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Abstract

We study the qualitative behavior of a thermodynamically consistent two-phase
Stefan problem with surface tension and with or without kinetic undercooling. It
is shown that these problems generate local semiflows in well-defined state man-
ifolds. If a solution does not exhibit singularities in a sense made precise herein,
it is proved that it exists globally in time and its orbit is relatively compact. In
addition, stability and instability of equilibria are studied. In particular, it is shown
that multiple spheres of the same radius are unstable, reminiscent of the onset of
Ostwald ripening.

1. Introduction

The Stefan problem is a model for phase transitions in liquid–solid systems
that accounts for heat diffusion and exchange of latent heat in a homogeneous
medium. The strong formulation of this model corresponds to a free boundary
problem involving a parabolic diffusion equation for each phase and transmission
conditions prescribed at the interface separating the phases.

(i) In order to describe the physical situation, let us consider a domain � that
is occupied by a liquid and a solid phase, say water and ice, that are separated by
an interface �. Due to melting or freezing, the corresponding regions occupied by
water and ice will change and, consequently, the interface � will also change its
position and shape. This leads to a free boundary problem.

The basic physical law governing this process is conservation of energy. The
unknowns are the temperatures vi , i = 1, 2, of the two phases, and the position of
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the interface � separating the phases. The conservation laws can then be expressed
by a diffusion equation for vi in the respective regions �i occupied by the differ-
ent phases, and by the so-called Stefan condition which accounts for the exchange
of latent heat due to melting or solidifying. In the classical Stefan problem one
assumes, in addition, that the temperatures vi coincide with the melting tempera-
ture at the interface � (where the two phases are in contact), that is, one requires

v1 = v2 = 0 on �, (1.1)

where 0 is the (properly scaled) melting temperature. Molecular considerations
suggest that the condition (1.1) on the free boundary � be replaced by the Gibbs–
Thomson correction

v1 = v2 = −σH on �, (1.2)

where σ is a positive constant, called surface tension, and where H denotes the
mean curvature of �. We will occasionally refer to the Stefan problem with condi-
tion (1.2) as the classical Stefan problem with surface tension.

It should be emphasized that the Stefan problem with Gibbs–Thomson correc-
tion (1.2) differs from the classical Stefan problem in a much more fundamental
way than just in the modification of an interface condition. This becomes evident,
for instance, by the fact that the classical Stefan problem allows for a comparison
principle, a property that is no longer shared by the Stefan problem with surface
tension. A striking difference is also provided by the fact that in the classical Stefan
model, the temperature completely determines the phases, that is, the liquid region
can be characterized by the condition v > 0, whereas v < 0 characterizes the solid
region. The inclusion of surface tension will no longer allow us to determine the
phases merely by the sign of v.

The main reason for introducing the Gibbs–Thomson correction (1.2) stems
from the need to account for so-called supercooling, in which a fluid supports
temperatures below its freezing point, or superheating, the analogous phenomena
for solids; or dendrite formation, in which simple shapes evolve into complicated
tree-like structures. The effect of supercooling can be on the order of hundreds
of degrees for certain materials, see [15, Chapter 1] and [95]. We also refer to
[14,15,32,36–38,42,52,63,64,94] for additional information.

The Stefan problem has been studied in the mathematical literature for over
a century, see [58,87] and [95, pp. 117–120] for a historic account. The classical
Stefan problem is known to admit unique long time weak solutions, see for instance
[29,30,45] and [51, pp. 496–503]. It is important to point out that the existence of
weak solutions is closely tied to the maximum principle.

Important results concerning the regularity of weak solutions for the multidi-
mensional classical one-phase Stefan problem were established in [10,11,13,31,
46,47,62], and regularity results for the classical two-phase Stefan problem are
contained in [7,8,12,22,23,73,88,96], to list only a few references. We remark
that classical solutions for the Stefan problem with condition (1.1) were first estab-
lished in [41,57]. We also refer to [75] for a more detailed account of the literature
concerning the classical Stefan problem. Although the Stefan problem with the
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Gibbs–Thomson correction (1.2) has been around for many decades, only few ana-
lytical results concerning existence, regularity and qualitative properties of solu-
tions are known. The authors in [32] consider the case with small surface tension
0 < σ � 1 and linearize the problem about σ = 0. Assuming the existence of
smooth solutions for the case σ = 0, that is, for the classical Stefan problem, the
authors prove existence and uniqueness of a weak solution for the linearized prob-
lem and then investigate the effect of small surface tension on the shape of �(t).
Existence of long time weak solutions is established in [5,54,85]. A more detailed
discussion will be given below. A proof for existence—without uniqueness—of
local time classical solutions is obtained in [83,84]. In [59], the way in which a
spherical ball of ice in a supercooled fluid melts down is investigated. The case of
a strip-like geometry, where the free surface � is given as the graph of a function,
is considered in [28], and existence as well as uniqueness of local time classical
solutions is established. Moreover, it is shown that solutions instantaneously regu-
larize to become analytic in space and time. The approach is based on the theory of
maximal regularity, which also forms the basis for the local existence theory in the
current paper. In [79] linearized stability and instability of equilibria are studied.
Finally, the authors in [39] consider a strip-like geometry over a torus and establish
asymptotic stability of flat surfaces.

If the diffusion equation ∂tvi −�vi = 0 in�i is replaced by the elliptic equation
�vi = 0, then the resulting problem is the quasi-stationary Stefan problem with sur-
face tension, which has also been termed the Mullins–Sekerka problem (or the Hele–
Shaw problem with surface tension). Existence, uniqueness, regularity (and global
existence in some cases) of classical solutions for the quasi-stationary approxi-
mation has recently been investigated in [9,16,17,24–27,33]. Global existence of
weak solutions has been established in [86], see also [34,56] for related results.

The challenge of developing efficient and accurate numerical methods for free
boundary problems arising from sharp-interface theories has recently driven the
development of regularized diffuse-interface, or phase field, theories. It is of utmost
importance to have a through understanding of the sharp-interface models in order
to evaluate the quality of predictions of the associated phase field models. As
remarked in [6], a phase field theory may, in general, possess a variety of sharp-
interface limits, and in the absence of a sound sharp-interface theory to serve as a
target, the problem of developing a physically meaningful diffuse-interface theory
is ill-posed.

(ii) In this paper we consider a general model for phase transitions that is ther-
modynamically consistent, following the ideas in [6] and [44], see also [36–38]
for earlier work. It involves the thermodynamic quantities of absolute tempera-
ture, free energy, internal energy, and entropy, and is complemented by constitutive
equations for the free energies and the heat fluxes in the bulk regions. An important
assumption is that there be no entropy production on the interface. In particular,
the interface is assumed to carry no mass and no energy except surface tension.

To be more precise, let � ⊂ R
n be a bounded domain of class C2, n � 2.

� is occupied by a material that can undergo phase changes: at time t , phase i
occupies the subdomain �i (t) of �, respectively, with i = 1, 2. We assume that
∂�1(t) ∩ ∂� = ∅; this means that no boundary contact can occur. The closed
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compact hypersurface�(t) := ∂�1(t) ⊂ � forms the interface between the phases.
By the Stefan problem with surface tension we mean the following problem: find
a family of closed compact hypersurfaces {�(t)}t�0 contained in � and an appro-

priately smooth function u : R+ × �̄ → R such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(u)∂t u − div(d(u)∇u) = 0 in � \ �(t)
∂ν�u = 0 on ∂�

[[u]] = 0 on �(t)

[[ψ(u)]] + σH = γ (u)V on �(t)

[[d(u)∂νu]] = (l(u)− γ (u)V )V on �(t)

u(0) = u0

�(0) = �0.

(1.3)

Here u(t) denotes the (absolute) temperature, ν(t) the outer normal field of
�1(t), V (t) the normal velocity of �(t),H(t) = H(�(t)) = −div�(t)ν(t)/(n − 1)
the mean curvature of �(t), and [[v]] = v2|�(t) − v1|�(t) the jump of a quantity v
across �(t). The sign of the mean curvature H is chosen to be negative at a point
x ∈ � if �1 ∩ Br (x) is convex for some sufficiently small r > 0. Thus if �1 is a
ball of radius R then H = −1/R for its boundary �.

Several quantities are derived from the free energies ψi (u) as follows:

• εi (u) = ψi (u)+ uηi (u), the internal energy in phase i ,
• ηi (u) = −ψ ′

i (u), the entropy,
• κi (u) = ε′i (u) = −uψ ′′

i (u) > 0, the heat capacity,
• l(u) = u[[ψ ′(u)]] = −u[[η(u)]], the latent heat.

Furthermore, di (u) > 0 denotes the coefficient of heat conduction in Fourier’s
law, γ (u) � 0 the coefficient of kinetic undercooling, and σ > 0 the coefficient
of surface tension. As is commonly done, we assume that there exists a unique
(constant) melting temperature um, characterized by the equation [[ψ(um)]] = 0.
Finally, system (1.3) is to be completed by constitutive equations for the free ener-
gies ψi in the bulk phases �i (t).

In the sequel we drop the index i , as there is no danger of confusion; we just keep
in mind that the coefficients depend on the phases. The temperature is assumed to
be continuous across the interface, as indicated by the condition [[u]] = 0 in (1.3).
However, the free energy and the conductivities depend on the respective phases,
and hence the jumps [[ψ(u)]], [[κ(u)]], [[η(u)]], [[d(u)]] are, in general, non-zero at
the interface. In this paper we assume that the coefficient of surface tension is
constant.

Next we show that the model (1.3) is consistent with the first and second laws of
thermodynamics, postulating conservation of energy and growth of entropy. Indeed,
the total energy of the system is given by

E(u, �) =
∫

�\�
ε(u)dx + 1

n − 1

∫

�

σ ds, (1.4)
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and by the transport and surface transport theorem we have for smooth solutions

d

dt
E(u(t), �(t)) = −

∫

�

{[[d(u)∂νu]] + [[ε(u)]]V + σHV } ds

= −
∫

�

{[[d(u)∂νu]] − (l(u)− γ (u)V ))V } ds = 0,

and thus, energy is conserved.
Let us point out that it is essential that σ > 0 is constant, that is, is independent

of temperature. The reason for this lies in the fact that in case σ = σ(u) depends on
the temperature, the surface energy will be

∫

�
ε�(u) ds instead of

∫

�
σ ds, where

ε�(u) = σ(u) + uη�(u), η�(u) = −σ ′(u), and one has to take into account the
surface entropy

∫

�
η� ds as well as the balance of surface energy. This means that

the Stefan law needs to be replaced by a dynamic boundary condition of the form

κ�(u)∂t,nu− div�(d�(u)∇�u) = [[d∂νu]] − (
l(u)− γ (u)V + l�(u)H

)
V, (1.5)

where ∂t,n denotes the time derivative in the normal direction, κ�(u) = ε′�(u) and
l�(u) = uσ ′(u). We intend to study such complex problems elsewhere and restrict
our attention here to the case of constant σ .

The fifth equation in (1.3) is usually called the Stefan law. It shows that energy
is conserved across the interface. The fourth equation is the Gibbs–Thomson law
(with kinetic undercooling if γ (u) > 0) which implies, together with Stefan’s law,
that entropy production on the interface is nonnegative if γ � 0. In the case where
γ ≡ 0, that is, in the absence of kinetic undercooling, there is no entropy production
on the interface. In fact, the total entropy of the system, given by


(u, �) =
∫

�\�
η(u)dx, (1.6)

satisfies

d

dt

(u(t), �(t)) =

∫

�

1

u2 d(u)|∇u|2 dx −
∫

�

1

u
{[[d(u)∂νu]] + u[[η(u)]]V } ds

=
∫

�

1

u2 d(u)|∇u|2 dx +
∫

�

1

u
γ (u)V 2 ds � 0.

In particular, the negative total entropy is a Lyapunov functional for problem (1.3).
Even more, −
 is a strict Lyapunov functional in the sense that it is strictly decreas-
ing along smooth solutions which are non-constant in time. Indeed, if at some time
t0 � 0 we have

d

dt

(u(t0), �(t0)) =

∫

�

1

u2 d(u)|∇u|2 dx +
∫

�

1

u
γ (u)V 2 ds = 0,

then ∇u(t0) = 0 in� and γ (u(t0))V (t0) = 0 on �(t0). This implies u(t0) = const
in �, hence H(t0) = −[[ψ(u(t0))]]/σ = const. Since � is bounded, we may con-
clude that �(t0) is a union of finitely many, say m, disjoint spheres of equal radius,
that is, (u(t0), �(t0)) is an equilibrium. Therefore, the limit sets of solutions in the
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state manifold SMγ , see (3.8)–(3.9) for a definition, are contained in the (mn +1)
dimensional manifold of equilibria

E =
{(

u∗,∪1�l�m SR∗(xl)
) : u∗ > 0, R∗ = σ/[[ψ(u∗)]], B̄R∗(xl) ⊂ �,

SR∗(xl) ∩ SR∗(xk) = ∅, l 
= k
}
, (1.7)

where SR∗(xl) and BR∗(xl) denote the sphere and the ball with radius R∗ and center
xl , respectively.

(iii) Another interesting observation is the following. Consider the critical points
of the functional
(u, �)with constraint E(u, �) = E0, say on C(�̄)×MH2(�),
see Section 3.1 for the definition of MH2(�). Then by the method of Lagrange
multipliers, there is μ ∈ R such that at a critical point (u∗, �∗) we have


′(u∗, �∗)+ μE′(u∗, �∗) = 0. (1.8)

The derivatives of the functionals are given by

〈
′(u, �)|(v, h)〉 = (η′(u)|v)L2(�) − ([[η(u)]]|h)L2(�),

and

〈E′(u, �)|(v, h)〉 = (ε′(u)|v)L2(�) − ([[ε(u)]] + σH(�)|h)L2(�).

By first setting h = 0 and varying v in (1.8) we obtain η′(u∗)+με′(u∗) = 0 in�,
and then varying h we get

[[η(u∗)]] + μ([[ε(u∗)]] + σH(�∗)
) = 0 on �∗.

The relations η(u) = −ψ ′(u) and ε(u) = ψ(u)−uψ ′(u) imply 0 = −ψ ′′(u∗)(1+
μu∗), which shows that u∗ = −1/μ is constant in �, since κ(u) = −uψ ′′(u) > 0
for all u > 0 by assumption. This further implies [[ψ(u∗)]] + σH(�∗) = 0, that is,
the Gibbs–Thomson relation. Since u∗ is constant we see that H(�∗) is constant,
hence �∗ is a sphere whenever connected, and a union of finitely many disjoint
spheres of equal size otherwise. Thus the critical points of the entropy functional
for prescribed energy are precisely the equilibria of the problem.

Going further, suppose we have an equilibrium e∗ := (u∗, �∗) where the total
entropy has a local maximum with respect to the constraint E = E0 constant. Then
D := [
 + μE]′′(e∗) is negative semi-definite on the kernel of E′(e∗), where μ
is the fixed Lagrange multiplier found above. The kernel of E′(e) is given by the
identity

∫

�

κ(u)v dx −
∫

�

([[ε(u)]] + σH(�))h ds = 0,

which at equilibrium yields
∫

�

κ∗v dx +
∫

�∗
l∗h ds = 0, (1.9)
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where κ∗ := κ(u∗) and l∗ := l(u∗). On the other hand, a straightforward calcula-
tion, with z = (v, h), yields

− 〈Dz|z〉 = 1

u∗

[
1

u∗

∫

�

κ∗v2 dx − σ
∫

�∗
h · H′(�∗)h ds

]

. (1.10)

As κ∗ and σ are positive, we see that the form 〈Dz|z〉 is negative semi-definite as
soon as H′(�∗) is negative semi-definite. We have

H′(�∗) = 1/R2∗ + (1/(n − 1))��∗ ,

where��∗ denotes the Laplace–Beltrami operator on �∗ and R∗ means the radius
of the equilibrium sphere. To derive necessary conditions for an equilibrium e∗ to
be a local maximum of entropy, we consider two cases.

1. Suppose that �∗ is not connected, that is, �∗ is a union of m disjoint spheres
�k∗ . Set v = 0, and let h = hk 
= 0 be constant on �k∗ with

∑
k hk = 0. Then

the constraint (1.9) holds, and

〈Dz|z〉 = (σ/u∗ R2∗)(|�∗|/m)
m∑

k=1

h2
k > 0,

hence D cannot be negative semi-definite in this case. Thus if e∗ is an equilib-
rium with maximal total entropy, then �∗ must be connected, and hence both
phases are connected.

2. Assume that �∗ is connected. Setting v = l∗/(κ∗|1)� and h = −1/|�∗|, we
see that the property that D is negative semi-definite on the kernel of E′(e∗)
implies

ζ∗ := σu∗(κ∗|1)�
l2∗ R2∗|�∗| � 1. (1.11)

This is exactly the stability condition found in Theorem 4.5.

In summary, we obtain:

• The equilibria of (1.3) are precisely the critical points of the entropy functional
with prescribed energy.

• The entropy functional with prescribed energy does not have a local maximum
e∗ = (u∗, �∗) in the case in which �∗ is not connected.

• A necessary condition for a critical point e∗ = (u∗, �∗) to be a local maximum
of the entropy functional with prescribed energy is that �∗ is connected and that
inequality (1.11) holds.

It will be shown in Theorems 4.5 and 5.2 below that

• (u∗, �∗) ∈ E is stable if �∗ is connected and ζ∗ < 1.
• The latter is exactly the case if the reduced energy functional,

[u �→ ϕ(u) = E(u, SR(u)(x0))], R(u) = σ/[[ψ(u)]],
has a strictly negative derivative at u∗.



618 Jan Prüss, Gieri Simonett & Rico Zacher

• Any solution starting in a neighborhood of a stable equilibrium exists globally
and converges to another stable equilibrium exponentially fast.

• (u∗, �∗) ∈ E is always unstable if �∗ is disconnected, or if ζ∗ > 1.

Hence multiple spheres (of the same radius) are always unstable for (1.3). This
situation is reminiscent of the onset of Ostwald ripening, a process that manifests
itself in the way that larger structures grow while smaller ones shrink and disappear.
Here we refer to [1–4,35,43,65–72], and the references therein for various aspects
and results on Ostwald ripening. In particular, we mention that the authors in [1–4]
use the quasi-stationary Stefan problem with surface tension (that is, the Mullins–
Sekerka problem) to model Ostwald ripening. Under proper scaling assumptions,
the way sphere-like particles evolve is analyzed. Interesting and illuminat-
ing connections between various versions of the Stefan problem (mostly the
Mullins–Sekerka problem) and Ostwald ripening are given in [43,65–67,69,70,72].
It would be of considerable interest to also pursue the effect of coarsening in the
framework of the Stefan problem (1.3).

(iv) Now we want to relate problem (1.3) to the pertinent Stefan problems that
have been studied in the mathematical literature so far. For this purpose we linearize
h(u) := [[ψ(u)]] near the melting temperature um, defined by h(um) = 0. Then
for the relative temperature v = u − um we have h(u) ≈ h′(um)v, hence with
lm = l(um) and γm = γ (um), the Gibbs–Thomson law becomes approximately

(lm/um)v + σH = γmV . (1.12)

This is the classical Gibbs–Thomson law (with kinetic undercooling in case γm>0).
Similarly, assuming that u is close to um and V is small, the Stefan law becomes
approximately

[[d∂νv]] = lmV . (1.13)

As mentioned above, existence results for the Stefan problem with the classical
Gibbs–Thomson law v = −αH and the classical Stefan law (1.13) in the case
where κ1 = κ2 can be found in [5,28,32,39,54,59,83–85]. The Stefan problem
with the linearized transmission conditions (1.12)–(1.13) in case κ1 = κ2 has been
studied in [19,83,84,91], see also [48] for the one-phase case.

In the recent publication [40] the author also obtains nonlinear stability of single
spheres for the Stefan problem with the linearized transmission conditions (1.12)–
(1.13) in the case in which all physical constants are taken to be 1, γm = 0, and
the (appropriately modified) stability condition ζ∗ < 1 is satisfied. The method
relies on higher order energy estimates and requires higher order regularity and
compatibility conditions for the initial data, see also the remarks in (v).

Our results go beyond the results in [40] in several significant ways: we obtain
existence and uniqueness results for arbitrary initial configurations with only min-
imal regularity assumptions on the data. We also provide instability results, either
in the case of connected equilibria with ζ∗ > 1, or in the case of multiple spheres.
It should be mentioned that the linearized stability analysis of multiple spheres is
considerably more involved than the case of a single sphere. Moreover, we allow
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for general material laws and we include kinetic undercooling. Lastly, our setting
allows for an interpretation of the equilibria in terms of the entropy functional.

It should also be noted that the results and methods of our paper are not restricted
to the thermodynamically consistent Stefan problem, but also apply to the case with
linearized transmission conditions. In fact, the essential mathematical difficulties
encountered in the stability-instability analysis of equilibria are already present in
the latter situation.

Linear instability has been observed before in [18] for the particular case in
which � = R

2, where suitable boundary conditions for the temperature at infinity
are imposed. It is then shown in [18] that equilibria are linearly unstable. This set-
ting formally implies ζ∗ = ∞, which is in agreement with the instability condition
ζ∗ > 1 of this paper.

If κ1 = κ2 = 0, then we obtain a thermodynamically consistent quasi-stationary
approximation of the Stefan problem with surface tension (and kinetic undercool-
ing). Existence and global existence of classical solutions for the quasi-stationary
approximation with (1.12) with γm 
= 0 and the classical Stefan law (1.13) have
been investigated in [48,97].

As mentioned before, we assume that the behavior in the bulk phases is described
by constitutive equations for the free energiesψi (u). A common assumption is that
the heat capacities be constant and equal in the respective phases. Then we neces-
sarily have 0 ≡ [[κ]] = [[ε′(u)]] = −u[[ψ ′′(u)]], which implies that the function
h(u) = [[ψ(u)]] is linear, that is h(u) = h0 + h1u, and then l(u) = h1u. The
melting temperature is given here by 0 < um = −h0/h1.

If the heat capacities κi are constant in the phases but not necessarily equal,
the internal energies depend linearly on the temperature, and the free and the inner
energies are of the form

ψi (u) = ai + bi u − κi u ln u, εi (u) = ai + κi u,

hence h(u) = α+ βu − δu ln u, with constants α, β, δ ∈ R. Concerning existence
of equilibria, these special cases will be discussed in more detail in Section 4.

In [55] the author considers a Stefan problem based on thermodynamical prin-
ciples for the case where the internal energy is given by

e = w + ϕ with w = (1/um − 1/u),

where the phase function ϕ : � \� → {0, 1} assumes the distinct values 0 and 1 in
the respective bulk phases, and where u and um denote the absolute and the melting
temperature. In this situation, the free energy of the system can be described by

ψi (u) = 1/um − 1/(2u)+ ϕ(1 − u/um).

Setting di (u) = 1/u2, the diffusion equation in the bulk phases, expressed for the
new variable w, becomes ∂t e = �w. The total energy and total entropy are then
given by

E(w, �)=
∫

�\�
(w+ϕ) dx+ σ |�|

n−1
, 
(w,�)=

∫

�\�

{

−w
2

2
+w+ϕ

um
− 1

2u2
m

}

dx,

where |�| denotes the surface area of �. Therefore, the function
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L(w, �) :=
∫

�\�
w2

2
dx + σ |�|

(n − 1)um
= −
(w,�)+ E(w, �)

um
− |�|

2u2
m
,

termed total entropy in [55], is a Lyapunov functional for the system.
On a more elementary and ad-hoc level, assuming equal and constant heat

capacities κ = κi , constant latent heat lm, and constant heat conductivity coeffi-
cients di , one can assign to the Stefan problem subject to the classical conditions
(1.12)–(1.13) an energy and a Lyapunov functional through the relations

E(v, �) =
∫

�\�
(κv + lmϕ) dx, L(v, �) =

∫

�\�
κv2/2 dx + σum|�|/(n − 1),

where v = u − um denotes the relative temperature, and where the function ϕ
has the same meaning as above, see also [79] for the case κ1 
= κ2. The Lyapunov
functional L plays an important role in the construction of long time weak solutions
in [54,55], see also [85]. The authors in [54,55,85] consider the Stefan problem
subject to the linearized transmission conditions (1.12)–(1.13) with γm = 0, and
they assume equal and constant heat capacities κi , constant latent heat, and constant
heat conduction coefficients. The weak solutions obtained exist on any given, fixed
time interval (0, T ) and have the feature that they lead to a sharp interface �(t), in
contrast to the weak solutions previously obtained in [92,93]. A serious drawback
of the results in [54,55,85,92,93] is caused by the lack of uniqueness of solutions.
This renders further assertions concerning asymptotic properties of solutions rather
difficult, if not impossible.

(v) The novelty of our contribution lies in the fact that we consider rather gen-
eral phase transition models that are thermodynamically consistent. In particular,
we allow for different heat capacities, and kinetic undercooling can be included
in the model. In the mathematical literature it is commonly assumed that the heat
capacities κi are equal. However, this assumption is somewhat questionable, as it
implies that the internal energies εi can differ only by a constant.

We obtain unique strong solutions, but existence is only guaranteed for short
time intervals. This, however, is to be expected, as solutions can develop singular-
ities in finite time, say in the way that topological changes in the geometry may
occur. We give a complete analysis for the equilibrium states of (1.3), and we inves-
tigate the asymptotic behavior of solutions that start out close to equilibria. It is
of significant interest to note that the equilibrium states can be characterized as
the critical points of the total entropy subject to the constraint that the total energy
be conserved. Moreover, we obtain that the equilibrium case where the dispersed
phase consists of multiple balls (necessarily of the same radius) always leads to an
unstable configuration. As already mentioned, this is reminiscent of the onset of
Ostwald ripening. Additionally, we prove that solutions exist globally and have rel-
atively compact orbits, provided they do not exhibit singularities, see Theorem 5.3.
It appears that this manuscript is the first work to provide such qualitative results
for a thermodynamically consistent Stefan problem.

A major difficulty in the mathematical treatment of the Stefan problem (1.3) is
due to the fact that the boundary �(t), and thus the geometry, is unknown and ever
changing. A widely used method to overcome this inherent difficulty is to choose a
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fixed reference surface � and then represent the moving surface �(t) as the graph
of a function in normal direction of �. This way, one obtains a time-dependent
(unknown) diffeomorphism from � onto �(t), and in a next step this diffeomor-
phism is extended to a diffeomorphism of fixed reference regions ��i onto the
unknown domains �i (t). The treatment of the free boundary problem (1.3) then
proceeds by transforming the equations into a new system of equations defined
on the fixed domain � \ � from which both the solution and the parameterizing
function have to be determined. In the context of the Stefan problem this approach
was first used by Hanzawa [41]. This step in carried out in Section 2.

Section 3 is devoted to results on local well-posedness for problem (1.3), based
on the approach in [28] and [21]. We show that solutions do not lose regularity.
Thus, solutions give rise to a semiflow in the state manifold SMγ , and this property
allows us to use methods from the theory of dynamical systems to further investi-
gate geometric properties of solutions, such as the structure of the ω-limit set, and
convergence results for global solutions, see for instance Theorem 5.3.

In Section 4 we discuss equilibria and their linear stability properties.
Here we rely on previous work in [79]. However, we should like to point
out that the stability results given here are considerably more general than
those in [79], where we considered only the situation of a connected disperse
phase.

In Section 5 we establish the corresponding stability properties for the nonlin-
ear problem, employing the generalized principle of linearized stability, extending
the results of [81] to the situation considered here. The main result of this sec-
tion shows convergence of solutions to an equilibrium which start out near sta-
ble equilibria. Moreover, we give a rigorous proof of the instability result. The
main difficulty in proving the stability result lies in the fact that equilibria are
not isolated, but rather form a manifold, caused by the fact that the equilibrium
problem is invariant under translations and scaling. This implies that the stan-
dard approach of linearized stability cannot be applied directly; for this reason
we need to apply ideas developed in [81]. We emphasize, however, that the situa-
tion considered here is much more complicated than in [81], as the compatibility
conditions implied by line 4 of Equation (1.3) force us to work in a nonlinear
manifold (the state manifold SMγ ), rather than in an open subset of a vector
space.

In order to prove the stability/instability results, we parametrize SMγ locally
over the tangent space Z̃γ in a neighborhood of (0, 0). The flow is then decom-
posed into a part z̃ evolving in the tangent space Z̃γ , and a small component z̄
that corresponds to the image of z̃ under the parametrization of SMγ . The flow
of z̃ is driven by the linearized operator Lγ and the right-hand side of (5.11),
which couples the dynamics of z̃ and z̄. The part of the flow in the tangent
space Z̃γ is then further decomposed into a part x, corresponding to the finite
dimensional projection of z̃ onto the kernel N (Lγ ) of Lγ , and a part y in the
stable subspace, which basically measures the deviation of z̃ from the manifold
of equilibria E in the stable direction. It is important to note that N (Lγ ) coin-
cides with the tangent space of the manifold E of equilibria at a fixed equilib-
rium e∗. All the equations are coupled, and a contraction mapping argument is
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employed to obtain the existence of global in time, exponentially decreasing solu-
tions.

The stability result in [40] has been obtained using the method of higher energy
estimates as well as suitable orthogonality conditions to deal with the nontrivial
kernel N (Lγ ) of the linearization. A related idea of flow decomposition is used: the
flow is decomposed into a finite-dimensional component and a remaining infinite
dimensional component which, in a suitable sense, is transversal to the equilibrium
manifold E . Related ideas have also been used in the study of long-time asymp-
totics for the Mullins–Sekerka model [1,27], or in the long-time analysis of some
curvature driven flows [89], and of solitons, see for instance the review in [90].

Of ultimate importance is the Lyapunov functional for (1.3), which is given by
the negative total entropy−
(u, �). It takes bounded global-in-time solutions to the
set of equilibria, and then by the results of Section 5 and relative compactness of
the orbits, any such solution must converge towards an equilibrium in the topology
of the state manifold SMγ , provided it comes close to a stable equilibrium.

Our analysis is carried out in the framework of L p-spaces, with n+2 < p < ∞.
We expect that it would be enough to require (n+2)/2 < p < ∞ (so unfortunately
p > 2 even in two dimensions!), but for the sake of simplicity we restrict ourselves
here to the stronger assumption p > n + 2. We also expect that a similar analysis
can be obtained in the framework of the little Hölder spaces hα , which would,
though, require higher order compatibility conditions.

(vi) Finally, we would like to address open problems and directions of future
research. We are confident that our approach based on maximal regularity is flexi-
ble and general enough to also investigate more complex models that take surface
energy into consideration. In fact, the case where the surface tension depends on
the temperature has recently been considered in [80]. Of considerable interest, also,
is the case where the Gibbs–Thomson law is replaced by

[[ψ(u)]] + σH = γ (u)V − div�[α(u)∇�(V/u)] − u div�[β(u)∇�V ],
with α, β > 0, see [6] for more background information. The modified Stefan law
then reads

[[d(u)∂νu]] =
(

l(u)− γ (u)V + div�[α(u)∇�(V/u)] + u div�[β(u)∇�V ]
)

V,

and the resulting entropy production becomes

d

dt

(u(t), �(t)) =

∫

�

1

u2 d(u)|∇u|2 dx +
∫

�

1

u
γ (u)V 2 ds

+
∫

�

[α(u)|∇�(V/u)|2 + β(u)|∇�V |2]| ds � 0.

Another direction concerns the situation where the densities of the respective
phases are different. This case results in the occurrence of so-called Stefan currents,
and the corresponding models need to also involve the equations of fluid dynamics,
see for instance [6]. Additional very interesting problems concern phase transitions
in moving viscous fluids, in which case the motion can be modeled by a thermo-
dynamically consistent Stefan problem coupled to the Navier–Stokes equations,
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see [6,44]. First results in this direction are contained in [76,77]. Of even greater
challenge is the case where one fluid is evaporating, leading to a phase-transition
model which couples the equations of phase transitions to the equations of fluid
dynamics with a compressible fluid phase.

As mentioned above, it would be interesting to link the thermodynamically
consistent Stefan problem (1.3) to the occurrence of Ostwald ripening.

Of considerable interest, also, is a better understanding of the occurrence of
singularities for solutions of (1.3). A preliminary result ensuring global existence
is contained in Theorem 5.3 under rather restrictive assumptions. We conjecture
that the only obstruction against global existence is related to the breakdown of the
geometry: if no topological changes take place and the curvatures stay bounded,
then the solution exists globally. More specifically, we conjecture that assumptions
(i), (ii) and (iii) in Theorem 5.3 follow from (iv), provided that at time t = 0 we
have u0 > 0, and l(u0) 
= 0 in �̄ in case γ ≡ 0.

An additional direction that is of great relevance concerns triple junctions, for
instance the case when the free surface �(t) is in contact with the solid container
wall. While the situation where �(t) meets the container wall orthogonally can
likely be handled with the methods developed in this paper (by reflection argu-
ments), the case of arbitrary contact angles remains a significant challenge. For
progress in the case of the Hele–Shaw problem with surface tension we refer to
[49,50].

2. Transformation to a Fixed Interface

Let� ⊂ R
n be a bounded domain with boundary ∂� of class C2, and suppose

� ⊂ � is a closed hypersurface of class C2, that is, a C2-manifold which is the
boundary of a bounded domain �1 ⊂ �. We then set �2 = � \ �̄1. Note that
while �2 is connected, �1 may be disconnected. However, �1 consists of finitely
many components only, as ∂�1 = � by assumption is a manifold, at least of class
C2. Recall that the second order bundle of � is given by

N 2� := {(p, ν�(p), L�(p)) : p ∈ �}.

Note that the Weingarten map L� (also called the shape operator, or the second
fundamental tensor) is defined by

L�(p) = −∇�ν�(p), p ∈ �,

where ∇� denotes the surface gradient on �. The eigenvalues κ j (p) of L�(p) are
the principal curvatures of � at p ∈ �, and we have |L�(p)| = max j |κ j (p)|. The
mean curvature H�(p) is given by

(n − 1)H�(p) =
n−1∑

j=1

κ j (p) = trL�(p) = −div�ν�(p),
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where div� means surface divergence. Recall also that the Hausdorff distance dH
between the two closed subsets A, B ⊂ R

m is defined by

dH(A, B) := max

{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)

}

.

Then we may approximate� by a real analytic hypersurface� (or merely� ∈ C3),
in the sense that the Hausdorff distance of the second order bundles of � and � is
as small as we want. More precisely, for each η > 0 there is a real analytic closed
hypersurface such that dH(N 2�,N 2�) � η. If η > 0 is small enough, then �

bounds a domain ��1 with ��1 ⊂ �, and we set ��2 = � \ �̄�1 .
It is well known that such a hypersurface � admits a tubular neighborhood,

which means that there is a > 0 such that the map

� : � × (−a, a) → R
n

�(p, r) := p + rν�(p)

is a diffeomorphism from � × (−a, a) onto R(�). The inverse

�−1 : R(�) �→ � × (−a, a)

of this map is conveniently decomposed as

�−1(x) = (�(x), d�(x)), x ∈ R(�).
Here �(x) means the nonlinear orthogonal projection of x to � and d�(x) the
signed distance from x to �; so |d�(x)| = dist(x, �) and d�(x) < 0 iff x ∈ ��1 .
In particular we have R(�) = {x ∈ R

n : dist(x, �) < a}.
On the one hand, a is determined by the curvatures of �, that is, we must have

0 < a < min
{
1/|κ j (p)| : j = 1, . . . , n − 1, p ∈ �}

,

where κ j (p)means the principal curvatures of � at p ∈ �. But on the other hand,
a is also connected to the topology of�, which can be expressed as follows. Since
� is a compact (smooth) manifold of dimension n − 1, it satisfies an (interior and
exterior) ball condition, which means that there is a radius r� > 0 such that for
each point p ∈ � there are x j ∈ ��j , j = 1, 2, such that Br� (x j ) ⊂ ��j , and

B̄r� (x j )∩� = {p}. Choosing r� maximal, we then must also have a < r� . In the
sequel we fix

a = 1

2
min

{

r�,
1

|κ j (p)| , j = 1, . . . , n − 1, p ∈ �
}

.

For later use we note that the derivatives of �(x) and d�(x) are given by

∇d�(x) = ν�(�(x)), �′(x) = M0(d�(x),�(x))P�(�(x)),

where P�(p) = I − ν�(p) ⊗ ν�(p) denotes the orthogonal projection onto the
tangent space Tp� of � at p ∈ �, and M0(r, p) = (I − r L�(p))−1. Note that
|M0(r, p)| � 1/(1 − r |L�(p)|) � 2 for all |r | � a and p ∈ �.
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Setting � = �(t), we may use the map � to parametrize the unknown free
boundary �(t) over � by means of a height function ρ(t, p) via

�(t) : [p �→ p + ρ(t, p)ν�(p)], p ∈ �, t � 0,

for small t � 0, at least. Extend this diffeomorphism to all of �̄ by means of

�ρ(t, x) = x + χ(d�(x)/a)ρ(t,�(x))ν�(�(x)) =: x + θρ(t, x).

Here χ denotes a suitable cut-off function; more precisely, χ ∈ D(R), 0 � χ � 1,
χ(r) = 1 for |r | < 1/3, and χ(r) = 0 for |r | > 2/3. Note that �ρ(t, x) = x for
|d�(x)| > 2a/3, and

�−1
ρ (t, x) = x − ρ(t,�(x))ν�(�(x)) for |d�(x)| < a/3.

In particular,

�−1
ρ (t, x) = x − ρ(t, x)ν�(x) for x ∈ �.

Setting v(t, x) = u(t, �ρ(t, x)), or u(t, x) = v(t, �−1
ρ (t, x)) we have thus trans-

formed the time varying regions � \ �(t) to the fixed domain � \ �. This is the
direct mapping method, also called Hanzawa transformation.

By means of this transformation, we obtain the following transformed problem.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(v)∂tv + A(v, ρ)v = κ(v)R(ρ)v in � \�
∂ν�v = 0 on ∂�

[[v]] = 0 on �

[[ψ(v)]] + σH(ρ) = γ (v)β(ρ)∂tρ on �

{l(v)− γ (v)β(ρ)∂tρ}β(ρ)∂tρ + B(v, ρ)v = 0 on �

v(0) = v0, ρ(0) = ρ0.

(2.1)

Here A(v, ρ) and B(v, ρ) denote the transformations of −div(d∇) and −[[d∂ν]],
respectively. Moreover, H(ρ) represents the mean curvature of �, β(ρ) =
(ν� |ν�(ρ)), the term β(ρ)∂tρ represents the normal velocity V , and

R(ρ)v = ∂tv − ∂t u ◦�ρ.
The system (2.1) is a quasi-linear parabolic problem on the domain�with fixed

interface � ⊂ � with a dynamic boundary condition, namely the fifth equation
which describes the evolution of the interface �(t).

To elaborate on the structure of this problem in more detail, we calculate

�′
ρ = I + θ ′

ρ, �′−1
ρ = I − [I + θ ′

ρ]−1
θ ′
ρ =: I − M1(ρ)

T

and

∇u ◦�ρ = [(�−1
ρ )

′T ◦�ρ]∇v = (I − M1(ρ))∇v,
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and for a vector field q = q̄ ◦�ρ ,

(∇|q̄) ◦�ρ = ([(�−1
ρ )

′T ◦�ρ]∇|q) = ((I − M1(ρ))∇|q).
Further, we have

∂t u ◦�ρ = ∂tv − (∇u ◦�ρ |∂t�ρ) = ∂tv − ([(�−1
ρ )

′T ◦�ρ]∇v|∂t�ρ)

= ∂tv − (∇v|[I + θ ′
ρ]−1

∂tθρ),

hence

R(ρ)v = (∇v|[I + θ ′
ρ]−1

∂tθρ).

With the Weingarten map L� = −∇�ν� , we have

ν�(ρ) = β(ρ)(ν� − α(ρ)), α(ρ) = M0(ρ)∇�ρ,
M0(ρ) = (I − ρL�)

−1, β(ρ) = (1 + |α(ρ)|2)−1/2,

and

V = (∂t�|ν�) = (ν� |ν�(ρ))∂tρ = β(ρ)∂tρ.

Employing this notation leads to θ ′
ρ = 0 for |d�(x)| > 2a/3 and

θ ′
ρ(t, x) = 1

a
χ ′(d�(x)/a)ρ(t,�(x))ν�(�(x))⊗ ν�(�(x))

+ χ(d�(x)/a)[ν�(�(x))⊗ M0(d�(x))∇�ρ(t,�(x))]
− χ(d�(x)/a)ρ(t,�(x))L�(�(x))M0(d�(x))P�(�(x))

for 0 � |d�(x)| � 2a/3. In particular, for x ∈ � we have

θ ′
ρ(t, x) = ν�(x)⊗ ∇�ρ(t, x)− ρ(t, x)L�(x)P�(x),

and

(θ ′
ρ)

T(t, x) = ∇�ρ(t, x)⊗ ν�(x)− ρ(t, x)L�(x),

since L�(x) is symmetric and has range in Tx�. Therefore, [I + θ ′
ρ] is boundedly

invertible, if ρ and ∇�ρ are sufficiently small, and

|[I + θ ′
ρ]−1| � 2 for |ρ|∞ � 1

4(|χ ′|∞/a + 2 max j |κ j |) , |∇�ρ|∞ � 1

8
.

For the mean curvature H(ρ) we have

(n − 1)H(ρ) = β(ρ){tr[M0(ρ)(L� + ∇�α(ρ))]
−β2(ρ)(M0(ρ)α(ρ)|[∇�α(ρ)]α(ρ))},

an expression involving second order derivatives of ρ only linearly. Its linearization
at ρ = 0 is given by

(n − 1)H′(0) = tr L2
� +��.
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Here �� denotes the Laplace–Beltrami operator on �. The operator B(v, ρ)
becomes

B(v, ρ)v = −[[d(u)∂νu]] ◦�ρ = −([[d(v)(I − M1(ρ))∇v]]|ν�)
= −β(ρ)([[d(v)(I − M1(ρ))∇v]]|ν� − α(ρ))
= −β(ρ)[[d(v)∂ν�v]] + β(ρ)([[d(v)∇v]]|(I − M1(ρ))

Tα(ρ)),

since MT
1 (ρ)ν� = 0, and finally

A(v, ρ)v = − div(d(u)∇u) ◦�ρ = −((I − M1(ρ))∇|d(v)(I − M1(ρ))∇v)
= − d(v)�v + d(v)[M1(ρ)+ MT

1 (ρ)− M1(ρ)M
T
1 (ρ)] : ∇2v

− d ′(v)|(I − M1(ρ))∇v|2 + d(v)((I − M1(ρ)) : ∇M1(ρ)|∇v).

We recall that for matrices A, B ∈ R
n×n, A : B = ∑n

i, j=1 ai j bi j = tr (ABT)

denotes the inner product.
Obviously, the leading part of A(v, ρ)v is −d(v)�v, while the leading part

of B(v, ρ)v is −β(ρ)[[d(v)∂ν�v]], as M1(0) = 0 and α(0) = 0; recall that we
may assume ρ small in the C2-norm. It is important to recognize the quasilinear
structure of (2.1): derivatives of highest order only appear linearly in each of the
equations.

3. Local Well-Posedness

The basic result for local well-posedness in the absence of kinetic undercooling
in an L p-setting is the following.

Theorem 3.1. (γ ≡ 0). Let p > n+2, γ = 0, σ > 0. Supposeψ ∈ C3(0,∞), d ∈
C2(0,∞) such that

κ(u) = −uψ ′′(u) > 0, d(u) > 0, u ∈ (0,∞).

Assume the regularity conditions

u0 ∈ W 2−2/p
p (� \ �0) ∩ C(�̄), u0 > 0, �0 ∈ W 4−3/p

p ,

the compatibility conditions

∂ν�u0 = 0, [[ψ(u0)]] + σH(�0) = 0, [[d(u0)∂ν�0
u0]] ∈ W 2−6/p

p (�0),

and the well-posedness condition

l(u0) 
= 0 on �0.

Then there exists a unique L p-solution for the Stefan problem with surface tension
(1.3) on some possibly small but nontrivial time interval J = [0, τ ].
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Here the notation �0 ∈ W 4−3/p
p means that �0 is a C2-manifold, such that its

(outer) normal field ν�0 is of class W 3−3/p
p (�0). Therefore, the Weingarten tensor

L�0 = −∇�0ν�0 of �0 belongs to W 2−3/p
p (�0), which embeds into C1+α(�0)with

α = 1 − (n + 2)/p > 0, since p > n + 2 by assumption. For the same reason, we
also have u0 ∈ C1+α(�̄), and V0 ∈ C2α(�0). The notion L p-solution means that
(u, �) is obtained as the push-forward of an L p-solution (v, ρ) of the transformed
problem (2.1). This class will be discussed below.

There is an analogous result in the presence of kinetic undercooling which reads
as follows.

Theorem 3.2. (γ > 0). Let p > n +2, σ > 0, and supposeψ, γ ∈ C3(0,∞), d ∈
C2(0,∞) such that

κ(u) = −uψ ′′(u) > 0, d(u) > 0, γ (u) > 0, u ∈ (0,∞).

Assume the regularity conditions

u0 ∈ W 2−2/p
p (� \ �0) ∩ C(�̄), u0 > 0, �0 ∈ W 4−3/p

p ,

and the compatibility conditions

∂ν�u0 =0,
([[ψ(u0)]] + σH(�0)

)(
l(u0)−[[ψ(u0)]]−σH(�0)

)=γ (u0)[[d(u0)∂νu0]].
Then there exists a unique L p-solution of the Stefan problem with surface ten-

sion and kinetic undercooling (1.3) on some possibly small but nontrivial time
interval J = [0, τ ].
Proof of Theorems 3.1 and 3.2. (i) Direct mapping method: Hanzawa transfor-
mation.

As explained in the previous section, we employ a Hanzawa transformation and
study the resulting problem (2.1) on the domain � with fixed interface �.

In the case where γ ≡ 0, for the L p-theory, the solution of the transformed
problem will belong to the class

v ∈ H1
p(J ; L p(�)) ∩ L p(J ; H2

p(� \�)) ↪→ C(J ; W 2−2/p
p (� \�)),

ρ ∈ W 1−1/2p
p (J ; H2

p(�)) ∩ L p(J ; W 4−1/p
p (�)) ↪→ C(J ; W 4−3/p

p (�)),

∂tρ ∈ W 1/2−1/2p
p (J ; L p(�))∩L p(J ; W 2−2/p

p (�)) ↪→C(J ; W 2−6/p
p (�)). (3.1)

See [28] for a proof of the last two embeddings in the case where � = R
n .

If γ > 0 we have, moreover,

ρ ∈ W 2−1/2p
p (J ; L p(�)) ∩ L p(J ; W 4−1/p

p (�)) ↪→ C1(J ; W 2−3/p
p (�)).

Note that in both cases, v ∈ C(J ×�̄), v|� j ∈ C(J ; C1(�̄ j )), j = 1, 2. Moreover,
ρ ∈ C(J ; C3(�)) and

∂tρ ∈ C(J ; C(�)) in case γ = 0, ∂tρ ∈ C(J ; C1(�)) in case γ > 0.
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We set

E1(J ) := {v ∈ H1
p(J ; L p(�)) ∩ L p(J ; H2

p(� \�) : [[v]] = 0, ∂ν�v = 0},
E2(J ) := W 3/2−1/2p

p (J ; L p(�)) ∩ W 1−1/2p
p (J ; H2

p(�)) ∩ L p(J ; W 4−1/p
p (�)),

γ ≡ 0,

E2(J ) := W 2−1/2p
p (J ; L p(�)) ∩ L p(J ; W 4−1/p

p (�)), γ > 0,

E(J ) := E1(J )× E2(J ),

that is, E(J ) denotes the solution space.
Similarly, we define

F1(J ) := L p(J ; L p(�)),

F2(J ) := W 1−1/2p
p (J ; L p(�)) ∩ L p(J ; W 2−1/p

p (�)),

F3(J ) := W 1/2−1/2p
p (J ; L p(�)) ∩ L p(J ; W 1−1/p

p (�)),

F(J ) := F1(J )× F2(J )× F3(J ),

that is, F(J ) represents the space of data. A left subscript zero means vanishing
time trace at t = 0, whenever it exists. So, for example

0E2(J ) = {ρ ∈ E2(J ) : ρ(0) = ∂tρ(0) = 0}
whenever p > 3.

Employing the calculations in Section 2 and splitting into the principal linear
part and a nonlinear part, we arrive at the following formulation of problem (2.1).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ0(x)∂tv − d0(x)�v = F(v, ρ) in � \�
∂ν�v = 0 on ∂�

[[v]] = 0, on �

l1(t, x)v + σ0��ρ − γ1(t, x)∂tρ = G(v, ρ) on �

l0(x)∂tρ − [[d0(x)∂νv]] = H(v, ρ) on �

v(0) = v0, ρ(0) = ρ0.

(3.2)

Here,

κ0(x) = κ(v0(x)), d0(x) = d(v0(x)), l0(x) = l(v0(x)), σ0 = σ

n − 1
,

l1(t, ·) = [[ψ ′(e�� tv0�)]], γ1(t, ·) = γ (e�� tv0�),

where v0� means the restriction of v0 to �. Note that κ0, d0 ∈ W 2−2/p
p (� \ �),

hence these functions are in C1(�̄ j ), j = 1, 2. Recall that d and κ may be different

in different phases. Further, we have l0 ∈ W 2−3/p
p (�) which implies l0 ∈ C1(�).

This is good enough for the space F3(J ), as C1-functions are pointwise multipliers
for F3(J ), but it is not good enough for F2(J ). For this reason, we need to define
the extension vb := e�� tv0� . This function, as well as l1 and γ1, belong to F2(J ),
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hence are pointwise multipliers for this space, as F2(J ) and F3(J ) are Banach
algebras with respect to pointwise multiplication, as p > n + 2.

The nonlinearities F,G, and H are defined as follows.

F(v, ρ) = (κ0 − κ(v))∂tv + (d(v)− d0)�v − d(v)M2(ρ) : ∇2v

+ d ′(v)|(I − M1(ρ))∇v|2 − d(v)(M3(ρ)|∇v)+ κ(v)R(ρ)v,
G(v, ρ) = −([[ψ(v)]] + σH(ρ))+ l1v + σ0��ρ + (γ (v)β(ρ)− γ1)∂tρ,

H(v, ρ) = [[(d(v)− d0)∂νv]] + (l0 − l(v))∂tρ − ([[d(v)∇v]]|M4(ρ)∇�ρ)
+ γ (v)β(ρ)(∂tρ)

2. (3.3)

Here we have set

M2(ρ) = M1(ρ)+ MT
1 (ρ)− M1(ρ)M

T
1 (ρ),

M3(ρ) = (I − M1(ρ)) : ∇M1(ρ),

M4(ρ) = (I − M1(ρ))
T M0(ρ).

(ii) Maximal regularity of the principal linearized problem.
First we consider the linear problem defined by the left-hand side of (3.2).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ0(x)∂tv − d0(x)�v = f in �\�
∂ν�v = 0 on ∂�

[[v]] = 0 on �

l1(t, x)v + σ0��ρ − γ1(t, x)∂tρ = g on �

l0(x)∂tρ − [[d0(x)∂νv]] = h on �

v(0) = v0, ρ(0) = ρ0.

(3.4)

This inhomogeneous problem can be solved with maximal regularity; see Escher
et al. [28] for the constant coefficient half-space case with γ ≡ 0, and Denk et
al. [21] for the general one-phase case.

Theorem 3.3. (γ ≡ 0). Let p > n + 2, σ > 0, γ ≡ 0. Suppose κ0 ∈ C(�̄ j ) and

d0 ∈ C1(�̄ j ), j = 1, 2, κ0, d0 > 0 on �̄, l0 ∈ W 2−6/p
p (�), and let

l1 ∈ W 1−1/2p
p (J ; L p(�)) ∩ L p(J ; W 2−1/p

p (�))

such that l0l1 > 0 on J ×�, where J = [0, t0] is a finite time interval. Then there
is a unique solution z := (v, ρ) ∈ E(J ) of (3.4) if and only if the data ( f, g, h)
and z0 := (v0, ρ0) satisfy

( f, g, h) ∈ F(J ), z0 ∈ [W 2−2/p
p (� \�) ∩ C(�̄)] × W 4−3/p

p (�),

and the compatibility conditions

∂ν�v0 = 0, l1(0)v0 + σ0��ρ0 = g(0), h(0)+ [[d0∂νv0]] ∈ W 2−6/p
p (�).

The solution map [( f, g, h, z0) �→ z = (v, ρ)] is continuous between the corre-
sponding spaces.
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Proof. In the one-phase case this result is proved in [21, Example 3.4]. Therefore,
we indicate only the necessary modifications for the two-phase case. The local-
ization procedure can be carried out in the same way as in the one-phase case
[21], hence we need to consider only the following model problem with constant
coefficients where the interface is flat:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

κ0∂tv − d�v = f in Ṙ
n

[[v]] = 0 on R
n−1

l1v + σ0�ρ = g on R
n−1

l0∂tρ − [[d∂νv]] = h on R
n−1

v(0) = v0, ρ(0) = ρ0.

Here Ṙ
n = R

n−1 × (
R \ {0}), and R

n−1 is identified with R
n−1 × {0}. Reflecting

the lower half-plane to the upper, this becomes a problem of the form studied in
[21]. As in Example 3.4 of that paper, it is not difficult to verify the necessary Lop-
atinskii–Shapiro conditions. Then Theorems 2.1 and 2.2 of [21] can be applied,
proving the assertion for the model problem. ��
Remark 3.4. One might wonder where the somewhat unexpected compatibility
condition h(0) + [[d0∂νv0]] ∈ W 2−6/p

p (�) in the case γ = 0 comes from. To
illuminate this, note that

(h(0)+ [[d0∂νv0]])/ l0 = ∂tρ(0)

is the trace of ∂tρ at time t = 0. But by the embedding (3.1) this implies that
(h(0)+[[d0∂νv0]])/ l0 ∈ W 2−6/p

p (�), which in turn enforces h(0)+[[d0∂νu0]] ∈
W 2−6/p

p (�).

The main result for problem (3.4) for γ > 0 is the following theorem.

Theorem 3.5. (γ > 0). Let p > n + 2, σ > 0. Suppose κ0 ∈ C(�̄ j ) and d0 ∈
C1(�̄ j ), j = 1, 2, κ0, d0 > 0 on �̄, l0 ∈ C1(�), and let

γ1, l1 ∈ W 1−1/2p
p (J ; L p(�)) ∩ L p(J ; W 2−1/p

p (�)),

such that γ1 > 0 on J ×�, where J = [0, t0] is a finite time interval. Then there is
a unique solution z := (v, ρ) ∈ E(J ) of (3.4) if and only if the data ( f, g, h) and
z0 := (v0, ρ0) satisfy

( f, g, h) ∈ F(J ), z0 ∈ [W 2−2/p
p (� \�) ∩ C(�̄)] × W 4−3/p

p (�),

and the compatibility conditions

∂ν�v0 = 0, (l0l1(0)v0|� + l0σ0��ρ0 − γ1(0)[[d∂νv0]] = γ1(0)h(0)+ l0g(0).

The solution map [( f, g, h, z0) �→ z = (v, ρ)] is continuous between the corre-
sponding spaces.
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Proof. The proof of this result is much simpler than for the case γ = 0. We could
follow the strategy in the proof of Theorem 3.3, employing the methods in [21]
once more. However, here we want to give a more direct argument that uses the
fact that the term l0∂tρ is of lower order in the case where γ1 > 0. For this purpose,
suppose v� := v|� is known. Consider the problem

γ1∂tρ − σ0��ρ = l1v� − g, t ∈ J, ρ(0) = ρ0.

Since the Laplace–Beltrami operator is strongly elliptic, we can solve this problem
with maximal regularity to obtain ρ in the proper regularity class. Then we solve
the transmission problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ0∂tv − d0�v = f in � \�
∂ν�v = 0 on ∂�

[[v]] = 0 on �

− [[d0∂νv]] = h − l0∂tρ on �

v(0) = v0.

Finally, we take the trace of v to obtain an equation for v� of the form

v� = T v� + w,
where w is determined by the data alone, and T is a compact operator from F2(J )
into itself. Here compactness follows from the compact embedding F2(J ) ↪→
F3(J ), that is, from the regularity of ∂tρ which is higher than needed to solve
the transmission problem. Thus I − T is a Fredholm operator with index zero,
hence invertible since it is injective by causality. This proves the sufficiency of the
conditions on the data. Necessity is a consequence of trace theory. ��
Remark 3.6. It is interesting to take a look at the boundary symbol of the linear
problem; it is of the form

s(λ, ξ) = λl2 + (λγ + σ0|ξ |2)[
√
λκ1 + d1|ξ |2 +

√
λκ2 + d2|ξ |2].

Here λ ∈ C+ denotes the covariable of time t , and ξ ∈ R
n−1 that of the tangential

space variable x ′ ∈ R
n−1. This symbol is invertible for large λ, provided γ > 0 or

l 
= 0. Note that in the case γ > 0 this is a parabolic symbol of order 3/2 in time t
and of order 3 in the space variables x . The term λl2 is of lower order, thus l does
not affect well-posedness. On the other hand, for l = 0 and γ = 0 the boundary
symbol is ill-posed, since it admits the zeros (λ, 0) with arbitrarily large Re λ. If
γ = 0 and l 
= 0, then it is well-posed. Note that in this case we have order 1 in
time, 3 in space, but also the mixed regularity 1/2 in time and 2 in space.

(iii) Reduction to zero initial values.

It is convenient to reduce the problem to zero initial data and inhomogeneities
with vanishing time trace. This can be achieved as follows. We solve the linear
problem (3.4) with initial data v0, ρ0 and inhomogenities

f = 0, g(t) = e�� t G(v0, ρ0), h(t) = e�� tρ1 with ρ1 = H(v0, ρ0).
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Since the Laplace–Beltrami operator �� has maximal L p-regularity, the fact that

G(v0, ρ0) ∈ W 2−3/p
p (�) implies g ∈ F2(J ). Similarly, h ∈ F3(J ) since ρ1 ∈

W 1−3/p
p (�). The compatibility conditions yield [[d0∂νv0]] + ρ1 ∈ W 2−6/p

p (�).
Therefore, the linear problem has a unique solution z∗ := (v∗, ρ∗) with maximal
regularity z∗ ∈ E(J ). Then we set v̄ = v−v∗, ρ̄ = ρ−ρ∗, and obtain the following
problem for z̄ = (v̄, ρ̄).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ0(x)∂t v̄ − d0(x)�v̄ = F(v̄ + v∗, ρ̄ + ρ∗) in � \�
∂ν�v̄ = 0 on ∂�

[[v̄]] = 0 on �

l1(t, x)v̄ + σ0��ρ̄ − γ1(t, x)∂t ρ̄ = Ḡ(v̄, ρ̄; v∗, ρ∗) on �

l0(x)∂t ρ̄ − [[d0(x)∂ν v̄]] = H̄(v̄, ρ̄; v∗, ρ∗) on �

v̄(0) = 0, ρ̄(0) = 0.

(3.5)

Here we have set

Ḡ(v̄, ρ̄; v∗, ρ∗) = G(v̄ + v∗, ρ̄ + ρ∗)− e�� t G(v0, ρ0),

H̄(v̄, ρ̄; v∗, ρ∗) = H(v̄ + v∗, ρ̄ + ρ∗)− e�� t H(v0, ρ0).

Note that Ḡ(0, 0; v0, ρ0) = H̄(0, 0; v0, ρ0) = 0 by construction, which ensures
time trace zero at t = 0.

(iv) Solution of the nonlinear problem.

We first concentrate on the case γ ≡ 0, and rewrite problem (3.5) in abstract
form as

Lz̄ = N(z̄, z∗),

where L : 0E(0, t0) → 0F(0, t0), defined by

Lz̄ = (
κ0∂t v̄ − d0�v̄, l1v̄ + σ0��ρ̄, l0∂t ρ̄ − [[d0∂νv̄]]

)
,

is an isomorphism by Theorem 3.3. The nonlinearity

N : 0E(0, t0)× E(0, t0) → 0F(0, t0),

given by the right-hand side of(3.5), is of class C1, since the coefficient functions
satisfy κ ∈ C1, d, l ∈ C2, ψ ∈ C3, and by virtue of the embeddings

E1(J ) ↪→ C(J × �̄) ∩ C(J ; C1(�̄ j )), E2(J ) ↪→ C(J ; C3(�)) ∩ C1(J ; C(�)).

Observe that the constants in these embeddings blow up as t0 → 0; however, they
are uniform in t0 if one considers the space 0E(J )!

We want to apply the contraction mapping principle. For this purpose we con-
sider a closed ball BR(0) ⊂ 0E(0, τ ), where the radius R > 0 and the final time
τ ∈ (0, t0] are at our disposal. We rewrite the abstract equation Lz̄ = N(z̄, z∗) as
the fixed point equation

z̄ = L
−1

N(z̄, z∗) =: T(z̄), z̄ ∈ BR(0).
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Since we are working in an L p-setting, by choosing τ = τ(R) small enough we
can assure that

||T(0)||E(0,τ ) = ||L−1
N(0, z∗)||E(0,τ ) � R/2.

On the other hand, we have

||T(z1)− T(z2)||E(0,τ ) � ||L−1||B(0F(0,τ ),0E(0,τ ))

× sup
||z̄||0E(0,τ )�R

||N′(z̄, z∗)||B(0E(0,τ ),0F(0,τ ))||z1 − z2||E(0,τ ),

hence T(BR(0)) ⊂ BR(0) and T is a strict contraction, provided we have

||L−1||B(0F(0,τ ),0E(0,τ )) sup
||z̄||0E(0,τ )�R

||N′(z̄, z∗)||B(0E(0,τ ),0F(0,τ )) � 1/2.

For this we observe that

||L−1||B(0F(0,τ ),0E(0,τ )) � ||L−1||B(0F(0,t0),0E(0,t0)) =: CM < ∞
is uniform in τ ∈ (0, t0), since we have vanishing time traces at t = 0. So it remains
to estimate the Frechét-derivative of N on the ball BR(0) ⊂ 0E(0, τ ). This is the
content of the next proposition, which also covers the case γ > 0.

Proposition 3.7. Let p > n + 2, σ ∈ R, and suppose ψ, γ ∈ C3(0,∞) and
d ∈ C2(0,∞).

Then N : 0E(0, t0)× E(0, t0) → 0F(0, t0) is continuously Fréchet-differentia-
ble. There is η > 0 such that for a given z∗ ∈ E(0, t0) with |ρ0|C2(�) � η, there
are continuous functions α(R) > 0 and β(τ) > 0 with α(0) = β(0) = 0, such that

||N′(z̄ + z∗)||B(0E(0,τ ),0F(0,τ )) � α(R)+ β(τ), z̄ ∈ BR ⊂ 0E(0, τ ).

Proof. We may proceed in a way similar to [28, Section 7], where the interface
is a graph over R

n−1. The additional terms which arise by considering a general
geometry are either of lower order or of the form M̃(v̄, ρ̄)∇�ρ̄, where M̃(v̄, ρ̄) is
of highest order (see (3.3)), but can be controlled by ensuring that ∇�ρ̄ is suffi-
ciently small. The additional terms due to the presence of γ are of highest order,
but small. ��

Thus, choosing first R > 0 and then τ > 0 small enough, T will be a self-map
and a strict contraction on BR(0). Concluding, the contraction mapping principle
yields a unique fixed point z̄ = z̄(z∗) ∈ BR(0) ⊂ 0E(0, τ ), hence z = z∗ + z̄(z∗)
is the unique solution of (3.2), that is, of (2.1).

The proof in case γ > 0 is similar, employing now Theorem 3.5.

Remark 3.8. The assumption p > n + 2 simplifies many arguments, since F2(J )
as well as F3(J ) are Banach algebras and ∇v ∈ BC(J ×�). If we merely assume
p > (n + 2)/2, then F2(J ) is still a Banach algebra, but F3(J ) is not, and ∇v
may not be bounded anymore. This leads to much more involved estimates for the
nonlinearities.
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3.1. Local Semiflows

We denote by MH2(�) the closed C2-hypersurfaces contained in�. It can be
shown that MH2(�) is a C2-manifold: the charts are the parameterizations over a
given hypersurface � according to Section 2, and the tangent space consists of the
normal vector fields on �. We define a metric on MH2(�) by means of

dMH2(�1, �2) := dH(N 2�1,N 2�2),

where dH denotes the Hausdorff metric on the compact subsets of R
n introduced

in Section 2. In this way MH2(�) becomes a Banach manifold of class C2.
Let d�(x) denote the signed distance for� as in Section 2. We may then define

the level function ϕ� by means of

ϕ�(x) = φ(d�(x)), x ∈ R
n,

where

φ(s) = (1 − χ(s/a)) sgn s + sχ(s/a), s ∈ R.

Then it is easy to see that � = ϕ−1
� (0), and ∇ϕ�(x) = ν�(x), for x ∈ �. More-

over, 0 is an eigenvalue of ∇2ϕ�(x), and the remaining eigenvalues of ∇2ϕ�(x)
are the principal curvatures of � at x ∈ �.

If we consider the subset MH2(�, r) of MH2(�), which consists of all closed
hypersurfaces � ∈ MH2(�) such that � ⊂ � satisfies a (interior and exterior)
ball condition with fixed radius r > 0, then the map

ϒ : MH2(�, r) → C2(�̄), ϒ(�) := ϕ�, (3.6)

is an isomorphism of the metric spaceMH2(�, r)ontoϒ(MH2(�, r)) ⊂ C2(�̄).
Let s − (n − 1)/p > 2. Then we define

W s
p(�, r) := {� ∈ MH2(�, r) : ϕ� ∈ W s

p(�)}. (3.7)

In this case the local charts for � can be chosen of class W s
p, as well. A subset

A ⊂ W s
p(�, r) is said to be (relatively) compact if ϒ(A) ⊂ W s

p(�) is (relatively)
compact.

As an ambient space for the state manifold SMγ of the Stefan problem with
surface tension, we consider the product space C(Ḡ)×MH2, due to continuity of
temperature and curvature.

We define the state manifolds SMγ , γ � 0, for the Stefan problem (1.3) as
follows. For γ = 0 we set

SM0 := {(u, �) ∈ C(�̄)× MH2 : u ∈ W 2−2/p
p (� \ �), � ∈ W 4−3/p

p ,

u > 0 in �̄, [[ψ(u)]]+σH=0, l(u) 
= 0 on �, [[d∂νu]] ∈ W 2−6/p
p (�)},

(3.8)
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and for γ > 0

SMγ : = {(u, �) ∈ C(�̄)× MH2 : u ∈ W 2−2/p
p (� \ �), � ∈ W 4−3/p

p ,

u > 0 in �̄, (l(u)−[[ψ(u)]]−σH)([[ψ(u)]]+σH)=γ (u)[[d∂νu]] on �}.
(3.9)

Charts for these manifolds are obtained by the charts induced by MH2(�), fol-
lowed by a Hanzawa transformation.

Applying Theorem 3.1 or Theorem 3.2, respectively, and re-parametrizing the
interface repeatedly, we see that (1.3) yields a local semiflow on SMγ .

Theorem 3.9. Let p > n + 2, σ > 0 and γ � 0. Then problem (1.3) generates
a local semiflow on the state manifold SMγ . Each solution (u, �) exists on a
maximal time interval [0, t∗), where t∗ = t∗(u0, �0).

Time weights. For later use we need an extension of the local existence results
to spaces with time weights. In particular, we need this extension for a compact-
ness argument in the proof of Theorem 5.3. Given a UMD-Banach space Y and
μ ∈ (1/p, 1], we define, for J = (0, t0),

K s
p,μ(J ; Y ) := {u ∈ L p,loc(J ; Y ) : t1−μu ∈ K s

p(J ; Y )},
where s � 0 and K ∈ {H,W }. It has been shown in [78] that the operator d/dt in
L p,μ(J ; Y ) with domain

D(d/dt) = 0 H1
p,μ(J ; Y ) = {u ∈ H1

p,μ(J ; Y ) : u(0) = 0}
is sectorial and admits an H∞-calculus with angle π/2. However, it does not gen-
erate a C0-semigroup unless μ = 1. This is the main tool for extending the results
for the linear problem, that is, Theorems 3.3 and 3.5, to the time weighted setting,
where the solution space E(J ) is replaced by

Eμ(J ) = Eμ,1(J )× Eμ,2(J ),

with

Eμ,1(J )={v ∈ H1
p,μ(J ; L p(�)) ∩ L p,μ(J ; H2

p(� \�) : [[v]]=0, ∂ν�v=0},
Eμ,2(J ) :=W 3/2−1/2p

p,μ (J ; L p(�))∩W 1−1/2p
p,μ (J ; H2

p(�))∩L p,μ(J ; W 4−1/p
p (�)),

γ ≡ 0,

Eμ,2(J ) := W 2−1/2p
p,μ (J ; L p(�)) ∩ L p,μ(J ; W 4−1/p

p (�)), γ > 0.

In a similar way, the space of data is defined by

Fμ,1(J ) := L p,μ(J ; L p(�)),

Fμ,2(J ) := W 1−1/2p
p,μ (J ; L p(�)) ∩ L p,μ(J ; W 2−1/p

p (�)),

Fμ,3(J ) := W 1/2−1/2p
p,μ (J ; L p(�)) ∩ L p,μ(J ; W 1−1/p

p (�)),

Fμ(J ) := Fμ,1(J )× Fμ,2(J )× Fμ,3(J ).
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The trace spaces for v and ρ for p > 3 are then given by

v0 ∈ W 2μ−2/p
p (� \�), ρ0 ∈ W 2+2μ−3/p

p (�), ρ1 ∈ W 4μ−2−6/p
p (�),

(3.10)

where for the last trace - which is of relevance only in case γ ≡ 0—we need, in
addition, μ > 1/2 + 3/2p. Note that the embeddings

Eμ,1(J ) ↪→ C(J × �̄) ∩ C(J ; C1(�̄ j )), Eμ,2(J ) ↪→ C(J ; C3(�))

requireμ > 1/2+(n+2)/2p, which is feasible since p > n+2 by assumption. This
restriction is needed for the estimation of the nonlinearities, that is, Proposition 3.7
remains valid for μ ∈ (1/2 + (n + 2)/2p, 1).

The assertions for the linear problem remain valid for this μ, replacing E(J )
by Eμ(J ),F(J ) by Fμ(J ), for initial data subject to (3.10). This relies on the fact
mentioned above that d/dt admits a bounded H∞-calculus with angle π/2 in the
spaces L p,μ(J ; Y ). Therefore the main results in Denk et al. [21] remain valid
for μ ∈ (1/p, 1). This has recently been established in [60,61]. As a consequence
of these considerations we have the following result.

Corollary 3.10. Let p > n + 2, μ ∈ (1/2 + (n + 2)/2p, 1], σ > 0, and suppose
that ψ, γ ∈ C3(0,∞), d ∈ C2(0,∞) such that γ ≡ 0 or γ (u) > 0, u ∈ (0,∞),
and

κ(u) = −uψ ′′(u) > 0, d(u) > 0, u ∈ (0,∞).

Assume the regularity conditions

u0 ∈ W 2μ−2/p
p (� \ �0) ∩ C(�̄), u0 > 0, �0 ∈ W 2+2μ−3/p

p ,

and the compatibility conditions ∂ν�u0 = 0 and

(a) [[ψ(u0)]] + σH(�0) = 0, [[d(u0)∂νu0]] ∈ W 4μ−2−6/p
p (�0), as well as the

well-posedness condition l(u0) 
= 0 on �0, in case γ ≡ 0.

(b)
([[ψ(u0)]] + σH(�0)

)(
l(u0) − [[ψ(u0)]] − σH(�0)

) = γ (u0)[[d(u0)∂νu0]] in
case γ > 0,

Then the transformed problem (2.1) admits a unique solution z = (v, ρ) ∈ Eμ(0, τ )
for some nontrivial time interval J = [0, τ ]. The solution depends continuously
on the data. For each δ > 0 the solution belongs to E(δ, τ ), that is, it regularizes
instantly.

4. Equilibria

Suppose (u∗, �∗) is an equilibrium for (1.3). Then ∂t u∗ ≡ 0 as well as V∗ ≡ 0,
and we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

div(d(u∗)∇u∗) = 0 in � \ �∗
∂ν�u∗ = 0 on ∂�

[[u∗]] = 0 on �∗
[[ψ(u∗)]] + σH(�∗) = 0 on �∗
[[d(u∗)∂νu∗]] = 0 on �∗.

(4.1)
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This yields u∗ = const, hence H(�∗) = −[[ψ(u∗)]]/σ is constant, as well. If �∗ is
connected (and � is bounded), this implies that �∗ is a sphere SR∗(x0) with radius
R∗ = σ/[[ψ(u∗)]]. Thus there is an (n + 1)-parameter family of equilibria

E := {(u∗, SR∗(x0)) : u∗ > 0, 0 < R∗ = σ/[[ψ(u∗)]], B̄R∗(x0) ⊂ �}.
Otherwise,�∗ is the union of finitely many, say m, nonintersecting spheres of equal
radius. It will be shown in the proof of Theorem 4.5(vii) that E is a C1-manifold of
dimension (mn + 1) in W 2

p(� \ �∗)× W 4−1/p
p (�∗).

4.1. Conservation of Energy

As we have just seen, the equilibria of (1.3) are constant temperature, and
the dispersed phase consists of finitely many non-intersecting balls with the same
radius. To determine u and R, taking into account conservation of energy, we have
to solve the system

E(u, R) := |�1|ε1(u)+ |�2|ε2(u)+ σ

n − 1
|�| = E0,

[[ψ(u)]] + σH = 0.

In order not to overburden the notation, we use (u, R) instead of (u∗, R∗). The
constant E0 means the initial total energy in the system. Since H = −σ/R we may
eliminate R by the second equation R = σ/[[ψ(u)]], and we are left with a single
equation for the temperature u:

ϕ(u) :=E(u, R(u))=|�|ε2(u)− mωn

n
Rn(u)[[ε(u)]]+ σmωn

n − 1
Rn−1(u)=ϕ0, (4.2)

with ϕ0 = E0. Note that only the temperature range [[ψ(u)]] > 0 is relevant due to
the requirement R > 0, and with

Rm = sup{R > 0 : � contains m disjoint balls of radius R}
we must also have R < Rm, that is, with h(u) = [[ψ(u)]]

h(u) >
σ

Rm
.

With ε(u) = ψ(u) − uψ ′(u), that is, [[ε(u)]] = h(u) − uh′(u), we may rewrite
ϕ(u) as

ϕ(u) = |�|ε2(u)+ cn

( 1

h(u)n−1 + (n − 1)u
h′(u)
h(u)n

)
,

where we have set cn = m ωn
n(n−1)σ

n .

Next, with

R′(u) = −σh′(u)
h2(u)

= −h′(u)R2(u)

σ
,
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we obtain

ϕ′(u) = |�|ε′2(u)− [[ε′(u)]]|�1| + mωn(
σ

R(u)
− [[ε(u)]])Rn−1(u)R′(u)

= |�|κ2(u)− [[κ(u)]]|�1| + mωnuh′(u)Rn−1(u)R′(u)

= (κ(u)|1)L2(�) − uh′(u)|�|h′(u)R2(u)

σ

=
{
σu(κ(u)|1)L2(�)

l2(u)R2(u)|�| − 1

}
l2(u)R2(u)|�|

σu
,

with l(u) = uh′(u). It will turn out that in the case of connected phases the term in
the parentheses determines whether an equilibrium is stable: it is stable if ϕ′(u) < 0
and unstable if ϕ′(u) > 0; see Theorem 5.2 below.

In general it is not a simple task to analyze the equation for the temperature,

ϕ(u) = |�|ε2(u)+ cn

(
1

h(u)n−1 + (n − 1)u
h′(u)
h(u)n

)

= ϕ0,

unless more properties of the functions ε2(u), and in particular of h(u), are known.
A natural assumption is that h has exactly one positive zero um > 0, the melting
temperature. Therefore we look at two examples.

Example 4.1. Suppose that the heat capacities are identical, that is, [[κ]] ≡ 0. This
implies

uh′′(u) = u[[ψ ′′(u)]] = −[[κ(u)]] ≡ 0,

which means that h(u) = h0 + h1u is linear. The melting temperature, then, is
0 < um = −h0/h1, hence we have two cases.

Case 1. h0 < 0, h1 > 0; this means l(um) > 0. In this case, the relevant tempera-
ture range is u > um, as h is positive there. We assume now that ε2 is increasing and
convex. As u → um+ we have h(u) → 0, hence ϕ(u) → ∞, and also ϕ(u) → ∞
for u → ∞ since ε2(u) is increasing and convex. Further, we have

ϕ′(u) = |�|ε′2(u)− n(n − 1)cn
h2

1u

(h0 + h1u)n+1 ,

ϕ′′(u) = |�|ε′′2(u)+ n(n − 1)cnh2
1

−h0 + nh1u

(h0 + h1u)n+2 > 0,

which shows that ϕ(u) is strictly convex for u > um. Thus ϕ(u) has a unique
minimum u0 > um, ϕ(u) is decreasing for um < u < u0 and increasing for
u > u0. Thus there are precisely two equilibrium temperatures u+∗ ∈ (u0,∞)

and u−∗ ∈ (um, u0), provided ϕ0 > ϕ(u0), and none if ϕ0 < ϕ(u0). The smaller
temperature leads to stable equilibria while the larger leads to unstable ones.
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Case 2. h0 > 0, h1 < 0; this means l(um) < 0. In this case, the relevant temper-
ature range is u < um, as h is positive there. As u → um− we have h(u) → 0+
hence ϕ(u) → −∞, and as u → 0+ we have ϕ(u) → ϕ(0) = |�|ε2(0)+cn/hn−1

0 ,
assuming that ε2(0) := limu→0+ ε2(u) exists. Further, for u sufficiently close to
zero, ϕ′(u) is positive, since κ2 = ε′2 > 0, and ϕ′(u) → −∞ as u → um−.
Therefore, ϕ′(u) admits at least one zero in (0, um). But there may be more than
one unless ε2(u) is concave, so let us assume this. Let u0 ∈ (0, um) denote the
absolute maximum of ϕ(u) in (0, um). Then there is exactly one equilibrium tem-
perature u∗ ∈ (u0, um) if ϕ0 < ϕ(0) and it is stable; there are exactly two equilibria
u−∗ ∈ (0, u0) and u+∗ ∈ (u0, um) if ϕ(0) < ϕ0 < ϕ(u0), the first one is unstable,
the second is stable. If ϕ0 > ϕ(u0), there are no equilibria.

Note that in both cases these equilibrium temperatures give rise to equilibria
only if the corresponding radius R(u) is smaller than Rm.

Example 4.2. Suppose that the internal energies εi (u) are linearly increasing, that
is,

εi (u) = ai + κi u, i = 1, 2,

where κi > 0, and now [[κ]] 
= 0. The identity εi = ψi − uψ ′
i then leads to

ψi (u) = ai + bi u − κi u ln u, i = 1, 2,

where the constants bi are arbitrary. This yields with α = [[a]], β = [[b]] and
δ = [[κ]]

h(u) = α + βu − δu ln u.

Scaling the temperature by u = u0w with β − δ ln u0 = 0 and scaling h, we may
assume β = 0 and δ = ±1. Then we have to investigate the equation ϕ(w) = ϕ1,
where

ϕ(w) = cw + { 1

hn−1(w)
+ (n − 1)w

h′(w)
hn(w)

}, h(w) = ±(α + w lnw),

with c > 0 and α, ϕ1 ∈ R. The requirement of existence of a melting temperature
wm > 0, that is, a zero of h(w) leads to the restriction α � 1/e.

Actually, the requirement that the melting temperature be unique, that is, that
h have exactly one positive zero, implies α < 0. Indeed, for α ∈ (0, 1/e) there is a
second zero w− > 0 of h, and h is positive in (0, w−). Equilibrium temperatures
in this range would not make sense physically.

Here, also, we have to distinguish between two cases: that of a plus-sign where
the relevant temperature range is w > wm, and that of a minus-sign where the
range is (0, wm). Note that h is convex in the first case and concave in the second.

Case 1. For the derivatives, in the first case we get

ϕ′(w) = c + (n − 1)

{
h(w)− nw(h′(w))2

hn+1(w)

}

,

ϕ′′(w) = n(n − 1)
h′(w)

hn+2(w)

{
(n + 1)w(h′(w))2 − h(w)(3 + h′(w))

}
.
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We have ϕ(w) → ∞ for w → ∞ and for w → wm+, hence ϕ(w) has a global
minimum u0 in (um,∞). Further, ϕ′′(w) > 0 in (wm,∞), hence the minimum is
unique and there are precisely two equilibrium temperatures w−∗ ∈ (wm, w0) and
w+∗ ∈ (w0,∞), provided ϕ1 > ϕ(w0), the first one is stable, the second unstable.

To prove convexity of ϕ we write

(n + 1)w(h′(w))2 − h(w)(3 + h′(w)) = (n − 1)w(h′(w))2 + f (w),

where

f (w)=2w(h′(w))2−h(w)(3+h′(w))=2w(1+lnw)2−(α+w lnw)(4+lnw).

We then have f (wm) = 2wm(1 + lnwm)
2 > 0, and

f ′(w) = (1 + lnw)2 + 1 − α/w > 1 − α/w � 0,

for α � 1/e < wm � w. Let us illustrate the sign in h with the water-ice sys-
tem, ignoring the density jump of water at freezing temperature. Suppose that �2
consists of ice and �1 of water. In this case we have κ1 > κ2, hence δ < 0,
which implies the plus-sign for h. Here we obtain w±∗ > wm, that is, the ice is
overheated. Equilibria exist only if φ1 is large enough, which means that there is
enough energy in the system. If the energy in the system is very large then the
stable equilibrium temperature w−∗ comes close to the melting temperature wm;
then R(w)will become large, eventually larger than R∗. This excludes equilibria in
�; the physical interpretation is that everything will eventually melt. On the other
hand, if �1 consists of ice and �2 of water, we have the minus sign, which we
want to consider next. Here we expect under-cooling of the water-phase, existence
of equilibria only for low values of energy, and if the energy in the system is too
small, everything will freeze.

Case 2. Assume the minus-sign for h and let α < 0. Then the relevant tempera-
ture range is (0, wm). Here we have ϕ(w) → −∞ as w → wm− and ϕ(w) →
1/|α|n−1 > 0 as w → 0+.

To investigate concavity of ϕ in the interval (0, wm), we recompute the deriv-
atives of ϕ:

ϕ′(w) = c − (n − 1)

{
1

hn(w)
+ n

w(h′(w))2

hn+1(w)

}

,

ϕ′′(w) = n(n − 1)
h′(w)

hn+2(w)

{
(n + 1)w(h′(w))2 + h(w)(3 − h′(w))

}
.

Setting w+ = 1/e, for w ∈ (w+, wm) we have h(w) > 0 and h′(w) < 0, hence
ϕ′′(w) < 0. On the other hand, forw ∈ (0, w+), both h(w) and h′(w) are positive.
Then we rewrite

(n + 1)w(h′(w))2 + 3h(w)− h(w)h′(w) = (n − 1)w(1 + lnw)2 + f (w),



642 Jan Prüss, Gieri Simonett & Rico Zacher

where

f (w) = 2w(h′(w))2 + h(w)(3 − h′(w))
= 2w(1 + lnw)2 − (α + w lnw)(4 + lnw),

f ′(w) = (1 + lnw)2 + 1 − α/w > 0,

provided α � 0. This shows that f is increasing, f (w) → −∞ as w → 0+, and
f (1/e3) = 11/e3 −α > 0. On the other hand, the functionw(1+ lnw)2 is increas-
ing in (0, 1/e3), hence ϕ′′(w) has a unique zero w− ∈ (0, 1/e3). Therefore, ϕ is
concave in (0, w−)∪ (w+, wm) and convex in (w−, w+), and ϕ′ has a minimum at
w− and a maximum atw+. Observe that ϕ′(w) < c, ϕ′(w) → −∞ forw → wm−
and ϕ′(0) = c − (n − 1)/|α|n < ϕ′(w+). Therefore, ϕ′ may have no, one, two,
or three zeros in (0, wm), depending on the value of c > 0. However, if c > 0 is
large enough, then ϕ′ has only one zero, w1, which lies in (w+, wm). In this case ϕ
is increasing in (0, w1) and decreasing in (w1, wm), hence for ϕ1 ∈ (ϕ(0), ϕ(w1))

there are precisely two equilibrium temperatures: the smaller leads to unstable, the
larger to a stable equilibrium. If ϕ1 < ϕ(0), there is a unique equilibrium which is
stable, and in the case where ϕ1 > ϕ(w1) there is none. However, in general, there
may be up to four equilibrium temperatures.

4.2. Linearization at Equilibria

The linearization at an equilibrium (u∗, �∗) with R∗ = σ/[[ψ(u∗)]], reads
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∗∂tv − d∗�v = f in � \ �∗
∂ν�v = 0 on ∂�

[[v]] = 0 on �∗
(l∗/u∗)v + σ A∗ρ − γ∗∂tρ = g on �∗
l∗∂tρ − [[d∗∂νv]] = h in �∗
v(0) = v0, ρ(0) = ρ0.

(4.3)

Here

κ∗ = κ(u∗), d∗ = d(u∗), l∗ = l(u∗), γ∗ = γ (u∗), A∗ = 1

n − 1

(
n − 1

R2∗
+�∗

)

,

where �∗ denotes the Laplace–Beltrami operator on �∗.
We note that if l∗ = 0 and γ∗ = 0, then the problem is not well-posed. On the

other hand, if l∗ 
= 0 and γ∗ = 0, then the operator −L0 defined by

D(L0) = {
(v, ρ) ∈ [H2

p(� \ �∗) ∩ C(�̄)] × W 4−1/p
p (�∗) :

∂ν�v = 0, (l∗/u∗)v + σ A∗ρ = 0, [[d∗∂νv]] ∈ W 2−2/p
p (�∗)

}
,

L0(u, ρ) = ((−d∗/κ∗)�v,−[[(d∗/ l∗)∂νv]]),
(4.4)

generates an analytic C0-semigroup with maximal regularity in

X0 := L p(�)× W 2−2/p
p (�∗).

More precisely, we have the following result.
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Theorem 4.3. Let 3 < p < ∞, σ > 0, suppose γ∗ = 0 and let l∗ 
= 0. Then for
each finite interval J = [0, t0], there is a unique solution z = (v, ρ) ∈ E(J ) of
(4.3) if and only if the data ( f, g, h) and z0 = (v0, ρ0) satisfy

( f, g, h) ∈ F(J ), z0 ∈ [W 2−2/p
p (� \ �∗) ∩ C(�̄)] × W 4−3/p

p (�∗)

and the compatibility conditions

∂ν�v0 = 0, (l∗/u∗)v0 + σ A∗ρ0 = g(0), h(0)+ [[d∗∂νv0]] ∈ W 2−6/p
p (�∗).

The operator −L0 defined above generates an analytic C0-semigroup in X0 with
maximal regularity of type L p.

In case γ∗ > 0, similar assertions are valid for Lγ in

Xγ := L p(�)× W 2−1/p
p (�∗),

where

D(Lγ ) = {
(v, ρ) ∈ [H2

p(� \ �∗) ∩ C(�̄)] × W 4−1/p
p (�∗) :

∂ν�v = 0, (l2∗/u∗)v + l∗σ A∗ρ = γ∗[[d∗∂νv]]
}
,

Lγ (v, ρ) = ((−d∗/κ∗)�v,−(σ/γ∗)A∗ρ − (l∗/u∗γ∗)v).
(4.5)

The main result on the problem (4.3) for γ∗ > 0 is the following.

Theorem 4.4. Let 3 < p < ∞, and suppose σ, γ∗ > 0. Then for each finite inter-
val J = [0, t0], there is a unique solution z = (v, ρ) ∈ E(J ) of (4.3) if and only if
the data ( f, g, h) and z0 = (v0, ρ0) satisfy

( f, g, h) ∈ F(J ), z0 ∈ [W 2−2/p
p (� \ �∗) ∩ C(�̄)] × W 4−3/p

p (�∗)

and the compatibility condition

∂ν�v0 = 0, (l2∗/u∗)v0 + l∗σ A∗ρ0 − γ∗[[d∂νv0]] = l∗g(0)+ γ∗h(0).

The operator −Lγ defined above generates an analytic C0-semigroup in Xγ with
maximal regularity of type L p.

Proof. (Proof of Theorem 4.3 and Theorem 4.4) These results, up to the last
assertions, are special cases of Theorems 3.3 and 3.5, respectively, in Section 3. In
addition, since the Cauchy problem for Lγ has maximal L p-regularity, we conclude
in both cases by [74, Proposition 1.2] that −Lγ generates an analytic C0-semigroup
in Xγ . Recall that the spaces E(J ) are different for γ = 0 and γ > 0. ��
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4.3. The Eigenvalue Problem

By compact embedding, the spectrum of Lγ consists only of countably many
discrete eigenvalues of finite multiplicity and is independent of p. The eigenvalue
problem reads as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ∗λv − d∗�v = 0 in � \ �∗
∂ν�v = 0 on ∂�

[[v]] = 0 on �∗
(l∗/u∗)v + σ A∗ρ − γ∗λρ = 0 on �∗
l∗λρ − [[d∗∂νv]] = 0 on �∗.

(4.6)

Assume, first, that�∗ is connected. As shown in [79],λ = 0 is always an eigenvalue,
and N (Lγ ) is independent of γ∗ � 0, κ∗ and d∗. We have

N (Lγ ) = span

{(
σu∗
l∗ R2∗

,−1

)

, (0,Y1), . . . , (0,Yn)

}

, (4.7)

where the functions Y j denote the spherical harmonics of degree one, normal-
ized by (Y j |Yk)L2(�∗) = δ jk . N (Lγ ) is isomorphic to the tangent space of E at
(u∗, �∗) ∈ E .

Let λ 
= 0 be an eigenvalue with eigenfunction (v, ρ) 
= 0. Then (4.6) yields

λ
{∣
∣√κ∗v

∣
∣2
L2(�)

− σu∗(A∗ρ|ρ)L2(�∗)
}

+
∣
∣
∣
√

d∗∇v
∣
∣
∣
2

L2(�)
+ γ∗u∗|λ|2|ρ|2L2(�∗) = 0.

Since A∗ is selfadjoint in L2(�∗), this identity shows that all eigenvalues of Lγ are
real. Decomposing v = v0 + v̄, ρ = ρ0 + ρ̄, with (κ∗|v0)L2(�) = (ρ0|1)L2(�∗) = 0,
this identity can be rewritten as

λ
{∣
∣√κ∗v0

∣
∣2
L2(�)

− σu∗(A∗ρ0|ρ0)L2(�∗) + λu∗γ∗|ρ0|2L2(�∗)

}
+

∣
∣
∣
√

d∗∇v0

∣
∣
∣
2

L2(�)

+ [
λγ∗u∗ + l2∗|�∗|/(κ∗|1)L2(�) − σu∗/R2∗

]
λρ̄2|�∗| = 0.

In the case in which �∗ is connected, the bracket determines whether there is a
positive eigenvalue.

If �∗ = ⋃
1�l�m �

l∗ consists of m > 1 spheres �l∗ of equal radius, then

N (Lγ ) = span

{(
σu∗
l∗ R2∗

,−1

)

, (0,Y l
1), . . . , (0,Y l

n) : 1 � l � m

}

, (4.8)

where the functions Y l
j denote the spherical harmonics of degree one on �l∗ (and

Y l
j ≡ 0 on

⋃
i 
=l �

i∗), normalized by (Y l
j |Y l

k)L2(�
l∗) = δ jk . N (Lγ ) is isomorphic to

the tangent space of E at (u∗, �∗) ∈ E , as will be shown in Theorem 4.5, below.

Theorem 4.5. Let σ > 0, γ∗ � 0, l∗ 
= 0, and assume that the interface�∗ consists
of m � 1 components. Let

ζ∗ = σu∗(κ∗|1)L2(�)

l2∗ R2∗|�∗| , (4.9)

and let ϕ be defined as in (4.2). Then
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(i) ϕ′(u∗) = (ζ∗ − 1)l2∗ R2∗|�∗|/(σu∗).
(ii) 0 is an eigenvalue of −Lγ with geometric multiplicity (mn + 1).

(iii) 0 is semi-simple if ζ∗ 
= 1.
(iv) If �∗ is connected and ζ∗ � 1, then all eigenvalues of −Lγ are negative,

except for 0.
(v) If ζ∗ > 1, then there are precisely m positive eigenvalues of −Lγ ,

(vi) If ζ∗ � 1 then −Lγ has precisely m − 1 positive eigenvalues.
(vii) N (Lγ ) is isomorphic to the tangent space T(u∗,�∗)E of E at (u∗, �∗) ∈ E .

Remark 4.6. (a) The result is also true if l∗ = 0 and γ∗ 
= 0. In this case ϕ′(u∗) =
(κ∗|1)L2(�) > 0 and ζ∗ = ∞, hence the equilibrium is always unstable.

(b) Note that ζ∗ depends neither on d, nor on the undercooling coefficient γ .
(c) For the Mullins–Sekerka problem, that is, for κ ≡ 0, we have ζ∗ ≡ 0, in

accordance with the result obtained in [27].
(d) It is shown in [79] that in case ζ∗ = 1 and �∗ connected, the eigenvalue 0 is

no longer semi-simple: its algebraic multiplicity rises by 1. This is also true if
�∗ is disconnected.

Proof. (Proof of Theorem 4.5) For the case where �∗ is connected, this result is
proved in [79]. The assertions (i)–(iii) also remain valid in the disconnected case.
However, the proof of [79, Theorem 2.1(e)], addressing instability, is not com-
pletely correct, as it relies on the assertions [79, Proposition 3.2(b) and Proposition
5.1(c)] which are incorrect. (We remark, though, that the instability result of [79,
Theorem 1.3] is, indeed, valid.) Here we give a modified proof for [79, Theorem
2.1(e)] which also applies in the case where �∗ is not connected.

It thus remains to prove the assertions in (v), (vi), and (vii). If the stability con-
dition ζ∗ � 1 does not hold or if �∗ is disconnected, then there is always a positive
eigenvalue. To prove this we proceed as follows. Suppose λ > 0 is an eigenvalue,
and that ρ is known; solve the elliptic transmission problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ∗λv − d∗�v = 0 in � \ �∗
∂ν�v = 0 on ∂�

[[v]] = 0 on �∗
− [[d∗∂νv]] = h on �∗

(4.10)

to get v = Sλh, with Sλ being the solution operator. Then, taking the trace at �∗ we
obtain v|�∗ = Nλh, where Nλ denotes the Neumann-to-Dirichlet operator for the
transmission problem (4.10). Setting h = −λl∗ρ this implies, with the linearized
Gibbs–Thomson law, the equation

[(l2∗/u∗)λNλ + γ∗λ]ρ − σ A∗ρ = 0. (4.11)

λ > 0 is an eigenvalue of −Lγ if and only if (4.11) admits a nontrivial solution.
We consider this problem in L2(�∗). Then A∗ is selfadjoint and

−σ(A∗g|g)L2(�∗) � − σ

R2∗
|g|2L2(�∗).
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On the other hand, we will see below that Nλ is selfadjoint and positive semi-definite
on L2(�∗). Moreover, since A∗ has compact resolvent, the operator

Bλ := [(l2∗/u∗)λNλ + γ∗λ] − σ A∗

has compact resolvent as well, for each λ > 0. Therefore the spectrum of Bλ con-
sists only of eigenvalues which, in addition, are real. We intend to prove that in
cases where either �∗ is disconnected or the stability condition does not hold, Bλ0

has 0 as an eigenvalue, for some λ0 > 0.
We will need the following result on the Neumann-to-Dirichlet operator Nλ.

We denote by e the function which is identical to one on �∗.

Proposition 4.7. The Neumann-to-Dirichlet operator Nλ for problem (4.10) has
the following properties in L2(�∗).

(i) If v denotes the solution of (4.10), then

(Nλh|h)L2(�∗) = λ
∣
∣√κ∗v

∣
∣2
L2(�)

+
∣
∣
∣
√

d∗∇v
∣
∣
∣
2

L2(�)
, λ > 0, h ∈ L2(�∗).

(ii) For each α ∈ (0, 1/2) and λ0 > 0, there is a constant C > 0 such that

(Nλh|h)L2(�∗) � λα

C
|Nλh|2L2(�∗), h ∈ L2(�∗), λ � λ0.

In particular, Nλ is injective, and

|Nλ|B(L2(�∗)) � C

λα
, λ � λ0.

(iii) On L2,0(�∗) = {θ ∈ L2(�∗) : (θ |e)L2(�∗) = 0}, we even have

(Nλh|h)L2(�∗) � (1 + λ)α
C

|Nλh|2L2(�∗), h ∈ L2,0(�∗), λ > 0,

and

|Nλ|B(L2,0(�∗),L2(�∗)) � C

(1 + λ)α , λ > 0.

In particular, for λ = 0, (4.10) is solvable if and only if (h|e)�∗ = 0, and then
the solution is unique up to a constant.

Proof. (Proof of Proposition 4.7) The first assertion follows from the divergence
theorem. The second and third assertions are consequences of trace theory, com-
bined with Poincaré’s inequality. The last assertion is a standard statement in the
theory of elliptic transmission problems. We refer to [79]. ��
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Proof of Theorem 4.5, continued: (a) Suppose, first, that �∗ is connected.
Consider h = e. Then with c∗ := l2∗/u∗ � 0, we have

(Bλe|e)L2(�∗) = c∗λ(Nλe|e)L2(�∗) + λγ∗|e|2L2(�∗) −
σ

R2∗
|e|2L2(�∗).

We compute the limit limλ→0 λ(Nλe|e)L2(�∗) as follows. First solve the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d∗�v = −κ∗a0 in � \ �∗
∂ν�v = 0 on ∂�

[[v]] = 0 on �∗
− [[d∗∂νv]] = e on �∗,

(4.12)

where a0 = |�∗|/(κ∗|1)L2(�), which is solvable since the necessary compatibil-
ity condition holds. Let v0 denote the solution which satisfies the normalization
condition (κ∗|v0)L2(�) = 0. Then vλ := Sλe − v0 − a0/λ satisfies the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ∗λvλ − d∗�vλ = −κ∗λv0 in � \ �∗
∂ν�v = 0 on ∂�

[[vλ]] = 0 on �∗
− [[d∗∂νvλ]] = 0 on �∗.

(4.13)

By the normalization (κ∗|v0)L2(�) = 0, we see that vλ is bounded in W 2
2 (� \ �∗)

as λ → 0. Hence we have

lim
λ→0

λNλe = lim
λ→0

[λvλ|�∗ + λv0|�∗ + a0] = a0 = |�∗|/(κ∗|1)L2(�).

This then implies

lim
λ→0

(Bλe|e)L2(�∗) = c∗
|�∗|2

(κ∗|1)L2(�)

− σ

R2∗
|�∗| < 0,

if the stability condition does not hold, that is, if ζ∗ > 1.
(b) Next, suppose that �∗ is disconnected. If �∗ consists of m components

�k∗, k = 1, . . . ,m, we set ek = 1 on �k∗ and zero elsewhere. Let h = ∑
k akek 
= 0

with
∑

k ak = 0, hence Q0h = h, where Q0 is the canonical projection onto
L2,0(�∗),

Q0h = h − (h|e)L2(�∗)
|�∗| .

Then

lim
λ→0

λNλh = lim
λ→0

λNλQ0h = 0,

since NλQ0 is bounded as λ → 0. This implies

lim
λ→0

(Bλh|h)L2(�∗) = − σ

R2∗

∑

k

|�k∗|a2
k < 0.
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(c) Next, we consider the behavior of (Bλh|h)L2(�∗) as λ → ∞. We want to
show that Bλ is positive semi-definite for large λ. For this purpose we introduce
the projections P and Q by

Ph = cm

m∑

k=1

(h|ek)L2(�∗)ek, Q = I − P,

where cm = m/|�∗| in the case where �∗ has m components. Recall that |�k∗| =
|�∗|/m for k = 1, . . . ,m. Then with hk = (h|ek)L2(�∗)

|(NλPh|Qh)L2(�∗)| � cm

∑

k

|hk | |(NλQh|ek)L2(�∗)|

� C
∑

k

|hk ||NλQh|L2(�∗) � Cλ−α/2

×
∑

k

|hk |(NλQh|Qh)1/2L2(�∗)

� Cλ−α/2
[
∑

k

|hk |2 + m(NλQh|Qh)L2(�∗)

]

� Cλ−α/2 [|Ph|2L2(�∗) + (NλQh|Qh)L2(�∗)
]
,

for λ > 0, and C standing for a generic positive constant, which may change from
line to line. Hence for λ � λ0, with λ0 sufficiently large, we have

(Nλh|h)L2(�∗) = (NλQh|Qh)L2(�∗) + 2(NλQh|Ph)L2(�∗) + (NλPh|Ph)L2(�∗)

� 1

2
(NλQh|Qh)L2(�∗) + (NλPh|Ph)L2(�∗) −

C

λ
α/2
0

|Ph|2L2(�∗).

This implies

(Bλh|h)L2(�∗) = c∗λ(Nλh|h)L2(�∗) + γ∗λ|h|2L2(�∗) − σ(A∗h|h)L2(�∗)

� c∗λ
2
(NλQh|Qh)L2(�∗) + c∗λ(NλPh|Ph)L2(�∗)

− σ(A∗Qh|Qh)L2(�∗) − c|Ph|2L2(�∗).

Since Nλ is positive semi-definite and −A∗Q also has this property, we need to
prove only λ(NλPh|Ph)L2(�∗) → ∞ as λ → ∞.

To prove this, as before, we estimate

|(Nλei |e j )L2(�∗)| � C |Nλei |L2(�∗) � C̃λ−α/2
0 (Nλei |ei )

1/2
L2(�∗),

and choosing λ0 sufficiently large, this yields

(NλPg|Pg)L2(�∗) � c0

[

min
i
(Nλei |ei )L2(�∗) −

C

λ
α/2
0

]

|Pg|2L2(�∗).
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Therefore, it is sufficient to show

lim
λ→∞ λ(Nλek |ek)L2(�∗) = ∞, k = 1, . . . ,m. (4.14)

So suppose, on the contrary, thatλ j (Nλ j g|g)L2(�∗) is bounded, for some g = ek and
some sequence λ j → ∞. Then the corresponding solution v j of (4.10) is such that
λ jv j is bounded in L2(�), hence has a weakly convergent subsequence. Without
loss of generality, λ jv j → v∞ weakly in L2(�). Fix a test functionψ ∈ D(�\�∗).
Then

λ j (κ∗v j |ψ)L2(�) = (d∗�v j |ψ)L2(�) = (v j |d∗�ψ)L2(�)

= (λ jv j |d∗�ψ)L2(�)/λ j → 0

as j → ∞, hence v∞ = 0 in L2(�). On the other hand, we have

0 < |�∗|/m =
∫

�∗
g ds =

∫

�∗
−[[d∗∂νv j ]] ds

=
∫

�

d∗�v j dx = λ j

∫

�

κ∗v j dx →
∫

�

κ∗v∞ dx,

hence v∞ is nontrivial, a contradiction. This implies that (4.14) is valid, provided
l∗ > 0.

On the other hand, in the case where l∗ = 0 we have γ∗ > 0, hence
λγ∗|g|2L2(�∗) → ∞, so, also, in this case Bλ is positive semi-definite for large
λ.

(d) Summarizing, we have shown that Bλ is not positive semi-definite for small
λ > 0 if either �∗ is not connected or the stability condition does not hold, and Bλ
is always positive semi-definite for large λ. Set

λ0 = sup{λ > 0 : Bμ is not positive semi-definite for each μ ∈ (0, λ]}.
Since Bλ has compact resolvent, Bλ has a negative eigenvalue for each λ < λ0.
This implies that 0 is an eigenvalue of Bλ0 , thereby proving that −Lγ admits the
positive eigenvalue λ0.

Moreover, we have also shown that

B0h = lim
λ→0

c∗λNλh − σ A∗h = c∗|�∗|/(κ∗|1)L2(�)P0h − σ A∗h,

where P0h := (I − Q0)h = (h|e)L2(�∗)/|�∗|. Therefore, B0 has the eigenvalue
c∗|�∗|/(κ∗|1)L2(�)−σ/R2∗ with eigenfunction e, and in case m > 1 it also possesses
the eigenvalue −σ/R2∗ with precisely m −1 linearly independent eigenfunctions of
the form

∑
k akek with

∑
k ak = 0. This implies that −Lγ has exactly m positive

eigenvalues if the stability condition does not hold, and m − 1 otherwise.
(e) It remains to show assertion (vii). Suppose for the moment that �∗ consists

of a single sphere of radius R∗ = σ/[[ψ(u∗)]], centered at the origin of R
n . Sup-

pose S ⊂ � is a sphere that is sufficiently close to �∗. Denote by (z1, . . . , zn) the
coordinates of its center and let z0 be such that σ/[[ψ(u∗ + z0)]] corresponds to its
radius.
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Then, by [27, Section 6], the sphere S can be parametrized over �∗ by the
distance function

ρ(z) =
n∑

j=1

z j Y j − R∗ +

√
√
√
√
√

⎛

⎝
n∑

j=1

z j Y j

⎞

⎠

2

+ (σ/[[ψ(u∗ + z0)]])2 −
n∑

j=1

z2
j .

Denoting by O a sufficiently small neighborhood of 0 in R
n+1, the mapping

[z �→ "(z) := (u∗ + z0, ρ(z))] : O → W 2
p(�)× W 4−1/p

p (�∗)

is C1 (in fact Ck if ψ is Ck), and the derivative at 0 is given by

" ′(0)h = (
1,−σ [[ψ ′(u∗)]]/[[ψ(u∗)]]2)h0 +

⎛

⎝0,
n∑

j=1

h j Y j

⎞

⎠ , h ∈ R
n+1.

Noting that σ [[ψ ′(u∗)]]/[[ψ(u∗)]]2 = l∗ R2∗/(σu∗), we can conclude that near
(u∗, �∗) the set E of equilibria is a C1-manifold in W 2

p(�) × W 4−1/p
p (�∗) of

dimension n + 1, and that the tangent space T(u∗,�∗)(E) coincides with N (Lγ ), see
(4.7). It is now easy to see that this result remains valid for the case of m spheres of
the same radius R∗. The dimension of E is then given by (mn + 1), as mn param-
eters are needed to locate their respective centers, and one additional parameter is
needed to track the temperature.

5. Nonlinear Stability and Instability of Equilibria

Before we discuss nonlinear stability of equilibria, we need to establish some
preliminaries. The first observation is that the equations near an equilibrium
(u∗, �∗) ∈ E can be restated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∗∂tv − d∗�v = F∗(v, ρ) in � \ �∗
∂ν�v = 0 on ∂�

[[v]] = 0 on �∗
(l∗/u∗)v + σ A∗ρ − γ∗∂tρ = G∗(v, ρ) on �∗
l∗∂tρ − [[d∗∂νv]] = H∗(v, ρ) on �∗
v(0) = v0, ρ(0) = ρ0.

, (5.1)

where

F∗(v, ρ)=(κ∗−κ(u∗ + v))∂tv + (d(u∗ + v)− d∗)�v + d(u∗ + v)M2(ρ) : ∇2v

− d ′(u∗ + v)|(I − M1(ρ))∇v|2 + d(u∗ + v)(M3(ρ)|∇v)
+ κ(u∗ + v)R(ρ)(u∗ + v),

G∗(v, ρ) = −([[ψ(u∗ + v)]] + σH(ρ))+ (l∗/u∗)v + σ A∗ρ
+ (γ (u∗ + v)β(ρ)−γ∗)∂tρ,

H∗(v, ρ) = [[(d(u∗ + v)− d∗)∂νv]] + (l∗ − l(u∗ + v))∂tρ

− ([[d(u∗ + v)∇v]]|M4(ρ)∇�ρ)+ γ (u∗ + v)β(ρ)(∂tρ)
2,
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see Sections 2 and 3 for the definition of M j (ρ), j = 1, . . . , 4. Here we replace
∂tρ in the nonlinearities G∗(v, ρ) and H∗(v, ρ) by the following expressions:

∂tρ = 1

l(u∗ + v)
([[d(u∗ + v)∂νv]] + ([[d(u∗ + v)∇v]]|M4(ρ)∇�ρ)

)
if γ = 0,

∂tρ = 1

β(ρ)γ (u∗ + v)
([[ψ(u∗ + v)]] + σH(ρ)) if γ > 0.

From the equilibrium equation [[ψ(u∗)]] + σH(0) = 0 follows that the nonlinear-
ities satisfy F∗(0, 0) = G∗(0, 0) = H∗(0, 0) = 0. Moreover, we have F ′∗(0, 0) =
G ′∗(0, 0) = H ′∗(0, 0) = 0.

The state manifold for problem (5.1) near the equilibrium (u∗, �∗) can then be
described by

SM0 = {
(v, ρ) ∈ W 2−2/p

p (� \ �∗)× W 4−3/p
p (�∗) : ∂ν�v = 0, [[v]] = 0,

(l∗/u∗)v+σ A∗ρ = G∗(v, ρ), [[d∗∂νv]] + H∗(v, ρ)∈W 2−6/p
p (�∗)

}
,

(5.2)

for γ∗ = 0, in case l∗ 
= 0 (otherwise the linear problem is not well-posed), and

SMγ = {
(v, ρ) ∈ W 2−2/p

p (� \ �∗)× W 4−3/p
p (�∗) : ∂ν�v = 0, [[v]] = 0,

(l2∗/u∗)v + l∗σ A∗ρ − γ∗[[d∗∂νv]] = l∗G∗(v, ρ)+ γ∗H∗(v, ρ)
}
,

(5.3)

in case γ∗ > 0.
We would like to parametrize these manifolds over their tangent spaces at (0, 0),

given by

Z̃0 = {
(ṽ, ρ̃) ∈ [W 2−2/p

p (� \ �∗) ∩ C(�̄)] × W 4−3/p
p (�∗) :

∂ν�ṽ = 0, (l∗/u∗)ṽ + σ A∗ρ̃ = 0, [[d∗∂νṽ]] ∈ W 2−6/p
p (�∗)

}
,

(5.4)

respectively, for γ∗ > 0

Z̃γ = {
(ṽ, ρ̃) ∈ [W 2−2/p

p (� \ �∗) ∩ C(�̄)] × W 4−3/p
p (�∗) :

∂ν�ṽ = 0, (l2∗/u∗)ṽ + l∗σ A∗ρ̃ − γ∗[[d∗∂νṽ]] = 0
}
. (5.5)

Note that the norm in Z̃γ for γ = 0 is given by

|(ṽ, ρ̃)|Z̃0
= |ṽ|

W 2−2/p
p

+ |ρ̃|
W 4−3/p

p
+ |[[d∗∂νṽ]]|W 2−6/p

p
,

while for γ > 0 it is given by |(ṽ, ρ̃)|Z̃γ
= |ṽ|

W 2−2/p
p

+ |ρ̃|
W 4−3/p

p
.

Is should be observed that Z̃γ is a linear space. The parametrization of SMγ

over the tangent space Z̃γ will facilitate the use of maximal regularity results for
the stability/instability analysis.
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In order to determine a parameterization, we consider the linear problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ∗ωv − d∗�v = 0 in � \ �∗
∂ν�v = 0 on ∂�

[[v]] = 0 on �∗
(l∗/u∗)v + σ A∗ρ − γ∗ωρ = g on �∗
l∗ωρ − [[d∗∂νv]] = h on �∗.

(5.6)

We have the following result.

Proposition 5.1. Suppose p > 3, γ∗ � 0, l∗ 
= 0 in the case where γ∗ = 0, and
ω > 0 is sufficiently large. Then problem (5.6) admits a unique solution (v, ρ) with
regularity

v ∈ W 2−2/p
p (� \ �∗), ρ ∈ W 4−3/p

p (�∗)

if and only if the data (g, h) satisfy

g ∈ W 2−3/p
p (�∗), h ∈ W 1−3/p

p (�∗).

The solution map [(g, h) �→ (v, ρ)] is continuous in the corresponding spaces.

Proof. This purely elliptic problem can be solved in the same way as the corre-
sponding linear parabolic problems, see Theorems 4.3 and 4.4. ��
For the parametrization we pick ω > 0 sufficiently large. Given z̃ = (ṽ, ρ̃) ∈ Z̃γ
sufficiently small, we can solve the auxiliary problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ∗ωv̄ − d∗�v̄ = 0 in � \ �∗
∂ν�v̄ = 0 on ∂�

[[v̄]] = 0 on �∗
(l∗/u∗)v̄ + σ A∗ρ̄ − γ∗ωρ̄ = G∗(ṽ + v̄, ρ̃ + ρ̄) on �∗
l∗ωρ̄ − [[d∗∂νv̄]] = H∗(ṽ + v̄, ρ̃ + ρ̄) on �∗

(5.7)

by means of the implicit function theorem, employing Proposition 5.1. This yields
a unique solution z̄ = (v̄, ρ̄) = φ(z̃) ∈ W 2−2/p

p (� \ �∗) × W 4−3/p
p (�∗) with a

C1-function φ such that φ(0) = 0 as well as φ′(0) = 0. One readily verifies that
z = z̃ +φ(z̃) ∈ SMγ . To prove surjectivity of this map, given (v, ρ) ∈ SMγ , we
solve the linear problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κ∗ωv̄ − d∗�v̄ = 0 in � \ �∗
∂ν�v̄ = 0 on ∂�

[[v̄]] = 0 on �∗
(l∗/u∗)v̄ + σ A∗ρ̄ − γ∗ωρ̄ = G∗(v, ρ) on �∗
l∗ωρ̄ − [[d∗∂νv̄]] = H∗(v, ρ) on �∗

(5.8)
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and set z̃ = z − z̄. Then z̃ ∈ Z̃γ and z̄ = φ(z̃), hence the map [z̃ �→ z̃ + φ(z̃)] is
also surjective near 0. We have thus obtained a local parametrization of SMγ near
zero over the tangent space Z̃γ .

Next we derive a similar decomposition for the solutions of problem (5.1). Let
z0 = (z̃0, φ(z̃0)) ∈ SMγ be given and let z ∈ E(a), where we set

E(a) := E([0, a]), (5.9)

to be the solution of (5.1) with initial value z0. Then we would like to devise a
decomposition z = z∞ + z̃ + z̄, where z̃(t) ∈ Z̃γ for all t ∈ [0, a], and where
z∞ = z̃∞+φ(z̃∞) is an equilibrium for (5.1). In order to achieve this, we consider
the coupled systems of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∗ωv̄ + κ∗∂t v̄ − d∗�v̄ = F∗(z∞ + z̃ + z̄)− F∗(z∞)
∂ν�v̄ = 0

[[v̄]] = 0

(l∗/u∗)v̄ + σ A∗ρ̄ − γ∗(∂t ρ̄ + ωρ̄) = G∗(z∞ + z̃ + z̄)− G∗(z∞)
l∗ωρ̄ + l∗∂t ρ̄ − [[d∗∂νv̄]] = H∗(z∞ + z̃ + z̄)− H∗(z∞)
z̄(0) = φ(z̃0)− φ(z̃∞),

(5.10)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∗∂t ṽ − d∗�ṽ = κ∗ωv̄
∂ν�ṽ = 0

[[ṽ]] = 0

(l∗/u∗)ṽ + σ A∗ρ̃ − γ∗∂t ρ̃ = −γ∗ωρ̄
l∗∂t ρ̃ − [[d∗∂νṽ]] = l∗ωρ̄
z̃(0) = z̃0 − z̃∞.

(5.11)

It should be mentioned that F∗(z∞) = 0, as can be seen from the equilibrium
equation for (5.1) and the fact that v∞ = constant for z∞ = (v∞, ρ∞). For reasons
of symmetry and consistency we will, nevertheless, include this term.

Equations (5.10)–(5.11) can be rewritten in the more condensed form

Lγ,ω z̄ = N (z∞+ z̃ + z̄)− N (z∞), z̄(0) = φ(z̃0)− φ(z̃∞),
˙̃z + Lγ z̃ = ωz̄, z̃(0) = z̃0 − z̃∞,

(5.12)

where we use the abbreviation Lγ,ω to denote the linear operator on the left-hand
side of (5.10), and N to denote the nonlinearities on the right-hand side of (5.10),
respectively.

We are now ready to formulate the main theorem of this section.

Theorem 5.2. Suppose σ > 0, γ∗ = γ (u∗) � 0 and l∗ = l(u∗) 
= 0 in the case
where γ∗ = 0. Then in the topology of the state manifold SMγ , we have:

(a) (u∗, �∗) ∈ E is stable if �∗ is connected and ζ∗ < 1.
Any solution starting in a neighborhood of such a stable equilibrium exists
globally and converges to another stable equilibrium exponentially fast.
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(b) (u∗, �∗) ∈ E is unstable if �∗ is disconnected or if ζ∗ > 1.
Any solution starting and staying in a neighborhood of such an unstable equi-
librium converges to another unstable equilibrium exponentially fast.

Proof. (a) We begin with the case that (u∗, �∗) is linearly stable. Then according
to Theorem 4.5 we have Xγ = N (Lγ ) ⊕ R(Lγ ). Let Pc denote the projection
onto Xc

γ := N (Lγ ) along Xs
γ := R(Lγ ) and Ps = I − Pc the complementary

projection onto R(Lγ ). We parametrize the set of equilibria E near 0 over N (Lγ )
via the C1-map [x �→ x + ψ(x)+ φ(x + ψ(x))] such that ψ(0) = ψ ′(0) = 0 and
φ(0) = φ′(0) = 0. It follows from the equilibrium equation associated to (5.1)
(recall that F∗(ze) vanishes for any equilibrium ze), and from the definition of φ
that the mapping ψ is determined by the equation

Ls
γ ψ(x) = Psωφ(x + ψ(x)), x ∈ BXc

γ
(r). (5.13)

Since Ls
γ is invertible on Xs

γ , ψ ∈ C1(BXc
γ
(r), D(Ls

γ )) is well-defined by the
implicit function theorem and ψ(0) = ψ ′(0) = 0.

For x∞ ∈ Xc
γ sufficiently small we set z∞ := x∞ +ψ(x∞)+φ(x∞ +ψ(x∞)).

Then z∞ is an equilibrium for (5.1) and we will now consider the decomposition
z = z∞ + z̃ + z̄ introduced in (5.10)–(5.11), or (5.12), respectively. With the ansatz

z̃ = x + ψ(x∞ + x)− ψ(x∞)+ y, (x, y) ∈ Xc
γ × Xs

γ , (5.14)

for x, x∞ ∈ Xc
γ small enough, the second line in (5.12) becomes

{
ẋ = Pcωz̄, x(0) = x0 − x∞,
ẏ + Ls

γ y = S(x∞, x, z̄), y(0) = y0,
(5.15)

where

S(x∞, x, z̄) = Psωz̄ − ψ ′(x∞ + x)Pcωz̄ − Ls
γ [ψ(x∞ + x)− ψ(x∞)],

and

z̃0 = x0 + ψ(x0)+ y0, (x0, y0) ∈ Xc
γ × (Xs

γ ∩ Z̃γ ). (5.16)

Next we show that the system of equations (5.15) admits a unique global solu-
tion (x∞, x, y), where the functions (x, y) are exponentially decaying, provided
z̄ is exponentially decaying and (x0, y0) is sufficiently small. For this let us first
introduce some more notation. For δ � 0 we set

Ei (R+, δ) := {v : eδtv ∈ Ei (R+)}, i = 1, 2,

F j (R+, δ) := {v : eδtv ∈ F j (R+)}, j = 1, 2, 3,

endowed with the norms

||v||Ei (R+,δ) = ||eδtv||Ei (R+),

||v||F j (R+,δ) = ||eδtv||F j (R+).
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The spaces E(R+, δ) and F(R+, δ) are then defined analogously as in Section 3.
We also need the space

X(R+, δ) := H1
p(R+, δ; Xγ ) ∩ L p(R+, δ; D(Lγ )), (5.17)

whereHk
p(R+, δ; E) denotes all functions v : R+ → E such that eδtv ∈

Hk
p(R+; E), with E a given Banach space. Finally, let

B1(r, δ) : = {(x0, y0, z̄) ∈ Xc
γ × (Xs

γ ∩ Z̃γ )× E(R+, δ) : |(x0, y0)|Z̃γ
< r}.

For given (x0, y0, z̄) ∈ B1(r0, δ), with r0 sufficiently small, we set

x∞ := x0 +
∫ ∞

0
Pcωz̄(τ ) dτ,

x := −
∫ ∞

t
Pcωz̄(τ ) dτ,

y :=
(

d

dt
+ Ls

γ , tr

)−1 (
S(x∞, x, z̄), y0

)
.

(5.18)

Here we used the notation trw := w(0). It should be observed that the functions
(x∞, x) occurring in the third line of (5.18) are defined through the first two lines
in (5.18). We now set

S(x0, y0, z̄) := (x∞, x, y), (x0, y0, z̄) ∈ B1(r0, δ), (5.19)

where r0 is chosen sufficiently small.
Next we will show that there exists a number δ0 > 0 such that for any δ ∈ [0, δ0]

the mapping S has the following properties:

S ∈ C
(
B1(r0, δ), Xc

γ × X
c(R+, δ)× X

s(R+, δ)
)
, S(0) = 0, (5.20)

where

X
c(R+, δ) := H1

p(R+, δ; Xc
γ ),X

s(R+, δ) := H1
p(R+, δ; Xs

γ ) ∩ L p(R+, δ; D(Ls
γ )).

Writing S = (S1,S2,S3) we readily observe that

S1 ∈ C∞(B1(r0, δ), Xc
γ ), S1(0) = 0. (5.21)

For g ∈ L p(R+, δ; Xc
γ ), let (K g)(t) := ∫∞

t g(τ ) dτ and note that

eδt (K g)(t) =
∫ ∞

t
eδ(t−τ)eδτ g(τ ) dτ.

Young’s inequality for convolution integrals readily yields

K ∈ B(
L p(R+, δ; Xc

γ ), H1
p(R+, δ; Xc

γ )
)
,

and this shows that S2 ∈ X
c(R+, δ). Hence we have

S2 ∈ C∞(
B1(r0, δ),X

c(R+, δ)
)
, S2(0) = 0. (5.22)
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Concerning the function S3, we know from Theorem 4.5(v) that s(−Ls
γ ), the spec-

tral bound of (−Ls
γ ), is negative. Fixing δ0 > 0 with s(−Ls

γ ) < −δ0, it follows
from semigroup theory and the L p-maximal regularity results stated in Theorem 4.3
and Theorem 4.4 that

(
d

dt
+ Ls

γ , tr

)−1

∈B(
L p(R+, δ; Xs

γ )× Z̃ s
γ , X

s(R+, δ)
)
, δ ∈ [0, δ0], (5.23)

where Z̃ s
γ = Xs

γ ∩ Z̃γ . This in conjunction with (5.21)–(5.22) and the definition
of S implies

S3 ∈ C
(
B1(r0, δ),X

s(R+, δ)
)
, S3(0) = 0. (5.24)

Combining (5.21)–(5.24) then yields (5.20).
For given (x0, y0, z̄) ∈ B1(r0, δ) let (x∞, x, y) = S(x0, y0, z̄). Then we have

x(t) = −
∫ ∞

t
Pcωz̄(τ ) dτ = −

∫ ∞

0
Pcωz̄(τ ) dτ +

∫ t

0
Pcωz̄(τ ) dτ

= x0 − x∞ +
∫ t

0
Pcωz̄(τ ) dτ,

thus showing that x solves the first equation in (5.15). In summary, we have shown
that (x∞, x, y) = S(x0, y0, z̄) is for every (x0, y0, z̄) ∈ B1(r0, δ) the unique solu-
tion of (5.15) in Xc

γ × X
c(R+, δ)× X

s(R+, δ), where δ ∈ [0, δ0].
Setting

z̃ = Z̃(x0, y0, z̄) := x + ψ(x∞ + x)− ψ(x∞)+ y,

z∞ = Z∞(x0, y0, z̄) := x∞ + ψ(x∞)+ φ(x∞ + ψ(x∞))
(5.25)

for (x∞, x, y) = S(x0, y0, z̄), we see that

Z̃ ∈ C(B1(r0, δ),X(R+, δ)), Z̃(0) = 0,

and

Z∞ ∈ C(B1(r0, δ), Z∞), Z∞(0) = 0, (5.26)

where Z∞ = [W 2
p(� \ �∗) ∩ C(�̄)] × W 4−1/p

p (�∗). It then follows from the
derivation of (5.14)–(5.15) that

(z∞, z̃) = (Z(x0, y0, z̄), Z̃(x0, y0, z̄))

is, for every given (x0, y0, z̄) ∈ B1(r0, δ), the unique (global) solution of (5.11)
with z̃ in the regularity class X(R+, δ). In a next step we shall show that z̃ in fact
has better regularity properties, namely

Z̃ ∈ C(B1(r0, δ),E(R+, δ)), Z̃(0) = 0. (5.27)

In order to see this, let us first consider the case γ ≡ 0 (which implies γ∗ = 0).
From the fourth line of (5.11), the fact that z̃ ∈ X(R+, δ), and

[v �→ v|�∗ ] ∈ B(X(R+, δ),W 1−1/2p
p (R+, δ; L p(�∗))),
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follows

ρ̃ = (μ− σ A∗)−1((l∗/u∗)ṽ + μρ̃) ∈ W 1−1/2p
p (R+, δ; H2

p(�∗)),

where μ is in the resolvent set of σ A∗. From the fifth line of (5.11), the fact that
(z̃, z̄) ∈ X(R+, δ)× E(R+, δ), and trace theory for ṽ follows

l∗∂t ρ̃ = [[d∗∂νṽ]] + l∗ωρ̄ ∈ W 1/2−1/2p
p (R+, δ; L p(�∗)),

implying that ρ̃ ∈ W 3/2−1/2p
p (R+, δ; L p(�∗)). Hence (5.27) holds for γ = 0.

If γ > 0 (and thus γ∗ > 0), we use the embedding

H1
p(R+, δ; W 2−1/p

p (�∗))∩L p(R+, δ; W 4−1/p
p (�∗)) ↪→W 1−1/2p

p (R+, δ; H2
p(�∗))

and the fourth equation in (5.11) to conclude that ρ̃ ∈ W 2−1/2p
p (R+, δ; L p(�∗)).

Hence (5.27) holds in this case, as well.
Let us now turn our attention to equation (5.10), or equivalently, the first line of

(5.12). In a similar way as in the proof of [53, Proposition 10] (extra consideration
is needed in order to deal with the additional terms involving z∞) one verifies that
the mapping

[(z∞, z) �→ N (z∞ + z)− N (z∞)] : U(δ) → F(R+, δ)

is C1 and vanishes together with its Fréchet derivative at (0, 0). Here U(δ) denotes
an open neighborhood of (0, 0) in Z∞ × E(R+, δ). Let

B(r, δ)={(x0, y0, z̄)∈ Xc
γ ×(Xs

γ ∩ Z̃γ )×E(R+, δ) : |(x0, y0, z̄)|[Z̃γ ]2×E(R+,δ) <r0},

and let extδ ∈ B(
W 2−2/p

p (�\�∗)∩C(�))×W 4−3/p
p (�∗),E(R+, δ)

)
be an appro-

priate extension operator with (extδw0)(0) = w0.
For (x0, y0, z̄) ∈ B(r0, δ), with r0 sufficiently small, we define

M(x0, y0, z̄) := N (z∞ + z̃ + extδ(φ(z̃0)− φ(z̃∞)− z̄(0))+ z̄)− N (z∞).

It follows from (5.25)–(5.27) that M ∈ C(B(r0, δ),F(R+, δ)),M(0, 0, 0) = 0,
and D3 M(0, 0, 0) = 0. Moreover,

M(x0, y0, z̄)(0) = N (z0)− N (z∞), (x0, y0, z̄) ∈ B(r0, δ), (5.28)

where we recall that z̃(0) = z̃0 − z̃∞, z0 = z̃0 + φ(z̃0), and z∞ = z̃∞ + φ(z̃∞).
Finally, for (x0, y0, z̄) ∈ B(r0, δ) let

K (x0, y0, z̄) := (Lγ,ω, tr)
−1(M(x0, y0, z̄), φ(z̃0)− φ(z̃∞)). (5.29)

It follows from (5.28) and the definition of φ that the functions

(M(x0, y0, z̄), φ(z̃0)− φ(z̃∞))

satisfy the necessary compatibility conditions, whenever (x0, y0, z̄) ∈ B(r0, δ).
Slight modifications of the results in [21] then imply that K : B(r0, δ) → E(R+, δ)
is well-defined, provided ω is large enough (and δ is in [0, δ0] with δ0 as above).
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From the properties of the mappings N , ψ and φ, the definition of z̃0 and z̃∞ (recall
that z̃0 = x0 + ψ(x0) + y0, z̃∞ = x∞ + ψ(x∞)), and the contraction mapping
theorem, it follows that K , defined in (5.29), has for each (x0, y0) sufficiently small
a unique fixed point

z̄ = z̄(x0, y0) ∈ E(R+, δ),

and that the mapping [(x0, y0) �→ z̄(x0, y0)] is continuous and vanishes at (0, 0).
By construction it follows that z̄ = z̄(x0, y0) solves

Lγ,ω z̄ = N (z∞ + z̃ + z̄)− N (z∞), z̄(0) = φ(z̃0)− φ(z̃∞).

In summary, we have shown that for each z0 ∈ SMγ small enough, there exists

(z∞, z̃, z̄) ∈ Z∞ × E(R+, δ)× E(R+, δ)

such that z = z∞+ z̃+ z̄ is the unique global solution of (5.1). In particular, we have
shown that for every z0 ∈ SMγ small enough there exists a unique equilibrium
z∞ = z∞(z0) such that the solution of (5.1) exists for all t � 0 and converges to
z∞ in SMγ at an exponential rate.

(b) Now we consider the linearly unstable case; we first show that the equilib-
rium 0 is unstable for the nonlinear equation (5.1). Using the same notation as in
part (i) we consider the system of equations

Lγ,ω z̄ = N (z̃ + z̄), z̄(0) = φ(z̃0),

˙̃z + Lγ z̃ = ωz̄, z̃(0) = z̃0.
(5.30)

Given α ∈ R, one verifies (by considerations similar to [53, Proposition 10]) that
there is a nondecreasing function η : R+ → R+ such that η(r) → 0 as r → 0, and

||eαt N (z)||F(a) � η(r)||eαt z||E(a), eαt z ∈ E(a), (5.31)

whenever |z(t)|Zγ � r for 0 � t � a. Here a > 0 is an arbitrary fixed number,
E(a) := E([0, a]) and F(a) := F([0, a]). For later use we note that

E(a) ↪→ L p([0, a]; Xγ ), (5.32)

where the embedding constant is independent of a.
Let σ+ be the collection of all positive eigenvalues of (−Lγ ) and let P+ be the

spectral projection related to the spectral set σ+. Additionally, let P− := I − P+
and X±

γ := P±(Xγ ). Then X+
γ is finite dimensional and we obtain the decompo-

sition

X = X+
γ ⊕ X−

γ , Lγ = L+
γ ⊕ L−

γ .

We note that σ(−L+
γ ) = σ+ and σ(−L−

γ ) ⊂ [Re z � 0], where σ(−L±
γ )

denotes the spectrum of (−L±
γ ), respectively. Let λ∗ be the smallest positive eigen-

value of (−L+
γ ) and choose positive numbersκ, μ such that [κ−μ, κ+μ] ⊂ (0, λ∗).

We recall that the spectrum of (−Lγ ) consists of real eigenvalues, so that the strip
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[κ−μ � Re z � κ+μ] does not contain any spectral values of (−Lγ ). Therefore,
there exists a constant M � 1 such that

|e−L−
γ t | � Me(κ−μ)t , |eL+

γ t | � Me−(κ+μ)t , t � 0. (5.33)

Suppose now, by contradiction, that the equilibrium 0 is stable for (5.1). Then
for every r > 0 there is a number δ > 0 such that (5.1) admits a global solution
z ∈ E(R+) with |z(t)| � r for all t � 0 whenever z0 ∈ B̄δ(0).

In the following we will use the decomposition z = z̃ + z̄, where (z̃, z̄) is the
solution of the linear system (5.30). (The function z = z̃ + z̄ is known, so that the
first equation has a unique solution z̄. With z̄ determined, z̃ = z − z̄ is the unique
solution of the second equation.) The functions P± z̃ satisfy

d

dt
P± z̃ + L±

γ P± z̃ = P±ωz̄, P± z̃(0) = P± z̃0. (5.34)

Next we shall show that P+ z̃ is given by the formula

P+ z̃(t) = −
∫ ∞

t
e−L+

γ (t−τ)P+ωz̄ dτ, t � 0. (5.35)

Given any a > 0 it follows from |P+ z̃(t)|X+
γ

� r that

||e−κt P+ z̃||L p([0,a];X+
γ )

� r

(∫ a

0
e−κpt dt

)1/p

� C(κ, p)r. (5.36)

From the relation

d

dt
e−κt P+ z̃ = (−κ − L+

γ )e
−κt P+ z̃ + e−κt P+ωz̄, (5.37)

(5.36)–(5.37) and (5.32) follows

||e−κt P+ z̃||X(a) � C1
(
r + ||e−κt z̄||E(a)

)
, (5.38)

with a universal constant C1. Here X(a) is defined as in (5.17), with the difference
that R+ is replaced by the interval [0, a] and δ = 0. We also recall that X+

γ is
finite dimensional, so that the spaces X+

γ and D(L+
γ ) coincide (and therefore carry

equivalent norms). From semigroup theory, maximal regularity, (5.33)–(5.34) and
(5.32), it follows that

||e−κt P− z̃||X(a) � M
(|P− z̃0| + ||e−κt P−ωz̄||L p([0,a];Xγ )

)

� M
(|P− z̃0| + C2||e−κt z̄||E(a)

)
. (5.39)

Combining (5.38)–(5.39) results in

||e−κt z̃||X(a) � C3
(
r + |P− z̃0| + ||e−κt z̄||E(a)

)
, (5.40)

where C3 is a universal constant. Similarly to part (a), we can infer from the equation
for z̃ that

||e−κt z̃||E(a) � c(||e−κt z̃||X(a) + ||e−κt z̄||E(a)), (5.41)
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and this implies

||e−κt z̃||E(a) � C4
(
r + |P− z̃0| + ||e−κt z̄||E(a)

)
(5.42)

with C4 = c(1 + C3).
On the other hand, we obtain from the equation for z̄ and (5.31)

||e−κt z̄||E(a) � C̄
(|φ(z̃0)| + ||e−κt N (z̃ + z̄)||E(a)

)

� C̄
(|φ(z̃0)| + η(r)(||e−κt z̃||E(a) + ||e−κt z̄||E(a))

)
.

If r is chosen small enough such that C̄η(r) � 1/2 then

||e−κt z̄||E(a) � 2C̄
(|φ(z̃0)| + η(r)||e−κt z̃||E(a)

)
. (5.43)

We can, at last, combine (5.42)–(5.43) to the result

||e−κt z̃||E(a) + ||e−κt z̄||E(a) � C5
(
r + |P− z̃0| + |φ(z̃0)|

)
, (5.44)

provided r is chosen small enough so that 2(1 + C4)C̄η(r) � 1/2. Since all esti-
mates are independent of a we conclude that e−κt z ∈ E(R+). From (5.44) and
Hölder’s inequality it follows that

e−κt
∫ ∞

t
|e−L+

γ (t−τ)P+ωz̄(τ )|X+
γ

dτ

� M

(∫ ∞

t
eμp′ (t−τ) dτ

)1/p′

||e−κτωz̄||L p(R+:Xγ ) � C ||e−κt z̄||E(R+) < ∞,

thus showing that the integral
∫∞

t e−L+
γ (t−τ)P+ωz̄ dτ exists in X+

γ for every t � 0.
Moreover, its norm in X+

γ grows no faster than the exponential function eκt .
It follows from the variation of parameters formula that

eL+
γ t

(

P+ z̃(t)+
∫ ∞

t
e−L+

γ (t−τ)P+ωz̄(τ ) dτ

)

= P+ z̃0+
∫ ∞

0
eL+

γ τ P+ωz̄(τ ) dτ,

and the estimate
∣
∣
∣
∣e

L+
γ t (P+ z̃(t)+

∫ ∞

t
e−L+

γ (t−τ)P+ωz̄ dτ)

∣
∣
∣
∣

X+
γ

� Me−(κ+μ)t (r + Ceκt ), t � 0,

then shows that P+ z̃0 + ∫∞
0 eL+

γ τ P+ωz̄ dτ = 0. Thus the representation (5.35)
holds as claimed. With this established, we obtain from Young’s inequality for
convolution integrals

||e−κt P+ z̃(t)||L p(R+,X+
γ )

� Mμ−1||e−κt P+ωz̄||L p(R+;X+
γ )
.

It then follows from (5.32) and (5.37) that

||e−κt P+ z̃||X(R+) � C ||e−κt z̄||E(R+). (5.45)
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We can now imitate the estimates in (5.39)–(5.43), with the interval [0, a] replaced
by R+, to conclude that

||e−κt z̃||E(R+) + ||e−κt z̄||E(R+) � C6
(|P− z̃0| + |φ(z̃0)|

)
. (5.46)

This, in combination with (5.33), (5.35), and Hölder’s inequality, yields the estimate

|P+ z̃0|X+
γ

� M
∫ ∞

0
e−μτ |e−κτ P+ωz̄|X+

γ
dτ

� C ||e−κt P+ωz̄||L p(R+;X+
γ )

� C
(|P− z̃0| + |φ(z̃0)|

)
.

By decreasing δ if necessary, we can assume that C |φ(z̃0)| � 1/2(|P+ z̃0|+|P− z̃0|)
for all z̃0 ∈ Bδ(0). (Recall that φ(0) = φ′(0) = 0.) Hence

|P+ z̃0|Z̃γ
� C7|P− z̃0|Z̃γ

, z̃0 ∈ Bδ(0), (5.47)

with a uniform constant C7, and this shows that 0 cannot be stable for (5.1).
It remains to show the last assertion of Theorem 5.2(b). For this we consider

the projection Pu = I − Pc − Ps , which projects onto Xu
γ , the unstable subspace

of Xγ associated with the (finitely many) unstable eigenvalues. As in part (a) we
will show that there exists an equilibrium z∞ such that any solution that stays in a
small neighborhood of 0 converges to z∞ = z∞(z0) exponentially fast as t → ∞.
Using the decomposition y = ys + yu , we obtain as in (a) the following system of
equations:

⎧
⎪⎨

⎪⎩

ẋ = Pcωz̄, x(0) = x0 − x∞,
ẏs + Ls

γ ys = Ss(x∞, x, z̄), ys(0) = ys
0,

ẏu + Lu
γ yu = Su(x∞, x, z̄), yu(0) = yu

0 ,

(5.48)

with

S j (x∞, x, z̄) = P jωz̄ − ψ ′
j (x∞+ x)Pcωz̄ − L j

γ [ψ j (x∞+ x)− ψ j (x∞)],
where j ∈ {s, u}, and where the functions ψ j are defined similarly as in (5.13).

Suppose we have a global solution z ∈ E(R+) of (5.1) with z(0) = z0 ∈ SMγ

which satisfies |z|Z̃γ
� r , where r > 0 is sufficiently small. By arguments sim-

ilar to those above (the presence of the function Su does not cause any principal
difficulties), we infer that

yu(t) = −
∫ ∞

t
e−Lu

γ (t−τ)Su(x∞, x, z̄) dτ, t � 0. (5.49)

For (x0, ys
0, z̄) ∈ B1(r0, δ), with r0 sufficiently small, we set

x∞ := x0 +
∫ ∞

0
Pcωz̄(τ ) dτ,

x(t) := −
∫ ∞

t
Pcωz̄(τ ) dτ,

ys :=
(

d

dt
+ Ls

γ , tr

)−1 (
Ss(x∞, x, z̄), ys

0

)
,

yu(t) := −
∫ ∞

t
e−Lu

γ (t−τ)Su(x∞, x, z̄) dτ.

(5.50)



662 Jan Prüss, Gieri Simonett & Rico Zacher

As in part (a) we conclude that (5.50) admits for each (x0, ys
0, z̄) ∈ B1(r0, δ), with

r0 sufficiently small, a unique solution

(x∞, x, ys, yu) = S(x0, ys
0, z̄) ∈ Xc

γ × X
c(R+, δ)× X

s(R+, δ)× X
u(R+, δ).

Following the arguments of part (a) then renders a solution

Z(x0, ys
0) = z∞+ x + ψ(x + x∞)− ψ(x∞)+ ys + yu + z̄

of (5.1) with z0 = x0 +ψ(x0)+ yu
0 + ys

0 + φ(x0 +ψ(x0)+ yu
0 + ys

0), where yu
0 is

determined by

yu
0 = −

∫ ∞

0
eLu

γ τ Su(x∞, x, z̄) dτ. (5.51)

The solution Z(x0, ys
0) converges exponentially fast toward the equilibrium z∞.

In addition, we have shown that the initial value z0 necessarily lies on the stable
manifold belonging to z∞, determined by the relation (5.51).

Due to uniqueness of (local) solutions to (5.1), the solution Z(x0, ys
0) coincides

with the given global solution z, and the proof of part (b) is now complete. ��
Global existence and convergence. There are several obstructions against

global existence for the Stefan problem (1.3):

• regularity: the norms of either u(t), �(t), and, in addition, [[d∂νu(t)]] in the case
where γ ≡ 0, become unbounded;

• well-posedness: in the case where γ ≡ 0 the well-posedness condition l(u) 
= 0
may become violated; or u may become 0;

• geometry: the topology of the interface changes;
or the interface touches the boundary of �;
or the interface contracts to a point.

Note that the compatibility conditions [[ψ(u)]]+σH = 0 in the case where γ ≡ 0,
and

(l(u)− [[ψ(u)]] − σH)([[ψ(u)]] + σH) = γ (u)[[d∂νu]]
in the case where γ > 0, are preserved by the semiflow.

Let (u, �) be a solution in the state manifold SMγ . By a uniform ball condi-
tion we mean the existence of a radius r0 > 0 such that for each t , at each point
x ∈ �(t) there exist centers xi ∈ �i (t) such that Br0(xi ) ⊂ �i and�(t)∩ B̄r0(xi ) =
{x}, i = 1, 2. Note that this condition bounds the curvature of�(t), prevents it from
shrinking to a point, from touching the outer boundary ∂�, and from undergoing
topological changes.

With this property, combining the semiflow for (1.3) with the Lyapunov func-
tional and compactness, we obtain the following result.

Theorem 5.3. Let p > n + 2, σ > 0, suppose ψ, γ ∈ C3(0,∞), d ∈ C2(0,∞)

such that either γ ≡ 0 or γ (u) > 0 on (0,∞), and assume

κ(u) = −uψ ′′(u) > 0, d(u) > 0, u ∈ (0,∞).

Suppose that (u, �) is a solution of (1.3) in the state manifold SMγ on its maximal
time interval [0, t∗). Assume the following on [0, t∗):
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(i) |u(t)|
W 2−2/p

p
+ |�(t)|

W 4−3/p
p

� M < ∞;

(ii) |[[d(u(t))∂νu(t)]]|W 2−6/p
p

� M < ∞ in case γ ≡ 0;

(iii) |l(u(t))| � 1/M in case γ ≡ 0;
(iv) u(t) � 1/M;
(v) �(t) satisfies a uniform ball condition.

Then t∗ = ∞, that is, the solution exists globally. If its limit set contains a stable
equilibrium (u∞, �∞) ∈ E , that is, ϕ′(u∞) < 0, then it converges in SMγ to this
equilibrium. On the contrary, if (u(t), �(t)) is a global solution in SMγ which
converges to an equilibrium (u∗, �∗) with l(u∗) 
= 0 in case γ ≡ 0 in SMγ as
t → ∞, then properties (i)-(v) are valid.

Proof. Assume that assertions (i)–(v) are valid. Then �([0, t∗)) ⊂ W 4−3/p
p (�, r)

is bounded, hence relatively compact in W 4−3/p−ε
p (�, r). (See (3.7) for the defi-

nition of W s
p(�, r).)

Thus we may cover this set by finitely many balls with centers �k real analytic
in such a way that dist

W 4−3/p−ε
p

(�(t),� j ) � δ for some j = j (t), t ∈ [0, t∗). Let

Jk = {t ∈ [0, t∗) : j (t) = k}. Using for each k a Hanzawa-transformation �k , we
see that the pull backs {u(t, ·) ◦ �k : t ∈ Jk} are bounded in W 2−2/p

p (� \ �k),

hence relatively compact in W 2−2/p−ε
p (� \�k). Then, employing Corollary 3.10,

we obtain solutions (u1, �1) with initial configurations (u(t), �(t)) in the state
manifold on a common time interval, say (0, τ ], and by uniqueness we have

(u1(τ ), �1(τ )) = (u(t + τ), �(t + τ)).
Continuous dependence, then, implies relative compactness of (u(·), �(·)) inSMγ .
In particular, t∗ = ∞ and the orbit (u, �)(R+) ⊂ SMγ is relatively compact.
The negative total entropy is a strict Lyapunov functional, hence the limit set
ω(u, �) ⊂ SMγ of a solution is contained in the set E of equilibria. By com-
pactness, ω(u, �) ⊂ SMγ is non-empty, hence the solution comes close to E and
stays there; then we may apply the convergence result Theorem 5.2. The converse
is proved by a compactness argument. ��
Remark 5.4. We believe that the extra assumption ϕ′(u∞) < 0 in Theorem 5.3
can be replaced by ϕ′(u∞) 
= 0. However, to prove this requires more technical
effort, and we refrain from doing this here.

Acknowledgements. J. Prüss and R. Zacher express their thanks for hospitality to the
Department of Mathematics at Vanderbilt University, where important parts of this work
originated. We thank Mathias Wilke for helpful discussions. Moreover, we thank one of the
anonymous reviewers for constructive and insightful remarks, and for pointing out some
additional references related to the subject.

References

1. Alikakos, N., Fusco, G.: Ostwald ripening for dilute systems under quasistationary
dynamics. Commun. Math. Phys. 238, 429–479 (2003)

2. Alikakos, N., Fusco, G., Karali, G.: The effect of the geometry of the particle distri-
bution in Ostwald ripening. Commun. Math. Phys. 238, 481–488 (2003)



664 Jan Prüss, Gieri Simonett & Rico Zacher

3. Alikakos, N., Fusco, G., Karali, G.: Ostwald ripening in two dimensions-the rigor-
ous derivation of the equations from the Mullins–Sekerka dynamics. J. Differ. Equ. 205,
1–49 (2004)

4. Alikakos, N., Fusco, G., Karali, G.: Continuum limits of particles interacting via
diffusion. Abstr. Appl. Anal. 2004, 215–237 (2004)

5. Almgren, F., Wang, L.: Mathematical existence of crystal growth with Gibbs-
-Thomson curvature effects. J. Geom. Anal. 10, 1–100 (2000)

6. Anderson, D.M., Cermelli, P., Fried, E., Gurtin, M.E., McFadden, G.B.: General
dynamical sharp-interface conditions for phase transformations in viscous heat-con-
ducting fluids. J. Fluid Mech. 581, 323–370 (2007)

7. Athanasopoulos, I., Caffarelli, L., Salsa, S.: Regularity of the free boundary in
parabolic phase-transition problems. Acta Math. 176, 245–282 (1996)

8. Athanasopoulos, I., Caffarelli, L., Salsa, S.: Phase transition problems of para-
bolic type: flat free boundaries are smooth. Comm. Pure Appl. Math 51, 77–112 (1998)

9. Bazalii, B.V.:Stefan problem for the Laplace equation with regard to the curvature of
the free boundary. Ukrainian Math. J. 49, 1465–1484 (1997)

10. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math.
139, 155–184 (1977)

11. Caffarelli, L.A.: Some aspects of the one-phase Stefan problem. Indiana Univ. Math.
J. 27, 73–77 (1978)

12. Caffarelli, L.A., Evans, L.C.: Continuity of the temperature in the two-phase Stefan
problem. Arch. Rational Mech. Anal. 81, 199–220 (1983)

13. Caffarelli, L.A., Friedman, A.: Continuity of the temperature in the Stefan problem.
Indiana Univ. Math. J. 28, 53–70 (1979)

14. Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Rational
Mech. Anal. 92, 205–245 (1986)

15. Chalmers, B.: Principles of solidification. Krieger, Huntington (1977)
16. Chen, X.: The Hele–Shaw problem and area-preserving curve-shortening motion. Arch.

Rational Mech. Anal. 123, 117–151 (1993)
17. Chen, X., Hong, J., Yi, F.: Existence, uniqueness, and regularity of classical solutions

of the Mullins–Sekerka problem. Comm. Partial Differ. Equ. 21, 1705–1727 (1996)
18. Chen, X., Jones, J., Troy, W.: Linear stability of a solid ball in an undercooled liquid.

J. Math. Anal. Appl. 193, 859–888 (1995)
19. Chen, X., Reitich, F.: Local existence and uniqueness of solutions of the Stefan problem

with surface tension and kinetic undercooling. J. Math. Anal. Appl. 164, 350–362 (1992)
20. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers, and problems

of elliptic and parabolic type, AMS Memoirs 788, Providence (2003)
21. Denk, R., Prüss, J., Zacher, R.: Maximal L p-regularity of parabolic problems with

boundary conditions of relaxation type. J. Funct. Anal. 255, 3149–3187 (2008)
22. DiBenedetto, E.: Regularity properties of the solution of an n-dimensional two-phase

Stefan problem. Boll. Un. Mat. Ital. Suppl. 129–152 (1980)
23. DiBenedetto, E.: Continuity of weak solutions to certain singular parabolic equations.

Ann. Mat. Pura Appl. (4) 130, 131–176 (1982)
24. Escher, J., Simonett, G.: On Hele–Shaw models with surface tension. Math. Res.

Lett. 3, 467–474 (1996)
25. Escher, J., Simonett, G.: Classical solutions for the quasi-stationary Stefan problem

with surface tension. Differential equations, asymptotic analysis, and mathematical-
physics, (Potsdam, 1996), Math. Res., vol. 100, Akademie Verlag, Berlin, pp. 98–104,
1997

26. Escher, J., Simonett, G.: Classical solutions for Hele–Shaw models with surface
tension. Adv. Differ. Equ. 2, 619–642 (1997)

27. Escher, J., Simonett, G.: A center manifold analysis for the Mullins–Sekerka model.
J. Differ. Equ. 143, 267–292 (1998)

28. Escher, J., Prüss, J., Simonett, G.: Analytic solutions for a Stefan problem with
Gibbs–Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)



Qualitative Behavior of Stefan Problems 665

29. Friedman, A.: The Stefan problem in several space variables. Trans. Am. Math. Soc.
133, 51–87 (1968)

30. Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York,
1982

31. Friedman, A., Kinderlehrer, D.: A one phase Stefan problem. Indiana Univ. Math.
J. 24, 1005–1035 (1975)

32. Friedman, A., Reitich, F.: The Stefan problem with small surface tension. Trans. Am.
Math. Soc. 328, 465–515 (1991)

33. Friedman, A., Reitich, F.: Nonlinear stability of a quasi-static Stefan problem with
surface tension: a continuation approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30,
341–403 (2001)

34. Garcke, H., Sturzenhecker, T.: The degenerate multi-phase Stefan problem with
Gibbs–Thomson law. Adv. Math. Sci. Appl. 8, 929–941 (1998)

35. Glasner, K., Otto, F., Rump, T., Slepcev, D.: Ostwald ripening of droplets: the role
of migration. Eur. J. Appl. Math. 20, 1–67 (2009)

36. Gurtin, M.E.: On the two phase problem with interfacial energy and entropy. Arch.
Rational Mech. Anal. 96, 199–241 (1986)

37. Gurtin, M.E.: Toward a nonequilibrium thermodynamics of two-phase materials.
Arch. Rational Mech. Anal. 100, 275–312 (1988)

38. Gurtin, M.E.: Multiphase thermomechanics with interfacial structure. I. Heat conduc-
tion and the capillary balance law. Arch. Rational Mech. Anal. 104, 195–221 (1988)

39. Hadzić, M., Guo, Y.: Stability in the Stefan problem with surface tension (I). Comm.
Partial Differ. Equ. 35, 201–244 (2010)
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