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Abstract

We prove existence, uniqueness, and stability of transition fronts (generalized
traveling waves) for reaction-diffusion equations in cylindrical domains with gen-
eral inhomogeneous ignition reactions. We also show uniform convergence of solu-
tions with exponentially decaying initial data to time translations of the front. In
the case of stationary ergodic reactions, the fronts are proved to propagate with
a deterministic positive speed. Our results extend to reaction-advection-diffusion
equations with periodic advection and diffusion.

1. Introduction and Results

In this paper we study time-global solutions, called transition fronts or gen-
eralized traveling waves, of reaction-diffusion equations on infinite cylinders. We
consider the PDE

ut = �u + f (x, u) (1.1)

which is used in modeling of processes such as autocatalytic chemical reactions,
propagation of advantageous genes in a population, and combustion. The function
u(t, x) ∈ [0, 1] is the (normalized) concentration of a reactant or allele, or the tem-
perature of a combusting solid or gaseous medium. The non-negative reaction term
f accounts for an increase of concentration/temperature due to a chemical reaction
or burning and satisfies f (x, 0) = f (x, 1) = 0. We will be particularly interested
in ignition reactions, which vanish for u smaller than some ignition temperature
θ(x) > 0 and are used in the modeling of combustion, but we will also treat general
non-negative reactions. The function f will satisfy some uniform bounds but will
otherwise be an arbitrary non-periodic function of x .

We will also consider the more general equation

ut + q(x) · ∇u = div(A(x)∇u)+ f (x, u), (1.2)
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with an incompressible mean-zero vector field q representing advection and a uni-
formly elliptic diffusion operator div(A∇) representing inhomogeneous diffusion.
Unlike f , both q and A will be assumed to be periodic (with the same period).

Our main goal is the proof of existence and uniqueness of transition fronts under
very general conditions on f . Moreover, we also want to prove uniform conver-
gence of arbitrary solutions of (1.1)/(1.2) with exponentially decaying initial data
to these fronts, thus describing the behavior of very general solutions of the PDEs.
We will do this for (1.1)/(1.2) with ignition reactions, and also prove existence of
fronts for some non-ignition reactions, on the cylindrical domain D ≡ R × T

d−1

(that is, R×[0, 1]d−1 with periodic boundary conditions). However, all our results
can be extended to open connected domains D ⊆ R

d with a smooth boundary
which are periodic in the first variable and bounded in the others, with either peri-
odic or Neumann boundary conditions on ∂D (the latter being ν · ∇u = 0 for (1.1)
or ν · A∇u = 0 and q ·ν = 0 for (1.2), with ν the outward unit normal to ∂D). These
include cylinders with periodically undulating boundaries and a periodic array of
holes.

Such domains, unbounded in arbitrarily many variables, have been considered
in [1], where transition fronts for periodic f (as well as q and A) were studied. We
restrict ourselves here to domains unbounded in only one variable because this is
essentially the only case when transition fronts for ignition reactions can be unique,
even in homogeneous media (one moving right and one moving left). Moreover, we
will show elsewhere [23] that there are examples of ignition reactions on D = R

2

where no transition fronts exist! Nevertheless, some questions about solutions of
(1.1)/(1.2) on domains unbounded in several variables can also be treated by our
methods [23].

The following is the definition of a transition front from [2], adapted to our
domain D.

Definition 1.1. A transition front (moving to the right) is a solution w : R × D →
[0, 1] of (1.1) or (1.2) that is global in time and satisfies, for each t ∈ R,

lim
x1→−∞w(t, x) = 1 and lim

x1→+∞w(t, x) = 0, (1.3)

uniformly in (x2, . . . , xd) ∈ T
d−1. In addition, the front must have a bounded width

(uniformly in time). That is, if Iε(t) ⊂ R is the smallest interval such thatw(t, x) ∈
[0, ε] ∪ [1 − ε, 1] for x ∈ D \ (Iε(t)× T

d−1), then Lw,ε ≡ supt∈R |Iε(t)| < ∞ for
each ε > 0. The domain Iε0(t) × T

d−1 for some small ε0 > 0 will be referred to
as the reaction zone.

We define a transition front moving to the left as above, but with (1.3) replaced
by

lim
x1→−∞w(t, x) = 0 and lim

x1→+∞w(t, x) = 1.

Remark. In cylindrical domains fronts moving both right and left can exist. Since
the transformation x1 
→ −x1 interchanges the two directions, we will mostly
consider only fronts moving to the right.
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The simplest case of transition fronts is a traveling front whose shape is time-
independent. The study of traveling fronts goes back to the works of Kolmogorov
et al. [11] and Fisher [8] in 1937. Those researchers considered (1.1) in one spa-
tial dimension D = R and with x-independent KPP reaction f (u) (such that
0 < f (u) � f ′(0)u for u ∈ (0, 1)). In this case, traveling fronts of the form
w(t, x) = W (x −ct) exist precisely when the front speed c � c∗, with the minimal
speed being c∗ = 2

√
f ′(0). The front profile W is time independent and satisfies

the ODE Wxx + cWx + f (W ) = 0 with W (∞) = 0 and W (−∞) = 1. The situa-
tion is the same for general positive reactions (such that f (u) > 0 for u ∈ (0, 1))
but the formula for c∗ > 0 is more complicated. In contrast, the front and its speed
c∗ > 0 are unique for ignition reactions (such that f (u) = 0 for u ∈ [0, θ ] and
f (u) > 0 for u ∈ (θ, 1), with θ > 0).

The ansatz w(t, x) = W (x − cte1) also works in more dimensions when q, A
and f are independent of x1, and the answers are the same as above. In particular,
the case of mean-zero shear flows q and x-independent A, f has been treated by
Berestycki et al. [5], and Berestycki and Nirenberg [6]. On the other hand, for
periodic q, A, f (with the same period p), the front profile can only be expected to
be time-periodic in a moving frame in the sensew(t + p/c, x + pe1) = w(t, x) for
some speed c > 0. Such pulsating fronts are of the form w(t, x) = W (x1 − ct, x)
with the profile W decreasing in the first variable, periodic in the second, and
satisfying lims→−∞ W (s, x) = 1 and lims→+∞ W (s, x) = 0uniformly in x ∈ D.
Existence and uniqueness of pulsating fronts (with mean-zero q) was proved by Xin
[20] for x-independent ignition reactions in R

d , and by Berestycki and Hamel [1]
for x-periodic ignition reactions (such that if θ̃ ≡ infx θ(x), with θ(x) ≡ inf{u >
0 | f (x, u) > 0} the ignition temperature, then θ̃ > 0 and supx∈D f (x, u) > 0 for
each u ∈ (θ̃ , 1)) in general periodic domains. [1] also treats x-periodic positive
reactions (as above but with θ̃ = 0) and again proves existence of fronts with
precisely the speeds c � c∗ for some c∗ > 0.

The situation is different for disordered media, when no such ansatz exists and
one has to work directly with the original PDE. Constant or periodic front profiles
cannot be expected and fronts need not have a well defined speed. The definition
of a transition front, above, has been given by Berestycki and Hamel [2] in a
more general setting and on arbitrary domains. An alternative definition has been
given by Shen [18], who studied fronts in time-random one-dimensional media
and established some sufficient conditions on their existence. This formalizes an
earlier definition by Matano, which essentially requires the profile of the front to
be a continuous function of the medium near the reaction zone.

Due to the above difficulties, existence and uniqueness of transition fronts in
general disordered media has so far only been proved for (1.1) in one dimension, for
some ignition reactions with x-independent ignition temperatures. Specifically, No-
len and Ryzhik [15], and independently Mellet et al. [14], have proved that such
fronts exist on D = R when the reaction satisfies b0 f0(u) � f (x, u) � b1 f0(u)
and f ′

0(1) < 0. Here 0 < b0 � b1 < ∞ and f0 is of ignition type with
f0(u) > 0 if and only if u ∈ (θ, 1), θ > 0. Moreover, Mellet et al. [13]
proved that if f (x, u) = b(x) f0(u) with b(x) ∈ [b0, b1], then the (right-mov-
ing) front is unique and exponentially stable with respect to exponentially in space
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decaying perturbations. In addition, Vakulenko and Volpert [19] proved exis-
tence of fronts for (1.1) in one-dimensional with f some small perturbation of
an x-independent bistable reaction f0(u) (such that f ′

0(0), f ′
0(1) < 0, f0(u) < 0

for u ∈ (0, θ), and f0(u) > 0 for u ∈ (θ, 1)). We also mention here results
for x-independent bistable reactions in some special domains—non-existence of
moving fronts (while stationary fronts exist) in quickly widening cylinders by
Chapuisat and Grenier [7], and later also Berestycki et al. [3], and existence
of fronts in R

d with compact star-shaped obstacles [3].
The usage of one-dimensional techniques plays an important role in [13–15], as

does the requirement of an x-independent ignition temperature θ .We present here a
new method that can handle more general reactions, works in several dimensions,
and in the presence of (periodic) q and A. In particular, we prove existence of a
unique transition front when f lies between two arbitrary x-independent ignition
reactions with different ignition temperatures. We also prove existence of fronts in
the more general case when the upper bound is a positive reaction, only requiring
a bound on its derivative at zero (these fronts are not unique in general, as is the
case for homogeneous media). We note that the requirement of a bound of this type
is necessary to guarantee existence and cannot be improved, except possibly by a
constant (see Remark 1 after Theorem 1.3).

Let us now state our main results. We will start with the special case (1.1). We
will assume the following hypotheses on f .

(H1) The reaction f is uniformly Lipschitz with constant K � 1 and lies
between two x-independent reactions, one of ignition type and the other positive
or ignition. More specifically, there are Lipshitz functions f0, f1, decreasing on
[1 − ε, 1] for some ε > 0, such that f0(u) � f (x, u) � f1(u) for (x, u) ∈
D × [0, 1]. In addition, f0(0) = f0(1) = f1(0) = f1(1) = 0, there is θ ∈ (0, 1)
such that f0(u) = 0 for u ∈ [0, θ ] and f0(u) > 0 for u ∈ (θ, 1), and there is
θ ′ ∈ [0, 1), such that f1(u) = 0 for u ∈ [0, θ ′] and f1(u) > 0 for u ∈ (θ ′, 1).

Assume that c0 > 0 is the speed of the unique (right-moving) traveling front
for (1.1) with f replaced by the x-independent reaction f0 (this front is of the
form w(t, x) = W (x1 − c0t)). We then obtain existence of a transition front for
f , provided f ′

1(0) < c2
0/4. Note that this condition is automatically satisfied when

f ′
1(0) = 0 (for example, if f1 is ignition). For instance, a front exists in the case

f (x, u) = b(x) f1(u) with f ′
1(0) = 0 and b Lipschitz and uniformly bounded

away from 0 and ∞. Moreover, if f1 is ignition, then we also prove uniqueness of
the (right-moving) front and that this unique front is a global attractor of general
exponentially decaying initial data.

Our reaction f can have an x-dependent ignition temperature θ(x) ∈ [θ ′, θ ]
and we do not require supx∈D f (x, u) > 0 for each u ∈ (inf x∈D θ(x), 1). Never-
theless, we will need to impose a similar but weaker natural hypothesis (which is
automatically satisfied when θ ′ = θ ) that if f (x, u) is large enough (rather than
just positive) for some (x, u) and v ∈ (u, 1), then f (·, v) cannot become uniformly
arbitrarily small on some large neighborhood of x ∈ D.

Definition 1.2. Given any ζ > 0, define

α f (x) ≡ inf
({u ∈ (0, 1) | f (x, u) � ζu} ∪ {1}). (1.4)
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Fig. 1. Example of a reaction (at a fixed x ∈ D) satisfying our hypotheses

Assume g ∈ C([0, 1]) with g(0) = g(1) = 0 and g(u) > 0 for u ∈ (0, 1). If for
all x ∈ D and all u ∈ [α f (x), 1] we have sup|x̃1−x1|�‖g‖−1∞ f (x̃, u) � g(u), then
we say that f ζ -majorizes g.

Remark. 1. If ζ > f ′
1(0), then α f (x) = min({u ∈ (0, 1) | f (x, u) = ζu} ∪

{1}) > θ ′.
2. We could replace ‖g‖−1∞ by some large M , but then the notation would have to

include it, thus being too cumbersome. Of course, we will consider f ζ -maj-
orizing some small g (with a large ‖g‖−1∞ ), so this simplification can be made
without loss.
The Fig. 1 gives an example of such an f at a fixed x (satisfying f (x, u) > 0

for u ∈ [α f (x), 1], while the definition requires non-vanishing of f only at such u
and some u-dependent point x̃ whose distance from x is uniformly bounded).

Here is our main result for (1.1).

Theorem 1.3. Let f satisfy the hypotheses (H1). Assume that f ζ -majorizes g for
some ζ < c2

0/4 and some g as in Definition 1.2.

(i) If f ′
1(0) < c2

0/4, then there exists a transition front w for (1.1) moving to the
right with wt > 0 (and another moving to the left).

(ii) If f1 is an ignition reaction (that is, θ ′ > 0) and f is non-increasing in u on
[θ ′′, 1] for some θ ′′ < 1, then there is a unique (up to time shifts) transition
front w+ for (1.1) moving to the right (and another w− moving to the left).

(iii) In the setting of (ii) we have convergence of solutions with exponentially
decaying initial data to time shifts ofw± in the sense of Definition 1.4, below.
Moreover, this convergence is uniform in f, a, u—the sε in the definition
depends only on f0, f1, ζ, g, K , θ ′′,Y, μ, ν, ε and the Lν on f0, ν.
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Definition 1.4. Let w± be some right- and left- moving transition fronts for (1.1)
(or (1.2)) on D. We say that solutions with exponentially decaying initial data
converge to time shifts of w± if the following hold for any Y, μ, ν > 0 and a ∈ R:

(a) If u solves (1.1) (or (1.2)) with initial datum

(θ + ν)χ(−∞,a](x1) � u0(x) � e−μ(x1−a−Y ),

then there is τu such that for every ε > 0 there is sε > 0, such that for each
t � sε,

‖u(t, x)− w+(t + τu, x)‖L∞
x
< ε (1.5)

(and similarly for solutions exponentially decaying as x1 → −∞ and for
w−).

(b) There is Lν < ∞ such that if L � Lν and u solves (1.1) (or (1.2)) with initial
datum

(θ + ν)χ[a−L ,a+L](x1) � u0(x) � min{e−μ(x1−a−L−Y ), eμ(x1−a+L+Y )},
then there are τu,± such that for every ε > 0 there is sε > 0, such that for
each t � sε,

‖u(t, x)− w+(t + τu,+, x)− w−(t + τu,−, x)+ 1‖L∞
x
< ε. (1.6)

As mentioned before, transition fronts need not exist in general (and are typ-
ically not unique) when the domain D is unbounded in more than one variable,
even for ignition reactions. We next make several remarks which illuminate the
necessity of the assumptions in Theorem 1.3 on cylindrical domains D, and thus
show that our result is qualitatively sharp.

Remark. 1. The main condition here is f ′
1(0) < c2

0/4. Some condition of this
type is necessary for the existence of fronts, as can be seen from a result of
Nolen et al. [16], which shows that there are examples with D = R and f ′

1(0)
arbitrarily close to c2

0 where no transition fronts exist! In these examples, in
fact, each global in time solution 0 < u < 1 is a spatially extended pulse with
‖u(t, x)‖L∞

x
→ 0 as t → −∞.

2. The condition f ′
1(0) < c2

0/4 is equivalent to 2
√

f ′
1(0) < c0, meaning that

minimal-speed fronts for KPP reactions f (u) with f ′(0) = f ′
1(0) are slower

than the front for f0(u). It then follows that the graph of f ′
1(0)u must intersect

that of f0(u) at some u > 0 because the minimal front speed is monotone
with respect to the reaction. Thus we cannot treat the case when f1 as a KPP
reaction, which is not surprising in the light of the previous remark.

3. Some condition of non-vanishing of f after it has become large (such as in
Definition 1.2) is also needed, otherwise a transition front connecting 0 and
1 might not exist. An example of such a situation can be obtained by taking
f (x, u) = f (u) with f (u + 1

2 ) � f (u) for u ∈ [0, 1
2 ] (so f ( 1

2 ) = 0) with
a strict inequality somewhere. It can be then shown that if there is a front
connecting 0 and a ∈ [0, 1], then a � 1

2 .
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4. As mentioned earlier, in the general positive reaction case (i) transition fronts
are not unique even in homogeneous media.

5. We also note that some decay assumption on u0 in (iii) needs to be made.
Indeed, it is not hard to show that if f (x, u) = f0(u) and u0 decays slowly
enough, then u will “overtake” all time shifts of w+.

6. Lν < ∞ in Definition 1.4(b) is such that solutions of (1.1) with f0 in place of
f and u0(x) � (θ + ν)χ[−Lν ,Lν ] are guaranteed to spread, that is, u(t, x) → 1
locally uniformly in x ∈ D as t → ∞. This can be taken to be the Lν from
Lemma 5.1.

Theorem 1.3 extends to the more general case of (1.2) with periodic q and A
which satisfy the following hypotheses.

(H2) The flow q ∈ Cη(D) (for some η > 0) is incompressible ∇ · q ≡ 0,
p-periodic in x1, and with mean-zero first coordinate

∫
C q1(x) dx = 0 (where

C = [0, p] × T
d−1). The matrix A ∈ C1,η(D) is symmetric, p-periodic, and with

AI � A(x) � ĀI for some 0 < A � Ā < ∞ and all x ∈ D.
Again, let c0 > 0 be the speed of the unique (right-moving) pulsating front

for (1.2), with f replaced by f0 [1]. We also let ζ0 > 0 be such that the minimal
pulsating front speed for (1.2) with f replaced by ζ0u(1−u) is c0 [4]. Equivalently,
ζ0 is the unique positive number such that the right-hand side of (2.9) below with
ζ replaced by ζ0 equals c0. For the left-moving front we have a possibly different
speed c−

0 > 0, and we define ζ−
0 > 0 accordingly, with e1, q1 replaced by −e1,−q1

in (2.10). The condition f ′
1(0) < c2

0/4 is now replaced by f ′
1(0) < ζ0 and our main

result for (1.2) is as follows.

Theorem 1.5. Let q, A, f satisfy the hypotheses (H1), (H2).
Assume that f ζ -majorizes g for some ζ < ζ0 and some g as in Definition 1.2.

(i) If f ′
1(0) < ζ0, then there exists a transition front w for (1.2) moving to the

right with wt > 0 (and another moving to the left when ζ0 is replaced by ζ−
0

in the hypotheses).
(ii) If f1 is an ignition reaction (that is, θ ′ > 0) and f is non-increasing in u on

[θ ′′, 1] for some θ ′′ < 1, then there is a unique (up to time shifts) transition
front w+ for (1.2) moving to the right (and another w− moving to the left).

(iii) In the setting of (ii) we have convergence of solutions with exponentially
decaying initial data to time shifts ofw± in the sense of Definition 1.4. More-
over, this convergence is uniform in f, a, u—the sε in the definition depends
only on q, A, f0, f1, ζ, g, K , θ ′′,Y, μ, ν, ε and the Lν on q, A, f0, ν.

Remark. 1. Although the front speed is not well defined in general disordered
media, it is easy to see from our proof that the reaction zone ofw± moves with
speed � c0 resp. � c−

0 . We also prove an f -independent bound on the width
of w± (see the remark after the proof of Lemma 3.1 and the last paragraph of
Section 3). In addition, w+ decays at an exponential rate � λζ as x1 → ∞
(and similarly w− as x1 → −∞) determined from (2.9) (see (3.1)). In fact, λζ
can be replaced here by any λ such that the fraction in (2.9) is smaller than c0.

2. The proof of Theorem 1.5 can, in fact, be made independent of previous results
on transition fronts. In particular, we can prove that a unique pulsating front
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with a unique speed c0 exists for (1.2) with the x-independent reaction f0
(which we need in order to state Theorem 1.5). This is done at the end of the
proof of Lemma 5.1. The only result we will need is convexity of the function
κ(λ) in (2.10) and κ ′(0) = 0, from [1, Proposition 5.7(iii)].
We next note that (at least for fixed periodic A, q) the ignition fronts in (ii)
satisfy the earlier mentioned definition of Matano, where the shape of the front
depends continuously on the reaction f in the neighborhood of the reaction
zone. This follows from the uniform in time convergence of general solutions
to the front in (iii). We provide an application of this principle to periodic and
random media.

Corollary 1.6. Assume the hypotheses of Theorem 1.5(ii) and that f is also p-peri-
odic in x1. Then there is c± > 0 such that the unique transition front w± from that
theorem satisfies w±(t + p/c±, x ± pe1) = w±(t, x) (that is, w± is time-periodic
in the frame moving right/left at the speed c±, which is thus the speed of w±).

Remark. Existence, uniqueness, and periodicity of the transition front in this set-
ting also follow from results in [1,2], but only within the class of transition fronts
which have a constant mean speed (that is, there is c � 0 such that for X̃w as
below, sup(t,s)

∣
∣|X̃w(t) − X̃w(s)| − c|t − s|∣∣ < ∞), with the extra assumption

supx∈D f (x, u) > 0 for each u ∈ (infx∈D θ(x), 1), and with somewhat stron-
ger regularity assumptions on q, A, f (the last two in [1]). Hence, our result of
existence, uniqueness, and periodicity of pulsating fronts in periodic media with
ignition reactions is new in this generality.

Proof. Consider only w+. Let u, u′ be solutions of (1.2) with initial data u0(x),
u0(x + p), where u0 is as in the first part of (iii). Then u, u′ are p-translates of
each other (in x1), so the same is true about w+(t + τu, x) and w+(t + τu′ , x). The
result follows with c+ ≡ p/(τu − τu′). ��

Although fronts in disordered media do not have constant (mean) speeds in gen-
eral, our results can be used to show that there is a deterministic asymptotic speed
of fronts for (1.1)/(1.2) when f is random (stationary and ergodic with respect to
translations in x1). The asymptotic front speed of a transition front w is defined as

c ≡ lim|t |→∞
|X̃w(t)|

|t | , (1.7)

provided the limit exists. Here X̃w(t) is the first coordinate of some point in the
reaction zone of the front; for instance, one could take X̃w(t) such thatw(t, x) = 1

2
for some x = (X̃w(t), x2, . . . , xd). Such X̃w(t)may not be unique, but the require-
ment of a bounded width of the front w shows that the limit in (1.7) is independent
of the choice.

Corollary 1.7. Consider a probability space (�,F ,P) and assume that a measur-
able function f : � → L∞

loc(D ×[0, 1]) satisfies the hypotheses of Theorem 1.5(ii)
(with ω-independent q, A) uniformly in ω ∈ �. In addition, assume that f is sta-
tionary and ergodic. That is, there is a group {πk}k∈Z of measure preserving trans-
formations acting ergodically on � such that f (πkω; x, u) = f (ω; x − kpe1, u).
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Then there are constants c± > 0 such that the ω-dependent transition front w±,ω
from that theorem has asymptotic speed c± for almost all ω ∈ �.

Remark. 1. Theorem 1.5(iii) then shows that solutions with (large enough) expo-
nentially decaying initial data almost surely spread with asymptotic speed c+
to the right and c− to the left.

2. Corollary 1.7 was proved in [15] for (1.1) in the one-dimensional setting D = R

and with the random reaction function f (ω; x, u) = b(x, ω) f0(u), where b is
bounded below and above by positive constants and f0 is of the ignition type.

Proof. Consider onlyw+ and the case of p-periodic q, A. Let v(x) be the function
from Lemma 2.1 below with θ̃ chosen as at the beginning of Section 3. Let um

solve (1.2) with initial condition um(0, x) = v(x − mpe1) (so that (um)t > 0). For
integers n � m, define

τm,n(ω) ≡ inf
{
t � 0

∣
∣ um(t, x) � v(x − npe1) for all x ∈ D

}
.

Then the proof of Theorem 1.5 (more precisely, (3.6) and (3.9), below) shows that
τm,n(ω) ∈ [C0(n − m),C1(n − m)] for some 0 < C0 < C1 < ∞ and all ω. More-
over, τm,n is measurable because f : � → L∞

loc(D × [0, 1]) is measurable and
τm,n : L∞

loc(D × [0, 1]) → R is a lower semi-continuous function of the reaction
due to continuity of solutions of (1.2) with respect to f ∈ L∞

loc(D ×[0, 1]) and the
properties of v.

The comparison principle shows that τm,n(ω) � τm,k(ω)+ τk,n(ω) when m �
k � n. We also have τm+k,n+k(πkω) = τm,n(ω) for k ∈ Z. Since the group {πk}k∈Z

acts ergodically on �, the subadditive ergodic theorem [10,12] shows that there is
τ+ ∈ [C0,C1] such that

τ+ = lim
n→∞

τ0,n(ω)

n
= lim

n→∞
τ−n,0(ω)

n

for almost allω. Uniform convergence (inω) of the solution u0 to the frontw+,ω and
the proof of Theorem 1.5 (more precisely, (3.1) below) then show that c+ = p/τ+
is the asymptotic speed of w+,ω for almost all ω. ��

Let us finish this introduction with a brief description of the proof of Theorem
1.5. In Section 2 we construct the front as a limit of a (sub)sequence of special solu-
tions un of (1.2), increasing in time and initially (at a sequence of times τn → −∞)
supported increasingly farther to the left. The sequence τn is chosen so that the reac-
tion zone for un arrives at the origin at t = 0. The main issue is to show that the
un have a uniformly (in n) bounded width in the sense of Definition 1.1. This will
boil down to showing that the leftmost point Yn(t), such that to the right of it un

decays no slower than at a fixed exponential rate, cannot escape too far to the right
from the leftmost point Xn(t), such that to the right of it un(t, x) < α f (x). When
going from left to right, the former point can be thought of as the beginning of the
region where un is ‘small’ (for obvious reasons), while the latter can be thought of
as the end of the region where un is ‘large enough’ (because the end of the region
where un is close to 1 will be within a uniform distance from Xn(t), thanks to f
ζ -majorizing g and thus un growing close to 1 within a uniformly bounded time
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after it becomes at least α f (x)— see Lemma 2.6(i)). The uniform boundedness of
Yn(t)− Xn(t)will be proved in Lemma 2.5 using the crucial hypothesis f ′

1(0) < ζ0,
which guarantees that the reaction is so small when un(t, x) < α f (x) that it can
make Yn(t) propagate to the right only with a speed strictly smaller than c0 when
Yn(t)− Xn(t) is large. At the same time, Xn(t) always propagates to the right with
a speed of at least c0, because that is the case for the region where un is close to 1
(see Lemma 2.6(i)). Thus Yn(t)− Xn(t) cannot grow unbounded, as desired.

We note that this argument requires q and A to be periodic because the upper
bound on the speed of propagation of Yn(t) is the speed of propagation of an expo-
nentially decreasing super-solution (at small u) of (1.2), which is a solution if
f (x, u) is replaced by ζu. We were able to construct this solution when the latter
PDE is x-periodic by solving the cell problem (2.10) below, but not for general
non-periodic q, A. Similarly, the lower bound c0 on the speed of propagation of
Xn(t) is the minimal front speed for the x-periodic PDE with f (x, u) replaced by
f0(u). It is possible that if one could show that these bounds depend on some local
norms of q, A, but not on q, A themselves, and primarily not on the period p, then
one could obtain a front for non-periodic q, A as a limit of fronts for a sequence of
periodic qk, Ak with growing periods. We leave this as an open problem.

In Section 3 we show that if w is any transition front, then for each un one
obtains L∞

x -convergence of un to a time-shift of w as t → ∞, and the rate of this
convergence is uniform in n. This will show that any two fronts must be time shifts
of each other. The argument starts with proving local stability of un via construction
of sub- and super-solutions near un ,which will trap w between small perturbations
of two time-shifts of un . One then uses the strong maximum principle to obtain
convergence of a fixed time shift of w to un . We note that a similar strategy was
employed in the proof of uniqueness of one-dimensional ignition fronts [13]. How-
ever, our argument applies in a more general setting, and its second part is different
from, as well as considerably simpler and shorter than, that in [13]. This is in part
thanks to the use of the ideas from Section 2 described above, and in part because,
unlike [13], we do not establish a rate of the convergence of un to a time shift ofw.

We recycle this argument in Section 4 to show L∞
x -convergence of un to a time

shift of any solution u as in Theorem 1.5(iii), again at a uniform rate (in u). Since
un also converges uniformly to a time shift of w, the same will be true for u.

Of course, this all also proves the special case, Theorem 1.3. Finally, in Appen-
dix A we show how to make our proof independent of previous results by using our
arguments to obtain a slight improvement of Lemma 2.6(ii), below, which is from
[21].

The author thanks Jean-Michel Roquejoffre for useful discussions. Partial sup-
port by NSF grants DMS-1113017 and DMS-1056327 and an Alfred P. Sloan
Research Fellowship is also acknowledged.

2. Existence of Fronts for General Reactions

In this section we will prove Theorem 1.5(i) by finding a front moving to the
right. Let us assume that the period of q, A in x1 is p = 1, and thus the unit cell



Generalized Traveling Waves in Disordered Media 457

of periodicity is C = T
d (the general case is treated identically). We will assume

without loss of generality that ζ > f ′
1(0) and that there is σ ∈ (0, ζ − f ′

1(0)) such
that f ζ ′-majorizes g for each ζ ′ > ζ − σ . This can be done because if ζ ′ > ζ ,
then f also ζ ′-majorizes g, so we only need to change ζ to (max{ζ, f ′

1(0)}+ ζ0)/2
and pick σ ≡ (ζ0 − max{ζ, f ′

1(0)})/4. The first assumption implies that inf can
be replaced by min and � by = in (1.4), and α f (x) is uniformly bounded away
from 0 and 1 (see (2.8)). The second guarantees that if a subsequence of reactions
fn which satisfy (H1) converges locally uniformly to f (each such sequence has
a locally uniformly convergent subsequence) and each fn ζ

′-majorizes g for each
ζ ′ > ζ − σ , then this f not only satisfies (H1) but also ζ ′-majorizes g for each
ζ ′ > ζ − σ . This claim would not be true with � in place of >. We note that
all constants in this section will depend on q, A, f0, f1, ζ, g, K (also on ζ0, σ, c0
which already depend only on q, A, f0, ζ ) but not on f .

As in the one-dimensional case [14,15,18], we will look for the front as a limit
of solutions with initial data specified at increasingly negative times and supported
further and further to the left. These solutions will be monotonically increasing in
time. We will therefore need

Lemma 2.1. For each θ̃ ∈ (θ, 1) there exists a function v supported in (−∞, 0)×
T

d−1 ⊆ D with v(x) ∈ [0, θ̃ for all x ∈ D and v(x) = θ̃ for all x1 small enough
such that

− div(A(x)∇v)+ q(x) · ∇v � f0(v) (2.1)

in the sense of distributions.

Proof. Take a nondecreasing function ρ ∈ C(R) ∪ C2(R+) with ρ(v) = 0 for

v � 0, ρ(v) = v for v ∈ [0, θ+θ̃2 ], ρ′′(v) � 0 for v ∈ [ θ+θ̃2 , 1], and ρ(v) = θ̃ for
v � 1.

Let ṽ < 0 be a C2 solution of − div(A∇ṽ)+ q · ∇ṽ = q1 − div(Ae1) on T
d ,

periodically continued to D (here e1 = (1, 0, . . . , 0) and q1 = q ·e1). Such ṽ exists
because the integral of the right-hand side is zero, and because the left-hand side
annihilates constants. Then we let vε(x) ≡ ε(ṽ(x)− x1) and v(x) ≡ ρ(vε(x)) for
ε > 0, so thatv is supported in (−∞, 0)×T

d−1. We have− div(A∇vε)+q·∇vε = 0
and so, for some distribution T � 0 supported on the set Dε ≡ {x ∈ D | vε(x) = 0},

− div(A∇v)+ q · ∇v = −ε2χD\Dερ
′′(vε)(∇ṽ − e1) · A(∇ṽ − e1)− T .

If ρ′′(vε(x)) < 0, then v(x) = ρ(vε(x)) ∈ [ θ+θ̃2 , θ̃ ]. Since f0 is uniformly positive
on this interval and A is a positive matrix, (2.1) follows, provided ε > 0 is small
enough. ��

We now fix θ̃ < 1 to be close to 1 so that θ̃ > θ0 from (2.8) below (in partic-
ular, θ̃ > θ ) and consider the corresponding v along with the functions vn(x) ≡
v(x + ne1). For all n ∈ N let un solve (1.2) for t > τn with initial condition
un(τn, x) = vn(x), where τn → −∞ will be chosen shortly. We then have
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Lemma 2.2. The functions un satisfy for all t > τn and x ∈ D

(un)t (t, x) > 0, (2.2)

as well as

lim
t→∞ un(t, x) = 1 (2.3)

locally uniformly in x ∈ D.

Proof. The time derivative u̇n ≡ (un)t satisfies u̇n(τn, x) � 0 due to (2.1) and
periodicity of q, A, and it is not identically 0. Since u̇n satisfies (u̇n)t + q · ∇u̇n =
div(A∇u̇n)+ ∂ f

∂u (x, un)u̇n and ∂ f
∂u is bounded, the strong maximum principle shows

(2.2).
This means that for each n, the function ũ(x) ≡ limt→∞ un(t, x) is well defined

and satisfies ũ(x) ∈ (0, 1] and

− div(A∇ũ)+ q · ∇ũ = f (x, ũ).

Lemma 2.3(ii) below now shows that ũ is a constant, which is then 1 due to ‖ũ‖∞ �
θ̃ > θ . Parabolic regularity then shows the limit to be locally uniform in D. ��

We now choose τn < 0 to be the unique time such that

un(0, 0) = θ. (2.4)

Note that τn → −∞ (see the remark after Lemma 2.4).
Despite its apparent simplicity, we were not able to locate the following Liou-

ville-type result in the literature.

Lemma 2.3. (i) Let q, A be as in (H2) but without the assumptions of periodicity
and q1 being mean-zero. If the function u is bounded on D and satisfies

− div(A(x)∇u)+ q(x) · ∇u = 0, (2.5)

then u is constant.
(ii) Let q, A be as in (H2) but without the assumption of periodicity, and let r

be a bounded non-negative measurable function on D. If u is bounded and
non-negative on D and satisfies

− div(A(x)∇u)+ q(x) · ∇u = r(x)u, (2.6)

then u is constant.

Remark. Note that if q is incompressible on D, then its mean q̄ ≡ ∫
Td−1 q(x1, x ′) dx ′

is independent of x1. Thus
∫
[0,p]×Td−1 q1(x) dx = 0 is satisfied in (ii) for either all

p > 0 or none.
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Proof. Let u satisfy (2.5) or (2.6). Then ũ(x1) ≡ minx ′∈Td−1 u(x1, x ′) cannot have
a local minimum by the maximum principle unless it is constant. In either case the
limits

lim
x1→−∞ ũ(x1) = l1 and lim

x1→∞ ũ(x1) = l2

exist. The Harnack inequality for the domains (y, y + 1) × T
d−1 ⊂ (y − 1, y +

2)×T
d−1 with y → ±∞ (see, for example, [9, p. 199]) now shows that uniformly

in x ′ = (x2, . . . , xd),

lim
x1→−∞ u(x) = l1 and lim

x1→∞ u(x) = l2.

Parabolic regularity shows that limx1→±∞ ∇u(x) = 0 uniformly in x ′.
If q̄1 = 0, integrate (2.6) over D to get

0 =
∫

D
div(A∇u) =

∫

D
div(qu)−

∫

D
ru = (l2 − l1)q̄1 −

∫

D
ru = −

∫

D
ru.

Thus ru ≡ 0 and (2.6) becomes (2.5). We multiply (2.5) by u and integrate
over D to get

−
∫

D
∇u · A∇u =

∫

D
u div(A∇u) = 1

2

∫

D
div(qu2) = 1

2
(l2

2 − l2
1)q̄1 = 0.

(2.7)

Thus u must be constant, proving (ii) and the case q̄1 = 0 in (i).
If q̄1 �= 0 in (i), integrate (2.5) over D to get

0 =
∫

D
div(A∇u) =

∫

D
div(qu) = (l2 − l1)q̄1.

Thus l2 = l1 and (2.7) finishes the proof of this case. ��
We will now recover the transition front w as a limit of un along a subse-

quence as n → ∞. Such a limit always exists by parabolic regularity and satisfies
w(0, 0) = θ due to (2.4), but the main issue is to show that it is indeed a transition
front for (1.2). The following four lemmas will ensure this fact.

Let us take ζ from the statement of Theorem 1.5 and let θ j ( j = 0, 1) be
the smallest positive number such that f j (θ j ) = ζθ j . Since ζ > f ′

1(0), we have
0 < θ1 � θ0 < 1, θ < θ0 and, for each x ∈ D,

α f (x) ∈ [θ1, θ0]. (2.8)

We now let

cζ ≡ min
λ>0

ζ + κ(λ)

λ
(2.9)

with κ(λ) and γ (x; λ) > 0 the principal eigenvalue and eigenfunction for

div(A∇γ )− (q + 2λAe1) · ∇γ + (λ2eT
1 Ae1 − λ div(Ae1)+ λq1)γ = κ(λ)γ

(2.10)
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on T
d , normalized by supx∈Td γ (x; λ) = 1 (for (1.1) we have γ (x; λ) ≡ 1 and

κ(λ) = λ2). We note that the minimum is achieved at some λζ > 0 because κ is a
continuous function of λ and the fraction in (2.9) diverges to ∞ as λ → 0,∞. The
latter follows from ζ > 0 and

κ(λ) � Aλ2,

which is obtained after dividing (2.10) by γ and integrating over T
d :

κ(λ) =
∫

Td
(∇ log γ − λe1) · A(∇ log γ − λe1) � A

∫

Td
|∇ log γ |2 + λ2 � Aλ2.

We note that cζ < c0 because ζ < ζ0 and ζ0 was defined so that the right-hand side
of (2.9) with ζ0 in place of ζ equals c0.

We continue γ (x; λζ ) periodically on D, and define

�(s, x) ≡
[

inf
D
γ (x; λζ )

]−1

e−λζ sγ (x; λζ ) > 0

(for (1.1) this is�(s, x) = e−λζ s).Notice that�(0, x) � 1, and ψ(t, x) ≡ �(x1 −
cζ t, x) is an (exponentially growing as x1 → −∞) pulsating front with speed cζ
for (1.2) with f replaced by ζu. In fact, [4] shows that cζ is also the minimal speed
of a true pulsating front for (1.2) with any x-independent KPP reaction f̃ satisfying
f̃ ′(0) = ζ . This is why cζ < c0 will be a crucial component of our argument (and,
in fact, any λ such that the fraction in (2.9) is smaller than c0 would do in place of
λζ ).

We now let for each n ∈ N and t � τn ,

Xn(t) ≡ sup{x1 | un(t, x) � α f (x) for some x = (x1, x ′)}
and

Yn(t) ≡ inf{y | un(t, x) � �(x1 − y, x) for all x ∈ D}.
Both these functions are non-decreasing because un is increasing and� decreasing
in their respective first variables. Continuity of un(t, x), lower semi-continuity of
α f (x), and compactness of T

d−1 imply that Xn is continuous from the right.

Lemma 2.4. Let ξ ≡ supu∈(0,1) f1(u)/u � ζ and cξ ≡ (ξ + κ(λζ ))/λζ . Then for
any n and t � τ � τn we have

Yn(t)− Yn(τ ) � cξ (t − τ). (2.11)

Remark. Taking τ = τn and t = 0, this and (2.4) give τn → −∞.

Proof. This is immediate from the definition of Yn(τ ) and the fact that the function
φ(t, x) ≡ �(x1 − Yn(τ ) − cξ (t − τ), x) is a supersolution of (1.2) for t > τ (it
solves (1.2) with ξu in place of f ). ��

This and Yn(τn) < ∞ show that Yn(t) < ∞ (then also Xn(t) < ∞ by (2.8))
and that Yn is continuous because it is non-decreasing. The following is a crucial
step in our proof of the existence of fronts.
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Lemma 2.5. There is C1 < ∞ such that for all n ∈ N and all t � τn,

|Yn(t)− Xn(t)| � C1. (2.12)

Proof. The bound Xn(t) − Yn(t) � C1 for a large enough C1 is obvious from
the definitions of Xn,Yn , and (2.8), so let us show Yn(t) − Xn(t) � C1. We let
C1 (to be chosen later) be larger than C0 ≡ max{Yn(τn) − Xn(τn), 1}, the lat-
ter independent of n and finite due to vn being supported in a half-strip, θ̃ > θ0,
and (2.8). Let us assume that Yn(t1) − Xn(t1) > C1 for some n and t1 � τn ,
and let t0 ≡ max{t < t1 | Yn(t) − Xn(t) � C0} � τn . The maximum exists and
Yn(t0)− Xn(t0) = C0 because Yn is continuous and Xn non-decreasing.

Let Ỹn(t) ≡ Yn(t0) + cζ (t − t0) and if Xn(t) � Ỹn(t) for some t ∈ [t0, t1],
let t2 be the first such time (recall that Xn is continuous from the right). Then
ψ(t, x) ≡ �(x1−Ỹn(t), x) is a solution and un(t, x) a subsolution in D̃ ≡ {(t, x) ∈
(t0, t2) × D | x1 > Ỹn(t)} of (1.2) with ζu in place of f . Moreover, ψ(t0, x) �
un(t0, x) for x1 > Ỹn(t0) and ψ(t, x) � un(t, x) for t ∈ [t0, t2] and x1 = Ỹn(t)
(because�(0, x) � 1). Thusψ(t, x) � un(t, x) in D̃ by the comparison principle,
meaning that Yn(t) � Ỹn(t) for t ∈ [t0, t2]. But then Yn(t2) − Xn(t2) � 0 < C0,
which is a contradiction with the choice of t0. Hence, no such time t2 ∈ [t0, t1]
exists and the above argument gives Yn(t) � Ỹn(t) for t ∈ [t0, t1].

That is, Yn increases with an average speed of at most cζ on [t0, t1]. On the
other hand, the next lemma shows that Xn increases with an average speed of at
least c0 − ε (for any ε > 0) after an initial time delay tε (in the sense of (2.13)
below with τ = t0). Since cζ < c0, we can pick ε ≡ (c0 − cζ )/2 > 0 and obtain

Yn(t)− Xn(t) � Yn(t0)+ cζ (t − t0)− Xn(t0)− (c0 − ε)(t − t0 − tε)

= C0 + (c0 − ε)tε − (c0 − ε − cζ )(t − t0)

for t ∈ [t0, t1]. If we now let C1 ≡ C0 +c0tε, then it follows that Yn(t1)− Xn(t1) <
C1, a contradiction. Thus Yn(t)− Xn(t) � C1 for a large enough C1 and all n and
t � τn . ��

Recall that c−
0 > 0 is the speed of the unique left-moving front for (1.2) with

reaction f0.

Lemma 2.6. (i) For every ε > 0 there is tε < ∞ such that if u : [0,∞) × D →
[0, 1] solves (1.2) with ut � 0 and u(0, x̃) � α f (x̃) for some x̃ ∈ D, then for each
t � 0 we have

inf
{
u(t + tε, x)

∣
∣ x1 − x̃1 ∈ [−(c−

0 − ε)t, (c0 − ε)t]} � 1 − ε.

(ii) There is L ′ > 0 such that for every ε > 0 there is t ′ε < ∞ satisfying the
following. If u : [0,∞) × D → [0, 1] solves (1.2) and inf

{
u(0, x)

∣
∣ |x1 − x̃1| �

L ′} � (1 + θ)/2 for some x̃ ∈ D, then for each t � 0 we have

inf
{
u(t + t ′ε, x)

∣
∣ x1 − x̃1 ∈ [−(c−

0 − ε)t, (c0 − ε)t]} � 1 − ε.

Remark. 1. Part (i) also shows that for t � τ � τn ,

Xn(t)− Xn(τ ) � (c0 − ε)(t − τ − tε). (2.13)

2. Of course, the constants tε, t ′ε are independent of f .
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Proof. (ii)This is an immediate consequence of Proposition 3.4 in [21], which
proves the same result for f (x, u) = f0(u). In Appendix A we will provide an
alternative proof of this result (in fact, with c0 − ε, c−

0 − ε replaced by c0, c−
0 ), thus

making our proof independent of [21]. ��
(i) Consider σ from the beginning of this section and let

α′
f (x) ≡ inf{u ∈ (0, 1] | f (x, u) � (ζ − σ/2)u}.

Then α′
f (x) � α f (x̃) − σθ1/4K for x ∈ Bσθ1/4K (x̃), since by the definition

of α f (x̃) and (2.8),

f

(
x, α f (x̃)− σθ1

4K

)
� ζα f (x̃)− σθ1

2
�

(
ζ − σ

2

)
α f (x̃)

�
(
ζ − σ

2

) (
α f (x̃)− σθ1

4K

)

for those values of x . (Also, ζ − σ/2 > f ′
1(0) shows that α′

f (x) is the min-
imum of the set in its definition, as well as uniformly bounded away from 0.)
So u(0, x̃) � α f (x̃), ut � 0, and parabolic regularity show that there is δ > 0
(independent of f, x̃) such that

u(1, x) � α′
f (x) for all x ∈ Bδ(x̃). (2.14)

Assume that (i) is false. Taking L ′ from (ii) and using (ii), this means that for
each n ∈ N, there is a solution wn of (1.2) with some reaction fn satisfying all
the hypotheses (in particular, fn ζ

′-majorizes g for each ζ ′ > ζ − σ ), such that
wn(0, x̃n) � α fn (x̃

n), (wn)t � 0, and wn(n, xn) < (1 + θ)/2 for some xn with
|xn

1 − x̃n
1 | � L ′. After possible translation in x1 it is sufficient to consider x̃n ∈ T

d ,
so we can assume x̃n → x̃ (otherwise we choose a subsequence). Then (2.14) gives
wn(1, x̃) � α′

fn
(x̃) for large n.

By parabolic regularity, the functions wn are uniformly bounded in C1,η;2,η
([1,∞)× D) for some η > 0. Thus there is a subsequence (which we again denote
wn) converging in C1;2

loc ([1,∞)× D) to a solution w̃ � 0 of (1.2) on (1,∞)× D
with some reaction f (locally uniform limit of fn), satisfying w̃t � 0, but then
w(x) ≡ limt→∞ w̃(t, x) exists and satisfies

q · ∇w = div(A∇w)+ f (x, w).

Lemma 2.3 and boundedness of f (x, u)/u show thatw is a constant and f (x, w(x))
≡ 0. This constant is then 1 because w(x̃) � lim infn α

′
fn
(x̃) � α′

f (x̃) and f
(ζ − σ/2)-majorizes g (being locally uniform limit of fn).

But wn(n, xn) < (1 + θ)/2 and (wn)t � 0 show for all t � 1,

‖1 − w̃(t, ·)‖L∞([x̃1−L ′,x̃1+L ′]) � 1 − θ

2
> 0.

Parabolic regularity again shows that this contradicts w ≡ 1, thus finishing the
proof. ��
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For ε > 0 we define

Z−
n,ε(t) ≡ sup

{
y
∣
∣ un(t, x) � 1 − ε when x1 � y

}
,

Z+
n,ε(t) ≡ inf

{
y
∣
∣ un(t, x) � ε when x1 � y

}
.

Clearly both are finite. The following will ensure a bounded width of the con-
structed transition front.

Lemma 2.7. For any ε ∈ (0,min{c0, c−
0 }) let t̃ε ≡ tε + C1(min{c0, c−

0 } − ε)−1

with tε from Lemma 2.6(i) and C1 from Lemma 2.5. Then there is Lε < ∞ such
that for all n and t � τn + t̃ε,

Z+
n,ε(t)− Z−

n,ε(t) � Lε.

Proof. Notice that Lemma 2.5 and continuity of Yn show that if Xn has jumps,
they cannot be larger than 2C1. This and (un)t > 0 mean that for each t � τn + t̃ε
and any closed subinterval I of (−∞, Xn(t − t̃ε)] of length 2C1, there is x1 ∈ I
and x ′ ∈ T

d−1 with un(t − t̃ε, x1, x ′) � α f (x1, x ′). Then Lemma 2.6(i) shows that
un(t, x) � 1 − ε whenever x1 � Xn(t − t̃ε)+ C1. On the other hand, Lemmas 2.4
and 2.5 show that un(t, x) � ε whenever

x1 � Xn(t − t̃ε)+ C1 + cξ t̃ε + lε,

where lε is such that �(lε, x) � ε for all x ∈ D. Thus Lε ≡ cξ t̃ε + lε works. ��
Having Lemma 2.7, the proof of Theorem 1.5 is now standard. Parabolic regular-

ity shows that the functions un are uniformly bounded in C1,η;2,η([τn +1,∞)× D),
so we can find a subsequence converging in C1;2

loc (R× D) to a functionw on R× D,
which then is also a solution of (1.2). Moreover, (2.4) gives w(0, 0) = θ , which
together with Lemma 2.7, (2.11), and (2.12) ensures (1.3) as well as a bounded
width of w. Thus w is a transition front in the sense of Definition 1.1. The claim
wt > 0 is immediate from (2.2) and the strong maximum principle for wt . The
exponential decay in Remark 1 follows from Lemma 2.5.

3. Uniqueness of Fronts for Ignition Reactions

We will now prove Theorem 1.5(ii), again assuming that the period of q in x1
is p = 1. Since now f ′

1(0) = 0, we have automatically ζ > f ′
1(0), and we again

assume that f ζ ′-majorizes g for each ζ ′ > ζ − σ . All constants in this section
will depend on q, A, f0, f1, ζ, g, K , θ ′′ but not on f . Without loss of generality
we only need to consider fronts moving to the right, which we will denote by w.

We can assume θ ′′ � θ0 (otherwise we change θ ′′ to θ0) and let

ε0 ≡ 1

2
min{θ ′, 1 − θ ′′} and θ̃ ≡ 1 − ε0

2
,

thus fixing v from Lemma 2.1.
We letw be an arbitrary front for (1.2) (in particular, we do not assumewt > 0)

and u the solution of (1.2) with the fixed initial condition v. Our strategy is as
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follows. First we will show that w has to decrease exponentially as x → ∞, in
the same way as un in the last section. Then we will use this to show that u has
to converge to some time shift of w in L∞ as t → ∞ (thus any two fronts for f
must approach each other up to a time shift as t → ∞). Finally, we will show that
the rate of this convergence is uniform for all f and all fronts w with uniformly
bounded width. This gives a uniform convergence of solutions un with initial data
vn(x) ≡ v(x + n) to time shifts of any front w, and the uniqueness of the front
follows.

Letw be an arbitrary transition front for (1.2). Consider� from the last section
and let

Xw(t) ≡ sup{x1 |w(t, x) � α f (x) for some x = (x1, x ′)},
Yw(t) ≡ inf{y |w(t, x) � �(x1 − y, x) for all x ∈ D},

Z−
w,ε(t) ≡ sup

{
y
∣
∣w(t, x) � 1 − ε when x1 � y

}
,

Z+
w,ε(t) ≡ inf

{
y
∣
∣w(t, x) � ε when x1 � y

}
,

as well as

Lw,ε ≡ sup
t∈R

{Z+
w,ε(t)− Z−

w,ε(t)}, Zw(t) ≡ Z−
w,ε0

(t), and Lw ≡ Lw,ε0 .

All of these, except possibly Yw(t), are finite becausew is a transition front, and we
have Xw(t) ∈ [Z−

w,ε(t), Z+
w,ε(t)] for ε � ε0(� min{θ1, 1 − θ0}). The next lemma

shows Yw(t) < ∞.

Lemma 3.1. There is C̃2 < ∞ (depending on Lw if wt �� 0) such that for all t we
have

|Yw(t)− Zw(t)| � C̃2. (3.1)

Proof. Again Zw(t)−Yw(t) � C̃2 (with a uniform bound) is immediate so we are
left with proving Yw(t)− Zw(t) � C̃2. We fix any ε ∈ (0, ε0) and for t ∈ R define

α f,ε(x) ≡ inf{u ∈ (ε, 1] | f (x, u) � ζ(u − ε)} ↑ α f (x) as ε → 0,

Xw,ε(t) ≡ sup{x1 |w(t, x) � α f,ε(x) for some x = (x1, x ′)} ↓ Xw(t) as ε → 0,

Yw,ε(t) ≡ inf{y |w(t, x) � �(x1 − y, x)+ ε for all x ∈ D} ↑ Yw(t) as ε → 0.

The convergences hold because θ ′ > 0, w and f are continuous, and T
d−1 is com-

pact. Note that α f,ε(x) ∈ [θ ′, θ ′′] because f (x, ·) decreases on [θ ′′, 1]. Thus for
any t and ε � ε0,

0 � Xw,ε(t)− Zw(t) � Lw (3.2)

by ε0 < θ ′, 1 − θ ′′. Hence it is sufficient to show

Yw,ε(t)− Xw,ε(t) � C ′
2 (3.3)

with C ′
2 independent of ε (then use (3.2) and take ε → 0 to obtain Yw(t)− Zw(t) �

C̃2 ≡ C ′
2 + Lw). We will prove (3.3) using the argument from Lemma 2.5. We do
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not havewt > 0 here, but Lemma 2.6(i) will not be needed. Instead, Lemma 2.6(ii)
will suffice thanks to (3.2).

Pick any t0 ∈ R and notice that �(0, x) � 1 implies Yw,ε(t0) � Z+
w,ε(t0). We

also have Xw,ε(t0) � Zw(t0) � Z−
w,ε(t0) by (3.2), so

Yw,ε(t0)− Xw,ε(t0) � Lw,ε.

As long as Xw,ε(t) � Yw,ε(t) for t � t0, the argument in Lemma 2.5 shows
that Yw,ε(t) increases with an average speed of at most cζ (that is, Yw,ε(t) �
Yw,ε(t0) + cζ (t − t0)) because ψ(t, x) ≡ �(x1 − Yw,ε(t0) − cζ (t − t0), x) + ε

solves (1.2) with ζ(u−ε) in place of f . On the other hand, Lemma 2.6(ii) means that
Zw(t) (and thus also Xw,ε(t) due to (3.2)) increases with an average speed of at least
(c0 + cζ )/2 > cζ after an initial time delay t ′(c0−cζ )/2

(independent of t0). Thus the

faster moving Xw,ε(t) will catch up with Yw,ε(t) and we have Xw,ε(t1) � Yw,ε(t1)
for some t1 ∈ [t0, t0 + t ′′ε ]. Here, t ′′ε is independent of t0 because the speed dif-
ference � (c0 − cζ )/2 and initial distance � Lw,ε for all t0. After time t1, the
argument of Lemma 2.5 shows again that Yw,ε(t) − Xw,ε(t) must stay uniformly
bounded above (independently of ε). Indeed, Yw,ε(t) is again continuous (using
ξ ≡ supu∈(ε0,1) f1(u)/(u − ε0) � ζ in Lemma 2.4) and increases with an average
speed of at most cζ when Xw,ε(t) � Yw,ε(t). On the other hand, starting from any
time τ ∈ R, Xw,ε(t) increases with an average speed of at least (c0 + cζ )/2 after
an initial time delay t ′(c0−cζ )/2

(independent of ε) due to (3.2) and Lemma 2.6(ii).

This proves the existence of C ′
2 (depending on Lw but independent of ε) such that

(3.3) holds for all t � t0 + t ′′ε . Since t0 has been arbitrary, (3.3) holds for all t and
all ε ∈ (0, ε0), and taking ε → 0 gives (3.1).

In particular, Yw(t) is finite and, as in Lemma 2.4, we obtain for t � τ ,

Yw(t)− Yw(τ) � cξ (t − τ). (3.4)

Finally, note that ifwt � 0, then Lemma 2.6(i) applies tow. As a result, the proof
of (3.3) for small enough ε is identical to that of (2.12) (using that f (ζ−σ/2)-maj-
orizes g). Hence we do not need (3.2) to show that Xw,ε(t) increases with average
speed larger than (c0 +cζ )/2, and C ′

2 becomes Lw-independent. Then ε → 0 gives
Yw(t)− Xw(t) � C ′

2 and thus

|Yw(t)− Xw(t)| � C ′
2. (3.5)

This and Lw-independent upper bounds on Xw(t − tε0) − Zw(t) (from Lemma
2.6(i)) and on Xw(t)− Xw(t − tε0) (from (3.5) and (3.4)) show that C̃2 in (3.1) is
also Lw-independent. ��

Remark. Notice that this result, together with the definition of Yw and (3.8) below,
shows that Lw,ε depends only on Lw and ε.
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Let u be the solution of (1.2) with initial condition v(x) from Lemma 2.1 (with
fixed θ̃ ≡ 1 − ε0). Let us define

Xu(t) ≡ sup{x1 | u(t, x) � α f (x) for some x = (x1, x ′)},
Yu(t) ≡ inf{y | u(t, x) � �(x1 − y, x) for all x ∈ D},

Z−
u,ε(t) ≡ sup

{
y
∣
∣ u(t, x) � 1 − ε when x1 � y

}
,

Z+
u,ε(t) ≡ inf

{
y
∣
∣ u(t, x) � ε when x1 � y

}
,

as well as

Lu,ε ≡ sup
t�t ′ε

{Z+
u,ε(t)− Z−

u,ε(t)}, Zu(t) ≡ Z−
u,ε0

(t) and Lu ≡ Lu,ε0 ,

with t ′ε from Lemma 2.6(ii). All these are finite as in Section 2 and again

Yu(t)− Yu(τ ) � cξ (t − τ). (3.6)

Lemmas 2.5–2.7 and ut > 0 again show

|Yu(t)− Zu(t)| � C2 (3.7)

for some f -independent C2. We also have that for each ε > 0 there are Cε, C̃ε < ∞
(the latter Lw-dependent if wt �� 0) such that for any t � τ ,

Z−
w,ε(t) � Zw(τ)+ c0 + cζ

2
(t − τ)− C̃ε, (3.8)

Z−
u,ε(t) � Zu(τ )+ c0 + cζ

2
(t − τ)− Cε (τ � t ′ε if ε � 1 − θ̃ = ε0

2 ).

(3.9)

Here, (3.9) holds because Lemma 2.6(ii) shows that

Z−
u,ε(t) � Zu(τ − t ′ε)+ c0 + cζ

2
(t − τ)

and Zu(τ )− Zu(τ − t ′ε) is uniformly bounded in τ due to (3.6) and (3.7). The same
argument works for w, but it uses (3.1) and so C̃ε depends on Lw via C̃2 (unless
wt � 0).

Before we can show that u converges to some time shift ofw, we need to prove
that once u is close to a time shift of w, it will not depart far from it.

Lemma 3.2. For each ε > 0 there is a δ > 0 (depending also on Lw if wt �� 0)
such that:

(i) If w(t1, x) � u(t0, x) + δ for some t0 � 1, t1 ∈ R and all x ∈ D, then
w(t + t1 − t0, x) � u(t, x)+ ε for all t � t0 and x ∈ D.

(ii) If w(t1, x) � u(t0, x) − δ for some t0 � 1, t1 ∈ R and all x ∈ D, then
w(t + t1 − t0, x) � u(t, x)− ε for all t � t0 and x ∈ D.
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Proof. This is proved via construction of a suitable supersolution and subsolution.
To do that, let κ(λζ /2) � 0 and γ (x; λζ /2) > 0 be from (2.10) with λ = λζ /2. If
we continue γ (x; λζ /2) periodically on D and let

�(s, x) ≡
[

inf
D
γ (x; λζ ) inf

D
γ (x; λζ /2)

]−1

e−λζ s/2γ (x; λζ /2) > 0,

then (recall that supD γ (x; λζ ) = 1)

�(s, x) � eλζ s/2�(s, x) (3.10)

for (s, x) ∈ R×D. We also have from the convexity of κ(λ) [1, Proposition 5.7(iii)]
and κ(0) = 0 that

κ

(
λζ

2

)
� κ(λζ )

2
<

cζ λζ
2
.

Thus, for each y ∈ R the function φ(t, x) ≡ �(x1 − y − cζ t, x) satisfies

φt + q · ∇φ − div(A∇φ) =
[

cζ λζ
2

− κ

(
λζ

2

)]
φ � 0. (3.11)

Next pick ω � 1 � � so that, for each f as in the statement of Theorem 1.5
(with fixed q, A, f0, f1, ζ, g, K , θ ′′),

0 < ω � inf{ut (t, x) | t � 1 and x1 ∈ [Zu(t), Z+
u,ε0

(t)]}, (3.12)

∞ > � � sup{ut (t, x) | t � 1 and x ∈ D}. (3.13)

The existence of such� follows from parabolic regularity and boundedness of
u. The existence of ω is guaranteed by ut > 0 and is proved as follows. Assume the
contrary, that is, there are sequences fn and (tn, xn) ∈ [1,∞)×[Zu(tn), Z+

u,ε0
(tn)]×

T
d−1 such that ut (tn, xn) → 0.As at the end of Section 2, the functions un(t, x) ≡

u(t + tn, x + �xn
1 �e1) contain a subsequence which converges in C1;2

loc to a solu-
tion ũ of (1.2) on (−1,∞)× D (with the same q, A and some Lipschitz reaction
f̃ (x, u) ∈ [ f0(u), f1(u)] which is a locally uniform limit of a subsequence of
fn(x + �xn

1 �e1, u)). But then ũt (0, x̃) = 0 for some x̃ ∈ T
d , and so ũt � 0 and

the strong maximum principle for ũt show ũt ≡ 0. Since Z+
u,ε0

(t) − Zu(t) is uni-
formly bounded (in t and f ) due to (3.7), we have lim supx1→∞ ũ(t, x) � ε0 and
lim inf x1→−∞ ũ(t, x) � 1 − ε0. This contradicts ũt ≡ 0 because

Zũ(t) ≡ sup{y | ũ(t, x) � 1 − ε0 when x1 � y}
again grows with a positive average speed after an initial time delay, by Lemma
2.6(ii).

Finally, assume without loss of generality that ε � ε0 and t1 = t0 (otherwise
we shift w in t by t1 − t0), and increase K so that

K � λζ (c0 − cζ )

4
. (3.14)
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(i) Notice that (3.7) and the hypothesis show that (after possibly increasing C2
by a constant depending only on � and thus not on f, u, w)

Zu(t0) � Zw(t0)− C2. (3.15)

Let

C ′
ε ≡ C2 + C̃2 + Cε + C̃ε + 1,

bε ≡ ελζ (c0 − cζ )e−λζC ′
ε/2ω

4�K supD �(0, x)
,

β(t) ≡ ε

�

(
1 − e−λζ (c0−cζ )(t−t0)/4

)
, (3.16)

φ+(t, x) ≡ bε�(x1 − Yw(t0)− cζ (t − t0), x). (3.17)

Then bε � ε by (3.14), ω � �, and �(0, x) � 1. Also, (3.11) holds for φ+,
and we define

z+(t, x) ≡ ũ+(t, x)+ φ+(t, x) ≡ u(t + β(t), x)+ φ+(t, x)

for t � t0. Our aim is to show

z+(t, x) � w(t, x) (3.18)

for all x ∈ D and t � t0. This estimate might not appear very useful because
φ+ is unbounded but it will suffice. The reason is that at t = t0, the function
φ+ is large only where both u, w are close to 1 and therefore also to each
other. This setup will persist for all t � t0 because φ+ travels with speed cζ ,
which is strictly smaller than the speeds of propagation of u and w. Thus, in
fact, φ+ decays near the reaction zones of u, w as t grows.
Let 0 < δ � bε inf D �(2| ln bε|/λζ , x). Then

z+(t0, x) � w(t0, x) (3.19)

for x1 � Yw(t0)+ 2| ln bε|/λζ by the hypothesis w(t0, x) � u(t0, x)+ δ and
our choice of δ, and for x1 � Yw(t0)+2| ln bε|/λζ by the definition of Yw(t0)
and by bε�(2| ln bε|/λζ + y, x) � �(2| ln bε|/λζ + y, x) when y � 0 (see
(3.10)).
Moreover, we will prove that z+ is a supersolution of (1.2) for t � t0, with
f (x, u) = 0 when u � 1. Since (3.11) gives

(z+)t + q · ∇z+ − div(A∇z+)
� f (x, z+)+ [

f (x, ũ+)− f (x, z+)+ β ′(t)ut (t + β(t), x)
]
,

this will be established if we show that the square bracket is non-negative.
This is clearly true for x1 � Zu(t + β(t)), since then ũ+(t, x) � θ ′′ and so
f (x, ũ+) � f (x, z+). Next, (3.9), (3.15), (3.1), and β(t) � 0 for t � t0 give

Z−
u,ε(t + β(t))− Yw(t0)− cζ (t − t0) � c0 − cζ

2
(t − t0)− C ′

ε, (3.20)
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so for x1 � Z−
u,ε(t + β(t)) we find using (3.14),

φ+(t, x) � bεe
−λζ [(c0−cζ )(t−t0)/2−C ′

ε]/2 sup
D
�(0, x)

= β ′(t)ω
K

� ε
λζ (c0 − cζ )

4K
� ε. (3.21)

This gives for x1 � Z−
u,ε(t + β(t)),

| f (x, ũ+)− f (x, z+)| � Kφ+ � β ′(t)ω.

Thus the square bracket is again non-negative for Zu(t + β(t)) � x1 �
Z+

u,ε0
(t +β(t)) due to (3.12) and Zu(t +β(t)) � Z−

u,ε(t +β(t)). The same is
true for x1 � Z+

u,ε0
(t +β(t)) because then (3.21) implies z+(t, x) � ε0 +ε �

2ε0 � θ ′, yielding f (x, z+) = 0.
Hence z+ is a supersolution of (1.2) with (3.19), meaning that (3.18) holds.
Thus for x1 � Z−

u,ε(t + β(t)),

u(t, x)− w(t, x) � z+(t, x)− w(t, x)− φ+(t, x)− β(t)�

� 0 − ε − ε = −2ε

using (3.21) and (3.16), and for x1 � Z−
u,ε(t + β(t)),

u(t, x)− w(t, x) � ũ+(t, x)− β(t)�− 1 � ũ+(t, x)− ε − 1 � −2ε.

This proves (i) with 2ε in place of ε. Note that δ also depends on C ′
ε, and thus

on Lw when wt �� 0.
(ii) Recall that we assume ε � ε0, t1 = t0, and (3.14), and let us also assume

ε � c−1
0 . This time (3.1) and the hypothesis give (after increasing C̃2 by an

f, u, w-independent constant)

Zw(t0) � Zu(t0)− C̃2. (3.22)

Then the proof goes along the same lines as in (i) but using

φ−(t, x) ≡ bε�(x1 − Yu(t0)− cζ (t − t0), x),

z−(t, x) ≡ ũ−(t, x)− φ−(t, x) ≡ u(t − β(t), x)− φ−(t, x).
(3.23)

This time

(z−)t + q · ∇z− − div(A∇z−) � f (x, z−)− [
f (x, z−)− f (x, ũ−)

+ β ′(t)ut (t − β(t), x)
]
,

with f (x, u) = 0 for u � 0, and

z−(t0, x) � w(t0, x) (3.24)

if δ is as in (i). We again need to show that the square bracket is non-negative.
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For x1 � Z+
u,ε0

(t − β(t)) we have ũ−(t, x) � ε0, so f (x, ũ−) = 0 and the
square bracket is non-negative. For Zu(t − β(t)) � x1 � Z+

u,ε0
(t − β(t)) the same

is true because

Z−
u,ε(t − β(t))− Yu(t0)− cζ (t − t0) � c0 − cζ

2
(t − t0)− C ′

ε (3.25)

(from (3.9), (3.7), and β(t) � ε � c−1
0 � 2/(c0 + cζ )) again gives for x1 �

Z−
u,ε(t − β(t)),

φ−(t, x) � bεe
−λζ [(c0−cζ )(t−t0)/2−C ′

ε]/2 sup
D
�(0, x) = β ′(t)ω

K
�ελζ (c0 − cζ )

4K
�ε,

| f (x, ũ−)− f (x, z−)| � Kφ− � β ′(t)ω. (3.26)

For x1 � Zu(t − β(t)) we have ũ−(t, x) � 1 − ε0, so the bracket is non-negative
as long as φ−(t, x) � ε0 (because then 1− θ ′′ � z−(t, x) � ũ−(t, x)). This means
that z− is a subsolution of (1.2), where φ−(t, x) � ε0.

Since (3.8), (3.22), and (3.7) imply

Z−
w,ε(t)− Yu(t0)− cζ (t − t0) � c0 − cζ

2
(t − t0)− C ′

ε,

(3.26) also holds for x1 � Z−
w,ε(t). Thus z− is a subsolution of (1.2) on the set

where φ−(t, x) � ε0 while on the complement of that set we have x1 � Z−
w,ε(t)

and so

w(t, x) � 1 − ε � 1 − ε0 � 1 − φ−(t, x) � z−(t, x).

This together with (3.24) gives z−(t, x) � w(t, x) for t � t0 and x ∈ D. The rest
of the proof is analogous to (i), with Z−

w,ε(t) in place of Z−
u,ε(t + β(t)). ��

Lemma 3.3. If

τw ≡ inf{τ ∣
∣ lim inf

t→∞ inf
x∈D

[w(t + τ, x)− u(t, x)] � 0}, (3.27)

then −∞ < τw < ∞. Moreover, the infimum is also a minimum and so

lim inf
t→∞ inf

x∈D
[w(t + τw, x)− u(t, x)] � 0. (3.28)

Proof. The set in (3.27) is an interval (a,∞) for some a � ∞ due to ut > 0.
Inequality (3.8) shows limt→∞ Zw(t) = ∞, so f0 > 0 on [1 − ε0, 1) yields
w(τ, x) � θ̃χ(−∞,0](x1) for some τ < ∞ and all x ∈ D. Thus w(τ, x) � u(0, x)
for all x ∈ D, and the comparison principle shows w(t + τ, x) � u(t, x) for all
t � 0 and x ∈ D. Hence τw < ∞.

In the opposite direction, notice that (3.9) gives limt→∞ Z−
u,δ(t) = ∞. Hence

for each δ > 0, the hypothesis of Lemma 3.2(i) is satisfied with t1 = 0 and a large
t0. Then Lemma 3.2(i) and (3.12) prove for all t � t0 that infx∈D[w(t − t0, x) −
u(t + 2ε/ω, x)] � −ε, provided we choose ε > 0 small enough and then δ, t0
according to Lemma 3.2(i). Thus τw > −t0 − 2ε/ω > −∞.

Hence τw is finite, so the infimum must be a minimum by (3.13). ��
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Lemma 3.4. We have

lim
t→∞ ‖w(t + τw, x)− u(t, x)‖L∞

x
= 0. (3.29)

Proof. We can assume without loss of generality that τw = 0 (otherwise we shift
w in t). Then (3.28) reads

lim inf
t→∞ inf

x∈D
[w(t, x)− u(t, x)] � 0, (3.30)

and we are left with proving

lim sup
t→∞

sup
x∈D

[w(t, x)− u(t, x)] � 0. (3.31)

Assume this is not true. Then by Lemma 3.2(i), there is δ0 > 0 such that for all
t � 1,

sup
x∈D

[w(t, x)− u(t, x)] � δ0. (3.32)

Moreover, the definition of τw = 0 and Lemma 3.2(ii) show that for each τ > 0
there is δτ > 0 such that, for all t � 1,

inf
x∈D

[w(t − τ, x)− u(t, x)] � −δτ . (3.33)

Finally, we claim that Zw(t)− Zu(t) stays bounded as t → ∞. The lower bound
follows from (3.30) and Lu, Lw < ∞. The upper bound follows from (3.33) for
τ = 1, Lu,δ1 , Lw,δ1 < ∞, and a uniform upper bound on Zw(t)− Zw(t − 1) (due
to (3.1) and (3.4)).

As before, there is a sequence tn → ∞ such that the functions w(t + tn, x +
�Zw(tn)�e1) and u(t+tn, x+�Zw(tn)�e1) converge in C1;2

loc (R×D) to two solutions
w̃, ũ of (1.2) with some reaction f̃ which has all the properties of f . Moreover,
w̃, ũ are both transition fronts because of the boundedness of Zw(t) − Zu(t) and
the properties of w, u (namely, (3.1), (3.4), (3.8), (3.6), (3.7), and (3.9)). We also
have ũt � 0 as well as

w̃(t, x) � ũ(t, x) for all (t, x) ∈ R × D, (3.34)

sup
x∈D

[w̃(t, x)− ũ(t, x)] � δ0 for all t ∈ R, (3.35)

inf
x∈D

[w̃(t − τ, x)− ũ(t, x)] � −δτ for all t ∈ R, τ > 0.

This is thanks to (3.30), (3.32), (3.33), tn → ∞, and the uniform boundedness in
t of max{Z+

w,ε(t), Z+
u,ε(t)} − min{Z−

w,ε(t), Z−
u,ε(t)} (for any ε > 0).

We define Z±
w̃,ε
(t), Z±

ũ,ε(t), Lw̃,ε, Lũ,ε analogously to Z±
w,ε(t), Lw,ε. Then

Z±
w̃,ε
(t) � Z±

ũ,ε(t) for any ε > 0 by (3.34), and Z+
w̃,ε
(t) − Z−

ũ,ε(t) is uniformly
bounded in t , because Zw(t) − Zu(t) stays bounded as t → ∞. We let Z+(t) ≡
max{Z+

w̃,ε0
(t), Z+

ũ,ε0
(t + 1)} and Z−(t) ≡ Z−

ũ,ε0
(t) so that Z+(t) − Z−(t) is
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also uniformly bounded in t . Inequality (3.35) shows that for each t , there is
xt ∈ [Z−

ũ,δ0
(t), Z+

w̃,δ0
(t)] × T

d−1 such that

w̃(t, xt )− ũ(t, xt ) � δ0.

Then (3.34) and the Harnack inequality give the existence of δ′ > 0 (which is
t-independent by supR(Z

+(t)− Z−(t)) < ∞) such that

w̃(t, x)− ũ(t, x) � δ′ whenever x1 ∈ [Z+(t), Z−(t)],
and so (3.13) yields the existence of τ ∈ (0, 1) such that

w̃(t, x) � ũ(t + τ, x) whenever x1 ∈ [Z+(t), Z−(t)].
We finish the proof with an argument similar to [13]. We define z(t, x) ≡

w̃(t, x)− ũ(t + τ, x) ∈ C1,η;2,η(R × D) and notice that z then satisfies

zt + q · ∇z − div(A∇z) = r(t, x)z

with |r(t, x)| � K . We also have

z(t, x) � 0 when x1 ∈ [Z+(t), Z−(t)], (3.36)

inf
x∈D

z(t, x) � −δτ for each t ∈ R,

r(t, x) � 0 when x1 �∈ [Z+(t), Z−(t)]. (3.37)

The last inequality holds because f̃ is non-increasing outside [ε0, 1 − ε0] and
ũt � 0. Moreover, z(t, x) → 0 as dist(x1, [Z+(t), Z−(t)]) → ∞ uniformly in t
because w̃, ũ are transition fronts and hence have bounded width. Let (tn, xtn ) be
such that

lim
n→∞ z(tn, xtn ) = δ′′ ≡ inf

(t,x)∈R×D
z(t, x) < 0.

Notice that we then have a uniform bound on dist(xtn
1 , [Z+(tn), Z−(tn)]). Again,

a subsequence of the sequence of functions z(t + tn, x + �xtn
1 �e1) converges in

C1;2
loc (R × D) to a function z̃ with

z̃(0, x̃) = δ′′ = inf
(t,x)∈R×D

z̃(t, x) < 0

for some x̃ ∈ T
d−1, and satisfying (due to (3.36) and (3.37))

z̃t + q · ∇ z̃ − div(A∇ z̃) � 0 where z̃(t, x) � 0.

The strong maximum principle then forces z̃(t, x) = δ′′ < 0 for t < 0, a contra-
diction with uniform boundedness of dist(xtn

1 , [Z+(tn), Z−(tn)]) and (3.36). This
proves (3.31) and we are done. ��

Our final ingredient is the claim that the convergence in (3.29) is uniform in f
and w.
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Lemma 3.5. For any C > 0 and fixed q, A, f0, f1, ζ, g, K , θ ′′, the convergence
in Lemma 3.4 is uniform in all f as above, and in all fronts w with Lw � C.

Remark. We will see at the end of this section that the hypothesis Lw � C is
satisfied for some C < ∞ and all f, w. Thus the convergence is uniform in all
f, w, as in Theorem 1.5(ii).

Proof. Assume the contrary. Thus for some C, ε > 0 and each n ∈ N, there are
wn, un as in Lemma 3.4—solving (1.2) with reactions fn (which satisfy the hypoth-
eses of Theorem 1.5(ii) with uniform q, A, f0, f1, ζ, g, K , θ ′′) and with τwn = 0
after a translation of wn in t—such that Lwn � C and for some tn → ∞

‖wn(tn, x)− un(tn, x)‖L∞
x
> ε. (3.38)

We will obtain a contradiction by finding a subsequence of {( fn, wn, un)}n which
converges locally uniformly to ( f, w, u) such that Lw � C , and (3.29) is violated.

By parabolic regularity, for some η > 0, the wn are uniformly bounded in
C1,η;2,η(R × D) and the un in C1,η;2,η([a,∞) × D) (for any a > 0). We can
thus choose a subsequence (which we again index by n) such that fn → f in
Cloc(D), wn → w in C1;2

loc (R × D) and un → u in C1;2
loc ((0,∞) × D). There-

fore w, u solve (1.2) on R × D and (0,∞) × D, respectively. Also, u(0, x) =
un(0, x) = v(x) holds because the fn are uniformly bounded and v is continuous,
so ‖un(t, x) − v(x)‖L∞

x
→ 0 as t ↓ 0, uniformly in n. We note that the limiting

reaction f again satisfies all the hypotheses, including ζ ′-majorization of g for
ζ ′ > ζ − σ .

Next we show thatw is a front. The Zwn (0)must be uniformly bounded above,
because otherwise wn(−1, x) � v(x) for large n and all x ∈ D, meaning that
τwn � −1, a contradiction. Similarly, the Ywn (0) are uniformly bounded below
because of (3.4) for wn and the fact that Ywn (t

′
δ) are uniformly bounded below

for each δ > 0 (by the argument in the second part of the proof of Lemma 3.3
and τwn = 0). Then Lemma 3.1 and Lwn � C show that Zwn (0) and Ywn (0) are
uniformly bounded below and above, as are the average growth rates of Zwn (t) and
Ywn (t) (due to (3.4), (3.8), and (3.1)). It follows from (3.8) and Lwn � C that the
locally uniform limit w is, indeed, a transition front with Lw � C .

Thus Lemma 3.4 applies to this w and we have (3.29) for some τw. So for
each δ > 0 there is sδ � t ′δ such that ‖w(sδ + τw, x) − u(sδ, x)‖L∞

x
< δ.

Hence for each M, δ > 0 and all large enough n we have ‖wn(sδ + τw, x) −
un(sδ, x)‖L∞

x (−M,M) < 2δ. Since Z−
wn ,δ

(sδ + τw), Ywn (sδ + τw), Yun (sδ) are uni-
formly bounded in n by the argument above and sδ � t ′δ , it follows that, in fact,
‖wn(sδ + τw, x) − un(sδ, x)‖L∞

x
< 2δ for all large enough n. Then δ > 0 being

arbitrary and Lemma 3.2, together, show that for each ε′ > 0 there are Nε′ , rε′ such
that for all n > Nε′ and t > rε′ ,

‖wn(t + τw, x)− un(t, x)‖L∞
x
< ε′. (3.39)

Now (3.12) and ε0 � 1
4 show for these n, t ,

‖wn(t + τw, x)− un(t + τw, x)‖L∞
x

� min

{
τwω,

1

2

}
− ε′.
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If τw �= 0, then this contradicts τwn = 0 and (3.29) when we take ε′ small enough.
Therefore τw = 0. But then after taking ε′ = ε and n > Nε such that tn > rε, we
obtain a contradiction between (3.38) and (3.39) with t = tn . ��

We can now proceed to prove Theorem 1.5(ii). Let w be a transition front for
(1.2) and translate it in t so that w(0, 0) = θ . This is possible by (3.8), although
such translation may not be unique. Define fn(x, u) ≡ f (x − ne1, u) and let un

solve (1.2) with reaction fn and un(0, x) ≡ v(x). Pick tn so that un(tn, ne1) = θ

and consider the front wn(t, x) ≡ w(t − tn, x − ne1) for (1.2) with fn .
We have tn → ∞ by (3.4) as well as Lwn = Lw for each n. Then Lemma 3.5

shows that for any T ∈ R, uniformly in t � T ,

‖w(t + τwn , x)− un(t + tn, x + ne1)‖L∞
x

= ‖wn(t + tn + τwn , x + ne1)− un(t + tn, x + ne1)‖L∞
x

→ 0 (3.40)

as n → ∞. This and un(tn, ne1) = θ show w(τwn , 0) → θ as n → ∞. Then
τwn must be bounded in n by w(0, 0) = θ , (3.8), and Lw < ∞. So there is a
subsequence converging to some τ ∈ R. It follows from (3.13) and (3.40) that for
each t ∈ R,

‖w(t + τ, x)− un(t + tn, x + ne1)‖L∞
x

→ 0

along this subsequence.
If now w1, w2 are two fronts for the same f , then we can choose the same

subsequence for both, which gives the existence of τ1, τ2 such thatw1(t + τ1, x) =
w2(t + τ2, x) for each t, x . Thus the two fronts are time shifts of each other, that is,
each front for this f is a time shift of the frontw constructed at the end of Section 2.

Since this front satisfies wt > 0, the constants in this section do not depend on
Lw. In particular, C̃2 in (3.1) does not, which in turn gives a uniform in f bound
on Lw. This proves the remark after Lemma 3.5.

4. Stability of Fronts for Ignition Reactions

We will now prove Theorem 1.5(iii). We make the same assumptions as at the
beginning of the last section, and all constants will again depend on q, A, f0, f1, ζ,

g, K , θ ′′ as well as on Y, μ, ν, but not on f . Let us denote by w± the unique right-
and left-moving fronts from the last section.

Without loss of generality, we will assume μ � λζ /2 and (3.14). We can also
assume a = 0, after possibly shifting the domain. It will be notationally convenient
to let u be the solution of (1.2) with initial condition v (with θ̃ ≡ 1 − ε0/2 as
in the last section), and w the solution of (1.2) in question, with initial condition
w(0, x) ≡ w0(x).

Let us prove claim (a) in Theorem 1.5(iii) (that is, Definition 1.4(a) with f, w0-
uniform constants). We have

w0(x) � e−μ(x1−Y ), (4.1)

w0(x) � θ̃χ(−∞,0)(x1), (4.2)
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where we have also assumed that ν = θ̃ − θ . We can do this without loss of gen-
erality due to the following. Lemma 2.6(ii), in fact, holds with θ + ν in place of
(1 + θ)/2 for any ν > 0 (see [21] or Lemma 5.1) but with ν-dependent t ′ε and
L ′. So if (4.2) holds with θ + ν in place of θ̃ , then w(τ ′, x) � θ̃χ(−∞,0)(x1) for
τ ′ ≡ t ′

1−θ̃ + L ′/(c0 − ε0). We also have that if

Yw(t) ≡ inf{y |w(t, x) � �(x1 − y, x) for all x ∈ D} (4.3)

with

�(s, x) ≡ 2

[
inf
D
γ (x; λζ ) inf

D
γ (x;μ)

]−1

e−μsγ (x;μ) > 0,

corresponding to λ = μ in (2.10), then (3.4) holds with cξ = (ξ + κ(μ))/μ (and
ξ from Lemma 2.4). In particular, Yw(t) is again finite because (4.1) and

�(s, x) � 2e−μs (4.4)

imply Yw(0) � Y . Thus w(τ ′, x) � e−μ(x1−Y−Y ′) holds with the f, w-indepen-
dent constant Y ′ ≡ cξ τ ′ + μ−1 supD log�(0, x). So (4.1) and (4.2) are satisfied
for w(τ ′, x) in place of w0(x) and Y + Y ′ in place of Y , with τ ′,Y ′ independent
of f, w.

We define Xw, Z±
w,ε, Lw,ε, Zw, Lw as before and Yw(t) by (4.3). The proof

of claim (a) in Theorem 1.5(iii) will be essentially identical to the argument in
Lemmas 3.2–3.5, after we have established the basic properties (3.1), (3.4), (3.8)
for w. We will then show uniform convergence of u to a time shift of w. Since u
also uniformly converges to a time shift of w+, claim (a) in Theorem 1.5(iii) will
thus be proved. The proof of claim (b) at the end of this section will be a slight
variation on the same theme.

Lemma 4.1. The estimates (3.1), (3.4), and (3.8) hold with f, u, w-independent
constants.

Proof. We have already proved (3.4) and, obviously, we also have

Yw(t) � Zw(t)− C̃2 (4.5)

for some f, w-independent C̃2.
Next, we note that (4.2) gives w0(x) � v(x), thus w(t, x) � u(t, x), and so

Z±
w,ε(t) � Z±

u,ε(t) and Zw(t) � Zu(t) (4.6)

for all t � 0. It is therefore sufficient to show that there is an f, u, w-independent
t1 such that

Yw(t) � Yu(t + t1) (4.7)

for all t � 0, because then (3.1) and (3.8) (with new f, u, w-independent constants)
follow from (4.5), (4.6) and (3.6), (3.7), (3.9).
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We prove this by boundingw above by a uniformly bounded time shift of u plus
a small perturbation. The argument is very similar to that in the proof of Lemma
3.2(i), with μ in place of λζ /2. We let

b0 ≡ ε0μ(c0 − cζ )ω

2�K supD �(0, x)
(� ε0 due to (3.14) and μ � λζ /2),

Y0 ≡ Y + | log b0|
μ

,

and choose t0 so that

Zu(t0) � Y0 + Cε0 + C2. (4.8)

This can be done uniformly in f, u, w thanks to (3.9) and Zu(0) depending only
on v. Let

β(t) ≡ ε0

�

(
1 − e−μ(c0−cζ )(t−t0)/2

)
,

φ(t, x) ≡ b0�(x1 − Y0 − cζ (t − t0), x),

z(t, x) ≡ ũ(t, x)+ φ(t, x) ≡ u(t + β(t), x)+ φ(t, x),

so that (4.4) and (4.1) give

z(t0, x) � φ(t0, x) � w0(x) (4.9)

for all x ∈ D. Convexity of κ(λ), κ(0) = 0, and μ < λζ yield

κ(μ) � μ

λζ
κ(λζ ) < cζμ,

so that, again, φt + q · ∇φ − div(A∇φ) � 0.
It then follows, as in the proof of Lemma (3.2)(i), that z is a supersolution of

(1.2). The argument is identical, with ε = ε0, μ in place of λζ /2, (3.20) replaced
by

Zu(t + β(t))− Y0 − cζ (t − t0) � c0 − cζ
2

(t − t0)+ C2 (4.10)

(which is immediate from (4.8) and (3.9)), and (3.21) by

φ(t, x) � b0e−μ[(c0−cζ )(t−t0)/2+C2] sup
D
�(0, x)

= β ′(t)ω
K

e−μC2 � ε0
μ(c0 − cζ )

2K
� ε0, (4.11)

for x1 � Zu(t + β(t)).
Thus (4.9) yields z(t + t0, x) � w(t, x) for all t � 0 and x ∈ D.
However, �(s, x) � 1

2�(s, x) for s � 0 and b0 � 1
2 give

w(t, x) � ũ(t + t0, x)+ φ(t + t0, x) � 1

2
�(x1 − Yu (t + t0 + β(t)) , x)

+1

2
�

(
x1 − Y0 − cζ (t − t0), x

)
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for x1 � Yu(t + t0 +β(t)). Since Yu(t + t0 +β(t)) � Y0 +cζ (t − t0) (by (4.10) and
(3.7)) and�(s, x) � 1 for s � 0, we obtainw(t, x) � �(x1 −Yu(t + t0 +β(t)), x)
for t � 0 (and all x1). This and β(t) � ε0/� now yield (4.7) with t1 ≡ t0
+ ε0/�. ��
Lemma 4.2. Lemmas 3.2, 3.3, 3.4 hold for u, w as above, and the convergence in
Lemma 3.4 is uniform in all f, u, w as above (with fixed q, A, f0, f1, ζ, g, K , θ ′′,
Y, μ, ν).

Proof. This is virtually identical to the proofs of Lemmas 3.2–3.5, with the fol-
lowing adjustments. In Lemma 3.2 one considers only t1 � 1 and λζ is replaced
by μ in the proof. In the proof of Lemma 3.4 we cannot assume τw = 0, but this
causes no change to the argument. This is also the case in the proof of Lemma
3.5, but uniformity in f of the argument in Lemma 3.3 shows that the τw are uni-
formly bounded (for fixed Y, μ, ν). Thus, in the proof of Lemma 3.5 we can simply
consider a sequence wn with convergent τwn and the proof is unchanged. The con-
dition Lw � C can be omitted because it is automatic from Lemma 4.1. Finally, the
limit w obtained in the proof of Lemma 3.5 along a subsequence of {wn}n is not a
front, but satisfies (4.1) and (4.2), and thus the just-proved Lemma 3.4 holds forw,
too. ��

This and f -uniform convergence of u to a time shift ofw+ prove f, w-uniform
convergence of w to a time shift of w+ in L∞

x , claim (a) in Theorem 1.5(iii).
The proof of claim (b) is virtually identical, with separate treatments of the two

reaction zones of w (one on either side of x1 = a) moving right and left. This
requires the adjustment of the definition of Z−

w,ε(t) (for the right-moving reaction
zone) to

Z−
w,ε(t) ≡ sup{y � a

∣
∣w(t, x) � 1 − ε when x1 ∈ [a, y]},

and a restriction of all the estimates to x1 � a. The rest of the proof is unchanged
because our subsolution z− in Lemma 3.2(ii) is, in fact, negative for t � t0 and
x1 < a, as long as t0 is large enough (depending on ε) so that φ−(t, x) � 1
for these t, x1 (see (3.23)). Thus we still obtain z− � w and ultimately prove f,
w-uniform convergence in L∞

x (D
+
a ) of w to a time shift of u (and hence of w+),

with D+
a ≡ [a,∞) × T

d−1. A similar treatment of the left-moving reaction zone
of w gives a f, w-uniform convergence in L∞

x (D
−
a ) of w to a time shift of w−,

with D−
a ≡ (−∞, a] × T

d−1. Since w± converge f -uniformly to 1 in L∞
x (D

∓
a )

by Lemma 2.6, the claim follows.

Appendix: The Spreading Lemma and Transition Fronts for Homogeneous
Ignition Reactions

We will now show how one can use our arguments to obtain a proof of Lemma
2.6(ii), which is from [21], without the use of [21]. In fact, we will prove a slightly
stronger result. In the course of this proof we will also prove Theorem 1.5 for
f (x, u) = f0(u), showing that c0 in that theorem is well defined. Recall that
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c0, c−
0 > 0 are the speeds of the unique right- and left-moving fronts for (5.1)

below.

Lemma 5.1. Let q, A, f0 be as in (H1), (H2). Then for each ν > 0 there is Lν > 0
such that, for every ε > 0, there is t ′ε < ∞ satisfying the following. If u : [0,∞)×
D → [0, 1] solves

ut + q(x) · ∇u = div(A(x)∇u)+ f0(u), (5.1)

and x̃ ∈ D is such that inf
{
u(0, x)

∣
∣ |x1 − x̃1| � Lν

}
� θ + ν, then for each t � 0

we have

inf
{
u(t + t ′ε, x)

∣
∣ x1 − x̃1 ∈ [−c−

0 t, c0t]} � 1 − ε. (5.2)

Remark. The comparison principle then gives the same result for solutions of (1.2)
with f � f0. This also gives Lemma 2.6(i) with c0, c−

0 in place of c0 − ε, c−
0 − ε.

Thus (c0 + cζ )/2 can be replaced by c0 in (3.8) and (3.9), proving the first claim
in Remark 1 after Theorem 1.5.

Proof. Let f (x, u) ≡ f0(u) and let us re-prove Theorem 1.5 without relying on
Lemma 2.6, as originally stated. We first let θ̃ = θ + ν and construct a compactly
supported initial datum v(x) � θ̃ that satisfies (2.1). This is done as in Lemma 2.1,
but cutting off v on both sides. We let ṽ+ be as ṽ in that lemma and let ṽ− be a C2

solution of − div(A∇ṽ−)+q ·∇ṽ− = −q1 +div(Ae1) on T
d , periodically contin-

ued to D. Let v±,ε(x) ≡ ε(ṽ±(x)∓ x1) and v(x) ≡ ρ(min{v+,ε(x), v−,ε(x)+ 4})
for ε > 0. So v is compactly supported and, if ε is small, then there is a ∈ R and
l > 0 such that

v(x) =

⎧
⎪⎨

⎪⎩

θ̃ x1 ∈ [a − l, a + l],
ρ(v+,ε(x)) x1 � a,

ρ(v−,ε(x)+ 4) x1 � a

(a is such that v±,ε(x) ≈ ±2 when x1 ≈ a). We also have − div(A∇v±,ε) + q ·
∇v±,ε = 0, so for some distribution T � 0 supported on the set Dε ≡ {x ∈
D | v+,ε(x) = 0 or v−,ε(x) = 0} and with ṽ standing for ṽ± when ±(x1 − a) � 0,

− div(A∇v)+ q · ∇v = −ε2χD\Dερ
′′(min{v+,ε(x), v−,ε(x)+ 4})

(∇ṽ − e1) · A(∇ṽ − e1)− T,

which is again less than or equal to f0(v) if ε is small enough.
Next, let Lν < ∞ be such that v is supported in [−Lν, Lν]×T

d−1. Let u solve
(5.1) with u(0, x) = v(x), so that Lemma 2.2 holds for u and t > 0. Thus, there is
τν < ∞ such that

u(τν, x) � θ̃χ[−Lν−p,Lν+p](x1) � max{v(x − pe1), v(x), v(x + pe1)}.
This, (2.3) for u, and the comparison principle then prove Lemma 5.1 with c′

0 ≡
p/τν > 0 in place of c0, c−

0 . This, in turn, proves Lemma 2.6 with c′
0 in place of

c0 − ε, c−
0 − ε.
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We now notice that f0 being independent of x and positive on (θ, 1) shows
that f0 ζ -majorizes some (ζ -dependent) g as in Theorem 1.6 for each ζ > 0. We
therefore choose ζ > 0 small enough (and a corresponding g) so that cζ < c′

0 in
(2.9) and f0 ζ

′-majorizes g for all ζ ′ > ζ − σ (with σ ≡ ζ/2). This can be done
because κ(0) = κ ′(0) = 0 [1, Proposition 5.7(iii)]. Now we can perform the rest
of the proof of Theorem 1.5 for (5.1) using c′

0 in place of c0, c−
0 (and, in particular,

cζ < c′
0 in place of cζ < c0). This yields the existence of a unique right-moving

transition front for (5.1) with some speed c0 > 0 and, similarly, a left-moving
transition front with speed c−

0 > 0, as well as convergence of general solutions to
them as in Theorem 1.5(iii). So the solution u, above, converges in L∞

x to some
time shifts of these fronts in the sense of (1.6). This and the comparison principle
now prove (5.2). ��
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