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Abstract

Compatibility equations of elasticity are almost 150 years old. Interestingly,
they do not seem to have been rigorously studied, to date, for non-simply-connected
bodies. In this paper we derive necessary and sufficient compatibility equations of
nonlinear elasticity for arbitrary non-simply-connected bodies when the ambient
space is Euclidean. For a non-simply-connected body, a measure of strain may not
be compatible, even if the standard compatibility equations (“bulk” compatibility
equations) are satisfied. It turns out that there may be topological obstructions to
compatibility; this paper aims to understand them for both deformation gradient
F and the right Cauchy-Green strain C = FTF. We show that the necessary and
sufficient conditions for compatibility of deformation gradient F are the vanish-
ing of its exterior derivative and all its periods, that is, its integral over generators
of the first homology group of the material manifold. We will show that not every
non-null-homotopic path requires supplementary compatibility equations for F and
linearized strain e. We then find both necessary and sufficient compatibility condi-
tions for the right Cauchy-Green strain tensor C for arbitrary non-simply-connected
bodies when the material and ambient space manifolds have the same dimensions.
We discuss the well-known necessary compatibility equations in the linearized set-
ting and the Cesàro-Volterra path integral. We then obtain the sufficient conditions
of compatibility for the linearized strain when the body is not simply-connected. To
summarize, the question of compatibility reduces to two issues: i) an integrability
condition, which is d(F dX) = 0 for the deformation gradient and a curvature van-
ishing condition for C, and ii) a topological condition. For F dX this is a homological
condition because the equation one is trying to solve takes the form dϕ = F dX.
For C, however, parallel transport is involved, which means that one needs to solve
an equation of the form dR/ ds = RK, where R takes values in the orthogo-
nal group. This is, therefore, a question about an orthogonal representation of the
fundamental group, which, as the orthogonal group is not commutative, cannot, in
general, be reduced to a homological question.
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1. Introduction

Compatibility equations in elasticity have an old history. Given a measure of
strain, compatibility equations are the necessary and sufficient conditions that guar-
antee existence of a deformation mapping or a single-valued displacement field.
In the language of differential geometry this is closely related to the existence of
an isometry between two Riemannian manifolds. When one manifold is Euclid-
ean, Riemann showed that an isometry exists locally if and only if the Riemann
curvature tensor vanishes.

Given a field of “strain” one observes that the system of PDEs governing the
deformation field is overdetermined. Existence of a deformation (or displacement)
field corresponding to a strain field requires some integrability equations, which
have traditionally been called compatibility equations in continuum mechanics.
Love [21] credits Saint Venant (1864) for the derivation of the “bulk” compati-
bility equations. Michell [24] studied the compatibility equations of linearized
elasticity in two dimensions for non-simply-connected bodies. He showed that
compatibility requires vanishing of certain integrals on each “independent irreduc-
ible circuit”.1 Cesàro [8] and Volterra [35] studied compatibility equations for
non-simply-connected bodies and the possibility of multi-valuedness of displace-
ments when the body is not simply-connected.2 Love [21] (Article 17) and later
on Green and Zerna [17] and Seugling [28]3 realized that the classical compat-
ibility equations of elasticity can be written as vanishing of the curvature tensor
of the Levi-Civita connection of strain (understood as a metric). Note that it is
known that in a simply-connected open subset of R

3, vanishing of the curvature
tensor of C is also sufficient for compatibility [10]. Shield [29] derived a sys-
tem of PDEs for the rotation field in the polar decomposition of the deformation
gradient. Pietraszkiewicz [25] and Pietraszkiewicz and Badur [26] studied
the problem of calculating the deformation mapping when the right Cauchy-Green
strain is given (see also [9] for the case of two-dimensional elasticity). In particular,
they obtained a nonlinear analogue of the Cesàro integral. Blume [5] discussed the
compatibility equations in terms of the left Cauchy-Green strain B = FFT in two

1 An independent irreducible circuit is a generator of the fundamental group in the lan-
guage of algebraic topology. Michell’s statement is correct only for plane problems of elas-
ticity. Any embedded 2-submanifold of R

2 is a (topological) disk with a finite number of
holes. The fundamental group of a planar region obtained by removing k disjoint disks from
it is the free group on k generators, while the first homology group is the free abelian group
on k generators. These are isomorphic only if k = 1. As we will see in the sequel, for
deformation gradient F and linearized strain e each generator of the first homology group
requires supplementary compatibility equations. However, in general, not every generator
of the fundamental group requires complementary compatibility equations, as we will see
in an example.

2 It is interesting that this is almost the same time period at which algebraic topology was
being created by Poincaré [27,13].

3 Truesdell in a review of another paper in Mathematical Reviews (MR0040940 (12,770b))
mentions that this paper is the fourteenth since 1902 to derive the compatibility equa-
tions. Since then there have been at least a dozen more similar papers, all restricted to
simply-connected bodies.
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dimensions. This was studied later on in three dimensions by Acharya [1] who
provided necessary and sufficient conditions for compatibility of B.4 Skalak et al.
[30] realized the importance of compatibility equations for non-simply-connected
bodies in growth mechanics applications. They pointed out that the compatibil-
ity equations for C in “multiply-connected” bodies5 are not known. In this paper
we find these compatibility equations. For the deformation gradient they correctly
write the necessary and sufficient compatibility equations as∫

c
(F − I) dX = 0, (1.1)

for all closed paths c in the body. This is obviously equivalent to
∫

c F dX = 0
for any closed path c in the body. They mention that it is not clear what closed
paths should be chosen to guarantee compatibility of F. In this paper, we will show
that one only needs to consider generators of the first homology group of the body
manifold B.6 They also discuss sufficient compatibility conditions for linearized
elasticity. Their argument is flawed, as we will explain in Section 2.3; they provide
only half of the complementary compatibility equations in three dimensions.

Delphenich [12] discussed some topological ideas relevant to compatibility
equations, although he did not give anything other than the well-known compati-
bility equations for simply-connected bodies. For a non-simply-connected body, a
measure of strain may not be compatible even if the standard compatibility equations
(“bulk” compatibility equations) are satisfied; there may be topological obstructions
to compatibility; this paper aims to understand them for both deformation gradi-
ent F and the right Cauchy-Green strain C. It is strange that such a fundamental
problem has not been rigorously studied to date. It is also surprising and unfor-
tunate that topological methods have not been systematically used in elasticity to
date.7 Compatibility equations for simply-connected bodies are well-known and

4 One striking result regarding the difference between C and B is that if two deformations
have the same C, then the deformations differ by at most a rigid body motion. This is not
the case for the corresponding B case [15].

5 A comment is in order here. In complex analysis (of one complex variable) a multiply-
connected domain in the complex plane is one whose complement is not connected. Here,
we are interested in elasticity of arbitrary embedded 2- and 3-submanifolds of Euclidean
space, and hence refrain from using the term “multiply-connected”, which is meaningless
for general manifolds, and instead use “non-simply-connected”.

6 We will see that not every generator of the fundamental group needs complementary
compatibility equations for deformation gradient F and linearized strain e. The number of
complementary compatibility equations is proportional to the number of the generators of
the first homology group of the material manifold.

7 Topological ideas already existed implicitly in the work of Maxwell on electromag-
netism [23]. Maxwell calls the number of independent cycles in a graph its “cyclomatic
number”. He clearly had the idea of deformation retract and invariance of the “cyclomatic
number” under a deformation retract. When an embedded 3-submanifold in R

3 has a bound-
ary with more than one connected component, Maxwell calls it a “periphractic region”. He
calls the period of a differential form over a loop its “cyclic constant”. Homotopic paths are
called “reconcilable curves”. He calls a compatible strain a “non-rotational strain”. More
recently, it has been observed that algebraic topology is crucial in a deeper understanding of
electromagnetism and more efficient numerical implementations [18].
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have been studied by many. Interestingly, they do not seem to have been rigorously
studied for non-simply-connected bodies. This is certainly an important problem as
there are many examples of non-simply-connected bodies in Nature, for example
arteries, which are thick hollow cylinders. In structural mechanics applications, for
example, multi-compartment thin-walled sections can be in both torsion and bend-
ing. In such structures, in torsion for example, the number of extra compatibility
equations is proportional to the number of holes in the cross section [19]. Such
bodies are deformation retracts of a bouquet of a finite number of circles.8 We
follow Sternberg [32] and call the extra compatibility equations, complementary
“compatibility equations”. Let us emphasize that for solids of arbitrary shapes with
an arbitrary number of holes (with arbitrary shapes), compatibility equations are
not known in the literature.

Contributions of this paper. In this paper, we derive the necessary and sufficient
compatibility equations for F and C using homology and homotopy group tech-
niques. When the ambient space is Euclidean, it turns out that a simple generaliza-
tion of a celebrated theorem by de Rham can be used to find all the compatibility
equations of F. The number of complementary compatibility equations will be
shown to be equal to Nβ1(B), where B is the material manifold, N = dim S
(dimension of the ambient space), and β1(B) is the first Betti number of B, that
is, the dimension of its first homology group with real coefficients H1(B; R) or,
equivalently, the rank of its first homology group with integer coefficients H1(B,Z).

The more familiar method for deriving compatibility equations is to use the fact
that integral of some function of “strain” must vanish over any closed path in B. A
closed path may be continuously deformed to a class of paths. Thus, this would then
force one to work with the first homotopy group (fundamental group) π1(B). In
simple words, this group tells us about the equivalence classes of those closed paths
that can be continuously deformed to each other. In the case of compact manifolds
(for us this means bounded bodies) it is known that π1(B) has a finite presentation
in the sense of combinatorial group theory.

When C = FTF is given, the deformation gradient is not known a priori.
For simply-connected bodies it is known how to construct F [26,29]. Basically,
using the polar decomposition F = RU, one easily calculates the stretch tensor
U = √

C. One can then find R by solving a system of linear first-order PDEs.
Solution of R is written in terms of a path integral (the nonlinear analogue of
the classical Cesàro-Volterra path integral) that should be path independent. For
simply-connected bodies, vanishing of the curvature tensor of C is the necessary
and sufficient condition (when dim B = dim S) [26]. In the case of non-simply-
connected bodies, in addition to this one has some complementary compatibility
equations (topological conditions), which we will obtain using a finite presentation
of π1(B). We end the paper by finding the necessary and sufficient compatibility

8 Consider a solid cylinder with h tubular holes. Note that this body is homeomorphic
to a genus h handlebody and has a deformation retract to a bouquet of h circles; hence its
fundamental group is the free group on h generators. If this is a solid body, for example a
hollow bar under torsion and bending, we will show that because all group generators are
free, each would require its own complementary compatibility equations.
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conditions for linearized strain. We will see that the number of these complementary
compatibility equations is consistent with Weingarten’s theorem.

2. Compatibility Equations in Nonlinear Elasticity

We assume that a compact material manifold (B,G) is given. We also assume
that both H1(B) andπ1(B) are known.9 We first find the compatibility equations for
F using a very simple generalization of de Rham’s theorem.10 Next we revisit the
calculations of Shield [29] and Pietraszkiewicz and Badur [26] on deriving a
system of linear PDEs governing R when C is given. We then find the compatibility
equations when dim B = dim S and the body is not simply-connected.

2.1. Compatibility Equations for Deformation Gradient F

An old question in vector calculus is the following. Given a vector field on some
bounded domain in the Euclidean 3-space, how can one tell if the vector field is the
gradient of some function? It turns out that the topology of the domain of definition
of the vector field plays a crucial role here. The question that we will answer in
this section is compatibility of F for non-simply-connected bodies: Given a body
B ⊂ R

3, find the conditions that guarantee existence of a map ϕ : B → R
3 such

that F = dϕ.

Proposition 2.1. The following conditions are both necessary and sufficient for
compatibility of F

dF = 0,
∫

ci

F dX = 0, i = 1, . . . , β1(B), (2.2)

where ci , i = 1, . . . , β1(B) are generators of H1(B; R).

Proof. F is a vector-valued 1-form with the coordinate representation

F = ∂a ⊗ Fa
A dX A. (2.3)

9 Heinrich F. F. Tietze (1908) showed that fundamental group of any compact, finite-
dimensional, path-connected manifold is finitely presented. One forms the abelization of a
group by taking the quotient over the subgroup generated by all commutators g−1h−1gh.
Poincaré isomorphism theorem tells us that (Poincaré, 1895)

π1(M)/[π1(M), π1(M)] ∼= H1(M,Z). (2.1)

If γ n1
1 γ

n2
2 . . . γ

nk
k = 1, Poincaré observed that n1γ1 +n2γ2 + . . .+nkγk is null-homologous

[13]. Given a group G with the presentation G = 〈a1, . . . , am; r1, . . . , rn〉, its Abelianiza-
tion is obtained by adding the relations ai a j = a j ai and is independent of the presentation
of G.
10 This was conjectured by Cartan in 1928 and was proved later on by de Rham [13]. This

theorem can be summarized as follows. If for a closed form ω, (c, ω) = 0 for all p-cycles,
then ω is exact. If for a p-cycle c, (c, ω) = 0 for all closed p-forms, then c is a boundary.
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F is compatible if and only if Fa
A dX A’s are exact. We assume that the ambient

space is Euclidean, that is, F is an R
N -valued 1-form. In this case the compatibility

of F is reduced to that of its 1-form components, that is, we need to see when
Fa

A dX A (a = 1, . . . , N ) are exact 1-forms. We know that a necessary condition
is closedness of F, that is, d(Fa

A dX A) = 0 (a = 1, . . . , N ). Thus, a necessary
condition for F to be compatible is dF = 0.11 Now if {ci }i=1,...,k are genera-
tors of H1(B; R) from de Rham’s theorem [11] we know that the closed forms
Fa

A dX A (a = 1, . . . , N ) are exact if and only if∫
ci

Fa
A dX A = 0, i = 1, . . . , β1(B). (2.4)

	

Remark 2.2. We now show that not every generator of the fundamental group
requires complementary compatibility equations.12 Assuming that the position of
a point X0 ∈ B in the deformed configuration x0 ∈ S is known, the position of an
arbitrary point X ∈ B in the deformed configuration is obtained as

x = x0 +
∫
γ

F dX, (2.5)

where the ambient space is assumed to be Euclidean, hence the integration makes
sense for an arbitrary curve γ joining X0 to X . For F to be compatible, the above
integral must be path-independent. This is equivalent to∫

γ

F dX = 0, (2.6)

for any closed path γ based at X0.13 Suppose {γi }i=1,...,m are generators of the
fundamental group π1(B). When B is simply-connected and compact, we know
that fundamental group has a finite presentation [33]

π1(B) = 〈γ1, . . . , γm; r1, . . . , rn〉, (2.7)

where

ri = γ
εi1
i1
. . . γ

ε ji
ji

= 1, i = 1, . . . , n, εk = ±1, (2.8)

are relators of the fundamental group. Note that if (2.6) holds on each generator
of the fundamental group, then F is compatible. However, these are not necessary.
The fact that ri is a relation in the fundamental group means that it represents a
loop that is null-homotopic, and therefore null-homologous. Thus, the conditions∫

ri
F dX = 0 follow from the fact that d(F dX) = 0. Some of the relations

11 Note that dF = 0 is what is usually written as Curl F = 0 in the elasticity literature.
12 This fact is ignored in some previous works as we discussed earlier in Section 1.
13 As we mentioned in the introduction, the condition (2.6) has been known in the litera-

ture, but what is not known is how to rewrite it in terms of the generators of the fundamental
group.
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∫
γi

F dX = 0 may be redundant, but this has nothing to do with relations in the
fundamental group itself. It follows from the fact that the real conditions are the
homological conditions in (2.4). Thus, we need to consider only a collection of
loops whose images modulo the commutator subgroup are independent and do not
represent torsion.

Remark 2.3. To Abelianize the fundamental group, one adds relations of the form
γiγ j = γ jγi in the presentation of the fundamental group. These obviously do
not introduce any new compatibility equations. Note, also, that the generators of
the torsion subgroup do not contribute to compatibility equations because, for γ ,
an element of the torsion subgroup γ n = 1 for some n ∈ N and hence, trivially,∫
γ

F dX = 0. Thus, we need to have
∫
γ

F dX = 0 only on each generator of
the first homology group with real coefficients. This means that the number of
complementary compatibility equations is equal to Nβ1(B), where N = dim S.

Example 2.4. Let us look at two-dimensional elasticity on a torus and a punctured
torus and derive their F-compatibility equations. The first homology group of a torus
is generated by the loops γ1 and γ2 in Fig. 1a. Thus, the compatibility equations
read

dF = 0,
∫
γ1

F dX =
∫
γ2

F dX = 0. (2.9)

The fundamental group of a torus (see Fig. 1) has the following presentation

π1(T
2) = 〈γ1, γ2; γ1γ2 = γ2γ1〉. (2.10)

Therefore, r1 = γ1γ2γ
−1
1 γ−1

2 = 1. Note that
∫

r1

F dX =
∫
γ1γ2γ

−1
1 γ−1

2

F dX

=
∫
γ1

F dX +
∫
γ2

F dX −
∫
γ1

F dX −
∫
γ2

F dX = 0, (2.11)

which is trivially satisfied, that is, (2.9) are the necessary and sufficient compati-
bility equations as expected; the relator of the fundamental group does not affect
the complementary compatibility equations.

γ1

γ2

γ1

γ2

γ3

(b)(a)

Fig. 1. a γ1 and γ2 are generators of both the first homology and first homotopy groups of
a torus. b A punctured torus. γ1, γ2, and γ3 are generators of the fundamental group
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For a punctured torus (see Fig. 1b) the fundamental group has three generators
and the following presentation [33]

π1(H) = 〈γ1, γ2, γ3; γ3 = γ1γ2γ
−1
1 γ−1

2 〉. (2.12)

Therefore, r1 = γ3γ2γ1γ
−1
2 γ−1

1 = 1. Note that
∫

r1

F dX =
∫
γ3γ2γ1γ

−1
2 γ−1

1

F dX

=
∫
γ3

F dX +
∫
γ2

F dX +
∫
γ1

F dX −
∫
γ2

F dX −
∫
γ1

F dX

=
∫
γ3

F dX = 0. (2.13)

Therefore, the following are the necessary and sufficient compatibility equa-
tions

dF = 0,
∫
γ1

F dX =
∫
γ2

F dX = 0. (2.14)

It is seen that γ3 is a generator of the fundamental group but does not correspond
to any complementary compatibility equations. The boundary of the hole in the
torus (boundary of a handle) is an example of a null-homologous path that is not
null-homotopic.

2.2. Compatibility Equations for the Right Cauchy-Green Strain C

Let us consider motion of a body ϕt : B → S and assume that dim B = dim S.
If the ambient space (S, g) is Euclidean, its Riemann curvature tensor vanishes,
that is, R(g) = 0. Thus, pull-back of curvature to B vanishes as well, that is,
ϕ∗

t R(g) = 0. But note that [22]

ϕ∗
t R(g) = R(ϕ∗

t g) = R(C). (2.15)

Therefore, a necessary condition for compatibility of C is the vanishing of its
Riemann curvature (thinking of C as a metric in B). Marsden and Hughes [22]
showed that this is locally sufficient, as well. Note that when the body is simply-
connected, vanishing curvature guarantees a global isometry [10]. In dimension
three, Ricci curvature algebraically determines the entire curvature tensor. Fosdick
[16] showed that compatibility equations can be rewritten in terms of Ricci curva-
ture or Einstein tensor. In dimension two, a weaker requirement is sufficient [4]:
A metric is flat if and only if its scalar curvature (the Ricci scalar) is zero. This
is the geometric reason behind the fact that in two dimensions there is only one
compatibility equation, while in three dimensions there are six.14

14 In this paper, we restrict ourselves to the case dim B = dim S, for which the metric
(the first fundamental form) is specified. When dim B < dim S, in addition to the metric,
the second fundamental form should be considered and it must satisfy its own compatibility
equations.
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Remark 2.5. Suppose the ambient space is R
3. The left Cauchy-Green strain B is

a push-forward of G, the metric in the reference configuration. Assuming that G
is flat and that a deformed configuration exists, curvature of B vanishes. This is a
necessary condition for compatibility of B (even if the body is simply-connected).
The sufficiency question requires one to construct a deformed configuration whose
B tensor matches the prescribed field. See [1] for more details.15

In coordinate charts {X A} and {xa} for B and S, respectively, let us denote
the Levi-Civita connection coefficients of g and C = ϕ∗g by γ a

bc and 	A
BC ,

respectively. These connection coefficients are related as

	A
BC = ∂X A

∂xa

∂xb

∂X B

∂xc

∂XC
γ a

bc + ∂2xa

∂X B∂XC

∂X A

∂xa
. (2.16)

If {xa} is a Cartesian coordinate chart for the Euclidean ambient space, then
γ a

bc = 0, and hence

	A
BC = ∂2xa

∂X B∂XC

∂X A

∂xa
. (2.17)

Therefore

∂2xa

∂X B∂XC
= ∂

∂XC
Fa

B = Fa
A	

A
BC . (2.18)

Substituting the polar decomposition in the above identity we obtain

Ra
A,B = Ra

C

C

AB, (2.19)

where


C
AB =

(
	M

B N U C
M − U C

N ,B

)
UA

N , (2.20)

	C
AB = 1

2
CC D(CB D,A + CAD,B − CAB,D), (2.21)

and U N
A are components of U−1. We assume that the body is elastic, and hence

our material manifold is embedded in the Euclidean ambient space [37–39]. We
choose Cartesian coordinates for B and hence G AB = δAB . Note that the system
of differential equations (2.19) is identical to that obtained in [29]. Given a path γ
connecting X0, X ∈ B and parametrized by s ∈ I , we have the following system

15 We are grateful to Amit Acharya for a discussion on B-compatibility.
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of linear ODEs governing the rotation tensor16

d

ds
R = RK, (2.24)

where

K C
A(s) = 
C

AB(s)Ẋ
B(s). (2.25)

Thus, for each a

dRa
A

ds
−
C

AB Ra
C Ẋ B(s) = 0. (2.26)

This is the equation of parallel transport of Ra
A along the curve γ when B is

equipped with the connection �. Let us assume that R(0) = R0. We see that rota-
tion tensor at s is the parallel transport of R0. Integrability conditions of (2.26),
that is, path independence of the integral modulo homotopies fixing the endpoints
are equivalent to vanishing of the curvature tensor of C [26].

The solution of (2.24) can be written in terms of product integration,17 which
was introduced by Vito Volterra [34] (see also [14,31]). Solution of (2.24) in
terms of a product integral reads

R(s) = R0

s∏
0

(γ ) eK(ξ) dξ , (2.27)

where R0 is an orthogonal tensor assumed to be given and
∏s

0(γ ) eK(ξ) dξ is the
product integral of K along the path γ from 0 to s. The product integral has the
following properties [14]:

(i)
∏
(1) eK(ξ) dξ = I, where 1 is the identity loop.

(ii)
∏(
γ−1

)
eK(ξ) dξ =

(∏
(γ ) eK(ξ) dξ

)−1
, for any path γ (not necessarily

closed).
(iii)

∏
(γ1.γ2) eK(ξ) dξ = ∏

(γ2) eK(ξ) dξ ∏
(γ1) eK(ξ) dξ , for arbitrary paths γ1

and γ2.

16 From (2.24) we have

d

ds
RT = KTRT. (2.22)

Differentiating RTR = I, we obtain

0 = dRT

ds
R + RT dR

ds
= KTRTR + RTRK = KT + K. (2.23)

In components, this reads K A
B + K B

A = 0, that is K is skew-symmetric.
17 In the physics literature, this is called path-ordered integration or path-ordered exponen-

tial integration.
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(iv) If K(s1)K(s2) = K(s2)K(s1), ∀s1, s2, then
∏
(γ ) eK(ξ) dξ = e

∫
γ K(ξ) dξ .

Note that conditions i), ii), and iii) imply that γ → ∏
(γ ) eK(ξ)dξ defines a

group representation of π1(B). We know that K is continuous, hence the product
integral can be written in terms of the following uniformly convergent series [14]

s∏
0

(γ ) eK(s) ds =
∞∑

k=0

Jk(s; γ ), (2.28)

where

J0(s; γ ) = I, Jn(s; γ ) =
∫ s

0
K(τ ; γ )Jn−1(τ ; γ )dτ, n � 1. (2.29)

For C to be compatible, rotation tensor calculated from (2.27) must be independent
of the path γ . This means that∏

γ

eK(s) ds = I, ∀ closed path γ. (2.30)

A necessary and sufficient condition for (2.30) is the vanishing of the product
integral of K over the generators of the fundamental group π1(B).
Remark 2.6. If K(s1)K(s2) = K(s2)K(s1), ∀s1, s2, then, the condition (2.30) is
equivalent to

∫ 1

0
K(s) ds = 0, (2.31)

where γ : [0, 1] → B is any closed path.

Note that because K is skew-symmetric, (2.30) has N (N − 1)/2 independent
components. If the path independence of the product integral is guaranteed, then
a unique rotation field R, and hence a unique deformation gradient F = R

√
C, is

calculated.
In summary, given C,U = √

C is uniquely determined. Rotation R is governed
by the system of PDEs (2.19). Rotation is determined using a product integral, which
is path independent if and only if the curvature tensor of C vanishes and (2.30) is
satisfied over each generator of the first homotopy group π1(B).

As a consequence of the previous discussions we have the following proposi-
tion.

Proposition 2.7. The necessary and sufficient conditions for compatibility of C in
B are the following:

(i) R(C) = 0 in B,
(ii)

∏
γi

eK(s)ds = I, where γi ’s are generators of π1(B),
(iii) for the uniquely calculated deformation gradient F = R

√
C, we must have∫

ci
FdX = 0, i = 1, . . . , β1(B), where ci are generators of H1(B; R).

It is seen that each generator of the first homotopy group corresponds to N (N −1)/2
complementary compatibility equations and each generator of H1(B; R) corre-
sponds to N additional complementary compatibility equations.
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2.3. Compatibility Equations in Linearized Elasticity

In this section, we derive the necessary and sufficient compatibility equations
for linearized strain when dim B = dim S. If the ambient space is Euclidean and
the coordinates are Cartesian, the linear strain components read

eab = 1

2

(
∂ua

∂xb
+ ∂ub

∂xa

)
. (2.32)

We know that the necessary and sufficient conditions for compatibility in terms of
F are ∫

γ

F dX = 0, (2.33)

for every loop γ in B. Linearization of (2.33) reads∫
γ

∇U dX = 0. (2.34)

In components, we have
∫
γ

ua
,Bd X B = 0, where {X A} and {xa} are coordinate

charts for B and S, respectively. We assume that linearization is about the standard

embedding of B in R
N , that is, Fa

A = δa
A. Thus, d X B = ∂X B

∂xb dxb = δB
b dxb, hence

we can write∫
γ

ua,B dX B =
∫
γ

ua,b dxb =
∫
γ

(eab + ωab) dxb = 0, (2.35)

where eab = u(a,b) = 1
2

(
ua,b + ub,a

)
and ωab = u[a,b] = 1

2

(
ua,b − ub,a

)
are the

linearized strain and rotation tensors, respectively. Note that∫
γ

ωab dxb =
∫
γ

[
(xcωac),b − xcωac,b

]
dxb = −

∫
γ

xcωac,b dxb. (2.36)

Note also that

ωac,b = 1

2

(
ua,cb − uc,ab

) + 1

2

(
ub,ac − ub,ac

)

= 1

2

(
ua,bc + ub,ac

) − 1

2

(
uc,abc + ub,ac

)
= eab,c − ebc,a . (2.37)

Given eab, ωab is obtained by integrating ωab,c = eac,b − ecb,a along an arbitrary
curve. To ensure that the given strain tensor corresponds to a well-defined rotation
field over any closed path γ ∈ B, we must have18

∫
γ

(
eac,b − ecb,a

)
dxc = 0. (2.38)

18 We benefited from a discussion with James R. Barber on the number of complementary
compatibility equations in linearized elasticity when the body is not simply-connected, when
he clarified his treatment of compatibility equations in [2].



Compatibility Equations for Non-Simply-Connected Bodies 249

When γ is null-homotopic, γ = ∂
 (
 is the parameter domain of the null-ho-
motopy) and hence∫

γ

(
eac,b − ecb,a

)
dxc =

∫



d
(
eac,b − ecb,a

) ∧ dxc

=
∫



(
ead,bc + ebc,ad − eac,bd − ebd,ac

)
( dxc ∧ dxd)

= 0, (2.39)

where {( dxc ∧ dxd)} = { dxc ∧ dxd}c<d is a basis of 2-forms. It can be shown
that (2.39) are equivalent to Curl Curl e = 0, which are the classical bulk compati-
bility equations [21]. Knowing that the first homology group with real coefficients
has the generators ci , i = 1, . . . , β1(B), we have the following complementary
compatibility equations∫

ci

(
eac,b − ecb,a

)
dxc = 0, i = 1, . . . , β1(B). (2.40)

Note that eac,b−ecb,a is anti-symmetric in (ab), hence each integral has N (N −1)/2
independent components (N = dim B = dim S).

Now using (2.37), we have∫
γ

ua,b dxb =
∫
γ

[
eab − xc(eab,c − ebc,a)

]
dxb = 0. (2.41)

This is called the Cesàro path integral [8]. Let us define the Cesàro tensor Cab =
eab − xc(eab,c − ebc,a). Suppose γ is null-homotopic and hence γ = ∂
(
 is the
parameter domain of the null-homotopy). Thus, using Stokes’ theorem∫

γ

Cab dxb =
∫



dCab ∧ dxb

=
∫



Cab,cdxc ∧ dxb

=
∫



[
ebc,a − xd (

eab,cd − ebd,ac
)]

dxc ∧ dxb. (2.42)

Note that because of symmetry of strain, ebc,a dxc ∧ dxb = 0, hence
∫
γ

ua,b dxb =
∫



xd (
ebd,ac − eab,cd

)
dxc ∧ dxb

=
∫



xd (
eab,cd + ecd,ab − eac,bd − ebd,ac

)
( dxb ∧ dxc)

= 0. (2.43)

It can be shown that (2.43) are equivalent to Curl Curl e = 0, which are the classical
bulk compatibility equations [21]. Thus, we have proved the following proposition.

Proposition 2.8. The necessary and sufficient conditions for compatibility of line-
arized strain e in B are the following:
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(i) Curl Curl e = 0 in B,
(ii) for each generator of H1(B; R)∫

ci

[
eab − xc(eab,c − ebc,a)

]
dxb = 0, i = 1, . . . , β1(B), (2.44)

∫
ci

(
eac,b − ecb,a

)
dxc = 0, i = 1, . . . , β1(B). (2.45)

Example 2.9. Let us consider the Saint Venant’s torsion problem. One considers
a cylindrical bar parallel to the x3-axis with an arbitrary cross section 
 with n
holes with boundaries ci (the bar has the same cross section everywhere). In Saint-
Venant’s semi-inverse solution the following displacements are assumed: u1 =
−ϑx2x3, u2 = ϑx1x3, u3 = ϑψ(x1, x2), where ϑ is the rate of twist (twist per
unit length) and ψ(x1, x2) is the warping function. The only nonzero strains are
e13 = 1

2ϑ(ψ,1 − x2) and e23 = 1
2ϑ(ψ,2 + x1). The equilibrium equations are triv-

ially satisfied if stresses σ13 = 2Ge13 and σ23 = 2Ge23(G is the shear modulus)
are expressed in terms of the Prandtl stress function φ(x1, x2) as σ13 = φ,2 and
σ23 = −φ,1. Eliminating ψ from σ13 = Gϑ(ψ,1 − x2) and σ23 = Gϑ(ψ,2 + x1)

yields ∇2φ = −2Gϑ (the bulk compatibility equation). The traction-free bound-
ary conditions imply that φ is constant on each connected component of ∂
 (the
boundary of 
). We assume that φ = 0 on the outer boundary of 
 and equal to
φi on the boundary of the ith hole.

We assume that the cross section 
 is normal to the bar axis, and for all its
points x3 = a (we can consider any other cross section, of course). From (2.44)
we obtain ∫

ci

(
e13,1 dx1 + e23,1 dx2

)
= 0, (2.46)

∫
ci

(
e13,2 dx1 + e23,2 dx2

)
= 0, (2.47)

∫
ci

[
(e13−x1e13,1−x2e13,2) dx1+(e23 − x1e23,1 − x2e23,2) dx2

]
= 0. (2.48)

It can be easily shown that when the above three equations are satisfied, (2.45) would
be trivially satisfied, that is, each hole has only three complementary compatibility
equations. In terms of stresses, complementary compatibility equations are identi-
cal to (2.46), (2.47), and (2.48) when strains are replaced by their corresponding
stresses. Note that

σ13,1 dx1 + σ23,1 dx2 = d(φ,2)− ∇2φ dx2 = d(φ,2)+ 2Gϑ dx2, (2.49)

σ13,2 dx1 + σ23,2 dx2 = − d(φ,1)+ ∇2φ dx1 = d(φ,1)− 2Gϑ dx1. (2.50)

This means that the first two complementary compatibility equations (2.46) and
(2.47) are trivially satisfied. Note also that

(σ13 − x1σ13,1 − x2σ13,2) dx1+ (σ23 − x1σ23,1 − x2σ23,2) dx2

= 2
(
φ,2 dx1 − φ,1 dx2

)
+ 2Gϑ

(
x2 dx1 − x1 dx2

)

+ d
(
−x1φ,2 + x2φ,1

)
. (2.51)
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Thus (2.48) gives us
∫

ci

(
φ,2 dx1 − φ,1 dx2

)
+ 2Gϑ

∫
ci

ϑ
(

x2 dx1 − x1 dx2
)

= 0. (2.52)

Therefore ∫
ci

∇φ · n̂ ds = −2Gϑ Ai , (2.53)

where n̂ is the unit normal vector to the boundary of the ith hole and Ai is the area
of the ith hole.

Remark 2.10. Note that for each ci , (2.44) and (2.45) give N and N (N − 1)/2
complementary compatibility equations, respectively. Thus, each ci has N (N + 1)
complementary compatibility equations. This is obviously consistent with Wein-
garten’s theorem [36], which says that if a body is cut along a surface, the jump in
the displacement field is a rigid-body motion (N (N + 1)/2 degrees of freedom).
See Love [21] for a detailed discussion (Love calls homotopic paths, “reconcilable
circuits” and a null-homotopic path, an “evanescible circuit”.). Zubov [40] and
Casey [7] showed that this theorem holds for finite strains as well. We should also
mention that the discussion in [30] regarding sufficient compatibility equations in
linear elasticity is flawed, as they missed those complementary compatibility con-
ditions that guarantee existence of a well-defined field of rotations, that is (2.45).

Remark 2.11. Relative homology groups were introduced by Lefschetz [20].19

Lefschetz duality tells us that for a compact n-manifold M , Hn−p
c (M) ∼=

Hp(M, ∂M). From de Rham’s theorem, Hn−p(M) ∼= H p
c (M\∂M). Therefore,

Hn−p(M) ∼= Hp(M, ∂M). Thus, βn−p(M) = βp(M, ∂M). Let us now restrict
ourselves to embedded 3-submanifolds of R

3, which model our three-dimensional
deformable bodies [6]. H1(M) is generated by equivalence classes of oriented loops;
two loops are in the same equivalence class if their “difference” is the boundary
of an oriented surface in M.H1(M, ∂M) is generated by the equivalence class of
oriented paths with end points on ∂M ; two paths are equivalent if their “differ-
ence” (augmented by paths on ∂M , if necessary) is the boundary of an oriented
surface in M . From Poincaré’s duality we know that H2(M) ∼= H1(M, ∂M). Define
Mc = R

3\M . Alexander’s duality tells us that H1(M) ∼= H1(Mc). Let�1, . . . , �k

be a family of cross-sectional surfaces in M with boundaries on ∂M such that they
generate H2(M, ∂M). As an example, consider the two-hole solid torus shown in
Fig. 2, for which k = 2. Let γ1, γ2 (loops in the interior of M) be generators of
H1(M) chosen such that intersection number of ci with � j is δi j . One can make
these loops disjoint. If one pushes the boundaries of �1, �2 a bit into Mc, one
obtains the loops 	1, 	2, which generate H1(Mc).

Love [21] in Article 156 writes: “Now suppose the multiply-connected region
to be reduced to a simply-connected one by means of a system of barriers.” Note that

19 It is interesting that the first academic degree of Solomon Lefschetz—one of the most
influential algebraic topologists—was in mechanical engineering.
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γ1
γ2

Γ1

Σ1

Γ2

Σ2

Fig. 2. A two-hole solid torus M (a genus two handlebody). γ1 and γ2 are generators of
H1(M). 	1 and 	2 are generators of H1(R

3\M)

a “barrier”
 in a three-dimensional body B is a generator of H2(B, ∂B) ∼= H1(B),
and in a two-dimensional body it is a generator of H2(B, ∂B) ∼= H1(B).
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