
Digital Object Identifier (DOI) 10.1007/s00205-012-0565-9
Arch. Rational Mech. Anal. 207 (2013) 583–609

Entire Minimal Parabolic Trajectories:
The Planar Anisotropic Kepler Problem

Vivina Barutello, Susanna Terracini & Gianmaria Verzini

Communicated by P. Rabinowitz

Abstract

We continue the variational approach to parabolic trajectories introduced in our
previous paper (Barutello et al., Entire parabolic trajectories as minimal phase tran-
sitions. arXiv:1105.3358v1, 2011), which sees parabolic orbits as minimal phase
transitions. We deepen and complete the analysis in the planar case for homo-
geneous singular potentials. We characterize all parabolic orbits connecting two
minimal central configurations as free-time Morse minimizers (in a given homot-
opy class of paths). These may occur for at most one value of the homogeneity
exponent. In addition, we link this threshold of existence of parabolic trajectories
with the absence of collisions for all the minimizers of fixed-end problems, and
also with the existence of action minimizing periodic trajectories with nontrivial
homotopy type.

1. Introduction and Main Results

For a positive, singular potential V ∈ C 2(Rd \ {0}), vanishing at infinity, we
study the Newtonian system

ẍ(t) = ∇V (x(t)), (1)

searching for parabolic solutions, that is, entire solutions satisfying the zero-energy
relation

1

2
|ẋ(t)|2 = V (x(t)), for every t ∈ R. (2)

In the Kepler problem (V (x) = 1/|x |) all global zero-energy trajectories are,
indeed, parabolas. In this paper we are concerned with (−α)-homogeneous poten-
tials, with α ∈ (0, 2). Within this class of potentials, parabolic trajectories are
homoclinic to infinity, which represents the minimum of the potential.
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In celestial mechanics, and more generally in the theory of singular Hamiltonian
systems, parabolic trajectories play a central role and are known to carry precious
information on the behavior of general solutions near collisions. On the other hand,
parabolic trajectories are structurally unstable and therefore are usually considered
beyond the range of application of variational or other global methods. In spite of
this, in our previous paper [5], we introduced a new variational approach to their
existence as minimal phase transitions.

The purpose of the present paper is to deepen and complete the analysis in the
planar case d = 2; we will succeed in characterizing all parabolic orbits connect-
ing two minimal central configurations as free-time Morse minimizers (in a given
homotopy class of paths). In addition, we shall link the threshold of existence of
parabolic trajectories with the absence of collisions for all the minimizers of fixed-
ends problems and with the existence of action minimizing periodic trajectories
with nontrivial homotopy type.

In the plane R
2 we use the polar coordinates x = (r cosϑ, r sin ϑ) = (r, ϑ)

(despite the ambiguous notation, it will always be clear from the context whether a
pair denotes either Cartesian or polar coordinates). Under this notation any (−α)-
homogeneous potential V can be written as

V (x) = U (ϑ)

rα
,

where

U (ϑ) := V (cosϑ, sin ϑ).

The potential V is then a generalization of the anisotropic Kepler potential (exten-
sively studied, for instance, in [16,17,21–23]), which actually corresponds to the
value 1 of the parameter α and a specific U . For such potentials, it is well known
that parabolic trajectories admit ingoing and outgoing asymptotic directions which
are necessarily critical points of U (ϑ); these are called central configurations.
We are mostly interested in parabolic trajectories connecting two minimal central
configurations. To be more precise, given

0 � ϑ1 � ϑ2 < 2π,

we define the sets of potentials

U = Uϑ1ϑ2 :=

⎧
⎪⎪⎨

⎪⎪⎩

U ∈ C 2(R) :
for every ϑ ∈ R and i = 1, 2
U (ϑ + 2π) = U (ϑ)
U (ϑ) � U (ϑ1) = U (ϑ2) > 0
U ′′(ϑi ) > 0

⎫
⎪⎪⎬

⎪⎪⎭

,

and, with a slight abuse of notation,

V : = {V = (U, α) : U ∈ U and α ∈ (0, 2)}
=

{

V ∈ C 2(R2 \ {0}) : V (x) = U (ϑ)

rα
,U ∈ U and α ∈ (0, 2)

}

.
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For a given V ∈ V , we introduce the action functional

A (x) = A ([a, b]; x) :=
∫ b

a

1

2
|ẋ(t)|2 + V (x(t)) dt .

In our previous paper [5], we introduced the set of Morse parabolic minimiz-
ers associated to A and having asymptotic directions ξ− = (cosϑ1, sin ϑ1) and
ξ+ = (cosϑ2, sin ϑ2). Nonetheless, since R

2 \ {0} is not simply connected, as a
peculiar fact in the planar case one can also impose a topological constraint in the
form of a homotopy class for the minimizer, for example imposing h ∈ Z coun-
terclockwise rotations around the origin. Lifting such a trajectory to the universal
covering of R

2 \ {0}, this corresponds to joining ϑ1 with ϑ2 + 2hπ . Motivated by
these considerations, we introduce the set

� = �ϑ1ϑ2 := {ϑ ∈ R : ϑ = ϑi + 2nπ for some n ∈ Z and i ∈ {1, 2}}
and, given ϑ− �= ϑ+ in �ϑ1ϑ2 (or, more in general, ϑ− �= ϑ+ central configura-
tions), we define the following class of paths.

Definition 1. We say that x = (r, ϑ) ∈ H1
loc(R) is a parabolic trajectory associated

with ϑ−, ϑ+ and V , if it satisfies Equations (1), (2) and

– mint∈R r(t) > 0;
– r(t) → +∞, ϑ(t) → ϑ± as t → ±∞.

We say that x is a (free time) parabolic Morse minimizer if, moreover, there holds

– for every t1 < t2, t ′1 < t ′2, and z = (ρ, ζ ) ∈ H1(t ′1, t ′2), there holds

ρ(t ′i )=r(ti ), ζ(t
′
i )=ϑ(ti ), i =1, 2 �⇒ A ([t1, t2]; x) � A ([t ′1, t ′2]; z)

(this last property actually implies (1), (2)). A fixed time minimizer fulfills the
above minimality condition only with t ′i = ti .

Under the previous definition the following holds.

Theorem 1. Let U ∈ U and ϑ−, ϑ+ ∈ �,ϑ− �= ϑ+ be fixed minimal central
configurations; then

– there exists at most one ᾱ = ᾱ(ϑ−, ϑ+,U ) ∈ (0, 2) such that V = (U, α)
admits a corresponding parabolic trajectory associated with (ϑ−, ϑ+,U ) if
and only if α = ᾱ;

– every parabolic trajectory associated with ϑ−, ϑ+ and U is a free time Morse
minimizer;

– if |ϑ+ −ϑ−| > π , then there exists exactly one ᾱ such that V = (U, α) admits
a corresponding parabolic Morse minimizer if and only if α = ᾱ.

Let us point out that if |ϑ+ − ϑ−| � π , such a number ᾱ(ϑ−, ϑ+,U )may or may
not exist, depending on the properties of U . Some numerical approximations are
contained in Table 1.
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Table 1. Numerical approximations of the parabolic threshold ᾱ(ϑ−, ϑ+,U ) for the angu-
lar potential U (ϑ) = h − k cos(lϑ)

h k l ϑ− ϑ+ ᾱ

2 1 2 0 π 0.84
2 1 2 0 2π 1.46
2 1 2 0 3π 1.64
2 1 2 0 4π 1.73
2 1 3 0 2π/3 0.27
2 1 3 0 4π/3 1.19
2 1 3 0 2π 1.47
3 1 3 0 2π/3 � ∃ (0)
3 1 3 0 4π/3 1.01
3 1 3 0 2π 1.36
3 1.2 3 0 2π/3 0.03
3 1.2 3 0 4π/3 1.09
3 1.2 3 0 2π 1.40

The values are truncated to a precision of 2 decimal places, and are obtained by a bisection
argument based on Proposition 2 and Lemmas 2, 3. Numerical integration of system (6) was
performed by using the Dormand–Prince method

To proceed with the description of our results, let us extend the function ᾱ to
the whole of the possible triplets (ϑ−, ϑ+,U ) ∈ �×U by setting its value to zero
if there are no parabolic trajectories for any α. This exponent can be related to the
presence or absence of collisions for both the fixed time and the free time Bolza
problems within the sector defined by the angles ϑ− and ϑ+.

The problem of the exclusion of collisions for action minimizing trajectories
has a long history, starting from the first elaborations in the late 1980s, for example
[1,11,12,14,15,27,28], up to the extensive researches of the last decade, mostly
motivated by the search of new symmetric collisionless periodic solutions to the
n–body problem (for example [6,9,10,18]). Starting from the idea of averaged var-
iation by Marchal [8,25], later made fully rigorous, extended and refined in [19],
a rather complete analysis of the possible singularities of minimizing trajectories
has been recently achieved in [3]. In the literature, minimal parabolic trajectories
have been studied in connection with the absence of collisions for fixed-endpoint
minimizers. More precisely, as remarked by Luz and Maderna [13], the property
of being collisionless for all Bolza minimizers implies the absence of parabolic
trajectories which are Morse minimal for the usual n–body problem with α = 1.
On the contrary, minimal parabolic arcs (that is, defined only on the half line) exist
for every starting configuration, as proved by Maderna and Venturelli [24].

Special attention has been devoted to minimizers subject to topological con-
straints and to the existence of trajectories having a particular homotopy type (see
for example [2,7,20,25,26,29]). For such constrained minimizers the averaged var-
iation technique is not available, and other devices have to be designed to avoid the
occurrence of collisions. Starting from [29], motivated by the search of periodic
solutions having prism symmetry, a connection has been established between the
apsidal angles of parabolic trajectories and the exclusion of collisions for minimiz-
ers with a given rotation angle. In fact, we can now draw a complete picture of the
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role played by the parabolic orbits in the solution of the collision-free minimization
problem with fixed ends.

Definition 2. Given a potential V , we say that x = (r, ϑ) ∈ H1(t1, t2) is a fixed-
time Bolza minimizer associated with the ends x1 = r1eiϕ1 , x2 = r2eiϕ2 , if

– r(ti ) = ri and ϑ(ti ) = ϕi , i = 1, 2;
– for every z = (ρ, ζ ) ∈ H1(t1, t2), there holds

ρ(ti ) = ri , ζ(ti ) = ϕi , i = 1, 2 �⇒ A ([t1, t2]; x) � A ([t1, t2]; z).

If mint∈[t1,t2] r(t) > 0 we say that the Bolza minimizer is collisionless.

Theorem 2. Let U ∈ U , ϑ− �= ϑ+ ∈ �, and consider a perturbed potential

V = U (ϑ)

rα
+ W , with V ∈ C1(R2 \ 0), α > α′ and

lim
r→0

rα
′
(W (x)+ r |∇W (x)|) = 0 . (3)

If α > ᾱ(U, ϑ−, ϑ+) then all fixed-time Bolza minimizers associated to x1 =
(r1, ϕ1) and x2 = (r2, ϕ2) within the sector [ϑ−, ϑ+] are collisionless.

It is worthwhile noticing that if, conversely, α � ᾱ(U, ϑ−, ϑ+), then there are
always some Bolza problems which admit only colliding minimizers. In addition,
when α = ᾱ(U, ϑ−, ϑ+), the very same arguments imply the following statement,
which is connected with Lambert’s results on the existence of the direct and inverse
arcs for the planar Kepler problem [25,30].

Proposition 1. Let U ∈ U , ϑ− �= ϑ+ ∈ �, and V be a perturbed potential as in
the previous theorem, with α = ᾱ(U, ϑ−, ϑ+). Given any pair of points x1 and
x2 in the sector (ϑ−, ϑ+), all fixed-time Bolza minimizers associated with x1, x2
within the sector [ϑ− + ε, ϑ+ − ε], for some ε > 0, are collisionless.

Some further interesting conclusions can be drawn, in the special case when ϑ+ =
ϑ− + 2kπ , which connect the parabolic threshold with the existence of non-col-
lision periodic orbits having a prescribed winding number (this is connected with
the minimizing property of Kepler ellipses, see [20]).

Theorem 3. Let U ∈ U be such that all its local minima are non-degenerate global

ones, and consider the potential V = U (ϑ)

rα
. Given any integer k �= 0 and period

T > 0, if

α > ᾱ(U, ϑ∗, ϑ∗ + 2kπ) , for every minimum ϑ∗ of U, (4)

then any action minimizer in the class of T -periodic trajectories winding k times
around zero is collisionless.
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The outline of the paper is as follows: in Section 2 we exploit some results due to
Devaney [16,17] in order to rewrite Equations (1), (2) in terms of an equivalent
planar first-order system; this allows us to develop a first phase-plane analysis of
the dynamical properties of parabolic trajectories. In Section 3 we turn to the var-
iational properties of zero-energy solutions. In Section 4 we prove Theorem 1 in
the particular case in which π < ϑ+ − ϑ− � 2π . Finally, Sections 5 and 6 are
devoted to the completion of the proof of Theorem 1 and to the proofs of Theorems
2 and 3, respectively.

2. Phase Plane Analysis

Following Devaney [16,17], an appropriate change of variables makes the dif-
ferential problem (1), (2) equivalent to a planar first order system, for which a phase
plane analysis can be carried out. This allows a first investigation of its trajectories
from a dynamical (as opposed to variational) point of view.

Let U ∈ Uϑ1ϑ2 , and let us assume for simplicity that U is a Morse function,
even though the only important assumption is that ϑ1, ϑ2 are non-degenerate. Intro-
ducing the Cartesian coordinates q1 = r cosϑ, q2 = r sin ϑ and the momentum
vector (p1, p2) = (q̇1, q̇2), we write Equations (1) and (2) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q̇1 = p1

q̇2 = p2

ṗ1 = ∂q1

(
r−αU (ϑ)

) = r−α−2
(−U ′(ϑ)q2 − αU (ϑ)q1

)

ṗ2 = ∂q2

(
r−αU (ϑ)

) = r−α−2
(
U ′(ϑ)q1 − αU (ϑ)q2

)
,

and

1

2

(
p2

1 + p2
2

)
= U (ϑ)

rα
.

Since U (ϑ) � U (ϑ1) = U (ϑ2) =: Umin > 0, we have that |p| �= 0. As a
consequence, for every solution of the previous dynamical system we can find
smooth functions z > 0 and ϕ ∈ R in such a way that p1 = r−α/2z cosϕ, p2 =
r−α/2z sin ϕ. These functions satisfy

z = √
2U (ϑ)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṙ = r−α/2z (cosϑ cosϕ + sin ϑ sin ϕ) = r−α/2z cos(ϕ − ϑ)

ϑ̇ = r−1−α/2z (cosϑ sin ϕ − sin ϑ cosϕ) = r−1−α/2z sin(ϕ − ϑ)

ż = r−1−α/2U ′(ϑ) sin(ϕ − ϑ)

ϕ̇ = 1
z r−1−α/2 [U ′(ϑ) cos(ϕ − ϑ)+ αU (ϑ) sin(ϕ − ϑ)

]
.

This system has a singularity at r = 0 that can be removed by a change of time
scale. Assuming r > 0, we introduce the new variable τ via

dt

dτ
= zr1+α/2
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in order to rewrite the dynamical system as (here “ ′ ” denotes the derivative with
respect to τ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r ′ = r z2 cos(ϕ − ϑ) = 2rU (ϑ) cos(ϕ − ϑ)

z′ = zU ′(ϑ) sin(ϕ − ϑ)

ϑ ′ = z2 sin(ϕ − ϑ) = 2U (ϑ) sin(ϕ − ϑ)

ϕ′ = U ′(ϑ) cos(ϕ − ϑ)+ αU (ϑ) sin(ϕ − ϑ),

(5)

which contains the independent planar system
{
ϑ ′ = 2U (ϑ) sin(ϕ − ϑ)

ϕ′ = U ′(ϑ) cos(ϕ − ϑ)+ αU (ϑ) sin(ϕ − ϑ).
(6)

It is immediately clear that the systems above enjoy global existence, and that the
stationary points of (6) are the points (ϑ∗, ϕ∗), where U ′(ϑ∗) = 0 and sin(ϕ∗ −
ϑ∗) = 0.

Theorem 4. (Devaney [17]) The path x = x(t) satisfies (1), (2) if and only if
(ϑ, ϕ) satisfies (6) (and (r, z) satisfies (5)). The function

v(τ) = √
U (ϑ(τ)) cos (ϕ(τ)− ϑ(τ)) ,

is non-decreasing on the solutions of (6), which correspond to

– saddle-type equilibria (ϑ∗, ϑ∗ + hπ), U ′(ϑ∗) = 0, U ′′(ϑ∗) > 0 and h ∈ Z;
– sink/source-type equilibria (ϑ∗, ϑ∗ + hπ), where U ′(ϑ∗) = 0, U ′′(ϑ∗) < 0

and h ∈ Z;
– heteroclinic trajectories connecting two of the previous equilibria.

To every trajectory of (6) there corresponds infinitely many trajectories of (5), all
equivalent through a radial homotheticity.

The corresponding solutions of (1), (2) satisfy the following:

– if

cos(ϕ − ϑ) → ±1 as τ → ±∞, (7)

then x is globally defined and unbounded in the future/past (in t);
– if cos(ϕ − ϑ) → ∓1 as τ → ±∞, then t (τ ) → T± ∈ R and x(t) → 0 as

t → T±.

In Fig. 1 we describe the phase plane for the dynamical system (6) when U
is isotropic and, in particular, for the Kepler problem. On the other hand, if we
take into account an anisotropic potential U in the class Uϑ1ϑ2 and a homogeneous
extension (U, α), α ∈ (0, 2), then we can deduce the following result (by time
reversibility, it is not restrictive to assume that ϑ− < ϑ+).

Corollary 1. Letϑ− < ϑ+ belong to�ϑ1ϑ2 and x = rs be an associated parabolic
Morse minimizer for (U, α). Then (a suitable choice of) the corresponding (ϑ, ϕ)
is an heteroclinic connection between the saddles

(ϑ−, ϑ− + π) and (ϑ+, ϑ+).

Moreover ϑ is strictly increasing between ϑ− and ϑ+.
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Fig. 1. The figure sketches the phase portrait of (6) when U (ϑ) ≡ 1. The dynamical system
reads ϕ′ = (α/2) ϑ ′ = α sin(ϕ − ϑ), which critical points satisfy ϕ = ϑ + kπ , k ∈ Z. Tra-
jectories lie on the bundle ϕ = (α/2)ϑ + C , C ∈ R, and, recalling condition (7), we deduce
that parabolic solutions coincide with heteroclinic connections departing from points on
ϕ = ϑ+ (2k +1)π and ending on ϕ = ϑ+2kπ , for some k ∈ Z. For instance, when k = 0,
we obtain heteroclinics connecting (ϑ∗, ϑ∗ + π) to (2π/(2 − α)+ ϑ∗, 2π/(2 − α)+ ϑ∗),
for some ϑ∗ ∈ R. Going back to the original dynamical system, this implies that parabolic
motions exist only when the angle between the ingoing and outgoing asymptotic directions
is 2π/(2−α); let us emphasize that such an angle is always greater than π . When α = 1, that
is, in the classical Kepler problem, this angle is 2π : the heteroclinic between (ϑ∗, ϑ∗ + π)
and (2π + ϑ∗, 2π + ϑ∗) actually describes a parabola whose axis forms an angle ϑ∗ with
the horizontal line

Proof. Since ϑ± are minima for U we have that (ϑ, ϕ) connects the two saddles,
say,

(ϑ−, ϑ− + h1π) and (ϑ+, ϑ+ + h2π),

in such a way that

lim
τ→−∞ [ϕ(τ)− ϑ(τ)] = h1π, lim

τ→+∞ [ϕ(τ)− ϑ(τ)] = h2π.

Since x is globally defined, condition (7) holds, implying that cos(h1π) = −1 and
cos(h2π) = 1, that is, h1 is odd while h2 is even. Since v is non-decreasing, we
have that

−√
Umin = v(−∞) < v(τ) < v(+∞) = √

Umin.

Now we observe that

v′ = (2 − α) [U (ϑ)]3/2 sin2 (ϕ − ϑ) = (2 − α)
√

U (ϑ)
[
U (ϑ)− v2

]
, (8)

Hence v strictly increases. Then sin (ϕ − ϑ) �= 0, therefore also ϑ is strictly mono-
tone. Since ϑ− < ϑ+ we obtain that ϑ increases. But this finally implies that
sin (ϕ − ϑ) > 0, for every τ . Summing up all the information we deduce that

h1 = h2 + 1. ��
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Motivated by the previous result, we devote the rest of the section to studying the
properties of the stable and unstable trajectories associated with the saddle points
of (6), in dependence of the parameter α. To start with, using Equation (8), we
provide a necessary condition for the existence of saddle–saddle connections.

Lemma 1. Let us assume that for some α ∈ (0, 2) there exists a saddle–saddle
connection for (6) between (ϑ−, ϑ− + π) and (ϑ+, ϑ+). Then

2 − 2π

ϑ+ − ϑ− � α � 2 − 4

ϑ+ − ϑ− arcsin

√
Umin

Umax
,

where Umin � U (ϑ) � Umax, for every ϑ .

Proof. Let (ϑ, ϕ) be such a heteroclinic. Reasoning as in the proof of the previous
corollary, one can deduce that both v and ϑ are (strictly) monotone in τ . It is then
possible to write v = v(τ(ϑ)) =: v̂(ϑ), obtaining that

lim
ϑ→ϑ± v̂(ϑ) = ±√

Umin.

With this notation we can write

dv̂

dϑ
= v′(τ ) dτ

dϑ
= 2 − α

2

√
U (ϑ)

U (ϑ)

U (ϑ)− v2

sin(ϕ − ϑ)
= 2 − α

2

√
U (ϑ)− v̂2.

Integrating on ϑ ∈ [ϑ−, ϑ+], we obtain on one hand

ϑ+ − ϑ− � 2

2 − α

∫ √
Umin

−√
Umin

dv
√

Umin − v2
= 2π

2 − α
, (9)

and on the other hand

ϑ+ − ϑ− � 2

2 − α

∫ √
Umin

−√
Umin

dv
√

Umax − v2
= 4

2 − α
arcsin

√
Umin

Umax
. �� (10)

Using the previous arguments, together with standard results in structural stabil-
ity, it is already possible, for appropriate values of α, to show the existence of
saddle–saddle heteroclinic connections (see Fig. 2). In any case, if in principle sad-
dle–saddle connections occur only for particular values of α, on the other hand,
whenever ϑ± are minima for U , for every α they correspond to saddle points. The
above techniques allow us to study the dependence of their stable and unstable
manifolds on α.

Lemma 2. Let (ϑ, ϕ) denote the (unique, apart from time translations) unstable
trajectory emanating from (ϑ−, ϑ− + π) with increasing ϑ . Then it intersects the
line ϕ = ϑ + π/2 in a unique point with first coordinate ϑ̂− = ϑ̂−(α). Moreover,
ϑ is strictly increasing on (ϑ−, ϑ̂−] and on the same interval ϕ = ϕα(ϑ) can be
expressed as a function of ϑ . Finally,

α1 < α2 implies ϑ̂−(α1) < ϑ̂−(α2)

and ϕα1(ϑ) < ϕα2(ϑ) on (ϑ−, ϑ̂−(α1)] (see also Fig. 3).
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Fig. 2. The two pictures represent the phase portrait of the dynamical system (6) with
U (ϑ) = 2 − cos(2ϑ), when α = 0.5 (at left) or α = 1 (at right). We focus our attention
on the saddles (0, π) and (π, π) (which satisfy condition (7)). From the mutual positions of
the heteroclinic departing from (0, π) and the one ending in (π, π) we deduce that the two
vector fields are not topologically equivalent. By structural stability we infer the existence,
for some ᾱ ∈ (0.5, 1), of a saddle connection between (0, π) and (π, π)

Fig. 3. The unstable (resp. stable) manifold emanating from P = (ϑ−, ϑ− + π) (resp.
entering in Q = (ϑ+, ϑ+)), and its dependence on α, according to Lemma 2 (resp. Lemma
3). Here α1 < α2

Proof. To start with we observe that, for any α ∈ (0, 2), the linearized matrix for
(6) at (ϑ−, ϑ− + π) is

J− = Umin

(
2 −2

α − μ− −α
)

,

where μ− = U ′′(ϑ−)/Umin.The eigendirection correspondent to the heteroclinic
emanating from (ϑ−, ϑ− + π) is v− = (1, v−

2 ) = (1, 1 − λ−+/2), where λ−+ is the
positive eigenvalue of J−. A straight calculation provides

v−
2 = v−

2 (α) = 1

2
+ α

4
− 1

4

√
(2 − α)2 + 8μ−.
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On one hand, we have that

d

dα
v−

2 (α) = 1

4
+ 2 − α

4
√
(2 − α)2 + 8μ− > 0,

implying that, for different values of α, the corresponding unstable trajectories are
ordered as claimed near (ϑ−, ϑ− + π). On the other hand, since v−

2 < 1, we have
that the trajectory is contained in the strip π/2 < ϕ − ϑ < π for large negative
times.

Now recall that, as above, v(−∞) = −√
Umin and that both ϑ and v are strictly

increasing whenever v is smaller than
√

Umin. We deduce that there exists exactly
one τ̂ such that

v(τ̂ ) = 0, or equivalently ϕ(τ̂ ) = ϑ(τ̂ )+ π

2
.

As a consequence, the value ϑ̂− = ϑ(τ̂ ) is well defined and, reasoning as in Cor-
ollary 1 and in Lemma 1, we can invert ϑ = ϑ(τ) on (−∞, τ̂ ]. We deduce that we
can write

ϕα(ϑ) := ϕ(τ(ϑ)), where
dϕα
dϑ

= α

2
+ U ′(ϑ)

2U (ϑ)
cotan(ϕα − ϑ) on (ϑ−, ϑ̂−].

(11)

To conclude the proof we have to show that, if α1 < α2, then ϕα1(ϑ) < ϕα2(ϑ)

where they are defined. To this aim, let by contradiction ϑ∗ > ϑ− be such that
ϕα1(ϑ) < ϕα2(ϑ) on (ϑ−, ϑ∗), and ϕα1(ϑ

∗) = ϕα2(ϑ∗). But the above differential
equation implies

d(ϕα2 − ϕα1)

dϑ
(ϑ∗) = α2 − α1

2
> 0,

a contradiction. ��
Arguing exactly as above, one can prove analogous properties for the stable

manifolds.

Lemma 3. Let (ϑ, ϕ) denote the (unique, apart from time translations) stable tra-
jectory entering in (ϑ+, ϑ+) with increasing ϑ . Then it intersects the line ϕ =
ϑ + π/2 in a unique point with first coordinate ϑ̂+ = ϑ̂+(α). Moreover, ϑ is
strictly increasing on [ϑ̂+, ϑ−) and, on the same interval, ϕ = ϕα(ϑ) can be
expressed as a function of ϑ . Finally,

α1 < α2 implies ϑ̂+(α1) > ϑ̂+(α2),

and ϕα1(ϑ) > ϕα2(ϑ) on [ϑ̂+(α1), ϑ
+).

By uniqueness, the above unstable/stable trajectories cannot be crossed by any other
orbit. To be more precise, we have the following.
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Corollary 2. Let

ϑ∗ ∈ [ϑ−, ϑ+] such that U ′(ϑ∗) = 0

be any central configuration, and γ be a trajectory of system (6) emanating from
(ϑ∗, ϑ∗ + π) and intersecting the set

� :=
{

(ϑ, ϕ) : ϑ− � ϑ � ϑ+, ϑ + π

2
� ϕ � ϑ + 3π

2

}

.

Then, if γ exits from �, it must cross either the union of the segments

{
ϑ̂−(α) � ϑ � ϑ+, ϕ = ϑ + π

2

}
,

{

ϑ− � ϑ � ϑ̂+(α), ϕ = ϑ + 3π

2

}

,

or the vertical lines ϑ = ϑ±. Analogously, for a trajectory asymptotic (in the
future) to (ϑ∗, ϑ∗), the entering set in

�′ :=
{
(ϑ, ϕ) : ϑ− � ϑ � ϑ+, ϑ − π

2
� ϕ � ϑ + π

2

}

is the union of the segments
{
ϑ̂+(α) � ϑ � ϑ+, ϕ = ϑ − π

2

}
,

{
ϑ− � ϑ � ϑ̂−(α), ϕ = ϑ + π

2

}
,

and of the vertical lines ϑ = ϑ±.

Proof. We prove only the first part. If ϑ∗ = ϑ− then γ ≡ γ1, the unique unstable
trajectory emanating from the corresponding saddle point withϑ increasing consid-
ered in Lemma 2; but then it exits from� through the point (ϑ̂−(α), ϑ̂−(α)+π/2).
In the same way, if ϑ∗ = ϑ+ then γ ≡ γ2, the unique unstable trajectory emanating
from the corresponding saddle point with ϑ decreasing (recall that, if (ϑ(τ), ϕ(τ ))
solves (6), then (ϑ(−τ), ϕ(−τ) + π) also does); in such a case the exit point is
(ϑ̂+(α), ϑ̂+(α)+ 3π/2). Finally, if ϑ− < ϑ∗ < ϑ+, then γ must lie above γ1 and
below γ2, and the assertion follows. ��

The angles ϑ̂±(α) defined above represent the (oriented) parabolic apsidal
angles swept by the parabolic arc from the infinity up to the pericenter. As a con-
sequence of the previous arguments, the appearance of a parabolic trajectory asso-
ciated with the asymptotic directions (ϑ−, ϑ+), or, equivalently, the existence of
a heteroclinic connection between (ϑ−, ϑ− + π) and (ϑ+, ϑ+) can be expressed
in terms of the corresponding apsidal angles. Summing up, we have proved the
following.

Proposition 2. Let U ∈ U , ϑ− < ϑ+ ∈ �, and the monotone functions ϑ̂−(α),
ϑ̂+(α) be defined as in Lemmata 2, 3, respectively. Then system (6) admits a het-
eroclinic connection between (ϑ−, ϑ− + π) and (ϑ+, ϑ+) for some value α =
ᾱ ∈ (0, 2) if and only if

ϑ̂−(ᾱ) = ϑ̂+(ᾱ).

In particular, if such a value exists, then it is unique.



Entire Minimal Parabolic Trajectories 595

The function ᾱ can be extended to all the triplets U ∈ Uϑ1ϑ2 and ϑ− , ϑ+ ∈
�ϑ1ϑ2 as follows:

Definition 3. For any triplet U ∈ U , ϑ− < ϑ+ ∈ �, we define the function

ᾱ(ϑ−, ϑ+,U ) = inf
{
α ∈ (0, 2) : ϑ̂−(α) > ϑ̂+(α)

}

If ϑ− > ϑ+ we define ᾱ(ϑ−, ϑ+,U ) = ᾱ(ϑ+, ϑ−,U ).

In this way, the previous proposition proves the first point of Theorem 1.
As a final remark, let us notice that the apsidal angles defined above, and the

corresponding stable and unstable trajectories, act as a “barrier” for any hetero-
clinic traveling in the strip ϑ− � ϑ � ϑ+ and corresponding to a (not necessarily
minimal) parabolic trajectory. Such arguments will turn out to be useful in the proof
of Theorems 2 and 3.

Proposition 3. Let U ∈ U , ϑ−, ϑ+ ∈ �, and let us assume that

α > ᾱ(ϑ−, ϑ+,U ).

Then (U, α) does not admit any (not necessarily minimal) parabolic trajectory
completely contained in the sector [ϑ−, ϑ+].
Proof. By Theorem 4 (and, in particular, condition (7)) such a parabolic trajectory
x = x(t) would correspond to a heteroclinic connection for system (6), joining an
equilibrium (say) (ϑ∗, ϑ∗+π) to another one (ϑ∗∗+2hπ, ϑ∗∗+2hπ), with h being
an integer. We want to prove that such a trajectory, under the above assumptions,
cannot be completely contained in the strip [ϑ−, ϑ+] × R.

To start with, we observe that h must be equal to either 0 or 1. Indeed, the
function v(τ) is non-decreasing along any trajectory, and v = 0 whenever ϕ =
ϑ + π/2 + kπ, k integer. Without loss of generality, we can assume h = 0, so that
the trajectory we are considering joins (ϑ∗, ϑ∗ + π) to (ϑ∗∗, ϑ∗∗). Let us assume
by contradiction that it is completely contained in the strip [ϑ−, ϑ+]×R; but then,
using the notations of Corollary 2, it must both exit � and enter �′ across a single
point belonging to the line ϕ = ϑ + π/2 and the strip. This immediately provides
a contradiction with the selfsame corollary, since

α > ᾱ �⇒ ϑ̂−(ᾱ) > ϑ̂+(ᾱ). ��

3. Minimality Properties Near Equilibria

The purpose of this section is to develop a first investigation into the minimality
properties of zero energy solutions of (1) with respect to the Maupertuis’ functional

J (x) = J ([a, b]; x) :=
∫ b

a

1

2
|ẋ(t)|2 dt ·

∫ b

a
V (x(t)) dt,
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where V = (U, α) ∈ V . Indeed, let us recall that

min
{
A ([a′, b′]; y) : a′ < b′, y ∈ H1(a′, b′) + further conditions

}

= min
{√

2J ([a, b]; x) : x ∈ H1(a, b) + same conditions
}

for every (fixed) a < b, indeed J is invariant under reparameterizations (see [1]).
As a consequence, every parabolic trajectory is a critical point of J , at least when
restricted on suitably small bounded intervals.

In particular, we want to evaluate the second differential of J along zero-energy
critical points. In order to do this, we first perform a change of time-scale essentially
equivalent to that of Devaney, which we exploited in Section 2. In polar coordinates
J reads as

J (r, ϑ) =
∫ b

a

1

2

[
ṙ2(t)+ r2(t)ϑ̇2(t)

]
dt ·

∫ b

a

U (ϑ(t))

rα(t)
dt;

introducing the time-variable

τ = τ(t) =
∫ t

a
r−(2+α)/2(ξ) dξ

we obtain (noting with a prime “ ′ ” the derivative with respect to τ )

J (r, ϑ) =
∫ τ∗

a

1

2

[(
r−(2+α)/4r ′)2 +

(
r (2−α)/4ϑ ′)2

]

dτ ·
∫ τ∗

a
r (2−α)/2U (ϑ) dτ ,

where r and ϑ depend now on τ , and

τ ∗ =
∫ b

a
r− 2+α

2 dt .

We introduce the change of variables

ρ = r
2−α

4 , ρ′ = 2 − α

4
r− 2+α

4 r ′

in order to obtain the Maupertuis’ functional depending on (ρ, ϑ), that is,

J (ρ, ϑ) = F(ρ, ϑ)G(ρ, ϑ),

where

F(ρ, ϑ) =
∫ τ∗

0

8

(2 − α)2
(ρ′)2 + 1

2
(ρϑ ′)2 dτ , G(ρ, ϑ) =

∫ τ∗

0
ρ2U (ϑ) dτ .

The energy relation (2) written in terms of τ , ρ and ϑ yields F(ρ, ϑ) = G(ρ, ϑ).
Now let (ρ, ϑ) be a critical point of J ; then

dJ (ρ, ϑ) = dF(ρ, ϑ)G(ρ, ϑ)+ F(ρ, ϑ) dG(ρ, ϑ) = 0.
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From the energy relation we then deduce that if (ρ, ϑ) is a zero-energy critical
point for J , then dF(ρ, ϑ) = − dG(ρ, ϑ). As a consequence we can write

d2 J (ρ, ϑ) = G(ρ, ϑ)
[

d2 F(ρ, ϑ)+ d2G(ρ, ϑ)
]

− 2 [ dG(ρ, ϑ)]2 .

More explicitly, given a compactly supported variation (λ, ξ) and a zero-energy
critical point for J , (ρ, ϑ), we have that

d2 F(ρ, ϑ)[(λ, ξ), (λ, ξ)] =
∫ τ∗

0

16(λ′)2

(2 − α)2
+ (ρξ ′)2 + 4ϑ ′ξ ′ρλ+ (ϑ ′)2λ2 dτ ,

dG(ρ, ϑ)(λ, ξ) =
∫ τ∗

0
2ρλU (ϑ)+ ρ2U ′(ϑ)ξ dτ ,

d2G(ρ, ϑ)[(λ, ξ), (λ, ξ)] =
∫ τ∗

0
2λ2U (ϑ)+ 4λρU ′(ϑ)ξ + ρ2U ′′(ϑ)ξ2 dτ .

In the rest of the paper we will prove that trajectories asymptotic to minimal central
configurations are, indeed, at least locally, minimizers for J . The main result of
this section concerns the non-minimality of trajectories which are asymptotic to
“sufficiently” non-minimal central configurations.

Proposition 4. Let ϑ̄ be such that U ′(ϑ̄) = 0, and let (ρ, ϑ) be any critical point
of J , defined for τ ∈ [0,+∞), such that ϑ(τ) → ϑ̄ as τ → +∞. Finally, let α be
such that

U ′′ (ϑ̄
)
< − (2 − α)2

8
U

(
ϑ̄
)
. (12)

Then, for a′ < b′ sufficiently large, (ρ, ϑ) restricted to (a′, b′) is neither a minimum
for A , nor for J .

Proof. We prove the result for the Maupertuis’ functional J ; indeed, the computa-
tions for the action are similar but simpler (recall that, under the above notations,
A (ρ, ϑ) = F(ρ, ϑ)+ G(ρ, ϑ)). More precisely, we are going to provide a com-
pactly supported variation (0, ξ) along which d2 J (ρ, ϑ) will result negative. By
the above calculations we have

d2 J (ρ, ϑ)[(0, ξ), (0, ξ)]

=
∫ b′

a′
ρ2U (ϑ) dτ ·

∫ b′

a′
ρ2

[
(ξ ′)2+U ′′(ϑ)ξ2

]
dτ−2

(∫ b′

a′
ρ2U ′(ϑ)ξ dτ ,

)2

� C
∫ b′

a′
ρ2

[
(ξ ′)2 + (μ+ ε)ξ2

]
dτ ,

where C > 0, ε > 0 is small, a′ < b′ are large and μ := U ′′(ϑ̄).
Now, we claim that the solutions of the linear equation

(ρ2ξ ′)′ = (μ+ 2ε)ρ2ξ (13)
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have infinitely many zeroes for τ large; as a consequence, choosing a′, b′ to be two
of such zeroes, testing with ξ and integrating by parts, one would obtain

∫ b′

a′
ρ2

[
(ξ ′)2 + (μ+ ε)ξ2

]
dτ = −ε

∫ b′

a′
ρ2ξ2 dτ < 0,

providing the desired result.
In order to establish the oscillatory nature of Equation (13) we will apply Sturm

comparison principle. First of all, by combining the Euler–Lagrange equation for ρ

16

(2 − α)2
ρ′′ = (ϑ ′)2ρ + 2ρU (ϑ),

and the zero-energy relation

8

(2 − α)2
(ρ′)2 + 1

2
(ϑ ′)2ρ2 = ρ2U (ϑ),

we have that the function

p(τ ) := ρ′(τ )
ρ(τ)

satisfies p′ = −2p2 + (2 − α)2

4
U (ϑ)

on [0,+∞). But then, since ϑ(τ) → ϑ̄ as τ → +∞, by elementary comparison
we easily obtain

lim
τ→+∞

ρ′(τ )
ρ(τ)

=
√

(2 − α)2

8
U (ϑ̄) =: γ.

We finally infer that, for some constant k, and for τ large, there holds ρ(τ) <
ke(γ+ε)τ . But then Sturm comparison principle applies to (13) and to

(k2e2(γ+ε)τ ξ ′)′ = (μ+ 2ε)k2e2(γ+ε)τ ξ,

yielding that every nodal interval of the second equation contains (at least) one zero
of the first one; to conclude we observe that this last equation writes

ξ ′′ + 2(γ + ε)ξ ′ − (μ+ 2ε)ξ = 0,

which is oscillatory if and only if, for some ε > 0, there holds (γ+ε)2+(μ+2ε) <
0, that is, if and only if

μ < −γ 2. ��
Corollary 3. Let ϑ̄ be such that U ′(ϑ̄) = 0, and let x, defined for t ∈ [0,+∞), be
a solution of (1), (2), such that x(t)/|x(t)| → (cos ϑ̄, sin ϑ̄) as t → +∞. Finally
let α satisfy condition (12). Then, x can neither be a free-time Morse minimizer,
nor a fixed-time one.

Let us mention that this result completely agrees with the one proved, in the
complementary case of collision trajectories, in [4]; on the other hand, quite surpris-
ingly, it is not clear wether trajectories corresponding to “not too-strict” maxima
for U (that is, maxima such that −γ 2 < U ′′(ϑ̄) < 0) may be minimizers for J .
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4. Constrained Minimizers

In this section we prove Theorem 1 in the case in which ϑ−, ϑ+ ∈ �ϑ1ϑ2 are
such that

π < ϑ+ − ϑ− � 2π.

By time reversibility, the case −2π � ϑ+ − ϑ− < −π will also follow. In such
situation the results in [5] apply almost straightforwardly; we summarize them here,
making explicit the minor changes we need in the present situation.

The main idea is that, since parabolic minimizers exist only for special values
of α, one first introduces more general objects which, on the contrary, exist for
every α.

Definition 4. We say that x = (r, ϑ) ∈ H1
loc(R) is a constrained Morse minimizer

if

– mint r(t) = 1;
– r(t) → +∞, ϑ(t) → ϑ± as t → ±∞;
– for every t1 < t2, t ′1 < t ′2, and z ∈ H1(t ′1, t ′2), there holds

z(t ′i ) = x(ti ), i = 1, 2, min
[t ′1,t ′2]

|z| = min[t1,t2]
r �⇒ A ([t1, t2]; x) � A ([t ′1, t ′2]; z).

We denote with M = M (U, α) the set of constrained Morse minimizers.

As for Definition 1, the previous definition also makes sense for any pair of central
configurations, not necessarily for minimal ones. From this point of view, Prop-
osition 4 provides a necessary condition for M to be non-empty in the case of
non-minimal central configurations. In any case, when not explicitly remarked, we
will always refer to constrained minimizers between minimal asymptotic configu-
rations.

The following two lemmas describe the main properties of constrained mini-
mizers; they are a direct consequence of the theory developed in [5], Sections 5
and 6

Lemma 4. For every α ∈ (0, 2) the set M is not empty. If x = (r, ϑ) ∈ M then
(up to a time translation) there exist t∗ � 0 � t∗∗ such that:

1. r(t) = 1 if and only if t ∈ [t∗, t∗∗], ṙ(t) < 0 (resp. > 0) if and only if t < t∗
(resp. t > t∗∗);

2. x satisfies (1) for every t �∈ [t∗, t∗∗] and (2) for every t;
3. one of the following alternatives hold:

(a) t∗ < t∗∗, x is C 1 for every t , ṙ ≡ 0 in [t∗, t∗∗];
(b) t∗ = t∗∗ = 0 and x is C 1 for every t;
(c) t∗ = t∗∗ = 0 and ẋ has a jump discontinuity at 0, with

−ṙ(0−) = ṙ(0+) > 0, ϑ̇(0−) = ϑ̇(0+).
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Definition 5. In view of the previous lemma, for any x = (r, ϑ) ∈ M , we define
its (angular) position and velocity jumps, respectively, as

�pos(x) := |ϑ(t∗∗)− ϑ(t∗)|, �vel(x) := |ṙ(t+∗∗)− ṙ(t−∗ )|
(in particular, they cannot both be different from 0, while they are both 0 if and
only if alternative (b) above holds).

Lemma 5. Let 0 < α1 < α2 < 1 and let us assume that there exists xi ∈
M (U, αi ), i = 1, 2, such that

�pos(x1) > 0 and �vel(x2) > 0.

Then there exist ᾱ ∈ (α1, α2) and x̄ ∈ M (U, ᾱ) such that

�pos(x̄) = �vel(x̄) = 0 and x̄ is a corresponding free Morse minimizer.

In the planar case, the general theory we have recalled above can be
complemented using the results regarding Devaney’s system, which we obtained
in Section 2.

Remark 1. Let x = (r, ϑ) ∈ M and t∗ � 0 � t∗∗ be as in Lemma 4. Via the vari-
able and time changes introduced in Section 2, we can define τ∗ � 0 � τ∗∗ in order
to obtain that x |{t<t∗} corresponds, in the phase plane of system (6), to a part of the
unstable trajectory emanating from (ϑ−, ϑ− +π), with ϑ increasing (and τ < τ∗).
Moreover, ϑ− < ϑ < ϑ̂−(α) along the trajectory (both of these facts descend from
the fact that, for t < t∗, ṙ is negative, and thus, also, is r ′ for τ < τ∗). Analogously,
x |{t>t∗∗} corresponds to a part of the stable trajectory entering in (ϑ+, ϑ+) (with
τ > τ∗∗), and ϑ̂+(α) < ϑ < ϑ+.

Finally, for τ ∈ (τ∗, τ∗∗) (whenever such an interval is nonempty), (ϑ, ϕ) lies in
a 1-to-1 way on the line of equation ϕ = ϑ+π/2. In particular, (ϑ, ϕ) is completely
contained in the strip

{
(ϑ, ϕ) : ϑ− < ϑ < ϑ+, ϑ < ϕ < ϑ + π

}
.

Taking into account Lemmata 2 and 3, it is possible to give a full characterization
of constrained Morse minimizers in terms of the functions ϑ̂±(α) defined therein.

Proposition 5. Let U ∈ U , α ∈ (0, 2), ϑ± as above. Then the corresponding
constrained Morse minimizer xα is unique (up to time translations) and (see also
Fig. 4)

– �pos(xα) > 0 if and only if ϑ̂−(α) < ϑ̂+(α);
– �vel(xα) > 0 if and only if ϑ̂−(α) > ϑ̂+(α);
– �pos(xα) = �vel(xα) = 0 if and only if ϑ̂−(α) = ϑ̂+(α).

Proof. Let xα be any element of M (U, α) and let us denote with (ϑ, ϕ) the corre-
sponding arc in the Devaney plane. Moreover, let τ∗ � 0 � τ∗∗ be the values of τ
corresponding to t∗, t∗∗, respectively.
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Fig. 4. On the left, a position-jumping constrained minimizer between P = (ϑ−, ϑ− + π)

and Q = (ϑ+, ϑ+), with �pos(xα) = ϑ̂+(α) − ϑ̂+(α). On the right, a velocity-jumping
one; in such a case, the jump discontinuity is symmetric with respect to (ϑ0, ϑ0 +π/2) (see
Equation (14))

We start by assuming that �vel(xα) > 0. This means that ṙ never vanishes, it
is not defined in t∗ = t∗∗ = 0, and −ṙ(0−) = ṙ(0+) > 0. Since xα , and hence
ϑ , are continuous, we obtain that ϕ must be discontinuous. More precisely, letting
ϑ0 := ϑ(0) and recalling system (5), we have that

−2U (ϑ0) cos(ϕ(0−)− ϑ0) = −r ′(0−) = r ′(0+) = 2U (ϑ0) cos(ϕ(0+)− ϑ0),

which implies (also recalling Remark 1)

ϕ(0+)+ ϕ(0−)
2

= ϑ0 + π

2
. (14)

On the other hand, for τ negative (resp. positive) we have that ϕ must be greater
(resp. less) than ϑ + π/2. Recalling Lemmas 2 and 3, we deduce that ϑ̂−(α) >
ϑ̂+(α). Let us now show that for every α satisfying this last condition, there exists
exactly one ϑ0 ∈ (ϑ̂+(α), ϑ̂−(α)) such that condition (14) holds. This, together
with the fact that r(0) = 1, will imply uniqueness for the velocity-jumping mini-
mizer. Thanks to Lemmas 2 and 3 we have that, for ϑ ∈ (ϑ̂+(α), ϑ̂−(α)), both the
unstable manifold ϕ = ϕ−(ϑ) and the stable one ϕ = ϕ+(ϑ) are well defined as
functions of ϑ , and that they both satisfy Equation (11), that is,

dϕ±
dϑ

= α

2
+ U ′(ϑ)

2U (ϑ)
cotan(ϕ± − ϑ).

Let us define the (smooth) auxiliary function ψ(ϑ) := ϕ+(ϑ)+ ϕ−(ϑ)− 2ϑ − π .
Then condition (14) is equivalent toψ(ϑ0) = 0. We easily obtain ±ψ(ϑ̂±(α)) > 0
and

dψ

dϑ
= α + U ′(ϑ)

2U (ϑ)

[
cotan(ϕ+ − ϑ)+ cotan(ϕ− − ϑ)

] − 2

= U ′(ϑ)
2U (ϑ)

sin(ψ + π)

sin(ϕ+ − ϑ)+ sin(ϕ− − ϑ)
− (2 − α).
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We deduce that ψ(ϑ0) = 0 implies dψ(ϑ0)/ dϑ < 0, so that ψ has exactly one
zero as claimed.

Let us come to the case in which�vel(xα) = 0. Using Lemmas 2 and 3 again, we
have that both the unstable trajectory and the stable one meet the line ϕ = ϑ +π/2
in exactly one point. We deduce that, for some τ∗ � τ∗∗

ϑ(τ∗) = ϑ̂−(α), ϑ(τ∗∗) = ϑ̂+(α).

This, if also �pos(xα) = 0, immediately yields ϑ̂−(α) = ϑ̂+(α). On the other
hand, let us assume that τ∗ < τ∗∗. Then, by minimality, the corresponding segment
on the line ϕ = ϑ + π/2 must be traveled with ϑ monotone; since ϑ is C 1 and
ϑ ′(τ ∗−) > 0, we deduce that ϑ ′ > 0 on [τ∗, τ∗∗], that is, ϑ̂−(α) < ϑ̂+(α). Again,
in both cases, the uniqueness of xα inside its category is due to the initial conditions
r(τ∗) = r(τ∗∗) = 1.

Now the proof easily follows, indeed, in each of the two triplets of conditions,
at least one instance must occur and each one excludes the others. ��

We are ready to prove our main theorem in the present case.

Proof (Proof of Theorem 1, case π < ϑ+ − ϑ− � 2π ). As already mentioned,
the first part of the theorem is a consequence of Proposition 2 and Definition 3,
while the second easily follows by comparing Proposition 2 and the third instance
of Proposition 5. To prove the last part we can use Lemma 5 in combination with
Proposition 5. In this way, we are left to show the existence of two values α1, α2
such that the order between ϑ̂−(αi ) and ϑ̂+(αi ) is reversed by switching between
i = 1 and i = 2. To this aim, reasoning exactly as in the proof of Lemma 1, one
can prove the analogues of estimates (9), (10), that is,

2

2 − α
arcsin

√
Umin

Umax
� ϑ̂−(α)− ϑ− � π

2 − α
,

2

2 − α
arcsin

√
Umin

Umax
� ϑ+ − ϑ̂+(α) � π

2 − α
.

Summing up and rearranging, we obtain

(ϑ+ − ϑ−)− 2π

2 − α
� ϑ̂+(α)− ϑ̂−(α) � (ϑ+ − ϑ−)− 4

2 − α
arcsin

√
Umin

Umax
.

It is now trivial, taking into account the limitations for ϑ+ −ϑ−, to verify that if α1
is small then ϑ̂−(α1) < ϑ̂+(α1), while if α2 is near 2 then the opposite inequality
holds. ��

We conclude this section with a few words about the case 0 < ϑ+ − ϑ− � π .
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Remark 2. If 0 < ϑ+ − ϑ− � π , then explicit conditions can be provided to
show that the number ᾱ, and hence parabolic minimizers, may or may not exist,
depending on the properties of U . For instance, if U is a small perturbation of a
constant (that is, V is an anisotropic small perturbation of an isotropic potential),
then ᾱ does not exist, recall Fig. 1. On the other hand, it is possible to construct
angular potentials U with arbitrarily small ϑ+ − ϑ−, such that the corresponding
ᾱ exists: roughly speaking, this can be done by choosing U very larger than Umin
on a compact subinterval of (ϑ−, ϑ+), see Lemma 6.11 in [5].

5. General Winding Number

In the previous section we ruled out the case in which ϑ+ − ϑ− ∈ (π, 2π ].
This section is devoted to reformulating the case

2hπ < ϑ+ − ϑ− � 2(h + 1)π, h � 1

in terms of that previous case, completing the proof of Theorem 1 (again, the case
−2(h + 1)π � ϑ+ − ϑ− < −2hπ is easily treated using time reversibility). This
can be done using the following conformal change of variables.

Lemma 6. Let x = (r, ϑ) be defined for t ∈ [a, b], with mint r > 0 and let
y = (ρ, ϕ) be defined for τ ∈ [a′, b′], with minτ ρ > 0. Let us assume that, for
some β > 0, there holds

τ = a′ +
∫ t

a
r2(1−β)/β dt, r(t) = ρβ(τ), ϑ(t) = βϕ(τ),

b′ = a′ + ∫ b
a r2(1−β)/β dt . Finally, let U be 2π -periodic and

V (x) = U (ϑ)

rα
.

Then
∫ b

a

1

2
|ẋ |2 + V (x) dt = β2

∫ b′

a′
1

2
|y′|2 + Ṽ (y) dτ ,

where

Ṽ (y) = Ũ (ϕ)

ρα̃
with Ũ (ϕ) = U (βϕ)

β2 and α̃ = 2 − β(2 − α).

Proof. By direct computation we have

V (x) = U (ϑ)

rα
= U (βϕ)

ραβ

and

|ẋ |2 = ṙ2 + r2ϑ̇2 = β2ρ2β−2ρ̇2 + β2ρ2βϕ̇2

= β2ρ2β−2
[
(ρ′)2 + ρ2(ϑ ′)2

]( dτ

dt

)2

= β2ρ2(1−β)|y′|2.
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Substituting the action, we obtain

∫ b

a

1

2
|ẋ |2 + V (x) dt = β2

∫ b′

a′

(

ρ2(1−β) |y′|2
2

+ U (βϕ)/β2

ραβ

)

· ρ−2(1−β) dτ . ��

Remark 3. It is immediate to show that if U ∈ Uϑ1ϑ2 , ϑ± ∈ �ϑ1ϑ2 , and Ũ is

defined as in the previous lemma, then Ũ ∈ U ϑ1
β

ϑ2
β

and ϑ±
β

∈ �ϑ1
β

ϑ2
β

.

We are in a position to conclude the proof of Theorem 1. This is done through
the following proposition.

Proposition 6. Let 2hπ < ϑ+ −ϑ− � 2(h +1)π for some h � 1 and let us define

ϑ̃± = ϑ±

h + 1
and Ũ (ϑ) = U ((h + 1)ϑ)

(h + 1)2
.

Then π < ϑ̃+ − ϑ̃− � 2π and

ᾱ(ϑ−, ϑ+,U ) = 2 − 2 − ᾱ(ϑ̃−, ϑ̃+, Ũ )
h + 1

,

the latter being well defined by Section 4.

Proof. We have to show that (U, α), α ∈ (0, 2), admits a parabolic Morse mini-
mizer if and only if α is equal to the right-hand side of the expression above. To
start with, we observe that if

α � 2 − 1

h
,

then (U, α) cannot admit a parabolic Morse minimizer. Indeed, on the contrary,
Lemma 1 would apply, yielding

2 − 2π

ϑ+ − ϑ− � α,

in contradiction with the fact that ϑ+ − ϑ− > 2hπ . On the other hand, if α >
2 − 1/h, we can apply Lemma 6 and Remark 3, obtaining that trajectories con-
necting ϑ± with potential (U, α) correspond to trajectories connecting ϑ̃± with
potential (Ũ , α̃), with α̃ = 2 − (h +1)(2 −α). As a consequence, in order to prove
the proposition, we simply have to show that the results of Section 4 can be applied
to this latter context. To this aim, the only non-immediate thing to check is that
α̃ ∈ (0, 2). This is easily proved by monotonicity, since

2 − 1

h
< α < 2 �⇒ 1 − 1

h
< α̃ < 2. ��
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6. Proof of Theorems 2 and 3

The strategy in the proof of both theorems is the following. To start with, we
assume by contradiction the existence of a colliding minimizer and we study a class
of constrained minimization problems, restricting to the paths having distance from
the origin of at least ε. Next, we let ε → 0 and perform a blow-up procedure obtain-
ing as a limit a global zero-energy path, which connects two central configurations
at r → ∞ and solves the equation outside the constraint. Finally, we obtain a con-
tradiction to the existence of such a path by exploiting the results obtained in the
previous sections. To this last aim, a crucial tool is given by the following lemma,
which is a generalization of Proposition 3 to fixed-time constrained minimizers
with �vel = 0 connecting (not necessarily minimal) central configurations.

Lemma 7. Let (U, α) be fixed and x = (r, ϑ) ∈ H1
loc(R) be such that, for some

t∗ � 0 � t∗∗, it holds

– x is C 1 and is minimal under fixed-time variations;
– |x | → ∞ and x/|x | → ϑ̃± as t → ±∞;
– r(t) ≡ 1 if and only if t ∈ [t∗, t∗∗], ṙ(t) < 0 (resp. ṙ(t) > 0) if and only if

t < t∗ (resp. t > t∗∗);
– x solves (1) for t /∈ [t∗, t∗∗] and (2) for every t;
– there exist ϑ± minimal central configurations such that [ϑ̃−, ϑ̃+] ⊂ [ϑ−, ϑ+].
Then α � ᾱ(ϑ−, ϑ+,U ).

Proof. Reasoning as in Remark 1, we can project x to Devaney’s phase plane. As
usual, the corresponding graph consists of the junction of three arcs in the strip:
the part of an unstable trajectory emanating from (say) (ϑ̃−, ϑ̃− + π) up to A, its
crossing point with the straight line ϕ = ϑ + π/2; the arc of the stable manifold
entering in (ϑ̃+, ϑ̃+) back to B, its crossing point with the same straight line; and,
finally, a segment joining the two crossings, which is traveled monotonically in ϑ
by minimality. Since ϑ must be C 1 across the whole junction, and trajectories of
(6) cross the line ϕ = ϑ + π/2 with increasing ϑ , we infer that

ϑA � ϑB .

On the other hand, since the whole junction is completely contained in the strip
[ϑ−, ϑ+], Corollary 2 implies that

ϑA � ϑ̂−(α), ϑB � ϑ̂+(α),

and the conclusion follows from the definition of ᾱ. ��
Remark 4. In the previous lemma α = ᾱ forces ϑA = ϑB and hence ϑ̃± = ϑ±.

Proof (Proof of Theorem 2). Taking advantage of the conformal equivariance of
the problem, arguing as in Section 4 we can reduce to the case ϑ+ � ϑ− + 2π . We
argue by contradiction, assuming that for some x1 = (r1, ϕ1), x2 = (r2, ϕ2) in the
sector [ϑ−, ϑ+] and t1 < t2 there exists a Bolza minimizer completely contained
in the sector and traveling through the origin. As we did in Definition 4 for Morse
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minimizers, we can introduce the notion of constrained Bolza ones. More precisely,
let us consider the set of paths within the sector having the required endpoints:

� := {
x = (r, ϑ) : r(ti ) = ri , ϑ(ti ) = ϕi , ϑ(t) ∈ [ϑ−, ϑ+] for t ∈ [t1, t2]

}
.

Next, we consider a small parameter ε > 0 and we compare the values of the two
following constrained minimization problems: the one featuring equality constraint

cc
ε := min

{

A (t1, t2; x) : x ∈ � and min[t1,t2]
r(t) = ε

}

with the obstacle-type problem

cc
ε := min

{

A (t1, t2; x) : x ∈ � and min[t1,t2]
r(t) � ε

}

(it is standard to prove that they are both achieved). Of course, cε is nondecreasing
in ε and cε � cc

ε , ∀ε > 0. Arguing as in the proof of Theorem 18 in [29], if cε < cc
ε

for every small positive ε, then we are done. Hence, we can reduce our analysis
to the case of a vanishing sequence εn → 0 with cεn = cc

εn
and such that the

two constrained minimization problems share the same class of minimizers. Let
us take a sequence xn of such minimizers: they can interact with the constraints in
essentially two ways. On one hand, they are C 1 when they touch the lines ϑ = ϕi .
On the other hand, concerning the circular constraint as in Section 4, we may have
either�vel(xn) > 0 or�vel(xn) = 0 (it can be shown that the classification in terms
of position and velocity jumps also holds for fixed-time minimizers, at least for ε
small, see [5, Proposition 3.6]). It is immediate to rule out the case �vel(xn) > 0,
because a local variation can be easily produced in contradiction with the fact that
cεn = cc

εn
. Following the argument of the proof of Proposition 20 of [29] again,

one sees that the energies are uniformly bounded along the sequence. Defining the
blow-up sequence

x̂n(t) = 1

εn
xn(ε

− 2+α
2

n t),

we can argue as in [29] (pp. 486–488) to pass to the limit and find a zero-energy C 1-
path, minimal under fixed-time variations for the homogeneous potential (U, α).
We observe that such paths cannot touch the lines ϑ = ϕi : indeed, it would be a
C 1 junction, in contradiction to the uniqueness for Cauchy problems. As a conse-
quence, the blow-up limit consists of a pair of parabolic arcs, connected by a circular
arc, within the sector (ϑ−, ϑ+). The two parabolic arcs have ingoing and outgoing
asymptotic central configurations ϑ̃−, ϑ̃+ such that ϑ− � ϑ̃− < ϑ̃+ � ϑ+. Since
α > ᾱ this contradicts Lemma 7. ��
Remark 5. The previous proof, together with Remark 4, immediately provides
Proposition 1. Moreover, it is possible to show that, if α = ᾱ, then any Bolza min-
imizer within the sector is either collisionless or it collides with ingoing/outgoing
directions precisely ϑ− and ϑ+.
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Proof (Proof of Theorem 3). First of all, we can take advantage of the confor-
mal invariance to reduce to the case k = 1. Next, we again set the constrained
minimization problems over the set of loops winding one time around the origin:

cc
ε(α,U ) = min

{

A (0, T ; x) ; x(0) = x(T ) , deg(x, 0) = 1 and min[0,T ] r(t) = ε

}

(here deg(x, 0) denotes the topological degree of the map x). We also set

cc = lim inf
ε→0

cc
ε.

It is easy to prove that a minimizing periodic trajectory in this class corresponds
to a simple loop. We remark that, under the previous notation, our aim is to prove
that there exists ε > 0 such that cc

ε < cc. This will be done in two steps.
Step 1: If every maximum of U satisfies condition (12) then there exists ε > 0 such
that cc

ε(α,U ) � cc. Indeed, if not, we would have cc
ε > cc for all positive ε and

hence, for every small ε2 > 0, we can find a smaller ε1 such that

cε1,ε2 =min

{

A (0, T ; x) ; x(0)= x(T ) , deg(x, 0)=1 and min[0,T ] r(t) ∈ [ε1, ε2)

}

is achieved. In this way, we find the existence of a fixed-time constrained minimizing
trajectory with�vel = 0. Reasoning again as in [29], letting ε2 → 0 and going to a
blow-up sequence, we find in the limit a parabolic fixed-time constrained minimiz-
ing trajectory with�vel = 0. Now we look at its asymptotic central configurations
and we go to the phase plane. We have to deal with the case when the corresponding
trajectory connects a pair of stationary points (ϑ̃−, ϑ̃− +π) and (ϑ̃+, ϑ̃+) and, by
the absence of self intersections, we infer ϑ̃+ � ϑ̃−+2π . Now, if ϑ̃− is a maximum
for U , then thanks to Corollary 3, we reach a contradiction. On the other hand, if
ϑ̃− is a minimum, we can apply Lemma 7 with [ϑ−, ϑ+] := [ϑ̃−, ϑ̃− + 2π ] and
obtain a contradiction with the fact that α > ᾱ(ϑ̃−, ϑ̃− + 2π,U ).
Step 2: if U and Ũ share the same global minimizers, at the same level Umin, then
cc(α,U ) = cc(α, Ũ ). Indeed let (r(t), ϑ(t)) achieve cc(α,U ), then also (r(t), ϑ∗),
for any ϑ∗ minimal configuration for U , achieves the same level. On this last path
the actions with potentials U and Ũ coincide. Therefore cc(α, Ũ ) � cc(α,U ); the
claim follows by exchanging the roles of U and Ũ .
Step 3: conclusion. Let U satisfy the assumptions of the theorem. We can always
construct another Morse potential Ũ ∈ U , still satisfying (4), such that min Ũ =
min U , Ũ � U , Ũ �= U and, last but not least, Ũ satisfies (12). Now, by Step 1,
there exists ε > 0 such that cc

ε(α, Ũ ) � cc(α, Ũ ), the former being achieved by a
collisionless loop x̃ . Evaluating the action relative to U along x̃ we obtain

cc
ε(α,U ) < cc

ε(α, Ũ ) � cc(α,U ),

as was to be shown. ��
Acknowledgements Work partially supported by the PRIN2009 grant “Critical Point
Theory and Perturbative Methods for Nonlinear Differential Equations”.
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