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Abstract

Let A1(x, D) and A2(x, D) be differential operators of the first order acting
on l-vector functions u = (u1, . . . , ul) in a bounded domain � ⊂ R

n with the
smooth boundary ∂�. We assume that the H1-norm ‖u‖H1(�) is equivalent to
∑2

i=1 ‖Ai u‖L2(�) + ‖B1u‖
H

1
2 (∂�)

and
∑2

i=1 ‖Ai u‖L2(�) + ‖B2u‖
H

1
2 (∂�)

, where

Bi = Bi (x, ν) is the trace operator onto ∂� associated with Ai (x, D) for i =
1, 2 which is determined by the Stokes integral formula (ν: unit outer normal
to ∂�). Furthermore, we impose on A1 and A2 a cancellation property such as
A1 A′

2 = 0 and A2 A′
1 = 0, where A′

i is the formal adjoint differential operator of
Ai (i = 1, 2). Suppose that {um}∞m=1 and {vm}∞m=1 converge to u and v weakly in
L2(�), respectively. Assume also that {A1um}∞m=1 and {A2vm}∞m=1 are bounded in

L2(�). If either {B1um}∞m=1 or {B2vm}∞m=1 is bounded in H
1
2 (∂�), then it holds

that
∫
�

um ·vm dx → ∫
�

u ·v dx . We also discuss a corresponding result on compact
Riemannian manifolds with boundary.

1. Introduction

The purpose of this paper is to establish a compensated compactness theorem
for general differential operators of the first order. The convergence is proved not
only in the sense of distributions in open sets in R

n but also in bounded domains�
up to the boundary ∂�. Let A1 = A1(x, D) and A2 = A2(x, D) be two differential
operators in a domain � in R

n acting on l-vector functions u =t (u1, . . . , ul) ∈
L2(�)l to H−1(�)d1 and to H−1(�)d2 , respectively, where D = ( ∂

∂x1
, . . . , ∂

∂xn
).

For every point x ∈ �, we consider a quadratic form Q(η, ζ ) = Q(η, ζ )(x) ≡∑l
j,k=1 q jk(x)η jζk for η =t (η1, . . . , ηl), ζ =t (ζ1, . . . , ζl) ∈ R

l , where q jk ∈
C∞(�̄), j, k = 1, . . . , l. The compensated compactness theorem states that under
the following hypotheses (i) and (ii)
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(i) um ⇀ u, vm ⇀ v weakly in L2(�)l as m → ∞;
(ii) {A1um}∞m=1 is bounded in L2(�)d1 and {A2vm}∞m=1 is bounded in L2(�)d2 ,

it holds that

Q(um, vm) → Q(u, v) in the sense of distributions in � as m → ∞. (1.1)

A typical example of the compensated compactness theorem is so called Div–Curl
lemma, where we may take A1 = div , A2 = rot and Q(η, ζ ) = ∑3

j=1 η jζ j with
l = n = 3, d1 = 1 and d2 = 3. Roughly speaking, in the compensated compactness
theorem, we need to investigate special structures of the quadratic form Q(η, ζ ) in
connection with the differential operators A1 and A2 which yields the convergence
(1.1).

In the case when A1 = A1(D) and A2 = A2(D) are differential operators with
constant coefficients of the homogeneous degree 1 as well as the quadratic form
Q with the constant coefficients {q jk} j,k=1,...,l in �, Tartar [18] introduced an
algebraic cancellation property

Q(λ, λ) = 0 (1.2)

for all λ =t (λ1, . . . , λl) ∈ R
l such that Aα(ξ)λ = 0, α = 1, 2 for some ξ =

(ξ1, . . . , ξn) ∈ R
n with ξ 	= 0, and proved (1.1). On the other hand, it seems to be

important to handle the general differential operators A1 = A1(x, D) and A2 =
A2(x, D) with variable coefficients for the standard scalar product Q(η, ζ ) =∑l

j=1 η jζ j in R
l . In this direction, Kazhikhov [7] made use of the closed range

theorem for A1 and A2 which yields necessarily orthogonal decompositions

L2(�)l = K er(Aα)⊕ R(A∗
α), α = 1, 2, (1.3)

where K er(Aα) and R(A∗
α) denote the kernel of Aα and the range of the adjoint

operator A∗
α of Aα , respectively. In comparison with the case of differential oper-

ators A1 = A1(D) and A2 = A2(D) with constant coefficients, the inclusion
relation

K er(Aα) ⊂ R(A∗
β), α 	= β (1.4)

plays a substitutive role for the cancellation property (1.2). In any case, the main
difficulty to prove (1.1) stems from treatment of K er(Aα) for α = 1, 2. More pre-
cisely, since Aα is invertible on R(A∗

α), the proof of (1.1) can be reduced to show
that

Q(P1um, P2vm) → Q(P1u, P2v) in the sense of distributions in � as m → ∞,

(1.5)

where Pα : L2(�)l → K er(Aα), α = 1, 2 is the orthogonal projection along (1.3).
It should be noted that both (1.2) and (1.4) are sufficient conditions for (1.5).

In the present paper, we shall first make clear a special structure of the opera-
tor Aα = Aα(x, D) so that K er(Aα) is a finite dimensional subspace in L2(�)l .
Once K er(Aα) is reduced to the finite dimensional space, it is easy to see that
even weak convergence in L2(�)l of {um}∞m=1 and {vm}∞m=1 yields (1.5). For such
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purpose, we need to introduce an appropriate boundary operator Bα(x, ν) on ∂�
and regard Aα as an unbounded operator in L2(�)l with the domain D(Aα) =
{u ∈ L2(�)l; Aαu ∈ L2(�)dα , Bα(x, ν)u|∂� = 0}. In the next step, by assuming
the corresponding cancellation property for (1.2) and (1.4) such as

AαA∗
β = 0, α 	= β, (1.6)

we deal with the convergence on the subspace R(A∗
α). Since we control behavior

of {um}∞m=1 and {vm}∞m=1 on the boundary ∂�, we establish a stronger convergence
in the whole domain � such as

∫

�

Q(um, vm) dx →
∫

�

Q(u, v) dx as m → ∞, (1.7)

which includes (1.1).
As an application of our result, we prove Murat–Tartar’s classical Div–Curl

lemma [12–14,18] with additional lower order terms with variable coefficients.
We also establish a generalized Div–Curl lemma for arbitrary differential l-forms
via the exterior derivative d and its co-differential operator δ on compact Rie-
mannian manifolds (�̄, g) with boundary ∂�. To this end, we introduce the tan-
gential part τu and the normal part νu on ∂� for the differential l-form u =∑

i1<···<il ui1···il dxi1 ∧ · · · ∧ xil on �̄. A similar investigation in Lr -spaces can be
seen in our previous papers [9] and [10].

There is a huge literature of generalization for variable coefficients of the Murat–
Tartar’s classical Div–Curl lemma. Making use of the technique of pseudo-differen-
tial operators, Gérard [6] established systematic treatments of micro local defect
measures and their connection to orthogonality of two sequences {um}∞m=1 and
{vm}∞m=1 in L2(�)l which yields the convergence like (1.7). He applied his gen-
eralization to the problem of homogenization for the first order scalar differential
operators with oscillating coefficients. Another generalization had been carried out
by Tartar [19] who introduced a notion of H -measures independently of [6].
Indeed, compensated compactness can be obtained as a consequence of the locali-
zation principle of the support of the H -measure. He applied several properties of
H -measures to propagation of both oscillation and concentration effects in the non-
linear partial differential equations arising from continuum mechanics and physics.
A more generalized summary on compensated compactness was demonstrated by
[20]. However, all of these convergences have been discussed in the sense of distri-
butions in�. Although our result might be well-known so far as local convergence
in the interior of � is concerned, we shall prove the global convergence such as
(1.7) in the whole � in terms of the relation between the differential operators
Aα(x, D) and the boundary operators Bα(x, ν) for α = 1, 2.

This paper is organized as follows. In Section 2, after precise definition of the
differential operator Aα(x, D) together with the boundary operator Bα(x, ν), we
shall state our main theorem. Section 3 is devoted to the orthogonal decomposition
(1.3) and the cancellation property (1.6). In particular, we need to pay attention
to a certain vanishing property on the boundary value of the special forms which
makes it easy to handle the convergence on R(A∗

α). Then the proof of our main
theorem is established in Section 4. Finally in Section 5, some examples such as the
generalized Div–Curl lemma on compact Riemannian manifolds are considered.
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2. Result

Let � be a bounded domain in R
n with the smooth boundary ∂�. We consider

a system A(x, D) : C∞(�̄)l 
→ C∞(�̄)d of differential operators of the first order
defined by

A(x, D)u = t

⎛

⎝
l∑

j=1

A1 j (x, D)u j , . . . ,

l∑

j=1

Ad j (x, D)u j

⎞

⎠

for u =t (u1, . . . , ul) ∈ C∞(�̄)l ,

where

Ai j (x, D) =
n∑

k=1

ai jk(x)
∂

∂xk
+ bi j (x), x ∈ �̄, D =

(
∂

∂x1
, . . . ,

∂

∂xn

)

(2.1)

with ai jk, bi j ∈ C∞(�̄) for i = 1, . . . , d, j = 1, . . . , l, k = 1, . . . , n. For simplic-
ity, we assume that ai jk, bi j are real valued smooth coefficients of A(x, D). Then
the formal adjoint A′(x, D) : C∞(�̄)d 
→ C∞(�̄)l of A(x, D) is defined by the
relation

(A(·, D)u, ϕ) = (u, A′(·, D)ϕ), u ∈ C∞
0 (�)

l , ϕ ∈ C∞
0 (�)

d ,

where (·, ·) denotes the usual L2-inner product on �. Indeed, for A(x, D) defined
by (2.1), we have the expression of A′(x, D) as

A′(x, D)ϕ = t

(
d∑

i=1

A′
1i (x, D)ϕi , . . . ,

d∑

i=1

A′
li (x, D)ϕi

)

for ϕ =t (ϕ1, . . . , ϕd) ∈ C∞(�̄)d ,

where

A′
j i (x, D) = −

n∑

k=1

ai jk(x)
∂

∂xk

−
n∑

k=1

∂

∂xk
ai jk(x)+ bi j (x), j = 1, . . . , l, i = 1, . . . , d. (2.2)

Then there exist operators B(x, ν) : C∞(�̄)l 
→ C∞(∂�)d and B ′(x, ν) : C∞(�̄)d

→ C∞(∂�)l such that the Stokes integral formula

(A(·, D)u, ϕ)− (u, A′(·, D)ϕ) = 〈B(·, ν)u, ϕ〉∂�, (2.3)

(A(·, D)u, ϕ)− (u, A′(·, D)ϕ) = 〈u, B ′(·, ν)ϕ〉∂� (2.4)
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holds for all u ∈ C∞(�̄)l and all ϕ ∈ C∞(�̄)d , where ν = (ν1, . . . , νn) is the unit
outer normal to ∂� and 〈·, ·〉∂� denotes the standard L2-inner product on ∂�. It is
easy to see that B(x, ν) and B ′(x, ν) are expressed as

B(x, ν)u =
⎛

⎝
l∑

j=1

B1 j (x, ν)u j , . . . ,

l∑

j=1

Bd j (x, ν)u j

⎞

⎠ ,

u =t (u1, . . . , ul) ∈ C∞(�̄)l with

Bi j (x, ν) =
n∑

k=1

ai jk(x)νk, i = 1, . . . , d, j = 1, . . . , l, (2.5)

and

B ′(x, ν)ϕ =
(

d∑

i=1

B ′
1i (x, ν)ϕi , . . . ,

d∑

i=1

B ′
li (x, ν)ϕi

)

,

ϕ =t (ϕ1, . . . , ϕd) ∈ C∞(�̄)d with

B ′
j i (x, ν) =

n∑

k=1

ai jk(x)νk, j = 1, . . . , l, i = 1, . . . , d,

respectively.

Remark. By (2.3), the boundary operator B(x, ν) can be extended to the func-

tions u ∈ L2(�)l with A(x, D)u ∈ L2(�)d so that B(x, ν)u ∈ H− 1
2 (∂�)d ≡

(H
1
2 (∂�)d)∗, and the generalized Stokes formula holds

(A(·, D)u, ϕ)− (u, A′(·, D)ϕ) = 〈B(·, ν)u, γ ϕ〉∂� for all ϕ ∈ H1(�)d , (2.6)

where 〈·, ·〉∂� denotes the duality pairing between H− 1
2 (∂�)d and H

1
2 (∂�)d , and

γ is the usual trace operator from H1(�)d onto H
1
2 (∂�)d .

Similarly, by (2.4), for every ϕ ∈ L2(�)d with A′(x, D)ϕ ∈ L2(�)l , we can

define B ′(x, ν)ϕ ∈ H− 1
2 (∂�)l with the generalized Stokes formula

(A(·, D)u, ϕ)− (u, A′(·, D)ϕ) = 〈γ u, B ′(·, ν)ϕ〉∂� for all u ∈ H1(�)l . (2.7)

In what follows, we shall regard the boundary operators B(x, ν) and B ′(x, ν) as
those in the generalized sense satisfying (2.6) and (2.7), respectively.

Let us consider two pairs {Aα(x, D), A′
α(x, D), Bα(x, ν), B ′

α(x, ν)} for α =
1, 2 with l1 = l2 = l, that is,

A1(x, D) : H1(�)l 
→ L2(�)d1 , A2(x, D) : H1(�)l 
→ L2(�)d2

which satisfy (2.6) and (2.7) with A = A1 and A = A2. Throughout this paper, we
impose the following assumption on A1 and A2.
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Assumption. There is a constant C = C(�) such that

‖∇u‖ � C(‖A1u‖ + ‖A2u‖ + ‖u‖ + ‖B1u‖
H

1
2 (∂�)

), (2.8)

‖∇u‖ � C(‖A1u‖ + ‖A2u‖ + ‖u‖ + ‖B2u‖
H

1
2 (∂�)

) (2.9)

holds for all u ∈ H1(�)l . Here and in what follows, ‖·‖ denotes the usual L2-norm
on �.

Our main theorem now reads:

Theorem 1. Let two pairs {Aα(x, D), A′
α(x, D), Bα(x, ν), B ′

α(x, ν)}, α = 1, 2
satisfy (2.6) and (2.7) with A = A1 and A = A2. Let the Assumption hold. We
assume the cancellation property

A2 A′
1 = 0, A1 A′

2 = 0. (2.10)

Suppose that {um}∞m=1 and {vm}∞m=1 are sequences in L2(�)l satisfying the follow-
ing conditions (i), (ii) and (iii).

(i) um ⇀ u, vm ⇀ v weakly in L2(�)l ;
(ii) {A1um}∞m=1 is bounded in L2(�)d1 and {A2vm}∞m=1 is bounded in L2(�)d2 ;

(iii) Either {B1um}∞m=1 is bounded in H
1
2 (∂�)d1 or {B2vm}∞m=1 is bounded in

H
1
2 (∂�)d2 .

Then it holds that

∫

�

um(x) · vm(x) dx →
∫

�

u(x) · v(x) dx as m → ∞, (2.11)

where u(x) ·v(x) = ∑l
j=1 u j (x)v j (x) is the standard scalar product in R

l at each
point x ∈ �.

Remark 1. If we express A1 and A2 as in the form like (2.1), that is,

Aα(x, D)u = t

⎛

⎝
l∑

j=1

A(α)1 j (x, D)u j , . . . ,

l∑

j=1

A(α)d j (x, D)u j

⎞

⎠

for u =t (u1, . . . , ul) ∈ H1(�)l

with

A(α)i j (x, D)=
n∑

k=1

a(α)i jk (x)
∂

∂xk
+b(α)i j (x), i =1, . . . , dα, j =1, . . . , l, α=1, 2,
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then the cancellation property (2.10) can be written as

l∑

j=1

(a(α)r js a(β)i jk + a(α)r jka(β)i js ) = 0,

α, β = 1, 2, α 	= β, 1 � ∀s,∀k � n, r = 1, . . . , dα, i = 1, . . . dβ, (2.12)

l∑

j=1

⎛

⎝
n∑

μ=1

a(α)r jμ

∂a(β)i jk

∂xμ
+ a(α)r jk

n∑

μ=1

∂a(β)i jμ

∂xμ
− a(α)r jkb(β)i j − a(β)i jk b(α)r j

⎞

⎠ = 0,

α, β = 1, 2, α 	= β, 1 � ∀k � n, r = 1, . . . , dα, i = 1, . . . dβ, (2.13)

l∑

j=1

⎛

⎝
n∑

μ=1

a(α)r jμ(−
n∑

σ=1

∂2a(β)i jσ

∂xμ∂xσ
+ ∂b(β)i j

∂xμ
)+b(α)r j (−

n∑

μ=1

∂a(β)i jμ

∂xμ
+ b(β)i j )

⎞

⎠ = 0,

α, β = 1, 2, α 	= β, r = 1, . . . , dα, i = 1, . . . dβ. (2.14)

Remark 2. Our proof is based on the orthogonal decomposition (1.3). A more
precise argument will be discussed in (4.1). Such a method is closely related to
the de Rham–Hodge–Kodaira decomposition for differential forms on Riemannian
manifolds. Indeed, Robbin et al. [15] made use of it for showing weak continuity
of the scalar product um · vm as m → ∞ by means of the exterior derivatives and
their formal adjoints. A similar approach to the convergence up to the boundary
was established by our previous paper [9]. It is known that application of the the-
ory of the Hardy space is also useful to the proof of the div–curl lemma. See for
example, Coifman et al. [2] and Dafni [3]. It seems to be an interesting problem
to investigate the relation between cancellation property (2.10) and functions in the
Hardy space.

3. Preliminary

For the proof of Theorem 1, let us introduce two operators S and T defined by
S, T : L2(�)l 
→ L2(�)d1+d2 ,

D(S) = {u ∈ H1(�)l; B1u = 0 on ∂�}, Su ≡t (A1u, A2u) for u ∈ D(S),

D(T ) = {u ∈ H1(�)l; B2u = 0 on ∂�}, T u ≡t (A1u, A2u) for u ∈ D(T ).

It should be noted that D(S) and D(T ) are dense in L2(�)l (see for example,
Duvaut and Lions [4, Chapter 7, Lemmata 4.1, 6.1] and Georgesgue [5, Theorem
4.1.1]), and, hence, we may define the adjoint operators S∗ and T ∗ of S and T from
L2(�)d1+d2 to L2(�)l , respectively. By (2.6) and (2.7) it holds that

D(S∗) = {t (p, w) ∈ L2(�)d1 × L2(�)d2; A′
1 p ∈ L2(�)l , A′

2w ∈ L2(�)l ,

B ′
2w = 0 on ∂�},

S∗(t (p, w)) = A′
1 p + A′

2w for t (p, w) ∈ D(S∗), (3.1)

D(T ∗) = {t (p, w) ∈ L2(�)d1 × L2(�)d2; A′
1 p ∈ L2(�)l , A′

2w ∈ L2(�)l ,

B ′
1 p = 0 on ∂�},

T ∗(t (p, w)) = A′
1 p + A′

2w for t (p, w) ∈ D(T ∗). (3.2)
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Furthermore, we have the following lemma.

Lemma 3.1. 1. The kernels K er(S) and K er(T ) of S and T are both finite dimen-
sional subspaces of L2(�)l .

2. The ranges R(S)and R(T )of S and T are both closed subspaces of L2(�)d1+d2 .

Proof. The proofs for S and T are based on the the estimates (2.8) and (2.9) in the
Assumption, respectively. So, we may only show the assertion on S.

1. By (2.8) we see that the unit ball in K er(S) is a bounded set in H1(�)l , and,
hence, the Rellich theorem states that it is a compact set in L2(�)l . This implies
that K er(S) is a finite dimensional subspace in L2(�)l .

2. We make use of an auxiliary estimate; there exists a constant δ > 0 such that

‖Sw‖ � δ‖w‖ (3.3)

holds for all w ∈ D(S) ∩ K er(S)⊥.

For the moment, let us assume (3.3). Suppose that {um}∞m=1 ⊂ D(S) satisfies

Sum → f in L2(�)d1+d2 as m → ∞.

By the orthogonal decomposition, um is expressed as

um = vm + wm, vm ∈ K er(S), wm ∈ K er(S)⊥, m = 1, 2, . . . .

Since it follows from (3.3) that

‖Sum − Sul‖ = ‖S(wm − wl)‖ � δ‖wm − wl‖, m, l = 1, 2, . . . ,

we have thatwm → w in L2(�)l for somew ∈ K er(S)⊥. Since Swm = Sum → f
in L2(�)d1+d2 and since S is a closed operator from L2(�)l to L2(�)d1+d2 , it holds
thatw ∈ D(S)with Sw = f , which means that f ∈ R(S). Hence, R(S) is a closed
subspace of L2(�)d1+d2 .

Now it remains to prove (3.3). We make use of a contradiction argument. Sup-
pose the contrary. Then there is a sequence {wm}∞m=1 in D(S) ∩ K er(S)⊥ with
‖wm‖ ≡ 1 such that

‖Swm‖ = ‖A1wm‖ + ‖A2wm‖ � 1/m for all m = 1, 2, . . . .

By (2.8), we see that {wm}∞m=1 is a bounded sequence in H1(�)1, and, hence, there
is a subsequence of {wm}∞m=1, which we denote by {wm}∞m=1 itself, for simplicity,
and a function w ∈ K er(S)⊥ such that wm → w in L2(�)l . Since Swm → 0 in
L2(�)d1+d2 , again by closedness of S it holds thatw ∈ D(S) with Sw = 0, that is,
w ∈ K er(S). Sincew ∈ K er(S)⊥, we havew = 0, which contradicts the property
that ‖wm‖ ≡ 1 for all m = 1, . . .. This proves Lemma 3.1. ��



Global Compensated Compactness Theorem 887

Lemma 3.2. Let (2.10) hold.

1. If w ∈ L2(�)d2 with A′
2w ∈ L2(�)l satisfies B ′

2w = 0 in H− 1
2 (∂�)d2 , then

we have

B1(x, ν)(A
′
2w) = 0 on ∂� (3.4)

with the identity

(A′
1 p, A′

2w) = 0 for all p ∈ L2(�)d1 with A′
1 p ∈ L2(�)l . (3.5)

2. If p ∈ L2(�)d1 with A′
1 p ∈ L2(�)l satisfies B ′

1 p = 0 in H− 1
2 (∂�)d1 , then we

have

B2(x, ν)(A
′
1 p) = 0 on ∂� (3.6)

with the identity

(A′
1 p, A′

2w) = 0 for all w ∈ L2(�)d2 with A′
2w ∈ L2(�)l . (3.7)

Proof. 1. For every q ∈ H2(�)d2 we have by (2.6), (2.7) and (2.10) that

〈B1(·, ν)A′
2w, q〉∂� = (A1(A

′
2w), q)− (A′

2w, A′
1q)

= −(A′
2w, A′

1q)

= −(w, A2(A
′
1q))+ 〈B ′

2w, A′
1q〉∂�

= 0,

which implies B1(x, ν)A′
2w = 0 on ∂�.

It is known ,that for every p ∈ L2(�)d1 with A′
1 p ∈ L2(�)l there is a sequence

{pm}∞m=1 ∈ C∞(�̄)d1 such that pm → p in L2(�)d1 and A′
1 pm → A′

1 p in L2(�)l

(see for example, Georgesgue [5, Theorem 4.1.1]). Hence by passage to the limit,

we may prove (3.5) for all p ∈ C∞(�̄)d1 . Since B ′
2w = 0 in H− 1

2 (∂�)d2 , it follows
from (2.7) and (2.10) that

(A′
1 p, A′

2w) = (A2(A
′
1 p), w)− 〈A′

1 p, B ′
2w〉∂� = 0 for all p ∈ C∞(�̄)d1 ,

which yields (3.5).
2. Similarly, for every ϕ ∈ H2(�)d2 we have by (2.6), (2.7) and (2.10) that

〈B2(·, ν)A′
1 p, ϕ〉∂� = (A2 A′

1 p, ϕ)− (A′
1 p, A′

2ϕ)

= −(A′
1 p, A′

2ϕ)

= −(p, A1 A′
2ϕ)+ 〈B ′

1 p, A′
2ϕ〉∂�

= 0,

which implies B2(x, ν)(A′
1 p) = 0 on ∂�.

It is also known that for every w ∈ L2(�)d2 with A′
2w ∈ L2(�)l there is a

sequence {wm}∞m=1 ∈ C∞(�̄)d2 such thatwm → w in L2(�)d2 and A′
2wm → A′

2w

in L2(�)l . Hence, by passage to the limit, we may prove (3.7) for allw ∈ C∞(�̄)d2 .

Since B ′
1 p = 0 in H− 1

2 (∂�)d1 , it follows from (2.7) and (2.10) that

(A′
1 p, A′

2w) = (p, A1(A
′
2w))− 〈B ′

1 p, A′
2w〉∂� = 0 for all w ∈ C∞(�̄)d2 ,

which yields (3.7). This proves Lemma 3.2 ��



888 Hideo Kozono & Taku Yanagisawa

4. Proof of Theorem

Case 1. Let us first consider the case when {B1um}∞m=1 is bounded in H
1
2 (∂�)d1 .

In this case, we make use of the operator S. It follows from Lemma 3.1 (2) and the
closed range theorem that

L2(�)l = K er(S)⊕ R(S∗) (orthogonal decomposition). (4.1)

Let P and Q be orthogonal projections from L2(�)l onto K er(S) and R(S∗) along
(4.1), respectively. Then it holds

u = Pu + Qu, v = Pv + Qv, (4.2)

um = Pum + Qum, vm = Pvm + Qvm, m = 1, 2, . . . ,

and we have

(um, vm) = (Pum, Pvm)+ (Qum, Qvm), m = 1, 2, . . . . (4.3)

Since R(P) = K er(S), we see by Lemma 3.2 (1) that P is a finite rank operator,
so in particular, a compact operator. Hence by (i) it holds that

Pum → Pu, Pvm → Pv strongly in L2(�)d1 as m → ∞,

which yields

(Pum, Pvm) → (Pu, Pv) as m → ∞. (4.4)

We next show that

(Qum, Qvm) → (Qu, Qv) as m → ∞. (4.5)

Since Q is the projection operator from L2(�)l onto R(S∗), there exist functions
p, p̃, pm, p̃m ∈ L2(�)d1 with A′

1 p, A′
1 p̃, A′

1 pm, A′
1 p̃m ∈ L2(�)l , and functions

w, w̃,wm, w̃m ∈ L2(�)d2 with A′
2w, A′

2w̃, A′
2wm, A′

2w̃m ∈ L2(�)l and B ′
2w =

B ′
2w̃ = B ′

2wm = B ′
2w̃m = 0 on ∂� such that

Qu = A′
1 p + A′

2w, Qv = A′
1 p̃ + A′

2w̃ (4.6)

Qum = A′
1 pm + A′

2wm, Qvm = A′
1 p̃m + A′

2w̃m, m = 1, 2, . . . . (4.7)

Then it holds that

(Qu, Qv) = (A′
1 p, A′

1 p̃)+ (A′
2w, A′

2w̃), (4.8)

(Qum, Qvm) = (A′
1 pm, A′

1 p̃m)+ (A′
2wm, A′

2w̃m), (4.9)

‖Qum‖2 = ‖A′
1 pm‖2 + ‖A′

2wm‖2, ‖Qvm‖2 = ‖A′
1 p̃m‖2 + ‖A′

2w̃m‖2,

(4.10)

‖A1um‖ = ‖A1 Qum‖ = ‖A1 A′
1 pm‖, ‖A2vm‖ = ‖A2 Qvm‖ = ‖A2 A′

2w̃m‖
(4.11)

for all m = 1, 2, . . .. Indeed, (4.8), (4.9) and (4.10) are a consequence of (3.5).
Since Pum, Pvm ∈ K er(S), we have A1 Pum = 0 and A2 Pvm = 0, and, hence, it
follows from (4.2), (4.7) and (2.10) that
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A1um = A1 Qum = A1 A′
1 pm, A2vm = A2 Qvm = A2 A′

2w̃m,

which yields (4.11). Furthermore, we have that

A′
1 pm ⇀ A′

1 p, A′
2wm ⇀ A′

2w weakly in L2(�)l , (4.12)

A′
1 p̃m ⇀ A′

1 p̃, A′
2w̃m ⇀ A′

2w̃ weakly in L2(�)l , (4.13)

as m → ∞. In fact, by (i) it is easy to see that Qum ⇀ Qu weakly in L2(�)l . For
every ϕ ∈ L2(�)l , there exist q ∈ L2(�)d1 with A′

1q ∈ L2(�)l , and η ∈ L2(�)d2

with A′
2η ∈ L2(�)l and B ′

2η = 0 on ∂� such that

Qϕ = A′
1q + A′

2η.

Since A′
1 pm, A′

1 p ∈ R(S∗) = R(Q), it follows from (2.10), (3.5), (4.6) and (4.7)
that

(A′
1 pm − A′

1 p, ϕ) = (A′
1 pm − A′

1 p, Qϕ)

= (A′
1 pm, A′

1q)− (A′
1 p, A′

1q)

= (Qum, A′
1q)− (A′

1 p, A′
1q)

→ (Qu, A′
1q)− (A′

1 p, A′
1q)

= (A′
1 p, A′

1q)− (A′
1 p, A′

1q) = 0,

(A′
2wm − A′

2w, ϕ) = (A′
2wm − A′

2w, Qϕ)

= (A′
2wm, A′

2η)− (A′
2w, A′

2η)

= (Qum, A′
2η)− (A′

2w, A′
2η)

→ (Qu, A′
2η)− (A′

2w, A′
2η)

= (A′
2w, A′

2η)− (A′
2w, A′

2η) = 0,

which implies (4.12). The validity of (4.13) can be shown quite similarly as above.
To prove (4.5) we need the following proposition.

Proposition 4.1. 1. The sequence {A′
1 pm}∞m=1 is bounded in H1(�)l .

2. The sequence {A′
2w̃m}∞m=1 is bounded in H1(�)l .

For a moment, let us assume Proposition 4.1. Then we have by (4.12), (4.13) and
the Rellich compactness theorem that

A′
1 pm → A′

1 p, A′
2w̃m → A′

2w̃ strongly in L2(�)l ,

which yields again by virtue of (4.12), (4.13) that

(A′
1 pm, A′

1 p̃m) → (A′
1 p, A′

1 p̃), (A′
2wm, A′

2w̃m) → (A′
2w, A′

2w̃) (4.14)

as m → ∞. Now from (4.8), (4.9) and (4.14), we obtain (4.5).
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Finally, it remains to prove Proposition 4.1.

Proof of Proposition 4.1 1. By (3.4), it holds B1(x, ν)A′
2wm = 0 on ∂�. Since

Pum ∈ D(S), we have B1(x, ν)Pum = 0 on ∂�, which yields by virtue of (4.2)
and (4.7) that

B1(A
′
1 pm) = B1(Qum − A′

2wm) = B1(Qum) = B1um, m = 1, 2, . . . .

Hence, it follows from (2.10), (4.10), (4.11) and the Assumption that

‖∇(A′
1 pm)‖ � C(‖A1 A′

1 pm‖ + ‖A′
1 pm‖ + ‖B1(A

′
1 pm)‖

H
1
2 (∂�)

)

� C(‖A1um‖ + ‖Qum‖ + ‖B1um‖
H

1
2 (∂�)

)

� C(‖A1um‖ + ‖um‖ + ‖B1um‖
H

1
2 (∂�)

).

Then by the hypotheses (i), (ii) and (iii), we have that

sup
m=1,...

(‖∇(A′
1 pm)‖ + ‖A′

1 pm‖) < ∞,

which implies (1).
2. By (3.4) we have B1(x, ν)A′

2wm = 0 on ∂�. Hence, it follows from (2.10),
(4.10), (4.11) and the Assumption that

‖∇(A′
2w̃m)‖ � C(‖A2 A′

2w̃m‖ + ‖A′
2w̃m‖ + ‖B1(A

′
2w̃m)‖

H
1
2 (∂�)

)

� C(‖A2vm‖ + ‖Qvm‖)
� C(‖A2vm‖ + ‖vm‖).

Then by the hypotheses (i) and (ii), we have that

sup
m=1,...

(‖∇(A′
2w̃m)‖ + ‖A′

2w̃m‖) < ∞,

which implies (2). This proves Proposition 4.1.

Case 2. We next consider the case when {B2vm}∞m=1 is bounded in H
1
2 (�)d2 . In

such a case, we make use of the operator T . The proof is quite similar to that of
the Case 1. However, for the reader’s convenience, we give the complete proof. By
Lemma 3.1 and the closed range theorem, we have an orthogonal decomposition

L2(�)l = K er(T )⊕ R(T ∗), (4.15)

where dimK er(T ) < ∞. In the same way as in (4.2), let us denote by P̂ and
Q̂ the orthogonal projections from L2(�)l onto K er(T ) and R(T ∗) along (4.15),
respectively. Since P̂ is a finite rank operator, similarly to (4.5), it suffices to show
that

(Q̂um, Q̂vm) → (Q̂u, Q̂v) as m → ∞. (4.16)



Global Compensated Compactness Theorem 891

By (3.2), there are functions q, q̃, qm, q̃m with A′
1q, A′

1q̃, A′
1qm, A′

1q̃m ∈ L2(�)l

and B ′
1q = B ′

1q̃ = B ′
1qm = B ′

1q̃m = 0 on ∂�, and functions s, s̃, sm, s̃m ∈
L2(�)d2 with A′

2s, A′
2s̃, A′

2sm, A′
2s̃m ∈ L2(�)l such that

Q̂u = A′
1q + A′

2s, Q̂v = A′
1q̃ + A′

2s̃,

Q̂um = A′
1qm + A′

2sm, Q̂vm = A′
1q̃m + A′

2s̃m, m = 1, 2, . . . . (4.17)

Then in the same way as in (4.8)–(4.11), we have that

(Q̂u, Q̂v) = (A′
1q, A′

1q̃)+ (A′
2s, A′

2s̃), (4.18)

(Q̂um, Q̂vm) = (A′
1qm, A′

1q̃m)+ (A′
2sm, A′

2s̃m), (4.19)

‖Q̂um‖2 = ‖A′
1qm‖2 + ‖A′

2sm‖2, ‖Q̂vm‖2 = ‖A′
1q̃m‖2 + ‖A′

2s̃m‖2, (4.20)

‖A1um‖ = ‖A1 Q̂um‖ = ‖A1 A′
1qm‖, ‖A2vm‖ = ‖A2 Q̂vm‖ = ‖A2 A′

2s̃m‖
(4.21)

for all m = 1, 2, . . .. Indeed, (4.18), (4.19) and (4.20) are a consequence of (3.7).
Since um = P̂um + Q̂um, vm = P̂vm + Q̂vm and since P̂um, P̂vm ∈ K er(T ), we
have A1 P̂um = 0 and A2 P̂vm = 0, and, hence, it follows from (4.17) and (2.10)
that

A1um = A1 Q̂um = A1 A′
1qm, A2vm = A2 Q̂vm = A2 A′

2s̃m,

which yields (4.21). In comparison with (4.12) and (4.13), we next show that

A′
1qm ⇀ A′

1q, A′
2sm ⇀ A′

2s weakly in L2(�)l , (4.22)

A′
1q̃m ⇀ A′

1q̃, A′
2s̃m ⇀ A′

2s̃ weakly in L2(�)l , (4.23)

as m → ∞. In fact, by (i) it is easy to see that Q̂um ⇀ Q̂u weakly in L2(�)l . For
every ϕ ∈ L2(�)l , there exist ψ ∈ L2(�)d1 with A′

1ψ ∈ L2(�)l and B ′
1ψ = 0 on

∂�, and η ∈ L2(�)d2 with A′
2η ∈ L2(�)l , such that

Q̂ϕ = A′
1ψ + A′

2η.

Since A′
1qm, A′

1q ∈ R(T ∗) = R(Q̂), it follows from (2.10), (3.7) and (4.17) that

(A′
1qm − A′

1q, ϕ) = (A′
1qm − A′

1q, Q̂ϕ)

= (A′
1qm, A′

1ψ)− (A′
1q, A′

1ψ)

= (Q̂um, A′
1ψ)− (A′

1q, A′
1ψ)

→ (Q̂u, A′
1ψ)− (A′

1q, A′
1ψ)

= (A′
1q, A′

1ψ)− (A′
1q, A′

1ψ) = 0,

(A′
2sm − A′

2s, ϕ) = (A′
2sm − A′

2s, Q̂ϕ)

= (A′
2sm, A′

2η)− (A′
2s, A′

2η)

= (Q̂um, A′
2η)− (A′

2s, A′
2η)

→ (Q̂u, A′
2η)− (A′

2s, A′
2η)

= (A′
2s, A′

2η)− (A′
2s, A′

2η) = 0,
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which implies (4.22). The proof of (4.23) can be done in the same way as above.
Similarly to Proposition 4.1, we need

Proposition 4.2. 1. The sequence {A′
1qm}∞m=1 is bounded in H1(�)l .

2. The sequence {A′
2s̃m}∞m=1 is bounded in H1(�)l .

For a moment, let us assume Proposition 4.2. Then we have by (4.22), (4.23) and
the Rellich compactness theorem that

A′
1qm → A′

1q, A′
2s̃m → A′

2s̃ strongly in L2(�)l ,

which yields again by virtue of (4.22), (4.23) that

(A′
1qm, A′

1q̃m) → (A′
1q, A′

1q̃), (A′
2sm, A′

2s̃m) → (A′
2s, A′

2s̃) (4.24)

as m → ∞. Now from (4.18), (4.19) and (4.24), we obtain (4.16).
Finally, it remains to prove Proposition 4.2.

Proof of Proposition 4.2 1. By (3.6) we have B2(x, ν)A′
2qm = 0 on ∂�. Hence,

it follows from (2.10), (4.20), (4.21) and the Assumption that

‖∇(A′
1qm)‖ � C(‖A1 A′

1qm‖ + ‖A′
1qm‖ + ‖B2(A

′
1qm)‖

H
1
2 (∂�)

)

� C(‖A1um‖ + ‖Q̂um‖)
� C(‖A1um‖ + ‖um‖).

Then by the hypotheses (i) and (ii), we have that

sup
m=1,...

(‖∇(A′
1qm)‖ + ‖A′

1qm‖) < ∞,

which implies (1).
2. By (3.6), it holds that B2(x, ν)A′

1q̃m = 0 on ∂�. Since P̂vm ∈ D(T ),
we have B2(x, ν)P̂vm = 0 on ∂�. Hence, by (4.17) and the expression vm as
vm = P̂vm + Q̂vm , it holds that

B2(A
′
1s̃m) = B2(Q̂vm − A′

1q̃m) = B2(Q̂vm) = B2vm, m = 1, 2, . . . .

Hence it follows from (2.10), (4.20), (4.21) and the Assumption that

‖∇(A′
2s̃m)‖ � C(‖A2 A′

2s̃m‖ + ‖A′
2s̃m‖ + ‖B2(A

′
2s̃m)‖

H
1
2 (∂�)

)

� C(‖A2vm‖ + ‖Q̂vm‖ + ‖B2vm‖
H

1
2 (∂�)

)

� C(‖A2vm‖ + ‖vm‖ + ‖B2vm‖
H

1
2 (∂�)

).

Then by the hypotheses (i), (ii) and (iii), we have that

sup
m=1,...

(‖∇(A′
2s̃m)‖ + ‖A′

2s̃m‖) < ∞,

which implies (2).
This proves Proposition 4.2 and the proof of Theorem 1 is now complete.
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5. Applications

5.1. Global Div–Curl Lemma in Bounded Domains

The classical Div–Curl lemma deals with the convergence in the sense of dis-
tributions (see for example, Tartar [18]). On the other hand, our global version
makes it possible to treat the convergence in the whole domain up to the boundary.
First, we consider the global Div–Curl lemma on 3-dimensional vector fields.

Corollary 5.1. Let� be a bounded domain in R
3 with smooth boundary ∂�. Sup-

pose that {um}∞m=1 and {vm}∞m=1 are sequences of 3-dimensional vector fields in�
satisfying the following conditions (i), (ii) and (iii).

(i) um ⇀ u, vm ⇀ v weakly in L2(�)3;
(ii) {div um}∞m=1 is bounded in L2(�), and {rot vm}∞m=1 is bounded in L2(�)3;

(iii) Either {um · ν}∞m=1 is bounded in H
1
2 (∂�), or {vm × ν}∞m=1 is bounded in

H
1
2 (∂�)3,

where vm × ν denotes the standard vector product in R
3. Then it holds that

∫

�

um(x) · vm(x) dx →
∫

�

u(x) · v(x) dx as m → ∞,

where u(x) ·v(x) = ∑3
j=1 u j (x)v j (x) is the standard scalar product in R

3 at each
point x ∈ �.

Remark. In the hypothesis (iii), we do not need to assume both bounds of {um ·
ν}∞m=1 and {vm ×ν}∞m=1 on ∂�. It is sufficient to assume that one of them is bounded.
A more precise result in Lr (�)3 for 1 < r < ∞ was established in our previous
paper [9].

Proof of Corollary 5.1. Let us define differential operators A1 and A2 with the
expression as in (2.1). For A1, we take l = n = 3, d1 = 1 and set

A1u ≡ div u =
3∑

j=1

A(1)1 j (x, D)u j for u =t (u1, u2, u3) ∈ H1(�)3,

where A(1)1 j (x, D) ≡ ∑3
k=1 a(1)1 jk(x)

∂
∂xk

+ b(1)1 j (x) with a(1)1 jk(x) = δ jk, b1 j (x) =
0, j, k = 1, 2, 3. Concerning A2, we take l = n = 3, d2 = 3 and set

A2v ≡ rot v = t

⎛

⎝
3∑

j=1

A(2)1 j (x, D)v j ,

3∑

j=1

A(2)2 j (x, D)v j ,

3∑

j=1

A(2)3 j (x, D)v j

⎞

⎠

for v =t (v1, v2, v3) ∈ H1(�)3,
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where A(2)i j (x, D) ≡ ∑3
k=1 a(2)i jk(x)

∂
∂xk

+ b(2)i j (x), i, j = 1, 2, 3 with

(a(2)1 jk)
j↓1,2,3
k→1,2,3 =

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , (a(2)2 jk)
j↓1,2,3
k→1,2,3 =

⎛

⎝
0 0 1
0 0 0
−1 0 0

⎞

⎠ ,

(a(2)3 jk)
j↓1,2,3
k→1,2,3 =

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ , b(2)i j (x) = 0, i, j = 1, 2, 3. (5.1)

Then it follows from (2.5) that

B1u =
3∑

j=1

ν j u j = ν · u, u =t (u1, u2, u3), (5.2)

B2v= t (ν2v3−ν3v2, ν3v1−ν1v3, ν1v2−ν2v1)=ν×v, v= t (v1, v2, v3). (5.3)

By Duvaut and Lions [4, Chapter VII Theorem 6.1 ] and [8, Theorem 2], we have

‖∇u‖ � C(‖div u‖+‖rot u‖+‖u‖+‖ν · u‖
H

1
2 (�)

) for all u ∈ H1(�)3, (5.4)

‖∇v‖ � C(‖div v‖+‖rot v‖+‖v‖+‖ν×v‖
H

1
2 (�)

) for all v ∈ H1(�)3, (5.5)

which implies that the estimates (2.8) and (2.9) in the Assumption hold.
We next show the cancellation property (2.10). For that purpose, we may prove

(2.12). For α = 1, β = 2, we have by (5.1) that

3∑

j=1

(a(1)1 jsa(2)i jk + a(1)1 jka(2)i js ) =
3∑

j=1

(δ jsa(2)i jk + δ jka(2)i js )

= a(2)isk + a(2)iks = 0, i, k, s = 1, 2, 3. (5.6)

The case for α = 2, β = 1 of (2.12) can be handled in the same way, so we obtain
(2.12). Now the desired convergence is a consequence of Theorem 1. This proves
Corollary 5.1.

The global version of Div–Curl lemma as in Corollary 5.1 can be generalized
for the operators A1 and A2 with lower order terms. The cancellation property
(2.10) plays an essential role for such generalization.

Corollary 5.2. Let � be a bounded domain in R
3 with smooth boundary ∂�. Let

b =t (b1, b2, b3) ∈ C1(�̄)3 be an irrotational vector field in �̄, that is, rot b = 0.
Suppose that {um}∞m=1 and {vm}∞m=1 are sequences of 3-dimensional vector fields
in � satisfying the following conditions (i), (ii) and (iii).

(i) um ⇀ u, vm ⇀ v weakly in L2(�)3;
(ii) {div um + b · um}∞m=1 is bounded in L2(�), and {rot vm + b × vm}∞m=1 is

bounded in L2(�)3;
(iii) Either {um · ν}∞m=1 is bounded in H

1
2 (∂�), or {vm × ν}∞m=1 is bounded in

H
1
2 (∂�)3.



Global Compensated Compactness Theorem 895

Then it holds that
∫

�

um(x) · vm(x) dx →
∫

�

u(x) · v(x) dx as m → ∞.

Proof. Let us take the differential operators A1 and A2 as

A1(x, D)u ≡ div u + b · u, A2(x, D)v ≡ rot v + b × v for u, v ∈ H1(�)3.

Then the coefficients a(1)1 jk and a(2)i jk, i, j, k = 1, 2, 3, are the same as in the proof of

Corollary 5.1. As for the coefficients b(1)1 j and b(2)i j , we may take

b(1)1 j = b j (x), j = 1, 2, 3 (b(2)i j )
i↓1,2,3
j→1,2,3 =

⎛

⎝
0 −b3 b2
b3 0 −b1

−b2 b1 0

⎞

⎠ . (5.7)

Obviously by (2.5) the trace operators B1 and B2 are the same as (5.2) and (5.3),
respectively. Since b ∈ C1(�̄)3, the estimates (2.8) and (2.9) in the Assumption
follow from (5.4) and (5.5), respectively.

We next show the cancellation property (2.10) which is equivalent to (2.12),
(2.13) and (2.14). Indeed, we have seen that (2.12) is a consequence of (5.6). Since
the coefficients a(1)1 jk and a(2)i jk are constants in �̄ for all i, j, k = 1, 2, 3, we see that
the left hand side of (2.13) for α = 1, β = 2 can be reduced to

3∑

j=1

(a(1)1 jkb(2)i j +a(2)i jkb(1)1 j )=
3∑

j=1

(δ jkb(2)i j +a(2)i jkb j )=b(2)ik +
3∑

j=1

a(2)i jkb j , i, k =1, 2, 3.

Hence by virtue of (5.1) and (5.7), it holds (2.13) for α = 1, β = 2. The case for
α = 2, β = 1 can be handled in the same way, so we obtain (2.13). Concerning
(2.14), we have by (5.1), (5.7) and the hypothesis rot b = 0 that

3∑

j=1

⎛

⎝
3∑

μ=1

a(1)1 jμ

∂b(2)i j

∂xμ
+ b(1)1 j b(2)i j

⎞

⎠

i↓1,2,3

=
3∑

j=1

⎛

⎝
3∑

μ=1

δ jμ
∂b(2)i j

∂xμ
+ b(2)i j b j

⎞

⎠

i↓1,2,3

= −rot b + b × b

= 0,
3∑

j=1

⎛

⎝
3∑

μ=1

a(2)r jμ

∂b(1)1 j

∂xμ
+ b(2)r j b(1)1 j

⎞

⎠

r↓1,2,3

=
3∑

j=1

⎛

⎝
3∑

μ=1

a(2)r jμ
∂b j

∂xμ
+ b(2)r j b j

⎞

⎠

r↓1,2,3

= rot b + b × b

= 0,

which implies (2.14). Now the desired convergence is a consequence of Theorem 1.
This proves Corollary 5.2.

Moreover, Corollary 5.2 can be generalized in n-dimensional vector fields.
Indeed, we have
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Corollary 5.3. . Let n � 2 and let � be a bounded domain in R
n with smooth

boundary ∂�. Assume that b =t (b1, b2, . . . , bn) ∈ C1(�̄)n is an irrotational
vector field in �̄, that is, ∂b j/∂xi − ∂bi/∂x j = 0 for all 1 � i < j � n.
Suppose that {um}∞m=1 and {vm}∞m=1 are sequences of n-dimensional vector fields
in � satisfying the following conditions (i), (ii) and (iii).

(i) um ⇀ u, vm ⇀ v weakly in L2(�)n;

(ii) {div um + b · um}∞m=1 is bounded in L2(�), and
∂vm,i

∂x j
− ∂vm, j

∂xi
+ vm,i b j−

vm, j bi }∞m=1 is bounded in L2(�) for all 1 � i < j � n;

(iii) Either {um ·ν}∞m=1 is bounded in H
1
2 (∂�), or {vm,iν j −vm, jνi }∞m=1 is bounded

in H
1
2 (∂�) for all 1 � i < j � n.

Then it holds that
∫

�

um(x) · vm(x) dx →
∫

�

u(x) · v(x) dx as m → ∞,

where u(x) ·v(x) = ∑n
j=1 u j (x)v j (x) is the standard scalar product in R

n at each
point x ∈ �.

Proof. Let us define differential operators A1 and A2 with the expression as in
(2.1). For A1, we take l = n, d1 = 1, and set

A1u = div u + b · u =
n∑

j=1

A(1)1 j (x, D)u j for u =t (u1, . . . , un) ∈ H1(�)n,

where A(1)1 j (x, D) =
n∑

k=1

a(1)1 jk(x)
∂

∂xk
+ b(1)1 j (x), j = 1, . . . , n with

a(1)1 jk(x) = δ jk, b(1)1 j (x) = b j (x), j, k = 1, . . . , n. (5.8)

Concerning A2, we take l = n, d2 = n(n − 1)/2, and set

A2(x, D)v =
(
∂v j

∂xk
− ∂vk

∂x j
+ v j bk − b jvk

)

1� j<k�n

= t

⎛

⎝
n∑

j=1

A(2)1 j (x, D)v j , . . . ,

n∑

j=1

A(2)n(n−1)
2

(x, D)v j

⎞

⎠

for v =t (v1, . . . , vn) ∈ H1(�)n,

where A(2)i j (x, D) = ∑n
k=1 a(2)i jk(x)

∂
∂xk

+ b(2)i j (x), i = 1, . . . , n(n − 1)/2, j = 1,
. . . , n with the following expression. Let us define a positive integer σ(n, l) by

σ(n, l) ≡ (l − 1)(2n − l)

2
for l = 1, . . . , n − 1.
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For i = σ(n, l)+ 1, . . . , σ (n, l)+ n − l with l = 1, 2, . . . , n − 1, it holds

a(2)i jk(x) =
⎧
⎨

⎩

1, j = l, k = i − σ(n, l)+ l,
−1, j = i − σ(n, l)+ l, k = l,
0, otherwise,

(5.9)

b(2)i j (x) =
⎧
⎨

⎩

bi−σ(n,l)+l(x), j = l,
−bl(x), j = i − σ(n, l)+ l,
0, otherwise.

(5.10)

By (2.5) we see that

B1u =
n∑

j=1

ν j u j ,

B2v = (
vlνi−σ(n,l)+l − vi−σ(n,l)+lνl

)
i=σ(n,l)+1,...,σ (n,l)+n−l,l=1,...,n−1

= (v1ν2 − v2ν1, v1ν3 − v3ν1, . . . , vn−1νn − vnνn−1)

for u =t (u1, . . . , un), v =t (v1, . . . vn) ∈ H1(�)n . Then it follows from
Georgescu [5, Corollary 4.2.3] that the estimates (2.8) and (2.9) in the Assumption
are fulfilled.

We next show (2.12), (2.13) and (2.14). Concerning (2.12) for α = 1, β = 2,
we have by (5.8), (5.9) and (5.10) that

n∑

j=1

(a(1)1 jsa(2)i jk + a(1)1 jka(2)i js ) =
n∑

j=1

(δ jsa(2)i jk + δ jka(2)i js ) = a(2)isk + a(2)iks = 0

for all s, k = 1, . . . , n, i = 1, 2, . . . , n(n − 1)/2. The case for α = 2, β = 1 can
be handled in the same way. As for (2.13) for α = 1, β = 2, we have similarly to
the above that

n∑

j=1

(a(1)1 jkb(2)i j + a(2)i jkb(1)1 j ) =
n∑

j=1

(δ jkb(2)i j + a(2)i jkb j )

= b(2)ik +
n∑

j=1

a(2)i jkb j

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, k = 1, . . . , l − 1,
bi−σ(n,l)+l − bi−σ(n,l)+l , k = l,
0, k = l + 1, . . . , i − σ(n, l)+ l − 1,
−bl + bl , k = i − σ(n, l)+ l,
0, k = i − σ(n, l)+ l + 1, . . . , n

= 0

for all i = σ(n, l) + 1, . . . , σ (n, l) + n − l with l = 1, . . . , n − 1. Since l =
1, . . . , n − 1 is arbitrarily taken, this implies (2.13) for α = 1, β = 2. The case
α = 2, β = 1 can be handled in the same way, so we obtain (2.13).



898 Hideo Kozono & Taku Yanagisawa

It remains to show (2.14). For α = 1, β = 2, we have by (5.8), (5.9) and (5.10)
that

n∑

j=1

⎛

⎝
n∑

μ=1

a(1)1 jμ

∂b(2)i j

∂xμ
+ b(1)1 j b(2)i j

⎞

⎠ =
n∑

j=1

⎛

⎝
n∑

μ=1

δ jμ
∂b(2)i j

∂xμ
+ b(2)i j b j

⎞

⎠

=
n∑

j=1

∂b(2)i j

∂x j
+

n∑

j=1

b(2)i j b j (5.11)

for i = 1, . . . , n(n − 1)/2. For i = σ(n, l) + 1, . . . , σ (n, l) + n − l with l =
1, . . . , n − 1 we have by (5.9) that

n∑

j=1

b(2)i j b j = b(2)il bl + b(2)i i−σ(n,l)+lbi−σ(n,l)+l = bi−σ(n,l)+lbl − blbi−σ(n,l)+l = 0.

Since l = 1, . . . , n − 1 is arbitrarily taken, it holds that

n∑

j=1

b(2)i j b j = 0 for all i = 1, . . . , n(n − 1)/2. (5.12)

Since ∂b j/∂xk − ∂bk/∂x j = 0, 1 � j < k � n, we have by (5.10) that

n∑

j=1

∂b(2)i j

∂x j
= ∂b(2)il

∂xl
+ ∂bii−σ(n,l)+l

∂xi−σ(n,l)+l
= ∂bi−σ(n,l)+l

∂xl
− ∂bl

∂xi−σ(n,l)+l
= 0

for i = σ(n, l)+1, . . . , σ (n, l)+n−l with l = 1, . . . , n−1. Since l = 1, . . . , n−1
is arbitrarily taken, this implies that

n∑

j=1

∂b(2)i j

∂x j
= 0 for all i = 1, . . . , n(n − 1)/2. (5.13)

Hence, from (5.11), (5.12) and (5.13) we obtain (2.14) for α = 1, β = 2. In the
case for α = 2, β = 1, we have by (5.12) that

n∑

j=1

⎛

⎝
n∑

μ=1

a(2)r jμ

∂b(1)1 j

∂xμ
+ b(2)r j b(1)1 j

⎞

⎠ =
n∑

j,μ=1

a(2)r jμ
∂b j

∂xμ
+

n∑

j=1

b(2)r j b j

=
n∑

j,μ=1

a(2)r jμ
∂b j

∂xμ

= ∂bl

∂xr−σ(n,l)+l
− ∂br−σ(n,l)+l

∂xl

= 0

for r = σ(n, l)+1, . . . , σ (n, l)+n−l with l = 1, . . . , n−1. Since l = 1, . . . , n−1
is arbitrarily taken, this implies (2.14) for α = 2, β = 1. Now the desired conver-
gence follows from Theorem 1. This completes the proof of Corollary 5.3.
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5.2. Global Div–Curl Lemma on Riemaniann Manifolds with Boundary

Let (�̄, g) be a compact n-dimensional Riemannian manifold with smooth
boundary ∂�. We regard ∂� as a C∞-sub-manifold of �̄. Then there is a canonical
inclusion

∧
Tx (∂�) ↪→ ∧

Tx �̄, where Tx M is the tangent space of the manifold
M at x ∈ M , and, where

∧
Tx M ≡ ⊕n

l=0

∧l Tx M . Notice that
∧l Tx M is the

l-exterior product of Tx M . For each x ∈ ∂�, let us denote by νx the vector in Tx �̄

which is orthogonal to Tx (∂�) and oriented toward the exterior of�, and which has
the norm 1. For every l-form u on �̄, that is, u ∈ ∧l

(T �̄), we define its tangential
part τu and its normal part νu as

τu = ν�(ν ∧ u), νu = ν�u, (5.14)

where ν� : ∧l
(T �̄) → ∧l−1

(T �̄), l = 1, . . . , n, is the interior product defined
by

(ν�u)(X1, . . . , Xl−1) = u(X1, . . . , Xl−1, ν) for X1, . . . , Xl−1 ∈ T �̄.

Then it holds the identity

u = τu + ν ∧ (νu) for all u ∈ ∧l
(T �̄).

Let us denote by d : ∧l
(T �̄) → ∧l+1

(T �̄), l = 0, 1, . . . , n − 1, the exte-
rior derivative and by ∗ : ∧l

(T �̄) → ∧n−l
(T �̄), l = 0, 1, . . . , n, the Hodge

star operator, respectively. We define the codifferential operator δ : ∧l
(T �̄) →

∧l−1
(T �̄), l = 1, . . . , n, by δ = (−1)n+1 ∗ d ∗ χn , where χu = (−1)lu for

u ∈ ∧l
(T �̄). It is known that

∧l
(T �̄), l = 0, 1, . . . , n, has a Hilbert structure

with the scalar product (·, ·) such as

(u, v) ≡
∫

�

u ∧ ∗v, for u, v ∈ ∧l
(T �̄). (5.15)

Based on this scalar product on
∧l
(T �̄), we may define the Lebesgue space L2(�)l

and the Sobolev space H1(�)l . See, for example, Morrey [11].
We next consider the generalized Stokes formula on (�̄, g) corresponding to

(2.6) and (2.7). Let us introduce two spaces Hd(�)
l−1 and Hδ(�)l for l = 1, . . . , n,

by

Hd(�)
l−1 ≡ {u ∈ L2(�)l−1; du ∈ L2(�)l},

Hδ(�)
l ≡ {v ∈ L2(�)l; δv ∈ L2�)l−1}. (5.16)

Then the boundary operators τ and ν defined by (5.14) can be extended uniquely
as continuous linear operators

τ : u ∈ Hd(�)
l−1(�) → τu ∈ H− 1

2 (∂�)l−1,

ν : v ∈ Hδ(�)
l → νv ∈ H− 1

2 (∂�)l−1,
(5.17)
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where H− 1
2 (∂�)l−1 is the dual space of H

1
2 (∂�)l−1. Moreover, it holds by the

generalized Stokes formula that

(du, v)− (u, δv) = 〈τu, νv〉∂�, l = 1, . . . , n (5.18)

for all u ∈ Hd(�)
l−1 and v ∈ H1(�)l , or for all u ∈ H1(�)l−1 and v ∈ Hδ(�)l ,

where 〈·, ·〉∂� denotes the duality pairing between H− 1
2 (∂�)l−1 and H

1
2 (∂�)l−1.

For details, we refer to Morrey [11, Lemma 7.5.3] and Georgescu [5, Theorem
4.1.8].

An application of our theorem to the Div–Curl lemma now reads:

Corollary 5.4. Let (�̄, g) be an n-dimensional compact Riemannian manifold with
smooth boundary ∂�. Suppose that {um}∞m=1 and {vm}∞m=1 are sequences of L2(�)l

for l = 1, . . . , n − 1. We assume the following three hypotheses (i), (ii) and (iii).

(i)

um ⇀ u, vm ⇀ v weakly in L2(�)l;
(ii) {dum}∞m=1 is bounded in L2(�)l+1, and {δvm}∞m=1 is bounded in L2(�)l−1;

(iii) Either {τum}∞m=1 is bounded in H
1
2 (∂�)l , or {νvm}∞m=1 is bounded in

H
1
2 (∂�)l−1.

Then it holds that

(um, vm) → (u, v) as m → ∞,

where (·, ·) denotes the inner product in L2(�)l defined by (5.15).

Proof. Since (�̄, g) is not the Euclidean space, but a compact Riemannian manifold
with boundary ∂�, we cannot apply Theorem 1 directly to Corollary 5.4. Indeed,
although we take A1 = d and A2 = δ in (2.1), it is impossible to define the
boundary operators B1 and B2 so that the identity (2.3) holds. However, based on
the generalized Stokes formula (5.18), we shall establish a proof of Corollary 5.4
with a certain modification of that of Theorem 1.

The boundary operators τ and ν in (5.17) play a substitutive role for B1 and
B2 in (2.6). In fact, concerning the Assumption, it follows from Gerogescu [5,
Corollary 4.2.3] that

‖∇u‖ � C(‖du‖ + ‖δu‖ + ‖u‖ + ‖τu‖
H

1
2 (∂�)

), (5.19)

‖∇u‖ � C(‖du‖ + ‖δu‖ + ‖u‖ + ‖νu‖
H

1
2 (∂�)

) (5.20)

for all u ∈ H1(�)l . Let us define two operators S and T by

D(S) = {u ∈ H1(�)l; τu = 0 on ∂�}, Su ≡t (du, δu) for u ∈ D(S),

D(T ) = {u ∈ H1(�)l; νu = 0 on ∂�}, T u ≡t (du, δu) for u ∈ D(T ).
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Similarly to (3.1) and (3.2), we have by the generalized Stokes formula (5.18), that

D(S∗) = {t (p, w) ∈ Hδ(�)
l+1 × Hd(�)

l−1; τw = 0 on ∂�},
S∗(t (p, w)) = δp + dw for t (p, w) ∈ D(S∗), (5.21)

D(T ∗) = {t (p, w) ∈ Hδ(�)
l+1 × Hd(�)

l−1; νp = 0 on ∂�},
T ∗(t (p, w)) = δp + dw for t (p, w) ∈ D(T ∗). (5.22)

Then similarly to Lemma 3.1, we have by (5.19) and (5.20) the following
proposition.

Proposition 5.1. 1. The kernels K er(S) and K er(T ) of S and T are both finite
dimensional subspaces of L2(�)l .

2. The ranges R(S) and R(T ) of S and T are both closed subspaces of L2(�)l+1×
L2(�)l−1.

As for cancellation property (2.10), we make use of the well-known fact that

d2 = 0, δ2 = 0. (5.23)

Instead of Lemma 3.2, we have the following proposition.

Proposition 5.2. 1. If w ∈ Hd(�)
l−1 satisfies τw = 0 in H− 1

2 (∂�)l−1, then it
holds that

τ(dw) = 0 on ∂�

with the identity

(δp, dw) = 0 for all p ∈ Hδ(�)
l+1. (5.24)

2. If p ∈ Hδ(�)l+1 satisfies νp = 0 in H− 1
2 (∂�)l , then it holds that

ν(δp) = 0 on ∂�

with the identity

(δp, dw) = 0 for all w ∈ Hd(�)
l−1. (5.25)

In the case when w ∈ C1(�̄)l−1 and p ∈ C1(�̄)l+1, this proposition is shown
by Morrey [11, Lemma 7.5.2].
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Proof of Proposition 5.2 1. For every q ∈ C∞(∂�)l , there is an ω ∈ C∞(�̄)l+1

such that q = νω, and, hence, it follows from (5.18) and (5.23) that

〈τ(dw), q〉∂� = 〈τ(dw), νω〉∂�
= (d(dw), ω)− (dw, δω)

= −(dw, δω)
= −(w, δ(δω))− 〈τw, ν(δω)〉∂�
= 0.

Since q ∈ C∞(∂�)l is arbitrarily taken, and since C∞(∂�)l is dense in H
1
2 (∂�)l ,

we obtain from the above that τ(dw) = 0 on ∂�.
We next show (5.24). Since τw = 0 in H− 1

2 (∂�)l−1, we have by (5.18) that

(δp, dw) = (δ(δp), w)+ 〈ν(δp), τw〉∂� = 0 for all p ∈ C∞(�̄)l+1.

Since C∞(�̄)l+1 is dense in Hδ(�)l+1 (see Gerogescu [5, Lemma 4.1.7]), the
above identity yields (5.24).

2. For every ϕ ∈ C∞(∂�)l−1, there exists an η ∈ C∞(�̄)l−1 such that ϕ = τη

on ∂�. Hence, it follows from (5.18) and (5.23) that

〈ν(δp), ϕ〉∂� = 〈ν(δp), τη〉∂�
= −(δ(δp), η)+ (δp, dη)

= (δp, dη)

= (p, d(dη))− 〈νp, τ (dη)〉∂�
= 0.

Since ϕ ∈ C∞(∂�)l−1 is arbitrarily taken and since C∞(∂�)l−1 is dense in

H
1
2 (∂�)l−1, we obtain from the above that ν(δp) = 0 on ∂�.
We next show (5.25). Since νp = 0 in H− 1

2 (∂�)l , we have by (5.18) that

(δp, dw) = (p, d(dw))− 〈νp, τ (dw)〉∂� = 0 for all w ∈ C∞(�̄)l−1.

Since C∞(�̄)l−1 is dense in Hd(�)
l−1 (see also Gerogescu [5, Lemma 4.1.7]),

the above identity yields (5.25). This proves Proposition 5.2.

Completion of the proof of Corollary 5.4 Since Propositions 5.1 and 5.2 play a
substitutive role for Lemmata 3.1 and 3.2, respectively, the argument in Section 4
is applicable to the proof of Corollary 5.4 for A1 = d, A2 = δ with B1 and B2
replaced by B1u = τu and B2v = νv. However, for the reader’s convenience,
we shall give a complete proof. Let us consider first the case when {τum}∞m=1 is

bounded in H
1
2 (∂�)l . By Proposition 5.1, we have the orthogonal decomposition

(4.1) for S and S∗ in (5.21). Since the projection P : L2(�)l → K er(S) is a finite
rank operator, we have (4.4), and, hence, it remains to prove (4.5). Similarly to (4.6)
and (4.7), there exist p, p̃, pm, p̃m ∈ Hδ(�)l+1 and w, w̃,wm, w̃m ∈ Hd(�)

l−1

with τw = τw̃ = τwm = τw̃m = 0 on ∂� such that

Qu = δp + dw, Qv = δ p̃ + dw̃, (5.26)

Qum = δpm + dwm, Qvm = δ p̃m + dw̃m, m = 1, 2, . . . , (5.27)
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where Q is the projection from L2(�)l onto R(S∗). In the same way as in (4.8)–
(4.13), we have by (5.23) and Proposition 5.2 (1) that

(Qu, Qv)=(δp, δ p̃)+(dw, dw̃), (Qum, Qvm)=(δpm, δ p̃m)+(dwm, dw̃m),

(5.28)

‖Qum‖2 = ‖δpm‖2 + ‖dwm‖2, ‖Qvm‖2 = ‖δ p̃m‖2 + ‖dw̃m‖2, (5.29)

‖dum‖ = ‖dδpm‖, ‖δvm‖ = ‖δdw̃m‖ (5.30)

for all m = 1, 2, . . . and that

δpm ⇀ δp, δ p̃m ⇀ δ p̃, dwm ⇀ dw, dw̃m ⇀ dw̃ weakly in L2(�)l

(5.31)

as m → ∞. Notice that d Pα = 0 and δPα = 0 for all α ∈ L2(�)l .
Moreover, similarly to Proposition 4.1, we have

Proposition 5.3. 1. The sequence {δpm}∞m=1 is bounded in H1(�)l .
2. The sequence {dw̃m}∞m=1 is bounded in H1(�)l .

For a moment, let us assume this proposition. Then by (5.31) and the Rellich
compactness theorem we have that

δpm → δp, dw̃m → dw̃ strongly in L2(�)l ,

and, hence, again by (5.31) and (5.28) it holds that

(Qum, Qvm) → (Qu, Qv) as m → ∞,

which implies (4.5).
Now, it remains to prove Proposition 5.3.

Proof of Proposition 5.3. 1. Since Pum ∈ K er(S) ⊂ D(S), we have τ(Pum) = 0
on ∂�. Hence, it follows from (5.27) and Proposition 5.2 (1) that

τ(δpm) = τ(Qum − dwm) = τ(Qum) = τum, m = 1, 2, . . . .

By (5.19), (5.23), (5.29) and (5.30) we have

‖∇(δpm)‖ + ‖δpm‖ � C(‖d(δpm)‖ + ‖δ(δpm)‖ + ‖δpm‖ + ‖τ(δpm)‖
H

1
2 (∂�)

)

� C(‖dum‖ + ‖Qum‖ + ‖τum‖
H

1
2 (∂�)

)

� C(‖dum‖ + ‖um‖ + ‖τum‖
H

1
2 (∂�)

)

for all m = 1, 2, . . .. Then by the hypotheses (i), (ii) and (iii), it holds that

sup
m=1,2,...

(‖∇(δpm)‖ + ‖δpm‖) < ∞,

which implies the assertion (1).
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2. By Proposition 5.2 (1), we have τw̃m = 0 on ∂�, and, hence, it follows from
(5.19), (5.23), (5.29) and (5.30) that

‖∇(dw̃m)‖+‖dw̃m‖ � C(‖d(dw̃m)‖+‖δ(dw̃m)‖+‖dw̃m‖+‖τ(dw̃m)‖
H

1
2 (∂�)

)

� C(‖δvm‖ + ‖Qvm‖)
� C(‖δvm‖ + ‖vm‖)

for all m = 1, 2, . . .. Then by the hypotheses (i) and (ii), it holds that

sup
m=1,2,...

(‖∇(dw̃m)‖ + ‖dw̃m‖) < ∞,

which implies the assertion (2). This proves Proposition 5.3.
Now, we complete the proof of Corollary 5.4 under the hypothesis that {τum}∞m=1

is bounded in H
1
2 (∂�)l . In the case when {νvm}∞m=1 is bounded in H

1
2 (∂�)l , in-

stead of S and S∗, we make use of the operators T and T ∗ in (5.22) with the aid
of Propositions 5.1 and 5.2 (2). Since the argument of the proof is quite parallel to
that of the above case, we may omit it. This completes the proof of Corollary 5.4.
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