∼ −1/|x | as x → 0, then our result implies that any part of μ has Hausdorff
dimension greater than or equal to 1. As a consequence, μ cannot have an atomic
part. If ΔW ∼ −1/|x |1.5 as x → 0, then μ cannot have a part concentrated on a
curve, and so on.

3.1. Hypotheses and Statement of the Main Result

In this section, we will assume that the potential W : R
N → (−∞,+∞]

satisfies the following hypotheses:

(H1) W is bounded from below.
(H2) W is lower semicontinuous.
(H3) W is uniformly locally integrable: ∃M > 0 such that

∫
B(x,1) W (y) dy � M

for all x ∈ R
N .

In order to state the main results of this section we will also need the following two
definitions:

Definition 1. (Generalized Laplacian) Suppose W : R
N → (−∞,+∞] is locally

integrable. The approximate Laplacian of W is defined by

−ΔεW (x) := 2(N + 2)

ε2

(

W (x)− −
∫

B(x,ε)
W (y) dy

)

,

where −
∫

B(x0,r)
f (x) dx stands for the average of f over the ball of radius r centered

at x0, and the generalized Laplacian of W is defined by

−Δ0W (x) := lim inf
n→∞

{
−Δ(1/n)W (x)

}
.

Let us emphasize the fact that the function W in the above definition is defined
pointwise in R

N (it possibly takes the value +∞), and is Borel measurable. As a
consequence, the functions −ΔεW and −Δ0W are also Borel measurable, defined
pointwise in R

N , and take values in (−∞,+∞] and [−∞,+∞], respectively.
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Definition 2. (β-repulsive potential) Suppose W : R
N → (−∞,+∞] is locally

integrable. W is said to be β-repulsive at the origin if there exists ε > 0 and C > 0
such that

−Δ0W (x) � C

|x |β for all 0 < |x | < ε (10)

−Δ0W (0) = +∞. (11)

By doing a Taylor expansion one can easily check thatΔ0W (x) = ΔW (x)wherever
W is twice differentiable. In particular, if W is twice differentiable away from the
origin, as is often the case for potentials of interest, then (10) simply means that
−ΔW (x) � C/|x |β for all 0 < |x | < ε. The terminology “β-repulsive” is justified
by the fact that the rate at which Δ0W (x) goes to −∞ as x approaches the origin
quantifies the repulsive strength of the potential at the origin, therefore the greater
β is, the more repulsive the potential is around the origin. This is the rigorous
mathematical formulation of what we meant in (3). Additionally to hypotheses
(H1)–(H3), we will need the following technical assumption on the potential W :

(H4) There exists C∗ > 0 such that

ΔεW (x) < C∗ ∀x ∈ R
N and ∀ε ∈ (0, 1).

We are now ready to state the main theorems of this section:

Theorem 1. Suppose W satisfies (H1)–(H4) and let μ be a local minimizer of the
interaction energy with respect to the topology induced by d∞. If W is β-repulsive
at the origin, 0 < β < N, then the Hausdorff dimension of the support of any part
of μ is greater than or equal to β.

Remark 1. Observe that (H3) and (H4) are conditions that restrict the growth of the
potential and its derivatives at ∞. For instance, a potential growing algebraically
at ∞ does not satisfy those assumptions. However, if we are only interested in the
dimensionality of the support for compactly supported local minimizers, Theorem 1
holds under weaker assumptions not restricting the growth of the potential at ∞.
That is, (H3) and (H4) can be substituted by (H3-loc) and (H4-loc):

(H3-loc) W is locally integrable.
(H4-loc) For every compact subset K of R

N there exists C∗
K > 0 such that

ΔεW (x) < C∗
K ∀x ∈ K and ∀ε ∈ (0, 1),

with obvious changes in the proof.

Remark 2. In Theorem 1 (resp. Remark 1) potential W is assumed to beβ-repulsive
at the origin and to satisfy hypotheses (H1)–(H4) (resp. (H1)–(H2)–(H3-loc)–(H4-
loc)). Whereas hypotheses (H1)–(H3) (resp. (H1)–(H2)–(H3-loc)) are easily ver-
ified for a given potential, hypotheses (H4) or (H4-loc), and the β-repulsivity are
not as transparent. To clarify the meaning of these more technical assumptions let
us consider the case where W is smooth away from the origin and satisfies

−ΔW (x) � C

|x |β for all 0 < |x | < ε (12)
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for some 0 < β < N . Such a potential satisfies (10) as pointed out in the comment
after Definition 2. Moreover, most potentials of interest satisfying (12) will also
satisfy (11) and either (H4) or (H4-loc), but of course this need to be checked case
by case. In Subsection 3.3 we consider some typical repulsive–attractive potentials
satisfying (12) and we show that they satisfy (11) and either (H4) or (H4-loc),
depending on their behavior at infinity.

3.2. Proof of Theorem 1

First note that without loss of generality we can replace hypothesis (H1) by

(H1′) W is nonnegative,

since adding a constant to the potential W does not affect the local minimizers of
EW . The following lemma is classical:

Lemma 2. Suppose W satisfies (H1′) and (H2) and let μ ∈ P(RN ). Then the
function Vμ : R

N → [0,+∞] defined by

Vμ(x) = (W ∗ μ)(x) =
∫

RN
W (x − y) dμ(y)

is lower semicontinuous.

Proof. Suppose xn → x , then by Fatou’s lemma we have

Vμ(x) =
∫

RN
W (x − y) dμ(y) �

∫

RN
lim inf

n
W (xn − y) dμ(y)

� lim inf
n

∫

RN
W (xn − y) dμ(y) = lim inf

n
Vμ(xn)

as desired.

Suppose now that W satisfies (H1′)–(H4). Note that hypothesis (H4) implies
that −Δ0W � −C∗ and recall that by definition −Δ0W is a Borel measurable
function that is defined pointwise in R

N . As a consequence, for any μ ∈ P(RN )

and x ∈ R
N , the integral

(−Δ0W ∗ μ)(x) :=
∫

RN
(−Δ0W )(x − y) dμ(y)

=
∫

RN

[
(−Δ0W )(x − y)+ C∗] dμ(y)− C∗

is well defined and belongs to [−C∗,+∞]. The function −Δ0W ∗ μ is therefore
defined pointwise in R

N and takes values in [−C∗,+∞]. Note that the integral
against μ ∈ P(RN ) makes sense, since −Δ0W is Borel measurable. Indeed, the
measurability of W and −Δ0W also follows from (H2), since any lower semicon-
tinuous function can be seen as the decreasing limit of continuous functions.
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Lemma 3. Suppose that W satisfies (H1′)–(H4) and letμ ∈ P(RN ). If x0 is a local
min of Vμ = W ∗ μ, in the sense that there exists ε0 > 0 such that

Vμ(x0) � Vμ(x) for almost every x ∈ B(x0, ε0), (13)

then (Δ0W ∗ μ)(x0) � 0.

Proof. Assume that x0 satisfies (13). Note first that Vμ(x0) < +∞, since

Vμ(x0) � ess infB(x0,ε0)Vμ � 1

|B(x0, ε0)|
∫

B(x0,ε0)

Vμ(x) dx

� 1

|B(x0, ε0)|
∫

RN

∫

B(x0−y,1)
W (z) dz dμ(y)

� M

|B(x0, ε0)| < +∞,

where we have used Fubini’s Theorem and Hypothesis (H3). Now, for ε � ε0 we
have

0 � 2(N + 2)

ε2

(

−
∫

B(0,ε)
Vμ(x0 + x) dx − Vμ(x0)

)

= 2(N + 2)

ε2

(∫

RN
−
∫

B(0,ε)
W (x0+x−y) dx dμ(y)−

∫

RN
W (x0 − y) dμ(y)

)

.

(14)

Note that hypothesis (H4) is equivalent to

−
∫

B(0,ε)
W (x0 + x − y) dx � W (x0 − y)+ C∗ε2

2(N + 2)
.

Since Vμ(x0) < +∞, the functions y �→ W (x0 − y) and y �→ −
∫

B(0,ε) W (x0 +
x − y) dx are μ-integrable and the difference of the integrals in (14) is equal to the
integral of the difference. Therefore, we have:

0 �
∫

RN

2(N + 2)

ε2

(

−
∫

B(0,ε)
W (x0 − y + x) dx − W (x0 − y)

)

dμ(y)

=
∫

RN
ΔεW (x0 − y) dμ(y). (15)

Because of hypothesis (H4), we have that −ΔεW + C∗ � 0 for all ε ∈ (0, 1).
Therefore, using Fatou’s Lemma and (15):

∫

RN
lim inf
n→∞

{
−Δ(1/n)W (x0 − y)+ C∗} dμ(y)

� lim inf
n→∞

∫

RN

[
−Δ(1/n)W (x0 − y)+ C∗] dμ(y) � C∗,

that is, (Δ0W ∗ μ)(x0) � 0.
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Proposition 1. Suppose that W satisfies (H1′)-(H2)-(H3). Let μ be a local mini-
mizer of the interaction energy with respect to d∞ and assume that E[μ] < +∞.
Then any point x0 ∈ supp(μ) is a local minimizer of Vμ, in the sense that there
exists ε0 > 0 such that

Vμ(x0) � Vμ(x) for almost every x ∈ B(x0, ε0).

Proof. We argue by contradiction. Assume that there exists x0 ∈ supp(μ) which
is not a local minimum of Vμ. Fix ε > 0. Then there exists a set A ⊂ B(x0, ε) of
positive Lebesgue measure, such that for x ∈ A, Vμ(x) < Vμ(x0). The set A can
be written as follows:

A = ∪∞
n=1{x ∈ A; Vμ(x) � Vμ(x0)− 1/n},

that is, A is an increasing union of measurable sets. Thanks to the continuity from
below of the Lebesgue measure, it implies that

0 < |A| = lim
n→∞ |{x ∈ A; Vμ(x) � Vμ(x0)− 1/n}|,

and there exists n0 such that Ã := {x ∈ A; Vμ(x) � Vμ(x0)− 1/n0} is of positive
Lebesgue measure. Thanks to the lower semicontinuity of Vμ, there existsη ∈ (0, ε)
such that

inf
B(x0,η)

Vμ � Vμ(x0)− 1

2n0
� sup

Ã

Vμ + 1

2n0
. (16)

Notice that x0 ∈ supp(μ) implies μ(B(x0, η)) > 0. We can therefore define the
probability measures μ0, μ Ã by

μ0(B) = 1

m0
μ(B ∩ B(x0, η)), μ Ã(B) = 1

| Ã| |B ∩ Ã|

for any Borel set B ∈ B(RN ), where m0 := μ(B(x0, η)). Let us now write μ as a
convex combination μ = m0μ0 + m1μ1, and define the curve of measures

μt = (m0 − t)μ0 + tμ Ã + m1μ1

= m0

[(

1 − t

m0

)

μ0 + t

m0
μ̃ Ã

]

+ m1μ1.

It is clear by construction that μt ∈ P(RN ) for t ∈ [0,m0], and since μ̃0 :=(
1 − t

m0

)
μ0+ t

m0
μ̃ Ã is supported in B(x0, η), Lemma 1 implies that d∞(μ,μt ) �

2ε. Inequality (16) shows that the function Vμ is greater on the region B(x0, η)

than on the region Ã, therefore one would expect that transporting mass from one
region to the other will decrease the interaction energy. Indeed we will show that
E[μt ] < E[μ] for t small enough. Since ε was arbitrary, this will imply that we
can always find a probability measure arbitrarily close to μ (in the sense of the d∞)
with strictly smaller energy. This is a contradiction concluding the proof.
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We are left to show that E[μt ] < E[μ] for t small enough. Since 0 � E[μ] <
∞ and it is given by

E[μ] = m2
0 E[μ0] + 2m0m1 B[μ0, μ1] + m2

1 E[μ1]
the three terms E[μ0], B[μ0, μ1] and E[μ1] are all positive and finite. Note that
E[μ Ã] is also finite: indeed, since W is locally integrable by (H3), we have

E[μ Ã] =
∫∫

RN ×RN
W (x − y) dμ Ã(x) dμ Ã(y)

� 1

| Ã|2
∫∫

B(x0,ε)×B(x0,ε)

W (x − y) dx dy < +∞.

From (16) and the fact that B[μ,μ0] � 1
m0

E[μ] < +∞, we also have that

B[μ,μ Ã] + 1

2n0
� B[μ,μ0] < +∞. (17)

Using all these, we can show that all combinations of the bilinear form B[·, ·] for
the measures μ0, μ1, and μ Ã are finite:

E[μ0] < +∞, E[μ1] < +∞, E[μ Ã] < +∞, B[μ1, μ0] < +∞, (18)

B[μ Ã, μ0] � 1

m0
B[μ Ã, μ] < +∞, B[μ Ã, μ1]� 1

m1
B[μ Ã, μ] <+∞, (19)

where we have used (17) in order to obtain (19). Note that in (19) we have assumed
m1 �= 0. If m1 = 0, then μ1 can be chosen to be zero and therefore B[μ Ã, μ1] <
+∞ trivially holds. Using (18)–(19), we are allowed to expand E[μt ] as:

E[μt ] = E[(m0 − t)μ0 + m1μ1 + tμ Ã]
= (m0 − t)2 E[μ0] + m2

1 E[μ1] + t2 E[μ Ã]
+ 2(m0 − t)m1 B[μ0, μ1] + 2(m0 − t)t B[μ0, μ Ã] + 2m1t B[μ1, μ Ã]

= m2
0 E[μ0] + 2m0m1 B[μ0, μ1] + m2

1 E[μ1]
+ 2t (m0 B[m0, μ Ã]+m1 B[μ1, μ Ã])−2t (m0 B[μ0, μ0]+m1 B[μ0, μ1])
+ t2 E[μ0] + t2 E[μ Ã] − 2t2 B[μ0, μ Ã]

= E[μ] + 2t (B[μ Ã, μ] − B[μ0, μ])+ t2T [μ0, μ Ã]. (20)

Note that in the above computations we have only used the bilinearity of B[·, ·] on
the space of positive measures. However, a formal computation using the bilinearity
of B[·, ·] on the space of signed measures leads to the same result in a much simpler
way:

E[μt ]= E[μ− tμ0 + tμ Ã]= E[μ] + 2t (B[μ Ã, μ] − B[μ0, μ])+ t2T [μ0, μ Ã].
To conclude the proof, note that because of (17) the term B[μ Ã, μ] − B[μ0, μ]
appearing in (20) is strictly negative and, since the term T [μ0, μ Ã] = E[μ0] −
2B[μ0, μ Ã]+E[μ Ã] is finite, we can choose t small enough so that E[μt ] < E[μ].
This concludes the proof.
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Under the additional assumption that W is not singular at the origin, we can
obtain a slightly stronger version of Proposition 1 which will be needed in Section 4.

Proposition 2. Assume that W andμ satisfy the same hypotheses as Proposition 1.
Assume, moreover, that W (0) < +∞. Then any point x0 ∈ supp(μ) is a local
minimizer of Vμ in the classical sense and Vμ is constant on any connected compact
set K ⊂ supp(μ).

Proof. The proof of the first statement is similar to the proof of Proposition 1. We
argue by contradiction: assume that μ ∈ P(RN ) is a local minimizer of E[·] and
that there exists x0 ∈ supp(μ) which is not a (classical) local minimum of Vμ. Fix
ε > 0, then there exists xa ∈ B(x0, ε) such that Vμ(xa) < Vμ(x0). But since Vμ is
lower semicontinuous, there exists 0 < η < ε such that

Vμ(xa) < Vμ(x0) � Vμ(x)+ Vμ(x0)− Vμ(xa)

2
for all x ∈ B(x0, η). (21)

We then define μ0 and μ1 as in the proof of Proposition 1. Following a different
idea, now, we send mass from μ0 to a Dirac Delta at the location xa instead of
distributing it evenly over a set Ã of nonzero Lebesgue measure: instead of letting
μt = (m0 − t)μ0 + tμ Ã + m1μ1 as before, we now define μt = (m0 − t)μ0 +
tδxa + m1μ1. The same expansion leads to

E[μt ] = E[μ− tμ0 + tδxa ] = E[μ] + 2t (B[δxa , μ] − B[μ0, μ])+ t2T [μ0, δxa ].
From (21) we obtain that the term B[δxa , μ]− B[μ0, μ] is strictly negative. In order
to conclude the argument we need the term T [μ0, δxa ] = E[μ0] − 2B[μ0, δxa ] +
E[δxa ] to be finite. Note that E[δxa ] = W (0)/2, therefore it is necessary for W (0)
to be finite in order to conclude the proof.

We now prove the second statement. We follow classical arguments from poten-
tial theory, see [29, Proposition 0.4], for instance. Let K be a connected compact
set contained in supp(μ) and consider the sets A = {x ∈ K : Vμ(x) > inf K Vμ}
and B = {x ∈ K : Vμ(x) = inf K Vμ}. Since Vμ is lower semicontinuous, the set
A is open relative to K . Let us show that B is also open relative to K . We argue by
contradiction. Suppose there exists xa ∈ B such that for every ε > 0 there exists
x0,ε ∈ K with |xa − x0,ε| < ε and Vμ(xa) < Vμ(x0,ε). Then, following the exact
same steps as in the proof of the first statement, we can construct a probability
measure with lower energy than μ and whose d∞ distance to μ is smaller than
ε, therefore leading to a contradiction and proving that B is open relative to K .
Since K is connected, then either A or B must be empty. But since Vμ is lower
semicontinuous, it has to reach its minimum on compact sets, and therefore A = ∅
and B = K .

Remark 3. Since supp(μ) is closed, the connected components of supp(μ) are
also closed. So the second statement of Proposition 2 implies that Vμ is constant
on any bounded connected component of supp(μ). In particular, if μ is compactly
supported, then Vμ is constant on any connected component of supp(μ).

Combining Lemma 3 and Proposition 1 we obtain:



1068 D. Balagué, J. A. Carrillo, T. Laurent & G. Raoul

Corollary 1. Suppose that W satisfies (H1′)–(H4). If μ is a local minimizer of the
interaction energy with respect to d∞ and E[μ] < +∞, then (Δ0W ∗ μ)(x) � 0
for all x ∈ supp(μ).

We recall the following result from [16, Theorem 4.13], see also [25, Chapter 8].

Proposition 3. Let A be a Borel subset of RN , and s � 0. If there exists a probability
measure μ ∈ P(RN ) supported on A such that

∫∫

RN ×RN

dμ(x) dμ(y)

|x − y|s < ∞,

then dimH A � s, with dimH being the Hausdorff dimension of A.

We are now ready to prove the main theorem.

Proof of Theorem 1. Let ρ be a nonzero part of μ, that is, μ = ρ + ν for some
nonnegative measure ν. Let A = supp(ρ) and let us show that dimH A � β. Choose
ε small enough so that (10) holds, choose x0 ∈ A and define the measure

μ0(B) = ρ(B ∩ B(x0, ε/2)).

Clearly, μ can be written μ = μ0 + μ1, where μ0 and μ1 are two (nonnegative)
measures of mass m0 > 0, and m1 � 0 and whereμ0 is supported in A∩B(x0, ε/2).
Then from (10) we get:

C
∫∫

RN ×RN

dμ0(x) dμ0(y)

|x − y|β �
∫∫

RN ×RN
−Δ0W (x − y) dμ0(x) dμ0(y)

=
∫∫

RN ×RN
−Δ0W (x − y) dμ(x) dμ0(y)−

∫∫

RN ×RN
−Δ0W (x − y) dμ1(x) dμ0(y)

= −
∫

RN ×RN
(Δ0W ∗ μ)(y) dμ0(y)+

∫∫

RN ×RN
Δ0W (x − y) dμ1(x) dμ0(y)

�
∫∫

RN ×RN
Δ0W (x − y) dμ1(x) dμ0(y) � C∗m1m0 < +∞.

We have used the fact thatΔ0W ∗μ is nonnegative on the support ofμ from Corol-
lary 1 and that Δ0W (x) < C∗ by hypothesis (H4). We then apply Proposition 3 to
the probability measure μ0/m0, which is supported on A, to obtain dimH A � β.

3.3. Example of Potentials Satisfying the Hypotheses of Theorem 1

In this subsection we consider the class of potentials

Wα(x) = c hα(x)+ ψ(x), (22)

where ψ ∈ C3(RN ) is bounded from below, c > 0 and hα : R
N → (−∞,∞] is

the power-law function:

hα(x) = −|x |α/α,
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for x �= 0 and α ∈ R with the convention h0(x) = − log |x |. We define hα(0) = 0
if α > 0, or hα(0) = +∞ if α � 0. The potentials Wα are typical examples of
repulsive–attractive potentials behaving like −|x |α/α around the origin. It is trivial
to check that Wα satisfies (H1)–(H2)–(H3-loc) for any α > −N (in the case α � 0
the function ψ needs to grow fast enough at infinity for hypothesis (H1) to hold).
Note, also, that for x �= 0 we have

−ΔWα(x) = c
(α + N − 2)

|x |2−α −Δψ(x), (23)

and therefore if α + N − 2 > 0, then Wα satisfies (10) from the definition of
β-repulsivity with β = 2 − α. The goal of this subsection is to show that Wα also
satisfies (11) and (H4-loc).

We start by checking (11). An explicit computation gives

−Δεhα(0) = 2(N + 2)

ε2

(

hα(0)− −
∫

B(0,ε)
hα(y) dy

)

=
{

2(N + 2) N
N+α

εα−2

α
if α > 0

+∞ if 2 − N � α � 0,

where we have used the fact that hα(0) = 0 for α > 0 and hα(0) = +∞ for α � 0.
Letting ε → 0 and using the fact that Δψ(0) is finite we obtain

−Δ0W (0) = +∞ for all α < 2. (24)

Combining (23) and (24) we see that for 2 − N < α < 2 the potential Wα is
β-repulsive with β = 2 − α ∈ (0, N ).

We now show that for α > 2− N the potentials Wα satisfy hypothesis (H4-loc).
The key point is that the functions hα are superharmonic for α > 2 − N . Let us
recall the definition of superharmonicity:

Definition 3. A lower semicontinuous function h : R
N → (−∞,∞] is said to be

superharmonic on the connected open setΩ if it is not identically equal to +∞ on
Ω and if

h(x) � −
∫

B(x,r)
h(y) dy

for all x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω .

We also recall that if h ∈ C2(Ω), then h is superharmonic on Ω if and only
if Δh(x) � 0 for all x ∈ Ω . To see that the functions hα are superharmonic for
α > 2 − N , first note that for x �= 0

Δhα(x) = − (α + N − 2)

|x |2−α � 0.

Therefore hα is superharmonic on R
N \{0} and it can be easily checked that it

satisfies the super-mean value property at the origin [29, Definition 2.1]. Both
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together imply that it is actually superharmonic on the full space R
N , [29, Corollary

2.1]. As a consequence, we directly obtain from the definition of the approximate
Laplacian that Δεhα(x) � 0 and therefore

ΔεWα = cΔεhα +Δεψ � Δεψ.

To conclude, we note that since ψ ∈ C3(RN ), a simple Taylor expansion shows
thatΔεψ converges uniformly toΔψ on compact sets. Indeed, the expansion gives

Δεψ(x) = 2(N + 2)

ε2 −
∫

B(0,ε)
ψ(x + y)− ψ(x) dy

= 2(N + 2)

ε2 −
∫

B(0,ε)
yT ∇ψ(x)+ yT Hψ(x)y + O(ε3) dy (25)

= 2(N + 2)

ε2

(

Δψ(x)−
∫

B(0,ε)
y2

1 dy + O(ε3)

)

(26)

= Δψ(x)+ O(ε).

To go from (25) to (26) we have used the fact that most of the terms in the Taylor
expansion are equal to zero after integrating on spheres, due to symmetry. The only
remaining terms are the ones involved in the Laplacian. Note that since the partial
derivatives of ψ of order 3 are bounded on compact subsets of R

N , then the error
term is uniform for x in compact sets. Since Δψ is bounded on compact sets, we
conclude that for α > 2 − N the potential Wα satisfies (H4-loc). We summarize
this discussion in the following proposition:

Proposition 4. If 2− N < α < 2 and ifψ ∈ C3(RN ), then Wα is (2−α)-repulsive
around the origin and satisfies (H4-loc).

Finally, let us give examples of repulsive–attractive potentials W (x) = w(|x |)
that satisfy (H1)–(H4) rather than (H1)–(H2)–(H3-loc)–(H4-loc). In order to pro-
vide these examples we will use the already constructed potential Wα and ensure
that they behave well as |x | → ∞.

Since W (x) = w(|x |) is assumed to be repulsive–attractive, the function w is
increasing for r greater than some r0 > 0. Condition (H3) therefore implies that w
is bounded on (r0,+∞). On the other hand, condition (H4) implies some bound
on the derivatives of W . If 2 − N < α < 0, then hα(x) → 0 as |x | → ∞. It can
then be easily checked that if the function ψ in (22) and its partial derivatives up to
order three are bounded in R

N , then Wα satisfies (H1)–(H4). If 0 � α < 2, one can
construct a family of potentials W̃α that satisfies (H1)–(H4) by letting W̃α = Wα

in some ball B(0, R), and by extending W̃α outside of this ball in such a way that:

1. W̃α is three times continuously differentiable away from the origin,
2. W̃α and its derivative up to order three are bounded in {x ∈ R

N : |x | > R/2}.

4. Mild Repulsion Implies 0-Dimensionality

In this section, we will show that if the potential is mildly repulsive, meaning
that it behaves locally near zero like −|x |α with α > 2, then the support of the mea-
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sure cannot contain measures concentrated on smooth manifolds of any dimension
except 0-dimensional sets.

Definition 4. Let 1 � k � N . A probability measure μ ∈ P(RN ) is said to have a
regular k-dimensional part if it can be written

μ = μ1 + μ2,

where μ1 is a nonnegative measure on R
N and μ2 is defined by

∫

RN
ψ(x) dμ2(x) =

∫

M
ψ(x) f (x) dσ(x) ∀ψ ∈ C0(R

N ),

for some C2 manifold M of dimension k embedded in R
N and a non-identically

zero nonnegative function f : M → (0,+∞] integrable with respect to the surface
measure dσ(x) on M. Moreover, to avoid pathological situations, we assume that
there exists x0 ∈ M, c, κ > 0 such that

f (x) � c ∀x ∈ M ∩ B(x0, κ). (27)

We now state the main result of this section:

Theorem 2. Let W ∈ C2(RN ) be a radially symmetric potential which is equal to
−|x |α/α in a neighborhood of the origin. If α > 2 then a local minimizer of the
interaction energy with respect to d∞ cannot have a k-dimensional component for
any 1 � k � N.

For the above theorem to be true it is not necessary for the potential to be
exactly equal to a power law −|x |α , α > 2, around the origin. It is enough for the
potential to behave like −|x |α, α > 2, at the origin in a precise convexity sense,
see Theorem 3.

4.1. Preliminaries on Convexity

To prove Theorem 2, we need some convex analysis concepts, see [1,13] and
the references therein. The term modulus of convexity refers to any convex function
φ on the positive reals satisfying

(φ0) φ : [0,∞) −→ R is continuous, φ(0) = 0, and φ(x) �= 0 for x > 0.

(φ1) φ(x) � −kx for some k < ∞.

Now, we can quantify the convexity of certain functions in terms of a modulus of
convexity.

Definition 5. A function h : [0,+∞) → R is φ−uniformly convex on (a, b) if
there exists a modulus of convexity φ such that

h

(
r1 + r2

2

)

� 1

2
(h(r1)+ h(r2))− 1

4

∫ |r1−r2|

0
φ(t) dt, (28)

for all r1, r2 ∈ (a, b).
A function h : [0,+∞) → R is λ−convex on (a, b) if it is φ-uniformly convex

with φ(s) = λs and λ ∈ R.
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Note that if h is λ−convex, then (28) reads

h

(
r1 + r2

2

)

� 1

2
h(r1)+ 1

2
h(r2)− λ

8
(r1 − r2)

2, (29)

for all r1, r2 ∈ (a, b). It is equivalent to assume that the function h(r) − λ
2 r2 is

convex on (a, b). The following proposition can be easily proven:

Proposition 5. (Convexity properties of power laws)

(i) If q ∈ (1, 2], then h(r) = rq is λ−convex on [0, R] for λ = inf(0,R) h′′ =
q(q − 1)Rq−2 > 0, and thus, uniformly convex on [0, R].

(ii) If q > 2, then h(r) = rq is φ−uniformly convex on R+, with φ(t) =
22−q tq−1/q. That is

h

(
r1 + r2

2

)

� 1

2
(h(r1)+ h(r2))− 2−q |r1 − r2|q , (30)

for r1, r2 � 0.

4.2. Proof of Theorem 2

In this subsection we prove the following generalization of Theorem 2.

Theorem 3. Let W (x) = w(|x |) be continuously differentiable, bounded from
below, and decreasing as a function of |x | in a neighborhood of the origin. Assume,
moreover that W behaves like the power law −|x |α, α > 2, near the origin, in the
sense that for some C∗ > 0 and R > 0 small enough, w(r) = −h(r2) satisfies:

• If α ∈ (2, 4], h is λ−convex on [0, R] with λ = C∗ Rα/2−2.
• If α ∈ (4,∞), h is φ−uniformly convex on [0, R], with φ(t) = C∗tα/2−1,

and C∗|w′(r)| � rα−1 on [0, R]. Then a local minimizer of the interaction energy
with respect to d∞ cannot have a k-dimensional part for any 1 � k � N.

Theorem 2 is a direct consequence of Theorem 3, thanks to Proposition 5.
We first provide an explicit formula for how the energy changes when perturbing

a local minimizer:

Lemma 4. Suppose that W : R
N → (−∞,+∞] is symmetric, lower semicon-

tinuous and bounded from below with W (0) < +∞. Let μ ∈ P(RN ) be a local
minimizer of the interaction energy with respect to d∞ and E[μ] < +∞. Given
a connected domain Ω ⊆ supp(μ), a Borel map π : Ω → Ω and a convex
decomposition μ = m1μ1 + m2μ2 with supp(μ1) ⊂ Ω , we have that

E[m1(π#μ1)+ m2μ2] − E[m1μ1 + m2μ2] = m2
1 T [π#μ1, μ1]. (31)
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Proof of Theorem 1. Since B in (7) is a bilinear form,

E[m1(π#μ1)+ m2μ2] − E[m1μ1 + m2μ2]
= m2

1 B[π#μ1, π#μ1] + 2m1m2 B[π#μ1, μ2]
−m2

1 B[μ1, μ1] − 2m1m2 B[μ1, μ2]. (32)

We now use the fact thatμ is a local minimizer to express the terms involvingμ2 as
terms involving only μ1. Proposition 2 implies that the function Vμ(x) is constant
on the connected domain Ω . Since π(Ω) ⊂ Ω , we have:

∫

RN
W (π(x)− y) dμ(y) =

∫

RN
W (x − y) dμ(y) ∀x ∈ Ω,

and therefore, since μ = m1μ1 + m2μ2,

m1

∫

RN
W (π(x)− y) dμ1(y)+ m2

∫

RN
W (π(x)− y) dμ2(y)

= m1

∫

RN
W (x − y) dμ1(y)+ m2

∫

RN
W (x − y) dμ2(y)

for all x ∈ Ω . Since supp(μ1) ⊂ Ω , we can integrate both sides with respect to
dμ1(x) and obtain, after multiplication by m1,

m2
1

∫

RN ×RN
W (π(x)− y) dμ1(y)dμ1(x)+ m1m2

∫

RN ×RN
W (π(x)− y) dμ2(y) dμ1(x)

= m2
1

∫

RN ×RN
W (x − y) dμ1(y) dμ1(x)+ m1m2

∫

RN ×RN
W (x − y) dμ2(y) dμ1(x),

or equivalently, using the B-notation,

2m2
1 B[μ1, π#μ1] + 2m1m2 B[μ2, π#μ1] = 2m2

1 B[μ1, μ1] + 2m1m2 B[μ2, μ1],
and therefore rearranging the terms, we can express the terms involvingμ2 in terms
of the ones involving only μ1:

2m1m2[B[π#μ1, μ2] − B[μ1, μ2]] = 2m2
1[B[μ1, μ1] − B[μ1, π#μ1]].

The desired identity (31) is readily obtained by plugging the last equality into (32),
recalling the definition of T [μ, ν] in Section 2.

Definition 6. Let 1 � k � N . We denote by Dk
ε the the k-dimensional disk of

radius ε:

Dk
ε = {(x1, . . . , xN ) : x2

1 + · · · + x2
k � ε2 and xk+1 = · · · = xN = 0},

and by νε,k ∈ P(RN ) the uniform probability distribution on Dk
ε , that is, the

probability measure defined as
∫

RN
ψ(x) dνε,k(x) = 1

|Dk
ε |

∫

x2
1+···+x2

k �ε2
ψ(x1, . . . , xk, 0, . . . , 0) dx1 · · · dxk

for all ψ ∈ C0(RN ), where |Dk
ε | is the Lebesgue measure of dimension k of Dk

ε ,
that is, |Dk

ε | = σkε
k with σk being the area of the unit k-dimensional ball.



1074 D. Balagué, J. A. Carrillo, T. Laurent & G. Raoul

The following Lemma, combined with Lemma 4, shows that if a flat k-
dimensional disk is contained in the support of a local minimizer, then the energy
can be reduced by concentrating all the mass contained in the disk into a single
point. As a consequence, the support of a local minimizer cannot contain a flat
k-dimensional disk.

Lemma 5. Suppose that W (x) = −h(|x |2) satisfies the assumptions of Theorem 3.
Then, there exists ck,α > 0 such that for ε small enough,

T [δ0, νε,k] = B[δ0, δ0] − 2B[δ0, νε,k] + B[νε,k, νε,k] � −ck,αε
α.

Proof. Since W is bounded from below and W (0) < +∞, we can assume without
loss of generality that W (0) = 0 by adding a suitable constant to W . Then, the first
term B[δ0, δ0] is equal to zero. Symmetrizing the integral involved in the second
term we obtain:

B[δ0, νε,k ] = −1

2

∫

RN
h(|y|2) dνε,k(y) = −1

2

∫

RN ×RN
h(|y|2) dνε,k(x) dνε,k(y)

= −1

4

∫

RN ×RN
[h(|x |2)+ h(|y|2)] dνε,k(x) dνε,k(y).

Since the density of the measure νε,k is symmetric by definition, we can also sym-
metrize the third term and obtain:

B[νε,k, νε,k] = −1

2

∫

RN ×RN
h(|x − y|2) dνε,k(x) dνε,k(y)

= −1

4

∫

RN ×RN
[h(|x − y|2)+ h(|x + y|2)] dνε,k(x) dνε,k(y).

Combining the three terms we find

T [δ0, νε,k] = 1

2

∫

RN ×RN
A(x, y) dνε,k(x) dνε,k(y), (33)

with

A(x, y) := h(|x |2)+ h(|y|2)− h(|x − y|2)+ h(|x + y|2)
2

.

Under the assumptions of Theorem 2, h is convex on (0, 2ε2); since h(0) = 0, we
deduce

h(r2
i ) �

r2
i

r2
1 + r2

2

h(r2
1 + r2

2 ),

for ri � 0, i = 1, 2. Using the above inequalities for i = 1, 2 we get

h(|x |2)+ h(|y|2) � h(|x |2 + |y|2) = h

(
1

2
|x + y|2 + 1

2
|x − y|2

)

.
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In the rest of this Lemma, C denotes some generic constant that will change
from step to step. For α ∈ (2, 4], h is λ−convex on (0, 2ε2) with λ = Cεα−4, so
that plugging into (29), we obtain

h(|x |2)+ h(|y|2) � 1

2
h(|x + y|2)+ 1

2
h(|x − y|2)− Cεα−4(x · y)2. (34)

Combining (33) and (34), together with the change of variables (x, y) = ε(x̃, ỹ),
we get, dropping the tildes:

T [δ0, νε,k] � −Cεα−4
∫

RN ×RN
(x · y)2 dνε,k(x) dνε,k(y)

= −Cεα
∫

RN ×RN
(x · y)2 dν1,k(x) dν1,k(y).

For α � 4, h is φ−convex with φ(t) = Ctα/2−1, so that plugging into (30), we
obtain

h(|x |2)+ h(|y|2) � 1

2
h(|x + y|2)+ 1

2
h(|x − y|2)− C |x · y|α/2. (35)

Combining (33) and (35) with an ε-dilation change of variables, we similarly get:

T [δ0, νε,k] � −C
∫

RN ×RN
|x · y|α/2 dνε,k(x) dνε,k(y)

= −Cεα
∫

RN ×RN
|x · y|α/2 dν1,k(x) dν1,k(y).

The last Lemma combined to Lemma 4 shows that the support of a local min-
imizer cannot contain a flat k-dimensional disk of radius ε. To conclude the proof
of Theorem 3, we need to introduce some differential geometry tools. Let R > 0,
and g : Dk

R → R
N−k a C2-function such that g(0) = 0,∇g(0) = 0. We define the

parameterization Pg of the graph of g as follows:

Pg : Dk
R −→ R

N , (36)

(x ′, 0) �→ (x ′, g(x ′)),

where x ′ = (x1, . . . , xk) stands for the k first coordinates. Let us remark that classi-
cal differential geometry implies that any C2-manifold can be locally parameterized
by such graphs by conveniently choosing the axis and reordering of variables. More-
over, this can be done in such a way that the volume element of the graph Jg is as
close as desired to the unit volume element of the flat tangent space by taking R
small enough, see [30]. More precisely, there exists a constant Cg depending only
on the second derivatives of g on Dk

R such that

‖Jg − 1‖L∞(Dk
ε )

� Cgε, (37)

for 0 < ε < R small enough.
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Lemma 6. If W satisfies the assumptions of Theorem 3, and g ∈ C2(Dk
R,R

N−k)

satisfies g(0) = 0, ∇g(0) = 0, then for ε > 0 small enough,

T [δ0, Pg#νε,k] − T [δ0, νε,k] � 2α−1εα

C∗ ‖∇g‖L∞(Dk
ε )
.

Proof. Note that by continuity for ε > 0 small enough, we have ‖∇g‖L∞(Dk
ε )

� 1.
We first point out that

T [δ0, Pg#νε,k] − T [δ0, νε,k] =
∫

RN ×RN
A(x, y) dνε,k(x) dνε,k(y),

with

A(x, y) = w(|Pg(x)− Pg(y)|)− w(|x − y|)
2

− [w(|Pg(x)|)− w(|x |)].

Thanks to the definition of the parameterization Pg, |Pg(x) − Pg(y)| � |x − y|.
Moreover, sincew is decreasing in a neighborhood of the 0, the first term in A(x, y)
is negative for max(|x |, |y|) < ε small enough. To estimate the second term, we
use the mean value theorem for g around x ′ = 0, remembering that g(0) = 0:

|Pg(x)− (x ′, 0)| = |g(x ′)− g(0)| � ε‖∇g‖L∞(Dk
ε )
,

since C∗|w′(r)| � rα−1, we conclude

w(|Pg(x)|)− w(|x |) � ‖w′‖L∞([0,2ε])ε‖∇g‖L∞(Dk
ε )

� 2α−1εα

C∗ ‖∇g‖L∞(Dk
ε )
.

Proof of the Theorem 2. Assume that μ is a local minimizer of E in d∞ and that
it has a regular k-dimensional part in the sense of Definition 4. Let M be the C1-
submanifold on which this component is supported, and f be the density on M
of this component. Let x0 ∈ M, and c, κ > 0 satisfying (27). As discussed above
and without loss of generality, we can assume that x0 = 0 and that M is locally
the graph of a C2-function g : Dk

R → R
N−k , for some κ > R > 0, such that

g(0) = 0,∇g(0) = 0.
Let Pg be the parameterization defined in (36). Note that for ε � R, με1 :=

Pg#νε,k ∈ P(RN ) is absolutely continuous with respect to the volume element on
M with a density still denoted by με1, and satisfying [by (37)]

‖με1‖L∞(M,dσ) � 1

|Dk
ε | Iε

� 1

|Dk
ε | (1 − Cgε)

, with Iε = inf
x∈D̄k

ε

Jg(x).

Therefore, choosing m1 = c
2 |Dk

ε | (1 − Cgε), then f (x) > m1μ
ε
1 on x ∈ Dk

ε , and
we can decompose μ as a convex combination

μ = m1μ
ε
1 + m2μ

ε
2,

where με2 ∈ P(RN ).



Dimensionality of Local Minimizers of the Interaction Energy 1077

Now, we are going to send all mass from με1 to a Dirac Delta at x0 = 0. Let
us define π : R

N −→ R
N by π ≡ 0 and με := m1π#με1 + m2μ

ε
2 (note that

π#με1 = δ0). με is then a small perturbation of μ in d∞:

d∞(μ,με) � ε(1 + ‖∇g‖L∞(Dk
ε )
). (38)

To check this just take a map T in Definition 9 such that T (x) = x for all
x ∈ M/Pg(Dk

ε ) and such that T (x) = 0 for x ∈ Pg(Dk
ε ). Thus, the maximum

displacement produced by the transport map T is bounded by the maximum of
|Pg(x)| for x ∈ Pg(Dk

ε ) leading to (38), using that g(0) = 0 and the mean value
theorem.

Since με1 has a connected support that contains π(supp(με1)) = {0}, we can
apply Lemma 4 to get:

E[με] − E[μ] = m2
1 T [π#με1, μ

ε
1]

= m2
1 T [π#με1, νε,k] + m2

1

(
T [π#με1, μ

ε
1] − T [π#με1, νε,k]

)
.

Since π#με1 = δ0, we can use Lemma 5 to estimate the first term. Moreover, since
με1 = Pg#νε,k , we can use Lemma 6 to estimate the last two terms, so that we
finally conclude

E[με] − E[μ] � m2
1

[
−ck,αε

α + Cεα‖∇g‖L∞(Dk
ε )

]
.

Note that g ∈ C1(Dk
R) and ∇g(0) = 0 imply that ‖∇g‖L∞(Dk

ε )
→ 0 as ε → 0;

thus, if ε > 0 is small enough, we get that E[με] − E[μ] < 0.
Thus, με is a better competitor in the minimization of E for ε arbitrarily small.

This leads to a contradiction with the fact thatμ is a local minimizer of E , showing
Theorem 2.

5. Euler–Lagrange Approach to Study Local Minimizers in the d2-Topology

So far, we have used transport plans to build perturbed measures. This enabled us
to study local minimizers of the interaction energy with respect to the d∞-topology.
To study local minimizers with respect to the d2-topology, it is actually possible to
use a more classical Euler–Lagrange approach, as we will present in this section.
The Euler–Lagrange conditions that we will derive were formally obtained in [4] by
perturbing densities inside and outside their support. Here, we provide a rigorous
proof in the case of probability measures endowed with the distance d2.

Theorem 4. Consider an interaction potential W satisfying (H1)–(H2). Let us con-
sider μ ∈ P2(R

N ) a local minimizer of E with respect to d2, such that E[μ] < ∞.
Then,

(i) (W ∗ μ)(x) = 2E[μ]μ-almost everywhere
(ii) (W ∗ μ)(x) � 2E[μ] for all x ∈ supp(μ).

(iii) (W ∗ μ)(x) � 2E[μ] for almost everywhere x ∈ R
N .
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Proof. As usual, we assume that W � 0 without loss of generality. Lemma 2
implies that W ∗ μ is well defined, lower semicontinuous and non-negative.

In order to prove the first two items, let us choose ϕ ∈ C∞
0 (R

N ) to define

ν =
(

ϕ −
∫

RN
ϕ dμ

)

μ := a(x)μ,

and με = μ + εν = (1 + εa(x))μ with ε > 0 to be specified. It is clear that
με(R

N ) = 1, since a(x) has zero integral with respect to μ. Moreover, since
a(x) � −2‖ϕ‖L∞ , then με � 0 for ε < 1

2‖ϕ‖L∞ = εϕ . Therefore, με ∈ P(RN )

for all ε < εϕ . It is easy to check that με ∈ P2(R
N ), that με ⇀ μ weakly-∗ as

measures, and
∫

RN
|x |2 dμε →

∫

RN
|x |2 dμ.

Therefore, we have that

d2(με, μ) → 0 as ε → 0.

Note that it is not true in general that d∞(με, μ) → 0 as ε → 0. Consider, for
instance, μ = 1

2δ0 + 1
2δ1 and ϕ|[0,1] = x , then με = ( 1

2 − ε)δ0 + ( 1
2 + ε)δ1, and

d∞(με, μ) = 1 for any ε > 0.
Now, sinceμ is a local minimizer in d2, then E[με] � E[μ] for ε small enough.

Moreover, since μ has finite energy, then E[με] < ∞ and we can expand it as

E[με] − E[μ]
ε

=
∫∫

RN ×RN
W (x − y) dν(x) dμ(y)

+ε
2

∫∫

RN ×RN
W (x − y) dν(x) dν(y) � 0,

with both integral terms well-defined. As ε → 0, we easily get
∫∫

RN ×RN
W (x − y) dν(x) dμ(y) � 0,

or equivalently,
∫
ϕ[(W ∗ μ)(x)− 2E[μ]] dμ(x) � 0

for all ϕ ∈ C∞
0 (R

N ). Since one can take either ϕ or −ϕ as test functions, we deduce

∫
ϕ[(W ∗ μ)(x)− 2E[μ]] dμ(x) = 0

for all ϕ ∈ C∞
0 (R

N ), and thus (i) is satisfied for almost everywhere μ.
Let us now prove (ii). Take x ∈ supp(μ). Then there exists {xn}n∈N → x with

xn ∈ supp(μ), such that (W ∗ μ)(xn) = 2E[μ]. The existence of such a sequence



Dimensionality of Local Minimizers of the Interaction Energy 1079

is ensured since μ(B(x, ε)) > 0 for all ε > 0 by definition of the support of μ.
Then, by lower semicontinuity of W ∗ μ we get

(W ∗ μ)(x) � lim inf
n→∞ (W ∗ μ)(xn) = 2E[μ],

and then (ii) is satisfied.
In order to show (iii), we consider different variations to the arguments con-

structed above. Take ψ ∈ C∞
0 (R

N ), ψ � 0 and then take

ν = ψ −
(∫

RN
ψ dx

)

μ.

Again, defining με = μ + εν, then it verifies με(RN ) = 1 and if ε < 1/
∫
ψ dx ,

then με � 0. As previously, it is easy to check that

d2(με, μ) → 0 as ε → 0.

Note, again, that it is not true in general that d∞(με, μ) → 0 as ε → 0.
Proceeding similarly to point (i), we get

∫∫

RN ×RN
W (x − y) dν(y) dμ(x) � 0,

taking ε → 0 in E[με] � E[μ]. Therefore, we conclude that
∫

RN
((W ∗ μ)(x)− 2E[μ])ψ dx � 0,

for all ψ ∈ C∞
0 (R

N ), ψ � 0. This readily implies (iii).

Remark 4. Note that putting together (i), (ii), and (iii) in the previous theorem, we
conclude that

{
(W ∗ μ)(x) = 2E[μ] for almost everywhere x ∈ supp(μ)

(W ∗ μ)(x) � 2E[μ] for almost everywhere x ∈ R
N \ supp(μ),

if μ is absolutely continuous with respect to the Lebesgue measure. These two
properties are the Euler–Lagrange conditions that were found for densities in [4].

Remark 5. Let us now clarify the differences between local minimizers in the
d2−topology and local minimizers in the d∞−topology. Following [17], consider
as an example the interaction potential W (x) := −x2 + x4

2 in one dimension. Then,

ρm = mδ0 + (1 − m)δ1

is a critical point of the interaction energy for any m ∈ [0, 1]. Theorem 3.1 in
[17] shows that the measure ρm is a local minimizer in the d∞−topology as soon
as m ∈ (1/3, 2/3). Indeed, what is proven is the stronger statement that ρm is
locally asymptotically stable for the aggregation equation (6) with respect to any
perturbation in the d∞−topology. However, E(ρm) = 1

2 (m − 1
2 )

2 − 1
8 , so only one
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of them, namely ρ1/2, can be a local minimizer of the energy in the d2−topology
(and one can prove that it actually is).

This shows that the set of local minimizers with respect to the d2-topology is
strictly contained in the set of local minimizers with respect to the d∞-topology.
Moreover, numerical simulations suggest that, for m ∈ (1/3, 2/3), ρm is actually
stable (although not asymptotically stable) with respect to small d2-perturbations.
As a consequence, when using a gradient flow approach to numerically compute
minimizers of the interaction energy via particles, one obtains d∞-local minimizers,
which typically are not d2-local minimizers (see for example Fig. 2 of [17]).

6. Numerical Experiments

In this section we conduct a numerical investigation of the local minimizers of
the discrete interaction energy (2) with a high number of particles. The gradient
flow of (2) is given by the system of ODEs:

Ẋi = −
n∑

j=1
j �=i

m j∇W (Xi − X j ). (39)

In order to efficiently find local minimizers of (2), we solve (39) by an explicit
Euler scheme with an adaptive time step chosen as the largest possible, such that the
discrete energy (2) decreases. This scheme is nothing other than a gradient descent
method for the discrete energy (2). Although this method might not be accurate
enough for the dynamics, it is efficient to find local minimizers of the discrete energy.
In stiffer situations an explicit Runge–Kutta method is used instead. These methods
are essentially the ones proposed in [36,37]. The results of these simulations in
two dimensions with power-law potentials were presented in the introduction, see
Table 1. In Subsection 6.1 we discuss similar computations in three dimensions. We
also provide numerical experiments suggesting that for some potentials, there are
local minimizers of the interaction energy with mixed dimensionality, that is, local
minimizers that are the sum of measures whose supports have different Hausdorff
dimensions.

In Subsection 6.2 we show how our numerical results can be further understood
by using the results from [2,23,37], where a careful stability analysis of a ring
solution (in two dimensions) and a spherical shell solution (in three dimensions)
was conducted. We also show how this stability analysis connects to the analytical
results presented in this paper.

6.1. Numerical Experiments in three dimensions

First, we numerically compute local minimizers of En
W , where W is the power-

law potential defined by (5). Recall that ΔW (x) ∼ −1/|x |β with β = 2 − α as
x → 0. The computations are performed with n = 2,500 particles. The results are
shown in Table 2 and are discussed below:
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Table 2. Minimizers of En
W in R

3 for various power-law potentials with n = 2,500

(a)

(b) (c)

(d) (e)

(f)

• Subfigure (a): α = 2.5 and γ = 5. The support of the minimizer has zero
Hausdorff dimension, in agreement with Theorem 2. Actually, in this particular
case it is supported on four points, forming a tetrahedron.

• Subfigures (b) and (c): the two potentials have the same behavior at the origin,
α = 1.25, but different attractive long range behavior (γ = 15 and γ = 1.4
respectively). Theorem 1 shows that the Hausdorff dimension of the support
must be greater than or equal to β = 2 − α = 0.75. Numerically, we observe
that the local minimizer for the first example has a two-dimensional support
and the minimizer for the second example has a three-dimensional support. We
did not choose the value α = 1.5 because we were not able to obtain a change
of dimensionality of the stable steady states varying γ > α. Note that α = 1.5
is always above the instability curve for radial perturbations, which meets line
α = γ at the point (

√
2,

√
2). See Fig. 4 and Subsection 6.2 for more details.

• Subfigures (d) and (e): the two potentials have the same behavior at the origin,
α = 0.5, but different attractive long range behaviors (γ = 23 and γ = 1.4
respectively). Theorem 1 shows that the Hausdorff dimension of the support
must be greater than or equal to β = 2−α = 1.5. Numerically, we observe that
the local minimizer for the first example has a two-dimensional support and the
local minimizer for the second example has a three-dimensional support.

• Subfigure (f):α = −0.5 andγ = 5. Theorem 1 proves that the Hausdorff dimen-
sion of the support must be greater than β = 2 − α = 2.5, which can also be
observed numerically. In Fig. 1, we haverepresented the radius of particles to the
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Fig. 1. Distances of the particles from the center of mass for the power law potential with
α = −0.5, γ = 5 in three dimensional. Case (f) in Subsection 6.1 in Table 2 with n = 10,000

center of mass. The particles seem to organize into successive two-dimensional
layers. Such lattices were also observed in [22], and it is related to the finite
number of particles used in the simulations.

Note that we were not able to find examples of interaction potentials leading
numerically to a local minimizer with one dimensional support. We could, however,
observe such situations with an additional asymmetric confining potential; thus we
believe it should be possible to produce such cases.

A natural question following Tables 1 and 2 is whether it is possible to produce
local minimizers that are the sums of two measures whose supports have different
Hausdorff dimensions. A possible candidate was already observed in [37]. Here,
we analyze the possibility more carefully with a much larger number of particles.
From our simulations, it seems that the interaction potential W (x) = w(|x |) with
w defined by

−w′(r) = tanh((1 − r)a)+ b, a = 5, b = 0.5,

leads numerically to a local minimizer consisting of a ball (Hausdorff dimension
three) inside a spherical shell (Hausdorff dimension two), see Fig. 2.

The distance of each particle to the center of mass is displayed on the right
part of Fig. 2. The inner ball appears to be composed of five equally spaced layers
of particles. This is most likely due to the fact that particles are organized into
a lattice configuration, and therefore the distances between the particles and the
origin do not form a continuum. It is instructive to compare the distribution of the
radius of the particles in the right subplot of Fig. 2 with the one in Fig. 1 for the
case of an approximated local minimizer with three-dimensional support, that is,
Case (f) of Table 2. Although Theorem 1 guarantees that the support of the local
minimizer corresponding to Fig. 1 has Hausdorff dimension greater than or equal
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Fig. 2. Left Local minimizer in three-dimensional with n = 10,000. Right Distance of the
particles from the center of mass

to 2.5, we can also observe that particles arrange themselves in layers. Notice that
in dimension N = 2, such artifacts also appear in simulations using a finite number
of particles, see Figure 4 in [22].

6.2. Relationship with Previous Works on Ring and Shell Solutions

An important characteristic of the analysis performed in the main theorems of
this work is that we do not assume a specific shape on the local minimizers. If,
on the contrary, one is interested by the special case of delta ring minimizers (in
two dimensions), or spherical shell minimizers (in three dimensions), perturbative
methods provide more detailed results.

In [23] the local stability of discrete ring solutions, made of N -particle equally
distributed in a circle, was studied for the N -particle system (39). The authors
considered the power law interaction potentials (5), and conducted a formal linear
stability analysis for the continuum ring solution as steady state of the aggregation
equation (6) by taking N → ∞. Those predictions were then confirmed numer-
ically. They could not obtain nonlinear stability of the ring solution, particularly
because there is no spectral gap as N → ∞, that is, the largest negative eigenvalue
tends to 0 when N → ∞. In [2], the nonlinear stability of the ring solutions was
proved for radial perturbations, corroborating some of the formal results of [23],
together with the instability due to fattening in the complementary set of parameters.

We have represented this set of parameters in Fig. 3, as well as all the parameters
used in the two-dimensional numerical simulations of this article (Tables 1, 3). As
the caricature presented in Table 3 shows, crossing the lower border of this set,
curve α = γ /(γ − 1), leads to a “fattening” of the delta ring, that is, to minimizers
with dimensionality 2, see [23,2]. On the other hand, crossing its upper border,
given by the curve marked with 3, does not modify the dimensionality of the stable
steady states as long as α < 2 (they remain one-dimensional), but leads to a
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Fig. 3. Sketch of all the computed cases in dimension N = 2. The parameters (γ, α) used
in Table 1 are marked with ∗, while those used in Table 3 are marked with ◦. Notice that
α < γ is necessary for the interaction potential to be confining. In dark gray is represented
the set of parameters such that a delta ring could be a local minimizer

Table 3. Evolution of local minimizers whenα > 0 increases, while γ = 5 remains constant

The computations were done with n = 10,000 particles

“shape” instability towards a triangular configuration that breaks the ring into three
connected one-dimensional components, as in case (b) of Table 1.

Finally, if α > 2, local minimizers become of dimensionality 0, as predicted by
Theorem 2, whereas if α < 1, all the minimizers are of dimensionality 2, as shown
by Theorem 1.

In three dimensions, a linear stability analysis of discrete spherical shell solu-
tions is also possible, but it leads to more cumbersome instability curves, see
[36,37]. Again, the results in [2] give the “fattening” instability curve dividing
instability from stability under radial perturbations. In Fig. 4, we have represented
only the set of parameters such that the spherical shells are not local minimizers for
spherically symmetric perturbations, as well as all the parameters (γ, α) used for
three-dimensional numerical simulations in this article in Table 2. Just as we have
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α = γ

α = 1

α = 2

(1.4, 1.25)

α = 0

α = 2
γ

(1.4, 0.5)

(5, 2.5)

(15, 1.25)

(23, 0.5)

(5, −0.5)

α

γ

(
√

2,
√

2)

Fig. 4. Sketch of all the computed cases in dimension N = 3. The parameters (γ, α) used
in Table 2 are marked with ∗. Notice that α < γ is necessary for the interaction potential to
be confining. The curve is the limit between parameters leading to spherical shell solutions
for radial perturbations (above the curve) and to minimizers of dimensionality 3 (below the
curve)

Table 4. Local minimizers with the power-law potential (5) and the perturbed potential (40),
n = 10,000

observed in the two-dimensional case, crossing the lower border of this set leads
to a “fattening” instability of the spherical shell.

Notice, finally, that it is also possible to modify the dimensionality of the local
minimizers with other perturbations of power law potentials. As an example, in
Table 4, we consider the following perturbations of the power law potential (5):

W (x) = −|x |α
α

+ |x |γ
γ

+ 3

2p
cos(px), α < γ, p = 3, 5. (40)

In Table 4 we have represented the power-law case in the first column, and the
perturbations in the next two. For (γ, α) = (2, 1.5), the unperturbed power-law
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potential leads to a local minimizer with Hausdorff dimension two. When we add
the perturbation p = 3, the dimension of the minimizer changes to one. Notice that
the perturbation does not alter the local behavior of the potential at the origin or at
infinity, suggesting that Theorem 1 is probably sharp, at least in terms of natural
dimensions.
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