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Abstract

We study the long time asymptotics of a nonlinear, nonlocal equation used in
the modelling of granular media. We prove a uniform exponential convergence
to equilibrium for degenerately convex and nonconvex interaction or confinement
potentials, improving in particular results by J. A. Carrillo, R. J. McCann and
C. Villani. The method is based on studying the dissipation of the Wasserstein
distance between a solution and the steady state.

1. Introduction

We consider the problem of convergence to equilibrium for the nonlinear equa-
tion

∂tμt = �μt + ∇ · (μt (∇V + ∇W ∗ μt )) t > 0, x ∈ R
n . (1)

This equation preserves mass and positivity and we shall be concerned with solu-
tions which are probability measures on R

n at all times. It is used in the modelling
of space-homogeneous granular media (see [3]), where it governs the evolution of
the velocity distributionμt (x) of a particle under the effects of diffusion, a possible
exterior potential V and a mean field interaction through the potential W ; we shall
keep the variable x instead of v (for the velocities) for notational convenience.

Steady states may exist as a result of a balance between these three effects, and
we are concerned with deriving rates of convergence of solutions towards them.
Following [3], this issue has raised much attention in the last years and has been
tackled by a particle approximation and logarithmic Sobolev inequalities in [15],
by an entropy dissipation method in [7,12] and by contraction properties in Wasser-
stein distance in [8,11,5] (see also [9,6] for related works in one dimension). The
entropy method is based on studying the time derivatives of a Lyapunov function F
of the equation (called entropy or energy), on the interpretation due to F. Otto of (1)



430 François Bolley, Ivan Gentil & Arnaud Guillin

as a gradient flow of F (see [8,1]) and on the notion of convexity for F due to
R. J. McCann (see [16]).

When V and W are uniformly convex, solutions converge exponentially quickly
to equilibrium, but the case of interest of [3] is V = 0 and W (x) = |x |3, whose
convexity degenerates at 0. For this case, only a polynomial rate, or exponential,
but depending on the initial data, was obtained in [7,8,11]. In the present paper we
prove a uniform exponential convergence in Wasserstein distance of all solutions
to the steady state. The method, introduced in the linear case in [4], is based on
comparing the Wasserstein distance with its dissipation along the evolution.

In Section 2 we derive the dissipation of the Wasserstein distance between solu-
tions and easily deduce the classic contraction results. Section 3 is devoted to cases
when the convergence is driven by the interaction potential W , with or without
exterior potential V : in particular we prove the first result of uniform exponential
convergence to equilibrium for degenerately convex interaction potentials and no
exterior potential. In Section 4 we give conditions to get an exponential convergence
to equilibrium with both potentials being nonconvex.

2. Dissipation of the Wasserstein Distance

Let P2(R
n) be the set of Borel probability measures on R

n with
∫
Rn |x |2 dμ <

∞. The Wasserstein distance between two measures μ and ν in P2(R
n) is defined

as

W2(μ, ν) = inf
π

(∫∫

R2n
|x − y|2 dπ(x, y)

)1/2

whereπ runs over the set of joint Borel probability measures on R
2n with marginals

μ and ν. It defines a distance on P2(R
n) which metrizes the narrow convergence,

up to a condition on moments. In the present work, convergence estimates will be
given in terms of this distance, but interpolation estimates can turn such weak con-
vergence estimates into strong convergence estimates. By the Brenier Theorem, if
μ is absolutely continuous with respect to the Lebesgue measure, then there exists
a convex function ϕ such that ∇ϕ#μ = ν, that is,

∫
Rn g dν = ∫

Rn g(∇ϕ) dμ for
every bounded function g; moreover,

W 2
2 (μ, ν) =

∫

Rn
|∇ϕ(x)− x |2 dμ(x)

and ∇ϕ∗#ν = μ for the Legendre transform ϕ∗ of ϕ if also ν is absolutely contin-
uous with respect to the Lebesgue measure. We refer to [1,10,19] for instances for
these notions.

We shall assume that V and W are C2 potentials on R
n , respectively, α and

β-convex with α, β ∈ R, in the sense that ∇2V (x) � α and ∇2W (x) � β for
all x ∈ R

n , as quadratic forms on R
n . Moreover, we assume that the interaction

potential W is even and that both V and W satisfy the doubling condition

V (x + y) � C(1 + V (x)+ V (y)) (2)

for all x, y ∈ R
n , and analogously for W .



Uniform Convergence to Equilibrium for Granular Media 431

We shall consider solutions which are gradient flows in the space P2(R
n) of the

free energy

F(μ) =
∫

Rn
μ logμ dx +

∫

Rn
V dμ+ 1

2

∫∫

R2n
W (x − y) dμ(x) dμ(y), (3)

as developed as follows in [1]: Let μ0 be an initial datum in P2(R
n). Then, by [13,

Ths. 4.20 and 4.21] or [1, Th. 11.2.8], there exists a unique curve μ = (μt )t ∈
C([0,+∞[, P2(R

n)), locally Lipschitz on ]0,+∞[, satisfying the evolution varia-
tional inequality

1

2

d

dt
W 2

2 (μt , σ ) � F(σ )− F(μt )− α + min{β, 0}
2

W 2
2 (μt , σ )

for almost every t > 0 and all probability measure of σ in the domain of F . For all
t > 0 the solutionμt has a density with respect to the Lebesgue measure. Moreover,
the curve μ satisfies the continuity equation

∂tμt + ∇ · (μt vt ) = 0, t > 0, x ∈ R
n

in the sense of distributions, where the velocity field vt satisfies

−μtvt = ∇μt + μt∇V + μt (∇W ∗ μt ).

In other words,μ is a solution to (1), and the curveμ = (μt )t will be called the solu-
tion with initial datum μ0 ∈ P2(R

n). Finally, t �→ ∫ |vt |2 dμt ∈ L∞
loc([0,+∞[)

so the curve μ : ]0,+∞[→ P2(R
n) is absolutely continuous (see [1, Th. 8.3.1]);

moreover, if ν is another such solution with initial datum ν0 and associated velocity
field wt , then by [19, Th. 23.9] or [1, Th. 8.4.7]

1

2

d

dt
W 2

2 (μt , νt ) = −
∫

Rn
(∇ϕt (x)− x) · vt (x) dμt (x)

−
∫

Rn
(∇ϕ∗

t (x)− x) · wt (x) dνt (x)

for almost every t > 0; here ϕt is a convex function on R
n such that ∇ϕt #μt = νt

and ∇ϕ∗
t #νt = μt . Then one can perform a “weak” integration by parts as in [14,

Th. 1.5] or [8, Lem. 13] to bound from above the right-hand side by

−
∫

Rn
(�ϕt (x)+�ϕ∗

t (∇ϕt (x))− 2n + (A(∇ϕt (x), νt )− A(x, μt )) · (∇ϕt (x)− x)) dμt (x).

Here �ϕ is the trace of the Hessian of a convex map ϕ on R
n in the Alexandrov

almost everywhere sense and A(x, μt ) = ∇V (x)+ ∇W ∗μt (x). Moreover, since
∇W is odd, the term involving W is
∫

Rn
(∇W ∗ νt (∇ϕt (x))− ∇W ∗ μt (x)) · (∇ϕt (x)− x) dμt (x)

=
∫∫

R2n
(∇W (∇ϕt (x)−∇ϕt (y))−∇W (x − y)) · (∇ϕt (x)− x) dμt (x) dμt (y)

= 1

2

∫∫

R2n
(∇W (∇ϕt (x)− ∇ϕt (y))− ∇W (x − y))

×(∇ϕt (x)− ∇ϕt (y)− (x − y)) dμt (x) dμt (y).

We summarize as follows:
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Proposition 2.1. [1] If (μt )t and (νt )t are two solutions to (1), then for almost
every t > 0,

1

2

d

dt
W 2

2 (μt , νt ) � −JV,W (νt |μt )

where, for ν = ∇ϕ#μ (and �ϕ the trace of the Hessian of ϕ in the Alexandrov
sense),

JV,W (ν|μ) =
∫

Rn
(�ϕ(x)+�ϕ∗(∇ϕ(x))− 2n

+ (∇V (∇ϕ(x))− ∇V (x)) · (∇ϕ(x)− x)) dμ(x)

+ 1

2

∫∫

R2n
(∇W (∇ϕ(x)− ∇ϕ(y))− ∇W (x − y))

×(∇ϕ(x)− ∇ϕ(y)− (x − y)) dμ(x) dμ(y). (4)

For t > 0 we can expect the solutions to have smooth densities, and to
have equality in Proposition 2.1, but we shall be content with the inequality
(see [6]).

Considering the dissipation of the distance between two solutions provides sim-
ple alternative proofs of contraction properties in Wasserstein distance derived in
[8,11]. For that purpose we first notice that givenμ and ν absolutely continuous with
respect to the Lebesgue measure, and ∇ϕ#μ = ν, then�ϕ+�ϕ∗(∇ϕ)−2n � 0μ
almost everywhere (see for example [14, Th. 1.5] and [4, Lem. 2.5]). This inequal-
ity says that the diffusion part of the equation always contracts two solutions, as it
is classical for the pure heat equation. Then:

• Suppose that V and W are respectively α and β-convex with α ∈ R and β � 0.
Then the term involving V in (4) is bounded from below by αW 2

2 (μ, ν) and the
term involving W by

β

2

∫∫
|∇ϕ(x)− ∇ϕ(y)− (x − y)|2 dμ(x) dμ(y)

= βW 2
2 (μ, ν)− β

∣
∣
∣
∣

∫
(∇ϕ − x) dμ

∣
∣
∣
∣

2

� βW 2
2 (μ, ν)

since β � 0. Hence, for two solutions (μt )t and (νt )t of (1) and almost all t � 0

1

2

d

dt
W 2

2 (μt , νt ) � −(α + β)W 2
2 (μt , νt ).

Then by the Gronwall lemma we recover the contraction property of [8, Th. 5]:

W2(μt , νt ) � e−(α+β)t W2(μ0, ν0), t � 0. (5)

• Suppose that W is convex and that there exist p,C > 0 such that for all ε > 0

(∇V (y)− ∇V (x)) · (y − x) � Cε p(|y − x |2 − ε2), x, y ∈ R
n . (6)
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Then, by the same argument,

1

2

d

dt
W 2

2 (μt , νt ) � −C

2
ε p(2W 2

2 (μt , νt )− ε2).

We optimize in ε and integrate to recover the polynomial contraction of [8, Th. 6]

W2(μt , νt ) � (W −p
2 (μ0, ν0)+ ct)−1/p, t � 0. (7)

• Suppose that V and W are, respectively, α and β-convex with α ∈ R and
β � 0. Then, again by the same argument, the contraction result (5) holds
for any two solutions with the same center of mass, that is, such that in
R

n
∫
Rn x dμt = ∫

Rn x dνt for all t � 0. This was also proved in [8, Th. 5].
• Suppose that V is convex and that (6) holds for W instead of V . If moreover the

center of mass of each solution is conserved, that is, if
∫
Rn x dμt = ∫

Rn x dμ0
for all t � 0 (this is the case for instance, if V = 0), then the polynomial
contraction (7) holds for any two solutions with same (initial) center of mass,
recovering [8, Th. 6] and [11, Th. 4.1].

In the first case with α+β > 0 the bound (5) ensures the existence of a unique sta-
tionary solution to (1) in P2(R

n), and the exponential convergence of all solutions
to it. In the third case with α + β > 0, and if, moreover, the center of mass is pre-
served by the evolution, then for any m ∈ R

n this ensures the existence of a unique
stationary solution to (1) in P2(R

n) with center of mass m, and the exponential
convergence to it of all solutions with (initial) center of mass m.

The following two sections are devoted to obtaining explicit exponential rates
of convergence of solutions to (1) in nonuniformly convex or even nonconvex
cases, having in mind the degenerately convex potentials of [3] and the double well
potentials of [18].

3. Influence of the Interaction Potential

In this section we study the case when W brings the convergence.

3.1. No Exterior Potential

We first assume that V = 0. Then the evolution preserves the center of mass,
and a solution μt should converge to a stationary solution μ∞ only if the initial
datum μ0 and μ∞ have same center of mass, since

∫

Rn
x dμ∞(x)−

∫

Rn
x dμ0(x) =

∫

Rn
x dμ∞(x)−

∫

Rn
x dμt (x)

should converge to 0: for instance it is bounded by W2(μt , μ∞). We could also
assume that V �= 0, but that the center of mass is fixed by the evolution, which is
all we use. But to simplify the statements we assume V = 0.

When W is degenerately convex, with a pointwise degeneracy, for instance
W (x) = |x |2+ε with ε > 0, then the contraction property holds only with
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polynomial decay rate, see the last example in Section 2. Then in [7] the authors
proved an exponential convergence to equilibrium, but not with a uniform decay
rate, but rather depending on the free energy F of the initial datum. In this section
we prove a uniform exponential convergence for such potentials.

Theorem 3.1. Let V = 0 and W be a C2 convex map on R
n for which there exist

R and K > 0 such that

∇2W (x) � K if |x | � R.

Then for all m ∈ R
n there exists a unique stationary solution μm∞ ∈ P2(R

n) to (1)
with center of mass m; moreover, there exists a positive constant C such that all
solutions (μt )t to (1), for an initial datum with center of mass m, converge to μm∞
according to

W2(μt , μ
m∞) � e−Ct W2(μ0, μ

m∞), t � 0.

Proof. The existence of a stationary solution μ0∞ ∈ P2(R
n) with center of mass

0 and a positive density satisfying μ0∞(x) = Z−1e−W∗μ0∞(x) is given by Proposi-
tion 4.4, proof of i., with any b < K/2; here Z is the normalizing constant. Then
μm∞ = μ0∞(· − m) is a stationary solution with a center of mass m. Now Proposi-
tion 3.2 and Remark 3.3, i i. below ensure the convergence estimate to μm∞ since
μm∞ = e−U/Z with U = W ∗ μm∞ convex and bounded from below. Uniqueness
follows. 	

Proposition 3.2. Let W be a C2 convex map on R

n for which there exist R and
K > 0 such that

∇2W (x) � K if |x | � R.

Let μ ∈ P2(R
n) have a continuous density e−U for which there exists M such that

sup
|x−y|�2R

sup
z∈[x,y]

{U (z)− U (x)− U (y)} � M. (8)

Then there exists an explicit positive constant C, depending only on K , R and M,
such that

CW 2
2 (ν, μ) � J0,W (ν|μ)

for all measures ν with the same center of mass as μ.

Remark 3.3. Hypothesis (8) on U holds on any of the following two instances:

(i) U is C1 and U (x)− 2R sup|x−y|�R |∇U (y)| � −M for all x ∈ R
n

(ii) U is C2,∇2U (x) � α(x) with α(x) � 0 and U (x)+ 2R2 inf |x−y|�R α(y) �
−M for all x ; for example, U is C2 and bounded from below and ∇2U (x) � α

for all x and a constant α.
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For i i . for instance, assume that the sup of U on [x, y] is achieved at z = t x
+(1 − t)y with t ∈]0, 1[. Then ∇U (z) · (y − x) = 0, so that

U (x)− U (z) =
∫ 1

0
(1 − s)∇2U (z + s(x − z))(x − z) · (x − z) ds

� inf
|Y− x+y

2 |�R
α(Y )

(1 − t)2

2
|x − y|2

and similarly

U (y)− U

(
x + y

2

)

� U (y)− U (z) � inf
|Y− x+y

2 |�R
α(Y )

t2

2
|x − y|2.

Hence, for |x − y| � 2R,

U (z)− U (x)− U (y) � −U

(
x + y

2

)

− 2R2 inf
|Y− x+y

2 |�R
α(Y ) � M.

Proof of Proposition 3.2. Let ϕ be a strictly convex function on R
n (with ν =

∇ϕ#μ) such that
∫
Rn ∇ϕ dμ = ∫

Rn x dμ.
First observe that

∫∫

R2n
|∇ϕ(x)− ∇ϕ(y)− (x − y)|2 dμ(x) dμ(y) = 2

∫

Rn
|∇ϕ(x)− x |2 dμ(x)

since, by assumption on ϕ, the difference is

2

∣
∣
∣
∣

∫

Rn
(∇ϕ(x)− x) dμ(x)

∣
∣
∣
∣

2

= 0.

Then, by [4, Lem. 5.1],

(∇W (x)− ∇W (y)) · (x − y) � K

3
|x − y|2 (9)

if |x | � 2R or |y| � 2R. In view of this result we let

X = {(x, y) ∈ R
2n; |x − y| � 2R, |∇ϕ(x)− ∇ϕ(y)| � 2R}.

1. First of all, by convexity of W and (9),
∫

R2n
(∇W (∇ϕ(x)− ∇ϕ(y))− ∇W (x − y))

×(∇ϕ(x)− ∇ϕ(y)− (x − y)) dμ(x) dμ(y)

�
∫

R2n\X
(∇W (∇ϕ(x)− ∇ϕ(y))− ∇W (x − y))

×(∇ϕ(x)− ∇ϕ(y)− (x − y)) dμ(x) dμ(y)

� K

3

∫

R2n\X
|∇ϕ(x)− ∇ϕ(y)− (x − y)|2 dμ(x) dμ(y).
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2. Then for all x and y, written as y = x + rθ with r � 0 and θ ∈ S
n−1,

∇ϕ(y)− ∇ϕ(x)− (y − x) =
∫ 1

0
[∇2ϕ(x + r tθ)− I ]rθ dt.

We let H = ∇2ϕ(x + r tθ) and write H − I = [H1/2 − H−1/2]H1/2, so that

|[H − I ]θ | � ‖H1/2 − H−1/2‖ |H1/2θ |.
Hence,

|∇ϕ(y)− ∇ϕ(x)− (y − x)|2

� r
∫ 1

0
‖H1/2 − H−1/2‖2e−U (x+r tθ) dt

∫ 1

0
|H1/2θ |2eU (x+r tθ)r dt

by the Cauchy–Schwarz inequality. On the one hand, letting D = �ϕ+�ϕ∗(∇ϕ)−
2n,

‖H1/2 − H−1/2‖2 = sup
x

([H − 2I + H−1]x) · x

|x |2
� trace(H − 2I + H−1) = D(x + r tθ).

On the other hand,
∫ 1

0
|H1/2θ |2r dt =

∫ 1

0
∇2ϕ(x + r tθ)(rθ) · θ dt

= (∇ϕ(y)− ∇ϕ(x)) · θ � 2R

if (x, y) ∈ X . Hence,

|∇ϕ(y)− ∇ϕ(x)− (y − x)|2 � 4R2 sup
z∈[x,y]

eU (z)
∫ 1

0
D(x + r tθ)e−U (x+r tθ) dt

for all (x, y) ∈ X , so that
∫∫

X
|∇ϕ(y)− ∇ϕ(x)− (y − x)|2 dμ(x) dμ(y)

� 4R2
∫

Rn
e−U (x) dx

∫

|y−x |�2R
dy sup

z∈[x,y]
eU (z)e−U (y)

∫ 1

0
D(x + t (y − x))e−U (x+t (y−x)) dt

� 4R2eM
∫

Rn
dx

∫

|y−x |�2R
dy

∫ 1

0
D(x + t (y − x))e−U (x+t (y−x)) dt

by (8). Now, for fixed t ∈ [0, 1], the change of variables (x, y) �→ (v, u) =
(x + t (y − x), y − x) has unit Jacobian, so this is equal to

4R2eM
∫ 1

0
dt

∫

Rn
dv

∫

|u|�2R
du D(v)e−U (v) = c

∫

Rn
D(v) dμ(v)

for a constant c = c(R,M, n) = 4R2+neM cn where cn is the volume of the unit
ball in R

n .
3. Collecting the terms in 1. and 2. concludes the proof with C = 2( 3

K +
4cn R2+neM )−1. 	
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3.2. In Presence of an Exterior Potential

We saw in Section 2 how an exterior potential V can induce the convergence of
all solutions to a unique equilibrium, and not only to the unique equilibrium with
same center of mass as the initial datum of the solution to be considered.

If W is strictly convex (but at 0), and uniformly at infinity, and if V is strictly
convex (but at 0), then polynomial convergence holds to a unique equilibrium μ∞
(see Section 2 and [7, Th. 2.3]), and even exponential convergence, but with a rate
depending on the free energy F of the initial datum (see [7, Th. 2.5]). Following
Theorem 3.1 (for V = 0), one may wonder whether this convergence is actually
uniform in the initial datum, given by

W2(μt , μ∞) � e−Ct W2(μ0, μ∞), t � 0

for all solutions (μt )t . But, according to Section 2, this estimate is based on the
inequality

CW 2
2 (ν, μ) � JV,W (ν|μ) (10)

for the measure μ = μ∞ and all measures ν; and this inequality does not hold if
V is only assumed to be strictly convex. For instance:

Lemma 3.4. Let μ ∈ P2(R) and V be a C2 map on R, with V ′′ bounded and
V ′′ →+∞ 0. Then there is no constant C > 0 such that (10) holds for all ν.

Proof. We prove that (10) does not hold for the translations ν = ϕ′#μ, where
ϕ′(x) = x + M ,where M → +∞, that is, that there is no C > 0 such that

C M �
∫

R

(V ′(x + M)− V ′(x)) dμ(x) (11)

for all M > 0. For that, we let R to be fixed later on, and bound the right-hand side
in (11) by

∫

R

|V ′(x)| dμ(x)+
∫ −R

−∞
|V ′(x + M)| dμ(x)+

∫ +∞

−R
|V ′(x + M)| dμ(x).

First of all, since |V ′′| � A, then |V ′(x)| � |V ′(0)| + A|x | so the first integral is
finite (uniformly in M), and the second one is bounded by

αM
∫ −R

−∞
dμ(x)+

∫ −R

−∞
(|V ′(0)| + A|x |) dμ(x).

Now, for fixed ε > 0, we take R such that this is bounded by (M + 1)ε for all M .
Then we take M0 such that |V ′′(x)| � ε for x � M0. For all M � M0 + R the
third integral is bounded by

∫ +∞

−R
(|V ′(M0)|+ε(x + M − M0)) dμ(x) � |V ′(M0)|+ε(M + M0 +

∫

R

|x | dμ(x)).
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Collecting all terms we conclude that the full right-hand side in (11) is � 4ε for
large M . 	


Lemma 3.4 only gives an instance of condition on V for (10) not to hold. For
example, the assumption V ′′ bounded can be replaced by the doubling condition (2)
for V ′ and

∫ |V ′| dμ < ∞. Similarly, the assumption V ′′ →+∞ 0 can be replaced
by

∫ +∞
0 |V ′′| dμ < ∞: in this case we use

∣
∣
∣
∣

∫ +∞

−R
(V ′(x + M)− V ′(x)) dμ(x)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ +∞

−R

∫ x+M

x
V ′′(t) dt dμ(x)

∣
∣
∣
∣

�
∫ +∞

−R

∫

R

|V ′′(t)| dt dμ � C.

Hence, we can not expect a uniform rate of convergence to equilibrium for
degenerately convex potentials. Our method is however able to recover an expo-
nential convergence with a rate depending on the initial datum, as in [7, Th. 2.5]:

Theorem 3.5. Assume that V is convex on R
n with ∇2V (x) definite positive on

|x | � R and
∫

e−V dx < ∞, and that W is convex with ∇2W (x) � K for
|x | � R. Then there exists a unique stationary solutionμ∞ ∈ P2(R

n) to (1). More-
over, for all M there exists a positive constant C such that for all solutions (μt )t
with

∫
Rn |x |2 dμ0(x) � M

W2(μt , μ∞) � e−Ct W2(μ0, μ∞), t � 0.

Proof. First, Proposition 4.4, i i. ensures the existence of a stationary measure
μ∞ ∈ P2(R

n) which has a density satisfying μ∞(x) = Z−1e−V (x)−W∗μ∞(x);
here Z is the normalizing constant. We just mention that the assumptions on V are
satisfied by [2, Lem. 2.2], for instance.

Then, by direct estimates on the propagation of the second moment, for all
solutions (μt )t with

∫
Rn |x |2dμ0(x) � M there is a constant N , depending only

on V,W and M such that

sup
t�0

∫

Rn
|x |2 dμt (x) � N .

Moreover, for ν = ∇ϕ#μ∞ with
∫
Rn |x |2 dν(x) � N , we first write

∫

Rn
|∇ϕ(x)− x |2 dμ∞ =

∣
∣
∣
∣

∫

Rn
(∇ϕ(x)− x) dμ∞

∣
∣
∣
∣

2

+1

2

∫∫

R2n
|∇ϕ(x)− ∇ϕ(y)− (x − y)|2 dμ∞(x) dμ∞(y).

By Proposition 3.6 below, applied with the constant N and the measure μ∞,

∣
∣
∣
∣

∫

Rn
(∇ϕ(x)− x) dμ∞

∣
∣
∣
∣

2

� 1

2

∫

Rn
|∇ϕ(x)− x |2 dμ∞(x)+ C JV,0(ν|μ∞).
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Then, by the proof of Proposition 3.2, there exists C1, depending only on V and
W , such that

∫∫

R2n
|∇ϕ(x)− ∇ϕ(y)− (x − y)|2 dμ∞(x) dμ∞(y) � C1 J0,W (ν|μ∞).

Hence, there exists a new positive constant C , depending only on V,W and M ,
such that

CW 2
2 (μt , μ∞) � JV,W (μt |μ∞)

for all t . This proves the estimate on the convergence to μ∞ again by Proposi-
tion 2.1 and the Gronwall lemma. Uniqueness of the stationary solution in P2(R

n)

follows. 	

Proposition 3.6. Let V be a C2 convex map on R

n with ∇2V (x) definite positive
on |x | � R, and dμ(x) = e−U (x) dx be a probability measure on R

n with U con-
tinuous. Then for all N , there exists a constant C such that for all C2 strictly convex
maps ϕ on R

n with
∫
Rn |∇ϕ(x)|2 dμ � N

∣
∣
∣
∣

∫

Rn
∇ϕ(x) dμ(x)−

∫
x dμ(x)

∣
∣
∣
∣

2

�
1

2

∫

Rn
|∇ϕ(x)− x |2 dμ(x)+ C JV,0(∇ϕ#μ|μ).

Proof. Let S � 3R to be fixed later on. Since V is C2 and ∇2V (x) is definite
positive on the compact set R � |x | � S, there exists K = K (S) > 0 such that
∇2V (x) � K for all R � |x | � S. Then, following [4, Lem. 5.1],

(∇V (y)− ∇V (x)) · (y − x) � K

3
|x − y|2

if |x | � S, |y| � S and if |x | � 2R or |y| � 2R; then indeed one only need to take
into account the values of ∇2V on the ball of radius S.

Then we let ϕ be a given C2 strictly convex map on R
n and let

X1 = {x ∈ R
n, |x | � S, |∇ϕ(x)| � S, |x | � 2R or |ϕ(x)| � 2R}.

1. First of all, by convexity of V , the above remark and the Cauchy–Schwarz
inequality,

∫

Rn
(∇V (∇ϕ)− ∇V ) · (∇ϕ − x) dμ �

∫

X1

(∇V (∇ϕ)− ∇V ) · (∇ϕ − x) dμ

� K

3

∫

X1

|∇ϕ − x |2 dμ � K

3

∣
∣
∣
∣

∫

X1

(∇ϕ − x) dμ

∣
∣
∣
∣

2

.

2. Then, on R
n \ X1, and letting X2 = {x ∈ R

n, |x | � 2R, |∇ϕ(x)| � 2R},
∣
∣
∣
∣

∫

Rn\X1

(∇ϕ − x) dμ

∣
∣
∣
∣

2

� 3

(∫

|x |�S
|∇ϕ − x | dμ

)2

+3

(∫

|∇ϕ(x)|�S
|∇ϕ − x | dμ

)2

+ 3

(∫

X2

|∇ϕ − x | dμ

)2

.
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By the Cauchy–Schwarz and Markov inequalities, the first term is bounded from
above by

∫

|x |�S
|∇ϕ − x |2 dμ μ[x, |x | � S] �

∫

Rn
|∇ϕ − x |2 dμ

1

S2

∫

Rn
|x |2 dμ(x)

and the second one by
∫

Rn
|∇ϕ − x |2 dμ

1

S2

∫

Rn
|∇ϕ(x)|2 dμ(x).

Then, following the proof of [4, Prop. 3.5], there exists a constant C , depending on
V and μ only on the ball of radius 3R, such that
∫

X2

|∇ϕ − x |2 dμ�C
∫

|x |�3R
(�ϕ+�ϕ∗(∇ϕ)−2n+(∇V (∇ϕ)−∇V ) · (∇ϕ − x)) dμ.

This is in turn bounded by the corresponding integral on R
n , which is JV,0(∇ϕ#μ|μ),

since both terms in the integrand are nonnegative.
3. Collecting all terms we obtain
∣
∣
∣
∣

∫

Rn
∇ϕ dμ−

∫

Rn
x dμ

∣
∣
∣
∣

2

� 6

S2

∫

Rn
|∇ϕ − x |2 dμ

[∫

Rn
|x |2 dμ+

∫

Rn
|∇ϕ|2 dμ

]

+
(

6

K
+ 6C

)

JV,0(∇ϕ#μ|μ).

Then we let S = max{3R,
√

12[∫ |x |2 dμ+ N ]} so that

6

S2

[∫
|x |2 dμ+

∫
|∇ϕ|2 dμ

]

� 1

2

if
∫ |∇ϕ|2 dμ � N , concluding the proof with a C depending on V, μ and M

through K (S). 	


4. Non Convex Examples

In this section we deal with potentials V and W for which the convergence rate
to equilibrium is driven by V rather than by W . Our first result is more qualitative
rather than quantitative.

Theorem 4.1. Assume that V and W are C2 convex maps and that there exist R � 0
and K > 0 such that for all |x | � R,

∇2V (x) � K .

Then there exists a unique stationary solution μ∞ ∈ P2(R
n) to (1), and a constant

C such that for all solutions (μt )t of (1),

W2(μt , μ∞) � e−Ct W2(μ0, μ∞), t � 0.
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In the first section (second example) we saw that only polynomial decay in
contraction is known in this context, and only when the convexity degenerates at
some points, for instance for V (x) = |x |4.

Proof. Existence of a stationary solution μ∞ in P2(R
n) which has a positive den-

sity satisfying μ∞ = Z−1e−V −W∗μ∞ is given by Proposition 4.4, iii, with any
a < K and −a < b < 0. Then, by [4, Prop. 3.5], there exists C > 0 such that

CW 2
2 (μt , μ∞) � JV,0(μt |μ∞)

for all solutions (μt )t . Moreover W is convex, so JV,0 � JV,W . This proves the
convergence bound by Proposition 2.1. Uniqueness of the stationary solution in
P2(R

n) follows. 	

Remark 4.2. The case of a double well potential for V is considered by J. Tugaut
in [17,18], where the long time behavior is studied by a compactness argument,
hence, without rate. Let us now explain how Theorem 4.1 extends to this case, for
instance, for V ε(x) = x4 − εx2 and W (x) = |x |3 in R.

First of all, a stationary solution, solution of με∞ = e−V ε−με∞∗W /Z ε, exists by
Proposition 4.4, iii. Then one can easily build a cut-off function ψ such that V εψ

is C2, convex, satisfies (V εψ)′′ � K > 0 outside a centered ball, uniformly in
ε ∈ [0, 1], and is such that ‖(V ε(1 − ψ))′′‖∞ converges to 0 as ε → 0. Then, by
[4, Prop. 3.5], the measureμε∞ satisfies a W JV εψ,0 inequality with a constant C > 0
uniformly in ε ∈ [0, 1] (here we use that

∫
W dμε∞ and Z ε are bounded uniformly

in ε). Now the perturbation proposition [4, Prop. 3.8] ensures that με∞ satisfies a
W JV ε,0 inequality, for ε smaller than an ε0 > 0, hence, a W JV ε,W inequality since
W is convex, with a constant depending on ε and going to 0 as ε goes to ε0. Here
we say that a measure μ that satisfies a W JV,W inequality if the inequality (10)
holds for a positive constant C and all ν.

The smallness condition on ε is here imposed by the perturbation proposition
[4, Prop. 3.8]; it is in fact necessary since, according to [17,18], there exists a
unique stationary solution for ε smaller than an ε1 > 0, but there are several of
them for ε larger than ε1. However, [4, Prop. 3.8] is probably not optimal and one
can reasonably think than ε0 < ε1. Deriving rates of convergence for ε up to ε1
and the basins of attraction of the diverse stationary solutions for larger ε is an
interesting issue that we are not considering here.

The following theorem provides the first examples of exponential convergence
to equilibrium for the granular media equation, with both potentials nonconvex.

Theorem 4.3. Assume that

• e−V ∈ P2(R
n) and there exist α ∈ R and C > 0 such that ∇2V � α, and for

all ν

W 2
2 (ν, e−V ) � 1

C
JV,0(ν|e−V ); (12)

• there exist K � 0 and β � 0 such that sup |W | � K and ∇2W � β I d.
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Then there exists a unique stationary solution μ∞ ∈ P2(R
n) to (1). Moreover, for

all solutions (μt )t of (1), and with C̃ = (C − α)e−2K + α + β,

W2(μt , μ∞) � e−C̃t W2(μ0, μ∞), t � 0.

Assumption (12) on the measure e−V has been studied in [4] under the name of
W J (C) inequality; there practical criteria have been given for the inequality to
hold. Observe that we can always assume that C � α since, if α � 0, then μ
satisfies a W J (α) inequality.

Proof. Existence of a stationary solution μ∞ in P2(R
n) which has a positive den-

sity satisfyingμ∞ = Z−1e−V −W∗μ∞ is given by Proposition 4.4, iv; indeed, by [4,
Cor. 3.11], assumption (12) on the measure e−V implies the Talagrand inequality
(A.1) between the Wasserstein distance and the relative entropy (also called W H
or T2, see [19, Chap. 22]), with the same C .

Then we let dμ(x) = e−V (x) dx and use the convexity assumptions on V and W ,
the bound on W and the sign conditions on β and C −α to get, for all ν = ∇ϕ#μ∞,

JV,W (ν|μ∞)

� e−K

Z

∫
(�ϕ +�ϕ∗(∇ϕ)− 2n) dμ

+
∫

[(∇V (∇ϕ)− ∇V ) · (∇ϕ − x)− α|∇ϕ − x |2] dμ∞

+α
∫

|∇ϕ−x |2 dμ∞+ β
2

∫∫
|∇ϕ(x)−∇ϕ(y)−(x − y)|2 dμ∞(x) dμ∞(y)

� e−K

Z

∫
(�ϕ +�ϕ∗

t (∇ϕ)− 2n) dμ

+e−K

Z

∫
[(∇V (∇ϕ)− ∇V ) · (∇ϕ − x)− α|∇ϕ − x |2] dμ

+(α + β)

∫
|∇ϕ − x |2 dμ∞ − β

∣
∣
∣
∣

∫
(∇ϕ − x) dμ∞

∣
∣
∣
∣

2

� (C − α)
e−K

Z

∫
|∇ϕ − x |2 dμ+ (α + β)

∫
|∇ϕ − x |2 dμ∞

� C̃
∫

|∇ϕ − x |2 dμ∞(x) = C̃W 2
2 (ν, μ∞).

	


Appendix: Existence of Stationary Solutions

The existence of a minimizer of F has been proved by R. J. McCann [16] for
strictly convex or radially symmetric convex interaction potentials W (and V = 0).
We adapt his classical compactness-lower semicontinuity argument to our diverse
cases:
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Proposition 4.4. The map F : P2(R
n) → R ∪ {+∞} defined by (3) for absolutely

continuous measures and by +∞ otherwise achieves its minimum in each of the
following cases:

(i) V = 0,W is convex and W (x) � b|x |2 − b′ for b, b′ > 0;
(ii) V (x) � a|x | − a′ and W (x) � b|x |2 − b′ for a, a′, b, b′ > 0;

(iii) V (x) � a|x |2 − a′ and W (x) � b|x |2 − b′ for b′, a, a′ > 0, b > −a;
(iv) W is bounded from below and e−V ∈ P2(R

n) satisfies a Talagrand transpor-
tation inequality

W 2
2 (ν, e−V ) � 2

C

(∫
ν log ν dx +

∫
V dν

)

, ν ∈ P2(R
n). (A.1)

Then, as in [7], a minimizer μ∞ of F has a positive density on R
n satisfying

log μ∞ + V + W ∗ μ∞ = λ ∈ R.

Proof. First of all, inf P2(Rn) F < +∞ since F(μ) < +∞ forμ the Lebesgue mea-
sure on [0, 1]n , for instance. Let then (μp)p ∈ P2(R

n) be a minimizing sequence,
and assume for a while that

∫ |x |2 dμp is bounded. Then (μp)p is tight, so up
to a subsequence admits a limit μ∞ for the narrow convergence by the Prohorov
Theorem. Moreover

∫ |x |2 dμ∞ � lim inf p
∫ |x |2 dμp < +∞ so μ∞ ∈ P2(R

n).
Finally μ∞ minimizes F on P2(R

n) by lower semicontinuity.
It remains now to bound

∫ |x |2 dμp by F(μp) in each case:

For (i), as in [16], let ∇ϕp transport μp onto μp(−.) and let μ̄p = I+∇ϕp
2 #μp

for I the identity map. Now W is convex, so F is displacement convex, so that
F(μ̄p) � (F(μp) + F(μp(−.)))/2 = F(μp) and (μ̄p) is also a minimizing
sequence. Moreover,

∫
x dμ̄p = 0 so

∫
|x |2 dμ̄p = 1

2

∫∫
|x − y|2 dμ̄p(x) dμ̄p(y)

� 1

2

∫∫
1

b
(W (x − y)+ b′) dμ̄p(x) dμ̄p(y) � F(μ̄p)

b
+ b′

2b
·

For (ii) we observe that

F(μp)�a
∫

|x | dμp −a′+b

[∫
|x |2 dμp −

∣
∣
∣
∣

∫
x dμp

∣
∣
∣
∣

2
]

− b′
2

�a
∫

|x | dμp − a′− b′
2

;

hence,
∫ |x | dμp is bounded by the second inequality, and then

∫ |x |2 dμp by the
first one.

For (iii) we similarly observe, and by discussing on the sign of b, that

F(μp) � a
∫

|x |2 dμp − a′ + 1

2

[∫∫
(b|x − y|2 − b′) dμp(x) dμp(y)

]

� (a + min(b, 0))
∫

|x |2dμp − a′ − b′

2
· .
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For (iv) we notice that
∫

|x |2 dμp � 2W 2
2 (μp, e−V )+2

∫
|x |2e−V

� 4

C

(∫
μp log μp dx+

∫
V dμp

)

+ 2
∫

|x |2e−V

� 4

C

(

F(μp)− 1

2
inf W

)

+ 2
∫

|x |2e−V .
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