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Abstract

The paper addresses the question of the existence of a locally self-similar blow-
up for the incompressible Euler equations. Several exclusion results are proved
based on the L p-condition for velocity or vorticity and for a range of scaling
exponents. In particular, in N dimensions if in self-similar variables u ∈ L p

and u ∼ 1
tα/(1+α) , then the blow-up does not occur, provided α > N/2 or

−1 < α ≤ N/p. This includes the L3 case natural for the Navier–Stokes equa-
tions. For α = N/2 we exclude profiles with asymptotic power bounds of the form
|y|−N−1+δ � |u(y)| � |y|1−δ . Solutions homogeneous near infinity are elimi-
nated, as well, except when homogeneity is scaling invariant.

1. Introduction

In the theory of weak solutions to the Navier–Stokes equation, one of the cor-
nerstone results is non-existence of self-similar blow-up for velocities in L3 proved
by Necas et al. [17], and further extended to the case of L p, p > 3, by Tsai [22].
This was followed by the celebrated L3,∞-regularity criterion of Escauriaza et
al. [11]. For its inviscid counterpart, the Euler equation, given by

ut + u · ∇u + ∇ p = 0

∇ · u = 0,
(1)

the self-similar blow-up has not yet been explored systematically in mathematical
literature, despite an abundance of numerical data based on (1) pointing to such a
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possibility. Brachet et al. [3] observe a pancake-like formation of vortex struc-
tures from Taylor-Green initial conditions. Simulations of Kerr [14] present strong
evidence of a singularity corresponding to scaling u ∼ 1√

T −t
, the same as for the

Navier–Stokes. Boratav and Pelz [2] conducted tests on Kida’s high-symmetry
flows that revealed self-similar evolution of a focusing vortex dodecapole, again in
the same scaling. A similar collapse was further observed in vortex filament models
of Pelz [19], Kimura [15], Ng and Bhattacharjee [18], and others.

To describe the mathematical setup, let us assume that the fluid domain is
R

N , N ≥ 2, although other choices are possible. Suppose that near some point
x∗ ∈ R

N a solution, initially starting from smooth data, organizes into a locally
self-similar blowup. In other words, there is α > −1, a ρ0 > 0 and time T > 0
such that

u(x, t) = 1

(T − t)
α

1+α

v

(
x − x∗

(T − t)
1

1+α

)

p(x, t) = 1

(T − t)
2α

1+α

q

(
x − x∗

(T − t)
1

1+α

)
,

(2)

for all |x − x∗| < ρ0, and t < T near T . For finite α the collapse is dynamically
focusing, while for α = ∞, the solution (2) becomes

u(x, t) = (T − t)−1v(x − x∗), p(x, t) = (T − t)−2q(x − x∗), (3)

which exhibits globally inflating characteristics. We normally assume in this case
that ρ0 = ∞.

Observe that the vorticity near the singularity scales like ω = curl v ∼ 1
T −t ,

making it a borderline case for the Beal–Kato–Majda criterion [1]. The Lipschitz

constant of the vorticity direction field ξ = ω
|ω| scales like (T − t)−

1
1+α , again in

no contradiction with Constantin and Fefferman’s criterion for three-dimensional
fluids [9,10]. In [12,13] Xinyu He shows existence of solutions to self-similar
equations (7) on three-dimensional bounded and exterior domains with α = 1. On
exterior domains solutions exhibit the power-like decay similar to vortex models,
|v| ∼ |y|−1, |∇v| ∼ |y|−2 under the same scaling. Although these solutions belong
to different settings, interestingly, their decay rate appears critical for our results
below. One can observe that α = N/2 is the only scaling consistent with energy
conservation for globally self-similar solutions if the helicity is not zero ([6], see
also [20] for ‘pseudo self-similar solutions’). A study of self-similar blow-up in
the settings adopted here was undertaken by the first author in a series of works
[4–7]. The two main results obtained were the following. First, if v ∈ L p(R3), p ≥
9
2 , α = ∞, and the ansatz is (3) is global, that is, ρ0 = ∞, then v = 0. Second,
if ‖∇v‖∞ < ∞ and the vorticity belongs to ∩0<p<p0 L p(R3), for some p0, while
α > −1 is arbitrary, then v is irrotational, with ω = 0 throughout.

In this paper we develop a new set of criteria that exclude locally self-similar
collapse in physically relevant scalings. Let us observe that if the total energy of
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u is finite, then by rescaling the energy in the ball |x − x∗| ≤ ρ0, we have the bound∫
|y|<Lρ0

|v(y)|2 � L N−2α, for all L > L0. (4)

Therefore, the case α > N
2 is automatically excluded, while in the range α < N

2
the energy of v may be unbounded. In all our results we avoid using the assumption
of finiteness of total energy, keeping in mind, for instance, the three-dimensional
vortex filament models, where the energy is naturally unbounded. We therefore
examine the full range of α > −1 and integrability conditions v ∈ L p for a
possible collapse. If v ∈ L p, p > 2, there are two special values of α to consider:
α = N

p for the fact that ‖u‖p is conserved under the self-similar evolution on the
open space, and α = N/2 as the boundary between local energy inflation and
deflation regimes (see (4)). We will see that the cases −1 < α ≤ N

p , N
p < α ≤ N

2 ,

and α > N
2 are, in fact, different in character, and we exclude solutions under the

following conditions:

(i) v ∈ L p ∩ C1
loc, p ≥ 3, and −1 < α ≤ N

p or α > N
2 ;

(ii) v ∈ L2 ∩ C1
loc, α = N

2 , and for some δ > 0 and |y| large, one has

c

|y|N+1−δ
≤ |v(y)| ≤ C |y|1−δ. (5)

The local C1-condition is needed only for the local energy equality to hold, and is
natural since we view T as the first time of regularity loss. The local energy equality
will be our starting point in most arguments, although somewhat unusually for a
self-similar problem, we will employ the full time-dependent version of it to be able
to make a non-self-similar choice for a test function. As a result the local energy
equality takes the form

1

L N−2α

∫
|y|≤L

|v|2dy � 1

l N−2α

∫
|y|≤l

|v|2dy +
∫

l≤|y|≤L

|v|3 + |v||q|
|y|N+1−2α

dy. (6)

As we remarked above, the asymptotic character of terms in (6) depends on the
range of α considered. Nonetheless, (6) allows us to control the growth of the energy
either by the L p-norm of v on the large scales in case (i) or through the use of power
bounds on v as in (ii). This gives an improved bound on the trilinear integral in (6)
by interpolation. The general strategy will then be to bootstrap between the growth
of L2 and L3 norms of v over large balls |y| < L via a repeated use of (6), until
eventually the energy over |y| < L displays a decay as L → ∞, implying v = 0.
It is precisely for N

p < α ≤ N
2 when this algorithm fails to bootstrap. However, as

a byproduct of the argument, we obtain

(iii) if v ∈ L p ∩ C1
loc, p ≥ 3, and N

p < α ≤ N
2 , then (4) holds.

So, the energy growth bound (4) is a natural internal feature of the blow-up, inde-
pendent of the total energy assumption. In particular, if v ∈ L p, p ≥ 3, and α = N

2 ,
then automatically v ∈ L2.
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Coming back to the vortex models or He’s solutions, notice that in those cases
v ∈ L p for p > 3 (even if only at infinity) while α = 1. Thus, they appear to be
critical for the scope of (i).

We present several explicit homogeneous examples of solution pairs (v, q),
see (10), (11), (12), (13), which although lacking sufficient local regularity to be
fully qualified as counterexamples, serve as indicators that our arguments may be
sharp. In Theorem 4.2 we demonstrate, however, that locally smooth homogenous
at infinity solutions are trivial unless the homogeneity is consistent with the scaling,
and even then the case α = N/2 is excluded.

A criterion dimensionally equivalent to (i), but in terms of vorticity, is estab-
lished using the self-similar equations in vorticity form, generalizing the results
obtained by the first author. We have

(iv) Suppose α > −1, ω ∈ L p, for some 0 < p < N
1+α

, and the strain tensor
|∂v + ∂v| = o(1) as |y| → ∞. Then v is a constant vector.

2. Technical Preliminaries

2.1. Self-Similar Equations and Pressure

If (u, p) is a distributional solution to (1), then the pair (v, q) satisfies

1

1 + α
y · ∇v + α

1 + α
v = v · ∇v + ∇q, (7)

and the pressure necessarily satisfies the Poisson equation

�q = − div div(v ⊗ v) = −∂i∂ j (viv j ). (8)

If v ∈ L p, 2 < p < ∞ (respectively, L∞) and q ∈ L p/2 (respectively, BMO),
then there is only one solution to (8), given by

q(y) = −|v|2
N

+ P.V .

∫
RN

Ki j (y − z)vi (z)v j (z) dz, (9)

where the kernel is given by

Ki j (y) = N yi y j − δi, j |y|2
NωN |y|N+2 ,

and ωN = 2π N/2(N
(N/2))−1 is the volume of the unit ball in R
N . The pressure

given by (9) is referred to as the associated pressure. Unless stated otherwise we
will always assume that the pressure is associated, however not for every pair (v, q)

solving (7), is q given by (9). Indeed, let

v = 〈1, 0〉, q = α

1 + α
y1. (10)

This is a self-similar solution for any α > −1. Clearly, (9) does not hold (see
[16] for the role of such examples in uniqueness of solutions of the Navier–Stokes
equation).
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The equation in self-similar coordinates (7) has its own intrinsic scaling—if v

is a solution to (7), then

vλ(y) = λv(y/λ), qλ(y) = λ2q(y/λ)

is also a solution to the same equation. This suggests that there may exist non-trivial
examples of a 1-homogeneous solution. Indeed,

v(y) = My, q(y) = 1

2
〈(M − M2)y, y〉,

Tr M = 0, M − M2 ∈ SymN .

(11)

Another example is the following two-dimensional parallel shear flow

v(y) = 〈yα
2 , 0〉, q(y) = 2α

(1 + α)2 yα+1
2 , (12)

which in the case α = 1 reduces to the natural homogeneity. A singular example
of a solution of special interest to us is the α-point vortex

v(y) = y⊥

|y|α+1 , q(y) = 0. (13)

The equation for vorticity tensor ω = 1
2 {∂iv j − ∂ jvi }N

i, j=1 in self-similar vari-
ables reads

ω + 1

1 + α
y · ∇ω = v · ∇ω − ως − ςω, (14)

where ς = 1
2 {∂iv j + ∂ jvi }N

i, j=1 is the strain tensor.

2.2. Local Energy Equality

All our results below hold under the presumption that the solution (u, p) is
regular enough to satisfy the local energy equality, at least in the region of self-
similarity:∫

RN
|u(t2, x)|2σ(t2, x) dx −

∫
RN

|u(t1, x)|2σ(t1, x) dx

=
∫ t2

t1

∫
RN

|u(t, x)|2∂tσ(t, x) dx dt +
∫ t2

t1

∫
RN

(|u|2 + 2p)u · ∇σ dx dt, (15)

where σ ∈ C∞
0 ((0, T ) × R

N ), and 0 < t1 < t2 < T . This holds trivially for
locally smooth solutions, u, p ∈ C1

loc((0, T )×R
N ). The weakest known regularity

condition under which (15) still holds is a Besov-type regularity of smoothness 1/3
(see [8,21]). It is not our goal, however, to pursue the sharpest local condition.

We will now work out a special form of the local energy equality (15) in the case
of self-similar solutions. First, we take one preliminary step by assuming, without
loss of generality, that the center of the blow-up is the origin, x∗ = 0, the radius of
the ball where (2) holds is ρ0 = 1, and since the Euler equations are time reversible
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we can assume that T = 0 and the self-similar blow-up occurs backward in time
for 0 < t < 1, that is,

u(x, t) = t−
α

1+α v
(

xt−
1

1+α

)
, p(x, t) = t−

2α
1+α p

(
xt−

1
1+α

)
.

Let us fix a radial test function σ , that is, σ(x) = σ(|x |), such that σ ≥ 0, σ (r) = 1,
for 0 ≤ r ≤ 1

2 , and σ(r) = 0, for r > 1. Using σ , (15) takes the form

‖u(t2)σ‖2
2 = ‖u(t1)σ‖2

2 +
∫ t2

t1

∫
R3

(|u|2 + 2p)u · ∇σ(x)dxdt. (16)

In self-similar variables, the above translates into the following. For −1 < α < ∞,

t
N−2α
1+α

2

∫
|y|≤t

− 1
1+α

2

|v(y)|2σ
(

yt
1

1+α

2

)
dy

= t
N−2α
1+α

1

∫
|y|≤t

− 1
1+α

1

|v(y)|2σ
(

yt
1

1+α

1

)
dy

+
∫ t2

t1
t

N−3α
1+α

∫
RN

(|v|2 + 2q)v · ∇σ
(

yt
1

1+α

)
dy dt. (17)

Let us change the order of integration in the last integral, noting that in view of the

definition of σ, 1
2 t

− 1
1+α

2 ≤ |y| ≤ t
− 1

1+α

1 ,∫
1
2 t

− 1
1+α

2 ≤|y|≤t
− 1

1+α
1

(|v|2 + 2q)v · k(y) dy dt,

where

k(y) =
∫ t2

t1
t

N−3α
1+α ∇σ(yt

1
1+α ) dt.

Noting, again, that in view of the definition of σ the interval of integration is, in
fact, restricted to {|y|−1−α/2 ≤ t ≤ |y|−1−α}, we obtain

|k(y)| ≤
∫ |y|−1−α

|y|−1−α/2
t

N−3α
1+α dt � 1

|y|N+1−2α
.

Using this estimate in (17) and changing the notation in the first two integrals with
l1 = t−1/(1+α)

2 and l2 = t−1/(1+α)
1 , we obtain the inequality∣∣∣∣∣ 1

l N−2α
2

∫
|y|≤l2

|v(y)|2σ(y/ l2) dy − 1

l N−2α
1

∫
|y|≤l1

|v(y)|2σ(y/ l1) dy

∣∣∣∣∣
≤ C

∫
l1/2≤|y|≤l2

|v|3 + |q||v|
|y|N+1−2α

dy, (18)

for all 1 < l1 < l2, and it is valid if −1 < α < ∞. This inequality will be our
starting point in much of what follows.
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2.3. Global Energy Equality

The global energy equality holds under additional L3-integrability conditions
at infinity.

Theorem 2.1. Let u ∈ Cw
t L2

x ∩ L3
t L3

x ∩ C1
loc be a weak solution to the Euler

equations on R
N . Then u conserves energy on [0, T ].

Proof. Let σR(x) = σ(x/R). By the local energy equality, we have

‖u(t2)σR‖2
2 − ‖u(t1)σR‖2

2 = 1

R

∫ t2

t1

∫
RN

(|u|2 + 2p)u · ∇σ(x/R)dxdt. (19)

Since u ∈ L3
t,x , then p ∈ L3/2

t,x and hence (|u|2 + 2p)u ∈ L1
t,x . Then, clearly, the

integral on the right-hand side tends to zero as R → ∞. ��
So, if (2) is a part of a solution satisfying the assumptions of the above theorem,

then at least the energy in the ball of self-similarity should remain bounded, which
immediately translates into the bound (4). This clearly implies that v = 0 if α

satisfies α > N/2. We thus obtain the following conclusion.

Corollary 2.2. Suppose u ∈ Cw
t L2

x ∩ L3
t L3

x ∩ C1
loc is a weak solution to the Euler

equations on R
N with a locally self-similar collapse. If α > N

2 , then the collapse
does not occur. Otherwise, (4) holds.

As a by-product of our proofs below we show that the conclusions of this
corollary hold only under L p-integrability assumptions on the self-similar profile
v. In other words, a self-similar solution, even if viewed independently from the
ambient flow, still behaves as if it was embedded in a global in space finite energy
solution.

3. Exclusions Based on Velocity

3.1. The Energy Conservative Scaling α = N
2

As outlined in the introduction, the case of α = N
2 is special since it is the only

scaling compatible with the energy conservation law if (2) was defined globally in
space. What distinguishes it from a pure technical point of view is the absence of
weights in front of energy integrals in the energy balance relation (18). Our main
result for this case is the exclusion of solutions with a power spread.

Theorem 3.1. Suppose α = N
2 , and suppose v ∈ L2(RN ) ∩ C1

loc and the pressure
q are given by (9). Suppose there exists a δ > 0 and C, c > 0 such that

c

|y|N+1−δ
≤ |v(y)| ≤ C |y|1−δ, (20)

for all sufficiently large y. Then v = 0.
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A few comments are in order. Example (11) shows relevance of the upper bound
to the natural scaling of the equations, although of course it has infinite energy. The
lower bound may seem to be artificial, especially given Theorem 4.2, below, where
homogeneous profiles with decay |v| ∼ |y|−β are excluded for any β ≥ N/2.
However, as we will see from the proof, it is essentially a way of dealing with the
non-locality of the pressure.

Proof. We start with the basic energy equality (18). Using that α = N
2 , the factors

in front of the energies disappear and we obtain∫
|y|≤l2/2

|v|2 dy ≤
∫

|y|≤l1
|v|2 dy + C

∫
l1/2≤|y|≤l2

|v|3 + |q||v|
|y| dy. (21)

Taking l1 = L = l2/4, we obtain∫
L≤|y|≤2L

|v|2 dy ≤ C
∫

1
2 L≤|y|≤4L

|v|3 + |q||v|
|y| dy. (22)

The proof will now proceed by showing the following claim: for all M ∈ N

there exists a CM > 0 such that∫
L≤|y|≤2L

|v|2dy ≤ CM

L M
,

for all L sufficiently large. This immediately runs into contradiction with the lower
bound of (20). The exact value of the power N + 1 − δ is not important at this
point, but it will be crucial in the course of proving the claim.

Using our assumption (20) and the energy bound (22), we have∫
L≤|y|≤2L

|v|2 dy � 1

Lδ

∫
1
2 L≤|y|≤4L

|v|2 dy + 1

L

∫
1
2 L≤|y|≤4L

|v||q| dy. (23)

Now our goal is to find suitable bounds on the pressure and the last integral in (23).
Notice that ∫

SN−1
Ki j (θ)dσ(θ) = 0, (24)

for all i, j . Let us split the pressure as follows:

q = q0 + q1 + q2 + q3,

where q0 is the local part of (9), and

q1(y) =
∫

|z|≤L/4
Ki j (y − z)vi (z)v j (z) dz,

q2(y) =
∫

L/4≤|z|≤8L
Ki j (y − z)vi (z)v j (z) dz,

q3(y) =
∫

|z|≥8L
Ki j (y − z)vi (z)v j (z) dz.
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Clearly, only estimates on the non-local quantities qi are necessary. Since |y − z| ∼
L for all |z| ≤ L/4 and 1

2 L ≤ |y| ≤ 4L , we have

|q1(y)| � 1

L N

∫
|z|≤L/4

|v|2 dz ≤ ‖v‖2
2

L N
.

Thus, in view of (20),

1

L

∫
1
2 L≤|y|≤4L

|v||q1| dy � 1

L N+1

∫
1
2 L≤|y|≤4L

|v|2|v|−1 dy

� 1

Lδ

∫
1
2 L≤|y|≤4L

|v|2 dy.

As to q2, we have

1

L

∫
1
2 L≤|y|≤4L

|v||q2| dy ≤ 1

L

(∫
1
2 L≤|y|≤4L

|v|2dy

)1/2 (∫
RN

|q2|2dy

)1/2

� 1

L

(∫
1
2 L≤|y|≤4L

|v|2dy

)1/2 (∫
L/4≤|y|≤8L

|v|4dy

)1/2

� 1

Lδ

(∫
1
2 L≤|y|≤4L

|v|2dy

)1/2 (∫
L/4≤|y|≤8L

|v|2dy

)1/2

� 1

Lδ

∫
L/4≤|y|≤8L

|v|2dy.

And as to q3, we trivially have |q3(y)| � 1
L N ‖v‖2

2. Thus,

1

L

∫
1
2 L≤|y|≤4L

|v||q3| dy � 1

L N+1

∫
1
2 L≤|y|≤4L

|v| dy � 1

Lδ

∫
1
2 L≤|y|≤4L

|v|2 dy

= 1

Lδ

1∑
k=−1

∫
2k L≤|y|≤2k+1 L

|v|2 dy.

Putting the obtained estimates together into (23), we conclude that there exists a
constant C > 0 such that, for all L large enough,∫

L≤|y|≤2L
|v|2 dy ≤ C

Lδ

2∑
k=−2

∫
2k L≤|y|≤2k+1 L

|v|2 dy. (25)

Let us now iterate the estimate above m times, applying it to each integral in the
sum ∫

L≤|y|≤2L
|v|2dy ≤ Cm

Lmδ

2∑
k1,...,km=−2

∫
2k1+...+km L≤|y|≤2k1+...+km+1 L

|v|2 dy

� Cm

Lmδ
.

Since m can be arbitrary, the claim is proved. ��
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3.2. The Energy Non-Conservative Scaling α �= N
2

As we mentioned earlier, some cases of non-conservative scaling appear phys-
ically relevant. Additionally, in the range −1 < α < N

2 , a possibly infinite energy
of the self-similar profile v is not in contradiction with the finiteness of the global
energy, as long as (4) holds. Our main result in the energy non-conservative scaling
is the following.

Theorem 3.2. Suppose v ∈ L p ∩ C1
loc for some 3 ≤ p ≤ ∞, and the pressure q

is given by (9). If −1 < α ≤ N
p or N

2 < α < ∞, then v = 0. If α = ∞, and,
additionally, the self-similar solution (3) is global, then v = 0.

The scaling α = N/p is notable for the fact that the L p-norm of the solution
is conserved. If α < N/p, it deflates as t → 0, and if α > N/p, it inflates. The
sharpness of this scaling is suggested by the α-point vortex (13). Even though it fails
to satisfy the required regularity near the origin, it does belong to L p near infinity
precisely when 2/p < α. He’s solutions in exterior domains with asymptotic decay
|v(y)| ∼ 1

|y| , hence in L3
weak, are suggestive of the criticality of α = N/p as well.

In the following we consider only the case when p < ∞, postponing the
technicalities of the case p = ∞ to Section 3.2.5.

3.2.1. Proof in the range −1 < α ≤ N
p In this range we can eliminate the

l2-integral from (18). Our claim is

1

l N−2α
2

∫
|y|≤l2

|v(y)|2σ(y/ l2) dy → 0,

as l2 → ∞. Indeed, for a fixed large M > 0 and l2 > M , we have, by the Hölder
inequality,

1

l N−2α
2

∫
|y|≤l2

|v(y)|2σ(y/ l2) dy ≤ 1

l N−2α
2

∫
|y|≤M

|v(y)|2 dy

+l2α−2N/p
2

(∫
M≤|y|≤l2

|v|p dy

)2/p

.

Letting l2 → 0, the first integral disappears, and we have

≤
(∫

M≤|y|
|v|p dy

)2/p

→ 0,

as M → ∞. So, (18) takes the form (using that σ = 1 on |y| < 1/2, and replacing
l1/2 with L)

1

L N−2α

∫
|y|≤L

|v|2 dy ≤ C
∫

L≤|y|
|v|3 + |q||v|
|y|N+1−2α

dy. (26)

By the Hölder inequality we obtain

1

L N−2α

∫
|y|≤L

|v|2 dy ≤ C L2α−1−3N/p
(∫

L≤|y|
(|v|3 + |q||v|)p/3 dy

)3/p

,
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and hence, ∫
|y|≤L

|v|2 dy ≤ Lβp , where βp = N − 1 − 3N

p
. (27)

If βp < 0, then the proof is finished by sending L → ∞. Otherwise, by interpola-
tion, we have ∫

|y|≤L
|v|3dy ≤ C Lβpαp , where αp = p − 3

p − 2
. (28)

Coming back repeatedly to the inequality (26), we will be able to bootstrap on the
growth of energy, now based on a better estimate for the L3-norms (28), but first
we have to establish the corresponding estimates on the growth of the pressure.

Lemma 3.3. Let ∫
|y|≤L

|v|2dy ≤ C La2 (29)

and ∫
|y|≤L

|v|3dy ≤ C La3 (30)

hold for all large L, and a2 < N , 3a2−N
2 ≤ a3. Then∫

|y|≤L
|q|3/2dy ≤ C La3 . (31)

In order not to verify the assumptions on the exponents every time, we simply note
that they are verified for any couple a2, a3 with

a2 ≤ N − 2N

p
, a3 = a2αp. (32)

Clearly, a2 = βp, a3 = βpαp is such a couple.

Proof. As before, let q = q0 + q̃ , where q0 is the local and q̃ is the non-local part
of the pressure. We can split

∫
|y|≤L

|q̃|3/2dy ≤
∫

|y|≤L

∣∣∣∣
∫

|z|≤2L
Ki j (y − z)vi (z)v j (z)dz

∣∣∣∣
3/2

dy

+
∫

|y|≤L

∣∣∣∣
∫

|z|≥2L
Ki j (y − z)vi (z)v j (z)dz

∣∣∣∣
3/2

dy = A + B.

By standard boundedness,

A ≤ C
∫

|z|≤2L
|v|3dz ≤ C La3,
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as required. As to B, we use a dyadic decomposition,

B ≤
∫

|y|≤L

( ∞∑
k=1

∫
2k L≤|z|≤2k+1 L

1

|y − z|N
|v(z)|2dz

)3/2

dy.

Given that |y − z| ∼ |z|, we continue

B ≤ L N

( ∞∑
k=1

1

2Nk L N

∫
2k L≤|z|≤2k+1 L

|v(z)|2dz

)3/2

≤ C

L N/2

( ∞∑
k=1

2ka2 La2

2Nk

)3/2

≤ C L
3a2−N

2 ≤ C La3 ,

where the latter holds due to imposed assumptions. ��
Now, using the obtained estimates (28) and (31) in (26), we obtain

1

L N−2α

∫
|y|≤L

|v|2 dy ≤ C

L N+1−2α

∞∑
k=0

1

2k(N+1−2α)

∫
2k L≤|y|≤2k+1 L

(|v|3+|v||q|) dy

≤ Lβpαp−N−1+2α
∞∑

k=0

2k(βpαp−N−1+2α).

Notice that in the range α ≤ N/p, the power in the series is negative. Hence,

∫
|y|≤L

|v|2dy ≤ C Lβpαp−1 and
∫

|y|≤L
|v|3dy ≤ C Lβpα2

p−αp . (33)

Once again, the new exponents satisfy (32), hence

∫
|y|≤L

|q|3/2dy ≤ C Lβpα2
p−αp . (34)

Substituting this into (26), we obtain

∫
|y|≤L

|v|2dy ≤ C Lβpα2
p−αp−1, (35)

and so on. Noting that on each step the assumptions on the exponents are satisfied
(even improved), we arrive at

∫
|y|≤L

|v|2dy ≤ C Lβpαn
p−αn−1

p −···−1. (36)

For n sufficiently large the power will become negative, implying that v = 0.



Self-Similar Collapse 1011

3.2.2. Proof in the range N
2 < α < ∞ Starting from the same energy equality

(18), we obtain

1

l N−2α
2

∫
|y|≤l2/2

|v|2dy � 1

l N−2α
1

∫
|y|≤l1

|v|2dy +
∫

l1/2≤|y|≤l2

|v|3 + |q||v|
|y|N+1−2α

dy.

Let us fix l1 = 2 and l2 = 2L >> 2. Then∫
|y|≤L

|v|2 dy � L N−2α + L N−2α

∫
1≤|y|≤2L

|v|3 + |q||v|
|y|N+1−2α

dy, (37)

and by the Hölder inequality,

� L N−2α + L N−2α

(∫
1<|y|<2L

1

|y|(N+1−2α)p/(p−3)
dy

)(p−3)/p

.

Since N − 2α < 0, the only case we have to consider is when (N + 1 − 2α)

p/(p − 3) < N . In this case the estimate above gives∫
|y|≤L

|v|2dy � L N−2α + Lβp .

If βp < 0 the proof is finished. Otherwise, we obtain∫
|y|≤L

|v|2 dy � Lβp , and
∫

|y|≤L
|v|3 dy � Lβpαp . (38)

We are in a position to initiate the bootstrap argument as before, but with some
modifications. Plugging (38) into (37), we find

∫
|y|≤L

|v|2 dy � L N−2α+ 1

L

[log2 L]∑
k=−1

2k(N+1−2α)

∫
L/2k+1<|y|<L/2k

(|v|3 + |q||v|) dy

� L N−2α + Lβpαp−1
[log2 L]∑
k=−1

2k(N+1−2α−βpαp).

If the power N + 1 − 2α − βpαp ≥ 0, we obtain

� L N−2α + L N−2α log2 L → 0, as L → ∞.

In this case the proof is over. Otherwise, we obtain

� L N−2α + Lβpαp−1.

If βpαp − 1 < 0, the proof is over. Otherwise,∫
|y|≤L

|v|2 dy � Lβpαp−1, and
∫

|y|≤L
|v|3 dy � Lβpα2

p−αp .

The iteration will certainly terminate at a step when the power

βpα
n
p − αn−1

p − · · · − 1

becomes negative, or earlier.
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3.2.3. Implications of the proof to the range N/p < α ≤ N/2 The proof given
in the previous section yields the following corollary.

Corollary 3.4. Suppose N
p < α ≤ N

2 . Then one has∫
|y|≤L

|v|2 dy � L N−2α. (39)

Indeed, as the power βpα
n
p −αn−1

p −· · ·−1 becomes negative, the term L N−2α

becomes dominant. There is only one place of the argument which needs extra
attention. It happens if at some point we run into the logarithmic bound∫

|y|≤L
|v|2 dy � L N−2α log2 L .

Then, for any ε > 0 we have∫
|y|≤L

|v|2 dy � L N−2α+ε, and
∫

|y|≤L
|v|3 dy � L(N−2α+ε)αp .

The conditions (32) are still satisfied for small ε, so the pressure has the analogous
growth bound. Returning to (37) and performing dyadic splitting of the integral as
before, we obtain

∫
|y|≤L

|v|2dy � L N−2α + L(N−2α+ε)αp−1
[log2 L]∑

k=0

2k(N+1−2α−(N−2α+ε)αp).

The power in the sum is strictly positive. So, we obtain (39).

3.2.4. Proof in the case α = ∞ In this case, since we assume that the self-similar
solution is global, we can start with (19), which implies∫

|y|≤L
|v|2 dy � 1

L

∫
L/2≤|y|≤2L

(|v|3 + |q||v|) dy.

This, in turn, implies (27) by the same Hölder estimates as before. The rest of the
proof follows the bootstrap scheme of Section 3.2.1.

3.2.5. Theorem 3.2 in the case p = ∞ Only a few minor modifications are
needed to extend the above argument to the case v ∈ L∞, q ∈ B M O . In the case
α ≤ 0 we start from (17) and subtract from q the averages over dyadically divided
time intervals. This, after changing the order as in (18), results in the following
inequality (in place of (26)):

1

L N−2α

∫
|y|≤L

|v|2 dy ≤ C
∞∑

k=1

∫
2k L≤|y|≤2k+1 L

|v|3 + |q − q̄k ||v|
|y|N+1−2α

dy, (40)

where q̄k = 1
V ol(2k L≤|z|≤2k+1 L)

∫
2k L≤|z|≤2k+1 L q(z)dz. Using that∫

2k L≤|y|≤2k+1 L
|q(y) − q̄k |dy � (2k L)N ‖q‖B M O ,
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we immediately obtain (27), with β∞ = N − 1 as expected. Note that again the
constants β∞ and α∞ = 1 satisfy the requirements of Lemma 3.3. From this point
on the argument proceeds as before.

In the case ∞ > α > 0 a similar argument replaces (37) with

∫
|y|≤L

|v|2 dy � L N−2α + L N−2α

[log2 L]∑
k=−1

∫
L/2k+1<|y|<L/2k

|v|3 + |q − q̄k ||v|
|y|N+1−2α

dy,

where q̄k = 1
V ol(L/2k+1≤|z|≤L/2k )

∫
L/2k+1≤|z|≤L/2k q(z)dz. The rest of the argument

goes as before. And finally, the modifications made in Section 3.2.4 for the case
α = ∞ carry over to these settings in a similar manner.

4. Exclusions Based on Vorticity

The condition in terms of vorticity that excludes a non-trivial blow-up stated
and proved in [6] involves a requirement on decay at infinity in the sense that all
L p-norms for 0 < p < p0 are finite. In this section we will eliminate solutions
under a much weaker condition. Recall that ς = 1

2 {∂iv j + ∂ jvi }N
i, j=1 denotes the

strain tensor.

Theorem 4.1. Suppose v ∈ C1
loc(R

N ) is a solution of (7) with −1 < α < ∞
satisfying the following conditions:

(i) |ς(y)| = o(1) as |y| → ∞,
(ii) ω ∈ L p, for some 0 < p < N

1+α
.

Then, v is a constant vector field.

We note that He’s examples [13], although in different settings, with |ω| ∼ 1
|y|2

in three dimensions and α = 1 corresponding to ω ∈ L p for all p > N
1+α

= 3
2 . It

points to the sharpness of our condition (ii). Furthermore, the value of p = N
1+α

appears naturally critical for the fact that the vorticity of the self-similar solution
preserves this particular L p-norm. Let us recall that for a similar reason the exponent
p∗ = N

α
is critical for velocity in Theorem 3.2. The two are conjugate through the

Sobolev embedding. Indeed, if v → 0 at infinity, −1 < α ≤ N − 1, then ω ∈ L p

implies v ∈ L p∗
. This brings us back in agreement with the range of Theorem 3.2,

although the end-point case cannot be excluded here.

Proof. From (i) by the Fundamental Theorem of Calculus, the radial component
of velocity is

|vr (y)| = o(|y|), as |y| → ∞. (41)

Indeed, we have

v(y) = v(0) +
∫ 1

0
∇v(t y) · y dt.
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Then

vr (y) = v(y) · y

|y| = v(0) · y

|y| + 1

|y|
∫ 1

0
y · ς(t y) · y dt,

and the claim follows. Observe

∞ > ‖ω‖p
p =

∫ ∞

0

∫
|y|=r

|w|p dSr dr.

Hence, there exists a sequence R j ↑ ∞ such that

R j

∫
|y|=R j

|w|pdSR j → 0 as j → ∞.

We multiply (14) by ω|ω|p−2 and write it in the form

|ω|p + 1

p(α + 1)
div (y|ω|p) − N

p(α + 1)
|ω|p

= 1

p
div (v|ω|p) − ς̂ |ω|p, (42)

where ς̂ = (ως · ω + ςω · ω)|ω|−2. Let us fix an R > 0, integrate (42) over the
annulus {R < |y| < R j }, and apply the divergence theorem to have(

N

p(α + 1)
− 1

) ∫
R<|y|<R j

|ω|pdy

+ R

p(α + 1)

∫
|y|=R

|ω|pdSR − R j

p(α + 1)

∫
|y|=R j

|ω|pdSR j

=
∫

R<|y|<R j

ς̂ |ω|pdy + 1

p

∫
|y|=R

vr |ω|pd SR − 1

p

∫
|y|=R j

vr |ω|pd SR j .

Then, passing j → ∞, one obtains(
N

p(α + 1)
− 1

) ∫
|y|>R

|ω|pdy + R

p(α + 1)

∫
|y|=R

|ω|pdSR

=
∫

|y|>R
ς̂ |ω|pdy + 1

p

∫
|y|=R

vr |ω|pd SR .

Thus, by choosing R sufficiently large, and using (i) and (41), we can ensure

≤ 1

2

(
N

p(α + 1)
− 1

) ∫
|y|>R

|ω|pdy + R

2p(α + 1)

∫
|y|=R

|ω|pdSR .

Consequently, ∫
|y|>R

|ω|pdy =
∫

|y|=R
|ω|pdSR = 0,

and hence, ω = 0 on {y ∈ R
3 | |y| > R}. Now we apply the result of [6] to conclude

ω = 0 on R
N . Then there exists a harmonic function h such that v = ∇h. By (i),

the Hessian matrix ∇∇h is bounded and vanishes at infinity. Since each entry is
harmonic, by the Liouville Theorem, ∇∇h = 0, and therefore h is a quadratic
polynomial. But, then from the condition |∇h| = o(|y|), ∇h is constant. ��
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4.1. Homogeneous Near Infinity Solutions

Given the plethora of two-dimensional homogeneous examples in Section 2.1, it
is natural to ask whether one can find a locally smooth self-similar profile homoge-
nous near infinity. We say that a field v ∈ C1

loc(R
N ) is β-homogeneous near infinity

if, for some β ∈ R, and for large enough y, the profile v is given by

v(y) = V (y|y|−1)

|y|β , (43)

for some V ∈ C1(SN−1; R
N ). The message of the following theorem is to show

that the homogeneity has to be consistent with the scaling of the self-similarity, and
even this is excluded in the energy-conservative case.

Theorem 4.2. Suppose v is a β-homogeneous near infinity solution and any of
these conditions are satisfied

(i) 0 < β < α,
(ii) −1 < α < β,

(iii) α = β = N
2 .

Then v = 0, except in the case β = 0, which implies that v is constant.

Proof. In the case (i), since β > 0, v ∈ L p for all p > p0. If, in addition α > N/2,
then an application of Theorem 3.2 concludes the proof. Otherwise, by Corollary
3.4, (39) holds. On the other hand,∫

L≤|y|≤2L
|v|2 dy ∼ L N−2β

∫
SN−1

|V (θ)|2dS(θ),

which necessitates β ≥ α, unless V = 0. If V = 0, however, then Theorem 4.1
or the result of [6] applies to find v = ∇h for some harmonic function h. Since
h = const near infinity, h is constant throughout by the Liouville Theorem, which
implies v = 0.

In case (ii) we have |∇v| ∼ 1
|y|β+1 . Since −1 < α < β, there exists a p > 0

with N
1+β

< p < N
1+α

. For this p, ω ∈ L p, and Theorem 4.1 applies. Note that
only in the case β = 0 may the constant velocity be different from zero.

In case (iii), Corollary 3.4 implies v ∈ L2. However, for any M > 0,∫
L≤|y|≤M L

|v|2 dy = log M
∫

SN−1
|V (θ)|2dS(θ).

This implies V = 0 and the argument proceeds as before. ��
Let us note that Theorem 4.2 could be extended to the range of −1 < β ≤ 0

and β < α if we postulate the corresponding asymptotic bound on the pressure:

|q(y)| � |y|−2β (44)
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for large y. Example (10) demonstrates that (44) may, in fact, fail for some solutions.
Now, assuming (44), the local energy inequality implies

1

L N−2α

∫
|y|≤L/2

|v|2 dy ≤ 1

l N−2α

∫
|y|≤l

|v|2 dy +
∫

l/2≤|y|≤L

|v|3 + |v||q|
|y|N+1−2α

dy.

By a direct computation, with l fixed, and L large,

L N−2β‖V ‖2
L2(SN−1)

�
∫

|y|≤L/2
|v|2 dy � L N−2α

+L N−2α

∫
cl≤|y|≤L

1

|y|N+1−2α+3β
dy.

If N + 1 − 2α + 3β ≥ N , then the above implies

L N−2β‖V ‖2
L2(SN−1)

� L N−2α log L ,

and hence V = 0. Otherwise,

L N−2β‖V ‖2
L2(SN−1)

� L N−2α + L N−1−3β,

implying again that V = 0, since β > −1.
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