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Abstract

The authors establish a Serrin-type blowup criterion for the Cauchy problem of
the three-dimensional full compressible Navier–Stokes system, which states that a
strong or smooth solution exists globally, provided that the velocity satisfies Serrin’s
condition and that the temporal integral of the maximum norm of the divergence
of the velocity is bounded. In particular, this criterion extends the well-known
Serrin’s blowup criterion for the three-dimensional incompressible Navier–Stokes
equations to the three-dimensional full compressible system and is just the same as
that of the barotropic case.

1. Introduction

The motion of a compressible viscous, heat-conductive, ideal polytropic fluid
occupying a spatial domain � ⊂ R

3 is governed by the following full compressible
Navier–Stokes system:

⎧
⎪⎨

⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) − μΔu − (μ + λ)∇divu + ∇ P = 0,

cv[(ρθ)t + div(ρuθ)] − κΔθ + Pdivu = 2μ|D(u)|2 + λ(divu)2.

(1.1)

Here t � 0 is time, x ∈ � is the spatial coordinate, and ρ, u = (
u1, u2, u3

)tr
, θ,

and P = Rρθ (R > 0) represent, respectively, the fluid density, velocity, absolute
temperature, and pressure. In addition, D(u) is the deformation tensor

D(u) = 1

2
(∇u + (∇u)tr).

The constant viscosity coefficients μ and λ satisfy the physical restrictions

μ > 0, 2μ + 3λ � 0. (1.2)
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Positive constants cv and κ are, respectively, the heat capacity and the ratio of the
heat conductivity coefficient over the heat capacity.

Let � = R
3. For constants ρ̃ � 0 and θ̃ � 0, we consider the Cauchy problem

to (1.1) with the far field behavior:

(ρ, u, θ)(x, t) → (ρ̃, 0, θ̃ ) as |x | → ∞, (1.3)

and initial data

(ρ, u, θ)|t=0 = (ρ0, u0, θ0), x ∈ R
3. (1.4)

There is a considerable body of literature on the large time existence and behav-
ior of solutions to (1.1). The one-dimensional problem with strictly positive initial
density and temperature has been studied extensively by many people, see [15,16]
and the references therein. For the multi-dimensional case, the local existence and
uniqueness of classical solutions are shown in [19,22] in the absence of vacuum.
Recently, Cho and Kim [2] obtained the local existence and uniqueness of strong
solutions for the case in which the initial density need not be positive and may
vanish in open sets. The global classical solutions were first obtained by Matsum-
ura and Nishida [18] for initial data close to a non-vacuum equilibrium in some
Sobolev space Hs . Later, Hoff [6,7] studied the global weak solutions with strictly
positive initial density and temperature for discontinuous initial data.

On the other hand, in the presence of a vacuum, this issue becomes much more
complicated. Concerning viscous compressible fluids in a barotropic regime, where
the state of these fluids at each instant t > 0 is completely determined by the density
ρ = ρ(x, t) and the velocity u = u(x, t), the pressure P being an explicit function
of the density, the major breakthrough is due to Lions [17] (see also Feireisl [4,5]),
who obtained global existence of weak solutions, defined as solutions with finite
energy, when the pressure P(ρ) = aργ (a > 0, γ > 1) with suitably large γ. The
main restriction on initial data is that the initial energy is finite. Recently, Huang
et al. [13] established the global existence and uniqueness of classical solutions
to the Cauchy problem for the isentropic compressible Navier–Stokes equations
in three-dimensional space with smooth initial data which are of small energy but
possibly large oscillations; in particular, the initial density is allowed to vanish,
and even has compact support. This result can be regarded as a uniqueness and
regularity theory of Lions–Feireisl’s weak solutions in [4,5,17] with small initial
energy. More recently, for ρ̃ > 0 and θ̃ > 0, Huang and Li [10] obtained both
the global classical solutions (which are unique) and the global weak ones to the
Cauchy problem (1.1)–(1.4) which may have large oscillations, provided the ini-
tial energy is suitably small; in particular, the initial density may contain vacuum
states. For ρ̃ = 0 and θ̃ = 0, Xin [26] first showed that in the case where the initial
density has compact support, any smooth solution to the Cauchy problem of the
full compressible Navier–Stokes system without heat conduction blows up in finite
time. See also the recent generalizations to the cases for non-compact but rapidly
decreasing at far field initial densities [21].

It is thus important to study the mechanism of blowup and the structure of pos-
sible singularities of strong (or smooth) solutions to the full compressible Navier–
Stokes system (1.1). The pioneering work can be traced to Serrin’s criterion [23]
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on the Leray–Hopf weak solutions to the three-dimensional incompressible Navier–
Stokes equations, which states that if a weak solution u satisfies u ∈ Ls(0, T ; Lr ),
with

2

s
+ 3

r
� 1, 3 < r � ∞, (1.5)

then it is regular. Recently, this criterion was extended to the barotropic compress-
ible Navier–Stokes equations by Huang et al. [11], who showed that if T ∗ < ∞
is the maximal time of existence of a strong (or classical) solution (ρ, u), then

lim
T →T ∗

(
‖divu‖L1(0,T ;L∞) + ‖ρ1/2u‖Ls (0,T ;Lr )

)
= ∞,

with r and s as in (1.5). For more information on the blowup criteria of barotrop-
ic compressible flows, we refer to [8,11,12,14,24] and the references therein. In
particular, Huang [8] and Huang–Xin [14] first established a blowup criterion,
analogous to the Beale–Kato–Majda criterion for the ideal incompressible flows,
for the strong and classical solutions to the viscous compressible barotropic flows

lim
T →T ∗

∫ T

0
‖∇u‖L∞ dt = ∞,

provided

7μ > λ. (1.6)

Later Fan et al. [3] extended the results of [8,14] to the full compressible Navier–
Stokes system (1.1), that is, under the condition (1.6), if T ∗ < ∞ is the maximal
time of existence of a strong (or classical) solution (ρ, u, θ), then

lim
T →T ∗(‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞)) = ∞.

Recently, under just the physical restrictions (1.2), Huang and Li [9] and Huang
et al. [12] succeeded in removing the crucial condition (1.6) of [3,8,14] and in
establishing the following blowup criterion:

lim
T →T ∗

(‖θ‖L2(0,T ;L∞) + ‖D(u)‖L1(0,T ;L∞)

) = ∞,

where D(u) is the deformation tensor. More recently, in the absence of a vacuum,
Sun et al. [25] showed that

lim
T →T ∗

(

‖θ‖L∞(0,T ;L∞) +
∥
∥
∥

(
ρ, ρ−1

)∥
∥
∥

L∞(0,T ;L∞)

)

= ∞,

provided that (1.6) holds.
The aim of this paper is to improve all the previous blowup criterion results

for the full compressible Navier–Stokes system (1.1) by removing the stringent
condition (1.6), by allowing initial vacuum states, and furthermore, by describing
the blowup mechanism only in terms of a Serrin-type criterion. Before stating our
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main result, we first explain the notations and conventions used throughout this
paper. We denote

∫

f dx =
∫

R3
f dx .

For 1 � p � ∞ and integer k � 0, the standard homogeneous and inhomogeneous
Sobolev spaces are denoted by:
{

L p = L p(R3), W k,p = W k,p(R3), Hk = W k,2,

D1 = {
u ∈ L6

∣
∣ ‖∇u‖L2 < ∞}

, Dk,p = {
u ∈ L1

loc(R
3)

∣
∣ ‖∇ku‖L p < ∞}

.

Then, the strong solutions to the Cauchy problem, (1.1)–(1.4), are defined as fol-
lows.

Definition 1. (Strong Solutions) For ρ̃ � 0 and θ̃ = 0, (ρ, u, θ) is called a strong
solution to (1.1) in R

3 × (0, T ), if for some q0 > 3,
⎧
⎪⎨

⎪⎩

ρ � 0, ρ − ρ̃ ∈ C([0, T ]; W 1,q0), ρt ∈ C([0, T ]; Lq0),

(u, θ) ∈ C([0, T ]; D1 ∩ D2,2) ∩ L2(0, T ; D2,q0),

(ut , θt ) ∈ L2(0, T ; D1), (
√

ρut ,
√

ρθt ) ∈ L∞(0, T ; L2)

and (ρ, u, θ) satisfies (1.1) almost everywhere in R
3 × (0, T ).

Our main result can be stated as follows:

Theorem 1. Let ρ̃ � 0 and θ̃ = 0. For q̃ ∈ (3, 6], assume that the initial data
(ρ0 � 0, u0, θ0 � 0) satisfy

ρ0 − ρ̃ ∈ H1 ∩ W 1,q̃ , (u0, θ0) ∈ D1 ∩ D2,2, ρ0θ
2
0 ∈ L1, (1.7)

and the compatibility conditions

−μΔu0 − (μ + λ)∇divu0 + R∇(ρ0θ0) = √
ρ0g1, (1.8)

κΔθ0 + μ

2
|∇u0 + (∇u0)

tr |2 + λ(divu0)
2 = √

ρ0g2, (1.9)

with g1, g2 ∈ L2. Let (ρ, u, θ) be a strong solution to the Cauchy problem (1.1)–
(1.4). If T ∗ < ∞ is the maximal time of existence, then

lim
T →T ∗

(‖div u‖L1(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )

) = ∞, (1.10)

with r and s as in (1.5).

A few remarks are in order:

Remark 1. The criterion (1.10) consists of two parts: the compressibility of the
fluid and Serrin’s criterion for incompressible Navier–Stokes equations. Therefore,
Theorem 1 can be regarded as the Serrin-type blowup criterion for the
three-dimensional full compressible Navier–Stokes system.
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Remark 2. It is worth noting that the conclusion in Theorem 1 is somewhat sur-
prising, since the criterion (1.10) is just the same as that of barotropic case [11];
in particular, it is independent of the temperature. In fact, as indicated by Sun
et al. [25], it seems that the nonlinearity of the highly nonlinear terms |D(u)|2
and (divu)2 in the temperature equation is stronger than that of div(ρu ⊗ u) in
the momentum ones. However, (1.10) shows that the nonlinear term |∇u|2 can be
controlled, provided one can control div(ρu ⊗ u).

Remark 3. Theorem 1 also holds for classical solutions to the three-dimensional
full compressible Navier–Stokes system.

We now comment on the analysis of this paper. Let (ρ, u, θ) be a strong solution
described in Theorem 1. Suppose that (1.10) were false, that is,

lim
T →T ∗

(‖divu‖L1(0,T ;L∞) + ‖u‖Ls (0,T ;Lr )

)
� M0 < +∞. (1.11)

We want to show that indeed

sup
0�t�T ∗

(‖ρ − ρ̃‖H1∩W 1,q̃ + ‖∇u‖H1 + ‖∇θ‖H1
)

� C < +∞.

Since the methods in all previous works [3,9,25] depend crucially on the L∞
t L∞

x -
norm or L2

t L∞
x -norm of the temperature θ, some new ideas are needed to recover all

the a priori estimates under only the assumption (1.11) without any a priori bounds
on the temperature. In fact, we prove (see Lemma 6) that a control of the Serrin
norm of the velocity and the L1

t L∞
x of the divergence of the velocity u implies a

control on the L∞
t L2

x norm of ∇u. The main idea, in order to obtain this control, is
that good bounds on the temperature θ can be obtained by multiplying the equation
for the temperature θ and those for the momentum ρu by θ and uθ , respectively
(see (3.4) and (3.5)). This is the key to the proof, and once that is obtained, the
proof follows in the same way as in our previous paper [10].

The rest of the paper is organized as follows: in the next section, we collect
some elementary facts and inequalities that will be needed later. The main result,
Theorem 1, is proved in Section 3.

2. Preliminaries

In this section, we recall some known facts and elementary inequalities that will
be used later. We begin with the local existence and uniqueness of strong solutions
when the initial density might not be positive and may vanish in an open set.

Lemma 1. ([2]) Assume that the initial data (ρ0 � 0, u0, θ0 � 0) satisfy (1.7)–
(1.9). Then there exists a positive time T1 ∈ (0,∞) and a unique strong solution
(ρ, u, θ) to the Cauchy problem (1.1)–(1.4) on R

3 × (0, T1].
Next, we recall the well-known Sobolev inequality, which will be frequently

used later (see [20]).
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Lemma 2. For p ∈ (1,∞) and q ∈ (3,∞), there exists a generic constant C > 0,
which depends only on p and q, such that for f ∈ D1 and g ∈ L p ∩ D1,q , we have

‖ f ‖L6 � C‖∇ f ‖L2 , ‖g‖L∞ � C‖g‖L p + C‖∇g‖Lq . (2.1)

We now state an elementary estimate which follows directly from the stan-
dard L p-estimate for the following elliptic system derived from the momentum
equations, (1.1)2:

ΔG = div(ρu̇), μΔω = ∇ × (ρu̇),

where

ḟ � ft + u · ∇ f, G � (2μ + λ)divu − P, ω � ∇ × u, (2.2)

are the material derivative of f, the effective viscous flux, and the vorticity, respec-
tively.

Lemma 3. Let (ρ, u, θ) be a smooth solution to (1.1) (1.3). Then there exists a
generic positive constant C depending only on μ such that for any p ∈ [2, 6],

‖∇G‖L p + ‖∇ω‖L p � C‖ρu̇‖L p . (2.3)

Finally, the following Beale–Kato–Majda-type inequality, which can be found
in [11] and was first proved in [1] when divu = 0, will be used later to estimate
‖∇u‖L∞ and ‖∇ρ‖L2∩Lq .

Lemma 4. For 3 < q < ∞, there exists a constant C(q) > 0 such that the
following estimate holds for all ∇u ∈ L2 ∩ D1,q:

‖∇u‖L∞ �C(‖divu‖L∞ + ‖∇ × u‖L∞) log(e + ‖∇2u‖Lq )

+ C‖∇u‖L2 + C.
(2.4)

3. Proof of Theorem 1

Before proving Theorem 1, we state some a priori estimates under the condition
(1.11). First, the following upper bound of the density follows immediately from
both (1.11) and (1.1) (see [11, Lemma 3.4]).

Lemma 5. Assume that (1.11) holds. Then it holds that for 0 � T < T ∗,

sup
0�t�T

‖ρ‖L∞ � C, (3.1)

where (and in what follows) C, C1, and C2 denote generic constants depending
only on M0, μ, λ, R, κ, cv, T ∗, and the initial data.
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Then, we derive the following key estimate on the L∞(0, T ; L2)-norm of ∇u.

Lemma 6. Under the condition (1.11), it holds that for 0 � T < T ∗,

sup
0�t�T

∫ (
(ρ − ρ̃)2 + ρθ2 + |∇u|2

)
dx

+
∫ T

0

∫ (
|∇θ |2 + ρ|u̇|2

)
dx dt � C. (3.2)

Proof. First, applying the standard maximum principle to (1.1)3, together with
θ0 � 0 (see [3,4]), shows that

inf
R3×[0,T ]

θ(x, t) � 0. (3.3)

Multiplying (1.1)3 by θ and integrating the resulting equation over R
3 lead to

cv

d

dt

∫

ρθ2 dx + 2κ‖∇θ‖2
L2 � C‖divu‖L∞

∫

ρθ2 dx + C
∫

θ |∇u|2 dx . (3.4)

To estimate the last term on the right-hand side of (3.4), we multiply (1.1)2 by uθ

and integrate the resulting equation over R
3 to obtain

μ

∫

θ |∇u|2 dx � η

∫

ρ|u̇|2 dx + Cε‖∇θ‖2
L2 + C‖divu‖L∞

∫

ρθ2 dx

+C(ε)

∫

|u|2|∇u|2 dx + C(ε, η)

∫

ρθ2|u|2 dx, (3.5)

where we have used
∫

|ρu̇ · uθ | dx � η

∫

ρ|u̇|2 dx + C(η)

∫

ρθ2|u|2 dx,

∣
∣
∣
∣

∫

∇ Puθ dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Pθdivu dx +
∫

Pu · ∇θ dx

∣
∣
∣
∣

� ε‖∇θ‖2
L2 + C‖divu‖L∞

∫

ρθ2 dx + C(ε)

∫

ρθ2|u|2 dx,

and
∫

(μΔu + (μ + λ)∇divu)uθ dx

� −
∫ (

μθ |∇u|2 + (μ + λ)θ(divu)2
)

dx + C
∫

|∇θ ||u||∇u| dx

� −
∫

μθ |∇u|2 dx + ε‖∇θ‖2
L2 + C(ε)

∫

|u|2|∇u|2 dx .

Combining (3.5) with (3.4), we obtain, after choosing ε suitably small, that

cv

d

dt

∫

ρθ2 dx +
∫ (

θ |∇u|2 + κ|∇θ |2
)

dx

� Cη

∫

ρ|u̇|2 dx + C‖divu‖L∞
∫

ρθ2 dx

+C(η)

∫ (
ρθ2|u|2 + |u|2|∇u|2

)
dx . (3.6)
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Next, multiplying (1.1)2 by ut and integrating the resulting equation over R
3

show that

1

2

d

dt

∫ (
μ|∇u|2 + (μ + λ)(divu)2

)
dx +

∫

ρ|u̇|2 dx

=
∫

ρu̇ · (u · ∇)u dx +
∫

Pdivut dx

� 1

4

∫

ρ|u̇|2 dx + C
∫

|u|2|∇u|2 dx + d

dt

∫

Pdivu dx −
∫

Pt divu dx

= 1

4

∫

ρ|u̇|2 dx + C
∫

|u|2|∇u|2 dx + d

dt

∫

Pdivu dx

− 1

2(2μ + λ)

d

dt

∫

P2 dx − 1

2μ + λ

∫

Pt G dx . (3.7)

Noticing that (1.1)3 and (2.3) lead to
∣
∣
∣
∣

∫

Pt G dx

∣
∣
∣
∣

= R

cv

∣
∣
∣
∣

∫ (
−cvdiv(ρθu) + κΔθ − Pdivu + 2μ|D(u)|2 + λ(divu)2

)
G dx

∣
∣
∣
∣

� C
∫

|∇G| (ρθ |u| + |∇θ |) dx + C‖divu‖L∞
(

‖∇u‖2
L2 +

∫

ρθ2 dx

)

+ C
∫

θ |∇u|2 dx

� δ

∫

ρ|u̇|2 dx + C(δ)‖∇θ‖2
L2 + C(δ)

∫

ρ2|u|2θ2 dx + C
∫

θ |∇u|2 dx

+ C‖divu‖L∞
(

‖∇u‖2
L2 +

∫

ρθ2 dx

)

,

after choosing δ suitably small, we obtain from (3.7) that

d

dt

∫

H(x, t) dx +
∫

ρ|u̇|2 dx

� C1

∫ (
θ |∇u|2 + κ|∇θ |2

)
dx + C

∫

ρ2|u|2θ2 dx

+C
∫

|u|2|∇u|2 dx + C‖divu‖L∞
(

‖∇u‖2
L2 +

∫

ρθ2 dx

)

, (3.8)

where

H(x, t) � μ|∇u|2 + (μ + λ)(divu)2 − 2Pdivu + P2

2μ + λ
.

Then, choosing constant C2 � C1 + 1 suitably large such that

μ|∇u|2 − 2Pdivu + C2cvρθ2 � μ

2
|∇u|2 + ρθ2, (3.9)
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and adding (3.6) multiplied by C2 to (3.8), we have, after choosing η suitably small,
that

d

dt

∫ (
H + C2cvρθ2

)
dx

+1

2

∫

ρ|u̇|2 dx +
∫ (

θ |∇u|2 + κ|∇θ |2
)

dx

� C‖divu‖L∞
∫ (

|∇u|2 + ρθ2
)

dx

+C
∫ (

ρθ2|u|2 + |u|2|∇u|2
)

dx . (3.10)

Hölder’s inequality and (2.3) yield that for r, s as in (1.5),
∫ (

ρθ2|u|2 + |u|2|∇u|2
)

dx

� C‖u‖2
Lr

(
‖ρ1/2θ‖2(1−3/r)

L2 ‖θ‖6/r
L6 + ‖∇u‖2(1−3/r)

L2 ‖∇u‖6/r
L6

)

� C(δ)(1 + ‖u‖s
Lr )

(
‖∇u‖2

L2 + ‖ρ1/2θ‖2
L2

)

+δ
(
‖ρ1/2u̇‖2

L2 + ‖∇θ‖2
L2

)
, (3.11)

where in the second inequality, we have used the following simple fact:

‖∇u‖L6 � C(‖G‖L6 + ‖ω‖L6 + ‖P‖L6)

� C(‖∇G‖L2 + ‖∇ω‖L2 + ‖θ‖L6)

� C‖ρ1/2u̇‖L2 + C‖∇θ‖L2 , (3.12)

due to (2.1) and (2.3). Combining (3.10) with (3.11), we obtain, after choosing δ

suitably small and using Gronwall’s inequality, (3.9), and (1.11) that

sup
0�t�T

∫ (
ρθ2 + |∇u|2

)
dx +

∫ T

0

∫ (
|∇θ |2 + ρ|u̇|2

)
dx dt � C. (3.13)

Finally, since ρ − ρ̃ satisfies

(ρ − ρ̃)t + div((ρ − ρ̃)u) + ρ̃divu = 0. (3.14)

Multiplying (3.14) by ρ − ρ̃ and integrating the resulting equation over R
3, then

using (3.1), we obtain

(‖ρ − ρ̃‖2
L2)

′(t) � C‖ρ − ρ̃‖2
L2 + C‖∇u‖2

L2 ,

which together with (3.13) yields (3.2). The proof of Lemma 6 is completed.
Finally, the following Lemma 7 will deal with the higher order estimates of the

solutions which are needed to guarantee the extension of a local strong solution to
a global one under the conditions (1.7)–(1.9) and (1.11).
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Lemma 7. Under the condition (1.11), it holds that for 0 � T < T ∗,

sup
0�t�T

(‖ρ − ρ̃‖H1∩W 1,q̃ + ‖∇u‖H1 + ‖∇θ‖H1) � C. (3.15)

To prove Lemma 7, we need the following estimates on both u̇ and θ̇ , whose
proofs are omitted here since they are similar to those of Lemma 4.1 and (4.28) in
[10].

Lemma 8. Under the condition (1.11), it holds that for 0 � T < T ∗,

sup
0�t�T

∫ (
|∇θ |2+ρ|u̇|2

)
dx+

∫ T

0

∫ (
ρθ̇2+|∇u̇|2

)
dx dt �C, (3.16)

sup
0�t�T

‖ρ1/2θ̇‖L2 +
∫ T

0
‖∇ θ̇‖2

L2 dt � C. (3.17)

Proof of Lemma 7 Following [10,11], we will prove Lemma 7. First, it follows
from (3.2) and (3.16) that for any δ ∈ (0, 1],

∫

θ2|∇u|2 dx � C‖θ‖2
L∞‖∇u‖2

L2 � δ‖∇2θ‖2
L2 + C(δ).

This, along with the standard L2-estimate of (1.1)3, gives

‖∇2θ‖2
L2 � C

∫

ρθ̇2 dx + C
∫

ρ2θ2|∇u|2 dx + C
∫

|∇u|4 dx

� C
∫

ρθ̇2 dx + Cδ‖∇2θ‖2
L2 + C(δ) + C

∫

|∇u|4 dx,

which together with (3.16), (3.17), and (3.12) shows

sup
0�t�T

‖∇θ‖H1 � C. (3.18)

It thus follows from (2.1)–(2.3) and (3.18) that
∫ T

0

(
‖divu‖2

L∞ + ‖ω‖2
L∞

)
dt

� C
∫ T

0
(‖G‖2

L∞ + ‖ω‖2
L∞ + ‖P‖2

L∞) dt + C

� C
∫ T

0
(‖G‖2

L2 + ‖∇G‖2
L6 + ‖ω‖2

L2 + ‖∇ω‖2
L6) dt

+C
∫ T

0
‖θ‖2

L∞ dt + C

� C
∫ T

0
‖ρu̇‖2

L6 dt + C

� C. (3.19)
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Next, for 2 � p � q̃ , |∇ρ|p satisfies

(|∇ρ|p)t + div(|∇ρ|pu) + (p − 1)|∇ρ|pdivu

+ p|∇ρ|p−2(∇ρ)tr∇u(∇ρ) + pρ|∇ρ|p−2∇ρ · ∇divu = 0.

This yields that

d

dt
‖∇ρ‖L p � C(1 + ‖∇u‖L∞)‖∇ρ‖L p + C‖∇2u‖L p

� C(1 + ‖∇u‖L∞)‖∇ρ‖L p + C‖∇u̇‖L2 + C, (3.20)

where we have used

‖∇2u‖L p � C (‖ρu̇‖L p + ‖∇ P‖L p )

� C
(‖ρu̇‖L2 + ‖∇u̇‖L2 + ‖∇ρ‖L p

) + C

� C
(
1 + ‖∇u̇‖L2 + ‖∇ρ‖L p

)
, (3.21)

due to (3.16) and (3.18). It thus follows from (2.4), (3.2), and (3.21) that

‖∇u‖L∞ � C + C(‖divu‖L∞ + ‖ω‖L∞) ln(e + ‖∇2u‖Lq̃ )

� C + C(‖divu‖L∞ + ‖ω‖L∞) ln(e + ‖∇ρ‖Lq̃ )

+C(‖divu‖L∞ + ‖ω‖L∞) ln(e + ‖∇u̇‖L2). (3.22)

We thus deduce from (3.22) and (3.20) that

f ′(t) � Cg(t) f (t) ln f (t), (3.23)

with
{

f (t) � e + ‖∇ρ‖Lq̃ ,

g(t) � (1 + ‖∇u̇‖L2 + ‖divu‖L∞ + ‖ω‖L∞) ln(e + ‖∇u̇‖L2).

It follows from (3.23), (3.19), (3.16), and Gronwall’s inequality that

sup
0�t�T

‖∇ρ‖Lq̃ � C, (3.24)

which combined with (3.22), (3.16), and (3.19) directly gives
∫ T

0
‖∇u‖L∞ dt � C. (3.25)

Taking p = 2 in (3.20), we get, by using (3.25), (3.16), and Gronwall’s inequality,
that

sup
0�t�T

‖∇ρ‖L2 � C, (3.26)

which together with (3.21) and (3.18) yields

sup
0�t�T

‖∇2u‖L2 � C sup
0�t�T

(‖ρu̇‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2
)

� C.

This, along with (3.24), (3.26), and (3.2), finishes the proof of Lemma 7.
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Now we are in a position to prove Theorem 1.

Proof of Theorem 1 Suppose that (1.10) were false, that is, (1.11) holds. Since
the generic constant C in Lemma 7 remains uniformly bounded for all T < T ∗, the
functions (ρ, u, θ)(x, T ∗) � limt→T ∗(ρ, u, θ)(x, t) satisfy the conditions imposed
on the initial data (1.7) at the time t = T ∗. Furthermore, standard arguments yield
that ρu̇, ρθ̇ ∈ C([0, T ]; L2), which implies

(ρu̇, ρθ̇)(x, T ∗) = lim
t→T ∗(ρu̇, ρθ̇) ∈ L2.

Hence, we have

−μΔu − (μ + λ)∇divu + R∇(ρθ)|t=T ∗ = √
ρ(x, T ∗)g1(x),

κΔθ + μ

2
|∇u + (∇u)tr |2 + λ(divu)2|t=T ∗ = √

ρ(x, T ∗)g2(x),

with

g1(x) �
{

ρ−1/2(x, T ∗)(ρu̇)(x, T ∗), for x ∈ {x |ρ(x, T ∗) > 0},
0, for x ∈ {x |ρ(x, T ∗) = 0},

and

g2(x) �
{

ρ−1/2(x, T ∗)[cvρθ̇ + Rρθdivu](x, T ∗), for x ∈ {x |ρ(x, T ∗) > 0},
0, for x ∈ {x |ρ(x, T ∗) = 0},

satisfying g1, g2 ∈ L2 due to (3.16), (3.17), and (3.15). Thus, (ρ, u, θ)(x, T ∗) also
satisfies (1.8) and (1.9). Therefore, one can take (ρ, u, θ)(x, T ∗) as the initial data
and apply Lemma 1 to extend the local strong solution beyond T ∗. This contradicts
the assumption on T ∗. The proof of Theorem 1 is finished.
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