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Abstract

We consider the focusing L2-critical half-wave equation in one space dimension,

i∂t u = Du − |u|2u,

where D denotes the first-order fractional derivative. Standard arguments show that
there is a critical threshold M∗ > 0 such that all H1/2 solutions with ‖u‖L2 < M∗
extend globally in time, while solutions with ‖u‖L2 � M∗ may develop singulari-
ties in finite time. In this paper, we first prove the existence of a family of traveling
waves with subcritical arbitrarily small mass. We then give a second example of
nondispersive dynamics and show the existence of finite-time blowup solutions
with minimal mass ‖u0‖L2 = M∗. More precisely, we construct a family of min-
imal mass blowup solutions that are parametrized by the energy E0 > 0 and the
linear momentum P0 ∈ R. In particular, our main result (and its proof) can be seen
as a model scenario of minimal mass blowup for L2-critical nonlinear PDEs with
nonlocal dispersion.

1. Introduction and Main Results

1.1. Setting of the Problem

In this paper, we consider the half-wave equation in N = 1 space dimension
with the focusing L2-critical nonlinearity:

(Wave)

{
i∂t u = Du − |u|2u,
u(t0, x) = u0(x), u : I × R → C.

(1.1)

Here, I ⊂ R is an interval containing the initial time t0 ∈ R, and

(̂D f )(ξ) = |ξ | f̂ (ξ)
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denotes the first-order nonlocal fractional derivative. Equation (1.1) can be seen as
a canonical model for an L2-critical PDE with nonlocal dispersion given by a frac-
tional power of the Laplacian. Let us mention that evolution problems with nonlocal
dispersion such as (1.1) naturally arise in various physical settings, which include
continuum limits of lattice systems [21], models for wave turbulence [4,25], and
gravitational collapse [9,14]. The defocusing version of this problem is at the heart
of the derivation of asymptotic models of weak turbulence through the cubic Szegö
model studied by Gerard, Grellier [15] and Pocovnicu [39]. From a mathematical
point of view, the absence of specific symmetries for evolution problems like (1.1)
(for example, there is no Lorentz, Galilean or pseudo-conformal symmetry) makes
the analysis rather intricate and hence robust (that is, symmetry-independent) argu-
ments have to be found.

Let us review some basic facts about the problem at hand. The Cauchy prob-
lem for (1.1) is locally well-posed in the energy space H1/2(R); see Appendix
D for more details. In particular, we have the blowup alternative that if u ∈
C0(I ; H1/2(R)) is the unique corresponding solution to (1.1) with its maximal
time of existence t0 < T � +∞, then

T < +∞ implies lim
t→T − ‖u(t)‖H1/2 = +∞. (1.2)

Furthermore, Equation (1.1) is an infinite-dimensional Hamiltonian system, which
admits three conservation laws given by

Mass : M(u) =
∫

|u(t, x)|2 dx = M(u0),

Momentum : P(u) =
∫

−i∂x u(t, x)u(t, x) dx = P(u0),

Energy : E(u) = 1

2

∫
|D 1

2 u|2(t, x)dx − 1

4

∫
|u(t, x)|4 dx = E(u0).

For the half-wave equation (1.1), one easily verifies that the mapping

u(t, x) �→ λ
1
2
0 u(λ0t + t0, λ0x + x0)e

iγ0 , (λ0, t0, x0) ∈ R
∗+ × R × R, (1.3)

yields a group of symmetries. In particular, the scaling symmetry leaves the L2-
norm invariant, and hence the problem is mass critical. A classical criterion of
global-in-time existence for H1/2 initial data is derived by using the Gagliardo–
Nirenberg with best constant

∀u ∈ H1/2(R), ‖u‖4
L4 � C∗‖D

1
2 u‖2

L2‖u‖2
L2 ,

which is attained at the unique (up to symmetries) ground state profile solution to

DQ + Q − Q3 = 0, Q(x) > 0, Q ∈ H1/2(R). (1.4)

Note that the existence of this object follows from standard variational techniques,
but uniqueness of Q, which was obtained recently by Frank and Lenzmann in [10],
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is a nontrivial claim in a nonlocal setting, since ODE techniques do not apply for
(1.4). The outcome is the sharp lower bound on the energy

∀u ∈ H1/2(R), E(u) � 1

2

∫
|D 1

2 u|2
[

1 − ‖u‖2
L2

‖Q‖2
L2

]
, (1.5)

which together with the conservation of mass and energy and the blowup criterion
(1.2) implies that initial data u0 ∈ H1/2(R) with

‖u0‖L2 < M∗ = ‖Q‖L2

generate global-in-time solutions. For more details about the Cauchy problem (1.1),
we refer to Appendix D below.

1.2. The Local NLS Problem

The structure of the problem is similar to the celebrated mass critical NLS
problem

(NLS)

{
i∂t u +�u + |u| 4

N u = 0,
u(t0, x) = u0(x), u : I × R

N → C.
(1.6)

From Weinstein [43], we recall that initial data u0 ∈ H1(RN ) with ‖u0‖L2 <

‖Q‖L2 yield global-in-time solutions, where Q is from [16,24] the unique up to
symmetries solution to the ground state equation

�Q − Q + Q1+ 4
N = 0, Q(x) > 0, Q ∈ H1(RN ).

Moreover, solutions with

u0 ∈ H1 ∩ {xu ∈ L2}, ‖u0‖L2 < ‖Q‖L2

scatter, that is, they behave asymptotically like free waves, see [6], and this result
has been extended to all L2 data with subcritical mass using the Kenig–Merle road
map [18] in [7,19,20]. At the mass critical level, the additional pseudo-conformal
symmetry of (1.6) yields an explicit minimal blowup element:

S(t, x) = 1

|t | N
2

Q
( x

t

)
e

i
t e

i |x |2
4t , ‖S(t)‖L2 = ‖Q‖L2 . (1.7)

Merle obtains in [29] the classification in the energy space of minimal blowup ele-
ments; the only H1 finite time blowup solution with mass ‖u‖L2 = ‖Q‖L2 is given
by (1.7) up to the symmetries of the flow.

The question of existence and possibly uniqueness of minimal blowup elements
has since been addressed in various settings. The existence of minimal elements can
be obtained for (NLS) on a domain [3] through a brute force perturbative argument.
Similar threshold solutions have been derived for the energy critical problem [8]
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using the virial algebra and without the description of the associated blowup sce-
nario. A robust dynamical approach for the proof of both existence and uniqueness
has been developed by Raphaël, Szeftel [40], for an inhomogeneous problem

i∂t u +�u + k(x)|u| 4
N u = 0,

which is a canonical problem proposed by Merle [31] to break the pseudo-confor-
mal symmetry, and which under suitable assumptions on k does not admit minimal
blowup elements. The existence and uniqueness of minimal blowup elements in
[40] is proved under sharp assumptions of k, which induce a dramatic influence
on the bubble of concentration, and allow one to go beyond the perturbative case
treated in [1]. The argument involves a soft compactness argument using the revers-
ibility of the flow as in [26,28,32], and a mixed Energy/Morawetz monotonicity
formula available at the minimal mass level only to integrate the flow backwards
from the singularity. The robustness of this approach and further developments led
in [34] to the construction of minimal elements for the mass critical gKdV problem

∂t u + (uxx + u5)x = 0, (t, x) ∈ R × R,

which has been an open problem since the pioneering work [27].

1.3. Statement of the Main Results

We address the question of the existence of nondispersive dynamics, and we
will describe two examples of such dynamics: mass subcritical traveling solitary
waves and minimal mass blowup solutions. In what follows, let Q ∈ H1/2(R) be
the unique ground state solution of (1.4).

A family of mass subcritical traveling solitary waves can be constructed using
variational techniques and adapting the proof in [13]. Also, note that no such ele-
ments exist for the L2-critical (NLS), since initial data with subcritical L2-mass
for (1.6) always scatter to a free wave (see [7,19,20]) and, in particular, no solitary
waves with subcritical mass1 exist for (NLS). For the half-wave equation (1.1), we
have the following result.

Theorem 1.1. (Traveling solitary waves with arbitrarily small mass) For all |v| <
1, there exists a profile Qv ∈ H1/2(R) such that

u(t, x) = eit Qv(x − vt)

is a traveling solitary wave solution to (1.1). Moreover, the mass ‖Qv‖L2 is strictly
decreasing with respect to |v|, and for any 0 < |v| < 1, the profile Qv has strictly
subcritical mass:

‖Qv‖L2 < ‖Q‖L2 . (1.8)

There also hold the limits:{ ‖Qv‖L2 → ‖Q‖L2 as |v| → 0,
‖Qv‖L2 → 0 as |v| → 1.

1 Because of the cancellation ‖Qeiβy‖L2 = ‖Q‖L2 for all β ∈ R
N .
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A second example of nondispersive dynamics corresponds to a minimal mass
singularity formation. The existence of blowup solutions for (1.1) for which there
is no simple obstruction to global existence as for (1.6) has been an open problem,
and our claim is that we can adapt the strategy in [40], even though dispersion is
nonlocal, and we can build, through a dynamical argument, minimal blowup ele-
ments with a complete description of the associated mass concentration scenario.
The main result is the following.

Theorem 1.2. (Existence of minimal mass blowup elements) For all (E0, P0) ∈
R

∗+ ×R, there exists t∗ < 0 and a minimal mass solution u ∈ C0([t∗, 0); H1/2(R))

of Equation (1.1) with

‖u‖L2 = ‖Q‖L2 , E(u) = E0, P(u) = P0,

which blows up at time T = 0. More precisely, it holds that

u(t, x)− 1

λ
1
2 (t)

Q

(
x − α(t)

λ(t)

)
eiγ (t) → 0 in L2(R) as t → 0−, (1.9)

where

λ(t) = λ∗t2 + O(t3), α(t) = O(t3), γ (t) = 1

λ∗|t | + O(t),

with some constant λ∗ > 0, and the blowup speed is given by:

‖D
1
2 u(t)‖L2 ∼ C(u0)

|t | as t → 0−.

Comments on the result.
1. Extension: Similar questions can be addressed for the generalized L2-mass

critical problem

i∂t u = Dsu − |u|2su, (t, x) ∈ R × R, (1.10)

with fractional power 1 < s < 2. Since nondegeneracy (and uniqueness) of ground
states is also known in this case (see [10]), we claim that our construction of a min-
imal blowup solution carries over verbatim (except for some technicalities when
the nonlinearity |u|2su fails to be smooth). However, the case s = 1 treated here
is critical with respect to many aspects of the problem; in particular, the absence
of any smoothing properties for the propagator e−i t D is a delicate issue. For Equa-
tion (1.10), we claim that the associated minimal elements would concentrate an
L2 bubble (1.9) at the speed

λ(t) = λ∗|t | 2
s .

The analysis could also in principle be extended to the higher dimensional case,
provided that the ground states are known to be nondegenerate; see [11] for a recent
result in N � 2 space dimensions.

2. On minimal elements: Theorem 1.1 shows that scattering does not occur
below the ground state. This is not so surprising for the half-wave, which is like a
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one-dimensional wave equation. However, the variational setting for the construc-
tion of traveling waves with strictly subcritical mass (1.8) can be adapted to the case
1 < s < 2. This shows a major difference with the mass critical (NLS) with local
dispersion s = 2 and, in particular, that the sharp threshold for global existence
and the sharp threshold for scattering are not the same.

3. Role of the momentum: The construction of minimal elements with nonzero
linear momentum is a nontrivial task, since Equation (1.1) has neither Galilean
boost symmetry [which is an essential feature of (1.6)] nor Lorentz boost symme-
try (which occurs for classical nonlinear wave equation). To overcome this lack of
symmetries to generate solutions of uniform motion, we construct boosted ground
state profiles for Equation (1.1) by a suitable ansatz that incorporates a velocity
parameter v of uniform motion. Let us stress that these boosted ground states have,
indeed, a strictly subcritical L2-mass. As a consequence, the key is to compute the
motion of the generalized boost parameter v and to realize that, in the regime we
are working with, it asymptotically vanishes sufficiently fast and hence does not
perturb the concentration dynamics. A similar issue occurred in [40].

4. Structure of the ground state: An important qualitative difference between
the local problem (1.6) and the nonlocal problem (1.1) is the structure of the ground
state solitary wave, Q, which decays exponentially for (1.6), while for the half-wave
equation (1.1) the ground state exhibits a slow algebraic decay:

Q(x) ∼ 〈x〉−2 as |x | → +∞.

Also, the linearized operator close to Q displays a nonlocal dispersion, which makes
the use of spectral estimates as in [22] particularly delicate. Here we will use two
important facts. In [10], despite the nonlocal structure of the problem, the quadratic
form associated to the linearized Hamiltonian is proved to be nondegenerate, and
this is, in fact, an important step of the proof of uniqueness of the ground state.
This nondegeneracy itself is then an essential ingredient in adapting the strategy in
[40] for the construction of minimal elements, which does not require any further
spectral information—like virial-type coercivity as in [35,33].

5. Bourgain–Wang solutions: In [2], Bourgain and Wang show that the mini-
mal blowup element S(t) given by (1.7) for the local problem (1.6) can be used
to construct mass super critical blowup solutions whose singular part is given to
leading order by S(t), see also [22]. These solutions are shown to be unstable by
“log-log” blowup and scattering in [37]. The extension of this result to the case
of the L2-critical half-wave equation (that is, the construction of similar threshold
dynamics based on the minimal element) is a natural question in the continuation
of this work.

In the present work, our aim is to present a robust and self-contained construc-
tion of minimal blowup elements in a setting of nonlocal dispersion. Moreover,
we believe that the arguments developed here will be of broader interest in the
further understanding of blowup phenomena of PDEs with fractional powers of the
Laplacian.

There are three major questions in the continuation of this work. First, the
question of uniqueness (modulo symmetries) of minimal mass blowup elements is
a delicate open problem for Equation (1.1), and for which we further hope to extend
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the strategy developed in [33,40] to the half-wave problem. Second, one can ask for
the behavior of the minimal blowup element on the left in time, and one typically
expects that the minimal mass blowup element is a connection between scattering
at −∞ and blowup in finite time on the right. Again, this is a nontrivial claim in
the absence of an explicit formula like (1.7), and the solutions of Theorem 1.2 are
constructed locally in time only around blowup. This question relates directly to
the description of the phase portrait of the flow around the ground state, Q, and the
understanding of threshold dynamics, see [33,34,37]. Finally, the understanding of
the flow below the ground state mass in the presence of arbitrarily small solitary
waves is a very interesting problem.

Notation and Definitions. We use Ds to denote the fractional derivative of
order s � 0, that is, we set

(̂Ds f )(ξ) = |ξ |s f̂ (ξ).

We employ standard notation for L p-spaces and we use

( f, g) =
∫

f̄ g

as the inner product on L2(R). We shall use X � Y to denote that X � CY holds,
where the constant C > 0 may change from line to line, but C is allowed to depend
on universally fixed quantities only. Likewise, we use X ∼ Y to denote that both
X � Y and Y � X hold. Furthermore, we use X �α Y to denote that X � CαY
where the constant Cα > 0 is also allowed to depend on some quantity α.

For a sufficiently regular function f : R → C, we define the generator of L2

scaling given by

	 f := 1

2
f + x f ′.

Note that the operator 	 is skew-adjoint on L2(R), that is, we have

(	 f, g) = −( f,	g).

We write	k f , with k ∈ N, for the iterates of	with the convention that	0 f ≡ f .
In the following, we sometimes use the multi-variable calculus notation

∇ f = f ′, � f = f ′′

for functions f : R → R to improve the readability of certain formulae derived
below.

In some parts of this paper, it will be convenient to identify any complex-valued
function f : R → C with the function f : R → R

2 by setting

f =
[

f1

f2

]
=
[� f

� f

]
.
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Correspondingly, we will identify the multiplication by i in C with the multiplica-
tion by the real 2 × 2-matrix defined as

J =
[

0 −1
1 0

]
.

In what follows, regularity properties such as f ∈ Hk(R) (as a C-valued function)
are obviously equivalent to saying that f ∈ Hk(R) (as an R

2-valued function).
Furthermore, the action of differential operators (such as ∇,	 and Ds etc.) on f
is defined in a self-evident fashion.

Throughout this paper, we denote the linearized operator (with respect to com-
plex-valued functions) close to the ground state Q by

L =
[

L+ 0
0 L−

]
,

with the scalar self-adjoint operators

L+ = D + 1 − 3Q2, L− = D + 1 − Q2,

acting on L2(R; R).

2. Traveling Solitary Waves with Subcritical Mass

In this section we prove Theorem 1.1, which establishes the existence and prop-
erties of traveling solitary waves for (1.1). In particular, we will see that traveling
solitary waves with arbitrarily small L2-mass exist, which is in striking contrast to
the L2-critical NLS.

2.1. Preliminaries

Let v ∈ R with |v| < 1 be given. By making the ansatz u(t, x) = ei t Qv(x −vt)
for (1.1), we find that the profile Qv ∈ H1/2(R) has to satisfy

DQv + Qv + i(v · ∇)Qv − |Qv|2 Qv = 0. (2.1)

Following an idea in [13], we obtain nontrivial solutions Qv ∈ H1/2(R) as opti-
mizers for the interpolation inequality∫

|u|4 � Cv

(∫
u Du + u(iv · ∇u)

)(∫
|u|2

)
. (2.2)

Note that |v| < 1 is needed to ensure that
∫

u Du + u(iv · ∇u) > 0 for u �≡ 0. Here
Cv > 0 denotes the optimal constant given by

1

Cv
= inf

u∈H1/2(R)\{0}

(∫
u Du + u(iv · ∇u)

) (∫ |u|2)∫ |u|4 . (2.3)

By Sobolev inequalities, we see that the infimum on the right is strictly positive
(and hence Cv < +∞ is finite). Furthermore, the fact that this infimum is, indeed,
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attained can be deduced from concentration-compactness arguments, which in our
case follow from a direct adaptation of the proof given in [13, Appendix B]. In
particular, optimizers Qv ∈ H1/2(R) for (2.2) exist, and after a suitable rescaling
Qv(x) �→ aQv(bx)with a, b > 0 they are found to satisfy Equation (2.1). Follow-
ing the terminology introduced in [13], we refer to optimizers such as Qv(x) that
solve Equation (2.1) as boosted ground states (with velocity v) in what follows.
In particular, the unboosted ground state Qv=0(x) = Q(x) is the unique (modulo
symmetries) ground state solving (1.4) above. Finally, we observe that

2

Cv
=
∫

|Qv|2, (2.4)

which follows from the fact that Qv optimizes (2.2) and satisfies Equation (2.1);
see more details on this relation for a similar problem treated in [13]. In particular,
the relation (2.4) shows that two different boosted ground states Qv and Q̃v with
the same velocity v must satisfy ‖Qv‖L2 = ‖Q̃v‖L2 .

We may reformulate (2.4) as follows. Let the energy functional

Ev(u) = 1

2

∫
u Du + 1

2

∫
u(iv · ∇u)− 1

4

∫
|u|4,

then2

Ev(Qv) = 0, (2.5)

and there holds the sharp Gagliardo–Nirenberg interpolation inequality:

∀u ∈ H
1
2 , Ev(u) � 1

2

(∫
{u Du + u(iv · ∇u)}

)(
1 − ‖u‖2

L2

‖Qv‖2
L2

)
. (2.6)

2.2. Proof of Theorem 1.1

Let v ∈ R with |v| < 1 be given. From the previous paragraph we know that
boosted ground states Qv satisfying Equation (2.1) exist. Due to the behavior of
the problem under spatial reflections x �→ −x , we can assume without loss of
generality that all velocities are positive numbers, that is,

0 � v < 1. (2.7)

Step 1 Sign of the momentum. Let 0 � v < 1. We claim:

v ·
∫

Qv(i∇Qv) � 0. (2.8)

Indeed, assume on the contrary that v · ∫ Qv(i∇Qv) > 0 holds. We define the
reflected function Q̃v(x) := Qv(−x). Note that

∫ |Q̃v|2 = ∫ |Qv|2 and v ·∫
Q̃v(i∇ Q̃v) < 0. Since the remaining terms in Ev(u) are invariant with respect

2 As follows from a standard Pohozaev integration by parts on (2.1).
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to space reflections, we find that Ev(Q̃v) < Ev(Qv) = 0. But ‖Q̃v‖L2 = ‖Q‖L2

implies Ev(Q̃v) � 0 from (2.6), a contradiction. We conclude that (2.8) holds. In
particular, we see that

∫
Qv(i∇Qv) � 0 for 0 < v < 1. (2.9)

For the case v = 0, we recall the fact from [10] that (after translation and shift by a
complex constant phase) the functions Qv=0 = Qv=0(|x |) are even. Hence, in this
special case, we have

∫
Qv=0(i∇Qv=0) = 0. (2.10)

Step 2 The mass is non-increasing. We claim the monotonicity:

‖Qv2‖L2 < ‖Qv1‖L2 for 0 � v1 < v2 < 1. (2.11)

Note that this implies, in particular, the subcritical mass property:

‖Qv‖L2 < ‖Q‖L2 for 0 < v < 1.

Indeed, let Qv1 and Qv2 be two boosted ground states satisfying (2.1) with v = v1
and v = v2, respectively. Since Ev1(Qv1) = 0 by (2.5), we find using (2.9), if
v1 > 0 and (2.10) if v1 = 0, that

Ev2(Qv1) = Ev1(Qv1)+ (v2 − v1) ·
∫

Qv1(i∇Qv1) � 0, (2.12)

since v2 − v1 > 0 by assumption, which together with (2.6) implies ‖Qv1‖L2 �
‖Qv2‖L2 . In the case of equality, ‖Qv1‖L2 = ‖Qv2‖L2 , Qv1 attains the minimiza-
tion problem (2.3) with v2. In particular, the function Qv1 satisfies the equation

DQv1 + λQv1 + v2 · ∇Qv1 − |Qv1 |2 Qv1 = 0, (2.13)

with some Lagrange multiplier λ ∈ R. On the other hand, by assumption, the
boosted ground state Qv1 also satisfies Equation (2.1) with v = v1. By subtracting
the equations satisfied by Qv1 , we obtain that

(λ− 1)Qv1 + (v2 − v1) · ∇Qv1 = 0.

Since v2 �= v1 by assumption and Qv1(x) → 0 as |x | → +∞, we deduce from
this equation that Qv1 ≡ 0 holds, which is absurd.

Step 3 Limits. We claim:
{ ‖Qv‖L2 → ‖Q‖L2 as |v| → 0,

‖Qv‖L2 → 0 as |v| → 1.

To show that ‖Qv‖L2 → ‖Q‖L2 as v → 0, we argue as follows. From |ξ | −
v · ξ � (1 − |v|)|ξ | for ξ ∈ R and Plancherel’s identity, we deduce that Cv �
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(1 − |v|)−1Cv=0 for the optimal constants in (2.2). From this simple bound and
recalling (2.4) and the monotonicity (2.11), we deduce the bounds√

1 − |v|‖Q‖L2 � ‖Qv‖L2 � ‖Q‖L2 .

whence it follows that ‖Qv‖L2 → ‖Q‖L2 as v → 0.
It remains to show that ‖Qv‖L2 → 0 as |v| → 1. It suffices to prove this claim

for v → 1, since v → −1 can be treated in a verbatim way. Let ϕ ∈ H1/2(R)

with ϕ �≡ 0 having only positive Fourier components, that is, we assume that
supp ϕ̂ ⊂ [0,+∞) holds. For v > 0, this gives us

(D + iv · ∇)ϕ = (1 − v)Dϕ. (2.14)

From (2.2) we obtain that

Cv �
(

1

1 − v

)( ∫ |ϕ|4(∫
ϕDϕ

) (∫ |ϕ|2)
)
. (2.15)

Therefore Cv → +∞ as v → 1. In view of (2.4), this shows that ‖Qv‖L2 → 0 as
v → 1.

The proof of Theorem 1.1 is now complete. ��
Remark 2.1. By uniqueness of the ground state Q and a concentration-compact-
ness argument, one can show from standard arguments that if vn → 0, then (after
possibly passing to a subsequence):

eiγn Qvn (· + yn) → Q in H1/2(R) as n → +∞, (2.16)

for some sequences {γn}∞n=1, {yn}∞n=1 in R.

For the reader’s convenience, we sketch the arguments showing the convergence
claim (2.16) above. For |v| < 1, we define the functional

Jv(u) =
(∫

u Du + u(iv · ∇u)
) (∫ |u|2)∫ |u|4 , (2.17)

for u ∈ H1/2(R) with u �≡ 0. Adapting the proof in [13, Appendix B], we see
that every minimizing sequence for Jv(u) is relatively compact in H1/2(R) up
to translations and scalings. Moreover, as shown in [10], the functional Jv=0(u)
has a unique (modulo symmetries) minimizer Q, which is the unique ground state
solution satisfying (1.4). Therefore if {un}∞n=1 ⊂ H1/2(R) \ {0} is a minimizing
sequence for Jv=0(u), then (after passing to a subsequence if necessary):

anun(bn(· + yn)) → Q in H1/2(R) as n → +∞, (2.18)

for some sequences {an}∞n=1 ⊂ C \ {0}, {bn}∞n=1 ⊂ R \ {0} and {yn}∞n=1 ⊂ R.
Now, we suppose that vn → 0 and let {Qvn }∞n=1 be a sequence of boosted

ground states. Note that

Jv=0(Qvn ) =
∫

Qvn DQvn∫ (
Qvn DQvn + Qvn (iv · ∇Qvn )

)Jvn (Qvn ) � 1

1 − |vn|
2

‖Qv‖2
L2

,
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using that |ξ | − v · ξ � (1 − |v|)|ξ | and that Qv minimizes Jvn (u) and (2.4). On
the other hand, we have the obvious lower bound Jv=0(Qvn ) � J (Q) = 2/‖Q‖2

L2 .
Since ‖Qv‖L2 → ‖Q‖L2 as v → 0, we conclude that

Jv=0(Qvn ) → Jv=0(Q) as n → +∞.

Therefore {Qvn }∞n=1 furnishes a minimizing sequence for Jv=0(u). From (2.18) and
using the normalization constraints satisfied by Qvn (to see that |an| = |bn| = 1),
we deduce that (2.16) holds true.

3. Sketch of the Proof of Theorem 1.2

Before we start our analysis, let us make some formal remarks. To construct
minimal mass blowup solutions for problem (1.1), we first renormalize the flow

u(t, x) = 1

λ
1
2 (t)

v

(
t,

x − α(t)

λ(t)

)
eiγ (t),

which leads the renormalized equation:

i∂sv − Dv − v + v|v|2 = i
λs

λ
	v + i

αs

λ
· ∇v + γ̃sv. (3.1)

Following the slow modulated ansatz strategy developed in [23,30,40], we freeze
the modulation equations

−λs

λ
= b,

αs

λ
= v,

and we look for an approximate solution of the form

v(s, y) = PP(s), P(s) = (b(s), v(s)),

with an expansion

bs = P1(b, v), vs = P2(b, v), QP = Q(y)+�|α|+β�1v
αbβ Pα,β(y).

Each step requires inverting an elliptic system of the form Lu = f , where L =
(L+, L−) is the matrix linearized operator close to Q which displays a nontriv-
ial kernel induced by the symmetry group. We adjust the modulation equation for
(bs, vs) to ensure the solvability of the obtained system, and a specific algebra leads
to the laws to leading order:

bs = −1

2
b2, vs = −bv.

This allows us to construct a high order approximation QP solution to

−i
b2

2
∂b QP −ibv∂vQP −DQP −QP +ib	QP −iv · ∇QP +|QP |2 QP =−�P ,
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where �P = O(b5 + vP2) is some small and well-localized error term. Further-
more, we have that the QP has almost minimal mass in the sense that∫

|QP |2 =
∫

Q2 + O(b4 + v2 + v2P).

We now aim at constructing an exact solution of the form

u(t, x) = 1

λ
1
2 (t)

[
QP(t) + ε

]
v

(
t,

x − α(t)

λ(t)

)
eiγ (t),

and this amounts to propagating suitable dispersive estimates for ε. Here, a key
ingredient will be a backwards monotonicity mixed energy/virial estimate which
schematically yields the bound

d

dt

{
1

λ

[
‖D

1
2 ε‖2

L2 + ‖ε̃‖2
L2 + b�

(∫
|y|�1

y · ∇ ε̃ε̃
)]}

� 0 + lower order terms,

where the monotonicity in the critical mass regime relies on the coercivity of the
linearized energy only. Using the above backwards monotonicity, we can bootstrap
and apply a soft compactness argument to construct solutions of the form above
such that

λ ∼ t2, b ∼ t, v ∼ t2, ‖ε(t)‖2
H1/2 ∼ t2.

In particular, we deduce that the blowup solutions have minimal mass ‖u0‖L2 =
‖Q‖L2 , energy E(u0) = E0, momentum P(u0) = P0, and a blowup rate given by

‖D
1
2 u(t)‖L2 ∼ C(u0)

|t | as t → 0−.

In the following Sections 4–8, we will implement the strategy sketched above.
Finally, in Section 8 below, we will state and prove Theorem 8.1, which in particular
yields Theorem 1.2.

4. Approximate Blowup Profile

This section is devoted to the construction of the approximate blowup profile
QP with parameters P = (b, v). In what follows, it will be convenient to identify
a complex-valued function f : R → C with the function f : R → R

2 through
f = [� f,� f ]�, as we have already mentioned above. Correspondingly, we will
identify the multiplication by i in C with the multiplication by the real 2×2-matrix

J =
[

0 −1
1 0

]
.

Employing this notation, we have the following result about an approximate
blowup profile QP , parameterized by P = (b, v), around the ground state Q =
[Q, 0]�.
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Proposition 4.1. (Approximate Blowup Profile) Let P = (b, v) ∈ R × R. There
exists a smooth function QP = QP (x) of the form

QP = Q + bR1,0 + vR0,1 + bvR1,1 + b2 R2,0 + v2 R0,2 + b3 R3,0 + b2vR2,1

+ b4 R4,0 (4.1)

that satisfies the equation

−J
1

2
b2∂b QP − Jbv∂v QP − D QP − QP + Jb	QP − Jv · ∇ QP

+ | QP |2 QP = −�P . (4.2)

Here, the functions {Rk,�}0�k�3,0���1 satisfy the following regularity and decay
bounds:

‖Rk,�‖Hm + ‖	Rk,�‖Hm + ‖	2 Rk,�‖Hm �m 1, for m ∈ N, (4.3)

|Rk,�(x)| + |	Rk,�(x)| + |	2 Rk,�(x)| � 〈x〉−2, for x ∈ R. (4.4)

Moreover, the term on the right-hand side in (4.2) satisfies

‖�P‖Hm �m O
(

b5 + v2P
)
, |∇k�P (x)| � O

(
b5 + v2P

)
〈x〉−2, (4.5)

for m ∈ N and x ∈ R.

Remark 4.1. The proof of Proposition 4.1 will actually show that the functions
{Rk,�} have the following symmetry structure:

R1,0 =
[

0

even

]
, R0,1 =

[
0

odd

]
, R1,1 =

[
odd

0

]
,

R2,0 =
[even

0

]
, R0,2 =

[even

0

]
, R3,0 =

[
0

even

]
,

R2,1 =
[

0

odd

]
, R4,0 =

[even

0

]
.

These symmetry properties will be of essential use throughout the following.

Proof. We recall the definition of the linear operator

L =
[

L+ 0
0 L−

]
(4.6)

acting on L2(R; R
2), where L+ and L− denote the unbounded operators acting on

L2(R; R) given by

L+ = D + 1 − 3Q2, L− = D + 1 − Q2. (4.7)

From [10] we have the key property that the kernel of L is given by

ker L = span

{[∇Q

0

]
,

[
0

Q

]}
. (4.8)
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Note also that the bounded inverse L−1 = diag(L−1+ , L−1− ) exists on the orthogonal
complement {ker L}⊥ = {∇Q}⊥ ⊕ {Q}⊥.

Next, let QP be given by (4.1) with the functions {Rk,�} to be determined such
that

Left-hand side of (4.2) = O
(

b5 + v2P
)
.

We divide the rest of the proof of Proposition 4.1 as follows.

Step 1 Determining the functions {Rk,�}.
We discuss our ansatz for QP to solve (4.2) order by order. The proof of the

regularity and decay bounds for the functions {Rk,�} (which will guarantee that the
following calculations are rigorous) will be given further below.

Order O(1): Clearly, we have that

D Q + Q − | Q|2 Q = 0,

since Q = [Q, 0]�, with Q = Q(|x |) > 0 being the ground state solution.
Order O(b): We obtain the equation

L R1,0 = J	Q. (4.9)

Note that J	Q = [0,	Q]� satisfies J	Q ⊥ ker L due to the fact that (	Q, Q) =
0, which can be easily seen by using the L2-criticality. Hence we can find a unique
solution R1,0 ⊥ ker L to the equation above. In what follows, we denote

R1,0 = L−1 J	Q =
[

0

L−1− 	Q

]
. (4.10)

Order O(v): Here we need to solve

L R0,1 = −J∇ Q. (4.11)

We observe the orthogonality J∇ Q = [0,∇Q]� ⊥ ker L , since (∇Q, Q) = 0
holds. Thus there is a unique solution R0,1 ⊥ ker L , which we denote as

R0,1 = −L−1 J∇ Q =
[

0

−L−1− ∇Q

]
. (4.12)

Order O(bv): First, we note that Q · R1,0 = Q · R0,1 = 0. Using this, we find
that R1,1 has to solve the equation

L R1,1 = −J R0,1 + J	R0,1 − J∇ R1,0 + 2(R1,0 · R0,1)Q. (4.13)

Now, we claim that

Right-hand side of (4.13) ⊥ ker L . (4.14)
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Indeed, we note that

R1,0 =
[

0

S1

]
, with L−S1 = 	Q, (4.15)

R0,1 =
[

0

G1

]
, with L−G1 = −∇Q. (4.16)

Therefore the condition (4.14) is equivalent to

(∇Q,G1)− (∇Q,	G1)+ (∇Q,∇S1)+ 2(∇Q, S1G1 Q) = 0. (4.17)

To see that this holds true, we argue as follows. Using the commutator formula
[	,∇] = −∇ and integrating by parts, we obtain

− (∇Q,	G1) = (	∇Q,G1) = (∇	Q,G1)− (∇Q,G1)

= (∇L−S1,G1)− (∇Q,G1). (4.18)

Next, since L− is self-adjoint, we observe that

(∇L−F1,G1)+ (∇Q,∇F1) = −(L−F1,∇G1)− (L−G1,∇F1) = (F1, [∇, L−]G1)

= −(F1, (∇Q2)G1) = −2(∇Q, F1G1 Q). (4.19)

By combining (4.18) and (4.19), we conclude that (4.17) holds. This shows that
(4.14) holds, and hence there is a unique solution R1,1 ⊥ ker L of Equation (4.13).
Moreover, since Q and F1 are even functions, whereas G1 is odd, we note that

R1,1 =
[

F2

0

]
, with some odd function F2. (4.20)

Order O(b2): We find the equation

L R2,0 = −1

2
J R1,0 + J	R1,0 + |R1,0|2 Q. (4.21)

Since R1,0 = [0, S1]� with L−S1 = 	Q, the solvability condition for R2,0 reduces
to

1

2
(∇Q, S1)− (∇Q,	S1)+ (∇Q, S2

1 Q) = 0. (4.22)

However, this is obviously true, since S1 and Q are even functions. Thus there exists
a unique solution R2,0 ⊥ ker L of Equation (4.21), which is given by

R2,0 =
[

L−1+ ( 1
2 S1 −	S1 + S2

1 Q)

0

]
, (4.23)

with L−S1 = 	Q.
Order O(v2): We obtain the equation

L R0,2 = −J∇ R0,1 + |R0,1|2 Q. (4.24)
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Since R0,1 = [0,G1]� and Q = [Q, 0]�, the solvability condition reads

(∇Q,∇G1)+ (∇Q,G2
1 Q) = 0. (4.25)

Clearly, this holds true, since G1 is an odd function, whereas Q is even. Hence
there exists a unique solution R0,2 ⊥ ker L and it is given by

R0,2 =
[

L−1+ (∇G1 + G2
1 Q)

0

]
. (4.26)

Order O(b3): We notice that R1,0 · R2,0 = 0 and we obtain the equation

L R3,0 = −J R2,0 + J	R2,0 + 2(R2,0 · Q)R1,0 + |R1,0|2 R1,0. (4.27)

Note that the right side is of the form [0, f ]� with some nontrivial f . Hence the
solvability condition for R3,0 is equivalent to

− (Q, T2)+ (Q,	T2)+ 2(Q, QT2S1)+ (Q, S2
1 S1) = 0, (4.28)

where the functions S1 and T2 satisfy

L−S1 = 	Q, L+T2 = 1

2
S1 −	S1 + S2

1 Q. (4.29)

To see that (4.28) holds, we first note that

Right-hand side of (4.28) = −(Q, T2)− (	Q, T2)+ 2(T2, Q2S1)+ (Q, S2
1 S1)

= −(Q, T2)− (L−S1, T2)+ 2(T2, Q2S1)+ (Q, S2
1 S1)

= −(Q, T2)− (L+S1, T2)+ (Q, S2
1 S1)

= −(Q, T2)− 1

2
(S1, S1)+(S1,	S1)−(S1, S2

1 Q)+ (Q, S2
1 S1)

= −(Q, T2)− 1

2
(S1, S1),

where in the last step we used that (S1,	S1) = 0, since	∗ = −	. Thus it remains
to show that

− (Q, T2) = 1

2
(S1, S1). (4.30)

Indeed, by using L+	Q = −Q and the equations for T2 and S1 above, we deduce

− (Q, T2) = (	Q,
1

2
S1 −	S1 + S2

1 Q)

= 1

2
(L−S1, S1)− (L−S1,	S1)+ (	Q, S2

1 Q)

= 1

2
(S1, DS1)+ 1

2
(S1, S1)− 1

2
(S1, Q2S1)− (L−S1,	S1)+ (	Q, S2

1 Q).

(4.31)
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Next, we apply the commutator formula (L− f,	 f ) = 1
2 ( f, [L−,	] f ), which

shows that

(L−S1,	S1) = 1

2
(S1, [L−,	]S1) = 1

2
(S1, [D,	]S1)− 1

2
(S1, [Q2,	]S1)

= 1

2
(S1, DS1)+ (S1, (x · ∇Q)QS1), (4.32)

using that [D,	] = D holds. Furthermore, we have the pointwise identity

− (x · ∇Q)Q + Q	Q = 1

2
Q2. (4.33)

If we now insert (4.32) and (4.33) into (4.31), we obtain the desired relation (4.30),
and thus the solvability condition (4.28) holds as well. Note also that R3,0 = [0, g]�
with some even function g.

Order O(b4): We have to solve

L R4,0 = −3

2
J R3,0+ J	R3,0 + |R2,0|2 Q+2(R1,0 · R3,0)Q + 2(R2,0 · Q)R2,0,

(4.34)

where we have already used that R1,0 · Q = R3,0 · Q = 0. Moreover, we readily
see that

Right-hand side of (4.34) =
[even

0

]
⊥ ker L , (4.35)

since (g,∇Q) = 0 for any even function g ∈ L2(R). Hence there is a unique
solution R4,0 ⊥ ker L of Equation (4.34), and we have that R4,0 = [h, 0]� holds
with some even function h.

Order O(b2v): At this order, we obtain the equation

L R2,1 = −3

2
J R1,1+ J	R1,1− J∇ R2,0 + 2(R1,1 · Q)R1,0 + 2(R1,0 · R0,1)R1,0

+ |R1,0|2 R0,1. (4.36)

Note also that R1,0 · Q = R1,1 · R1,0 = R0,1 · R2,0 = 0. Using the symmetries of
the previously constructed functions, we readily check that

Right-hand side of (4.34) =
[

0

odd

]
⊥ ker L , (4.37)

since (g, Q) = 0 for any odd function g ∈ L2(R). Thus there exists a unique
solution R2,1 ⊥ ker L of Equation (4.36), and we see that R2,1 = [0, g]� with
some odd function g.

Step 2 Regularity and decay bounds. Let m � 0 be given. First, we recall that
‖Q‖Hm �m 1 and |Q(x)| � 〈x〉−2 holds. Since, moreover, L−	Q = −Q and
(	Q, Q) = 0, we can apply Lemma A.1 to conclude that

‖	Q‖Hm �m 1, |	Q(x)| � 〈x〉−2. (4.38)
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Next, by applying 	 to the equation L−	 = −Q and using that [L−,	] =
D + 2x Q′Q, we deduce

L−{	2 Q +	Q + αQ} = −(2x Q′Q + Q2)	Q, (4.39)

for any α ∈ R (recall here that L−Q = 0). By choosing α = (	Q,	Q)
(Q,Q) and using

the previous bounds for Q and 	Q (and hence for x Q′ as well), we can apply
Lemma A.1 again to obtain the bounds

‖	2 Q‖m �m 1, |	2 Q(x)| � 〈x〉−2. (4.40)

Having these bounds for Q = [Q, 0]�,	Q = [	Q, 0]�, and 	2 Q =
[	2 Q, 0]� at hand, we can now prove the claimed bounds (4.3) and (4.4) by iterat-
ing the equations satisfied by the functions {Rk,�}0�k�3,0��1 above. For instance,

recall that R1,0 = [0, S1]� with L−S1 = 	Q and hence 	L−S1 = 	2 Q. Then,
by using the commutator [L−,	] and the previous estimates for {Q,	Q,	2 Q},
we derive that

‖	k S1‖Hm �m 1,
∣∣∣	k S1(x)

∣∣∣ � 〈x〉−2, for k = 0, 1, 2 and m � 0.

(4.41)

Using this and proceeding in the same manner, we deduce that (4.3) and (4.4) hold.
Finally, we mention that the bounds (4.5) for the error term �P follow from

expanding | QP |2 QP and using the regularity and decay bounds for the functions
{Rk,�}. We omit the straightforward details. The proof of Proposition 4.1 is now
complete. ��

We now turn to some key properties of the approximate blowup profile QP
constructed in Proposition 4.1 above.

Lemma 4.1. The mass, the energy and the linear momentum of QP satisfy:∫
| QP |2 =

∫
Q2 + O(b4 + v2 + vP2),

E(QP ) = e1b2 + O(b4 + v2 + vP2), P(QP ) = p1v + O(b4 + v2 + vP2).

Here e1 > 0 and p1 > 0 are the positive constants given by

e1 = 1

2
(L−S1, S1), p1 = 2(L−G1,G1),

where S1 and G1 satisfy L−S1 = 	Q and L−G1 = −∇Q, respectively.

Remark 4.2. Note that L− > 0 on Q⊥ and we have S1 ⊥ Q and G1 ⊥ Q.

Remark 4.3. As an aside, we mention that a calculation shows that∫
| QP |2 =

∫
Q2 − cv2 + O(b4 + vP2),

with some constant c > 0. Hence, the boosted blowup profiles have a strictly
subcritical mass for v �= 0 small.



80 Joachim Krieger et al.

Proof. From the proof of Proposition 4.1 we recall that the facts that R1,0 =
[0, S1]�, R0,1 = [0,G1]�, and R1,1 = [ f, 0]� with some odd function f . Hence
we have

∫
Q · R0,1 = ∫

Q · R1,0 = ∫
Q · R1,1 = 0. Next, we recall that R2,0 =

[T2, 0]� satisfies (S1, S1)+ 2(Q, T2) = 0, as shown in (4.31) above. In summary,
we see that ∫

| QP |2 =
∫

Q2 + O(b4 + v2 + vP2).

To treat the expansion of the energy, we first recall that E(Q) = 0 and DQ +
Q − Q3 = 0 and thus E ′(Q) = −Q. Moreover, since we have (Q, S1) = 0 and
(Q,G1) = 0, we obtain

E(QP ) = b2
{

1

2
(S1, DS1)+ (T2, DQ)− 1

2
(Q2, S2

1 )− (Q3, T2)

}

+O(b4 + v2 + vP2).

Note also that the term O(bv) vanishes in the expansion for E(QP ), since G1 and
S1 are odd and even functions, respectively, and hence (S1, DG1) = 0, etc. Using
that DQ + Q − Q3 = 0 and (4.31) once again, we see that the expression {. . .}
above equals e1 = 1

2 (L−S1, S1), as claimed.
For the expansion for the linear momentum functional, we observe that P( f ) =

2
∫

f1∇ f2 for f = [ f1, f2]�. Hence,

P(QP ) = 2b
∫

Q∇S1 + 2v
∫

Q∇G1 + b2
∫

S1∇S1 + 2b3
∫

T2∇S1

+O(b4 + v2 + vP2)

= 2v(L−G1,G1)+ O(b4 + v2 + vP2),

since L−G1 = −∇Q, and using that
∫

Q∇S1 = ∫
S1∇S1 = ∫

T2∇S1 = 0 due to
the fact that Q, S1, T2 are even functions. The proof of Lemma 4.1 is now complete.
��

5. Modulation Estimates

We start with a general observation: If u = u(t, x) solves (1.1), then we define
the function v = v(s, y) by setting

u(t, x) = 1

λ
1
2 (t)

v

(
s,

x − α(t)

λ(t)

)
eiγ (t),

ds

dt
= 1

λ(t)
. (5.1)

It is easy to check that v = v(s, y) with y = λ−1(x − α) satisfies

i∂sv − Dv − v + v|v|2 = i
λs

λ
	v + i

αs

λ
· ∇v + γ̃sv, (5.2)

where we set γ̃s = γs − 1. Here, of course, the operators D and ∇ are understood
as D = Dy and ∇ = ∇y , respectively.
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5.1. Geometrical Decomposition and Modulation Equations

Let u(t) ∈ H1/2(R) be a solution of (1.1) on some time interval [t0, t1] with
t1 < 0. Assume that u(t) admits a geometrical decomposition of the form

u(t, x) = 1

λ
1
2 (t)

[
QP(t) + ε

] (
t,

x − α(t)

λ(t)

)
eiγ (t), (5.3)

with P(t) = (b(t), v(t)), and we impose the uniform smallness bound

b2(t)+ |v(t)| + ‖ε(t)‖2
H1/2 � 1. (5.4)

Furthermore, we assume that u(t) has almost critical mass in the sense that∣∣∣∣
∫

|u(t)|2 −
∫

Q2
∣∣∣∣ � λ2(t), ∀t ∈ [t0, t1]. (5.5)

To fix the modulation parameters {b(t), v(t), λ(t), α(t), γ (t)} uniquely, we
impose the following orthogonality conditions on ε = ε1 + iε2 as follows:

(ε1,	�P )− (ε2,	�P ) = 0, (5.6)

(ε1, ∂b�P )− (ε2, ∂b�P ) = 0, (5.7)

(ε1, ρ2)− (ε2, ρ1) = 0, (5.8)

(ε1,∇�P )− (ε2,∇�P ) = 0, (5.9)

(ε1, ∂v�P )− (ε2, ∂v�P ) = 0. (5.10)

Here and in what follows, we use the notation

QP = �P + i�P , (5.11)

which (in terms of the vector notation used in Section 4) means that

QP =
[
�P
�P

]
. (5.12)

In condition (5.9), the function ρ = ρ1 + iρ2 is defined by

L+ρ1 = S1, L−ρ2 = 2bQS1ρ1 + b	ρ1 − 2bT2+2vQG1ρ1 + v · ∇ρ1 + vF2,

(5.13)

where S1, T2 and F2 are the functions introduced in the proof of Proposition 4.1.
Note that L−1+ exists on L2

even(R) and thus ρ1 is well-defined. Moreover, it is easy
to see that the right-hand side in the equation for ρ2 is perpendicular to Q. Indeed,

(Q, 2QS1ρ1 +	ρ1 − 2T2) = 2(Q2S1, ρ1)− (	Q, ρ1)− 2(Q, T2)

= 2(Q2S1, ρ1)− (S1, L−ρ1)+ (S1, S1)

= −(S1, L+ρ1)+ (S1, S1) = 0,

using that (S1, S1) = −2(T2, Q), see (4.31), and the definition of ρ1. Moreover,
we clearly see that 2QG1ρ1 +v ·∇ρ1 + F2 ⊥ Q, since G1 and F2 are odd function,
whereas ρ1 and Q are even. Hence ρ2 is well-defined, too.
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We refer to Appendix C for some standard arguments, which show that the
orthogonality conditions (5.6)-(5.10) imply that the modulation parameters {b(t),
v(t), λ(t), γ (t), α(t)} are uniquely determined, provided that ε = ε1 + iε2 is suf-
ficiently small in H1/2(R). Moreover, it follows from standard arguments that
{b(t), v(t), λ(t), γ (t), α(t)} are C1-functions. See Appendix C for more details.

In the following, we shall often use the shorthand notation � = �P and � =
�P . If we insert the decomposition (5.3) into (1.1), we obtain the following system(

bs + 1

2
b2
)
∂b�P + (vs + bv) ∂v�P + ∂sε1 − M−(ε)+ b	ε1 − v · ∇ε1

=
(
λs

λ
+ b

)
(	�P +	ε1)+

(αs

λ
− v

)
· (∇�P + ∇ε1)+ γ̃s (�P + ε2)

+�(�P )− R2(ε), (5.14)(
bs + 1

2
b2
)
∂b�P + (vs + bv) ∂v�P + ∂sε2 + M+(ε)+ b	ε2 − v · ∇ε2

=
(
λs

λ
+ b

)
(	�P +	ε2)+

(αs

λ
− v

)
· (∇�P + ∇ε2)− γ̃s (�P + ε1)

−�(�P )+ R1(ε). (5.15)

Here �P denotes the error term from Proposition 4.1, and M = (M+,M−) are
small deformations of the linearized operator L = (L+, L−) given by

M+(ε) = Dε1 + ε1 − |QP |2ε1 − 2�2
Pε1 − 2�P�Pε2, (5.16)

M−(ε) = Dε2 + ε2 − |QP |2ε2 − 2�2
Pε2 − 2�P�Pε1. (5.17)

The higher order terms R1(ε) and R2(ε) are found to be

R1(ε) = 3�Pε2
1 + 2�Pε1ε2 +�Pε2

2 + |ε|2ε1, (5.18)

R2(ε) = 3�Pε2
2 + 2�Pε1ε2 +�Pε2

1 + |ε|2ε2. (5.19)

We have the following energy type bound.

Lemma 5.1. For t ∈ [t0, t1], it holds that

b2 + |v| + ‖ε‖2
H1/2 � λ(|E0| + |P0|)+ O(λ2 + b4 + v2 + vP2).

Here E0 = E(u0) and P0 = P(u0) denote the conserved energy and linear momen-
tum of u = u(t, x), respectively.

Proof. By conservation of L2-mass and Lemma 4.1, we find that
∫ |u|2 = ∫ |QP +

ε|2 = ∫ |Q|2 + 2�(ε, QP ) + ∫ |ε|2 + O(b4 + v2 + vP2). By assumption (5.5),
this implies

2�(ε, QP )+
∫

|ε|2 = O(λ2 + b4 + v2 + vP2). (5.20)

Next, we recall that v = QP+ε thanks to (5.1) and the assumed form of u = u(t, x).
Hence, by energy conservation and scaling, we obtain

E(v) = λE(u0). (5.21)
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On the other hand, from Lemma 4.1 and by expanding the energy functional,

E(v) = E(QP )+ �
(
ε, DQP − |QP |2 QP

)

+ 1

2

∫
|D 1

2 ε|2 − 1

2

∫ {
|QP |2(ε2

1 + ε2
2)− 2�2

Pε1 − 4�P�Pε1ε2 − 2�Pε2
2

}

+O
(
‖ε‖3

H1/2 + P2‖ε‖2
H1/2

)
(5.22)

= e1b2 + �
(
ε, DQP − |QP |2 QP

)

+ 1

2

∫
|D 1

2 ε|2 − 1

2

∫ {
|QP |2(ε2

1 + ε2
2)− 2�2

Pε1 − 4�P�Pε1ε2 − 2�Pε2
2

}

+O
(
‖ε‖3

H1/2 + ‖ε‖2
H1/2P2 + b4 + v2 + vP2

)
,

(5.23)

where e1 = 1
2 (L−S1, S1) > 0. Combining (5.20), (5.21) and (5.22), we find that

λE0 = b2e1 + �(ε, DQP + QP − |QP |2 QP )+ 1

2
{M+(ε)+ M−(ε)}

+O
(
‖ε‖3

H1/2 + ‖ε‖2
H1/2P2 + b4 + v2 + vP2

)
.

In the previous equation, we note that the linear term in ε = ε1 + iε2 satisfies

�
(
ε, DQP + QP − |QP |2 QP

)
= �

(
ε,

b2

2
∂b QP + bv∂vQP − b	QP + v · ∇QP

)

+O(ε(b4 + v2 + vP2))

= O(b4 + v2 + vP2),

thanks to the orthogonality conditions (5.6), (5.7), (5.9) and (5.10). Next, we observe
that quadratic form M = (M+,M−) is a small deformation of the quadratic form
given by the linearization L = (L+, L−) around Q. Hence, we deduce

b2e1 + 1

2
{(L+ε1, ε1)+ (L−ε2, ε2)}

= λE0 + O(‖ε‖3
H1/2 + b4 + v2 + vP2)+ o(‖ε‖2

H1/2). (5.24)

Next, we recall from Lemma B.4 the coercivity estimate

(L+ε1, ε1)+ (L−ε2, ε2) � c0‖ε‖2
H1/2

− 1

c0

{
(ε1, Q)2 + (ε1, S1)

2 + (ε1,G1)
2 + (ε2, ρ1)

2
}

(5.25)

with some universal constant c0 > 0 (here recall that L−S1 = 	Q and L−G1 =
−∇Q). Note that the orthogonality conditions (5.7), (5.8) and (5.10) imply that

(ε1, S1)
2 =O

(
P2‖ε‖2

L2

)
, (ε1,G1)

2 =O(P2‖ε‖2
L2), (ε2, ρ1)

2 =O(P2‖ε‖2
L2).
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Furthermore, from the relation (5.20) we deduce that

|(ε1, Q)|2 = o
(
‖ε‖2

L2

)
+ O(λ2 + b4 + v2 + vP2).

Combining these bounds with (5.25) and the universal smallness assumption for P
and ‖ε‖H1/2 , we obtain that

(L+ε1, ε1)+ (L−ε2, ε2) � c0

2
‖ε‖2

H1/2 + O(b4 + v2 + vP2).

Inserting this bound into (5.24) and recalling that e1 = 1
2 (L−S1, S1) > 0 holds,

we derive that

b2 + ‖ε‖2
H1/2 � λE0 + O(λ2 + b4 + v2 + vP2). (5.26)

As our final step, we derive the bound for the boost parameter v. Here we
observe that

P(v) = λP(u0),

by scaling and using the conservation of the linear momentum P(u(t)) = P(u0).
Hence, by expansion and Lemma 4.1 and using the orthogonality (5.9), we obtain

λP0 = P(v) = P(QP )+ 2�(ε,−i∇(�P + i�P ))+ �(ε,−i∇ε)
= p1v + O

(
b4 + v2 + vP2 + ‖ε‖2

H1/2

)
,

with the universal constant p1 = 2(L−G1,G1) > 0. Recalling that (5.26) holds,
we complete the proof of Lemma 5.1. ��

We continue with estimating the modulation parameters. To this end, we define
the vector-valued function

Mod(t) :=
(

bs + 1

2
b2, γ̃s,

λs

λ
+ b,

αs

λ
− v, vs + bv

)
. (5.27)

We have the following result.

Lemma 5.2. For t ∈ [t0, t1], we have the bound

|Mod(t)| � λ2 + b4 + v2 + vP2 + P2‖ε‖L2 + ‖ε‖2
L2 + ‖ε‖3

H1/2 .

Furthermore, we have the improved bound

∣∣∣∣λs

λ
+ b

∣∣∣∣ � b5 + v2P + P2‖ε‖L2 + ‖ε‖2
L2 + ‖ε‖3

H1/2 .
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Proof. We divide the proof into the following steps, where we also make use of
the estimates (C.1)–(C.5), which are shown in Lemma C.1 in the Appendix below.

Step 1 Law for b. We project the Equations (5.14) and (5.15) onto −	�b and
	�b, respectively. Adding this and using (C.1) yields, after some calculation (also
using the condition (5.6)):

−
(

bs + 1

2
b2
)(
(L−S1, S1)+ O(P2)

)
+
(αs

λ
− v

)
O(P)

= �(ε, QP )+ (R2(ε),	�P )+ (R1(ε),	�P )
−(�(�P ),	�P )+ (�(�P ),	�P )
+O

(
(P2 + |Mod(t)|)(‖ε‖L2 + P2)

)
.

Here we also used that (∂v�,	�)−(∂v�,	�) = (G1,	Q)+O(P2) = O(P2),
since G1 = −L−1− ∇Q is odd and	Q is even, and hence (G1,	Q) = 0. Next, we
recall from Proposition 4.1 the universal constants

e1 = 1

2
(L−S1, S1) > 0, p1 = 2(L−G1,G1) > 0.

Now, by using that

2�(ε, QP ) = −
∫

|ε|2 +
(∫

|u|2 −
∫

Q2
)

+ O(b4 + v2 + vP2),

we deduce that

−
(

bs + 1

2
b2
)(

2e1 + O(P2)
)

+
(αs

λ
− v

)(1

2
p1 + O(P2)

)

= −1

2

∫
|ε|2 + (R2(ε),	�b)+ (R1(ε),	�b)

O
(
(P2 + |Mod(t)|)(‖ε‖L2 + P2)+

∣∣∣‖u‖2
L2 − ‖Q‖2

L2

∣∣∣ + b4 + v2 + vP2
)
.

Step 2 Law for λ. By projecting (5.14) and (5.15) onto −∂b�P and ∂b�P , respec-
tively, we obtain from adding and using (5.7) that
(
λs

λ
+b

)(
2e1+O(P2)

)
+(vs + bv)O(P) = +(R2(ε), ∂b�b)+(R1(ε), ∂b�b)

+O
(
(P2+|Mod(t)|)(‖ε‖L2 + P2)+ b5 + v2P

)
.

Here we also used that (�b, ∂b�b)+ (�b, ∂b�b) = b(S1, S1)+ 2b(Q, T2)

+ v(F2, Q) + O(P2) = O(P2), since (S1, S1) + 2(T2, Q) = 0 and (F2, Q) = 0
because is F2 is odd. Note also that

−(∇�, ∂b�)+ (∇�, ∂b�) = −(∇Q, S1)+ O(P2) = O(P2),

because ∇Q is odd and S1 is even.
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Step 3 Law for γ̃ . Now, we project (5.14) and (5.15) onto −ρ2 and ρ1, respectively.
Adding this gives us

γ̃s((Q, ρ1)+ O(P2)) = −
(

bs + 1

2
b2
)(
(S1, ρ1)+ O(P2)

)
+
(
λs

λ
+ b

)
O(P)

(R2(ε), ∂b�P )+ (R1(ε), ∂b�P )
+O

(
(P2 + |Mod(t)|)‖ε‖L2 + b5 + v2P

)
.

Note here also that (∂v�, ρ1) = (G1, ρ1) = 0 since G1 is odd and ρ1 = L−1+ S1 is
even. Note also that (Q, ρ1) = (L−S1, S1) = 2e1, which follows from L+	Q =
−Q and the definition of ρ1.

Step 4 Law for v. We project (5.14) and (5.15) onto −∇�P and ∇�P , respectively.
This gives us

(vs + bv)
(
−p1 + O(P2)

)
+
(

bs + 1

2
b2
)

O(P)

= (R2(ε),∇�P )+(R1(ε),∇�P )+O
(
(P2 + |Mod(t)|)‖ε‖L2 + b5 + v2P

)
.

Step 5 Law for α. Finally, we project (5.14) and (5.15) onto −∂v�P and ∂v�P ,
respectively. This yields

(
bs + 1

2
b2
)

O(P)+
(αs

λ
− v

) (
p1 + O(P2)

)

= (R2(ε), ∂v�P )+ (R1(ε), ∂v�P )+ O
(
(P2 + |Mod(t)|)‖ε‖L2 + b4 + v2 + vP2

)
.

Note that (−	�, ∂v�) + (	�, ∂v�) = (	Q,G1) + O(P2) = O(P2) holds,
since 	Q is even and G1 is odd.

Step 6 Conclusion. We collect the previous equations and estimate the nonlinear
terms in ε by Sobolev inequalities. This gives us

(A + B)Mod(t) = O
(
(P2 + |Mod(t)|)‖ε‖L2 + ‖ε‖2

L2 + ‖ε‖3
H1/2

+
∣∣∣‖u‖2

L2 − ‖Q‖2
L2

∣∣∣ + b4 + v2 + vP2
)
.

Here A = O(1) is in invertible 5 × 5-matrix, whereas B = O(P) is some 5 × 5-
matrix that is polynomial in P = (b, v). For |P| � 1, we can thus invert A + B
by Taylor expansion and derive the estimate for Mod(t) stated in Lemma 5.2 [Note
also that we assumed the bound (5.5)].

Finally, we deduce the improved bound for
∣∣∣λs
λ

+ b
∣∣∣, by recalling the estimate

derived in Step 2 above. ��
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6. Refined Energy Bounds

In this section, we establish a refined energy/virial type estimate, which will be
a key ingredient in the compactness argument to construct minimal mass blowup
solutions.

Let u = u(t, x) be a solution to (1.1) on the time interval [t0, 0) and suppose
that w is an approximate solution to (1.1) such that

i∂tw − Dw + |w|2w = ψ, (6.1)

with the a-priori bounds

‖w‖L2 � 1, ‖D
1
2w‖L2 � λ− 1

2 , ‖Dw‖L2 � λ−1. (6.2)

We decompose u = w + ũ, and hence ũ satisfies

i∂t ũ − Dũ + (|u|2u − |w|2w) = −ψ, (6.3)

where we assume the a-priori bounds

‖D
1
2 +εũ‖L2 � 1, ‖D

1
2 ũ‖L2 � λ

1
2 , ‖ũ‖L2 � λ, (6.4)

with some fixed ε ∈ (0, 1
4 ), as well as

|λt + b| � λ2, b ∼ λ
1
2 , |bt | � 1, |αt | � λ. (6.5)

Next, let φ : R → R be a smooth and even function with the following properties3

φ′(x) =
{

x for 0 � x � 1,
3 − e−|x | for x � 2,

(6.6)

and the convexity condition

φ′′(x) � 0 for x � 0. (6.7)

Furthermore, we denote

F(u) = 1

4
|u|4, f (u) = |u|2u, F ′(u) · h = �( f (u)h).

Let A > 0 be a large constant (to be chosen later) and define the quantity

IA(u) := 1

2

∫
|D 1

2 ũ|2 + 1

2

∫ |ũ|2
λ

−
∫ [

F(w + ũ)− F(w)− F ′(w) · ũ
]

+b

2
�
(∫

A∇φ
(

x − α

Aλ

)
· ∇ũũ

)
. (6.8)

Our strategy will be to use the preceding functional to bootstrap control over
‖ũ‖

H
1
2

, see Lemma 7.1, and then to invoke a separate argument to improve control

over ‖D
1
2 +εũ‖L2 . In the following lemma, control over the latter norm will help us

bound certain error terms.

3 Since φ(x) is even, it clearly suffices to consider non-negative x � 0.
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Lemma 6.1. (Localized energy/virial estimate) Let IA be as above. Then we have

dIA

dt
= −1

λ
�
(∫

w2ũ2

)
− �

(∫
wt (2|ũ2|w + ũ2w)

)

+ b

2λ

∫ |ũ|2
λ

+ b

2λ

∫ +∞

s=0

√
s
∫

R

�φ

(
x − α

Aλ

)
|∇ũs |2 dx ds

−1

8

b

A2λ3

∫ +∞

s=0

√
s
∫

R

�2φ

(
x − α

Aλ

)
|ũs |2 dx ds

+ b�
(∫

A∇φ
(

x − α

Aλ

)
(2|ũ|2w + ũ2w) · ∇w

)

+�
(∫ [

−Dψ − ψ

λ
+ (2|w|2ψ − w2ψ)+ ibA∇φ

(
x − α

Aλ

)
· ∇ψ

+ i
b

2λ
�φ

(
x − α

Aλ

)
ψ

]
ũ

)

+O
(
λ‖ψ‖2

L2 + λ−1‖ũ‖2
L2 + log

1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ‖2

H1/2

)
.

Here we denote ũs :=
√

2
π

1
−�+s ũ with s > 0.

Proof of Lemma 6.1. We divide the proof into two main steps as follows.

Step 1 Estimating the energy part. Using (6.3), a computation shows that

d

dt

{
1

2

∫
|D 1

2 ũ|2 + 1

2

∫ |ũ|2
λ

−
∫ [

F(w + ũ)− F(w)− F ′(w) · ũ
]}

= �
(
∂t ũ, Dũ + 1

λ
ũ − ( f (u)− f (w))

)
− λt

2λ2

∫
|ũ|2

−�
(
∂tw, ( f (ũ + w)− f (w)− f ′(w) · ũ)

)

= −�
(
ψ, (Dũ + 1

λ
ũ − ( f (u)− f (ũ)))

)
− 1

λ
�
(

f (u)− f (ũ), ũ
)

− λt

2λ2

∫
|ũ|2 − �

(
∂tw, f (ũ + w)− f (w)− f ′(w) · ũ)

)

= −�
(
ψ, Dũ + 1

λ
ũ − (2|w2|ũ − ũw2)

)
− 1

λ

∫
ũ2w2

− λt

2λ2

∫
|ũ|2 − �

(
∂tw, (wũ2 + 2w|ũ|2)

)

−�
(
ψ − 1

λ
ũ, ( f (w + ũ)− f (w)− f ′(w) · ũ)

)
− �

(
∂tw, ũ|ũ|2

)
,

(6.9)
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where we denote f ′(w) · ũ = 2|w|2ũ + w2ũ. From (6.5) we obtain that

− λt

2λ2

∫
|ũ|2 = b

2λ

∫ |ũ|2
λ

− 1

2λ2 (λt +b) ‖ũ‖2
L2 = b

2λ

∫ |ũ|2
λ

+ O
(
‖ũ‖2

H1/2

)
.

(6.10)

Next, we estimate
∣∣∣∣�

(
ψ − 1

λ
ũ, ( f (w + ũ)− f (w)− f ′(w) · ũ)

)∣∣∣∣
=
∣∣∣∣�

(
ψ − 1

λ
ũ, (ũ2w + 2|ũ|2w + |ũ|2ũ)

)∣∣∣∣
� (‖ψ‖L2 + λ−1‖ũ‖L2)‖ũ‖2

L6(‖w‖L6 + ‖ũ‖L6)

� (‖ψ‖L2 + λ−1‖ũ‖L2)‖ũ‖
4
3

Ḣ1/2‖ũ‖
2
3
L2(λ

− 1
3 + λ

2
3 )

� λ‖ψ‖2
L2 + λ−1‖ũ‖2

L2 + ‖ũ‖2
H1/2 . (6.11)

using the interpolation estimate ‖ f ‖L6 � ‖ f ‖2/3
Ḣ1/2‖ f ‖1/3

L2 in R together with the
assumed a-priori bounds (6.2) and (6.4). For the cubic terms hitting ∂tw, we use
the equation for w and the bounds (6.2) and (6.4). This leads us to
∣∣∣∣
∫
∂tw|ũ|2ũ

∣∣∣∣ � ‖w‖Ḣ3/4‖|ũ|2ũ‖Ḣ1/4 + ‖w‖3
L6‖ũ‖3

L6 + ‖ψ‖L2‖ũ‖3
L6

� 1

λ3/4 ‖ũ‖1/2
L2 ‖ũ‖5/2

Ḣ1/2 + 1

λ
‖ũ‖L2‖ũ‖2

Ḣ1/2 + ‖ψ‖L2‖ũ‖2
Ḣ1/2‖ũ‖L2

� ‖ũ‖2
H1/2 + λ‖ψ‖2

L2 . (6.12)

Here we use the bound

‖| f |2 f ‖Ḣ1/4 � ‖| f |2‖L4‖D
1
4 f ‖L4 � ‖ f ‖2

L8‖D
1
2 f ‖L2 � ‖ f ‖1/2

L2 ‖ f ‖5/2
Ḣ1/2 ,

which follows from Sobolev embedding, the interpolation estimate‖ f ‖L8 � ‖ f ‖1/4
L2

‖ f ‖3/4
Ḣ1/4 in R, and the fractional chain rule ‖Ds F(u)‖p � ‖F ′(u)‖p1‖Dsu‖p2 for

any F ∈ C1(C) with 0 < s � 1 and 1 < p, p1, p2 < ∞ such that 1
p = 1

p1
+ 1

p2
.

We now insert (6.10), (6.11) and (6.12) into (6.9). Combined with the assumed
a priori bounds on ũ, we conclude

d

dt

{
1

2

∫
|D 1

2 ũ|2 + 1

2

∫ |ũ|2
λ

−
∫ [

F(w + ũ)− F(w)− F ′(w) · ũ
]}

= −1

λ
�
(∫

w2ũ2

)
− �

(∫
wt (2|ũ2|w + ũ2w)

)
+ b

2λ

∫ |ũ|2
λ

+�
(∫ [

−Dψ − ψ

λ
+ (2|w|2ψ − w2ψ)

]
ũ

)

+O(λ‖ψ‖2
L2 + λ−1‖ũ‖2

L2 + ‖ũ‖2
H1/2).
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Step 2 Estimating the localized virial part. We set

∇φ̃(t, x) := bA∇φ
(

x − α

Aλ

)
. (6.13)

Then we obtain

1

2

d

dt

(
b�

(∫
A∇φ

( x

Aλ

)
· ∇ũũ

))

= 1

2
�
(∫

(∂t∇φ̃) · ∇ũũ

)
+ 1

2
�
(∫

∇φ̃ ·
(
(∇∂t ũ)ũ + ∇ũ∂t ũ

))
.

(6.14)

Using the bounds (6.5), we estimate

∣∣∣∂t∇φ̃
∣∣∣ � |bt | + b

∣∣∣∣λt

λ

∣∣∣∣ + b

λ
|αt | � 1 + b

λ
(|b| + |λt + b| + |αt |) � 1,(6.15)

∣∣∣∂t�φ̃

∣∣∣ � λ−1. (6.16)

Hence, by Lemma F.1, we deduce that
∣∣∣∣�

(∫
(∂t∇φ̃) · ∇ũũ

)∣∣∣∣ � ‖ũ‖2
Ḣ1/2 + λ−1‖ũ‖2

L2 . (6.17)

Now, we turn to the second term in (6.14) containing the time derivative of ũ. To
handle this term, it is expedient to write this using commutators [A, B] ≡ AB−B A.
Moreover, it is convenient to adapt the notation

p = −i∇x (6.18)

in the following, and hence D = |p|. Using (6.3) and that D = D∗ is self-adjoint,
a calculation yields that

1

2
�
(∫

∇φ̃ ·
(
(∇∂t ũ)ũ+∇ũ∂t ũ

))
=−1

4
�
(∫

ũ
[
−i |p|,∇φ̃ · p + p · ∇φ̃

]
ũ

)

−b�
(∫

(|u|2u − |w|2w)A∇φ
(

x − α

Aλ

)
· ∇ũ

)

−1

2

b

λ
�
(∫

(|u|2u − |w|2w)�φ
(

x − α

Aλ

)
|ũ|2

)

−b�
(∫

ψ∇φ
(

x − α

Aλ

)
· ∇ũ

)
− 1

2

b

λ
�
(∫

ψ�φ

(
x − α

Aλ

)
ũ

)
. (6.19)

Next, we rewrite the commutator by using some identities from functional calculus.
Here, we recall the known formula

xβ = sin(πβ)

π

∫ ∞

0
sβ−1 x

x + s
ds, (6.20)



Nondispersive solutions to the L2-critical Half-Wave Equation 91

for x > 0 and 0 < β < 1. Using this formula and the spectral theorem applied to
the self-adjoint operator p2, we readily obtain the commutator formula

[|p|α, B] = sin(πα/2)

π

∫ +∞

0
s
α
2

1

p2 + s
[p2, B] 1

p2 + s
ds, (6.21)

for any 0 < α < 2 and any (possibly unbounded) self-adjoint operator B whose
domain contains S(R). In particular, we deduce that

[
|p|,∇φ̃ · p + p · ∇φ̃

]
= 1

π

∫ ∞

0

√
s

1

p2 + s

[
p2,∇φ̃ · p + p · ∇φ̃

] 1

p2 + s
ds.

(6.22)

Next, we recall the known formula

[
p2,∇φ̃ · p + p · ∇φ̃

]
= −4i p ·�φ̃ p + i�2φ̃, (6.23)

for any smooth function φ̃ on R. We now define the auxiliary function

ũs(t, x) :=
√

2

π

1

−�+ s
ũ(t, x), for s > 0. (6.24)

Hence, by construction, we have that ũs solves the elliptic equation

−�ũs + sũs =
√

2

π
ũ. (6.25)

Note that the integral kernel for the resolvent (−� + s)−1 in d = 1 dimension is
explicitly given by 1

2
√

s
e−√

s|x−y|. Hence, as an aside, we remark that we have the
convolution formula

ũs(t, x) = 1√
2πs

∫
e−√

s|x−y|ũ(t, y) dy. (6.26)

Recalling that ∇φ̃(t, x) = bA∇φ ( x−α
Aλ

)
and using that (p2 + s)−1 is self-adjoint

and the definition of ũs , above, as well as Fubini’s theorem, we conclude that

− 1

4
�
(∫

ũ
[
−i |p|,∇φ̃ · p + p · ∇φ̃

]
ũ

)
= b

2λ

∫ +∞
s=0

√
s
∫

R

�φ

(
x − α

Aλ

)
|∇ũs |2 dx ds

− 1

8

b

A2λ3

∫ +∞
s=0

√
s
∫

R

�2φ

(
x − α

Aλ

)
|ũs |2 dx ds.

(6.27)
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Next, we estimate the terms in (6.19) that are cubic and higher order in ũ. Using
the fractional Leibniz rule as well as the bounds (6.4), (6.5), (6.2), we find that

∣∣∣∣b�
(

A∇φ
(

x − α

Aλ

)
(2|ũ|2w + ũ2w + |ũ|2ũ) · ∇ũ

)

−1

2

b

λ
�
(∫

�φ

(
x − α

Aλ

)
(2|ũ|2w + ũ2w + |ũ|2ũ)ũ

)∣∣∣∣
�‖ũ‖2

Ḣ
1
2
‖∇φ̃‖L∞‖ũ‖L∞(‖ũ‖L∞ +‖w‖L∞)+‖ũ‖

Ḣ
1
2
‖∇φ̃‖L∞‖ũ‖2

L∞‖w‖
Ḣ

1
2

+‖ũ‖
Ḣ

1
2
‖∇φ̃‖

Ḣ
1
2
‖ũ‖2

L∞(‖ũ‖L∞ + ‖w‖L∞)+ λ− 1
2 (‖ũ‖3

L4‖w‖L4 + ‖ũ‖4
L4)

� O(log
1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ‖2

H1/2)+λ− 1
2 (λ− 1

4 ‖ũ‖
3
2

Ḣ1/2‖ũ‖
3
2
L2 +‖ũ‖2

Ḣ1/2‖ũ‖2
L2)

� O(log
1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ‖2

H1/2)+ λ
1
4 ‖ũ‖2

H1/2 + λ
3
2 ‖ũ‖2

H1/2

� O(log
1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ‖2

H1/2), (6.28)

where we have again exploited Lemma D.1 as well as the assumed a priori bounds
on ‖ũ‖

H
1
2 + . Moreover, we also used the fact that, by Lemma D.1 and by the

bounds (6.2) and (6.5), we have ‖ũ‖Ḣ1/2‖∇φ̃‖L∞‖w‖L∞ � λ
1
2 · b · λ− 1

2 |log λ| �
λ

1
2 |log λ| � 1. Furthermore, note that ‖∇φ̃‖Ḣ1/2 � 1 holds, which can be easily

checked by calculation.
Next, we consider the terms in (6.19) that are quadratic in ũ. Integrating by

parts, we obtain

−b�
(∫

ψ A∇φ
(

x − α

Aλ

)
· ∇ũ

)
− 1

2

b

λ
�
(∫

ψ�φ

(
x − α

Aλ

)
ũ

)
(6.29)

= �
(∫ [

ibA∇φ
(

x − α

Aλ

)
· ∇ψ + i

b

2λ
�φ

(
x − α

Aλ

)
ψ

]
ũ

)
. (6.30)

Moreover, an integration by parts yields that

−b�
(∫

A∇φ
(

x − α

Aλ

)
(2|w|2ũ + w2ũ) · ∇ũ

)

−1

2

b

λ
�
(∫

�φ

(
x − α

Aλ

)
(2|w|2ũ + w2ũ)ũ

)

= b�
(∫

A∇φ
(

x − α

Aλ

)
(2|ũ|2w + ũ2w) · ∇w

)
. (6.31)

Note that �φ is not present on right-hand side of the previous equation and that
the quadratic term is different from those appearing on the left-hand side.
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Finally, we insert (6.28), (6.29) and (6.31) into (6.19). This yields, together
with (6.27) and another integration by parts, the following equation

1

2
�
(∫

∇φ̃ ·
(
(∇∂t ũ)ũ + ∇ũ∂t ũ

))

= b

2λ

∫ +∞

s=0

√
s
∫

R

�φ
( x

Aλ

)
|∇ũs |2 dx ds

−1

8

b

A2λ3

∫ +∞

s=0

√
s
∫

R

�2φ

(
x − α

Aλ

)
|ũs |2 dx ds

+b�
(∫

A∇φ
(

x − α

Aλ

)
(2|ũ|2w + ũ2w) · ∇w

)

+�
(∫ [

ibA∇φ
(

x − α

Aλ

)
· ∇ψ + i

b

2λ
�φ

(
x − α

Aλ

)
ψ

]
ũ

)

+O
(

log
1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ‖2

H1/2

)
,

where ũs is defined in (6.24). This completes the proof of Lemma 6.1. ��

7. Backwards Propagation of Smallness

We now apply the energy estimate of the previous section in order to establish a
bootstrap argument that will be needed in the construction of minimal mass blowup
solutions. Let u = u(t, x) be an even solution to (1.1) defined in [t̃0, 0). Assume
that t̃0 < t1 < 0 and suppose that u admits on [t̃0, t1] a geometrical decomposition
of the form

u(t, x) = 1

λ
1
2 (t)

[
QP(t) + ε

] (
t,

x − α(t)

λ(t)

)
eiγ (t), (7.1)

where ε = ε1 + iε2 satisfies the orthogonality conditions (5.6)–(5.10) and b2 +
|v| + ‖ε‖2

H1/2 � 1 holds. We set

ũ(t, x) = 1

λ
1
2 (t)

ε

(
t,

x − α(t)

λ(t)

)
eiγ (t). (7.2)

Suppose that the energy satisfies E0 = E(u) > 0 and define the constant

C0 =
√

e1

E0
, (7.3)

with the universal constant e1 = 1
2 (L−S1, S1) > 0. Moreover, let P0 = P(u0) be

the linear momentum and define the constant

D0 = P0

p1
, (7.4)

with the universal constant p1 = 2(L−G1,G1) > 0.
We claim that the following backwards propagation estimate holds.
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Lemma 7.1. (Backwards propagation of smallness) Assume that, for some t1 < 0
sufficiently close to 0 and some ε ∈ (0, 1

4 ) fixed, we have the bounds∣∣∣‖u‖2
L2 − ‖Q‖2

L2

∣∣∣ � λ2(t1),

‖D
1
2 ũ(t1)‖2

L2 + ‖ũ(t1)‖2
L2

λ(t1)
� λ(t1), ‖D

1
2 +εũ(t1)‖2

L2 � λ
1
2 −2ε(t1)∣∣∣∣∣λ(t1)− t2

1

4C2
0

∣∣∣∣∣ � λ
3
2 (t1),

∣∣∣∣∣
b(t1)

λ
1
2 (t1)

− 1

C0

∣∣∣∣∣ � λ(t1),

∣∣∣∣v(t1)λ(t1)
− D0

∣∣∣∣ � λ(t1).

Then there exists a time t0 < t1 depending only on C0 and D0 such that ∀t ∈ [t0, t1],
it holds that

‖D
1
2 ũ(t)‖2

L2 + ‖ũ(t)‖2
L2

λ(t)
� ‖D

1
2 ũ(t1)‖2

L2 + ‖ũ(t1)‖2
L2

λ(t1)
+ λ3(t),

‖D
1
2 +εũ(t)‖2

L2 � λ
1
2 −2ε(t),∣∣∣∣∣λ(t)− t2

4C2
0

∣∣∣∣∣ � λ
3
2 (t),

∣∣∣∣∣
b(t)

λ
1
2 (t)

− 1

C0

∣∣∣∣∣ � λ(t),

∣∣∣∣v(t)λ(t)
− D0

∣∣∣∣ � λ(t).

Proof. By assumption, we have u ∈ C0([t0, t1]; H1/2+ε(R)). Hence, by this conti-
nuity and the continuity of the functions {λ(t), b(t), α(t), v(t)}, there exists a time
t0 < t1 such that ∀t ∈ [t0, t1] we have the bounds

‖ũ‖L2 � Kλ(t), ‖ũ(t)‖H1/2 � Kλ
1
2 (t), (7.5)

‖ũ(t)‖
H

1
2 +ε � Kλ

1
4 −ε(t), (7.6)∣∣∣∣∣λ(t)− t2

4C2
0

∣∣∣∣∣ � Kλ
3
2 (t),

∣∣∣∣∣
b(t)

λ
1
2 (t)

− 1

C0

∣∣∣∣∣ � Kλ(t), (7.7)

∣∣∣∣v(t)λ(t)
− D0

∣∣∣∣ � Kλ(t), (7.8)

with some constant K > 0. We now claim that the bounds stated in Lemma 7.1
hold on [t0, t1], hence improving (7.5) – (7.8) on [t0, t1] for t0 = t0(C0) < t1 small
enough but independent of t1. Here we first improve the bounds (7.5), (7.7) and
(7.8), and we defer the improvement of the technical bound (7.6) to the appendix.
We divide the proof into the following steps.

Step 1 Bounds on energy and L2-norm. We set

w(t, x) = Q̃(t, x) = 1

λ
1
2 (t)

QP(t)
(

x − α(t)

λ(t)

)
eiγ (t). (7.9)

Let IA be given by (6.8). Applying Lemma 6.1, we claim that we obtain the fol-
lowing coercivity estimate:

dIA

dt
� b

λ2

∫
|ũ|2 + O

(
log

1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ‖2

H1/2 + K 4λ
5
2

)
. (7.10)
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For the moment, let us assume that we have already proven that (7.10) holds. By
Sobolev embedding and the smallness of ε, we deduce the upper bound

|IA| � ‖D
1
2 ũ‖2

L2 + 1

λ
‖ũ‖2

L2 . (7.11)

Note here that, by Lemma F.1, we have the bound∣∣∣∣�
(∫

A∇φ
(

x − α

Aλ

)
· ∇ũũ

)∣∣∣∣ � ‖D
1
2 ũ‖2

L2 + 1

λ
‖ũ‖2

L2 . (7.12)

Furthermore, due to the proximity of QP to Q, we derive the lower bound

IA = 1

2

∫
|D 1

2 ũ|2 + 1

2

∫ |ũ|2
λ

−
∫
(F(w + ũ)− F(w)− F ′(w) · ũ)

+b

2
�
(∫

A∇φ
(

x − α

Aλ

)
· ∇ũũ

)

= 1

2λ

[
(L+ε1, ε1)+ (L−ε2, ε2)+ o(‖ε‖2

H1/2)
]

� c0

λ

[
‖ε‖2

H1/2 − (ε1, Q)2
]
,

(7.13)

using the orthogonality conditions satisfied by ε and the coercivity estimate for the
linearized operator L = (L+, L−). On the other hand, using the conservation of
the L2-mass and applying Lemma 5.1 [and in particular (5.20)] we combine the
assumed bounds to conclude that

|�(ε, Qb)| � ‖ε‖2
L2 + λ2(t)+

∣∣∣∣
∫

|u|2 −
∫

|Q|2
∣∣∣∣ � ‖ε‖2

L2 + K 2λ2(t).

(7.14)

This implies

(ε1, Q)2 � o(‖ε‖2
L2)+ K 4λ4(t). (7.15)

Next, we define

X (t) := ‖D
1
2 ũ(t)‖2

L2 + ‖ũ(t)‖2
L2

λ(t)
. (7.16)

By integrating (7.10) in time and using (7.11), (7.13) and (7.15), we find

X (t) � X (t1)+K 4λ3(t)+
∫ t1

t

(
log

1
2

(
2 + ‖ũ‖−1

H1/2

)
‖ũ(τ )‖2

H1/2 +K 4λ5/2(τ )
)

dτ

� X (t1)+ K 4λ3(t)+
∫ t1

t
log

1
2

(
2 + X (τ )−

1
2

)
X (τ ) dτ,

for t ∈ [t0, t1] with some t0 = t0(C0) < t1 close enough to t1 < 0. By Gronwall’s
inequality, we deduce the desired bound for X (t). In particular, we obtain

X (t) = ‖D
1
2 ũ(t)‖2

L2 + ‖ũ(t)‖2
L2

λ(t)
� λ(t), ∀t ∈ [t0, t1], (7.17)
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which closes the bootstrap for (7.5).
Step 2 Controlling the law for the parameters. From Lemma 5.2 and using (7.7)
and (7.17), we deduce

∣∣∣∣bs + 1

2
b2
∣∣∣∣ +

∣∣∣∣λs

λ
+ b

∣∣∣∣ � λ2. (7.18)

As a direct consequence of this bound, we observe that

(
b

λ
1
2

)
s

= bs + 1
2 b2

λ
1
2

− b

2λ
1
2

(
λs

λ
+ b

)
� λ

3
2 . (7.19)

Hence, for any s < s1, we have

1

C0
− b

λ
1
2

(s) � 1

C0
− b

λ
1
2

(s1)+
∫ s1

s
λ

3
2 (s′) ds′ � λ(s). (7.20)

Note that we used here that λ(t) ∼ t2 by (7.7) and the relation dt = λ−1ds, as

well as the assumed initial bound for |b/λ 1
2 (t) − 1/C0| at time t = t1. Next, by

following the calculations in the proof of Lemma 5.1 and recalling that b2 +|v| ∼ λ

thanks to (7.7) and (7.8) and ‖ε‖2
H1/2 � λ2 by (7.17) and scaling, we deduce

b2e1 = λE0 +
(∫

|u|2 −
∫

Q2
)

+ O(λ2), (7.21)

where e1 = 1
2 (L−S1, S1) > 0 is a universal constant. Since

∫ |u|2−∫
Q2 = O(λ2)

and recalling the definition of C0 > 0 above, we deduce that

b2

λ
− 1

C2
0

=
(

b

λ
1
2

− 1

C0

)(
b

λ
1
2

+ 1

C0

)
= O(λ). (7.22)

Furthermore, from (7.20) we see that b
λ1/2 � 1. Hence, we obtain the desired bound

∣∣∣∣ b

λ
1
2

− 1

C0

∣∣∣∣ � λ. (7.23)

We conclude using (7.7), (7.18):

−λt = b + O(λ2) = λ
1
2

C0
+ O(λ

3
2 + t4) = λ

1
2

C0
+ O(t3).

Dividing by λ
1
2 ∼ |t |, integrating in [t, t1] and using the boundary value at t1

ensures ∣∣∣∣λ 1
2 (t)− t

2C0

∣∣∣∣ �
∣∣∣∣λ 1

2 (t1)− t1
2C0

∣∣∣∣ + O(t3) � t2,

and the desired bound for λ follows.
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Next, we improve the bound (7.8). In fact, by following the calculations in the
proof of Lemma 5.1 for the linear momentum P(u0) and recalling that b2 +|v| ∼ λ

thanks to (7.7) and (7.8), we deduce

vp1 = λP0 + O(λ2), (7.24)

with the universal constant p1 = 2(L−G1,G1) > 0. Here we also used that
‖ε‖2

H1/2 � λ2 by (7.17) and by scaling. Recalling the definition of D0 = P0/p1,
we thus obtain ∣∣∣∣v(t)λ(t)

− D0

∣∣∣∣ � λ(t). (7.25)

This completes the proof of Step 2, assuming that the coercivity estimate (7.10)
holds true.

Step 3 Proof of the coercivity estimate (7.10). Recall thatw = Q̃ is given in (7.9).
Let KA(ũ) denote the quadratic terms in ũ on the right-hand side in the equation in
Lemma 6.1, that is, we put

KA(ũ) := −1

λ
�
(∫

w2ũ2

)
− �

(∫
wt (2|ũ2|w + ũ2w)

)

+ b

λ

∫ |ũ|2
λ

+ b

λ

∫ +∞

s=0

√
s
∫

R

�φ

(
x − α

Aλ

)
|∇ũs |2 dx ds

−1

4

b

A2λ3

∫ +∞

s=0

√
s
∫

R

�2φ

(
x − α

Aλ

)
|ũs |2 dx ds

+ b�
(∫

A∇φ
(

x − α

Aλ

)
(2|ũ|2w + ũ2w) · ∇w

)
.

Recall that the function ũs = ũs(t, x) with the parameter s > 0 was defined in

Lemma 6.1 to be ũs =
√

2
π

1
−�+s ũ. Recalling that ũ(t, x) = λ−1/2ε(t, λ−1x), we

now claim that the following estimate holds:

KA(ũ) � c

λ3/2

∫
|ε|2 + O(K 4λ5/2), (7.26)

with some universal constant c > 0.
Indeed, from Lemma 5.2 and estimate (7.5) we obtain that

|Mod(t)| � K 2λ2(t). (7.27)

Using this estimate, we find that w = Q̃ satisfies

∂t Q̃ = eiγ (t) 1

λ1/2

[
−λt

λ
	QP + iγt Qb + bt

∂QP
∂b

+ vt
∂QP
∂v

− αt

λ
· ∇QP

](
x − α

λ

)

=
(

i

λ
+ b

2λ

)
Q̃ + b

(
x − α

λ

)
· ∇ Q̃ + O(Kλ−1/2),



98 Joachim Krieger et al.

recalling also that γ̃s = γs − 1 and ds
dt

= λ−1. Note that we also use the uniform
bounds ‖∂b QP‖L∞ � 1, ‖∂vQP‖L∞ � 1 and the fact that |bt | � K , |vt | � K ,
which can be seen from (7.27), (7.7) and (7.8). Hence,

−�
(∫

∂t Q̃(2|ũ|2 Q̃ + ũ2 Q̃)

)
= 1

λ
�
(∫

Q̃(2|ũ|2 Q̃ + ũ2 Q̃)

)

− b

2λ
�
(∫

(2|ũ2 Q̃ + ũ2 Q̃)Q̃

)

−b�
(∫ (

x − α

λ

)
(2|ũ|2 Q̃ + ũ2 Q̃) · ∇ Q̃

)

+O(Kλ−1‖ε‖2
L2).

Note here that, in order to deduce the bound on the error term, we use that
∣∣∣∣
∫

O(Kλ−1/2)|ũ|2 Q̃

∣∣∣∣ � K

λ
‖ε‖2

L2 = O(Kλ−1‖ε‖2
L2),

thanks to the bound‖Q̃‖L∞ � λ−1/2 and the scaling relation ũ(t, x) = λ−1/2ε(t, λ−1

(x −α)). Going back to the definition of KA(ũ) and expressing everything in terms
of ε(t, x) = λ1/2ũ(t, λx + α), we conclude that

KA(ũ) = b

2λ2

{∫ +∞

s=0

√
s
∫
�φ

( x

A

)
|∇εs |2 dx ds +

∫
|ε|2

−
∫
((|QP |2 + 2�2)ε2

1 + 4��ε1ε2 + (|QP |2 + 2�2)ε2
2)

− 1

4A2

∫ +∞

s=0

√
s
∫
�2φ

( x

A

)
|εs |2 dx ds

+ 2�
(∫ (

A∇φ
( x

A

)
− x

)
(2|ε|2 QP + ε2 QP ) · ∇QP

)}

+O(Kλ−1‖ε‖2
L2).

Next we note that A∇φ(x/A)− x ≡ 0 for |x | � A and we estimate
∣∣∣∣
∫ (

A∇φ
( x

A

)
− x

)
(2|ε|2 QP + ε2 QP ) · ∇QP

∣∣∣∣
� ‖(A + |x |)QP‖L∞({|x |�A})‖∇QP‖L∞‖ε‖2

L2

�
∥∥∥∥ A + |x |

1 + |x |2
∥∥∥∥

L∞({|x |�A})
‖ε‖2

L2 � 1

A
‖ε‖2

L2 ,

where we use the uniform decay estimate |QP (x)| � 〈x〉−2 and the bound
‖∇QP‖L∞ � ‖QP‖H2 � 1. Furthermore, thanks to Lemma B.3, we have

∣∣∣∣ 1

A2

∫ +∞

s=0

√
s
∫
�2φ

( x

A

)
|εs |2 dx ds

∣∣∣∣ � 1

A
‖ε‖2

L2 . (7.28)
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Recalling the definitions of L+,A and L−,A in (B.1) and (B.2), we deduce that

KA(ũ) = b

2λ2

{
(L+,Aε1, ε1)+ (L−,Aε2, ε2)+ O

(
1

A

∫
|ε|2

)}

+ 1

λ3/2 O(Kλ1/2‖ε‖2
L2).

Next, we recall that b ∼ λ
1
2 due to (7.7). Hence, by Proposition B.1 and choosing

A > 0 sufficiently large, we deduce from previous estimates that

KA(ũ) � 1

λ3/2

{∫
|ε|2 − (ε1, Q)2

}
� 1

λ3/2

∫
|ε|2 + O(Kλ5/2), (7.29)

where the last step follows from (7.15). This completes the proof of (7.26) and Step
3.
Step 4 Controlling the remainder terms in d

dt
IA. We now control the terms that

appear in Lemma 6.1 and contain ψ . Here we recall that w = Q̃ and (6.3), which
yields

ψ = 1

λ
3
2

[
i

(
bs + 1

2
b2
)
∂b QP − i

(
λs

λ
+ b

)
	QP + i (vs + bv) ∂vQP

−i
(αs

λ
− v

)
· ∇QP + γ̃s QP +�P

]( x − α

λ

)
eiγ .

Here�P is the error term given in Proposition 4.1. In fact, by the estimates for QP
and �P from Proposition 4.1 and recalling (7.27), we deduce the rough pointwise
bounds

∣∣∣∇kψ(x)
∣∣∣ � 1

λ
3
2 +k

〈
x − α

λ

〉−2

K 2λ2, for k = 0, 1. (7.30)

Hence,

‖∇kψ‖L2 � K 2λ1−k, for k = 0, 1. (7.31)

In particular, we obtain the following bounds

λ‖ψ‖2
L2 � K 4λ3, (7.32)∣∣∣∣�

(∫ [
ibA∇φ

(
x − α

Aλ

)
· ∇ψ + i

b

2λ
�φ

(
x − α

Aλ

)
ψ

]
ũ

)∣∣∣∣
� λ

1
2 ‖∇ψ‖L2‖ũ‖L2 + λ− 1

2 ‖ψ‖L2‖ũ‖L2

� K 2λ
1
2 ‖ε‖L2 � o

(‖ε‖2
L2

λ
3
2

)
+ K 4λ

5
2 . (7.33)
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As in [RSz], the rough bound (7.30) is not sufficient to control the remaining terms
with ψ in Lemma 6.1. In fact, we have to exploit a further cancellation as follows.

Write ψ = ψ1 + ψ2 with ψ2 = O(P|Mod| + b5) = O(λ 5
2 ), that is, we denote

ψ1 = 1

λ
3
2

[
−
(

bs + 1

2
b2
)

S1 − i

(
λs

λ
+ b

)
	Q − (vs + bv)G1

−i
(αs

λ
− v

)
· ∇Q + γ̃s Q

]( x − α

λ

)
eiγ .

Let us first deal with estimating the contributions coming from ψ2. Indeed, since

|b|2 + |v| ∼ λ we note that ψ2 = O(λ 5
2 ) satisfies the pointwise bound

∣∣∣∇kψ2(x)
∣∣∣ � 1

λ
3
2 −k

〈
x − α

λ

〉−2

K 2λ
5
2 , for k = 0, 1. (7.34)

Hence,

‖∇kψ2‖L2 � K 2λ
3
2 −k, for k = 0, 1. (7.35)

Therefore, we obtain, as above,∣∣∣∣�
(∫ [

−Dψ2 − ψ2

λ
+ (2|w|2ψ2 − w2ψ2)

]
ũ

)∣∣∣∣
�
(
‖∇ψ2‖L2 + λ−1‖ψ2‖L2 + ‖ψ2‖L∞‖w‖2

L4

)
‖ε‖L2

� K 2λ
1
2 ‖ε‖L2 � o

(‖ε‖2
L2

λ
3
2

)
+ K 4λ

5
2 ,

which is acceptable. We finally use the fact that ψ1 belongs to the generalized null
space of L = (L+, L−) and hence an extra factor of O(P) is gained using the
orthogonality conditions obeyed by ε = ε1 + iε2. Indeed, we find the following
bound∣∣∣∣�

(∫ [
−Dψ1 − ψ1

λ
+ (2|w|2ψ1 − w2ψ1)

]
ũ

)∣∣∣∣
� |Mod(t)|

λ2

[|(ε2, L−S1)| + |(ε2, L−G1)| + |(ε2, L−Q)| + O(P‖ε‖L2)
]

+ 1

λ2

∣∣∣∣λs

λ
+ b

∣∣∣∣ |(ε1, L+	Q)| + 1

λ2

∣∣∣αs

λ
− v

∣∣∣ |(ε1, L+∇Q)|

� K 2λ
1
2 ‖ε‖L2 + K 2λ‖ε‖L2 + λ

5
2

λ2

(
Kλ

1
2 ‖ε‖L2 + K 2λ2

)

� o

(‖ε‖2
L2

λ
3
2

)
+ K 4λ

5
2 ,

which is an acceptable bound. Here we used (7.27) once again and |P| � λ
1
2 ,

as well as (ε2, L−S1) = (ε2,	Q) = O(P‖ε‖L2) and (ε2, L−G1) =
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−(ε2,∇Q) = O(P‖ε‖L2), thanks to the orthogonality conditions for ε. More-
over, we used that L+∇Q = 0 and L+	Q = −Q together with the improved

bound in Lemma 5.2, combined with the fact that |(ε1, Q)| � λ
1
2 ‖ε‖L2 + K 2λ2,

which follows from ‖ε‖L2 � λ and the conservation of L2-mass leading to bound
(7.15) above.

Finally, we recall (7.26) and we insert all the derived estimates for the terms
involving ψ in Lemma 6.1 and we conclude that the coercivity property (7.10)
holds.

Step 5 Bounds on ‖D
1
2 +εũ(t)‖L2 . This step is detailed in Appendix E.

The proof of Lemma 7.1 is now complete. ��

8. Existence of Minimal Mass Blowup Solutions

With the results of the previous sections at hand, we are now ready to prove the
following main result, which in particular yields Theorem 1.2.

Theorem 8.1. Let γ0, x0, P0 ∈ R and E0 > 0 be given. Then there exist a time

t0 < 0 and a solution uc ∈ C0([t0, 0); H
1
2 +ε(R)) of (1.1) with some 0 < ε < 1

4
such that uc blows up at time T = 0 with

E(uc) = E0, P(u0) = P0, and ‖uc‖L2 = ‖Q‖L2 .

Furthermore, we have ‖D
1
2 uc(t)‖L2 ∼ |t |−1 as t → 0−, and uc is of the form

uc(t, x) = 1

λ
1
2
c (t)

[
QPc(t) + εc

] (
t,

x − αc(t)

λc(t)

)
eiγc(t) = Q̃c + ũc,

with Pc(t) = (bc(t), vc(t)), and εc satisfies the orthogonality conditions (5.6)–
(5.8). Finally, the following estimates hold:

‖ũc‖L2 � λc, ‖ũc‖H1/2 � λ
1
2
c ,

λc(t)− t2

4C2
0

= O(λ
3
2
c ),

bc

λ
1
2
c

(t)− 1

C0
= O(λc),

vc

λc
(t)− D0 = O(λc),

γc(t) = −4C2
0

t
+ γ0 + O(λ

1
2
c ), αc(t) = x0 + O(λ

3
2
c ).

Here C0 > 0 and D0 ∈ R are the constants defined in (7.3) and (7.4), respectively.

Proof. We use a compactness argument; see also [32,26,40] for such compactness
techniques.

Let tn → 0− be a sequence of negative times and let un be the solution to (1.1)
with initial data at t = tn given by

un(tn, x) = 1

λ
1
2
n (tn)

QPn(tn)

(
x − αn(tn)

λn(tn)

)
eiγn(tn), (8.1)
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where the sequences Pn(tn) = (bn(tn), vn(tn)) and {γn(tn), αn(tn)} are given by

bn(tn) = − tn
2C2

0

, λn(tn) = t2
n

4C2
0

, γn(tn) = γ0 − 4C2
0

tn
, (8.2)

vn(tn) = D0t2
n

2C0
, αn(tn) = x0. (8.3)

By Lemma 4.1, we have
∫

|un(tn)|2 =
∫

Q2 + O(t4
n ), (8.4)

and ũ(tn) = 0 by construction. Thus un satisfies the assumptions of Lemma 7.1.
Hence we can find a backwards time t0 independent of n such that for all t ∈ [t0, tn)
we have the geometric decomposition

un(t, x) = 1

λ
1
2
n (t)

QPn(t)

(
t,

x − αn(t)

λn(t)

)
+ ũn(t, x), (8.5)

with the uniform bounds (with some fixed ε ∈ (0, 1
4 )) given by

‖D
1
2 ũn‖2

L2 + ‖ũn‖2
L2

λn(t)
� λ3

n(t), (8.6)

‖D
1
2 +ε ũn‖2

L2 � λ
1
2 −2ε
n (t), (8.7)∣∣∣∣∣∣

bn(t)

λ
1
2
n (t)

− 1

C0

∣∣∣∣∣∣ � λn(t),

∣∣∣∣∣λn(t)− t2

4C2
0

∣∣∣∣∣ � λ
3
2
n (t),

∣∣∣∣ vn(t)

λn(t)
− D0

∣∣∣∣ � λn(t).

(8.8)

Next, we conclude that {un(t0)}∞n=1 converges strongly in H1/2(R) (after passing to
a subsequence if necessary). Indeed, from the uniform bound ‖ũ(t0)‖H1/2+ε � 1 we
can assume (after passing to a subsequence if necessary) that un(t0) ⇀ uc weakly
in Hs(R) for any s ∈ [0, 1

2 + ε]. Moreover, we note the uniform bound
∣∣∣∣ d

dt

∫
χR |un|2

∣∣∣∣ �
∣∣∣∣
∫

un[χR, i D]un

∣∣∣∣ � ‖∇χR‖L∞‖un‖2
L2 � 1

R
, (8.9)

with a smooth cutoff function χR(x) = χ(x/R) where χ(x) ≡ 0 for |x | � 1
and χ(x) ≡ 1 for |x | � 2. Note also that we used the commutator estimate
‖[χR, D]‖L2→L2 � ‖∇χR‖L∞ ; see, for example, [5,41]. By integrating the pre-
vious bound from t1 to t0 and using (8.1)–(8.2), we derive that the sequence
{un(t0)}∞n=1 is tight in L2(R). That is, for every δ > 0 there is a radius R > 0
such that

∫
|x |�R |un(t0)|2 � δ for all n � 1. Combining this fact with the weak

convergence of {un(t0)}∞n=1 in Hs(R), we deduce that

un(t0) → uc(t0) strongly in Hs(R) for every s ∈ [0, 1

2
+ ε). (8.10)
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Thus, by the local wellposedness (see Appendix D), we obtain that

un(t) → uc(t) strongly in H1/2(R) for t ∈ [t0, Tc), (8.11)

where Tc > t0 is the lifetime of uc on the right. Moreover, uc admits for t <
min{Tc, 0} a geometrical decomposition of the form stated in Theorem 8.1 with

bn(t) → bc(t), vn(t) → vc(t), λn(t) → λc(t), γn(t) → γc(t), αn(t) → αc(t),

(8.12)

and {bc(t), vc(t), λc(t)} satisfy the bounds stated in Theorem 8.1. Moreover, we

derive the bounds for ‖ũn‖L2 � λc and ‖ũc‖H1/2 � λ
1
2
c . In particular, this implies

that uc(t) blows up at time Tc = 0 such that ‖D
1
2 uc(t)‖2

L2 ∼ λ−1(t) ∼ |t |−2

as t → 0−. In addition, we deduce from L2-mass conservation and the strong
convergence that

‖uc‖L2 = lim
n→+∞ ‖un(tn)‖L2 = ‖Q‖L2 .

As for the energy, we notice that

E(uc(t)) = b2
c

λc
e1 + o(1) → E0 as t → 0−,

by the choice of C0 and bn(tn) and λn(tn). By energy conservation, this implies
that

E(uc) = E0.

Also, we observe that

P(uc(t)) = vc

λc
p1 + o(1) → P0 as t → 0−,

by our choice of D0 and vn(tn) and λn(tn). By momentum conservation, this shows
that

P(uc) = P0.

Next, we recall the rough bound

|(γ̃n)s | � λn .

Therefore, using that ds/dt = λ−1 and the estimates for λn ,∣∣∣∣∣
d

dt

(
γn + 4C2

0

t

)∣∣∣∣∣ = 1

λn

∣∣∣∣∣(γn)s − 4C2
0λn

t2

∣∣∣∣∣ = 1

λn

∣∣∣∣∣(γ̃n)s −
(

4C2
0λn

t2 − 1

)∣∣∣∣∣ � 1.

Integrating this bound and using (8.2) and λc ∼ t2, we find

γn(t)+ 4C2
0

t
= γ0 + O(λ

1
2
c ),
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whence the claim for γc follows, since we have λc ∼ t2. Finally, we recall the

rough bound
∣∣∣ (αn)s
λn

+ vn

∣∣∣ � λn . Integrating this and using the bounds for vn and

λn , we deduce that∣∣∣∣ d

dt
(αn − x0)

∣∣∣∣ =
∣∣∣∣ (αn)s

λn

∣∣∣∣ � λn + |vn| � λn .

Integrating this bound and using (8.3), we find that

αn(t) = x0 + O(λ
3
2
c ),

which shows that the claim for αc(t) holds.
The proof of Theorem 8.1 is now complete. ��
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Appendix A. Decay and Smoothing Estimates for L+ and L−

In this section, we collect some regularity and decay estimates concerning the
linearized operators L− and L+.

Lemma A.1. Let f, g ∈ Hk(R) for some k � 0 and suppose f ⊥ Q and g ⊥ Q′.
Then we have the regularity bounds

‖L−1− f ‖Hk+1 �k ‖ f ‖Hk , ‖L−1+ g‖Hk+1 �k ‖g‖Hk ,

and the decay estimates

‖〈x〉2 L−1− f ‖L∞ � ‖〈x〉2 f ‖L∞ , ‖〈x〉2 L−1+ g‖L∞ � ‖〈x〉2 f ‖L∞ .

Proof. It suffices to prove the lemma for L−1− f , since the estimates for L−1+ g follow
in the same fashion.
To show the regularity bound, we can (by interpolation) assume that k ∈ N is an
integer. Let g = L−1− f , and thus

Dg + g = Q2g + f.

Note that Q ∈ W k,∞(R) for any k ∈ N by Sobolev embeddings and the fact that
Q ∈ Hs(R) for all s � 0. Applying ∇k + 1 to the equation above and using the
Leibniz rule and Hölder, we find that

‖g‖Hk+1
x

∼ ‖(∇k + 1)(Dg + g)‖L2 �k ‖Q‖2
W k,∞‖g‖Hk + ‖ f ‖Hk . (A.1)
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Note, in particular, that ‖g‖L2 = ‖L−1− f ‖L2 � ‖ f ‖L2 holds, since L− has a
bounded inverse on Q⊥. Hence (A.1) shows that the desired regularity estimates
are true for k = 0. By induction, we obtain the desired estimate ‖L−1− f ‖Hk+1 �k

‖ f ‖Hk for any integer k ∈ N.

To show the decay estimate, we argue as follows. Assume that ‖〈x〉2 f ‖L∞
x
< +∞,

because otherwise there is nothing to prove. As above, let g = L−1− f and rewrite
the equation satisfied by g in resolvent form:

g = 1

D + 1
Q2g + 1

D + 1
f.

Let R(x − y) = F−1( 1
|ξ |+1 )(x − y) denote the associated kernel of the resol-

vent (D + 1)−1. From [10] we recall the standard fact that R ∈ L p(R) for any
1 < p < ∞. Since f ∈ L2(R), this implies that (R ∗ f )(x) is continuous and van-
ishes as |x | → ∞. Moreover (see, for example, [10] again) we have the pointwise
bound

0 < R(z) � 1

|x |2 , for |x | � 1.

Using this bound and our decay assumption on f (x), it is elementary to check that

|(R ∗ f )(x)| � min{1, |x |−2}.
Using this bound, we can bootstrap the equation for g, using that Q2(x) is continu-
ous and vanishes at infinity; we refer to [12] for details on a similar decay estimate.
This shows that |g(x)| � 〈x〉−2 as desired. ��

Appendix B. Coercivity Estimates for the Localized Energy

In the following, we assume that A > 0 is a sufficiently large constant. Let φ :
R → R be the smooth cutoff function introduced in Section 6. For ε = ε1 + iε2 ∈
H1/2(R), we consider the quadratic forms

L+,A(ε1) :=
∫ ∞

s=0

√
s
∫
φ′′

A|∇ε1s |2 d ds +
∫

|ε1|2 − 3
∫

Q2|ε1|2, (B.1)

L−,A(ε2) :=
∫ ∞

s=0

√
s
∫
φ′′

A|∇ε2s |2 dx ds +
∫

|ε2|2 −
∫

Q2|ε2|2, (B.2)

where φ′′
A(x) = φ′′(x/A). As in Lemma 6.1, we denote

us =
√

2

π

1

−�+ s
u, for s > 0. (B.3)

We start with the following simple identity.
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Lemma B.1. For u ∈ H1/2(R), we have∫ ∞

s=0

√
s
∫

|∇us |2 d ds = ‖D
1
2 u‖2

L2 . (B.4)

Proof. By applying Fubini’s theorem and using Fourier transform, we find that∫ +∞

s=0

√
s
∫

|∇us |2 dx ds = 2

π

∫ ∫ +∞

s=0

√
s ds

(ξ2 + s)2
|ξ |2|û(ξ)|2 dξ

=
∫

|ξ ||û(ξ)|2 dξ = ‖D
1
2 f ‖2

L2 ,

which shows the claim. ��
Remark B.1. Clearly, the proof of Lemma B.1 shows that

2

π

∫ +∞

s=0

√
s
∫

|Dαus |2 dx ds = ‖Dα− 1
2 u‖2

L2 , for u ∈ S(R), (B.5)

with any exponent α ∈ R, provided that for α � 0 we also impose that û(ξ)
vanishes identically in a neighborhood around ξ = 0.

Next, we establish a technical result, which shows that, when taking the limit
A → +∞, the quadratic form

∫
s�0

√
s
∫
φ′′

A|∇us |2 dx ds + ‖u‖2
L2 defines a weak

topology that serves as a useful substitute for the weak convergence in H1/2(R).
The precise statement reads as follows.

Lemma B.2. Let An → +∞ and suppose that {un}∞n=1 is a sequence in H1/2(R)

such that ∫ +∞

s=0

√
s
∫
φ′′

An
|∇(un)s |2 dx ds + ‖un‖2

L2 � C,

for some constant C > 0 independent of n � 1. Then, after possibly passing to a
subsequence of {un}∞n=1, we have that

un ⇀ u weakly in L2(R) and un → u strongly in L2
loc(R),

and u belongs to H1/2(R). Moreover, we have the bound

‖D
1
2 u‖2

L2 � lim inf
n→+∞

∫ +∞

s=0

√
s
∫
φ′′

An
|∇(un)s |2 dx ds.

Proof. Let ζ ∈ S(R) be a smooth cutoff function in Fourier space that satisfies

ζ̂ (ξ ) =
{

1 for |ξ | � 1,
0 for |ξ | � 2.

For any u ∈ H1/2(R), we write u = ul + uh with

ûl = ζ̂ û, ûh = (1 − ζ̂ )û.

Recall the definition (B.3), we readily notice the relations

(ul)s = (us)
l , (uh)s = (us)

h .

Hence, we can use the notation ul
s = (ul)s and uh

s = (ul)s in the following.
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Step 1 Control of uh Let χ ∈ C∞
0 (R) be a smooth cutoff function such that

χ(x) =
{

1 for |x | � 1,
0 for |x | � 2.

For any R > 0 given, we set

χR(x) = χ
( x

R

)
.

We now claim the following control: For any R > 0, there exist constants CR > 0

and A0 = A0(R) > 0 such that ∀A � A0 and ∀u ∈ H
1
2 , we have

∫
|D 1

2 (χRuh)|2 � CR

[∫ ∞

s=0

√
s
∫
φ′′

A|∇uh
s |2 dx ds + ‖u‖2

L2

]
. (B.6)

Indeed, from definition (B.3) we see that

−�(χRuh)s + s(χRuh)s =
√

2

π
χRuh .

On the other hand, an elementary calculation shows that

−�(χRuh
s )+ sχRuh

s = χR(−�uh
s + suh

s )− 2∇χR · ∇uh
s − uh

s�χR

=
√

2

π
χRuh − 2∇χR · ∇uh

s − uh
s�χR .

Therefore, the function

ws :=
√
π

2

{
(χRuh)s − χRuh

s

}
(B.7)

satisfies the equation

−�ws + sws =
√
π

2

{
2∇χR · uh

s + uh
s�χR

}
.

Hence, we deduce the bound
∫

|∇ws |2 + s
∫

|ws |2 �
∫ {

|∇χR ||∇uh
s | + |uh

s ||�χR |
}

|ws |

and, by using the Cauchy–Schwarz inequality, we conclude that

∫
|∇ws |2 + s

∫
|ws |2 � CR

{∫
|x |�2R

|∇uh
s |2 +

∫
|uh

s |2
}
, for s � 1, (B.8)

∫
|∇ws |2 + s

∫
|ws |2 � CR

s

{∫
|∇uh

s |2 +
∫

|uh
s |2

}
, for 0 < s � 1. (B.9)



108 Joachim Krieger et al.

Next, we apply identity (B.5) while noting that ûh(ξ) = 0 for |ξ | � 1. For some
sufficiently large A > A0(R), we thus obtain

∫ +∞

s=1

√
s
∫

|∇ws |2 dx ds � CR

∫ +∞

s=0

√
s

{∫
|x |�2R

|∇uh
s |2dx +

∫
|uh

s |2dx

}
ds

� CR

[∫ +∞

s=0

√
s
∫
φ′′

A|∇uh
s |2 dx ds + ‖D− 1

2 uh‖2
L2

]

� CR

[∫ +∞

s=0

√
s
∫
φ′′

A|∇uh
s |2 dx ds + ‖u‖2

L2

]
,

∫ 1

s=0

√
s
∫

|∇ws |2dxds � CR

∫ 1

s=0

√
s

s

∫
(1 + |ξ |2)|ûh |2
(s + |ξ |2)2 dξ ds

� CR

∫ 1

s=0

ds√
s

∫
1 + |ξ |2

|ξ |4 |ûh |2 dξ ds � CR‖u‖2
L2 .

Using (B.4) and the previous bounds, we find that

‖D
1
2 (χRuh)‖2

L2 =
∫ +∞

s=0

√
s
∫

|∇(χRuh)s |2 dx d

�
∫ +∞

s=0

√
s
∫

|∇ws |2 dx ds +
∫ +∞

s=0

√
s
∫

|∇(χR(u
h)s)|2 dx ds

� CR

[∫ +∞

s=0

√
s
∫
φ′′

A|∇uh
s |2 dx ds+‖u‖2

L2

]
+
∫ +∞

s=0

√
s
∫

|uh |2 dx ds

� CR

[∫ +∞

s=0

√
s
∫
φ′′

A|∇uh
s |2 dx ds + ‖u‖2

L2

]
.

This completes the proof of estimate (B.6).

Step 2 Conclusion Let {un}∞n=1 satisfy the assumptions in Lemma B.2. By (B.4),
we have for all A > 0 that
∫ +∞

s=0

√
s
∫
φ′′

A|∇(ul
n)s |2 dx ds �

∫ +∞

s=0

√
s
∫

|∇(ul
n)s |2 dx ds = ‖D

1
2 ul

n‖2
L2

� C‖un‖2
L2 � C.

Here we used the frequency localization of ul
n in the last step. Thus the assumed

bound in Lemma B.2 ensures that
∫ +∞

s=0

√
s
∫
φ′′

An
|∇(uh

n)s |2 dx ds � C. (B.10)

We therefore conclude from (B.6) that, for all R > 0, the {un}∞n=1 is a bounded
sequence in H1/2(BR) and L2(R). Hence, by a simple diagonal extraction argu-
ment, we can find u ∈ L2(R) and we can assume, by passing to a subsequence if
necessary, that

un ⇀ u in L2(R) and un ⇀ u in H1/2(BR) for all R > 0.
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By the compactness of the Sobolev embedding H1/2(R) ↪→ L2
loc(R), we also have

that

un → u in L2
loc(R).

It remains to show the “weak lower semicontinuity property” given by

‖D
1
2 u‖2

L2 =
∫ +∞

s=0

√
s
∫

|∇us |2 dx ds � lim inf
n→+∞

∫ +∞

s=0

√
s
∫
φ′′

An
|∇(un)s |2 dxds.

(B.11)

Indeed, we first we note that

∇(un)s(x) = 1√
2π

∫
e−√

s|x−y| x − y

|x − y|un(y)dy.

Since un ⇀ u weakly in L2(R) and e−√
s|x−y| x−y

|x−y| ∈ L2
y(R) for any x ∈ R, we

thus obtain

∇(un)s(x) → ∇us(x) pointwise on R for any s > 0.

Next, by the Cauchy–Schwarz inequality, we derive the uniform pointwise bound

|∇(un)s(x)| � ‖e−√
s|·|‖L2‖un‖L2 � C

s1/4 ,

using that ‖un‖L2 � C by assumption. Let 0 < ε < 1 and B > 0 now be given.
By the dominated convergence theorem, we deduce that∫ 1/ε

s=ε
√

s
∫

|x |�B
|∇us |2 dx ds = lim

n→+∞

∫ 1/ε

s=ε
√

s
∫

|x |�B
|∇(un)s |2 dx ds

� lim inf
n→+∞

∫ +∞

s=0

√
s
∫
φ′′

An
|∇(un)s |2 dx ds,

where in the last step we used Fatou’s lemma and the fact that φ′′
An
(x) � 0 satisfies

limn→+∞ φ′′
An
(x) = 1 for all x ∈ R. Since the previous bound holds for arbitrary

0 < ε < 1 and B > 0, we conclude that

‖D
1
2 u‖2

L2 =
∫ +∞

s=0

√
s
∫

|∇us |2 dx ds � lim inf
n→+∞

∫ +∞

s=0

√
s
∫
φ′′

An
|∇(un)s |2 dx ds.

The proof of Lemma B.2 is now complete. ��
Proposition B.1. Let L+,A(ε1) and L−,A(ε2) be the quadratic forms defined above.
Then there exist universal constants c0 > 0 and A0 > 0 such that, for all A � A0
and all ε = ε1 + iε2 ∈ H1/2(R), we have the coercivity estimate

(L+,Aε1, ε1)+ (L−,Aε2, ε2) � c0

∫
|ε|2

− 1

c0

{
(ε1, Q)2 + (ε1, S1)

2 + (ε1,G1)
2 + (ε2, ρ1)

2
}

Here S1 and G1 are the unique functions such that L−S1 = 	Q with S1 ⊥ Q and
L−G1 = −∇Q with G1 ⊥ Q, respectively, and the function ρ1 is defined in (5.13).
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Proof. It suffices to prove the coercivity bound

(L−,Aε2, ε2) � c0

∫
|ε|2 − 1

c0
(ε2, ρ1)

2, (B.12)

since the corresponding estimate for L+,A follows by the same strategy.
To prove (B.12), we argue by contradiction as follows. Suppose that there exists a
sequence of functions {un}∞n=1 in H1/2(R) with

∫
|un|2 = 1, (un, ρ1) = 0, (B.13)

as well as a sequence An → +∞ such that

∫ +∞

s=0

√
s
∫
φ′′

An
|un|2 dx ds +

∫
|un|2 −

∫
Q2|un|2 � o(1)

∫
|un|2,

(B.14)

where o(1) → 0 as n → ∞. By applying Lemma B.2, we find (after passing to
subsequence, if necessary) that

un ⇀ u weakly in L2(R) and un → u strongly in L2
loc(R). (B.15)

But since Q2(x) → 0 as |x | → ∞, we easily check that
∫

Q2|un|2 → ∫
Q2|u|2.

Moreover, from (B.14) and
∫ |un|2 = 1 we deduce that

∫
Q2|u|2 � 1 must hold.

In particular, the weak limit u �≡ 0 is nontrivial. However, by the weak lower semi-
continuity inequality in Lemma B.2 and the fact that lim infn→∞

∫ |un|2 �
∫ |u|2,

we deduce that

(L−u, u) =
∫

|D 1
2 u|2 +

∫
|u|2 −

∫
Q2|u|2 � 0, where (u, ρ1) = 0.

(B.16)

Since u �≡ 0, this bound contradicts the coercivity estimate for L− stated in Lemma
B.4 below. ��
We conclude this section with a bound for the error term in localized virial estimate
needed in Section 6.

Lemma B.3. For any u ∈ L2(R), we have the bound

∣∣∣∣
∫ +∞

s=0

√
s
∫
φ
(4)
A |us |2 dx ds

∣∣∣∣ � 1

A
‖u‖2

L2 .

Remark B.2. Note that a naive application of (B.5) would formally yield the bound∣∣∫∞
s=0

√
s
∫
φ(4)|us |2

∣∣ � A−2‖D−1/2u‖2
L2 . However, we have that ‖D−1/2u‖L2 =

+∞ holds in d = 1, unless û(ξ) vanishes appropriately in ξ = 0. In fact, the proof
of Lemma B.3, below, involves some more careful analysis.
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Proof. First, recall that φ′′
A(x) = φ′′ ( x

A

)
and hence φ(4)(x) = 1

A2 φ
(4)

( x
A

)
. Now,

we split the s-integral as follows

1

A2

∫ +∞

s=0

√
s
∫
φ(4)

( x

A

)
|us |2 dx ds =: I�	 + I�	, (B.17)

where 	 > 0 is some given number, and we consider

I�	 = 1

A2

∫ 	

s=0

√
s
∫
φ(4)

( x

A

)
|us |2 dx ds, I�	

= 1

A2

∫ +∞

s=	
√

s
∫
φ(4)

( x

A

)
|us |2 dx ds.

Since 1
A2 φ

(4)(y/A) = �y(φ
(2)(y/A)), we can integrate by parts twice and use the

Hölder inequality to deduce that

∣∣∣I�	
∣∣∣ � ‖φ(2)‖L∞

∫ 	

s=0

√
s
(
‖�us‖L2‖us‖L2 + ‖∇us‖2

L2

)
ds

�
∫ 	

s=0

√
s

(∥∥∥∥ −�
−�+ s

u

∥∥∥∥
L2

∥∥∥∥ 1

−�+ s
u

∥∥∥∥
L2

+
∥∥∥∥ ∇
−�+ s

u

∥∥∥∥
2

L2

)
ds

�
(∫ 	

s=0

ds

s1/2

)
‖u‖2

L2 �
√
	‖u‖2

L2 .

To estimate I�	, we simply use the bound ‖us‖L2 � s−1‖u‖L2 , which shows that

∣∣∣I�	
∣∣∣ � 1

A2 ‖φ(4)‖L∞
(∫ +∞

s=	
ds

s3/2

)
‖u‖2

L2 � 1

A2

1√
	

‖u‖2
L2 . (B.18)

Thus, we have shown that, for arbitrary 	 > 0,

|Left-hand side of (B.17)| �
(√

	+ 1

A2

1√
	

)
‖u‖2

L2 . (B.19)

By minimizing this bound with respect to 	, we obtain the desired estimate. ��
We conclude this section with the following coercivity estimate for L = (L−, L+).

Lemma B.4. (Coercivity estimate) There exists some universal constant c0 > 0
such that, for any ε = ε1 + iε2 ∈ H1/2(R), we have that

(L+ε1, ε1)+ (L−ε2, ε2) � c0‖ε‖2
H1/2

− 1

c0

{
(ε1, Q)2 + (ε1, S1)

2 + (ε1,G1)
2 + (ε2, ρ1)

2
}
.

Here S1 and G1 are the unique functions such that L−S1 = 	Q with S1 ⊥ Q and
L−G1 = −∇Q with G1 ⊥ Q, respectively, and the function ρ1 is defined in (5.13).
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Proof. From [10] we recall the key fact that the null spaces of L+ and L− are given
by

ker L+ = span {∇Q}, ker L− = span {Q}. (B.20)

Then, by following arguments in [44] for ground states for nonlinear Schrödinger
equations, we deduce the standard coercivity estimate

(L+ε1, ε1)+ (L−ε2, ε2) � c1‖ε‖2
H1/2 − 1

c1

{
(ε1, φ+)2 + (ε1,∇Q)2 + (ε2, Q)2

}
(B.21)

for all ε = ε1 + iε2 ∈ H1/2(R), where c1 > 0 is some universal constant. Here
φ+ = φ+(x) > 0 with ‖φ+‖L2 = 1 denotes the unique ground state eigenfunction
of L+, and we have L+φ+ = e+φ+ with some e+ < 0 (we refer to [10] for a
detailed discussion of the spectral properties of L+ and L−).
To derive the coercivity estimate in Lemma B.4 from an estimate of the form
(B.21), we can use some arguments that can be found, for example, in [36] in the
context of NLS. For the reader’s convenience, we provide the details of the adap-
tation to our case. To prove the desired coercivity estimate, we can that assume
ε = ε1 + iε2 ∈ H1/2(R) satisfies

(ε1, S1) = (ε1,G1) = (ε2, ρ1) = 0.

Define the function ε̂ = ε̂1 + i ε̂2 ∈ H1/2(R) by setting

ε̂ = ε − α	Q − iβQ − γ∇Q,

where α, β, γ ∈ R are chosen such that

(ε̂1, φ+) = (ε̂2, Q) = (ε̂1,∇Q) = 0.

Indeed, we see that

α = (ε1, φ+)
(	Q, φ+)

, β = (ε2, Q)

(Q, Q)
, γ = (ε1,∇Q)

(∇Q,∇Q)
,

where we also used that (	Q,∇Q) = 0 holds, since Q is even, and (φ+,∇Q) = 0
since ∇Q ∈ ker L+ and φ+ ∈ ran L+. Next, recall that L+φ+ = e+φ+ with
e+ < 0 and L+	Q = −Q. Hence (	Q, φ+) = − 1

e+ (Q, φ+) > 0, by the strict
positivity of Q > 0 and φ+ > 0. On the other hand, the orthogonality conditions
satisfied by ε = ε1 + iε2 imply that

α = − (ε̂1, S1)

(	Q, S1)
, β = − (ε̂2, ρ1)

(Q, ρ1)
, γ = − (ε̂1,G1)

(∇Q,G1)
,

where we also use that (	Q,G1) = (∇Q, S1) = 0, since Q and S1 are even and
G1 is odd. Note that L−S1 = 	Q and hence (	Q, S1) = (L−S1, S1) �= 0, and
(∇Q,G1) = −(L−G1,G1) < 0 because of L−G1 = −∇Q. Furthermore, recall
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that L+ρ1 = S1 and L+	Q = −Q. Thus (Q, ρ1) = −(	Q, S1) = (L−S1, S1) >

0 again. In summary, we find

1

K
‖ε‖H1/2 � ‖ε̂‖H1/2 � K‖ε‖H1/2 ,

with some universal constant K > 0. Now, since (	Q, Q) = (∇Q, Q) = 0 and
L+	Q = −Q as well as L+∇Q = 0 and L−Q = 0, we obtain

(ε̂1, Q) = (ε1, Q), (L+ε̂1, ε̂1) = (L+ε1, ε1)+ α(ε1, Q), (L−ε̂2, ε̂2)

= (L−ε2, ε2).

By the previous relations and estimate (B.21), we conclude

(L+ε1, ε1)+ (L−ε2, ε2) = (L+ε̂1, ε̂1)+ (L−ε̂2, ε̂2)− α(ε1, Q)

� c1‖ε̂‖2
H1/2 − α(ε1, Q) � c0‖ε‖2

H1/2 − 1

c0
(ε1, Q)2,

with some sufficiently small universal constant c0 > 0. ��

Appendix C. On the Modulation Equations

Here we collect some results and estimates regarding the modulation theory used
in Section 5.

Appendix C.1. Uniqueness of Modulation Parameters

First, we show that the parameters {b, v, λ, α, γ } are uniquely determined if ε =
ε1 + iε2 ∈ H1/2(R) is sufficiently small and satisfies the orthogonality conditions
(5.6)–(5.10). Indeed, this follows from an implicit function argument, which we
detail here.
For δ > 0, let Wδ = {w ∈ H1/2(R) : ‖w − Q‖H1/2 < δ}. Consider approximate
blowup profiles QP with |P| = |(b, v)| < η, where η > 0 is a small constant. For
w ∈ Wδ, λ1 > 0, y1 ∈ R, γ1 ∈ R and |P| < η, we define

ελ1,y1,γ1,b,v(y) = eiγ1λ
1
2
1w(λ1 y − y1)− QP .

Consider the map σ = (σ 1, σ 2, σ 3, σ 4, σ 5) defined by

σ 1 = ((ελ1,y1,γ1,b,v)1,	�P )− ((ελ1,y1,γ1,b,v)2,	�P ),
σ 2 = ((ελ1,y1,γ1,b,v)1, ∂b�P )− ((ελ1,y1,γ1,b,v)2, ∂b�P ),
σ 3 = ((ελ1,y1,γ1,b,v)1, ρ2)− ((ελ1,y1,γ1,b,v)2, ρ1),

σ 4 = ((ελ1,y1,γ1,b,v)1,∇�P )− ((ελ1,y1,γ1,b,v)2,∇�P ),
σ 5 = ((ελ1,y1,γ1,b,v)1, ∂v�P )− ((ελ1,y1,γ1,b,v)2, ∂v�P ).
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Recall that ρ = ρ1 + iρ2 was defined in (5.13). Taking the partial derivatives at
(λ1, y1, γ1, b, v) = (1, 0, 0, 0, 0) yields that

∂ελ1,y1,γ1,b,v

∂λ1
= 	w,

∂ελ1,y1,γ1,b,v

∂y1
= −∇w, ∂ελ1,y1,γ1,b,v

∂γ1
= iw,

∂ελ1,y1,γ1,b,v

∂b
= −∂b QP

∣∣P=(0,0) = −i S1,
∂ελ1,y1,γ1,b,v

∂v

= −∂vQP
∣∣P=(0,0) = −iG1,

where we recall that L−S1 = 	Q and L−G1 = −∇Q. Note that S1 is an even func-
tion, whereas G1 is odd. At (λ1, y1, γ1, b, v, w) = (1, 0, 0, 0, 0, Q), the Jacobian
of the map σ is hence given by

∂σ 1

∂λ1
= 0,

∂σ 1

∂y1
= 0,

∂σ 1

∂γ1
= 0,

∂σ 1

∂b
= −(S1, L−S1),

∂σ 1

∂v
= 0,

∂σ 2

∂λ1
= −(L−S1, S1),

∂σ 2

∂y1
= 0,

∂σ 2

∂γ1
= 0,

∂σ 2

∂b
= 0,

∂σ 2

∂v
= 0,

∂σ 3

∂λ1
= 0,

∂σ 3

∂y1
= 0,

∂σ 3

∂γ1
= −(Q, ρ1),

∂σ 3

∂b
= 0,

∂σ 3

∂v
= 0,

∂σ 4

∂λ1
= 0,

∂σ 4

∂y1
= 0,

∂σ 4

∂γ1
= 0,

∂σ 4

∂b
= 0,

∂σ 4

∂v
= −(L−G1,G1),

∂σ 5

∂λ1
= 0,

∂σ 5

∂y1
= (L−G1,G1),

∂σ 5

∂γ1
= 0,

∂σ 5

∂b
= 0,

∂σ 5

∂v
= 0.

Note that we also used here that Q and S1 are even functions, whereas G1 is odd;
for example, we have (Q,G1) = 0 etc. Moreover, we note

−(Q, ρ1) = (L+	Q, ρ1) = −(	Q, L+ρ1) = −(	Q, S1) = −(L−S1, S1).

Therefore and since (L−S1, S1) > 0 and (L−G1,G1) > 0, the determinant of
the functional matrix is non zero. By the implicit function theorem, we obtain
existence and uniqueness for (λ1, y1, γ1, b, v, w) in some neighborhood around
(1, 0, 0, 0, 0, Q).

Appendix C.2. Estimates for the Modulation Equations

To conclude this section, we collect some estimates needed in the discussion of the
modulation equations in Section 5.
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Lemma C.1. The following estimates hold.

(M−(ε)− b	ε1 + v · ∇ε1,	�P )+ (M+(ε)+ b	ε2 − v · ∇ε1,	�P )
= −�(ε, QP )+ O(P2‖ε‖L2), (C.1)

(M−(ε)− b	ε1 + v · ∇ε1, ∂b�P )+ (M+(ε)+ b	ε2 − v · ∇ε2, ∂b�P ) (C.2)

= O(P2‖ε‖L2),

(M−(ε)− b	ε1 + v · ∇ε1, ρ2)+ (M+(ε)+ b	ε2 − v · ∇ε2, ρ1)

= O(P2‖ε‖L2), (C.3)

(M−(ε)− b	ε1 + v · ∇ε1,∇�P )+ (M+(ε)+ b	ε2 − v · ∇ε2,∇�P )
= O(P2‖ε‖L2), (C.4)

(M−(ε)− b	ε1 + v · ∇ε1, ∂v�P )+ (M+(ε)+ b	ε2 − v · ∇ε2, ∂v�P )
= O(P2‖ε‖L2), (C.5)

Proof. First, we recall that

M+(ε) = L+ε1 − 2�P�Pε2 + O(P2ε),

M−(ε) = L−ε2 − 2�P�Pε1 + O(P2ε).

We divide the proof of (C.1)–(C.5) as follows.

Proof of estimate (C.1). Furthermore, we notice the identity

L−	S1 = −S1 + 2(	Q)QS1 +	Q +	2 Q. (C.6)

To see this relation, we recall that L−S1 = 	Q and hence

L−	S1 = [L−,	]S1 +	L−S1 = DS1 + 2x Q′QS1 +	2 Q

= −S1 + Q2S1 +	Q + 2x Q′QS1 +	2 Q

= −S1 + 2(	Q)QS1 +	Q +	2 Q,

as claimed. In a similar fashion, we deduce from L−G1 = −∇Q that

L−	G1 = −G1 − ∇Q + 2(	Q)QG1 −	∇Q. (C.7)

Next, we recall that

	�P = 	Q + O(P2), 	�P = b	S1 + v	G1 + O(P2).

Combining (C.6) and (C.7) with this fact and using that L+	Q = −Q, we find
that

Left-hand side of (C.1) = (ε1, L+	Q)+ b(ε2, L−	S1)+ v(ε2, L−	G1)

−2b(QS1ε2,	Q)− 2v(QG1ε2,	Q)− b(ε2,	
2 Q)

+ v(ε2,∇	Q)+ O(P2‖ε‖L2 )

= −(ε1, Q)− b(ε2, S1)− v(ε2,G1)+ b(ε2,	Q)− v(ε2,∇Q)

+O(P2‖ε‖L2 )

= −�(ε, Qb)+ O(P2‖ε‖L2 ).
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Here, we also used that b(ε2,	Q) = O(P2‖ε‖L2) and v(ε2,∇Q) = O(P2‖ε‖L2),
which follows from the orthogonality conditions (5.6) and (5.9), respectively. This
completes the proof of (C.1).

Proof of estimate (C.2). Here we argue as follows. From the proof of Proposi-
tion 4.1 we recall that

∂b�P = 2bT2 + vF2, ∂b�P = S1 + O(b2),

where

L+T2 = 1

2
S1 −	S1 + S2

1 Q, L+F2 = G1 −	G1 + ∇S1 + 2G1S1 Q.

Using these facts, we compute

Left-hand side of (C.2) = (ε2, L−S1)− 2b(S1 Qε1, S1)− 2v(ε1G1 Q, S1)+ b(ε1,	S1)

−v(ε1,∇S1)+ 2b(ε1, L+T2)+ v(ε1, L+ F2)+ O(P2‖ε‖L2 )

= (ε2,	Q)−2b(ε1, S2
1 Q)−2v(ε1, QG1S1)+b(ε1,	S1)−v(ε1,∇S1)

+2b(ε1,
1

2
S1 −	S1 + S2

1 Q)+ v(ε1,G1 −	G1 + ∇S1 + 2G1S1 Q)

+ O(P2‖ε‖L2 )

= (ε2,	Q)− b(ε1,	S1)− v(ε1,	G1)+ v(ε1,G1)− +O(P2‖ε‖L2 )

= (ε2,	�P )− (ε1,	�P )+ O(P2‖ε‖L2 ).

In the last step we also used that v(ε1,G1) = O(P2‖ε‖L2), thanks to the orthogo-
nality condition (5.10). This completes the proof of (C.2).

Proof of estimate (C.3). We now turn to the proof of estimate (C.3). Indeed, by
recalling (5.13), we find that

Left-hand side of (C.3) = (ε2, L−ρ2)+ (ε1, L+ρ1)− 2b(ε2, QS1ρ1)− 2v(ε2, QG1ρ1)

−b(ε2,	ρ1)+ v(ε2,∇ρ1)+ O(P2‖ε‖L2 )

= 2b(ε2, QS1ρ1)+ b(ε2,	ρ1)− 2b(ε2, T2)+ 2v(ε2, QG1ρ1)

−v(ε2,∇ρ1)− v(ε2, F2)+ (ε1, S1)− 2b(ε2, QS1ρ1)

−2v(ε2, QG1ρ1)− b(ε2,	ρ1)+ v(ε2,∇ρ1)

+O(P2‖ε‖L2 )

= −2b(ε2, T2)− v(ε2, F2)+ (ε1, S1)+ O(P2‖ε‖L2 )

= −(ε2, ∂b�P )+ (ε1, ∂b�P )+ O(P2‖ε‖L2 ) = O(P2‖ε‖L2 ),

using the orthogonality condition (5.7). The proof of (C.3) is now complete.

Proof of estimate (C.4). First, we note that

∇�P = ∇Q + O(P2), ∇�P = b∇S1 + v∇G1 + O(P2). (C.8)

Moreover, we have the relations

L+∇Q =0, L−∇S1 =2(∇Q)QS1+∇	Q, L−∇G1 =2(∇Q)QG1 − ∇2 Q,

(C.9)
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which are obtained in a way analogous to the way we showed (C.6) and (C.7). Thus
we obtain

Left-hand side of (C.4) = b(ε2, L−∇S1)+ v(ε2, L−∇G1)+ (ε1, L+∇Q)− 2b(ε2 QS1,∇Q)

−2v(ε2 QG1,∇Q)− b(ε2,	∇Q)+ v(ε2,∇2 Q)+ O(P2‖ε‖L2 )

= 2b(ε2, (∇Q)QS1)+ b(ε2,∇	Q)+ 2v(ε2, (∇Q)QG1)

−v(ε2,∇2 Q)− 2b(ε2 QS1,∇Q)− 2v(ε2 QG1,∇Q)− b(ε2,	∇Q)

+v(ε2,∇2 Q)+ O(P2‖ε‖L2 )

= b(ε2, [∇,	]Q)+ O(P2‖ε‖L2 ) = b(ε2,∇Q)+ O(P2‖ε‖L2 )

= O(P2‖ε‖L2 ),

since b(ε2,∇Q) = O(P2‖ε‖L2) due to condition (5.9). This shows that (C.4)
holds.
Proof of estimate (C.5). Here, we note that

∂v�P = bF2 + 2vH2, ∂v�P = G1, (C.10)

where

L+H2 = ∇G1 + G2
1 Q. (C.11)

Using the relations above, we thus obtain

Left-hand side of (C.5) = (ε2, L−G1)− 2b(ε1 QS1,G1)− 2v(ε1 QG1,G1)+ b(ε1,	G1)

−v(ε1,∇G1)+ b(ε1, L+ F2)+ 2v(ε2, L+ H2)+ O(P2‖ε‖L2 )

= −(ε2,∇Q)− 2b(ε1 QS1,G1)− 2v(ε1 QG1,G1)+ b(ε1,	G1)

−v(ε1,∇G1)+ b(ε1,G1 −	G1 + ∇S1 + 2G1 S1 Q)

+2v(ε1,∇G1 + G2
1 Q)+ O(P2‖ε‖L2 )

= −(ε2,∇Q)+ b(ε1,∇S1)+ v(ε1,∇G1)+ O(P2‖ε‖L2 )

= −(ε2,∇�P )+ (ε1,∇�P )+ O(P2‖ε‖L2 ),

thanks to the orthogonality condition (5.9). This completes the proof of (C.5) and
hence we have proven that Lemma C.1 holds. ��

Appendix D. The Cauchy Problem

We have the following local well-posedness result concerning the Cauchy problem
for the L2-critical half-wave equation (1.1). In fact, the proof of the following well-
posedness result for problem (1.1) can be deduced in a verbatim fashion as for the
so-called cubic Szegö equation treated in [15]. We have the following result, where
we consider only forward times, which is no restriction due to the time-reversibility
of (1.1).

Theorem D.1. Let s � 1/2 be given. For every initial datum u0 ∈ Hs(R), there
exists a unique solution u ∈ C0([t0, T ); Hs(R)) of problem (1.1). Here t0 <

T (u0) � +∞ denotes its maximal time of existence (in forward time). Moreover,
we have the following properties.
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(i) Conservation of L2-mass, energy and linear momentum: It holds that

M(u) =
∫

|u|2, E(u) = 1

2

∫
|D 1

2 u|2 − 1

4

∫
|u|2, P(u) =

∫
u(−i∂x u),

are conserved along the flow.
(ii) Blowup alternative in H1/2: Either T (u0) = +∞ or, if T (u0) < +∞, then

‖u(t)‖H1/2 → +∞ as t → T −.
(iii) Continuous dependence: If s > 1/2, then the flow map u0 �→ u(t) is Lips-

chitz continuous on bounded subsets of Hs(R).
(iv) Global Existence for Small Data: If u0 ∈ Hs(R) satisfies ‖u0‖L2 < ‖Q‖L2 ,

then T (u0) = +∞ holds true.

Proof. Without loss of generality, we assume that t0 = 0 holds. Consider the
corresponding integral equation

u(t) = e−i t Du0 − i
∫ t

0
e−i(t−t ′)D|u(t ′)|2u(t ′) dt ′. (D.1)

We discuss the cases of initial data in Hs(R)with s > 1/2 first. Below, we indicate
how to treat the borderline case s = 1/2.
Case s > 1/2. First, we suppose that s > 1/2 holds. In this case, the Sobolev
embedding ‖u‖L∞ � Cs‖u‖Hs in R shows that the nonlinearity u �→ |u|2u is
Lipschitz on bounded subsets of Hs(R). Hence, local existence and uniqueness
of u ∈ C0([0, T ); Hs(R)) follows from a simple fixed point argument, provided
that s > 1/2 holds. Also, continuous dependence of u(t) with respect to the initial
datum u0 in Hs(R) as expressed in (iii) follows by standard arguments, using that
u �→ |u|2u is locally Lipschitz on Hs(R). To prove (i), we note that a calculation
shows d

dt
E(u(t)) = 0 and d

dt
M(u(t)) = 0, assuming that we have initial data

in H2(R) so that E(u(t)) and M(u(t)) are C1 in t . By a standard approximation
argument and local wellposedness in Hs(R) for s > 1/2, we conclude that E(u(t))
and M(u(t)) are also conserved for initial data in Hs(R) for s > 1/2.
To complete the proof of Theorem D.1 for the case s > 1/2, we have to show that
property (ii) holds. Indeed, this can be seen as follows. From standard theory of
semilinear evolution equations with locally Lipschitz perturbations, we have the
blowup alternative in Hs(R). That is, if u ∈ C0([0, T ); Hs(R)) has the maximal
time of existence T (u0) < +∞, then ‖u(t)‖Hs → +∞ as t → T −. Suppose
now that T (u0) < +∞ and assume that K = supt∈[0,T ) ‖u(t)‖H1/2 < +∞ holds.

We show that this implies K̃ = supt∈[0,T ) ‖u(t)‖Hs < +∞ as well, which would
prove that (ii) holds. In fact, from (D.1) and invoking Lemma D.1, we conclude
that

‖u(t)‖Hs � ‖u0‖Hs +
∫ t

0
‖|u(t ′)|2u(t ′)‖Hs dt ′ � ‖u0‖Hs

+C
∫ t

0
‖u(t ′)‖2

L∞‖u(t ′)‖Hs dt ′

� ‖u0‖Hs + C K 2
∫ t

0

[
log

(
2 + ‖u(t ′)‖Hs

K

)]
‖u(t ′)‖Hs dt ′.
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Note here the fact that z2 log(1 + a/z) � K 2 log(1 + a/K ) if 0 � z � K and
a � 0. If we let f (t) := ‖u(t)‖Hs/K , we obtain the integral inequality

f (t) � f (0)+ C
∫ t

0

[
log(2 + f (t ′))

]
f (t ′) dt ′. (D.2)

By Gronwall’s lemma, this implies

2 + f (t) � (2 + f (0))e
Ct
, for t ∈ [0, T ), (D.3)

which shows that supt∈[0,T ) ‖u(t)‖Hs < +∞ holds.
Finally, by recalling (1.5), it is easy to see that initial data ‖u0‖L2 < ‖Q‖L2 are
a priori bounded in H1/2, and hence u(t) extends globally in time, thanks to the
blowup alternative shown above. This completes the proof of Theorem D.1 for
s > 1/2.
Case s = 1/2. In the limiting case when s = 1/2 holds, we need a more refined
analysis of the problem. In fact, this can be done in a similar fashion similar to that
for the Cauchy problem for the cubic Szegö equation mentioned above; see [15].
For the reader’s convenience, we give a brief sketch of the main arguments that
treat the borderline case s = 1/2, as follows.
First, we can obtain a weak solution u ∈ Cw([0, T ); H1/2(R)) by an approximation
and compactness argument.
Then, we show uniqueness by an argument basically due to Judovic [17]; see also
[38]. More precisely, by using Lemma D.2 below, the quantity g(t) = ‖u(t) −
ũ(t)‖2

L2 is found to satisfy

|g′(t)| �
(

‖u(t)‖2(1+ 1
p )

L2(p+1) + ‖ũ(t)‖2(1+ 1
p )

L2(p+1)

)
‖u(t)− ũ(t)‖2(1− 1

p )

L2 � Cpg(t)1− 1
p ,

for any exponent p > 2 and where C > 0 is some constant depending only on the
bound supt∈I {‖u(t)‖H1/2 , ‖ũ(t)‖H1/2} with I being any compact time interval of
existence including t = 0. Thus if g(0) = 0, we obtain that

g(t) � (Ct)p,

by integrating the previous bound. In particular, we see that g(t) → 0 for any
t < 1/C as p → +∞. Hence we deduce that g(t) ≡ 0 for t < 1/C , provided that
g(0) = 0. Repeating the argument in time, if necessary, we deduce uniqueness of
the weak solution u ∈ Cw([0, T ); H1/2(R)) solving (1.1).
Finally, we upgrade u ∈ Cw([0, T ); H1/2(R)) to u ∈ C0([0, T ); H1/2(R) by a
standard argument using weak convergence and the time reversibility of the flow.
Also, the proof of continuous dependence in H1/2(R) follows from standard argu-
ments. This completes our sketch of the proof of Lemma D.1. ��
We conclude the present section with some fundamental estimates related for the
space H1/2(R) (see also [15] for similar statements and proofs in the periodic
setting).
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Lemma D.1. For s > 1/2 and u ∈ Hs(R), we have

‖u‖L∞ � Cs‖u‖H1/2

[
log

(
2 + ‖u‖Hs

‖u‖H1/2

)]1/2

,

where Cs > 0 is some constant that only depends on s > 1/2.

Proof. This follows from standard arguments in the literature. For the reader’s
convenience, we reproduce the proof here. For every 	 > 0 fixed, we deduce that

‖u‖L∞ �
∫

|ξ |�	
|û(ξ)| dξ +

∫
|ξ |�	

|û(ξ)| dξ

�
∫

|ξ |�	
(1 + |ξ |)1/2 |û(ξ)|

(1 + |ξ |)1/2 dξ +
∫

|ξ |�	
(1 + |ξ |)s |û(ξ)|

(1 + |ξ |)s dξ

� ‖u‖H1/2

(∫
|ξ |�	

dξ

1 + |ξ |

)1/2

+ ‖u‖Hs

(∫
|ξ |�	

dξ

(1 + |ξ |)2s

)1/2

�
(
‖u‖H1/2 log(	+ 1)1/2 + ‖u‖Hs	−s+1/2

)
.

By minimizing this bound with respect to	 > 0, we obtain the desired inequality.
��

Lemma D.2. For any u ∈ H1/2(R) and 2 < p < +∞, it holds that

‖u‖L p � Cp1/2‖u‖H1/2 ,

where the constant C > 0 is independent of p and u.

Proof. This follows from standard arguments in the literature. For the reader’s
convenience, we present the details. Let μ(·) denote the Lebesgue measure on R.
We have the general formula

‖u‖p
L p = p

∫ ∞

0
t p−1μ({x : |u(x)| � t}) dt.

Without loss of generality, we will assume that ‖u‖H1/2 = 1 in what follows. Next,
we write u = u�	 + u�	 where u�	(x) = 1√

2π

∫
|ξ |�	 û(ξ)eiξ x dξ . For any

t � 0, let us choose 	 = 	t � 0 such that ‖u�	‖L∞ � t/2. Indeed, note that

‖u�	‖L∞ �
∫

|ξ |�	
|û(ξ)| dξ �

(∫
|ξ |�	

|û(ξ)|2 dξ

)1/2

· log(	+ 1)1/2

� ‖u‖H1/2 log(	+ 1)1/2 = c log(	+ 1)1/2,
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where c > 0 is some universal constant (and note that ‖u‖H1/2 = 1 by assumption).
Hence, for any t � 0, we can always find	 = 	t to ensure that ‖u�	‖L∞ � t/2.
Making this choice, we find that

‖u‖p
L p � p

∫ ∞
0

t p−1μ
({

x : |u�	t
| � t/2

})
dt � p

∫ ∞
0

t p−3‖u�	t
‖2

L2 dt

� p
∫ ∞

0
t p−3

∫
|ξ |�	t

|û(ξ)|2 dξ dt � p
∫ (∫ 2 log(|ξ |+1)1/2

0
t p−3 dt

)
|û(ξ)|2 dξ

� p

p − 2

∫
(log(|ξ | + 1))(p−2)/2|û(ξ)|2 dξ

� p

p − 2

(
p − 2

2

) p−2
2

∫
(|ξ |2 + 1)1/2|û(ξ)|2 dξ � p p/2‖u‖2

H1/2 � p p/2.

Here we used the bound (log(|ξ | + 1))� � ��(|ξ |2 + 1)1/2 for � > 0. By taking the
1/p-th power on both side, we obtain the claimed inequality. ��

Appendix E. Completion of the Proof of Lemma 7.1

Here we improve the bound (7.6), thus completing Step 6 in the proof of Lemma 7.1.
We achieve this by using a Fourier-theoretic method. Our point of departure is again
the identity

i∂t ũ = Dũ − |ũ|2ũ − ψ − F,

where we have

F = |ũ + Q̃|2(ũ + Q̃)− |Q̃|2 Q̃ − |ũ|2ũ, Q̃ := 1

λ
1
2 (t)

QP
(

x − α(t)

λ(t)

)
eiγ (t).

We plan to obtain a H
1
2 +ε-bound on ũ for ε > 0 sufficiently small, taking advantage

of the a priori bounds at time t1 and those assumed for t ∈ [t0, t1]. Consider

i
d

dt

(
D

1
2 +εũ, D

1
2 +εũ

)
= i�

(
D

1
2 +ε[Dũ − |ũ|2ũ − ψ − F

]
, D

1
2 +εũ

)

= i�
(
−D

1
2 +ε[|ũ|2ũ + ψ + F

]
, D

1
2 +εũ

)
. (E.1)

We commence with the contribution of that part of F which is linear in ũ. Thus we
have to estimate the expression

�
(

D
1
2 +ε[2�(ũ Q̃)Q̃ + |Q̃|2ũ

]
, D

1
2 +εũ

)
.

In order to control this, we need to bound expressions of the form

Dα( f g)− f (Dαg), α ∈ [0, 1].
We claim the bound

‖Dα( f g)− f (Dαg)‖L2 � ‖Dα f ‖L2‖ĝ‖L1 , α ∈ [0, 1].
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This follows from Plancherel’s theorem and the identity

D̃α( f g)(ξ)− ˜f (Dαg)(ξ) =
∫

R

(|ξ |α − |η|α) f̂ (ξ − η)ĝ(η) dη,

and we have
∣∣|ξ |α − |η|α∣∣ � |ξ − η|α, α ∈ [0, 1].

In particular, we find
∣∣∣∣
∫

R

(|ξ |α − |η|α) f̂ (ξ − η)ĝ(η) dη

∣∣∣∣�
∫

R

|ξ−η|α| f̂ |(ξ − η)|ĝ|(η) dη, α ∈ [0, 1],

whence
∥∥∥∥
∫

R

(|ξ |α − |η|α) f̂ (ξ − η)ĝ(η) dη

∥∥∥∥
L2
ξ

� min{‖Dα f ‖L2‖ĝ‖L1 , ‖D̂α f ‖L1‖g‖L2 }, α ∈ [0, 1].

Further, we recall the elementary fractional Leibniz rule

‖Dα( f g)‖L2 � ‖Dα f ‖L2‖g‖L∞ + ‖Dαg‖L2‖ f ‖L∞ , α � 0.

We immediately infer that

∣∣� (
D

1
2 +ε(|Q̃|2ũ

)
, D

1
2 +εũ

) ∣∣
= ∣∣� ((|Q̃|2 D

1
2 +2εũ

)
, D

1
2 ũ
) ∣∣+O

(
‖ ˜

D
1
2 +2ε|Q̃|2‖L1‖ũ‖L2‖D

1
2 ũ‖L2

)
. (E.2)

We can estimate the right-hand term by

O

(
‖ ˜

D
1
2 +2ε|Q̃|2‖L1‖ũ‖L2‖D

1
2 ũ‖L2

)
� λ− 3

2 −2ελλ
1
2 � λ−2ε,

which is integrable for ε small enough. Next, consider the more delicate term

∣∣� ((|Q̃|2 D
1
2 +2εũ

)
, D

1
2 ũ
) ∣∣.

Here the key is to exploit a cancellation: Writing
̂
D

1
2 ũ(ξ) = f (ξ), we find

2i�F(
D

1
2 +2εũ D

1
2 ũ
)
(ξ) =

∫
R

|ξ − η|2ε[ f̂ (ξ − η) f̂ (η)− f̂ (ξ − η) f̂ (η)] dη

=
∫

R

[|ξ − η|2ε − |η|2ε] f̂ (ξ − η) f̂ (η) dη.

It follows from Plancherel’s theorem that
∣∣∣� ((|Q̃|2 D

1
2 +2ε ũ

)
, D

1
2 ũ
)∣∣∣ =

∣∣∣∣
∫

R

F(|Q̃|2)(ξ)
∫

R

[|ξ − η|2ε − |η|2ε] f̂ (ξ − η) f̂ (η) dηdξ

∣∣∣∣
� ‖|ξ |2εF(|Q̃|2)(ξ)‖L1

ξ
‖ f ‖2

L2 � λ−1−2ελ = λ−2ε. (E.3)
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Next, we consider the term

�
(

D
1
2 +ε[2�(ũ Q̃)Q̃

]
, D

1
2 +εũ

)
.

The challenge consists again in moving the extra 2ε derivatives away from the
function ũ. To this end, we write

�
(

D
1
2 +ε[2�(ũ Q̃)Q̃

]
, D

1
2 +εũ

)
= �

([
2D

1
2 +ε�(ũ Q̃)Q̃

]
, D

1
2 +εũ

)
+ error1.

In order to estimate the error term, introduce f = 2�(ũ Q̃), g = Q̃, h = D
1
2 ũ.

Then using Plancherel’s theorem, we find

error1 = �
∫

R

|ξ |ε
∫

R

f̂ (ξ − η)(|ξ |α − |ξ − η|α)ĝ(η)ĥ(ξ) dηdξ, α = 1

2
+ ε,

and so we infer the bound

|error1| � (‖Dε f ‖L2‖D̂αg‖L1 + ‖ f ‖L2‖D̂α+εg‖L1)‖h‖L2

� (λ1−ελ− 1
2 λ−1−ε + λλ− 1

2 λ−1−2ε)λ
1
2 � λ−2ε. (E.4)

We further obtain

�
([

2D
1
2 +ε�(ũ Q̃)Q̃

]
, D

1
2 +εũ

)
= �

([
2�(D 1

2 +εũ Q̃)Q̃
]
, D

1
2 +εũ

)
+ error2,

and we can estimate with f = ũ, g = Q̃, h = Q̃ D
1
2 +εũ,

|error2| =
∣∣∣∣
∫

R

∫
R

f̂ (ξ − η)(|ξ |α − |ξ − η|α)ĝ(η)ĥ(ξ) dηdξ

∣∣∣∣ .
Then, since we have

‖h − Dε(Q̃ D
1
2 ũ)‖L2 � ‖̂

Dε Q̃‖L1‖D
1
2 ũ‖L2 � λ− 1

2 −ελ
1
2 ,

we find

|error2| � ‖ f ‖L2‖D̂αg‖L1‖h − Dε(Q̃ D
1
2 ũ)‖L2

+‖Dε f ‖L2‖D̂αg‖L1‖Q̃ D
1
2 ũ‖L2

+‖ f ‖L2‖D̂α+εg‖L1‖Q̃ D
1
2 ũ‖L2

� λλ−1−ελ− 1
2 −ελ

1
2 + λ1−ελ−1−ελ− 1

2 λ
1
2

� λ−2ε. (E.5)

At this point, we have reduced estimating the term

�
(

D
1
2 +ε[2�(ũ Q̃)Q̃

]
, D

1
2 +εũ

)
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to estimating the term

�
([

2�(D 1
2 +εũ Q̃)Q̃

]
, D

1
2 +εũ

)

= �
([

2D
1
2 �(Dεũ Q̃)Q̃

]
, D

1
2 +εũ

)
+ error3

= �
([

2�(Dεũ Q̃)Q̃
]
, D1+εũ

)
+ error3 + error4.

Denoting f = Dεũ, g = Q̃, h = Q̃ D
1
2 ũ, h1 = Dεh − Q̃ D

1
2 +εũ, we find with

Plancherel’s theorem

|error3| �
∫

R

| f̂ |(ξ − η)
∣∣|ξ | 1

2 − |ξ − η| 1
2
∣∣|ĝ(η)||ξ |ε|ĥ|(ξ) dηdξ

+
∫

R

| f̂ |(ξ − η)
∣∣|ξ | 1

2 − |ξ − η| 1
2
∣∣|ĝ(η)||ĥ1|(ξ) dηdξ

� [‖Dε f ‖L2‖̂
D

1
2 g‖L1 + ‖ f ‖L2‖ ̂

D
1
2 +εg‖L1 ]‖h‖L2

+‖ f ‖L2‖̂
D

1
2 g‖L1‖h1‖L2

� (λ1−2ελ−1 + λ1−ελ−1−ε)λ− 1
2 λ

1
2 + λ1−ελ−1λ− 1

2 −ελ
1
2 � λ−2ε.(E.6)

Further, we find with f = 2�(Dεũ Q̃), g = Q̃, h = D
1
2 ũ,

|error4| �
∫

R

| f̂ |(ξ − η)
∣∣|ξ | 1

2 − |ξ − η| 1
2
∣∣|ĝ|(η)|ξ |ε|ĥ|(ξ) dηdξ

� (‖Dε f ‖L2‖̂
D

1
2 g‖L1 + ‖ f ‖L2‖ ̂

D
1
2 +εg‖L1)‖h‖L2

� (λ1−2ελ− 1
2 λ−1 + λ1−ελ− 1

2 −ελ−1 + λ1−ελ− 1
2 λ−1−ε)λ

1
2

� λ−2ε. (E.7)

We have now reduced things to the term

�
([

2�(Dεũ Q̃)Q̃
]
, D1+εũ

)

= −�
([

2�(Dεũ Q̃)Q̃
]
, Dε∂t ũ

)
− �

([
2�(Dεũ Q̃)Q̃

]
, DεG

)

= −�
(

2�(Dεũ Q̃), ∂t
(
Q̃ Dεũ

)) + �
(

2�(Dεũ Q̃), (∂t Q̃)Dεũ
)

−�
([

2�(Dεũ Q̃)Q̃
]
, DεG

)
,

where we put G = |ũ|2ũ + ψ + F . We finally estimate the contributions of these
three terms: for the first term after the last equality sign, we have

∫ t1

t
−�

(
2�(Dεũ Q̃), ∂t

(
Q̃ Dεũ

)
dt = ‖�(Dεũ Q̃)|t1t ‖2

L2 � (λ
1
2 −ε)2. (E.8)
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Next, we find

∣∣� (
2�(Dεũ Q̃), (∂t Q̃)Dεũ

) ∣∣
� ‖Dεũ Q̃)‖L2‖∂t Q̃‖L∞‖Dεũ‖L2 � (λ1−ε)2λ−1. (E.9)

Finally, we estimate the third term above involving the expression Gn . We have
schematically

|ũ|2ũ + F = Q̃2ũ + Q̃ũ2 + ũ3.

Using Lemma D.1, it follows that

‖Dε[|ũ|2ũ + F]‖L2 � ‖Dε ũ‖L2

(
λ−1 + λ− 1

2 λ
1
2 log

1
2

(‖ũ‖
H

1
2 +ε

‖ũ‖
H

1
2

)
+ λ log

(‖ũ‖
H

1
2 +ε

‖ũ‖
H

1
2

))

+ ‖ũ‖L2

(
λ−1−ε + λ− 1

2 −ελ
1
2 log

1
2

(‖ũ‖
H

1
2 +ε

‖ũ‖
H

1
2

))

� λ−ε + λ1−ε log
(
‖ũ‖

H
1
2 +ε

)
.

We conclude that
∣∣� ([

2�(Dεũ Q̃)Q̃
]
, DεG

) ∣∣
� ‖�(Dεũ Q̃)Q̃‖L2 [‖Dε|[ũ|2ũ + F]‖L2 + ‖Dεψ‖L2 ]
� λ−ε[λ−ε + λ1−ε log(‖ũ‖

H
1
2 +ε )]. (E.10)

The inequalities (E.4)–(E.10) complete the estimate of the term

�
(

D
1
2 +ε[2�(ũ Q̃)Q̃

]
, D

1
2 +εũ

)
.

We continue with the remaining interactions in

i�
(
−D

1
2 +ε[|ũ|2ũ + F], D

1
2 +εũ

)
.

We write the higher order terms in [|ũ|2ũ + F] schematically in the form

Q̃ũ2 + |ũ|2ũ.

We get

∣∣i� (
−D

1
2 +ε[|ũ|2ũ + F], D

1
2 +εũ

) ∣∣

� ‖D
1
2 +εũ‖L2

(
λ− 1

2 ‖ũ‖
H

1
2

log
1
2

(‖ũ‖
H

1
2 +ε

‖ũ‖
H

1
2

)
‖D

1
2 +εũ‖L2

+‖ũ‖2

H
1
2

log

(‖ũ‖
H

1
2 +ε

‖ũ‖
H

1
2

)
‖D

1
2 +εũ‖L2

)
. (E.11)
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By combining (E.1)–(E.11) and denoting Y (t) := ‖D
1
2 +εũ‖2

L2 , we deduce

|Y ′(t)| � λ−2ε + λ1−ε log

(
Y

1
2 (t)+ 1

‖ũ‖
H

1
2

)
+ Y (t)λ− 1

2 ‖ũ‖
H

1
2

log
1
2
(Y

1
2 (t)+ 1

‖ũ‖
H

1
2

)
.

In view of the fact that λ ∼ t2,Y (t1) � λ
1
2 −2ε, and ‖ũ‖

H
1
2

� λ
1
2 , a Gronwall-

lemma type argument implies that

Y (t) � λ
1
2 −2ε,

provided ε < 1
4 , for t sufficiently small, which is the desired a-priori bound. This

completes the Step 6 in the proof of Lemma 7.1.

Appendix F. Fractional Leibniz Type Formula

Lemma F.1. Suppose N � 1 and let φ : R
N → R be such that ∇φ and�φ belong

to L∞(RN ). Then we have∣∣∣∣
∫

RN
ū(x)∇φ(x) · ∇u(x)

∣∣∣∣ � ‖∇φ‖L∞‖u‖2
Ḣ1/2 + ‖�φ‖L∞‖u‖2

L2 .

Proof. By density, it suffices to prove this bound for any Schwartz function u ∈
S(RN ). Let

( f, T g) =
∫

Rd
f̄ (x)∇φ(x) · ∇g(x), for f, g ∈ S(RN ).

Define a = ‖∇φ‖L∞ and b = ‖�φ‖L∞ , where we suppose that b > 0 (and hence
a > 0) holds. (Otherwise, the arguments below can be trivially modified in this
case.) We define the norm ‖ · ‖H1

a,b
by setting

‖u‖2
H1

a,b
= a2‖∇u‖2

L2 + b2‖u‖2
L2 .

By the Cauchy–Schwarz inequality, we immediately find that

|( f, T g)| � ‖∇φ‖L∞‖ f ‖L2‖∇g‖L2 � ‖ f ‖L2‖g‖H1
a,b
.

On the other hand, if we integrate by parts and apply Cauchy–Schwarz again, we
obtain that

|( f, T g)| =
∣∣∣∣
∫

∇ f̄ (x) · ∇φ(x)g(x)+ f̄ (x)�φ(x)g(x)

∣∣∣∣
� ‖∇φ‖L∞‖∇ f ‖L2‖g‖L2 + ‖�φ‖L2‖ f ‖L2‖g‖L2 � ‖g‖L2‖ f ‖H1

a,b
.

Combining the previous estimates, we deduce the operator bounds

‖T ‖L2→H−1
a,b

� 1 and ‖T ‖H1
a,b→L2 � 1, (F.1)
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where the space H−1
a,b denotes the dual of H1

a,b equipped with the dual norm
‖u‖H−1

a,b
= sup{|(v, u)|.

Now, we are ready to use standard interpolation theory to complete the proof.
Indeed, let

Xϑ(RN ) =
[

L2(RN ), H1
a,b(R

N )
]

2,θ

denote the real interpolation of L2(RN ) and H1
a,b(R

N ) with exponent ϑ ∈ (0, 1).

Using Plancherel’s theorem and the equivalence (a2|ξ |2 + b2)ϑ ∼ a2θ |ξ |2ϑ +
b2ϑ and applying standard interpolation arguments (see, for example, [42, Lemma
23.1]), we deduce with equivalence of norms that

Xϑ(RN ) � Hϑ
a,b(R

N ), for ϑ ∈ (0, 1),

where the norm ‖ · ‖Hϑ
a,b

is given by

‖ · ‖2
Hϑ

a,b
= a2ϑ‖Dϑu‖2

L2 + b2ϑ‖u‖2
L2 .

From interpolation theory we deduce from (F.1) the bound

|( f, T g)| � ‖ f ‖Hϑ
a,b

‖g‖H1−ϑ
a,b
, for ϑ ∈ (0, 1).

By taking ϑ = 1/2 and f = ū and g = u, we complete the proof of Lemma F.1.
��
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