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Abstract

Let Aj(x, D) and A;(x, D) be differential operators of the first order acting
on [-vector functions u = (uy, ..., u;) in a bounded domain Q C R” with the
smooth boundary 9$2. We assume that the H'-norm |u|| Hi(q) 18 equivalent to
21‘2:1 lAiullz2q) + ”Blu”H%(Z)Q) and Ziz:l lAiullp2q) + ||B2u||H%(m), where
B; = Bj(x,v) is the trace operator onto 92 associated with A;(x, D) for i =
1,2 which is determined by the Stokes integral formula (v: unit outer normal
to 0€2). Furthermore, we impose on A; and A; a cancellation property such as
A1A) = 0and AyA| = 0, where A’ is the formal adjoint differential operator of
A;(i = 1,2). Suppose that {u,,};°_; and {v,},~_, converge to u and v weakly in
LZ(Q) respectively. Assume also that {Au,,}5>_, and {szm}m | are bounded in

L%(Q). If either {Biup}oo_, or {Bzvm} ”_, is bounded in HZ (0€2), then it holds
that fQ Up Uy dx — fQ u-v dx. We also discuss a corresponding result on compact
Riemannian manifolds with boundary.

1. Introduction

The purpose of this paper is to establish a compensated compactness theorem
for general differential operators of the first order. The convergence is proved not
only in the sense of distributions in open sets in R” but also in bounded domains €2
up to the boundary 0Q2. Let Ay = A1(x, D) and Ay = A, (x, D) be two differential
operators in a domain € in R” acting on [-vector functions u =’ (ul, - ul) €
L*(Q) to H™1(Q)%" and to H~ ()%, respectively, where D = (8x N
For every point x € 2, we cons1der a quadratic form Q(n,¢) = Q(n OHx) =
Z{,,k:l‘hk(x)n]{k forn =" (i, ...,n), ¢ =" (¢1,...,4) € R, where gjx €
C>®(Q), j,k=1,...,1. The compensated compactness theorem states that under
the following hypotheses (i) and (ii)
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(i) um — u, v, — v weakly in L2(Q)! as m — oo;
(i) {A1u,}S>, is bounded in L?(2)9! and {A>v,,}°°_, is bounded in L?(Q2)®,

it holds that
Oy, vy) — Q(u, v) in the sense of distributions in 2 as m — o0. (1.1)

A typical example of the compensated compactness theorem is so called Div—Curl
lemma, where we may take A1 = div, A» =rot and Q(n,¢) = 23:1 n;¢; with
| =n =3,d; = 1andd, = 3.Roughly speaking, in the compensated compactness
theorem, we need to investigate special structures of the quadratic form Q(n, ¢) in
connection with the differential operators A; and A, which yields the convergence
(1.1).

In the case when A; = A1(D) and A> = A, (D) are differential operators with
constant coefficients of the homogeneous degree 1 as well as the quadratic form
Q with the constant coefficients {g;x};x=1,...; in €2, TARTAR [18] introduced an
algebraic cancellation property

,,,,,

O, A) =0 (1.2)

forall A =" (Ay,..., ) € R’ such that Aq(E)A = 0, = 1,2 for some & =
(&1,...,&) € R" with & # 0, and proved (1.1). On the other hand, it seems to be
important to handle the general differential operators A| = Aj(x, D) and Ay =
Ay (x, D) with variable coefficients for the standard scalar product Q(n,¢) =
le: 1 Mj¢;in R!. In this direction, KazHIKHOV [7] made use of the closed range
theorem for A| and A, which yields necessarily orthogonal decompositions

L*(Q) = Ker(Ag) @ R(AY), a=1,2, (1.3)

where Ker(Ay) and R(A}) denote the kernel of A, and the range of the adjoint
operator A’ of A, respectively. In comparison with the case of differential oper-
ators Ay = A1(D) and A, = A, (D) with constant coefficients, the inclusion
relation

Ker(Aq) C R(A}). o #B (1.4)

plays a substitutive role for the cancellation property (1.2). In any case, the main
difficulty to prove (1.1) stems from treatment of Ker(Ay) for @ = 1, 2. More pre-
cisely, since A, is invertible on R(A%), the proof of (1.1) can be reduced to show
that

Q(Piuy,, Povy,) — Q(Piu, Pyv) in the sense of distributions in 2 as m — 00,
(1.5)

where P, : L>(Q)! — Ker(Ay), @ = 1, 2is the orthogonal projection along (1.3).
It should be noted that both (1.2) and (1.4) are sufficient conditions for (1.5).

In the present paper, we shall first make clear a special structure of the opera-
tor Ay = Ay(x, D) so that Ker(A,) is a finite dimensional subspace in L2(Q).
Once Ker(Ay) is reduced to the finite dimensional space, it is easy to see that
even weak convergence in L?(2)! of {um};,y_, and {v,}_, yields (1.5). For such
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purpose, we need to introduce an appropriate boundary operator By (x, V) on 92
and regard A, as an unbounded operator in L?(2)! with the domain D(A,) =
{u € L2(Q)l; Aqu € LZ(SZ)d‘*, By (x,v)ulsq = 0}. In the next step, by assuming
the corresponding cancellation property for (1.2) and (1.4) such as

AgA% =0, o #p, (1.6)

we deal with the convergence on the subspace R(A}). Since we control behavior
of {un};,_, and {v,,};7_, on the boundary 92, we establish a stronger convergence

in the whole domain 2 such as

/Q(um,vm)dx—>/ QO(u,v)dx asm — o0, 1.7)
Q Q

which includes (1.1).

As an application of our result, we prove Murat-Tartar’s classical Div—Curl
lemma [12-14,18] with additional lower order terms with variable coefficients.
We also establish a generalized Div—Curl lemma for arbitrary differential /-forms
via the exterior derivative d and its co-differential operator § on compact Rie-
mannian manifolds ($2, g) with boundary 9. To this end, we introduce the tan-
gential part T« and the normal part vu on 92 for the differential /-form u =
Zil<_”<i1 Uiy dxt A~ Ax on . A similar investigation in L"-spaces can be
seen in our previous papers [9] and [10].

There is ahuge literature of generalization for variable coefficients of the Murat—
Tartar’s classical Div—Curl lemma. Making use of the technique of pseudo-differen-
tial operators, GERARD [6] established systematic treatments of micro local defect
measures and their connection to orthogonality of two sequences {u,,}-_, and
{vm}or_; in L*(R)! which yields the convergence like (1.7). He applied his gen-
eralization to the problem of homogenization for the first order scalar differential
operators with oscillating coefficients. Another generalization had been carried out
by TARTAR [19] who introduced a notion of H-measures independently of [6].
Indeed, compensated compactness can be obtained as a consequence of the locali-
zation principle of the support of the H-measure. He applied several properties of
H-measures to propagation of both oscillation and concentration effects in the non-
linear partial differential equations arising from continuum mechanics and physics.
A more generalized summary on compensated compactness was demonstrated by
[20]. However, all of these convergences have been discussed in the sense of distri-
butions in 2. Although our result might be well-known so far as local convergence
in the interior of €2 is concerned, we shall prove the global convergence such as
(1.7) in the whole €2 in terms of the relation between the differential operators
Ay (x, D) and the boundary operators By (x, v) fora = 1, 2.

This paper is organized as follows. In Section 2, after precise definition of the
differential operator Ay (x, D) together with the boundary operator B, (x, v), we
shall state our main theorem. Section 3 is devoted to the orthogonal decomposition
(1.3) and the cancellation property (1.6). In particular, we need to pay attention
to a certain vanishing property on the boundary value of the special forms which
makes it easy to handle the convergence on R(A). Then the proof of our main
theorem is established in Section 4. Finally in Section 5, some examples such as the
generalized Div—Curl lemma on compact Riemannian manifolds are considered.
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2. Result

Let €2 be a bounded domain in R" with the smooth boundary 9€2. We consider
asystem A(x, D) : C*® () > C®(Q)? of differential operators of the first order
defined by

1 1
A(x,D)u =" ZAlj(x, D)uj,...,ZAdj(x, D)u;

j=1 j=1
foru =" (uy,...,u;) € C®(Q),
where
" 9 - 9 9
Aij(va):;al’jk(x)a—x]{“rb[j(x), x e, D= (a—x],,a) (21)

withajji, bjj € C¥(Q)fori =1,...,d, j=1,...,1,k=1,...,n.For simplic-
ity, we assume that a;ji, b;; are real valued smooth coefficients of A(x, D). Then
the formal adjoint A’(x, D) : C®(Q)? — C®(Q)! of A(x, D) is defined by the
relation

(AC, D)u, @) = (u, A'(-, D)g), ueCP Q) ,pe CPE)?,

where (-, -) denotes the usual L2-inner product on 2. Indeed, for A(x, D) defined
by (2.1), we have the expression of A’(x, D) as

d d
A'(x, D)p = f(Z Al (x. D)gi, ... D Aj(x, D)gol-)
i=1 i=1

for o =" (@1, ..., pa) € C(Q)%,

where
Z 9
Aly(x, D) = _;ai,k(x)a
=9
> D b, =1 Li=1 . d (22)
k=18xk

Then there exist operators B(x, v) : C®(Q)! — C*®(3Q)¢ and B/ (x, v) : C*®(Q)¢
— C*°(0 SZ)[ such that the Stokes integral formula

(AC, Dyu, ¢) — (u, A'(-, D)p) = (B(-, vu, 9)aq, (2.3)
(AC, D)u, @) — (u, A'(-, D)g) = (u, B'(-, v)¢)oe 2.4)
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holds for all u € C>®(Q)! and all ¢ € C*®(Q)¢, where v = (v1, ..., v,) is the unit
outer normal to 9€2 and (-, -)yq denotes the standard L?-inner product on 9€2. It is
easy to see that B(x, v) and B’(x, v) are expressed as

i i
B(x,v)u = ZBU(x, Vuj, ...,Zij(x, vu;j |,

j=1 j=1
u=""(uy,...,u) e C®) with

n
Bij(x.v) = > ayjr@)w, i=1,....d j=1...1 (2.5)
k=1
and
d d
B'(x,v)p = (Z B, (x,v)¢i, ..., ZBI’Z-(X, v)<p,~),
i=1 i=1
o =""(1,....,0q) € C*(E)? with
n
Bij(x.v) =D aijpx)v, j=1.....Li=1...4d,
k=1
respectively.

Remark. By (2.3), the boundary operator B(x, v) can be extended to the func-

tions u € L2(R)! with A(x, D)u € L2()% so that B(x, v)u € H™2(3Q)¢ =
1

(H2(0 Q)d)*, and the generalized Stokes formula holds

(AC, D)u, @) — (u, A'(-, D)p) = (B(-,v)u, yp)aq forallg € H'(Q), (2.6)

where (-, -) 5o denotes the duality pairing between H_% (0 Q)d and H% (0 Q)d, and
y is the usual trace operator from H'(£)4 onto H% )4,

Similarly, by (2.4), for every ¢ € L?(Q)¢ with A’(x, D)¢ € L*(Q)!, we can
define B'(x,v)p € H -3 (092)! with the generalized Stokes formula

(AC, Dyu, ) — (u, A'(:, DYp) = (yu, B'(-, v)ghaq forallu e H'(Q). (2.7)
In what follows, we shall regard the boundary operators B(x, v) and B’(x, v) as
those in the generalized sense satisfying (2.6) and (2.7), respectively.
Let us consider two pairs {Aq (x, D), A,,(x, D), By(x,v), B, (x,v)} for « =
1,2 with [y = I, = [, that is,
Al(x, D) : H'(Q)' — L>(Q)%, Ax(x,D): H'(Q) — L>(Q)%

which satisfy (2.6) and (2.7) with A = Aj and A = A». Throughout this paper, we
impose the following assumption on Aj and Aj.



884 HipeEo KoZoNO & TAKU YANAGISAWA

Assumption. There is a constant C = C(£2) such that

Vul| < A A B 2.
[Vull = C(lArull + |Azull + [lull + | ‘””H%@Q))’ (2.8)
Vul| < .
Vull = CUAull + | Agull + llull + IIBzullH%(aQ)) (2.9)
holds forall u € H'(2)!. Here and in what follows, || - || denotes the usual L?-norm

on Q.

Our main theorem now reads:

Theorem 1. Let two pairs {Aq(x, D), A, (x, D), Bo(x,v), B,(x,v)},a = 1,2
satisfy (2.6) and (2.7) with A = Ay and A = Aj. Let the Assumption hold. We
assume the cancellation property

ArA1 =0, AjA,=0. (2.10)
Suppose that {uy,}o>_ and {vy,},>_| are sequences in L2(Q)! satisfying the follow-
ing conditions (i), (ii) and (iii).
() wm — u, vy — v weakly in L*(Q)!;
(i) {Aun}2°_, is bounded in L*(Q)% and {Arv,}°°_, is bounded in L (Q)%;
(iii) Either {Biuy};,_, is bounded in H%(E)Q)d‘ or {Bavp}oo_ | is bounded in
H?(3Q)%.

Then it holds that

/ Up (X) - vy (x)dx — / u(x)-v(x)dx asm — oo, (2.11)
Q Q

where u(x)-v(x) = le:l uj(x)vj(x) is the standard scalar product in R! at each
point x € Q.

Remark 1. If we express A| and A3 as in the form like (2.1), that is,

1 1
Agx, Dyu =" [ DAY . Dyuj, ... > A (x. Dyu;
j=1 j=1
foru =" (uy,...,u;) € H (L)

with

n
3
AS”(x,D): al.‘;.’,j(x)—+bfj‘)(x), i=1,....dg, j=1,....1, a=1,2,
0Xy
k=1
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then the cancellation property (2.10) can be written as
(@) (ﬁ) a®a®y =
Z(arjs !jk r/k ljS) 0,

a,,B:l,Z, a#B 1SV, Vk<n, r=1,....dyi=1,...ds, (212

(@ %4%j (o) ijp () (@) ) _
Z Brjn 9x T4,k 9%, rjkblj ljkbrj =0,
j=1 \p=1 K u=1 H
,B=12, a#pB, 1ZVk<n, r=1,...,da,i=1,...dﬁ, (2.13)
92a B) ab(ﬂ) n (ﬂ)
(@) Yijo T (a) Yijp (B) _
Z Zw Zax I AL <Z +bij) | =0,
j=1 \ p=1 o=l n=so
a, =12, a#p, r=1,...,da,l=1,...dﬁ. (2.14)

Remark 2. Our proof is based on the orthogonal decomposition (1.3). A more
precise argument will be discussed in (4.1). Such a method is closely related to
the de Rham—Hodge—Kodaira decomposition for differential forms on Riemannian
manifolds. Indeed, ROBBIN et al. [15] made use of it for showing weak continuity
of the scalar product u,, - v, as m — 0o by means of the exterior derivatives and
their formal adjoints. A similar approach to the convergence up to the boundary
was established by our previous paper [9]. It is known that application of the the-
ory of the Hardy space is also useful to the proof of the div—curl lemma. See for
example, COIFMAN et al. [2] and DAFNI [3]. It seems to be an interesting problem
to investigate the relation between cancellation property (2.10) and functions in the
Hardy space.

3. Preliminary

For the proof of Theorem 1, let us introduce two operators S and 7' defined by
S, T: L2(Q) — L>(Q)%1H,
DS)={uec H(Q); Blu=0 ondQ}, Su='(Au, Awu) foru e D(S),
D(T)={ue H'(Q); Bou=0 ond}, Tu='(Au, Aru) foru € D(T).
It should be noted that D(S) and D(T) are dense in L? (Q)l (see for example,
Duvaur and Lions [4, Chapter 7, Lemmata 4.1, 6.1] and GEORGESGUE [5, Theorem
4.1.1]), and, hence, we may define the adjoint operators S* and 7* of S and T from
L2(Q)4+% to L2(Q)!, respectively. By (2.6) and (2.7) it holds that
D(S*) = {{(p. w) € L2 Q)% x L2(Q)%; A\ p e L*(Q)!, Ayw € L}(Q)',
Bzw =0 onodR},
S*((p,w)) = Ajp + Ayw for(p, w) € D(S*), (3.1)
D(T*) = {{(p, w) € L2 x L2(Q)%; A\ p € L*(Q)!, Ayw € L*(Q)',
Blp =0 onodf2},
T*((p, w)) = A\p + Asw for'(p, w) € D(T*). (3.2)
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Furthermore, we have the following lemma.

Lemma 3.1. 1. The kernels Ker(S) and Ker(T) of S and T are both finite dimen-
sional subspaces of L*()".
2. Theranges R(S)and R(T) of S and T are both closed subspaces of L* ()%,

Proof. The proofs for S and T are based on the the estimates (2.8) and (2.9) in the
Assumption, respectively. So, we may only show the assertion on S.

1. By (2.8) we see that the unit ball in Ker(S) is a bounded set in H' (Q)!, and,
hence, the Rellich theorem states that it is a compact set in L?(2)". This implies
that K er(S) is a finite dimensional subspace in L>(2)".

2. We make use of an auxiliary estimate; there exists a constant § > 0 such that

[Swll 2 8llwll (3.3)

holds for all w € D(S) N Ker(S)*.

For the moment, let us assume (3.3). Suppose that {um};’le C D(S) satisfies
Suy — f in LZ(SZ)”II'M2 asm — o0.
By the orthogonal decomposition, u,, is expressed as
Um = Um + Wy Um € Ker(S), wp € Ker(S)Y, m=1,2,....
Since it follows from (3.3) that
[Stm — Surll = 1S wm —w)ll 2 Sllwm —will, m,I=1,2,...,

we have that w,, — win L2(Q2)! for some w € Ker(S)*. Since Sw,, = Suy, — f
in L2(Q)%142 and since S is a closed operator from L2() to L2(2)%1142 it holds
that w € D(S) with Sw = f, which means that f € R(S). Hence, R(S) is a closed
subspace of L%(Q)%1+4¢,

Now it remains to prove (3.3). We make use of a contradiction argument. Sup-
pose the contrary. Then there is a sequence {wy,}5._; in D(S) N K er(S)T with
|lwy || = 1 such that

ISwill = 1A 1wl + | Aswm || < 1/m  forallm =1,2,....

By (2.8), we see that {w,, }~_, is a bounded sequence in H L)1, and, hence, there
is a subsequence of {w;,};_,, which we denote by {w,,}3_, itself, for simplicity,
and a function w € Ker(S)* such that w,, — w in L2()". Since Sw,, — 0 in
L2(Q)ditd2, again by closedness of S it holds that w € D(S) with Sw = 0, that is,
w € Ker(S). Since w € Ker(S)L, we have w = 0, which contradicts the property
that ||w,,|| = 1 forallm =1, .... This proves Lemma 3.1. O
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Lemma 3.2. Ler (2.10) hold.

1. Ifw e L2(Q)® with Abw € L*(Q) satisfies Bbw = 0 in H™2(3Q)®, then
we have

Bi(x,v)(ASw) =0 on d< (3.4)
with the identity
(A}p, Abw) =0 forall p e L2 ()" with Ajp e L*(Q). (3.5

2. Ifp e LX()% with A} p € L*(Q)! satisfies B{p = 0 in H2(3Q)%, then we
have
By(x,v)(Ajp) =0 ondQ (3.6)
with the identity
(Alp, Abw) =0 forallw e L>(2)? with Abw € L*(Q)). (3.7
Proof. 1. For every g € H>(2)% we have by (2.6), (2.7) and (2.10) that
(B1(-, v)ASw, q)sq = (A1(Asw), ) — (Ayw, Ajq)
—(Ayw, Alq)
= —(w, A2(A19)) + (Byw, A\ q)ag
=0,

which implies Bj(x, v)A5w = 0 on <.

Itis known ,that for every p € L2(Q)% with Alpe L2(Q)! thereis a sequence
{pm}2_; € C®()% such that p,, — pin L2(Q)9" and A p,, — A} pin L*(Q)!
(see for example, GEORGESGUE [5, Theorem 4.1.1]). Hence by passage to the limit,
we may prove (3.5) forall p € C*° (€)% Since Bjw = 0in H_% (02)%, it follows
from (2.7) and (2.10) that

(A} p, Abw) = (A2(A p), w) — (A} p, Byw)sa =0 forall p € CX ()%,

which yields (3.5).
2. Similarly, for every ¢ € H*($)% we have by (2.6), (2.7) and (2.10) that
(Ba(-, AP, 9hag = (A2A1p, @) — (A|p, Ayp)
= —(A1p, Ay9)
= —(p, A1A59) + (B p, Ay¢)aq
=0,
which implies B> (x, v)(A p) = 0 on <.

It is also known that fo_r every w € LZ(SZ)‘I2 with A/zw € LZ(Q)I there is a
sequence {wy,,}°7 | € C* ()% such that w,, — win L*(£2)% and Aswy, — Ajw
in L2 (Q)l. Hence, by p?ssage to the limit, we may prove (3.7) forallw € C*° (S_Z)dz.
Since B p = 0in H~2(3Q)%, it follows from (2.7) and (2.10) that

(A'lp, A’Zw) = (p, A](A’zw)) — (Bip, A’zw)ag =0 forallw e Coo(f_l)dz,
which yields (3.7). This proves Lemma 3.2 O
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4. Proof of Theorem

Case 1. Let us first consider the case when {Bju,,};_; is bounded in H 3 (o Q).
In this case, we make use of the operator S. It follows from Lemma 3.1 (2) and the
closed range theorem that

LZ(Q)I = Ker(S) ® R(S*) (orthogonal decomposition). “4.1)

Let P and Q be orthogonal projections from LZ(Q)I onto Ker(S) and R(S*) along
(4.1), respectively. Then it holds

u=Pu+ Qu, v=Pv+ Qu, 4.2)
Uy, = Pu,, + Quyy, vy = Puy + Quyy, m=1,2,...,

and we have
Wm, vm) = (Pup, Pvy) + (Qupy, Quy), m=1,2,.... 4.3)

Since R(P) = Ker(S), we see by Lemma 3.2 (1) that P is a finite rank operator,
so in particular, a compact operator. Hence by (i) it holds that

Pu,, - Pu, Pv, — Pv stronglyin LZ(Q)”Il as m — 00,
which yields
(Puy,, Pvy,) — (Pu, Pv) asm — o0. “4.4)
We next show that
(Qup, Qupy) — (Qu, Qv) asm — o0. 4.5)

Since Q is the projection operator from L2(Q2)! onto R(S*), there exist functions
P, Ps Pms Pm € L2(Q)% with A|p, A\ p, A| pm, A\ pm € L*()', and functions
W, W, Wy, Wy € L2(Q)% with Ayw, Ay, Aywy,, Ay, € L*(Q)! and Byw =
B = Bjw,, = B}, = 0on d<Q such that

Qu = Ajp+ Ayw, Qu=A\p+ A (4.6)
Ou,, = A’lpm + A/zwm, Ov, = A/lﬁm + A/zzi)m, m=1,2,.... 4.7
Then it holds that

(Qu, Qv) = (A p, A p) + (Ajw, ASw), (4.8)

(Qum, Qi) = (A} pims Ay Pm) + (Aywp, Ayidm), 4.9)

1 QumlI* = 1A} Pl + 1 ASwilI?, 1QUall* = 1A} oI + 1 AS 0117,
(4.10)

A1l = A1 Quu |l = A1 A} pll. 1 A20mll = A2 Quall = [|A2 AL il
4.1

forallm = 1,2,.... Indeed, (4.8), (4.9) and (4.10) are a consequence of (3.5).
Since Pu,,, Pv,, € Ker(S), we have A| Pu,, = 0 and A, Pv,, = 0, and, hence, it
follows from (4.2), (4.7) and (2.10) that
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Aty = A1 Quy = AIA/lpm, Agvy = A2 Qv = AZAIZH)m,
which yields (4.11). Furthermore, we have that

Al pm — Alp, Abw,, — Ahw weakly in L2(Q)’, (4.12)
Al pm — A\ p,  Abi, — Ay weakly in L2(Q), (4.13)

as m — oo. In fact, by (i) it is easy to see that Qu,, — Qu weakly in L?(2)’. For
every ¢ € L2(Q)', there exist ¢ € L2(Q)% with Ajq € L*(Q)!, and n € L2(Q)%
with A5y € L*(Q)" and B,y = 0 on 32 such that

Q¢ = Ajq + A,

Since A} pp, Ajp € R(S*) = R(Q), it follows from (2.10), (3.5), (4.6) and (4.7)
that

(A\pm = Aip. @) = (A\pm — Ajp, Q9)

= (A} pm. Alq) — (A} p. Alq)

= (Qum, A1q) — (A p, Ajq)

— (Qu, Alq) — (A}p, Alq)

= (A} p, Alg) — (A\p, Alq) =0,
(Abwy, — Ajw, ) = (Aywy, — Asw, Q)

= (Ajwp, Ajn) — (Ajw, Ajn)

= (Qum, A5n) — (Ayw, Ayn)

— (Qu, Ayn) — (Asw, Ajn)

= (Ajw, A5n) — (Ajw, Asn) =0,

which implies (4.12). The validity of (4.13) can be shown quite similarly as above.
To prove (4.5) we need the following proposition.

Proposition 4.1. 1. The sequence {A| p,}o_, is bounded in H L)
2. The sequence {A, W, )0, is bounded in H'(Q).

For a moment, let us assume Proposition 4.1. Then we have by (4.12), (4.13) and
the Rellich compactness theorem that

Al pm — Alp, Ahi, — Ay strongly in L2(2)!,
which yields again by virtue of (4.12), (4.13) that
(A1 Pms A1Pm) = (Alp, A1p),  (Aywp, Ayiby) — (Asw, ASD) (4.14)

as m — 00. Now from (4.8), (4.9) and (4.14), we obtain (4.5).
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Finally, it remains to prove Proposition 4.1.

Proof of Proposition 4.1 1. By (3.4), it holds Bj (x, U)A’zwm = 0 on 9€2. Since
Pu,, € D(S), we have By (x, v)Pu,, = 0 on 9€2, which yields by virtue of (4.2)
and (4.7) that

BI(A/lpm) = B1(Qupy — A/2wm) = B1(Quw) = Biuy, m=1,2,....
Hence, it follows from (2.10), (4.10), (4.11) and the Assumption that

IV(A Pl = CULALA Pl + 1A} Pl + ||B1(A’1pm)|IH2(3Q))

SC(lA B
A um || + 1| Qup |l + 1l 1Mm|| (39))

< C(lAml + litn]) + ||Blum||m(m>

Then by the hypotheses (i), (ii) and (iii), we have that

sup (IIV(Alpm)II + 1A} pml) < o0,

m=1,.

which implies (1).
2. By (3.4) we have Bj(x, v)A/zwm = 0 on 9€2. Hence, it follows from (2.10),
(4.10), (4.11) and the Assumption that
IV(ASDp) | < C([A2 A5 W || + | Ay || + || B1 (A3 ) | )

309
< C(lA2vmll + 11 Qun D)
< C(lA2vm |l + llvm D).

Then by the hypotheses (i) and (ii), we have that

SHP (IIV(A/zﬁ)m)II + 1AW ) < oo,

m=
which implies (2). This proves Proposition 4.1.

Case 2. We next consider the case when {B;v,,}°°_; is bounded in H 2 (Q)d2 In
such a case, we make use of the operator 7. The proof is quite similar to that of
the Case 1. However, for the reader’s convenience, we give the complete proof. By
Lemma 3.1 and the closed range theorem, we have an orthogonal decomposition

L*(Q) = Ker(T) ® R(T™), (4.15)

where dimKer(T) < oo. In the same way as in (4.2), let us denote by P and
Q the orthogonal pI'OJCCtIOIlS from L2(2)! onto Ker(T) and R(T*) along (4.15),
respectively. Since P is a finite rank operator, similarly to (4.5), it suffices to show
that

(Qum, va) — (Qu, Qv) asm — o0. (4.16)
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By (3.2), there are functions ¢, G, gm, Gm With A\q, A1G, A|qm, AjGm € L*(Q)!
and Blq = B{§ = Bigm = B{Gm = 0 on 9%, and functions s, §, sy, §m €
L2()% with Abs, A5S, Aysim, AbSm € L*()" such that

OQu = Ajg + Ays, Qv = A\G + A)3,

Oty = Aigm + Assm, QU = AlGm + Assm, m=1,2,....  (4.17)
Then in the same way as in (4.8)—(4.11), we have that
(Qu, Qv) = (Alq, A1) + (Abs, Ah3), (4.18)
(Qup, Qup) = (A/1va aém) + (Alzsms A/zgm), (4.19)

1Quml* = 1A gm 1> + 1 A5 1%, 1Qum 1> = 141G |” + 455017, (4.20)
A1l = 1A Qumll = |A1A g, A2l = [|A2Qun || = [|A2 A5y
(4.21)
forall m = 1; 2,.. ..AIndeed, (4.1?), (4.1?) and (4.20) are a consequence of (3.7).
Since Um = Pu,, + Quy,, U = Pv,, + Qu,, and since Pu,,, Pv,, € Ker(T), we
have A{Pu,, = 0 and A, Pv,, = 0, and, hence, it follows from (4.17) and (2.10)
that
Attty = A1 Quy = A1 AlGn,  Asvm = Ay Qv = AyAdi,

which yields (4.21). In comparison with (4.12) and (4.13), we next show that

Algm — Alq, Absy — Ahs weakly in L2(Q)/, (4.22)

Algm — A1, AL, — A5 weakly in L2(Q), (4.23)
as m — oo. In fact, by (i) it is easy to see that Qum — Qu weakly in L?*(Q)". For
every ¢ € L3(Q)', there exist ¥ € L*(Q)% with A{¢ € L*(Q)" and Bjy = 0 on
3, and n € L2(Q)® with A5y € L*(Q)!, such that

Op = AV + A,

Since A/1 qm A/lq € R(T*) = R(Q), it follows from (2.10), (3.7) and (4.17) that

(Algm — Aiq. 9) = (Algm — Alq, Op)

= (Ajgm. Ai¥) — (Alq. ALy)

= (Qup, AYY) — (Alq, ALy)

— (Qu, A\Y) — (Alq. ALY)

= (Alq. A1y) — (Alq. A1y) =0,
(Absy — Abs, @) = (Abs, — Abs, Q)

= (A’2sm, A’zn) — (A’zs, A’zn)

= (Qum, Ajn) — (Ahs, Abn)

— (Qu, Ayn) — (Ahs, Abn)

= (A)s, Ajn) — (Abs, Asn) =0,
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which implies (4.22). The proof of (4.23) can be done in the same way as above.
Similarly to Proposition 4.1, we need

Proposition 4.2. 1. The sequence {Aq )5, is bounded in H L.
2. The sequence {A’zfm 1o, is bounded in H! (Q)l.
For a moment, let us assume Proposition 4.2. Then we have by (4.22), (4.23) and
the Rellich compactness theorem that
Algm — Alq, AL5, — ALF strongly in L2(R)',
which yields again by virtue of (4.22), (4.23) that
(AYqm, AYqm) = (A1q, A1), (Adsm, AYSm) — (Ays, A55)  (4.24)

as m — 00. Now from (4.18), (4.19) and (4.24), we obtain (4.16).
Finally, it remains to prove Proposition 4.2.

Proof of Proposition 4.2 1. By (3.6) we have B (x, v)A}g,, = 0 on 9. Hence,
it follows from (2.10), (4.20), (4.21) and the Assumption that

V(A < A1 A] A By (A
IV(A1gm) | = CUIAL1ATGgm || 4 [[ATgm || 4 11 B2( 1C]m)||H%(BQ))

< CUIA Ul + 1| Qum )
< C(|Artm| + llm)-

Then by the hypotheses (i) and (ii), we have that

sup ([IV(A1gm)|l + 1A} gm ) < oo,
m=1,...
which implies (1).

2. By (3.6), it holds that B> (x, v)A’lc}m = 0 on 9R. Since Pv,, € D(T),
we havAe Bz(x,Av)ﬁvm = 0 on 0€2. Hence, by (4.17) and the expression v, as
v = Puv,, + Quyy, it holds that

B(A}5m) = Ba(Qum — AlGm) = B2(Qvn) = Bovw, m=1,2,....
Hence it follows from (2.10), (4.20), (4.21) and the Assumption that

IV(AL5)II = CUIA2AGSm | + 1A |l + IIBz(A/zfm)IIH%(aQ))

- .
S C(1A2vm |l + 1 Qum | + 1 B20m IIH%@Q))

SC(lA B .
< COlAwnll + luml + 1B2vll, 1

Then by the hypotheses (i), (ii) and (iii), we have that

sup (| V(A5 + 11 A55m 1) < oo,
m=1,...
which implies (2).

This proves Proposition 4.2 and the proof of Theorem 1 is now complete.



Global Compensated Compactness Theorem 893
5. Applications

5.1. Global Div—Curl Lemma in Bounded Domains

The classical Div—Curl lemma deals with the convergence in the sense of dis-
tributions (see for example, TARTAR [18]). On the other hand, our global version
makes it possible to treat the convergence in the whole domain up to the boundary.
First, we consider the global Div—Curl lemma on 3-dimensional vector fields.

Corollary 5.1. Let Q be a bounded domain in R with smooth boundary 9. Sup-
pose that {u,,}>_ and {v,}°°_, are sequences of 3-dimensional vector fields in Q
satisfying the following conditions (i), (ii) and (iii).

() Um — u, vy — v weakly in L*(2)3;
(i) {div u,, )5, is bounded in L3(), and {rot vy, },7_, is bounded in L2(Q)3;
(iii) Elther {t - v}0_ | is bounded in H2 (082), or {vy, x v}>°_ | is bounded in
HE (09,

where v,, x v denotes the standard vector product in R3. Then it holds that
/ Up (X)) - V(X)) dx — / u(x)-v(x)dx asm — o0,
Q Q

whereu(x)-v(x) = Z?’:l uj(x)vj(x) is the standard scalar product in R3 ar each
point x € Q. '

Remark. In the hypothesis (iii), we do not need to assume both bounds of {u,, -
v}oe_ and {v, xv}>° | on dQ. Itis sufficient to assume that one of them is bounded.
A more precise result in L” (92)3 for 1 < r < oo was established in our previous
paper [9].

Proof of Corollary 5.1. Let us define differential operators A; and A, with the
expression as in (2.1). For A1, wetake l =n = 3,d; = 1 and set

Alu=divu = ZA(I)()C Dyuj foru =" (ui,us,u3) € H LQ)3,
j=1

1 1 1 1
where Aﬁj)(x, D) = z,iz.lafj)k(x) 2+ + b )(x) with agjzc(x) = 8, b1j(x) =
0, j,k=1,2,3. Concerning Ay, we take / =n = 3, d, = 3 and set

3
Av=rotv =" ZA(Z)(X D)U],ZA()(X D)U],ZA (x, D)v;
Jj=1 j=1
forv ="(v1,v2,v3) € H'(Q)*,
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2 2 ¢ 2 .o .
where A'Y (v, D) = 30_ a5 (0) 5 + b7 (x), i, j = 1,2, 3 with

ijk
_ 000 _ 0 01
@il =00 -1) . @iftify = (0 00,
010 -100
0-10
@ity =10 o). pPw=0 ij=123 &1
00 0

Then it follows from (2.5) that

3

Bm:ZVjuj =v-u, u="(ur,u, uz), (5.2)
j=1

Byv="(v2v3— 1302, V301 — V1 V3, Viv2 — V) =V XV, v="(v],v2,v3). (5.3)

By Duvaurt and Lions [4, Chapter VII Theorem 6.1 ] and [8, Theorem 2], we have
[Vull = C(l|div u]|+[[rot u|l+[|ull+]v - MIIH%(Q)) forallu € H'(Q)®, (5.4)

Vol < C(||div v||+||rotv||+||v||+||vxv||H%(Q)) forallv e HY(Q)3, (5.5)

which implies that the estimates (2.8) and (2.9) in the Assumption hold.
We next show the cancellation property (2.10). For that purpose, we may prove
(2.12). Fora = 1, B = 2, we have by (5.1) that

3 3
1 (2 2y _ (@) 2
Z(aljsaijk +ay ) = Z((Slsaijk + 8 jxa;55)
Jj=1 Jj=1

— ai(j,z + al.(,fi =0, i,k,s=1,2,3. (5.6)

The case for o = 2, 8 = 1 of (2.12) can be handled in the same way, so we obtain
(2.12). Now the desired convergence is a consequence of Theorem 1. This proves
Corollary 5.1.

The global version of Div—Curl lemma as in Corollary 5.1 can be generalized
for the operators A; and A, with lower order terms. The cancellation property
(2.10) plays an essential role for such generalization.

Corollary 5.2. Let Q be a bounded domain in R> with smooth boundary 9S. Let
b =" (b1, by, b3) € C'(Q)3 be an irrotational vector field in Q, that is, rot b = 0.
Suppose that {u,, )0, and {v,}5°_, are sequences of 3-dimensional vector fields
in Q satisfying the following conditions (i), (i) and (iii).
() m — u, vy — v weakly in L*(2)3;
(i) {div um + b - up},,_, is bounded in L%(2), and {rot v, + b x U tory IS
bounded in L*(Q)°;
(iii) Either {u,, - v},,_, is bounded in H%(BSZ), or {vy, x v}o°_ | is bounded in

H?(0%Q)3.
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Then it holds that
/ Up (X) - Uy (x) dx — / u(x)-v(x)dx asm — oo.
Q Q

Proof. Let us take the differential operators A1 and A; as

Aix,Du=divu+b-u, Ayx,Dyv=rotv+bxv foru,veH (Q)?3.

a )]

Then the coefficients a,; ) rand a; e i, j,k=1,2,3, are the same as in the proof of

Corollary 5.1. As for the coefﬁ(nents b%lj) and bg), we may take

1 2 1,2,3 0 _b3 b2
b =bjx), =123 GHT= b5 0 —bi|. (7
—by by O

Obviously by (2.5) the trace operators Bj and B are the same as (5.2) and (5.3),
respectively. Since b € C 1(Q)3 , the estimates (2.8) and (2.9) in the Assumption
follow from (5.4) and (5.5), respectively.

We next show the cancellation property (2.10) which is equivalent to (2.12),
(2.13) and (2.14). Indeed, we have seen that (2.12) is a consequence of (5.6). Since

the coefficients a(l) and a(z) are constants in € for all i, Jj.k=1,2,3, we see that
the left hand 51de of (2. 13) for o = 1, B = 2 can be reduced to

3
1,2 2),.(1 2 2 2 2 .
Z( (b +apih= Z(a b +ab)=by+> ab;. i k=123
j=l j=1 j=l
Hence by virtue of (5.1) and (5.7), it holds (2.13) for « = 1, B = 2. The case for

o = 2, 8 = 1 can be handled in the same way, so we obtain (2.13). Concerning
(2.14), we have by (5.1), (5.7) and the hypothesis rot b = 0 that

(2 3 3 p?

3
8b
)] (1) (2) _ 1] @)
Z Zalma +b1;bij a Z(Sm dx, b b
1 j—

j=1 \n= i23 i11,2.3
= —roth +b X b
=0,
2] PR SRETT) IO D LRy
j=1 \pu=1 r1,2,3  J= \w=l r11,2.,3
=rothb+bxb
=0

’

which implies (2.14). Now the desired convergence is a consequence of Theorem 1.
This proves Corollary 5.2.

Moreover, Corollary 5.2 can be generalized in n-dimensional vector fields.
Indeed, we have
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Corollary 5.3.. Let n = 2 and let Q be a bounded domain in R" with smooth
boundary 0S2. Assume that b =' (b1, by, ..., b,) € CI(S_Z)” is an irrotational
vector field in Q, that is, 3b;/dx; — db;/dx; = O forall 1 < i < j < n.
Suppose that {u,,},._, and {Um} "_| are sequences of n-dimensional vector fields
in Q satisfying the following conditions (i), (i) and (iii).

() wum — u, vy — v weakly in L>(Q)";

ovy; 0
(i) {divu,, +b - um}°° | is bounded in L%(Q), and Vmi _ Om.j

bj—
0x; 0x; + Vi

Um, jbi} = is bounded in L*(Q) forall1 <i < j <n;
(iii) Either {uy,-v},,_, is bounded in H? (02), 01 {Uy,iVj =V, jVi ) is bounded
in H>(0Q) forall1 <i < j <n.

Then it holds that
/ Up (X) - Uy (x) dx — / u(x)-v(x)dx asm — oo,
Q Q

whereu(x)-v(x) = Z?:l u j (x)v;(x) is the standard scalar product in R" at each
point x € Q.

Proof. Let us define differential operators Ay and A, with the expression as in
(2.1). For A1, wetake l = n, d; = 1, and set

n
A=divu+b-u=> A Du; foru="(u.....u,) € H(Q)",
j=l1

n
(1 _ M, 9 ) :
where Alj (x,D)_Zaljk(x)a+b (x),j=1,...,nwith

a0 =8, bl =bj). jk=1.....n (5.8)
Concerning Aj, we take l = n, d» = n(n — 1)/2, and set

av; ad
Ax(x, D)v = (ﬁ - ﬂ + Ujbk _ijk)

dxk 8x] 1<j<k<n

n
2 2
= (> AP, D)u],...,ZA(n(i , (x, D)v;
j=1 j=1
forv="(vy,...,v,) € H(Q)",

2 2 2 ; .
where Al (x. D) = Y}_, af];(x)% +bP @i =1 = 1)/2, j =1,
., n with the following expression. Let us define a positive integer o (n, /) by

(—1)@2n—1)

forl=1,...,n—1.
2

on,l) =
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Fori=o(n,)+1,...,0n,l)+n—1withl =1,2,...,n— 1, it holds

I, j=1, k=i—oml)+1,
a0y =1-1, j=i-om D+l k=, (5.9)
0, otherwise,
bi—ocmn+i(x), j=1,
b (x) = | —bi(x), j=i—om) +1, (5.10)
0, otherwise.

By (2.5) we see that

n
Biu = E Vilj,
Jj=1

=1,...,

= (V1V2 — V2V1, VY3 — V3V, ..., Up— | Vy — VpVp—1)

for u =" (uy,...,up),v =" (vi,...v,) € HY(Q)". Then it follows from
GEORGESCU [5, Corollary 4.2.3] that the estimates (2.8) and (2.9) in the Assumption
are fulfilled.

We next show (2.12), (2.13) and (2.14). Concerning (2.12) fora = 1, 8 = 2,
we have by (5.8), (5.9) and (5.10) that

n
@ @) 1 @) (2 @y _ @ 2
Z(aljs ljk + aljk ij ) - Z((Sﬁaljk + Sjkaljs) Aisk + Aigs = 0

foralls,k=1,...,n,i =1,2,...,n(n — 1)/2. The case fora« = 2, = 1 can
be handled in the same way. As for (2.13) for « = 1, B = 2, we have similarly to
the above that

n

)] (2) @), () 2) (2)
Z( ljkle tjkblj) _Z((S b +auk )
=1

@) @
= b+ Za” b,

0, k:l,...,l—l,

bi—s(m.n+1 — bi—cm.n+i, k=1,

0, k=I+1,....i—om,D+1—-1,
—by+b;, k=i—0om,I)+1,

0, k=i—om,D)+1+1,...,n

=0

forali = on,)+1,...,0(n,l) +n—1withl =1,...,n— 1. Since [ =
1,...,n — 1is arbitrarily taken, this implies (2.13) for « = 1, 8 = 2. The case
o = 2, B = 1 can be handled in the same way, so we obtain (2.13).
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It remains to show (2.14). For o = 1, 8 = 2, we have by (5.8), (5.9) and (5.10)
that

n n (2) (2)

ab
(D @) _ ij 2)
Z Zalma +by;bij _Z Z(SME) bij b
Jj=1 \pu=1 Jj=1 \u=1
n (2) n

Z o +Zb(2)b 5.11)

fori =1,...,.n(n — 1)/2. Fori = on,l)+1,...,0m,])+n—1withl =
1,...,n — 1 we have by (5.9) that

Zb(”b = b b+ b oy aibi-o i+t = bicowmn1ibi — bibi g1 = 0.
Since/ =1, ...,n — 11is arbitrarily taken, it holds that
Zb(z)b =0 foralli=1,....,n(n—1)/2. (5.12)

Since dbj/dx; — dbr/9x; = 0,1 = j < k < n, we have by (5.10) that

2 2
b 9by) L iiownit _ iowis by

= =0
0x; 0x; 0Xi o (n, 1)+ 0x; 0Xi—o (n,1)+1

j=1
fori =0, D+1,...,0(n, )+n—Iwithl=1,...,n—1.Sincel =1,...,n—1
is arbitrarily taken, this implies that

@
ab,;

> —L =0 foralli=1,....n(n—1)/2. (5.13)

=1 3xj'

Hence, from (5.11), (5.12) and (5.13) we obtain (2.14) for = 1, § = 2. In the
case for@ = 2, B = 1, we have by (5.12) that

1)

(2> %y Lo (1> _ @ 9b; @
Z Drjp 8x +b b - Z rmax +zb b
Jj=1 \u=1 Jin=1
n
= 3 g
rju
Fye) 0xy,
_ b Bbr oy
a-)Cr—cr(n,l)-ﬁ-l dx;
=0

forr =o(n,)+1,...,0(n,)+n—Iwithl =1,...,n—1.Sincel =1, ...,n—1
is arbitrarily taken, this implies (2.14) for « = 2, § = 1. Now the desired conver-
gence follows from Theorem 1. This completes the proof of Corollary 5.3.
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5.2. Global Div—Curl Lemma on Riemaniann Manifolds with Boundary

Let (2, g) be a compact n-dimensional Riemannian manifold with smooth
boundary Q. We regard 92 as a C*°-sub-manifold of . Then there is a canonical
inclusion A T, (92) — A T,.Q, where T, M is the tangent space of the manifold
M atx € M, and, where \ TxM = @], N TeM. Notice that A\’ T, M is the
I-exterior product of T, M. For each x € 9%, let us denote by v, the vector in 7, Q2
which is orthogonal to 7 (9€2) and oriented toward the exterior of €2, and which has
the norm 1. For every /-form u on Q, thatis, u € /\ (T2), we define its tangential
part Tu and its normal part vu as

tu=v|(vAu), vu=vlu, (5.14)

where v] : /\Z(TS_Z) — /\Z_I(TS_Z),Z = 1,...,n, is the interior product defined
by

W)Xy, ..., Xi—1) =uXy, ..., X;—1,v) forXy,...,X;_ € T.
Then it holds the identity
u=tu+vAQu forallue N (TSQ).

Let us denote by d : /\I(TS_Z) — /\IH(TS_Z),I =0,1,...,n — 1, the exte-
rior derivative and by * : /\Z(sz) N /\"71(TS_2),I =0,1,...,n, the Hodge
star operator, respectively. We define the codifferential operator § : /\I(T Q) —
ANNTQ), 1 =1,....n,by 8 = (=1)""' xd % x", where xu = (—1)'u for
u e /\Z(TS_Z). It is known that /\I(TS_Z),I = 0,1,...,n, has a Hilbert structure
with the scalar product (-, -) such as

(u,v)E/ uAxv, foru,ve N(TQ). (5.15)
Q

Based on this scalar product on /\l (T2), we may define the Lebesgue space L2 ()"
and the Sobolev space H 1 (Q)’. See, for example, MORREY [11].

We next consider the generalized Stokes formula on (Q, g) corresponding to
(2.6) and (2.7). Let us introduce two spaces Hy()!'and Hs(Q)! forl =1,....n
by

Hy () = {u e LX) du € L)1),

I _ 2000l -1 (5.16)

Hs(Q)! = {v e L2(Q)'; sv e L2Q)! ).
Then the boundary operators t and v defined by (5.14) can be extended uniquely
as continuous linear operators

Tiue Hy(Q) Q) — tu e H2(09Q) 1, 517
vive Hs Q) - v e H_%(aﬂ)l_l, '
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where H_%(BQ)I_1 is the dual space of H%(BQ)I_l. Moreover, it holds by the
generalized Stokes formula that

(du,v) — (u,6v) = (tu,vv)yq, [=1,...,n (5.18)

forallu € Hy(Q)!~' and v € H'(Q)!, or forall u € H'(Q)!~! and v € Hs(Q)',
where (-, -)9q denotes the duality pairing between H_% @)~ and H% @)1,
For details, we refer to MORREY [11, Lemma 7.5.3] and GEORGESCU [5, Theorem
4.1.8].

An application of our theorem to the Div—Curl lemma now reads:

Corollary 5.4. Let (Q, g) be an n-dimensional compact Riemannian manifold with
smooth boundary Q2. Suppose that {u,,},,_, and {vy},>_, are sequences of L*(Q)!
forl =1,...,n— 1. We assume the following three hypotheses (i), (ii) and (iii).

(i)
Uy — U, Uy — v weakly in Lz(Q)l;

(i) {dum}>°_, is bounded in L>(2)!*!, and {8v,,)°°_, is bounded in L*(Q2)'~!;

m=1 m=1
(iii) Either {tuy},,_, is bounded in H%(E)Q)l, or {vv,}>° | is bounded in
H? (39Q) .
Then it holds that

(U, ) — (U, v) asm — o0,
where (-, -) denotes the inner product in L*(Q2)! defined by (5.15).

Proof. Since (S_Z, g) isnot the Euclidean space, but acompact Riemannian manifold
with boundary 9€2, we cannot apply Theorem 1 directly to Corollary 5.4. Indeed,
although we take A; = d and A> = § in (2.1), it is impossible to define the
boundary operators By and B> so that the identity (2.3) holds. However, based on
the generalized Stokes formula (5.18), we shall establish a proof of Corollary 5.4
with a certain modification of that of Theorem 1.

The boundary operators t and v in (5.17) play a substitutive role for By and
B> in (2.6). In fact, concerning the Assumption, it follows from GEROGESCU [5,
Corollary 4.2.3] that

<
IVull = Cldull + [15ull + llull + IITMIIH%(BQ)), (5.19)

IVull = Cldull + I8ull + llull + vl ) (5.20)

HI (09
for all u € H'(Q2). Let us define two operators S and T by

D(S)={u € HI(Q)I; tu=0 ondR}, Su='(du,du) foru e D(S),
D(T)={uec H' (Q';vu =0 ondQ), Tu='(du,du) foru e D(T).
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Similarly to (3.1) and (3.2), we have by the generalized Stokes formula (5.18), that

D(S*) = {(p, w) € Hs()'* x Hy()'":tw =0 onaf},

S*(t(p, w)) = 8p +dw for’(p, w) € D(S*), 5.21)
D(T*) = {!(p, w) € Hs()'"" x Hy()'"';vp =0 on o},
T*("(p,w)) =8p +dw for'(p, w) € D(T*). (5.22)

Then similarly to Lemma 3.1, we have by (5.19) and (5.20) the following
proposition.

Proposition 5.1. 1. The kernels Ker(S) and Ker(T) of S and T are both finite
dimensional subspaces of L*(Q2)".

2. Theranges R(S) and R(T) of S and T are both closed subspaces osz(Q)H'l X
L2 (Q)l— 1 .

As for cancellation property (2.10), we make use of the well-known fact that
d*=0, §=0. (5.23)
Instead of Lemma 3.2, we have the following proposition.

Proposition 5.2. 1. If w € Hy(Q2)'~" satisfies tw = 0 in H=2 (9!~ then it
holds that

T(dw) =0 ond
with the identity
(6p,dw) =0 forall p € Hs(Q)!*!. (5.24)
2. If p e Hy()"! satisfies vp = 0 in H=2 (32!, then it holds that
v(ép) =0 onadQ
with the identity
(dp,dw) =0 forallw e Hy() L. (5.25)

In the case when w € C1(Q)!~! and pE CH(Q)!t!, this proposition is shown
by MORREY [11, Lemma 7.5.2].
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Proof of Proposition 5.2 1. For every ¢ € C®(3Q)/, there is an w € C®(Q)/ !
such that ¢ = vw, and, hence, it follows from (5.18) and (5.23) that

(t(dw), q)aq = (t(dw), vo)sg

(ddw), w) — (dw, sw)
—(dw, dw)

= —(w,0w)) — (tw, v(dw))sq
=0.

Since ¢ € C*°(3K2)! is arbitrarily taken, and since C*(9<2)! is dense in H?(3Q),
we obtain from the above that t(dw) = 0 on 92.
We next show (5.24). Since Tw = 0 in H’% @)1, we have by (5.18) that

(8p, dw) = (8(8p), w) + (v(8p), Tw)gg =0 forall p € CO(Q)!*1.

Since C®(Q)!*! is dense in Hs(Q)'T! (see GEROGEscU [5, Lemma 4.1.7]), the
above identity yields (5.24).

2. For every ¢ € C®(32)!~!, there exists an n € C®(Q2)'~! such that ¢ = 11
on 2. Hence, it follows from (5.18) and (5.23) that

(v(ép), plag = (v(p), TNsn

—(8(p), ) + (8p, dn)

= (dp, dn)

= (p,d(dn)) — (vp, t(dn))sa
=0.

Since ¢ € C®(3Q)!~! is arbitrarily taken and since C*(92)'~! is dense in
H? (9€2)!~!, we obtain from the above that v(ép) = 0 on 9%2.
1
We next show (5.25). Since vp = 0 in H ™2 (3S2), we have by (5.18) that

(8p, dw) = (p, d(dw)) — (vp, T(dw))yo =0 forallw e C®(Q)L.

Since C°()!~! is dense in Hy(2)!~! (see also GEROGESCU [5, Lemma 4.1.7]),
the above identity yields (5.25). This proves Proposition 5.2.

Completion of the proof of Corollary 5.4 Since Propositions 5.1 and 5.2 play a
substitutive role for Lemmata 3.1 and 3.2, respectively, the argument in Section 4
is applicable to the proof of Corollary 5.4 for A; = d, A, = § with By and B>
replaced by Bju = tu and Bov = vv. However, for the reader’s convenience,
we shall give a complete proof. Let us consider first the case when {tu,,}5_; is

bounded in H 2 (dQ)". By Proposition 5.1, we have the orthogonal decomposition
(4.1) for S and S* in (5.21). Since the projection P : LZ(Q)Z — Ker(S) is a finite
rank operator, we have (4.4), and, hence, it remains to prove (4.5). Similarly to (4.6)
and (4.7), there exist p, p, pm, Pm € H(s(Q)H'1 and w, W, wy,, W, € Hd(Q)l_1
withtw =170 = Tw, = TW,; = 0 on 02 such that

Qu=468p+dw, Quv=468p+duw, (5.26)
Quy = 8pym +dwy,, Quy =68py +dwy,, m=1,2,..., (5.27)
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where Q is the projection from L2(Q2)! onto R(S*). In the same way as in (4.8)—
(4.13), we have by (5.23) and Proposition 5.2 (1) that

(Qu, Qv)=(p, 6p)+(dw,dw), (Qum, QUm)=(pm,dpm)+(dWp, dy),

(5.28)
I Qum 11> = 18pmI* + lldwnml>,  1QUnll* = 185w lI> + d w12, (5.29)
I ditm || = d8pmll, 180 || = 18d iy | (5.30)

forallm = 1,2, ... and that

8pm — 8p, 8pm — 8p, dwy — dw, di, — d weakly in L*()!
(5.31)

as m — oo. Notice that d Pa = 0 and 8 Pa = 0 for all @ € L*(2)".
Moreover, similarly to Proposition 4.1, we have

Proposition 5.3. 1. The sequence {3py};,._, is bounded in H L)
2. The sequence {dwy,}_, is bounded in HY(Q).

For a moment, let us assume this proposition. Then by (5.31) and the Rellich
compactness theorem we have that

8pm — 8p, di, — dw strongly in L?(Q)*,
and, hence, again by (5.31) and (5.28) it holds that

(Qupm, Quy) — (Qu, Quv) asm — oo,

which implies (4.5).
Now, it remains to prove Proposition 5.3.

Proof of Proposition 5.3. 1. Since Pu,, € Ker(S) C D(S), wehave t(Pu,) =0
on d€2. Hence, it follows from (5.27) and Proposition 5.2 (1) that

T(0pm) = t(Quym — dwy,) = t(Quy) = Ty, m=1,2,....
By (5.19), (5.23), (5.29) and (5.30) we have

19 Gpm)ll+ 18wl < CAUd@pmll + 8@ + 18Pl + TGPl 3
<
< Clldup | + 11 Qunll + izunl g
<
< Clldunll + |l + ztmll g )

forallm =1, 2, .. .. Then by the hypotheses (i), (ii) and (iii), it holds that

sup  (IVGpm) |l + 18pmll) < oo,

m=1,2,...

which implies the assertion (1).
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2. By Proposition 5.2 (1), we have tw,, = 0 on €2, and, hence, it follows from

(5.19), (5.23), (5.29) and (5.30) that

IV (dwm) |+ lldwml = C(lld(@dim) |48 d D) |+ ld Wy |+l (dBp)ll 1)

H2 Q)
< CIBvmll + 1 QumlD)
< C(18vmll + Nlvm D

forallm =1, 2, .. .. Then by the hypotheses (i) and (ii), it holds that

sup  (IV(dwm) |l + ldwm ) < oo,

m=1,2,...

which implies the assertion (2). This proves Proposition 5.3.

Now, we complete the proof of Corollary 5.4 under the hypothesis that {Tu,, }5_,

is bounded in H% (BSZ)I. In the case when {vv,,}>°_, is bounded in H% (BQ)Z, in-
stead of S and S*, we make use of the operators T and T* in (5.22) with the aid
of Propositions 5.1 and 5.2 (2). Since the argument of the proof is quite parallel to
that of the above case, we may omit it. This completes the proof of Corollary 5.4.
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