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Abstract

In this work we establish trace Hardy and trace Hardy–Sobolev–Maz’ya
inequalities with best Hardy constants for domains satisfying suitable geometric
assumptions such as mean convexity or convexity. We then use them to produce
fractional Hardy–Sobolev–Maz’ya inequalities with best Hardy constants for var-
ious fractional Laplacians. In the case where the domain is the half space, our
results cover the full range of the exponent s ∈ (0, 1) of the fractional Laplacians.
In particular, we give a complete answer in the L2 setting to an open problem raised
by Frank and Seiringer (“Sharp fractional Hardy inequalities in half-spaces,” in
Around the research of Vladimir Maz’ya. International Mathematical Series, 2010).

1. Introduction

The Hardy inequality in the upper half space asserts that

∫
Rn+

|∇u|2 dx � 1

4

∫
Rn+

|u|2
x2

n
dx, u ∈ C∞

0 (R
n+), (1.1)

where Rn+ = {(x1, . . . , xn) : xn > 0} denotes the upper half-space and 1
4 is the

best possible constant.
IfΩ ⊂ Rn and d(x) = dist(x, ∂Ω), then there are two main directions towards

establishing Hardy inequalities. One direction is to find proper regularity assump-
tions on the boundary ofΩ that imply the existence of a positive constant CΩ , such
that

∫
Ω

|∇u|2 dx � CΩ

∫
Ω

|u|2
d2(x)

dx, u ∈ C∞
0 (Ω).

In this direction we refer to [4,29] and references therein.
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A second direction aims at finding geometric assumptions onΩ that imply the
Hardy inequality with best constant 1

4 , that is

∫
Ω

|∇u|2 dx � 1

4

∫
Ω

|u|2
d2(x)

dx, u ∈ C∞
0 (Ω). (1.2)

The standard geometric assumption here is the convexity of Ω , see, for example,
[10,18,19]. However, inequality (1.2) remains true under the weaker assumption

−Δd(x) � 0, x ∈ Ω. (1.3)

This is meant in the distributional sense. We refer to [6] where this condition arises
in a natural way. In fact, condition (1.3) is equivalent to convexity in two space
dimensions, but it is weaker than convexity for n � 3, since any convex domain
satisfies (1.3), whereas there are nonconvex domains that satisfy (1.3) [5]. We
emphasize that there is no need for further regularity assumptions onΩ . In the case
where ∂Ω is C2, condition (1.3) has recently been shown to be equivalent to the
mean convexity of ∂Ω , that is, (n − 1)H(x) = −Δd(x) � 0 for x ∈ ∂Ω , see
[31,37].

If in addition to (1.3) the domainΩ is a C2 domain with finite inner radius, then
it has been established that one can combine the Sobolev and the Hardy inequali-
ties, the latter with best constant. More precisely, for n � 3 there exists a positive
constant c such that

∫
Ω

|∇u|2 dx � 1

4

∫
Ω

|u|2
d2(x)

dx + c

(∫
Ω

|u| 2n
n−2 dx

) n−2
n

, u ∈ C∞
0 (Ω), (1.4)

see [23]. In [27] Hardy–Sobolev–Maz’ya inequalities are established under a dif-
ferent geometric assumption than (1.3), which allows infinite inner radius. Frank
and Loss established in [26] inequality (1.4) with a constant c independent of Ω ,
when Ω is convex.

Recently, much attention has been devoted to the fractional Laplacian, which
for s ∈ (0, 1) is defined as

(−Δ)s f (x) = cn,s PV
∫

Rn

f (x)− f (ξ)

|x − ξ |n+2s
dξ, (1.5)

where PV stands for the Cauchy principal value and

cn,s = s22sΓ
( n+2s

2

)
Γ (1 − s)π

n
2
. (1.6)

There are other ways to define the fractional Laplacian, as, for instance, via the
Fourier transform. We note that the fractional Laplacian is a nonlocal operator and
that this raises several technical difficulties. However, there is a way of studying
various properties of the fractional Laplacian via the Dirichlet to Neumann map.
This has been recently studied by Caffarelli and Silvestre [13], and it will be
central in this work. Let us briefly recall the approach in [13] where, by adding
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a new variable y, they relate the fractional Laplacian to a local operator. For any
function f one solves the following extension problem

div(y1−2s∇(x,y)u(x, y)) = 0, Rn × (0,∞), (1.7)

u(x, 0) = f (x), Rn, (1.8)

the natural energy of which is given by

J [u] =
∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy.

Then, up to a normalizing factor C one establishes that

− lim
y→0+ y1−2suy(x, y) = C(−Δ)s f (x).

Our interest in this work is to study the fractional Laplacian defined in subsets
of Rn and, in particular, to establish Hardy and Hardy–Sobolev–Maz’ya inequali-
ties there. There is much interest in fractional Laplacian in subsets of Rn coming
from various applications, as, for instance, censored stable processes and killed
stable processes [7,15–17], Gamma convergence and phase transition problems
[2,28,36,38,39] and nonlinear PDE theory [11,12,42]. In [8] it was conjectured
that the best Hardy constant in the case of the fractional Laplacian associated to a
censored stable process is the same for all convex domains. In [24] the question
was posed regarding establishing fractional Hardy–Sobolev–Maz’ya inequalities
for the half space.

Contrary to the case of the full space Rn , there are several different fractional
Laplacians that one can define on a domain Ω ⊂

�=
Rn . In particular, in the above

mentioned references three different fractional Laplacians appear. In all cases we
will use the Dirichlet to Neumann map after identifying the proper extension prob-
lem. Throughout this work we assume that the domain Ω is a uniformly Lipschitz
domain; for the precise definition see Section 2.

We start with the fractional Laplacian that appears in [11,12,42]. The proper
extension problem in this case is to consider test functions in C∞

0 (Ω × R). At this
point we recall that the inner radius of a domainΩ is defined as Rin := supx∈Ω d(x).
We say that the domain Ω has a finite inner radius whenever Rin < ∞. Our first
result concerns the extended problem and reads:

Theorem 1. (trace Hardy and trace Hardy–Sobolev–Maz’ya I) Let 1
2 � s < 1,

n � 2 and Ω ⊂
�=

Rn be a domain.

(i) If, in addition, Ω is such that

−Δd(x) � 0, x ∈ Ω, (1.9)

then for all u ∈ C∞
0 (Ω × R) there holds

∫ +∞

0

∫
Ω

y1−2s |∇(x,y)u(x, y)|2 dx dy � d̄s

∫
Ω

u2(x, 0)

d2s(x)
dx, (1.10)



112 Stathis Filippas, Luisa Moschini & Achilles Tertikas

with

d̄s := 2Γ (1 − s) Γ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

)
Γ (s)

. (1.11)

(ii) Suppose there exists a point x0 ∈ ∂Ω and r > 0 such that the part of the
boundary ∂Ω ∩ B(x0, r) is C1 regular. Then

d̄s � inf
u∈C∞

0 (Ω×R)

∫ +∞
0

∫
Ω

y1−2s |∇u|2 dx dy∫
Ω

u2(x,0)
d2s (x)

dx
.

In particular, d̄s in (1.10) is the best constant.
(iii) If Ω is a uniformly Lipschitz domain with finite inner radius satisfying (1.9),
and s ∈ ( 1

2 , 1), then there exists a positive constant c such that for u ∈ C∞
0 (Ω×R)

there holds∫ +∞

0

∫
Ω

y1−2s |∇(x,y)u(x, y)|2 dx dy � d̄s

∫
Ω

u2(x, 0)

d2s(x)
dx

+c

(∫
Ω

|u(x, 0)| 2n
n−2s dx

) n−2s
n

.

(1.12)

Actually, in the case of half spaceΩ = Rn+ we establish a much stronger result
covering the full range s ∈ (0, 1). In particular, we have

Theorem 2. (half space, trace Hardy–Sobolev–Maz’ya I) Let 0 < s < 1 and n � 2.
(i) For all u ∈ C∞

0 (R
n+ × R) there holds

∫ ∞

0

∫
Rn+

y1−2s |∇(x,y)u(x, y)|2 dx dy � d̄s

∫
Rn+

u2(x, 0)

x2s
n

dx, (1.13)

with

d̄s := 2Γ (1 − s) Γ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

)
Γ (s)

. (1.14)

(ii) The constant d̄s in (1.13) is sharp, that is,

d̄s = inf
u∈C∞

0 (Rn+×R)

∫ ∞
0

∫
Rn+ y1−2s |∇u|2 dx dy
∫

Rn+
u2(x,0)

x2s
n

dx
.

(iii) There exists a positive constant c such that for all u ∈ C∞
0 (R

n+ × R) there
holds∫ ∞

0

∫
Rn+

y1−2s |∇(x,y)u(x, y)|2 dx dy � d̄s

∫
Rn+

u2(x, 0)

x2s
n

dx

+c

(∫
Rn+

|u(x, 0)| 2n
n−2s dx

) n−2s
n

.

(1.15)
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We will apply Theorem 1 to the fractional Laplacian that is defined as follows.
Let Ω ⊂ Rn be a bounded domain, and let λi and φi be the Dirichlet eigenvalues
and orthonormal eigenfunctions of the Laplacian, that is, −Δφi = λiφi inΩ , with
φi = 0 on ∂Ω . Then, for f (x) = ∑

ciφi (x) we define

(−Δ)s f (x) =
∞∑

i=1

ciλ
s
i φi (x), 0 < s < 1, (1.16)

in which case

((−Δ)s f, f )Ω =
∫
Ω

f (x)(−Δ)s f (x) dx =
∞∑

i=1

c2
i λ

s
i . (1.17)

In the sequel we will refer to this fractional Laplacian as the spectral fractional
Laplacian. We then have

Theorem 3. (Hardy and Hardy–Sobolev–Maz’ya for spectral fractional Laplacian)
Let 1

2 � s < 1, n � 2 and Ω ⊂ Rn be a bounded domain.
(i) If, in addition, Ω is such that

−Δd(x) � 0, x ∈ Ω, (1.18)

then, for all f ∈ C∞
0 (Ω) there holds

((−Δ)s f, f )Ω � ds

∫
Ω

f 2(x)

d2s(x)
dx, (1.19)

with

ds := 22sΓ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

) . (1.20)

(ii) Suppose there exists a point x0 ∈ ∂Ω and r > 0 such that the part of the
boundary ∂Ω ∩ B(x0, r) is C1 regular. Then

ds � inf
f ∈C∞

0 (Ω)

((−Δ)s f, f )Ω∫
Ω

f 2(x)
d2s (x)

dx
.

(iii) If Ω is a Lipschitz domain satisfying (1.18) and s ∈ ( 1
2 , 1), then there exists a

positive constant c such that for all f ∈ C∞
0 (Ω) there holds

((−Δ)s f, f )Ω � ds

∫
Ω

f 2(x)

d2s(x)
dx + c

(∫
Ω

| f (x)| 2n
n−2s dx

) n−2s
n

. (1.21)

We next consider the fractional Laplacian associated to the killed stable
processes that appears in [7,8,36,38,39], which from now on we will call the
Dirichlet fractional Laplacian. The proper extension problem involves test func-
tions u ∈ C∞

0 (R
n × R) such that u(x, 0) = 0 in the complement of Ω , that is, for

x ∈ CΩ . For this fractional Laplacian, our assumption on the domainΩ is convex-
ity instead of (1.3). The reason for this is that our method requires subharmonicity
of the distance function in CΩ , which is equivalent to the convexity of Ω , see [5].
Our next result reads:
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Theorem 4. (trace Hardy and trace Hardy–Sobolev–Maz’ya II) Let 1
2 � s < 1,

n � 2 and Ω ⊂
�=

Rn be a domain.

(i) If, in addition,Ω is convex, then for all u ∈ C∞
0 (R

n × R) such that u(x, 0) = 0
for x ∈ CΩ , there holds∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy � k̄s

∫
Ω

u2(x, 0)

d2s(x)
dx, (1.22)

with

k̄s := 21−2sΓ 2(s + 1
2 )Γ (1 − s)

πΓ (s)
. (1.23)

(ii) Suppose there exists a point x0 ∈ ∂Ω and r > 0 such that the part of the
boundary ∂Ω ∩ B(x0, r) is C1 regular. Then

k̄s � inf
u ∈ C∞

0 (Rn × R),
u(x, 0) = 0, x ∈ CΩ

∫ +∞
0

∫
Rn y1−2s |∇u|2 dx dy∫
Ω

u2(x,0)
d2s (x)

dx
.

In particular, k̄s in (1.22) is the best constant.
(iii) If Ω is a uniformly Lipschitz and convex domain with finite inner radius and
s ∈ ( 1

2 , 1), then there exists a positive constant, c, such that the following improve-
ment holds true for all u ∈ C∞

0 (R
n × R) with u(x, 0) = 0 for x ∈ CΩ:∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy � k̄s

∫
Ω

u2(x, 0)

d2s(x)
dx

+c

(∫
Ω

|u(x, 0)| 2n
n−2s dx

) n−2s
n

.

(1.24)

Elementary manipulations show that

d̄s = 2 sin2
(
(2s + 1)π

4

)
k̄s,

thus

d̄s > k̄s, for s ∈ (0, 1),

which implies, in particular, that the best constants of Theorems 1 and 4 are differ-
ent.

We next apply Theorem 4 to the Dirichlet fractional Laplacian. In this case, for
f ∈ C∞

0 (Ω) we extend f in all of Rn by setting f = 0 in CΩ and use (1.5). In
particular, the corresponding quadratic form is

((−Δ)sD f, f )Rn = cn,s

2

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ

= cn,s

2

(∫
Ω

∫
Ω

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ + 2
∫
Ω

∫
CΩ

| f (x)|2
|x − ξ |n+2s

dx dξ

)
,

(1.25)

with the constant cn,s as given by Equation (1.6). We then have:
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Theorem 5. (Hardy and Hardy–Sobolev–Maz’ya for Dirichlet fractional Lapla-
cian) Let 1

2 � s < 1, n � 2 and Ω ⊂
�=

Rn be a domain.

(i) If, in addition, Ω is convex, then for all f ∈ C∞
0 (Ω) there holds

((−Δ)sD f, f )Rn �
Γ 2

(
s + 1

2

)
π

∫
Ω

f 2(x)

d2s(x)
dx . (1.26)

Equivalently, one has that

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ � kn,s

∫
Ω

f 2(x)

d2s(x)
dx, (1.27)

where

kn,s := 21−2sπ
n−2

2 Γ (1 − s)Γ 2
(
s + 1

2

)
sΓ

( n+2s
2

) . (1.28)

(ii) Suppose there exists a point x0 ∈ ∂Ω and r > 0 such that the part of the bound-

ary ∂Ω ∩ B(x0, r) is C1 regular. Then the Hardy constants
Γ 2

(
s+ 1

2

)
π

in (1.26) and
kn,s in (1.27) are optimal.
(iii) If Ω is a uniformly Lipschitz and convex domain with finite inner radius and
s ∈ ( 1

2 , 1), then there exists a positive constant c such that for all f ∈ C∞
0 (Ω)

there holds

((−Δ)sD f, f )Rn �
Γ 2

(
s + 1

2

)
π

∫
Ω

f 2(x)

d2s(x)
dx

+c

(∫
Ω

| f (x)| 2n
n−2s dx

) n−2s
n

. (1.29)

Equivalently, one has that

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ � kn,s

∫
Ω

f 2(x)

d2s(x)
dx

+c

(∫
Ω

| f (x)| 2n
n−2s dx

) n−2s
n

. (1.30)

The case where Ω is the half-space Ω = Rn+ = {(x1, . . . , xn) : xn > 0} is of
particular interest, see [7,8,21,24,40]. In this case we obtain a stronger result that
covers the full range s ∈ (0, 1). More precisely, we have:

Theorem 6. (half space, trace Hardy–Sobolev–Maz’ya and fractional Hardy–
Sobolev–Maz’ya II) Let 0 < s < 1 and n � 2.
(i) For all u ∈ C∞

0 (R
n × R) with u(x, 0) = 0, x ∈ Rn−, there holds

∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy � k̄s

∫
Rn+

u2(x, 0)

x2s
n

dx, (1.31)
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where

k̄s := 21−2sΓ 2(s + 1
2 )Γ (1 − s)

πΓ (s)
,

is the best constant in (1.31).
(ii) There exists a positive constant c, such that for all u ∈ C∞

0 (R
n × R) with

u(x, 0) = 0, x ∈ Rn−, there holds

∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy � k̄s

∫
Rn+

u2(x, 0)

x2s
n

dx

+c

(∫
Rn+

|u(x, 0)| 2n
n−2s dx

) n−2s
n

.

(1.32)

(iii) As a consequence, there exists a positive constant c such that for all
f ∈ C∞

0 (R
n+) there holds

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ � kn,s

∫
Rn+

f 2(x)

x2s
n

dx

+c

(∫
Rn+

| f (x)| 2n
n−2s dx

) n−2s
n

, (1.33)

where kn,s is given by Equation (1.28).
Or, equivalently, for all f ∈ C∞

0 (R
n+) there holds

∫
Rn+

∫
Rn+

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ � κn,s

∫
Rn+

f 2(x)

x2s
n

dx

+c

(∫
Rn+

| f (x)| 2n
n−2s dx

) n−2s
n

, (1.34)

where

κn,s := π
n−1

2
Γ (s + 1

2 )

sΓ
( n+2s

2

)
[

21−2s

√
π
Γ (1 − s)Γ

(
s + 1

2

)
− 1

]
.

We note that the Hardy–Sobolev–Maz’ya inequality (1.33) refers to the Dirich-
let fractional Laplacian associated to the killed stable processes, whereas inequality
(1.34) is associated to the censored stable processes. The Hardy constants kn,s and
κn,s appearing in (1.33) and (1.34), respectively, are optimal, as shown in [8]. The
corresponding fractional Hardy inequality of (1.34) with best constant, in the case
of a convex domain Ω , that is,

∫
Ω

∫
Ω

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ � κn,s

∫
Ω

f 2(x)

d(x)2s
dx, f ∈ C∞

0 (Ω),
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has been established for s ∈ ( 1
2 , 1) in [32]. The question of obtaining a Hardy–

Sobolev–Maz’ya inequality for the half space was raised in [24] and was answered
positively in the L2 setting in [21,40], but only for the range s ∈ ( 1

2 , 1).
For other types of trace Hardy inequalities we refer to [3,20]. We finally note

that fractional Sobolev inequalities play an important role in many other directions,
see for example, [9,14,34,35].

2. The Trace Hardy Inequality I

In this section we will prove the trace Hardy inequality contained in Theorem 1.
We first recall the definition of a uniformly Lipschitz domain Ω; see section 12 of
[30]. We note that Stein calls such a domain minimally smooth, see section 3.3 of
[41].

A domain Ω is called uniformly Lipschitz if there exist ε > 0, L > 0, and
M ∈ N and a locally finite countable cover {Ui } of ∂Ω with the following proper-
ties:

(i) If x ∈ ∂Ω then B(x, ε) ⊂ Ui for some i .
(ii) Every point of Rn is contained in at most M Ui ’s.

(iii) For each i there exist local coordinates y = (y′, yn) ∈ Rn−1 × R and a
Lipschitz function f : Rn−1 → R, with Lipf � L such that

Ui ∩Ω = Ui ∩ {(y′, yn) ∈ Rn−1 × R : yn > f (y′)}.

Under the uniformly Lipschitz assumption onΩ , the extension operator is defined
in W 1,p(Ω), for all p � 1. We also note that when Ω is a bounded domain the
above definition reduces to Ω being Lipschitz.

In the sequel we set a = 1 − 2s. Since 0 < s < 1 we also have −1 < a < 1.
We first establish the following useful identity:

Lemma 1. Suppose that a ∈ (−1, 1) and let u ∈ C∞
0 (Ω × R) and φ ∈ C2(Ω ×

(0,∞))∩ C(Ω̄ × [0,∞)) is such that φ(x, y) > 0 inΩ × [0,∞), φ(x, y) = 0 in
∂Ω × (0,∞),

∣∣∣∣ya φy(x, y)

φ(x, y)

∣∣∣∣ � V (x), y ∈ (0, 1), x ∈ Ω, 0 � V (x) ∈ L1
loc(Ω),

and for almost everywhere x ∈ Ω , the following limit exists:

lim
y→0+

(
ya φy(x, y)

φ(x, y)

)
.

We also require that the following integrals be finite

∫ +∞

0

∫
Ω

ya |∇φ|2
φ2 u2 dx dy,

∫ +∞

0

∫
Ω

|div(ya∇φ)|
φ

u2 dx dy.
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We then have the identity:

∫ +∞

0

∫
Ω

ya |∇u|2 dx dy =
∫ +∞

0

∫
Ω

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy

−
∫ +∞

0

∫
Ω

div(ya∇φ)
φ

u2 dx dy −
∫
Ω

lim
y→0+

(
ya φy

φ

)
u2(x, 0) dx . (2.1)

Proof. Expanding the square and integrating by parts, we compute for ε > 0,

∫ ∞

ε

∫
Ω

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy

=
∫ ∞

ε

∫
Ω

ya
(

|∇u|2 + |∇φ|2
φ2 u2 − ∇φ

φ
∇u2

)
dx dy

=
∫ ∞

ε

∫
Ω

ya |∇u|2 dx dy +
∫ ∞

ε

∫
Ω

div(ya∇φ)
φ

u2 dx dy

+
∫
Ω

εa φy(x, ε)

φ(x, ε)
u2(x, ε) dx .

We then pass to limit ε → 0 and the result follows easily. ��

We will use Lemma 1 with the following choice: φ(x, y) = d− a
2 (x)A( y

d(x) )

for y > 0, x ∈ Ω . The function A solves the following boundary value problem

(t3 + t)A′′ + (a + t2(2 + a))A′ + (2 + a)a

4
t A = 0, t > 0, (2.2)

with

A(0) = 1, lim
t→+∞ A(t) = 0. (2.3)

Equation (2.2) can also be written in divergence form as

(ta(1 + t2)A′)′ + (2 + a)a

4
ta A = 0. (2.4)

From now on we will use the following notation:

f ∼ g, in U,

whenever there exist positive constants c1, c2, such that

c1g � f � c2g, in U.

We then have the following
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Proposition 7. Suppose that a ∈ (−1, 1). The boundary value problem (2.2), (2.3)
has a positive decreasing solution A with the following properties:
(i) There exists a positive constant d̄s such that

lim
t→0+ ta A′(t) = −d̄s,

with

d̄s = (1 − a)Γ
( 1+a

2

)
Γ 2

( 4−a
4

)
Γ 2

( 2+a
4

)
Γ

( 3−a
2

) = 2sΓ (1 − s) Γ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

)
Γ (1 + s)

.

(ii) For all t > 0,

A(t) ∼ (1 + t2)−
2+a

4 ,

A′(t) ∼ −t−a(1 + t2)−
4−a

4 .

Moreover,

lim
t→+∞

t A′(t)
A(t)

= −2 + a

2
.

(iii) There holds:

d̄s =
∫ ∞

0
ta(1 + t2)(A′)2 dt − (2 + a)a

4

∫ ∞

0
ta A2 dt, (2.5)

(iv) In case a ∈ (−1, 0], we have

t A′(t)+ a

2
A(t) � 0.

Moreover for a ∈ (−1, 0) and all t > 0 we have

t A′(t)+ a

2
A(t) ∼ −A(t).

Proof. We change variables in (2.2) by z = −t2 and define B(z) such that A(t) =
B(−t2), whence At = −2t Bz and Att = −2Bz + 4t2 Bzz . It then follows that B(z)
satisfies the Gauss hypergeometric equation

z(1 − z)B ′′ +
(

1 + a

2
− 3 + a

2
z

)
B ′ − a(2 + a)

16
B = 0, −∞ < z < 0,

whose general solution is given by

B(z) = C1 F1

(
a

4
,

2 + a

4
,

1 + a

2
; z

)
+ C2z

1−a
2 F2

(
2 − a

4
,

4 − a

4
,

3 − a

2
; z

)
;

see [1, Section 15.5 as well as 15.1] for the definition and basic properties of the
function F . It follows that

A(t) = C1 F1

(
a

4
,

2 + a

4
,

1 + a

2
;−t2

)

+C2t1−ae
iπ(1−a)

2 F2

(
2 − a

4
,

4 − a

4
,

3 − a

2
;−t2

)
. (2.6)
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Since F(α, β, γ ; 0) = 1 for any α, β, γ , the condition A(0) = 1 implies that
C1 = 1. We then have

d̄s = − lim
t→0+ ta A′(t)

= − lim
t→0+ ta(−2t F ′

1 + (1 − a)C2e
iπ(1−a)

2 t−a F2 − 2C2t2−ae
iπ(1−a)

2 F ′
2)

= −(1 − a)C2e
iπ(1−a)

2 . (2.7)

In the above calculation we have also used the fact that

F ′(α, β, γ ; z) = d

dz
F(α, β, γ ; z) = αβ

γ
F(α + 1, β + 1, γ + 1; z).

We next compute the behavior of A at infinity. To this end we will use the inversion
formula, valid for any α, β, γ and |arg(−z)| < π :

F(α, β, γ ; z) = Γ (γ )Γ (β − α)

Γ (β)Γ (γ − α)
(−z)−αF

(
α, 1 − γ + α, 1 − β + α; 1

z

)

+ Γ (γ )Γ (α − β)

Γ (α)Γ (γ − β)
(−z)−βF

(
β, 1 − γ + β, 1 − α + β; 1

z

)
.

We then calculate

lim
t→+∞ t

a
2 A(t) = Γ

( 1+a
2

)
Γ

( 1
2

)
Γ 2

( 2+a
4

) + C2e
iπ(1−a)

2
Γ

( 3−a
2

)
Γ

( 1
2

)
Γ 2

( 4−a
4

) .

To make this limit equal to zero, we choose

C2 = −e− iπ(1−a)
2

Γ
( 1+a

2

)
Γ 2

( 4−a
4

)
Γ 2

( 2+a
4

)
Γ

( 3−a
2

) .
Combining this with (2.7) we conclude

d̄s = (1 − a)Γ
( 1+a

2

)
Γ 2

( 4−a
4

)
Γ 2

( 2+a
4

)
Γ

( 3−a
2

) = 2sΓ (1 − s) Γ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

)
Γ (1 + s)

. (2.8)

At this point, both constants C1,C2, in (2.6) have been identified. After some
lengthy but straightforward calculations, we find that as t → +∞,

A(t) ∼ t−
2+a

2 , A′(t) ∼ t−
4+a

2 . (2.9)

In addition, we get

lim
t→+∞

t A′(t)
A(t)

= −2 + a

2
.

Using (2.4) and the above asymptotics, we easily conclude that the solution A is
energetic, that is,∫ ∞

0
ta(1 + t2)(A′)2 dt +

∫ ∞

0
ta A2 dt < ∞.

Multiplying (2.4) by A and integrating by parts in (0,∞) we arrive at (2.5)
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To prove the positivity and monotonicity of A, we next change variables by:

B(s) = (1 + t2)
a
4 A(t), s = 1/t.

It follows that B satisfies the equation

(1 + s2)2 B ′′ + (2 − a)s(1 + s2)B ′ − a2

4
B = 0, s ∈ (0,+∞),

with B(0) = 0 and B(+∞) = 1. A standard maximum principle argument shows
that B is positive. Consequently, A is positive and the monotonicity of A follows
easily.

The positivity and monotonicity of A in connection with the asymptotics of A
easily yield part (ii) of the proposition.

Part (iv) follows easily from the monotonicity of A and part (ii). ��
Using the asymptotics of A(t), from the previous Proposition we easily obtain

the following uniform asymptotics for φ

Lemma 2. Suppose a ∈ (−1, 1) and let φ be given by

φ(x, y) = d− a
2 (x)A

(
y

d(x)

)
, y > 0, x ∈ Ω ⊂ Rn,

where A solves (2.2), (2.3).
(i) Then

φ(x, y) ∼ d

(d2 + y2)
2+a

4

, y > 0, x ∈ Ω.

Concerning the gradient of φ, for a ∈ (−1, 0], we have

|∇(x,y)φ(x, y)| ∼ 1

(d2 + y2)
2+a

4

, y > 0, x ∈ Ω,

whereas for a ∈ (0, 1),

|∇(x,y)φ(x, y)| ∼ y−a

(d2 + y2)
2−a

4

, y > 0, x ∈ Ω.

(ii) If Ω satisfies −Δd(x) � 0 for x ∈ Ω , then for a ∈ (−1, 0)

−div(ya∇φ)φ ∼ ya

(d2 + y2)
2+a

2

(−dΔd), y > 0, x ∈ Ω,

whereas for a = 0,

−div(∇φ)φ ∼ y

(d2 + y2)
3
2

(−dΔd), y > 0, x ∈ Ω.

We are now ready to give the proof of Theorem 1.



122 Stathis Filippas, Luisa Moschini & Achilles Tertikas

Proof of Theorem 1 parts (i) and (ii). We assume that s ∈ [ 1
2 , 1) or, equivalently,

a ∈ (−1, 0]. We will use Lemma 1 with the test function φ given by

φ(x, y) = d− a
2 (x)A

(
y

d(x)

)
, y > 0, x ∈ Ω ⊂ Rn,

where A solves (2.2), (2.3). Using Proposition 7 and Lemma 2 we see that all
hypotheses of Lemma 1 are satisfied. In particular, for t = y

d we compute, for
x ∈ Ω ,

− lim
y→0+

(
ya φy

φ

)
= − lim

y→0+

(
ta A′(t)

d1−a A(t)

)
= 1

d1−a(x)
lim

t→0+

(
− ta A′(t)

A(t)

)

= d̄s

d1−a(x)
. (2.10)

We also have

−div(ya∇φ) = −ya−1d−1− a
2

[
(t3 + t)A′′ + (a + t2(2 + a))A′ + (2 + a)a

4
t A

]

−ya−1d−1− a
2

[
(−dΔd)

(
t2 A′ + at

2
A

)]

= −ya−1d−1− a
2

[
(−dΔd)

(
t2 A′ + at

2
A

)]
,

therefore,

−div(ya∇φ) � 0, x ∈ Ω, y > 0.

From Lemma 1 we get
∫ +∞

0

∫
Ω

ya |∇u|2 dx dy � d̄s

∫
Ω

u2(x, 0)

d1−a(x)
dx+

∫ +∞

0

∫
Ω

ya |∇u− ∇φ
φ

u|2 dx dy

−
∫ +∞

0

∫
Ω

div(ya∇φ)
φ

u2 dx dy, (2.11)

from which the trace Hardy inequality follows directly. This relation will be used
later on, in Sections 5 and 6, to obtain the Sobolev term as well.

We continue with the proof of the optimality of the Hardy constant d̄s . Let

Q[u] :=
∫ +∞

0

∫
Ω

ya |∇u|2 dx dy∫
Ω

u2(x,0)
d1−a(x)

dx
=: N [u]

D[u] . (2.12)

We have that Q[u] � d̄s . Here we will show that there exists a sequence of functions
uε such that limε→0 Q[uε] = d̄s , and therefore d̄s is the best constant.

We first assume for simplicity that the boundary of Ω is flat in a neighbor-
hood V of a point x0 ∈ ∂Ω . The neighborhood of the point x0 is assumed to
contain a ball centered at x0 with radius, say, 3δ. Locally around x0 the boundary
is given by xn = 0, whereas the interior ofΩ corresponds to xn > 0. We also write
x = (x ′, xn). Clearly, for x ∈ Ω ∩ V we have that d(x) = xn .
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We next define two suitable cutoff functions. Let ψ(x ′) ∈ C∞
0 (Bδ), where

Bδ ⊂ ∂Ω ⊂ Rn−1 is the ball centered at x0 with radius δ. Also, the nonnegative
function h(xn) ∈ C∞(R+) is such that h(xn) = 0 for xn � 2δ and h(xn) = 1 for
0 � xn � δ. We will use the following test function:

uε(x
′, xn, y) =

⎧⎨
⎩

h(xn)ψ(x ′)x− a
2

n A
(

y
xn

)
, y � ε

h(xn)ψ(x ′)x− a
2

n A
(
ε
xn

)
, 0 � y < ε.

(2.13)

We have that

Q[uε] =
∫ +∞

0 dy
∫ 2δ

0 dxn
∫

Bδ
dx ′ya |∇uε|2∫ 2δ

0 dxn
∫

Bδ
dx ′ u2

ε

x1−a
n

= N [uε]
D[uε] . (2.14)

Concerning the denominator, we compute

D[uε] =
∫

Bδ
ψ2(x ′) dx ′

∫ δ

0
x−1

n A2
(
ε

xn

)
dxn + Oε(1)

=
∫

Bδ
ψ2(x ′) dx ′

∫ +∞

ε/δ

A2(t)

t
dt + Oε(1). (2.15)

We next calculate the numerator. At first, we break N into two pieces:

N [uε] =
∫ ε

0
dy +

∫ +∞

ε

dy =: N1[uε] + N2[uε].

Using the specific form of uε and elementary estimates, we calculate:

N2[uε] =
∫

Bδ
ψ2(x ′) dx ′

∫ +∞

ε

dy
∫ δ

0
dxn

ya

xa+2
n

×
[(

−a

2
A

(
y

xn

)
− y

xn
A′

(
y

xn

))2

+ A
′2

(
y

xn

)]

+
∫

Bδ
|∇ψ(x ′)|2 dx ′

∫ +∞

ε

dy
∫ δ

0
dxn ya x−a

n A2
(

y

xn

)
+ Oε(1)

=: N21[uε] + N22[uε] + Oε(1).

We note that as ε → 0,

N22[uε] =
∫

Bδ
|∇ψ(x ′)|2 dx ′

∫ δ

0
xn

∫ +∞

ε/xn

ta A2(t)dtdxn

= Oε(1).

Concerning N21[uε], changing variables by t = y
xn

we write:

N21[uε] =
∫

Bδ
ψ2(x ′) dx ′

∫ +∞

ε

dy

y

∫ +∞

y/δ
ta

[
A

′2(t)+
(a

2
A(t)+ t A′(t)

)2
]

dt

=
∫

Bδ
ψ2(x ′) dx ′

∫ +∞

ε

dy

y

∫ +∞

y/δ
ta

[
(1 + t2)A

′2 + at AA′+ a2

4
A2

]
dt.
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Integrating by parts the term containing the factors AA′, then using the equation
satisfied by A (see (2.4)), we get

∫ +∞

y/δ

[
ta(1 + t2)A

′2 + at1+a AA′ + a2

4
ta A2

]
dt

=
∫ +∞

y/δ

[
ta(1 + t2)A

′2 − a(2 + a)

4
ta A2

]
dt + 1

2
at1+a A2(t)

∣∣∣
t= y

δ

= −ta(1 + t2)A(t)A′(t)
∣∣∣
t= y

δ

+ 1

2
at1+a A2(t)

∣∣∣
t= y

δ

,

whence,

N21[uε] = −
∫

Bδ
ψ2(x ′) dx ′

∫ +∞

ε/δ

1

t
ta(1 + t2)A(t)A′(t) dt + Oε(1).

It is not difficult to show that N1[uε] = Oε(1), and therefore N [uε] = N21[uε] +
Oε(1). Using (2.15), in addition, we can form the quotient

lim
ε→0

Q[uε] = lim
ε→0

− ∫
Bδ
ψ2(x ′) dx ′ ∫ +∞

ε/δ
1
t ta(1 + t2)A(t)A′(t)dt + Oε(1)∫

Bδ
ψ2(x ′) dx ′ ∫ +∞

ε/δ
A2(t)

t dt + Oε(1)

= lim
ε→0

− ∫ +∞
ε/δ

1
t ta(1 + t2)A(t)A′(t)dt∫ +∞
ε/δ

A2(t)
t dt

= − lim
σ→0

σ a(1 + σ 2)A′(σ )
A(σ )

= d̄s, (2.16)

where we used L’Hopital’s rule and then part (i) of Proposition 7.
Let us now consider the general case. We assume that ∂Ω is C1 in a neigh-

borhood of a point x̄0, which we take to be the origin 0 ∈ ∂Ω . Thus, locally,
∂Ω is the graph of a function x̄n = γ (x̄ ′), with γ (0) = 0 and ∇γ (0) = 0.
We also assume that the interior of Ω corresponds to x̄n > γ (x̄ ′). Then the fol-
lowing change of coordinates straightens the boundary in a neighborhood of the
origin: xi = x̄i , i = 1, 2, . . . , n − 1, and xn = x̄n − γ (x̄ ′); see for example [22,
Appendix C]. We assume that inside the ball B(0, 3δ) (in the x-space) the image of
∂Ω is flat. We then consider the test function vε(x̄, y) = uε(x, y). Clearly vε(x̄, y)
is zero away from a neighborhood of the origin, say U , and elementary calculations
show that

∇x̄vε = ∇x uε − uε,xn ∇x̄γ (x̄
′),

whence,

|∇x̄vε − ∇x uε| � |∇x̄γ (x̄
′)||∇x uε| = oδ(1)|∇x uε|.

It then follows that

|∇x̄vε| = |∇x uε|(1 + oδ(1)).
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On the other hand, for x̄ ∈ U and d(x̄) = dist(x̄, ∂Ω), we have that

d(x̄) = (x̄n − γ (x̄ ′))(1 + |∇x̄γ (x̄
′)|2)1/2 = xn(1 + oδ(1)).

We finally note that the Jacobian of the above transformation is one, and therefore
dx = dx̄ . We then compute

Q[vε(x̄, y)] = Q[uε(x, y)](1 + oδ(1)),

where Q[uε(x, y)] is given in (2.14). Since δ can be taken as small as we like, the
result follows easily, using the calculations from the flat case. ��

3. The Trace Hardy Inequality II

In this section we will prove the trace Hardy inequality contained in Theorem 4.
We first establish the analogue of Lemma 1:

Lemma 3. Suppose that a ∈ (−1, 1) and let u ∈ C∞
0 (R

n × R) such that u(·, 0) ∈
C∞

0 (Ω). Let φ ∈ C2(Rn × (0,∞)) ∩ C(Rn × [0,∞)) such that φ(x, y) > 0 in
Rn × [0,∞), φ(x, 0) = 0 in x ∈ CΩ ,

|ya φy(x, y)

φ(x, y)
| � V (x), y ∈ (0, 1), x ∈ Rn, 0 � V (x) ∈ L1

loc(R
n).

Moreover for almost everywhere x ∈ Ω , the following limit exists:

lim
y→0+

(
ya φy(x, y)

φ(x, y)

)
.

We also require that the following integrals be finite

∫ +∞

0

∫
Rn

ya |∇φ|2
φ2 u2 dx dy,

∫ +∞

0

∫
Rn

|div(ya∇φ)|
φ

u2 dx dy.

We then have the identity

∫ +∞

0

∫
Rn

ya |∇u|2 dx dy =
∫ +∞

0

∫
Rn

ya |∇u − ∇φ
φ

u|2 dx dy

−
∫ +∞

0

∫
Rn

div(ya∇φ)
φ

u2 dx dy −
∫
Ω

lim
y→0+

(
ya φy

φ

)
u2(x, 0) dx . (3.1)

The proof of this lemma is quite similar to the proof of Lemma 1, so we omit
it.

This time we will choose the test function to be of the form

φ(x, y) =
{
(y2 + d2)− a

4 B
(

d
y

)
, x ∈ Ω, y > 0

(y2 + d2)− a
4 B(− d

y ), x ∈ CΩ, y > 0,
(3.2)
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where function B is the solution of the boundary value problem

(1 + t2)2 B ′′ + (2 − a)t (1 + t2)B ′ − a2

4
B = 0, t ∈ (−∞,+∞), (3.3)

complemented with the conditions

B(−∞) = 0, B(+∞) = 1. (3.4)

We note that this can be written in divergence form as

((1 + t2)1− a
2 B ′(t))′ − a2

4
(1 + t2)−1− a

2 B(t) = 0, t ∈ R. (3.5)

We next collect some properties of B that will be used later on.

Proposition 8. Suppose that a ∈ (−1, 1). The boundary value problem (3.3), (3.4)
has a positive increasing solution B with the following properties:
(i) There exists a positive constant k̄s such that

lim
t→+∞(1 + t2)

2−a
2 B ′(t) =: k̄s, (3.6)

where

k̄s = 2aΓ 2
( 2−a

2

)
Γ

( 1+a
2

)
πΓ

( 1−a
2

) = 21−2s

π

Γ 2(s + 1
2 )Γ (1 − s)

Γ (s)
.

(ii) We have

B(t) ∼ 1, t > 0

B(t) ∼ (1 + t2)−
1−a

2 t < 0,

B ′(t) ∼ (1 + t2)−
2−a

2 t ∈ R.

(iii) There holds:

k̄s =
∫ +∞

−∞

[
(1 + t2)1− a

2 B
′2(t)+ a2

4
(1 + t2)−1− a

2 B2(t)

]
dt.

(iv) In the case where a ∈ (−1, 0], we have

(1 + t2)B ′(t)− a

2
t B(t) > 0, t ∈ R.

Moreover, for a ∈ (−1, 0)

(1 + t2)B ′(t)− a

2
t B(t) ∼ (1 + t2)

1
2 , t > 0.

Proof. When a = 0 the ODE can be easily solved by a straightforward integration.
For the general case, we first change variables by B(t) = (1 + t2)

a
4 f (t) to obtain
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(1 + t2) f ′′ + 2t f ′ + a(2 − a)

4
f = 0.

We next change variables by g(z) = f (t), z = i t , so that g satisfies the equation

(1 − z2)g′′ − 2zg′ + ν(ν + 1)g = 0, ν = −a

2
. (3.7)

The solution of this is given in [1, Section 8.1]:

g(z) =
{

C+
1 Pν(z)+ C+

2 Qν(z), Im z > 0,
C−

1 Pν(z)+ C−
2 Qν(z), Im z < 0.

(3.8)

We also have that

B(t) = (1 + t2)−
ν
2 g(i t).

The conditions at infinity then become

lim
t→+∞ t−νg(i t) = 1, lim

t→−∞(−t)−νg(i t) = 0. (3.9)

To find the constants in (3.8) we will satisfy the conditions at infinity (3.9) and we
will match both g and g′ at z = 0. That is, we will ask

g(+i0) = g(−i0), g′(+i0) = g′(−i0). (3.10)

We recall from [1, Section 8.1] that for |z| > 1:

Pν(z) = Δ1z−ν−1 F

(
ν + 1

2
,
ν + 2

2
,

2ν + 3

2
; 1

z2

)

+Δ2zνF

(−ν
2
,

1 − ν

2
,

1 − 2ν

2
; 1

z2

)
,

Qν(z) = E1z−ν−1 F

(
ν + 2

2
,
ν + 1

2
,

2ν + 3

2
; 1

z2

)
,

where,

Δ1 = 2−ν−1π− 1
2Γ (−ν − 1

2 )

Γ (−ν) , Δ2 = 2νπ− 1
2Γ (ν + 1

2 )

Γ (1 + ν)
,

E1 = 2−ν−1π
1
2Γ (1 + ν)

Γ
( 3

2 + ν
) .

From the asymptotics when t → ±∞, we easily conclude that

C+
1 = i−ν

Δ2
, C−

1 = 0. (3.11)
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We next see what happens near zero. For |z| < 1 we have that

Pν(z) = B1 F

(
−ν

2
,
ν + 1

2
,

1

2
; z2

)
+ B2zF

(
1 − ν

2
,

2 + ν

2
,

3

2
; z2

)
,

Q±
ν (z) = Γ1e± iπ

2 (−ν−1)F

(
−ν

2
,
ν + 1

2
,

1

2
; z2

)

+Γ2e± iπ
2 (−ν)zF

(
1 − ν

2
,
ν + 2

2
,

3

2
; z2

)
,

where the plus sign corresponds to Im z > 0 and the minus sign to Im z < 0. The
values of the constants are given by:

B1 = π
1
2

Γ
( 1−ν

2

)
Γ

( 2+ν
2

) , B2 = −2π
1
2

Γ
( 1+ν

2

)
Γ

(−ν
2

) ,

Γ1 = π
1
2Γ

( 1+ν
2

)
2Γ (1 + ν

2 )
, Γ2 = π

1
2Γ (1 + ν

2 )

Γ
( 1+ν

2

) .

An easy calculation shows that the matching condition (3.10) yields

C−
2 Γ1e

iπ
2 (ν+1) = C+

1 B1 + C+
2 Γ1e

iπ
2 (−ν−1),

C−
2 Γ2e

iπ
2 ν = C+

1 B2 + C+
2 Γ2e

iπ
2 (−ν),

from which it follows that

C+
2 = −C+

1

2
e

iπ
2 ν

[
B2

Γ2
+ i

B1

Γ1

]

C−
2 = C+

1

2
e− iπ

2 ν

[
B2

Γ2
− i

B1

Γ1

]
. (3.12)

Thus all constants in (3.8) have been computed (see (3.11) and (3.12)), and therefore
g(z) is now completely known.

The asymptotics of g for |z| → +∞ are

g(z) = C±
1 Δ2zν + (C±

1 Δ1 + C±
2 E1)z

−ν−1 + o(|z|−ν−1),

g′(z) = C±
1 Δ2νzν−1 − (ν + 1)[C±

1 Δ1 + C±
2 E1]z−ν−2 + O(|z|ν−3),

where the plus sign corresponds to Im z > 0 and the minus sign to Im z < 0. We
have that B(t) = (1 + t2)− ν

2 g(i t), whence we get

B(t) = i1+νC−
2 E1(−t)−2ν−1 + o((−t)−2ν−1), t → −∞.

Concerning the derivative, we have for z = i t

B ′(t) = −νt (t2 + 1)−
ν
2 −1g(z)+ i(1 + t2)−

ν
2 g′(z).

Whence,

B ′(t) = (2ν + 1)i1−ν(C+
1 Δ1 + C+

2 E1)t
−2ν−2 + o(t−2ν−2), t → +∞,

B ′(t) = (2ν + 1)i1+νC−
2 E1(−t)−2ν−2 + o((−t)−2ν−2), t → −∞.

This completes the proof of part (ii) of the proposition.
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We next give the proof of part (i). From (3.6) and the asymptotics of B(t) for
t → +∞, we compute

k̄s = (2ν + 1)

2
i1−2ν E1

Δ2

(
2
Δ1

E1
− iν

B2

Γ2
− iν+1 B1

Γ1
.

)
. (3.13)

Using the explicit values of the constants we calculate:

E1

Δ2
= 2−2ν−1πΓ 2(1 + ν)

Γ
( 1

2 + ν
)
Γ

( 3
2 + ν

) , Δ1

E1
= sin(πν)

π cos(πν)
,

B2

Γ2
= 2 sin

(
πν
2

)
π

,
B1

Γ1
= 2 cos

(
πν
2

)
π

.

Plugging these into (3.13) we conclude that [recall that ν = −a/2 = s − 1/2]

k̄s = 2−2ν

π

Γ 2(1 + ν)Γ
( 1

2 − ν
)

Γ
( 1

2 + ν
) = 2aΓ 2

( 2−a
2

)
Γ

( 1+a
2

)
πΓ

( 1−a
2

)

= 21−2s

π

Γ 2(s + 1
2 )Γ (1 − s)

Γ (s)
. (3.14)

To prove part (iii) we use part (i) and we integrate the ODE (3.5).
By standard maximum principle arguments, the solution B(t) of (3.3) subject

to (3.4) is positive and increasing. To prove part (iv) assuming that a ∈ (−1, 0),
we set f (t) = (1 + t2)− a

4 B(t) so that

(1 + t2) f ′′ + 2t f ′ + a(2 − a)

4
f = 0,

and a similar maximum principle argument shows that f (t) is also increasing. Since

f ′(t) = (1 + t2)−
a
4 −1

[
(1 + t2)B ′ − a

2
t B

]
,

we conclude that

(1 + t2)B ′ − a

2
t B > 0, t ∈ R, a � 0.

Using the asymptotics of B, B ′ from part (ii) we conclude the proof of part (iv).
��

Using the asymptotics of B(t) from the previous proposition, we easily obtain
the following uniform asymptotics for φ.

Lemma 4. Suppose a ∈ (−1, 1) and let φ be given by

φ(x, y) =
{
(y2 + d2)− a

4 B
(

d
y

)
, x ∈ Ω, y > 0

(y2 + d2)− a
4 B(− d

y ), x ∈ CΩ, y > 0,

where B solves (3.3), (3.4).
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(i) Then

φ(x, y) ∼
{
(y2 + d2)− a

4 , x ∈ Ω, y > 0

y1−a(y2 + d2)
a−2

4 , x ∈ CΩ, y > 0.

Concerning the gradient of φ, for a ∈ (−1, 0], we have

|∇φ(x, y)| ∼
{
(y2 + d2)− a+2

4 , x ∈ Ω, y > 0

y−a(y2 + d2)
a−2

4 , x ∈ CΩ, y > 0,

whereas for a ∈ (0, 1)

|∇φ(x, y)| ∼ y−a(y2 + d2)
a−2

4 , x ∈ Rn, y > 0.

(ii) If Ω satisfies −Δd(x) � 0 for x ∈ Ω , then for a ∈ (−1, 0)

−div(ya∇φ)φ ∼ ya

d(d2 + y2)
1+a

2

(−dΔd), y > 0, x ∈ Ω,

whereas for a = 0,

−div(∇φ)φ ∼ y

d(d2 + y2)
(−dΔd), y > 0, x ∈ Ω.

We are now ready to give the proof of Theorem 4.

Proof of Theorem 4 parts (i) and (ii). We assume that s ∈ [ 1
2 , 1) or, equivalently,

a ∈ (−1, 0]. We will use Lemma 3 with the test function φ given

φ(x, y) =
{
(y2 + d2)− a

4 B
(

d
y

)
, x ∈ Ω, y > 0

(y2 + d2)− a
4 B(− d

y ), x ∈ CΩ, y > 0.

Using Proposition 8 and Lemma 4 we see that all hypotheses of Lemma 3 are
satisfied. In particular, we compute

− lim
y→0+

(
ya φy(x, y)

φ(x, y)

)
= 1

d1−a(x)
lim

t→+∞
(

t2−a B ′(t)
)

= k̄s

d1−a(x)
, x ∈ Ω. (3.15)

We also have, for x ∈ Ω and t = d
y > 0,

− div(ya∇φ) = −ya(y2 + d2)−
a
4 −1

[
(1 + t2)2 B ′′+(2 − a)t (1 + t2)B ′− a2

4
B

]

+ ya+1(y2 + d2)−
a
4 −1(−Δd)

[
(1 + t2)B ′ − a

2
t B

]

= ya+1(y2 + d2)−
a
4 −1(−Δd)

[
(1 + t2)B ′ − a

2
t B

]
, (3.16)
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whereas for x ∈ CΩ and t = − d
y < 0, we have

− div(ya∇φ) = −ya(y2 + d2)−
a
4 −1

[
(1+t2)2 B ′′+(2−a)t (1 + t2)B ′− a2

4
B

]

+ ya+1(y2 + d2)−
a
4 −1(Δd)

[
(1 + t2)B ′ − a

2
t B

]

= ya+1(y2 + d2)−
a
4 −1(Δd)

[
(1 + t2)B ′ − a

2
t B

]
. (3.17)

Therefore, under our assumption on Ω , it follows from Proposition 8 that

−div(ya∇φ) � 0, x ∈ Rn, y > 0.

We now use Lemma 3 to get
∫ +∞

0

∫
Rn

ya |∇u|2 dx dy �
∫ +∞

0

∫
Rn

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy

+ k̄s

∫
Ω

u2(x, 0)

d1−a(x)
dx −

∫ +∞

0

∫
Rn

div(ya∇φ)
φ

u2 dx dy, (3.18)

from which the trace Hardy inequality follows directly. This relation will also be
used later on, in Sections 5 and 6, to obtain the Sobolev term as well.

We next prove the optimality of the Hardy constant. We will work as in Sec-
tion 2. Let

Q[u] :=
∫ +∞

0

∫
Rn ya |∇u|2 dx dy∫
Ω

u2(x,0)
d1−a(x)

dx
=: N [u]

D[u] . (3.19)

We will show that there exists a sequence of functions uε such that limε→0 Q[uε] �
k̄s , and therefore k̄s is the best constant.

We first assume that the boundary of Ω is flat in a neighborhood U of a point
x0 ∈ ∂Ω . The neighborhood of the point x0 is assumed to contain a ball centered at
x0 with radius, say, 3δ. Locally around x0 the boundary is given by xn = 0, whereas
the interior of Ω corresponds to xn > 0. We also write x = (x ′, xn). Clearly, for
x ∈ Ω ∩ U we have that d(x) = xn .

We next define three suitable cutoff functions. Let ψ(x ′) ∈ C∞
0 (Bδ), where

Bδ ⊂ ∂Ω ⊂ Rn−1 is the ball centered at x0 with radius δ. Also, the nonnegative
function h(xn) ∈ C∞(R) is such that h(xn) = 0 for |xn| � 2δ and h(xn) = 1
for |xn| � δ. We also assume that h(xn) is symmetric around xn = 0. Finally, let
χ(y) ∈ C∞

0 (R) be such that 0 � χ(y) � 1, and χ(y) = 1 near y = 0.
We will use the following test function:

uε(x
′, xn, y) = χ(y)h(xn)ψ(x

′)(y2 + x2
n )

− a
4 + ε

4 B

(
xn

y

)
, x ∈ Rn, y > 0.

(3.20)

Using the asymptotics of B(t) we easily see that

uε(x
′, xn, 0) =

{
h(xn)ψ(x ′)x− a

2 + ε
2

n , x ∈ Ω
0, x ∈ CΩ.
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We then compute

D[uε] =
∫

Rn−1
ψ2(x ′) dx ′

∫ +∞

0
h2(xn)x

−1+ε
n dxn . (3.21)

Concerning the numerator, a straightforward calculation shows that

∣∣∣∣∇
(
(y2 + x2

n )
− a

4 + ε
4 B

(
xn

y

))∣∣∣∣
2

=
(
−a

2
+ ε

2

)2
(y2 + x2

n )
− a

2 + ε
2 −1 B2

(
xn

y

)

+ (x
2
n + y2)1− a

2 + ε
2

y4 B
′2

(
xn

y

)
.

It is then easy to show that

N [uε] = Oε(1)+
∫

Rn−1
ψ2(x ′) dx ′

∫
R

∫ +∞

0
h2(xn)y

aχ2(y)

·(y2 + x2
n )

− a
2 + ε

2 −1
[(

−a

2
+ ε

2

)2
B2

(
xn

y

)
+ (x2

n + y2)2

y4 B
′2

(
xn

y

)]
dy dxn .

To estimate the double integral above, we first break the xn-integral into two pieces:
from minus infinity to zero and from zero to infinity. We then change variables in
both pieces by t = xn/y, thus going from the (xn, y) variables to (xn, t). After
elementary calculations, we arrive at

N [uε] = Oε(1)+
∫

Rn−1
ψ2(x ′) dx ′

∫ +∞

0
h2(xn)x

−1+ε
n dxn

·
∫ +∞

−∞
χ2

(
xn

|t |
)
(1 + t2)−1− a

2 + ε
2

|t |ε
[
(1 + t2)2 B

′2(t)+
(
−a

2
+ ε

2

)2
B2(t)

]
dt.

Forming the quotient, we obtain

Q[uε] �
∫ +∞

−∞
(1 + t2)−1− a

2 + ε
2

|t |ε
[
(1 + t2)2 B

′2(t)+ (a − ε)2

4
B2(t)

]
dt + oε(1).

We finally send ε to zero to get

lim
ε→0

Q[uε] �
∫ +∞

−∞

[
(1 + t2)1− a

2 B
′2(t)+ a2

4
(1 + t2)−1− a

2 B2(t)

]
dt

= k̄s; (3.22)

the last equality follows from Proposition 8(iii).
The general case where ∂Ω is not flat is treated in the same way as in Section 2.

��
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4. Some Weighted Hardy Inequalities

In this section we establish some new weighted Hardy inequalities that will
play a crucial role in establishing trace Hardy–Sobolev–Maz’ya inequalities.

We first prove the following:

Lemma 5. Let Ω ⊂ Rn be such that −Δd(x) � 0 for x ∈ Ω . If A, B, Γ are
constants such that A + 1 > 0, B + 1 > 0 and 2Γ < A + B + 2, then for all
v ∈ C∞

0 (R
n × R) there holds

(B + 1)(B + A + 2 − 2Γ +)
B + A + 2

∫ +∞

0

∫
Ω

y Ad B

(d2 + y2)Γ
|v| dx dy

�
∫ +∞

0

∫
Ω

y Ad B+1

(d2 + y2)Γ
(−Δd)|v| dx dy +

∫ +∞

0

∫
Ω

y Ad B+1

(d2 + y2)Γ
|∇v| dx dy,

(4.1)

where Γ + = max(0, Γ ).

Proof. Integrating by parts in the x-variables, we compute

(B + 1)
∫ +∞

0

∫
Ω

y Ad B

(d2 + y2)Γ
|v| dx dy =

∫ +∞

0

∫
Ω

y A∇d · ∇d B+1

(d2 + y2)Γ
|v| dx dy

=
∫ +∞

0

∫
Ω

y Ad B+1(−Δd)

(d2 + y2)Γ
|v| dx dy + 2Γ

∫ +∞

0

∫
Ω

y Ad B+2

(d2 + y2)Γ+1 |v| dx dy

−
∫ +∞

0

∫
Ω

y Ad B+1

(d2 + y2)Γ
∇d · ∇x |v| dx dy. (4.2)

If Γ � 0 the result follows easily. In the sequel we consider the case Γ > 0.
In the previous calculation there is no boundary term, due to our assumptions. To
continue we will estimate the middle term in the right-hand side above. To this end
we define the vector field F by

F(x, y) :=
(

y Ad B+3∇d

(d2 + y2)Γ+1 ,
y A+1d B+2

(d2 + y2)Γ+1

)
. (4.3)

We then have
∫ +∞

0

∫
Ω

divF|v| dx dy = −
∫ +∞

0

∫
Ω

F · ∇|v| dx dy

�
∫ +∞

0

∫
Ω

|F||∇v| dx dy. (4.4)

We note that because of our assumptions A + 1 > 0 and B + 1 > 0, there are no
boundary terms in (4.4). Straightforward calculations show that

divF = y Ad B+3(Δd)

(d2 + y2)Γ+1 + (B + A + 2 − 2Γ )
y Ad B+2

(d2 + y2)Γ+1 , (4.5)
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and

|F| = y Ad B+2

(d2 + y2)Γ+1/2 � y Ad B+1

(d2 + y2)Γ
. (4.6)

From (4.4)–(4.6) we get

(B + A + 2 − 2Γ )
∫ +∞

0

∫
Ω

y Ad B+2

(d2 + y2)Γ+1 |v| dx dy

�
∫ +∞

0

∫
Ω

y Ad B+3

(d2+y2)Γ+1 (−Δd)|v| dx dy+
∫ +∞

0

∫
Ω

y Ad B+1

(d2+y2)Γ
|∇v| dx dy.

Combining the above with (4.2) we conclude the proof. ��
We will also need a version of the above lemma in case where A+ B +2 = 2Γ .

In this case we have:

Lemma 6. Suppose that Ω ⊂ Rn is such that −Δd(x) � 0 for x ∈ Ω and has
finite inner radius. If A, B are constants such that A + 1 > 0, B + 1 > 0, then for
all v ∈ C∞

0 (R
n × R) there holds

B + 1

A + B + 3

∫ +∞

0

∫
Ω

y Ad B X2|v|
(d2 + y2)

A+B+2
2

dx dy

�
∫ +∞

0

∫
Ω

y Ad B+1 X |v|
(d2+y2)

A+B+2
2

(−Δd) dx dy +
∫ +∞

0

∫
Ω

y Ad B+1 X |∇v|
(d2 + y2)

A+B+2
2

dx dy,

(4.7)

where X = X ( d(x)
Rin
) and X (t) = (1 − ln t)−1, 0 < t � 1.

Proof. Integrating by parts in the x-variables we compute

(B + 1)
∫ +∞

0

∫
Ω

y Ad B X2|v|
(d2 + y2)

A+B+2
2

dx dy + 2
∫ +∞

0

∫
Ω

y Ad B X3|v|
(d2 + y2)

A+B+2
2

dx dy

�
∫ +∞

0

∫
Ω

y Ad B+1 X2(−Δd)

(d2 + y2)
A+B+2

2

|v| dx dy

+(A + B + 2)
∫ +∞

0

∫
Ω

y Ad B+2 X2

(d2 + y2)
A+B+4

2

|v| dx dy

+
∫ +∞

0

∫
Ω

y Ad B+1 X2

(d2 + y2)
A+B+2

2

|∇v| dx dy. (4.8)

In the previous calculation there are no boundary terms due to our assumptions.
To continue, we will estimate the middle term in the right-hand side above. To this
end we define the vector field F by

F(x, y) :=
(

y Ad B+3 X∇d

(d2 + y2)
A+B+4

2

,
y A+1d B+2 X

(d2 + y2)
A+B+4

2

)
. (4.9)
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We then have ∫ +∞

0

∫
Ω

divF|v| dx dy = −
∫ +∞

0

∫
Ω

F · ∇|v| dx dy

�
∫ +∞

0

∫
Ω

|F||∇v| dx dy. (4.10)

We note that because of our assumptions A + 1 > 0 and B + 1 > 0, there are no
boundary terms in (4.10). Straightforward calculations show that

divF = y Ad B+3 X (Δd)

(d2 + y2)
A+B+4

2

+ y Ad B+2 X2

(d2 + y2)
A+B+4

2

, (4.11)

and

|F| = y Ad B+2 X

(d2 + y2)
A+B+3

2

� y Ad B+1 X

(d2 + y2)
A+B+2

2

. (4.12)

From (4.10)–(4.12) we get
∫ +∞

0

∫
Ω

y Ad B+2 X2

(d2 + y2)
A+B+4

2

|v| dx dy

�
∫ +∞

0

∫
Ω

y Ad B+3 X

(d2 + y2)
A+B+4

2

(−Δd)|v| dx dy

+
∫ +∞

0

∫
Ω

y Ad B+1 X

(d2 + y2)
A+B+2

2

|∇v| dx dy.

Combining the above with (4.8) we conclude the proof. ��
Without imposing any geometric assumption onΩ we have the following result

that will also be used later on.

Lemma 7. LetΩ ⊂ Rn. If A, B, Γ are constants such that A + 1 > 0, B + 1 > 0
and 2Γ < A + B + 2, then there exist positive constants c1 and c2 such that for
all v ∈ C∞

0 (R
n × R) there holds

∫ +∞

0

∫
Ω

y Ad B

(d2 + y2)Γ
|v| dx dy

� c1

∫ +∞

0

∫
Ω

y Ad B+1

(d2 + y2)Γ
|∇v| dx dy + c2

∫ +∞

0

∫
Ω

y Ad B+1

(d2 + y2)Γ
|v| dx dy.

(4.13)

Proof. Here we will use the fact that ∂Ω is uniformly Lipschitz. Let {Ui } be a
covering of Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε} and let φi be a partition of unity
subordinate to the covering {Ui }. We then have

∫ +∞

0

∫
Ωε

y Ad B

(d2 + y2)Γ
|v| dx dy �

+∞∑
i=1

∫ +∞

0

∫
Ωε

y Ad B

(d2 + y2)Γ
|φiv| dx dy.
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In each Ui we straighten the boundary and use the equivalence of the distance
function to the regularized distance as well as to the difference xn − fi (x ′) (see
[41, section 3.2], or [30, section 12.2]) and obtain

∫ +∞

0

∫
Ωε

y Ad B

(d2 + y2)Γ
|φiv| dx dy � C

∫ +∞

0

∫
Rn+

y At B

(t2 + y2)Γ
|φ̃i ṽ| dx dy,

for some constant C independent of i . We next use Lemma 5 to estimate the right-
hand side of this, thus obtaining∫ +∞

0

∫
Rn+

y At B

(t2 + y2)Γ
|φ̃i ṽ| dx dy � c

∫ +∞

0

∫
Rn+

y At B+1

(t2 + y2)Γ
|∇(φ̃i ṽ)| dx dy

� c
∫ +∞

0

∫
Rn+

y At B+1

(t2 + y2)Γ
φ̃i |∇ṽ| dx dy + c

∫ +∞

0

∫
Rn+

y At B+1

(t2 + y2)Γ
|∇φ̃i ||ṽ| dx dy.

Hence, returning to our original variables, we have∫ +∞

0

∫
Ωε

y Ad B

(d2 + y2)Γ
|φiv| dx dy

� c
∫ +∞

0

∫
Ωε

y Ad B+1

(d2 + y2)Γ
φi |∇v| dx dy + c

∫ +∞

0

∫
Ωε

y Ad B+1

(d2 + y2)Γ
|∇φi ||v| dx dy.

Summing over i we get

∫ +∞

0

∫
Ωε

y Ad B

(d2 + y2)Γ
|v| dx dy

� C1

∫ +∞

0

∫
Ωε

y Ad B+1

(d2 + y2)Γ
|∇v| dx dy + C2

∫ +∞

0

∫
Ωε

y Ad B+1

(d2 + y2)Γ
|v| dx dy.

The result then follows easily. ��
When working in the complement ofΩ we have the following surprising result:

Lemma 8. LetΩ ⊂ Rn. If A, B, Γ are constants such that A + 1 > 0, B + 1 > 0
and 2Γ < A + B + 2, then for all v ∈ C∞

0 (R
n × R) there holds

(A + 1)(A + B + 2 − 2Γ +)
∫ +∞

0

∫
CΩ

y Ad B

(d2 + y2)Γ
|v| dx dy

� 2Γ +
∫ +∞

0

∫
CΩ

y A+2d B+1

(d2 + y2)Γ+1 (−Δd)|v| dx dy

+(A + B + 2)
∫ +∞

0

∫
CΩ

y A+1d B

(d2 + y2)Γ
|∇v| dx dy, (4.14)

where Γ + = max(0, Γ ).

We note that no assumption on the sign of −Δd is required.
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Proof. Integrating by parts in the y-variable, we compute

(A+1)
∫ +∞

0

∫
CΩ

y Ad B

(d2 + y2)Γ
|v| dx dy �2Γ

∫ +∞

0

∫
CΩ

y A+2d B

(d2 + y2)Γ+1 |v| dx dy

+
∫ +∞

0

∫
CΩ

y A+1d B

(d2 + y2)Γ
|∇v| dx dy. (4.15)

If Γ � 0 the result follows easily. In the sequel we consider the case Γ > 0.
In the previous calculation there is no boundary term, due to our assumptions. To
continue we will estimate the first term in the right-hand side above. To this end
we define the vector field F by

F(x, y) :=
(

y A+2d B+3∇d

(d2 + y2)Γ+1 ,
y A+3d B

(d2 + y2)Γ+1

)
. (4.16)

We then have∫ +∞

0

∫
CΩ

divF|v| dx dy = −
∫ +∞

0

∫
CΩ

F · ∇|v| dx dy

�
∫ +∞

0

∫
CΩ

|F||∇v| dx dy. (4.17)

We note that because of our assumptions A + 1 > 0 and B + 1 > 0, there are no
boundary terms in (4.17). Straightforward calculations show that

divF = y A+2d B+1(Δd)

(d2 + y2)Γ+1 + (A + B + 2 − 2Γ )
y A+2d B

(d2 + y2)Γ+1 , (4.18)

and

|F| = y A+2d B

(d2 + y2)Γ+1/2 � y A+1d B

(d2 + y2)Γ
. (4.19)

Combining the above we conclude the proof. Again,we note that in all integrations
by parts there are no boundary terms, due to our assumptions. ��

As a consequence of Lemma 5 we have:

Lemma 9. LetΩ ⊂ Rn be such that −Δd(x) � 0, for x ∈ Ω andw ∈ C1
0(R

n×R).
If A, B, Γ are constants such that A + 1 > 0, B + 1 > 0, and 2Γ < A + B + 2,
then,

(B + 1)2(B + A + 2 − 2Γ +)2

4(B + A + 2)2

∫ +∞

0

∫
Ω

y Ad B

(d2 + y2)Γ
w2 dx dy

� (B + 1)(B + A + 2 − 2Γ +)
2(B + A + 2)

∫ +∞

0

∫
Ω

y Ad B+1

(d2 + y2)Γ
(−Δd)w2 dx dy

+
∫ +∞

0

∫
Ω

y Ad B+2

(d2 + y2)Γ
|∇w|2 dx dy, (4.20)

where Γ + = max(0, Γ ).
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Proof. We apply Lemma 5 to v = w2. To conclude, we use Young’s inequality in
the last term of the right-hand side. We omit the details. ��

In the case where A + B + 2 = 2Γ the L2 analogue of Lemma 6 reads:

Lemma 10. Suppose that Ω ⊂ Rn is such that −Δd(x) � 0 for x ∈ Ω and has
finite inner radius. If A, B are constants such that A + 1 > 0, B + 1 > 0, then for
all w ∈ C∞

0 (R
n × R) there holds

(
B + 1

2(A + B + 3)

)2 ∫ +∞

0

∫
Ω

y Ad B X2

(d2 + y2)
A+B+2

2

w2 dx dy

� B + 1

2(A + B + 3)

∫ +∞

0

∫
Ω

y Ad B+1 X

(d2 + y2)
A+B+2

2

(−Δd)w2 dx dy

+
∫ +∞

0

∫
Ω

y Ad B+2

(d2 + y2)
A+B+2

2

|∇w|2 dx dy, (4.21)

where X = X ( d(x)
Rin
) and X (t) = (1 − ln t)−1, 0 < t � 1.

Proof. We apply Lemma 6 to v = w2. To conclude, we use Young’s inequality in
the last term of the right-hand side. We omit the details. ��

In the case of half space, a more delicate result is needed. More precisely, we
have:

Lemma 11. Let v ∈ C∞
0 (R

n ×R). If 0 < A � 1
2 , B +1 > 0, and 2Γ < A+ B +2,

then the following inequality holds true:

c0

∫ +∞

0

∫
Rn+

y−Ax B
n

(x2
n +y2)Γ−A

|v| dx dy �
∫ +∞

0

∫
Rn+

y Ax1+B
n

(x2
n +y2)Γ

|∇v| dx dy, (4.22)

where

c0 = A(B + 1)(B + A + 2 − 2Γ +)
(A + B + 2)(A + 2B + 2)− 2Γ +(B + 1)

.

The same result holds true if we replace Rn+ by Rn− with |xn| in the place of xn.

Proof. We will use polar coordinates, xn = r cos θ, y = r sin θ . We first establish
the following inequality for the angular derivative.

A
∫ π

2

0
(sin θ)−A(cos θ)B |v| dθ � (1 + A + B)

∫ π
2

0
(sin θ)1+A(cos θ)B |v| dθ

+
∫ π

2

0
(sin θ)A(cos θ)1+B |vθ |dθ. (4.23)

We have

d

dθ
((sin θ)A(cos θ)1+B)= A(sin θ)A−1(cos θ)2+B −(1+B)(sin θ)A+1(cos θ)B

= A(sin θ)A−1(cos θ)B − (1 + A + B)(sin θ)A+1(cos θ)B,
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therefore an integration by parts gives:

A
∫ π

2

0
(sin θ)A−1(cos θ)B |v| dθ � (1 + A + B)

∫ π
2

0
(sin θ)1+A(cos θ)B |v| dθ

+
∫ π

2

0
(sin θ)A(cos θ)1+B |vθ | dθ.

Since A � 1
2 , we also have that (sin θ)−A � (sin θ)A−1 and (4.23) follows.

We next multiply (4.23) by r A+B+1−2Γ and then integrate over (0,∞) to
conclude:

A
∫ +∞

0

∫ +∞

0

y−Ax B
n

(x2
n + y2)Γ−A

|v| dxn dy

� (1 + A + B)
∫ +∞

0

∫ +∞

0

y1+Ax B
n

(x2
n + y2)Γ+ 1

2

|v| dxn dy

+
∫ +∞

0

∫ +∞

0

y Ax1+B
n

(x2
n + y2)Γ

|∇v| dxn dy

� (1 + A + B)
∫ +∞

0

∫ +∞

0

y Ax B
n

(x2
n + y2)Γ

|v| dxn dy

+
∫ +∞

0

∫ +∞

0

y Ax1+B
n

(x2
n + y2)Γ

|∇v| dxn dy. (4.24)

We next estimate the first term in the right-hand side by using Lemma 5, that is,

(B + 1)(B + A + 2 − 2Γ +)
B + A + 2

∫ +∞

0

∫ +∞

0

y Ax B
n

(x2
n + y2)Γ

|v| dxn dy

�
∫ +∞

0

∫ +∞

0

y Ax B+1
n

(x2
n + y2)Γ

|∇v| dxn dy.

A further integration in the other variables completes the proof. ��

5. Half Space, Trace Hardy and Trace Hardy–Sobolev–Maz’ya Inequalities

Here we will prove the trace Hardy and trace Hardy–Sobolev–Maz’ya inequal-
ities appearing in Theorems 2 and 6. We start with the trace Hardy inequalities.

5.1. Half Space, Trace Hardy I and II

In this section we will provide the proof of the trace Hardy inequalities appear-
ing in Theorems 2 and 6.

Proof of Theorem 2 part (i) and (ii). The case where s ∈ [ 1
2 , 1) is contained in

Theorem 1. We next consider the case s ∈ (0, 1
2 ) or, equivalently, a ∈ (0, 1).
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We will use the notation x = (x ′, xn) ∈ Rn+ with xn > 0. We will use Lemma 1
with the test function φ given by

φ(x, y) = x
− a

2
n A

(
y

xn

)
, y > 0, xn > 0, x ∈ Rn+,

where A solves (2.2), (2.3). Using Proposition 7 and Lemma 2 we see that all
hypotheses of Lemma 1 are satisfied. In particular, for t = y

xn
we compute, for

x ∈ Rn+,

− lim
y→0+

(
ya φy(x, y)

φ(x, y)

)
= d̄s

x1−a
n

.

We also have

−div(ya∇φ) = 0, y > 0, x ∈ Rn+.

From Lemma 1 we get

∫ +∞

0

∫
Rn+

ya |∇u|2 dx dy � d̄s

∫
Rn+

u2(x, 0)

x1−a
n

dx

+
∫ +∞

0

∫
Rn+

ya |∇u − ∇φ
φ

u|2 dx dy, (5.1)

from which the trace Hardy inequality follows directly. This relation will be used
later on to obtain the Sobolev term, as well.

The optimality of d̄s follows by the same test functions given by Equation (2.13)
as in the flat case of Theorem 1. The fact that a covers the full interval (−1, 1) does
not affect the calculations leading to (2.16). ��
Proof of Theorem 6 part (i). The case where s ∈ [ 1

2 , 1) is contained in Theo-
rem 4. We next consider the case s ∈ (0, 1

2 ) or, equivalently, a ∈ (0, 1). We will
use Lemma 3 with the test function φ given

φ(x, y) = (y2 + x2
n )

− a
4 B

(
xn

y

)
, y > 0, xn ∈ R.

Using Proposition 8 and Lemma 4 we see that all hypotheses of Lemma 3 are
satisfied. In particular, we compute

− lim
y→0+

(
ya φy(x, y)

φ(x, y)

)
= k̄s

x1−a
n

, xn > 0.

An easy calculation shows that

−div(ya∇φ) = 0, x ∈ Rn, y > 0.
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We now use Lemma 3 to get
∫ +∞

0

∫
Rn

ya |∇u|2 dx dy � k̄s

∫
Rn+

u2(x, 0)

x1−a
n

dx

+
∫ +∞

0

∫
Rn

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy, (5.2)

from which the trace Hardy inequality follows directly. This relation will also be
used later on to obtain the Sobolev term, as well.

The optimality of k̄s follows by the same test functions given by Equation (3.20)
as in the flat case of Theorem 4. The fact that a covers the full interval (−1, 1) does
not affect the calculations leading to (3.22). ��

5.2. Half Space, Trace Hardy–Sobolev–Maz’ya I and II

Here we will give the proof of the trace Hardy–Sobolev–Maz’ya inequalities of
Theorems 2 and 6. We will first establish different trace Hardy–Sobolev–Maz’ya
inequalities where only the Hardy term appears in the trace, and which are of
independent interest.

Theorem 9. Let 0 < s < 1 and n � 2. There exists a positive constant c such that
for all u ∈ C∞

0 (R
n+ × R) there holds

∫ +∞

0

∫
Rn+

y1−2s |∇(x,y)u(x, y)|2 dx dy � d̄s

∫
Rn+

u2(x, 0)

x2s
n

dx

+ c

(∫ +∞

0

∫
Rn+

|u(x, y)| 2(n+1)
n−2s dx dy

) n−2s
n+1

. (5.3)

with

d̄s := 2Γ (1 − s)Γ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

)
Γ (s)

. (5.4)

Proof of Theorem 9. From the proof of Theorem 2 we recall the inequality (5.1),
that is,

∫ +∞

0

∫
Rn+

ya |∇u|2 dx dy � d̄s

∫
Rn+

u2(x, 0)

x1−a
n

dx

+
∫ +∞

0

∫
Rn+

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy, (5.5)

where φ is given by

φ(x, y) = x
− a

2
n A

(
y

xn

)
, y > 0, xn > 0, x ∈ Rn+,

and A solves (2.2), (2.3).
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The result will follow after establishing the following inequality:

∫ +∞

0

∫
Rn+

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy � c

(∫ +∞

0

∫
Rn+

|u| 2(n+1)
n+a−1 dx dy

) n+a−1
(n+1)

.

(5.6)

To this end we start with the inequality, see [33, Theorem 1, section 2.1.6]. For
any u ∈ C∞

0 (R
n+ × R) we have

∫ +∞

0

∫
Rn+

y
a
2 |∇u| dx dy � c

(∫ +∞

0

∫
Rn+

|u(x, y)| 2(n+1)
2n+a dx dy

) 2n+a
2(n+1)

,

with the choice u = φ
2n+a

n+a−1 v. Hence we obtain

∫ +∞

0

∫
Rn+

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Rn+

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫ +∞

0

∫
Rn+

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

. (5.7)

Next we will control the second term of the left-hand side by the first term of the
left-hand side. To this end we consider two cases. Suppose first that s ∈ [ 1

2 , 1), that
is, a ∈ (−1, 0]. Using the asymptotics of Lemma 2 we get that

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y

a
2 x

n+1
n+a−1
n

(x2
n + y2)

(2+a)(2n+a)
4(n+a−1)

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2 x

2n+a
n+a−1
n

(x2
n + y2)

(2+a)(2n+a)
4(n+a−1)

. (5.8)

The sought for estimate then is a consequence of Lemma 5 with the choice:
A = a

2 , B = n+1
n+a−1 and Γ = (2+a)(2n+a)

4(n+a−1) taking into account that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0.

We next consider the case a ∈ (0, 1). Using again the asymptotics of Lemma 2,
this time we have that

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y− a

2 x
n+1

n+a−1
n

(x2
n + y2)

(2+a)(n+1)
4(n+a−1) + 2−a

4

,
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whereas (5.8) remains the same. The sought for estimate now is a consequence of
Lemma 11 with the choice A = a

2 , B = n+1
n+a−1 and Γ = (2+a)(2n+a)

4(n+a−1) taking into
account that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0.

Therefore, for any a ∈ (−1, 1) we arrive at:

∫ +∞

0

∫
Rn+

y
a
2 φ

2n+a
n+a−1 |∇v| � c

(∫ +∞

0

∫
Rn+

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

. (5.9)

To continue, we next set in (5.9) v = |w| 2n+a
n+a−1 and apply the Schwartz inequality

in the left-hand side to conclude, after a simplification,

∫ +∞

0

∫
Rn+

yaφ2|∇w|2 dx dy � c

(∫ +∞

0

∫
Rn+

|φw| 2(n+1)
n+a−1 dx dy

) n+a−1
n+1

, (5.10)

which is equivalent to (5.6). ��
Proof of Theorem 2 part (iii). Our starting point now is the following weighted
trace Sobolev inequality, see [33, Theorem 1, section 2.1.6],

∫ +∞

0

∫
Rn+

y
a
2 |∇u| dx dy � c

(∫
Rn+

|u(x, 0)| 2n
2n+a dx

) 2n+a
2n

, u ∈ C∞
0 (R

n+ × R).

Again, we set u = φ
2n+a

n+a−1 v to obtain the analogue of (5.7):
∫ +∞

0

∫
Rn+

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Rn+

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫
Rn+

|φ 2n+a
n+a−1 (x, 0)v(x, 0)| 2n

2n+a dx

) 2n+a
2n

. (5.11)

As in the proof of Theorem 9, we control the second term of the left-hand side by
the first term of the left-hand side to arrive at

∫ +∞

0

∫
Rn+

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy � c

(∫
Rn+

|φ 2n+a
n+a−1 (x, 0)v(x, 0)| 2n

2n+a dx

) 2n+a
2n

.

Again, we set v = |w| 2n+a
n+a−1 and apply Schwartz inequality in the left-hand side to

arrive at
(∫ +∞

0

∫
Rn+

yaφ2|∇w|2 dx dy

) 1
2
(∫ +∞

0

∫
Rn+

|φw| 2(n+1)
n+a−1 dx dy

) 1
2

� c

(∫
Rn+

|(φw)(x, 0)| 2n
n+a−1 dx

) 2n+a
2n

.
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We next use (5.10) to conclude, after a simplification,

∫ +∞

0

∫
Rn+

yaφ2|∇w|2 dx dy � c

(∫
Rn+

|(φw)(x, 0)| 2n
n+a−1 dx

) n+a−1
n

,

which is equivalent to

∫ +∞

0

∫
Rn+

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy � c

(∫
Rn+

|u(x, 0)| 2n
n+a−1 dx

) n+a−1
n

.

Combining this with inequality (5.1) we conclude the proof. ��
We next present a preliminary result which will play an important role towards

establishing the Hardy–Sobolev–Maz’ya II of Theorem 6.

Theorem 10. Let 0 < s < 1 and n � 2. There exists a positive constant c, such
that for all u ∈ C∞

0 (R
n × R) with u(x, 0) = 0, x ∈ Rn−, there holds

∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy � k̄s

∫
Rn+

u2(x, 0)

x2s
n

dx

+ c

(∫ +∞

0

∫
Rn

|u(x, y)| 2(n+1)
n−2s dx dy

) n−2s
n+1

, (5.12)

where

k̄s := 21−2sΓ 2(s + 1
2 )Γ (1 − s)

πΓ (s)
,

is the best constant in (5.12).

Proof. From the proof of Theorem 4 we recall the inequality (3.18), that is

∫ +∞

0

∫
Rn

ya |∇u|2 dx dy � k̄s

∫
Rn+

u2(x, 0)

x1−a
n

dx

+
∫ +∞

0

∫
Rn

ya |∇u − ∇φ
φ

u|2 dx dy, (5.13)

where φ is given by

φ(x, y) = (y2 + x2
n )

− a
4 B

(
xn

y

)
, y > 0, xn ∈ R,

and B solves (3.3), (3.4).
Again, the result will follow after establishing the following inequality:

∫ +∞

0

∫
Rn

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy � c

(∫ +∞

0

∫
Rn

|u| 2(n+1)
n+a−1 dx dy

) n+a−1
n+1

.(5.14)
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To this end we start with the inequality, see [33, Theorem 1, section 2.1.6], valid
for any u ∈ C∞

0 (R
n × R):

∫ +∞

0

∫
Rn

y
a
2 |∇u| dx dy � c

(∫ +∞

0

∫
Rn

|u(x, y)| 2(n+1)
2n+a dx dy

) 2n+a
2(n+1)

,

with the choice u = φ
2n+a

n+a−1 v. Hence we obtain

∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Rn

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫ +∞

0

∫
Rn

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

. (5.15)

Next we will control the second term of the left-hand side by the first term of the
left-hand side. To this end we consider various cases. Suppose, first, that s ∈ [ 1

2 , 1)
that is a ∈ (−1, 0] and x ∈ Rn+. Using the asymptotics of Lemma 4 we get that

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y

a
2

(x2
n + y2)

a(n+1)
4(n+a−1)+ a+2

4

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2

(x2
n + y2)

a(2n+a)
4(n+a−1)

. (5.16)

We now apply Lemma 5 with the choice A = a
2 , B = 0 and Γ = a(n+1)

4(n+a−1) + a+2
4 ,

taking into account that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0.

Thus we get for some positive constant c that

∫ +∞

0

∫
Rn+

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy � c

∫ +∞

0

∫
Rn+

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy. (5.17)

We next consider the case a ∈ (0, 1), x ∈ Rn+. In this case

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y− a

2

(x2
n + y2)

a(n+1)
4(n+a−1)+ 2−a

4

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2

(x2
n + y2)

a(2n+a)
4(n+a−1)

. (5.18)
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We now use Lemma 11 with the choice A = a
2 , B = 0 and Γ = 1

2 + a(2n+a)
4(n+a−1)

taking into account that xn

(x2
n+y2)

1
2
< 1 and A + B + 2 − 2Γ = (2−a)(n−1)

2(n+a−1) > 0. We

then conclude that (5.17) is valid for all a ∈ (−1, 1).
In a similar manner, for all a ∈ (−1, 1) and x ∈ Rn−, we get that

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y− a

2 + (1−a)(n+1)
n+a−1

(x2
n + y2)

(2−a)(2n+a)
4(n+a−1)

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2 + (1−a)(2n+a)

n+a−1

(x2
n + y2)

(2−a)(2n+a)
4(n+a−1)

. (5.19)

This time we use Lemma 8 with A = − a
2 + (1−a)(n+1)

n+a−1 , B = 0 andΓ = (2−a)(2n+a)
4(n+a−1) ,

noticing that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0,

thus obtaining
∫ +∞

0

∫
Rn−

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy �c

∫ +∞

0

∫
Rn−

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy. (5.20)

Combining (5.17) and (5.20) we obtain the following L1 Hardy estimate on the
whole Rn :∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy �c

∫ +∞

0

∫
Rn

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy.

(5.21)

Using this in (5.15) we get that

∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy � c

(∫ +∞

0

∫
Rn

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

.

(5.22)

To continue, we next set in (5.22) v = |w| 2n+a
n+a−1 and apply Schwartz inequality

in the left-hand side to conclude, after a simplification,

∫ +∞

0

∫
Rn

yaφ2|∇w|2 dx dy � c

(∫ +∞

0

∫
Rn

|φw| 2(n+1)
n+a−1 dx dy

) n+a−1
n+1

,

(5.23)

which is equivalent to (5.14). The result then follows. ��
We are now ready to establish the proof of Theorem 6 part (ii).
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Proof of Theorem 6 part (ii). Again, we will use inequality (5.13). This time the
result will follow once we establish the following inequality:

∫ +∞

0

∫
Rn

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy � c

(∫
Rn+

|u(x, 0)| 2n
n+a−1 dx

) n+a−1
n

,

(5.24)

with φ given by

φ(x, y) = (y2 + x2
n )

− a
4 B

(
xn

y

)
, y > 0, xn ∈ R,

and B solves (3.3), (3.4).
Our starting point, again, is the following weighted trace Sobolev inequality,

see [33, Theorem 1, section 2.1.6], valid for functions u ∈ C∞
0 (R

n × R) with
u(x, 0) = 0, x ∈ Rn−:

∫ +∞

0

∫
Rn

y
a
2 |∇u| dx dy � c

(∫
Rn+

|u(x, 0)| 2n
2n+a dx

) 2n+a
2n

.

We set u = φ
2n+a

n+a−1 v to obtain∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Rn

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫
Rn+

|φ 2n+a
n+a−1 (x, 0)v(x, 0)| 2n

2n+a dx

) 2n+a
2n

. (5.25)

Combining this with (5.21) we get that∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy

� c

(∫
Rn+

|φ 2n+a
n+a−1 (x, 0)v(x, 0)| 2n

2n+a dx

) 2n+a
2n

. (5.26)

We set v = |w| 2n+a
n+a−1 and apply the Schwartz inequality in the left-hand side to

arrive at (∫ +∞

0

∫
Rn

yaφ2|∇w|2 dx dy

) 1
2
(∫ ∞

0

∫
Rn

|φw| 2(n+1)
n+a−1 dx dy

) 1
2

� c

(∫
Rn+

|(φw)(x, 0)| 2n
n+a−1 dx

) 2n+a
2n

.

We next use the Sobolev inequality (5.23) to conclude, after a simplification,

∫ +∞

0

∫
Rn

yaφ2|∇w|2 dx dy � c

(∫
Rn+

|(φw)(x, 0)| 2n
n+a−1 dx

) n+a−1
n

,

which is equivalent to (5.24) and the result follows. ��
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6. The General Case: Trace Hardy–Sobolev–Maz’ya I and II

6.1. Trace Hardy–Sobolev–Maz’ya I

Here we will give the proof of Theorem 1 part (iii). We first establish the fol-
lowing Hardy–Sobolev–Maz’ya, where only the Hardy term appears in the trace
term.

Theorem 11. Let 1
2 < s < 1, n � 2 and Ω ⊂

�=
Rn be a uniformly Lipschitz domain

with finite inner radius that, in addition, satisfies

−Δd(x) � 0, x ∈ Ω. (6.1)

Then there exists a positive constant c such that for all u ∈ C∞
0 (Ω×R) there holds

∫ +∞

0

∫
Ω

y1−2s |∇(x,y)u(x, y)|2 dx dy � d̄s

∫
Ω

u2(x, 0)

d2s(x)
dx

+ c

(∫ +∞

0

∫
Ω

|u(x, y)| 2(n+1)
n−2s dx dy

) n−2s
n+1

. (6.2)

with

d̄s := 2Γ (1 − s)Γ 2
( 3+2s

4

)
Γ 2

( 3−2s
4

)
Γ (s)

. (6.3)

Proof of Theorem 11. From the proof of Theorem 1 we recall the inequality
(2.11), that is,

∫ +∞

0

∫
Ω

ya |∇u|2 dx dy � d̄s

∫
Ω

u2(x, 0)

d1−a(x)
dx +

∫ +∞

0

∫
Ω

ya |∇u

−∇φ
φ

u|2 dx dy −
∫ +∞

0

∫
Ω

div(ya∇φ)
φ

u2 dx dy, (6.4)

where φ is given by

φ(x, y) = d− a
2 (x)A

( y

d

)
, y > 0, x ∈ Ω, (6.5)

and A solves (2.2), (2.3).
The result will follow after establishing the following inequality:

∫ +∞

0

∫
Ω

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy −
∫ +∞

0

∫
Ω

div(ya∇φ)
φ

u2 dx dy

� c

(∫ +∞

0

∫
Ω

|u(x, y)| 2(n+1)
n+a−1 dx dy

) n+a−1
n+1

. (6.6)
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To this end we start with the inequality, see [33, Theorem 1, section 2.1.6], valid
for any u ∈ C∞

0 (Ω × R),

∫ +∞

0

∫
Ω

y
a
2 |∇u| dx dy � c

(∫ +∞

0

∫
Ω

|u(x, y)| 2(n+1)
2n+a dx dy

) 2n+a
2(n+1)

,

with the choice u = φ
2n+a

n+a−1 v. Hence we obtain
∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Ω

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫ +∞

0

∫
Ω

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

. (6.7)

Next we will control the second term of the left-hand side using Lemma 7. To
this end we recall that for a ∈ (−1, 0) we have the following asymptotics from
Lemma 2:

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y

a
2 d

n+1
n+a−1

(d2 + y2)
(2+a)(2n+a)

4(n+a−1)

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2 d

2n+a
n+a−1

(d2 + y2)
(2+a)(2n+a)

4(n+a−1)

. (6.8)

We then use Lemma 7 with the choice A = a
2 , B = n+1

n+a−1 and Γ = (2+a)(2n+a)
4(n+a−1) ,

taking into account that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0,

to obtain the estimate
∫ +∞

0

∫
Ω

y
a
2 d

n+1
n+a−1

(d2 + y2)
(2+a)(2n+a)

4(n+a−1)

|v| dx dy

� C1

∫ +∞

0

∫
Ω

y
a
2 d

2n+a
n+a−1

(d2 + y2)
(2+a)(2n+a)

4(n+a−1)

|∇v| dx dy

+ C2

∫ +∞

0

∫
Ω

y
a
2 d

2n+a
n+a−1

(d2 + y2)
(2+a)(2n+a)

4(n+a−1)

|v| dx dy.

From this and (6.7) we have that
∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy +

∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |v| dx dy

� c

(∫ +∞

0

∫
Ω

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

.
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To continue, we next set v = |w| 2n+a
n+a−1 and apply the Schwartz inequality in the

left-hand side. After a simplification, we arrive at:
∫ +∞

0

∫
Ω

yaφ2|∇w|2 dx dy +
∫ +∞

0

∫
Ω

yaφ2w2 dx dy

� c

(∫ +∞

0

∫
Ω

|φw| 2(n+1)
n+a−1

) n+a−1
n+1

(6.9)

To conclude the proof of the theorem we need the following estimate:

c
∫ +∞

0

∫
Ω

yaφ2w2 dx dy �
∫ +∞

0

∫
Ω

yaφ2|∇w|2 dx dy

−
∫ +∞

0

∫
Ω

div(ya∇φ)φw2 dx dy. (6.10)

It is here that we will use the fact that the domainΩ has a finite inner radius. Using
Lemma 10 with A = a, B = 0, we obtain that

c
∫ +∞

0

∫
Ω

ya X2
(

d
Rin

)

(d2 + y2)
2+a

2

w2 dx dy �
∫ +∞

0

∫
Ω

yad2

(d2 + y2)
2+a

2

|∇w|2 dx dy

−
∫ +∞

0

∫
Ω

yad(Δd)X
(

d
Rin

)

(d2 + y2)
2+a

2

w2 dx dy,

which implies

c
∫ +∞

0

∫
Ω

yad2

(d2 + y2)
2+a

2

w2 dx dy �
∫ +∞

0

∫
Ω

yad2

(d2 + y2)
2+a

2

|∇w|2 dx dy

−
∫ +∞

0

∫
Ω

yad(Δd)

(d2 + y2)
2+a

2

w2 dx dy.

Taking into account the asymptotics of φ, this is equivalent to (6.10). We omit
further details. ��

We are now ready to prove Theorem 1 part (iii).

Proof of Theorem 1 part (iii). Again we will use (6.4). The result will follow once
we establish∫ +∞

0

∫
Ω

ya |∇u − ∇φ
φ

u|2 dx dy −
∫ +∞

0

∫
Ω

div(ya∇φ)
φ

u2 dx dy

� c

(∫
Ω

|u(x, 0)| 2n
n+a−1 dx

) n+a−1
n

, (6.11)

where φ is as in (6.5). To this end we start with the inequality, see [33, Theorem 1,
section 2.1.6],

∫ +∞

0

∫
Ω

y
a
2 |∇u| dx dy � c

(∫
Ω

|u(x, 0)| 2n
2n+a dx

) 2n+a
2n

, u ∈ C∞
0 (Ω × R),
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with the choice u = φ
2n+a

n+a−1 v. Hence we obtain∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Ω

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫
Ω

|φ 2n+a
n+a−1 v| 2n

2n+a dx

) 2n+a
2n

. (6.12)

Next we will control the second term of the left-hand side exactly as we did in the
proof of Theorem 11, to arrive at∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy +

∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |v| dx dy

� c

(∫
Ω

|φ 2n+a
n+a−1 v(x, 0)| 2n

2n+a dx

) 2n+a
2n

.

To continue, we next set v = |w| 2n+a
n+a−1 and apply the Schwartz inequality in the

left-hand side to get, after elementary manipulations, that(∫ +∞

0

∫
Ω

|φw| 2(n+1)
n+a−1 dx dy

) (∫ +∞

0

∫
Ω

yaφ2|∇w|2 dx dy

)

×
(∫ +∞

0

∫
Ω

|φw| 2(n+1)
n+a−1 dx dy

) (∫ +∞

0

∫
Ω

yaφ2w2 dx dy

)

� c

(∫
Ω

|φw(x, 0)| 2n
n+a−1 dx

) 2n+a
n

. (6.13)

At this point we use Theorem 11 and inequality (6.10) to conclude the result. We
omit further details. ��

6.2. Trace Hardy–Sobolev–Maz’ya II

Here we will give the proof of Theorem 4 part (iii). We first establish the fol-
lowing Hardy–Sobolev–Maz’ya, where only the Hardy term appears in the trace
term.

Theorem 12. Let 1
2 < s < 1, n � 2 and Ω ⊂

�=
Rn be a uniformly Lipschitz and

convex domain with finite inner radius. Then there exists a positive constant c such
that for all u ∈ C∞

0 (R
n × R) with u(x, 0) = 0 for x ∈ CΩ , there holds

∫ +∞

0

∫
Rn

y1−2s |∇(x,y)u(x, y)|2 dx dy � k̄s

∫
Ω

u2(x, 0)

d2s(x)
dx

+ c

(∫ +∞

0

∫
Rn

|u(x, y)| 2(n+1)
n−2s dx dy

) n−2s
n+1

, (6.14)

with

k̄s := 21−2sΓ 2(s + 1
2 )Γ (1 − s)

πΓ (s)
. (6.15)
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Proof of Theorem 12. From the proof of Theorem 4 we recall the inequality
(3.18), that is,

∫ +∞

0

∫
Rn

ya |∇u|2 dx dy � k̄s

∫
Ω

u2(x, 0)

d1−a(x)
dx +

∫ +∞

0

∫
Rn

ya

×
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy −
∫ +∞

0

∫
Rn

div(ya∇φ)
φ

u2 dx dy, (6.16)

where φ is given by

φ(x, y) =
{
(y2 + d2)− a

4 B
(

d
y

)
, x ∈ Ω, y > 0

(y2 + d2)− a
4 B(− d

y ), x ∈ CΩ, y > 0,
(6.17)

and B is the solution of the boundary value problem (3.3) and (3.4). The result will
follow after establishing the following inequality:

∫ +∞

0

∫
Rn

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy −
∫ +∞

0

∫
Rn

div(ya∇φ)
φ

u2 dx dy

� c

(∫ +∞

0

∫
Rn

|u(x, y)| 2(n+1)
n+a−1 dx dy

) n+a−1
n+1

. (6.18)

To this end we start with the inequality, see [33, Theorem 1, section 2.1.6], valid
for any u ∈ C∞

0 (R
n × R),

∫ +∞

0

∫
Rn

y
a
2 |∇u| dx dy � c

(∫ +∞

0

∫
Rn

|u(x, y)| 2(n+1)
2n+a dx dy

) 2n+a
2(n+1)

,

with the choice u = φ
2n+a

n+a−1 v. Hence we obtain
∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Rn

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫ +∞

0

∫
Rn

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

. (6.19)

Again, we want to control the second term of the left-hand side. This time we split
the integral into the integral overΩ and the integral over CΩ . Concerning the inte-
gral over CΩ , we use the asymptotics of φ as given by Lemma 4 for a ∈ (−1, 0)
to get that

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y− a

2 + (1−a)(n+1)
n+a−1

(d2 + y2)
(2−a)(2n+a)

4(n+a−1)

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2 + (1−a)(2n+a)

n+a−1

(d2 + y2)
(2−a)(2n+a)

4(n+a−1)

.
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This time we use Lemma 8 with A = − a
2 + (1−a)(n+1)

n+a−1 , B = 0 andΓ = (2−a)(2n+a)
4(n+a−1) ,

noticing that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0,

thus obtaining

∫ +∞

0

∫
CΩ

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy � c

∫ +∞

0

∫
CΩ

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy,

(6.20)

where we also used the convexity of Ω .
On the other hand, in Ω the asymptotics of φ are also given by Lemma 4 as

follows:

y
a
2 φ

n+1
n+a−1 |∇φ| ∼ y

a
2

(d2 + y2)
a(2n+a)

4(n+a−1)+ 1
2

,

whereas

y
a
2 φ

2n+a
n+a−1 ∼ y

a
2

(d2 + y2)
a(2n+a)

4(n+a−1)

.

We next use Lemma 7 with the choice A = a
2 , B = 0 and Γ = a(2n+a)

4(n+a−1) + 1
2 ,

taking into account that

A + B + 2 − 2Γ = (2 − a)(n − 1)

2(n + a − 1)
> 0,

to obtain the estimate

∫ +∞

0

∫
Ω

y
a
2

(d2 + y2)
a(2n+a)

4(n+a−1)+ 1
2

|v| dx dy

� C1

∫ +∞

0

∫
Ω

y
a
2 d

(d2 + y2)
a(2n+a)

4(n+a−1)+ 1
2

|∇v| dx dy

+ C2

∫ +∞

0

∫
Ω

y
a
2 d

(d2 + y2)
a(2n+a)

4(n+a−1)+ 1
2

|v| dx dy

� C1

∫ +∞

0

∫
Ω

y
a
2

(d2 + y2)
a(2n+a)

4(n+a−1)

|∇v| dx dy

+ C2

∫ +∞

0

∫
Ω

y
a
2 d

(d2 + y2)
a(2n+a)

4(n+a−1)+ 1
2

|v| dx dy.
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Equivalently, this can be written as

C
∫ +∞

0

∫
Ω

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy �

∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy

+
∫ +∞

0

∫
Ω

y
a
2 φ

2n+a
n+a−1

d

(d2 + y2)
1
2

|v| dx dy. (6.21)

Using (6.20) and (6.21) in (6.19) we arrive at
∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy +

∫ +∞

0

∫
Ω

y
a
2

d

(d2 + y2)
1
2

φ
2n+a

n+a−1 |v| dx dy

� c

(∫ +∞

0

∫
Rn

|φ 2n+a
n+a−1 v| 2(n+1)

2n+a dx dy

) 2n+a
2(n+1)

. (6.22)

To continue, we next set v = |w| 2n+a
n+a−1 and apply Schwartz inequality in the left-

hand side. After a simplification, we arrive at:
∫ +∞

0

∫
Rn

yaφ2|∇w|2 dx dy +
∫ +∞

0

∫
Ω

yad2φ2

d2 + y2w
2 dx dy

� c

(∫ +∞

0

∫
Rn

|φw| 2(n+1)
n+a−1

) n+a−1
n+1

. (6.23)

To conclude the proof of the theorem, it is enough to obtain the following estimate:

c
∫ +∞

0

∫
Ω

yad2φ2

d2 + y2w
2 dx dy �

∫ +∞

0

∫
Ω

yaφ2|∇w|2 dx dy

−
∫ +∞

0

∫
Ω

div(ya∇φ)φw2 dx dy. (6.24)

It is here that we will use the fact that the domain Ω has a finite inner radius.
Using Lemma 10 with A = a, B = 0 we obtain that

c
∫ +∞

0

∫
Ω

ya X2
(

d
Rin

)

(d2 + y2)
2+a

2

w2 dx dy �
∫ +∞

0

∫
Ω

yad2

(d2 + y2)
2+a

2

|∇w|2 dx dy

−
∫ +∞

0

∫
Ω

yad(Δd)X
(

d
Rin

)

(d2 + y2)
2+a

2

w2 dx dy,

which implies

c
∫ +∞

0

∫
Ω

yad2

(d2 + y2)
2+a

2

w2 dx dy �
∫ +∞

0

∫
Ω

ya

(d2 + y2)
a
2
|∇w|2 dx dy

−
∫ +∞

0

∫
Ω

ya(Δd)

(d2 + y2)
1+a

2

w2 dx dy.

Taking into account the asymptotics ofφ this is equivalent to (6.24). We omit further
details. ��
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We are now ready to prove Theorem 4 part (iii).

Proof of Theorem 4 part (iii). Again we will use (6.16). The result then will fol-
low once we establish:

∫ +∞

0

∫
Rn

ya
∣∣∣∣∇u − ∇φ

φ
u

∣∣∣∣
2

dx dy −
∫ +∞

0

∫
Rn

div(ya∇φ)
φ

u2 dx dy

� c

(∫
Ω

|u(x, 0)| 2n
n+a−1 dx

) n+a−1
n

, (6.25)

where φ is as in (6.17). To this end we start again with the inequality,

∫ +∞

0

∫
Rn

y
a
2 |∇u| dx dy � c

(∫
Ω

|u(x, 0)| 2n
2n+a dx

) 2n+a
2n

,

valid for u ∈ C∞
0 (R

n × R) with u(x, 0) = 0, x ∈ CΩ . We apply this to

u = φ
2n+a

n+a−1 v. Hence we obtain

∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy + 2n + a

n + a − 1

∫ +∞

0

∫
Rn

y
a
2 φ

n+1
n+a−1 |∇φ||v| dx dy

� c

(∫
Ω

|φ 2n+a
n+a−1 v| 2n

2n+a dx

) 2n+a
2n

. (6.26)

Next we will control the second term of the left-hand side exactly as we did in the
proof of Theorem 12, to arrive at

∫ +∞

0

∫
Rn

y
a
2 φ

2n+a
n+a−1 |∇v| dx dy +

∫ +∞

0

∫
Ω

y
a
2 d

(d2 + y2)
1
2

φ
2n+a

n+a−1 |v| dx dy

� c

(∫
Ω

|φ 2n+a
n+a−1 v(x, 0)| 2n

2n+a dx

) 2n+a
2n

.

To continue, we next set v = |w| 2n+a
n+a−1 and apply the Schwartz inequality in the

left-hand side to get, after elementary manipulations, that

(∫ +∞

0

∫
Ω

|φw| 2(n+1)
n+a−1 dx dy

) (∫ +∞

0

∫
Ω

yaφ2|∇w|2 dx dy

)

×
(∫ +∞

0

∫
Ω

|φw| 2(n+1)
n+a−1 dx dy

) (∫ +∞

0

∫
Ω

yad2

d2 + y2 φ
2w2 dx dy

)

� c

(∫
Ω

|φw(x, 0)| 2n
n+a−1 dx

) 2n+a
n

. (6.27)

At this point we use Theorem 12 and inequality (6.24) to conclude the result. We
omit further details. ��
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7. The Fractional Laplacians

In this section we will apply the previous results to establish the proofs of
Theorems 3, 5 as well as of part (iii) of Theorem 6.

Proof of Theorem 3. Parts (i) and (iii) follow from parts (i) and (iii) of Theorem 1,
taking into account the relation between the energy of the extended problem and
the corresponding one of the fractional Laplacian, see Section 8.1 and, in particular,
relation (8.5).

We next prove part (ii). We will use the optimality of the constant d̄s of Theo-
rem 1, that is, for each ε > 0 there exists a uε ∈ C∞

0 (Ω × R) such that

d̄s + ε �
∫ +∞

0

∫
Ω

y1−2s |∇uε|2 dx dy∫
Ω

u2
ε(x,0)

d2s (x)
dx

,

and let fε(x) = uε(x, 0). We will show that for some positive constant c,

ds + cε � ((−Δ)s fε, fε)Ω∫
Ω

f 2
ε (x)

d2s (x)
dx

. (7.1)

To this end, let ûε be the solution to the extended problem

div(y1−2s∇ûε(x, y)) = 0, in Ω × (0,∞),

ûε(x, y) = 0, x ∈ ∂Ω × (0,∞),

ûε(x, 0) = fε(x).

The solution ûε minimizes the energy and therefore

∫ +∞

0

∫
Ω

y1−2s |∇ûε|2 dx dy �
∫ +∞

0

∫
Ω

y1−2s |∇uε|2 dx dy.

On the other hand, using (8.5) we have

∫ +∞

0

∫
Ω

y1−2s |∇ûε|2 dx dy = 21−2sΓ (1 − s)

Γ (s)
((−Δ)s fε, fε)Ω,

and (7.1) follows easily with c = Γ (s)
21−2sΓ (1−s)

. ��
We next give the proof of Theorem 5

Proof of Theorem 5. Parts (i) and (iii) follow from parts (i) and (iii) of Theorem 4,
taking into account the relation between the energy of the extended problem and
the corresponding one of the fractional Laplacian, see Section 8.2 and, in particular,
relations (8.7)–(8.8).

The proof of part (ii) is quite similar to the proof of part (ii) of Theorem 3, the
only difference being that the extension problem is now on the whole Rn . We omit
the details. ��
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Finally, estimate (1.33) of part (iii) of Theorem 6 follows at once from part (ii)
of Theorem 6 and (8.7). Concerning estimate (1.34), it follows from (1.33), taking
into account that for x ∈ Rn+,

∫
Rn−

dξ

|x − ξ |n+2s
= π

n−1
2 Γ

( 1+2s
2

)
2sΓ

( n+2s
2

) 1

x2s
n
,

see, for example, [7].

8. Appendix

8.1. Spectral Fractional Laplacian

LetΩ ⊂ Rn be a bounded domain and let λi and φi be the Dirichlet eigenvalues
and eigenfunctions of the Laplacian, that is, −Δφi = λiφi in Ω , with φi = 0 on
∂Ω , normalized so that

∫
Ω
φ2

i dx = 1. Then, for f (x) = ∑
ciφi (x) we define

(−Δ)s f =
∞∑

i=1

ciλ
s
i φi , 0 < s < 1. (8.1)

We also have

((−Δ)s f, f )Ω =
∫
Ω

f (−Δ)s f dx =
∞∑

i=1

c2
i λ

s
i . (8.2)

To the function f (x) we associate the “extended” function u(x, y), x ∈ Ω,

y > 0, given by

u(x, y) =
+∞∑
i=1

ciφi (x)T (y
√
λi ),

where T (t) is the energetic solution of the ODE:

(t1−2s T ′(t))′ − t1−2s T (t) = 0, or T ′′ + 1 − 2s

t
T ′ − T = 0, t � 0. (8.3)

The solution of this can be taken from [1, Section 9.6], and is given by

T (t) = 21−s

Γ (s)
t s Ks(t), (8.4)

where Ks(t) denotes the modified Bessel function of the second kind. The constant
factor is chosen in such a way that T (0) = 1. As a consequence we also have
u(x, 0) = f (x).

An easy calculation shows that div(y1−2s∇(φi (x)T (y
√
λi )) = 0, from which

it follows that div(y1−2s∇u) = 0. An integration by parts then shows that
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∫ +∞

0

∫
Ω

y1−2s |∇u|2 dx dy = lim
τ→+∞ τ

1−2s
∫
Ω

u(x, τ )uy(x, τ ) dx

− lim
τ→0

τ 1−2s
∫
Ω

u(x, τ )uy(x, τ ) dx

=
[

lim
t→+∞ t1−2s T (t)T ′(t)− lim

t→0
t1−2s T (t)T ′(t)

] ∞∑
i=1

λs
i c2

i

= 21−2sΓ (1 − s)

Γ (s)
((−Δ)s f, f )Ω, (8.5)

where we used (8.2) and the fact that

lim
t→+∞ t1−2s T (t)T ′(t)− lim

t→0
t1−2s T (t)T ′(t) = 21−2sΓ (1 − s)

Γ (s)
. (8.6)

To prove the above relation, we show that

lim
t→+∞ t1−2s T (t)T ′(t) = 0, − lim

t→0
t1−2s T (t)T ′(t) = 21−2sΓ (1 − s)

Γ (s)
.

These two relations are a direct consequence of (8.4) and the following properties
of Ks(t):

Ks(t) ∼ Γ (s)

21−s
t−s, t → 0, Ks(t) ∼

√
π

2t
e−t , t → +∞,

d

dt
(t s Ks(t)) = −t s Ks−1(t), Ks(t) = K−s(t).

8.2. Dirichlet Fractional Laplacian

Let u(x, y) be the extended function as defined in (1.7)–(1.8). In this subsection
we will show the following two relations connecting the energy of the extended
problem and the energy of the Dirichlet fractional Laplacian:∫ +∞

0

∫
Rn

y1−2s |∇u|2 dx dy

= sΓ
( n+2s

2

)
π

n
2Γ (s)

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ (8.7)

∫ +∞

0

∫
Rn

y1−2s |∇u|2 dx dy = 21−2sΓ (1 − s)

Γ (s)
((−Δ)s f, f )Rn . (8.8)

We will use the Fourier transform in the x-variables:

û(η, y) = (2π)−
n
2

∫
Rn

e−i x ·ηu(x, y) dx .

The equation div(y1−2s∇u(x, y)) = 0 or, equivalently,Δx u +uyy + a
y uy = 0 with

u(x, 0) = f (x), reads as follows when taking the Fourier transform

−|η|2û + (û)yy + 1 − 2s

y
(û)y = 0, û(η, 0) = f̂ (η),
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and it is satisfied by û(η, y) = f̂ (η)T (|η|y), where T satisfies (8.3) and is given
by Equation (8.4).

Concerning the energies, we have:

∫ +∞

0
y1−2s

∫
Rn

|∇u|2 dx dy =
∫ +∞

0
y1−2s

∫
Rn
(|η|2|û|2 + |û y |2) dη dy

=
∫ +∞

0
y1−2s

∫
Rn

{|η|2| f̂ |2[T 2(|η|y)+ T
′2(|η|y)]} dη dy

=
(∫

Rn
|η|2s | f̂ |2 dη

) (∫ ∞

0
t1−2s[T 2(t)+ T

′2(t)] dt

)
,

where t = |η|y. We next compute the last integral. Multiplying Equation (8.3) by
T , integrating by parts and employing (8.6), we get

∫ +∞

0
t1−2s[T 2(t)+ T

′2(t)] dt = t1−2s T (t)T ′(t) dt
∣∣∣∞
0

= 21−2sΓ (1 − s)

Γ (s)
. (8.9)

We finally recall the following relation (see, for example, [25, Lemma 3.1]):

∫
Rn

|η|2s | f̂ |2dη = cn,s

2

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ

= s22s−1Γ
( n+2s

2

)
π

n
2Γ (1 − s)

∫
Rn

∫
Rn

| f (x)− f (ξ)|2
|x − ξ |n+2s

dx dξ. (8.10)

Putting together the last three relations, we conclude (8.7).
Finally, taking into account (1.25) we easily obtain (8.8).
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