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Minimization of the k-th eigenvalue
of the Dirichlet Laplacian
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Abstract

For every k ∈ N, we prove the existence of a quasi-open set minimizing the
k-th eigenvalue of the Dirichlet Laplacian among all sets of prescribed Lebesgue
measure. Moreover, we prove that every minimizer is bounded and has a finite
perimeter. The key point is the observation that such quasi-open sets are shape
subsolutions for an energy minimizing free boundary problem.

1. Introduction

The question of minimizing the first Dirichlet eigenvalue of the Laplace opera-
tor among all open sets of prescribed measure is an old one. Rayleigh conjectured
in 1877 that the solution is the ball, and this was positively proved by Faber and
Krahn in the 1920s. It was also noticed that the minimizer for the second eigenvalue
is the union of two equal disjoint balls. For k � 3, not only is the optimal shape
unknown (some conjectures based on numerical evidence are formulated in [12]),
but the existence of an open and smooth optimal shape is also an unsolved question.
For k = 3, the existence of a quasi-open set was proved in [6], while for k � 4
it was proved only that a minimizer exists, provided that for every lower index a
bounded minimizer exists.

The results of the paper were presented by the author during the ANR GAOS meeting in
Chambéry, June 2011. The author was informed before the submission of this paper about
the result in [13] which states that if� is a quasi-open set of finite measure and k ∈ N, there
exists a quasi-open set �̃ such that |�| = |�̃|, λ j (�̃) � λ j (�) for every j = 1, . . . , k and

diam(�̃) � C(k, |�|, N ). This argument, combined with the result of Buttazzo-Dal Maso,
leads to the existence of (bounded) solutions for a general class of monotonous functionals
of eigenvalues, so that the existence part of the result in Theorem 3 could also be obtained
using [13].
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The key general existence result is due to Buttazzo and Dal Maso [7] where, in
particular, it is proved that for every bounded open set D ⊆ R

N , the problem

min{λk(A)|A ⊆ D, |A| = c, A quasi-open}
has a solution. Here, λk(A) stands for the k-th eigenvalue of the Dirichlet Laplacian
on the set A, multiplicities being counted. To replace D with R

N is not a trivial
matter (see the note at the end of the paper concerning the recent result of Mazzoleni
and Pratelli). The main challenge of [3] was to give a concentration-compactness
result for the resolvent operators, which could explain the behaviour of a minimiz-
ing sequence of domains in R

N . The missing step for proving the existence of a
solution for λk+1 was related to the regularity of the optimal shapes for λ1, . . . , λk .

The main purpose of this paper is to introduce the analysis of the shape subso-
lutions for an energy minimizing free boundary problem as a tool to handle shape
optimization problems associated to min-max functionals. As a direct consequence,
one can prove not only the existence of a solution for the problem

min{λk(A)|A ⊆ R
N , |A| = c} (1)

in the family of quasi-open sets, but can also extract some qualitative information,
such as proving that every solution is a bounded set with finite perimeter.

In the literature, the regularity of the free boundaries is well understood only
for energy like minimizers (see [1,2,8,11]). If for k = 1 or k = 2, problem (1) can
be seen as a “classical” free boundary problem and thus regularity can be extracted
using the ideas introduced by Alt and Caffarelli [1], for k � 3, the k-th eigen-
value is a critical point and the regularity of the free boundary problems associated
with this kind of functional requires a new approach.

The key tool we introduce in order to deal with this kind of problem relies on the
analysis of the shape subsolutions for the energy. We observe that every solution
A of (1) is a shape subsolution for an energy minimization problem, that is, there
exists � > 0 (small enough) such that

∀ Ã ⊆ A min
u∈H1

0 (A)

1

2

∫
|∇u|2 dx −

∫
u dx +�|A|

� min
u∈H1

0 ( Ã)

1

2

∫
|∇u|2 dx −

∫
u dx +�| Ã|. (2)

The minimization of the (torsion) energy

E(A) = min
u∈H1

0 (A)

1

2

∫
|∇u|2 dx −

∫
u dx (3)

among all (quasi-open) sets A of prescribed measure, possibly satisfying some
inclusion constraints, is a classical free boundary problem (see [2]) for which exis-
tence of a solution and primary regularity results are quite well understood.

The main challenge in our case is that the minimizers of (1) are only subso-
lutions in the sense of (2), so that full information on the free boundary cannot,
a priori, be obtained. Roughly speaking, the main point which allows us to pass
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from (1) to (2) is that the variation of eigenvalues for inner local perturbations
of the geometric domain can be controlled by the variation of the torsion energy.
This is not the case for outer geometric perturbations. Briefly, if we replace the
strong information about the minimality in (1) by the weak information given by
(2), we are able to handle the saddle point character of the k-th eigenvalue in the
free boundary problem, but we lose all the information related to the outer pertur-
bations. This is a main stop in order to extract more regularity for the solutions of
(1), as, for example, openness of the optimal shapes.

2. Analysis of Shape Subsolutions

Let A be a measurable set of finite measure. We denote

H̃1
0 (A) := {u ∈ H1(RN ) : u = 0 almost everywhere on R

N \ A}.
It is well known that there exists a quasi-open set ωA ⊆ A such that

H1
0 (ωA) = H̃1

0 (A).

Above, H1 and H1
0 stand for the classical Sobolev spaces. With this observation, and

based on the monotonicity properties of the eigenvalues with respect to inclusions,
solving problem (1) in the family of quasi-open sets with the classical definition of
the Sobolev space, or solving it in the family of measurable sets associated to H̃1

0 ,
are equivalent. This remark remains true for a larger class of shape optimization
problems associated to decreasing functionals with respect to inclusions. We refer
the reader to [7] or [5, Chapter 4] for a collection of results involving the Dirichlet
spectrum of the Laplace operator on quasi-open sets and γ -convergence.

As a consequence of the identity above, one can endow the family of measurable
sets with a distance issued from the γ -convergence. Precisely, for two measurable
sets A and B of finite measure, we introduce

dγ (A, B) =
∫

|u A − u B | dx,

where u A ∈ H1
0 (A) denotes the minimizer in (3) extended by zero to an element

of H1(RN ).

Definition 1. We say that a measurable set A of finite measure is a local shape
subsolution for the energy problem if there exists δ > 0 and � > 0 such that, for
every measurable set Ã, | Ã \ A| = 0, dγ (A, Ã) � δ we have

E(A)+�|A| � E( Ã)+�| Ã|. (4)

The locality in the definition above is expressed through the γ -distance.
Here is the main result of this section.

Theorem 1. Assume A is a local shape subsolution for the energy. Then A is
bounded, has finite perimeter and its fine interior has the same measure as A
(i.e., |A \ ωA| = 0).
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Proof. Fine interior. Using the subsolution property with Ã = ωA and the fact
that E(A) = E(ωA) we get |A| � |ωA|, so that |A \ ωA| = 0.

Finite perimeter. Let us simply denote u := u A the unique minimizer of the
torsion energy E(A) in (3). In order to prove that A has finite perimeter we consider,
for every ε > 0, the test function uε = (u − ε)+ and write from (4)

1

2

∫
|∇u|2 dx −

∫
u dx +�|{u > 0}| �

1

2

∫
|∇uε|2 dx −

∫
uε dx +�|{uε > 0}|.

This perturbation is valid, since limε→0 dγ (A, {uε > 0}) = 0.
Consequently,

1

2

∫
0�u�ε

|∇u|2 dx+�|{0 � u � ε}| �
∫
(u−uε) dx =

∫
0�u�ε

u + ε|{u > ε}| � ε|A|.

Using the Cauchy–Schwarz inequality we have

(∫
0�u�ε

|∇u| dx

)2

�
∫

0�u�ε
|∇u|2 dx |{0 � u � ε}| � 2

�
ε2|A|2,

so that ∫
0�u�ε

|∇u| dx �
√

2/�ε|A|.

Using the co-area formula, we find δn > 0, δn → 0 such that

H N−1(∂∗{u > δn}) �
√

2/�|A|.
Passing to the limit, we get

H N−1(∂∗{u > 0}) �
√

2/�|A|.
Since ωA = {u > 0} and since ωA = A almost everywhere, we get that the
perimeter of A is less than

√
2/�|A|.

Boundedness. The proof of boundedness involves an estimate of Alt-Caffarelli
type (see [1]) adapted to the energy minimization problem. First, we notice that

lim
r→0

sup
x∈RN

dγ (A, A \ Br (x)) � lim sup
r→0

(|u A|2∞ + |u A|∞) cap(Br ) = 0,

so that for r smaller than some r0 = r0(|A|, δ) and for every x ∈ R
N we have

dγ (A, A \ Br (x)) < δ. 
�
We give the following result, which is adapted from [1, Lemma 3.4].

Lemma 1. Let τ ∈ (0, 1). There exists r0 > 0,C0 > 0 such that for every x0 ∈ R
N

and r ∈ (0, r0)

sup
x∈B√

τr (x0)

u(x) � C0r �⇒ u = 0 on Bτr (x0). (5)
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Proof of the Lemma. For the convenience of the reader, we give the proof which
follows a perturbation argument similar to [1, Lemma 3.4] adapted to the energy E .
In the following computations we assume that x0 = 0 in order to simplify notation.
For ε > 0, we introduce the following function:

⎧⎨
⎩

−�vr = 1 in B√
τr \ Bτr

vr = 0 on ∂Bτr

vr = ε on ∂B√
τr

.

Rescaling vr by ψr (x) = vr (r x), we get

⎧⎨
⎩

−�ψr = r2 in B√
τ \ Bτ

ψr = 0 on ∂Bτ
ψr = ε on ∂B√

τ

.

Let ε = supx∈B√
τr

u(x) (which will be controlled by C0r ). Since u ∈ L∞(RN ),
with norm controlled by |A| (as a consequence of the isoperimetric inequalitiy for
the L∞ norm of the torsion function), we have ε < +∞.

By the construction of vr we have that u ∧ vr ∈ H1
0 (A \ Bτr ), so we can use it

as a test function. We have

1

2

∫
B√

τr

|∇u|2 dx −
∫

B√
τr

u dx +�|Bτr ∩ A|

� 1

2

∫
B√

τr \Bτr

|∇(u ∧ vr )|2 dx −
∫

B√
τr \Bτr

u ∧ vr dx .

Using the Cauchy–Schwarz inequality and the equation satisfied by vr ,

1

2

∫
Bτr

|∇u|2 dx −
∫

Bτr

u dx +�|Bτr ∩ A|

� 1

2

∫
(B√

τr \Bτr )∩{u>v}
|∇vr |2 − |∇u|2 dx +

∫
B√

τr \Bτr

(u − v)+ dx

�
∫
(B√

τr \Bτr )∩{u>v}
|∇vr |2 − ∇u∇vr dx +

∫
B√

τr \Bτr

(u − v)+ dx

= −
∫

B√
τr \Bτr

∇(u − vr )
+∇v dx +

∫
B√

τr \Bτr

(u − vr )
+ dx

= −
∫
∂Bτr

∂vr

∂n
(u − vr )

+dH N−1

= |v′
r (τr)|

∫
∂Bτr

(u − vr )
+dH N−1 = |v′

r (τr)|
∫
∂Bτr

udH N−1.

Finally,

1

2

∫
Bτr

|∇u|2 dx −
∫

Bτr

u dx +�|Bτr ∩ A| � |v′
r (τr)|

∫
∂Bτr

udH N−1. (6)
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Let us assume ε � �
2 , which is controlled by the choice of C0 and r0. Then (6)

gives

1

2

∫
Bτr

|∇u|2 dx + 1

2
�|Bτr ∩ A| � |v′

r (τr)|
∫
∂Bτr

udH N−1. (7)

On the other hand, we have, by rescaling the boundary trace theorem in W 1,1(B1),∫
∂Bτr

udH N−1 � C(N )

[
1

τr

∫
Bτr

u dx +
∫

Bτr

|∇u| dx

]
.

So using hypothesis (5) we get
∫
∂Bτr

udH N−1 � C(N )

[
1

τr
C0r |Bτr ∩ A| +

∫
Bτr

|∇u| dx

]

= C(N )

[
1

τ
C0|Bτr ∩ A| +

∫
Bτr

|∇u| dx

]

� C(N )

[(
1

τ
C0 + 1

2

)
|Bτr ∩ A| + 1

2

∫
Bτr

|∇u|2 dx

]
.

Combining
∫
∂Bτr

udH N−1 � C(N )

[(
1

τ
C0 + 1

2

)
|Bτr ∩ A| + 1

2

∫
Bτr

|∇u|2 dx

]

with (7) we get

min

{
1

2
,�

}
� |v′

r (τr)|C(N )
((

1

τ
C0 + 1

2

)
+�

)
,

as soon as
∫

Bτr
|∇u|2 dx + |Bτr ∩ A| > 0. This leads to a contradiction, as soon as

|v′
r (τr)| is small enough. But |v′

r (τr)| = ψ ′
r (τ )

r → 0 when r and C0 are vanishing,
hence for some r0,C0 small enough and all r � r0 we get a contradiction. Finally,
we should have

∫
Bτr

|∇u|2 dx + |Bτr ∩ A| = 0, which gives us the conclusion of
the Lemma. 
�
Proof of Theorem 1 (continuation). Assume for contradiction that the set A is
unbounded. There exists a sequence of points xn ∈ A such that |xn| → +∞ and
the distance between any two of them is greater than 3r0. We can also assume that
u(xn) �= 0, in the measure theoretic sense.

By the choice of xn , using Lemma 1, we know that supBτr0 (xn)
u � C0r0 ∧ 1

2 ,

so there exists yn ∈ Bτr0(xn) such that u(yn) � C0r0 ∧ 1
2 . Since the function

u(x)+ |x − yn|2
2N

is subharmonic in R
N , we get for every r > 0 that

C0r0 ∧ 1

2
� u(yn) � C(N )

1

r N

∫
Br (yn)

[
u(x)+ |x − yn|2

2N

]
dx .
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For a small r there exists a constant C independent of n such that∫
Br (yn)

u(x) dx � Cr N+1,

which gives that
∫

u(x) dx = +∞, which is a contradiction with u ∈ L1(A). 
�
Remark 1. The construction of the constants C0 and r0 in Lemma 1 leads to a
control of the diameter of A in terms of |A|,� and δ.

3. Minimization of the k-th Eigenvalue of the Dirichlet Laplacian

Let A ⊆ R
N be a quasi-open set of finite measure. Then the injection H1

0 (A) ⊆
L2(A) is compact and the spectrum of the Dirichlet Laplacian consists only of
eigenvalues which can be denoted (counting the multiplicity)

0 < λ1(A) � λ2(A) � · · · � λk(A) � · · · → +∞.

For every k ∈ N, there exists uk ∈ H1
0 (A) \ {0} such that −�uk = λk(A)uk , this

equality being understood in the sense

∀ϕ ∈ H1
0 (A),

∫
A

∇uk∇ϕ dx = λk(A)
∫

A
ukϕ dx .

We consider the minimization problem

A �→ λk(A)+ |A| (8)

in the family of all quasi-open sets of R
N . We notice that problems (1) and (8)

are equivalent, and have the same solutions up to a homothety. In a first step, we
assume that A is a solution to problem (8); the existence will be proved in a second
step by an induction argument over k. We shall first prove only that, if it exists, A
is also a shape subsolution of the energy problem, so Theorem 1 applies.

Theorem 2. Assume A is a solution of problem (8). Then A is a local shape sub-
solution for the energy problem.

Proof. This is a direct consequence of [4, Theorem 3.4] (see also Lemma 3 in the
Appendix below) which asserts that there exists a constant ck(A) depending on A
and k such that ∣∣∣∣ 1

λk( Ã)
− 1

λk(A)

∣∣∣∣ � ck(A)dγ ( Ã, A). (9)

Since E( Ã)− E(A) = 1
2 dγ ( Ã, A), for δ small enough, such that δ � 1

4ck(A)
1

λk (A)

and for every Ã such that Ã ⊆ A and dγ ( Ã, A) � δ, we get that

λk( Ã)− λk(A) � c′
k(A)(E( Ã)− E(A)), (10)

where c′
k(A) depends on δ, k and A. Combining the optimality of A expressed in

(8) by |A| − | Ã| � λk( Ã)− λk(A) together with (10), we obtain that A is a local
shape subsolution for the energy problem, with constant � = 1

c′
k(A)

. 
�
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We recall the following result from [6, Theorem 3.5] which is based on a con-
centration—compactness argument for the resolvent operators (see [3, Theorem
2.2]).

Lemma 2. Assume that a bounded minimizer exists for problem (1) for k =
1, . . . , N. Then, at least one minimizer exists for k = N + 1.

We can now formulate the existence result and give a piece of qualitative infor-
mation on the minimizers.

Theorem 3. For every k ∈ N, problem (1) has at least one solution. Moreover,
every solution is bounded and has finite perimeter.

Proof. The fact that every solution, if it exists, is bounded and has finite perimeter
is a consequence of Theorems 1 and 2.

For k = 1, 2 the (unique) solution is a ball and two equal balls, respectively.
The existence of a solution for an arbitrary k, follows from the previous lemma,
provided that a bounded solution exists for j = 1, 2, . . . , k − 1. Since this is true
for k = 1, 2, an induction argument based on Theorems 1 and 2 concludes the
proof. 
�

4. Appendix

For the convenience of the reader, we recall the proof of inequality (9) given in
[4, Theorem 3.4], rephrased here in the context of quasi-open sets.

Lemma 3. Let A ⊆ R
N be a quasi-open set of finite measure. For every k ∈ N,

there exists a constant ck(A) depending only on A such that for every j � k and
for every quasi-open set B ⊆ A, we have

∣∣∣ 1

λ j (A)
− 1

λ j (B)

∣∣∣ � ck(A)dγ (A, B). (11)

Proof. Let us fix k ∈ N. We consider Vk ⊆ L2(RN ) the linear space generated by
the first k eigenfunctions of the Dirichlet–Laplacian on A. The space Vk is a finite
dimensional subspace of H1

0 (A). We denote by RA : L2(A) → L2(A) the resolvent
operator of the Dirichlet–Laplacian RA = (−�)−1, defined by RA( f ) = u A, f ,
where u A, f ∈ H1

0 (A) satisfies −�u A, f = f , in the sense that

∀ϕ ∈ H1
0 (A),

∫
A

∇u A, f ∇ϕ dx =
∫

A
f ϕ dx .

We set Pk : L2(A) → Vk as the L2-orthogonal projector on Vk and introduce
the finite rank, positive, self adjoint operators

T A
k = Pk ◦ RA ◦ Pk,

T B
k = Pk ◦ RB ◦ Pk .
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Denoting μ j (T A
k ), μ j (T B

k ) the j th eigenvalues of the operators T A
k , T B

k , respec-
tively (multiplicites being counted), we have

∀ j = 1, . . . k, μ j (T
B

k ) � 1

λ j (B)
, μ j (T

A
k ) = 1

λ j (A)
. (12)

Indeed, for every j = 1, . . . , k we have (see for instance [10, Corollaries 3 and 4,
pp. 1089–1090])

μ j (T
B

k ) = μ j (Pk ◦ RB ◦ Pk) � μ1(Pk)
2 1

λ j (B)
.

Since μ1(Pk) = |Pk |L (L2(A)) = 1 the first inequality in (12) comes immediately.
To prove the second inequality in (12), we notice in the same way that

μ j (T
A

k ) � 1

λ j (A)
. (13)

Moreover, for every j = 1, . . . , k if u j is the j th eigenfunction of RA associated
with λ j (A) we have that

T A
k u j = Pk ◦ RA ◦ Pku j = μ j (A)u j , (14)

since Pku j = u j . Combining (13) and (14) we get the second inequality in (12).
Consequently, we have for every j = 1, . . . , k

0 � 1

λ j (A)
− 1

λ j (B)
� μ j (T

A
k )− μ j (T

B
k )

� |T A
k − T B

k |L (L2(A)) = |Pk ◦ RA ◦ Pk − Pk ◦ RB ◦ Pk |L (L2(A)).

But

|Pk ◦ RA ◦ Pk − Pk ◦ RB ◦ Pk |L (L2(A))

= sup
|u|L2(A)�1

〈(Pk ◦ RA ◦ Pk − Pk ◦ RB ◦ Pk)u, u〉L2(A)×L2(A)

= sup
|u|L2(A)�1

〈(RA − RB)Pku, Pku〉L2(A)×L2(A).

Let us note that Range(Pk) ⊆ L∞(A) and, moreover, that

Pk : L2(A) → L∞(A)

is bounded. Indeed, let u ∈ L2(A), |u|L2(A) � 1 and Pku = α1u1 + · · · + αkuk .
Here, the eigenfunctions u1, . . . , uk of the Dirichlet Laplacian on A are supposed to
be L2-normalised. Since |Pku|L2(A) � 1, we get

∑k
j=1 α

2
j � 1, hence |α j | � 1 for

every j = 1, . . . , k. From [9, Example 2.1.8] (which holds as well for quasi-open
sets of finite measure as a consequence of the density of smooth open sets in the
family of quasi-open sets, for the γ -distance) we have that
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|u j |L∞(A) � Cλ j (A)
N/4,

where the constant C depends only on the dimension of the space. Finally, we
observe that

|Pku|L∞(A) � C
k∑

j=1

|α j |λ j (A)
N/4 := Ck(A).

We have

〈(RA − RB)Pku, Pku〉L2(A)×L2(A)

�
∫

A
|RA(Pku)− RB(Pku)||Pku| dx

� Ck(A)
∫

A
|RA(Pku)− RB(Pku)| dx �2Ck(A)

∫
A

RA(|Pku|)− RB(|Pku|) dx

� 2Ck(A)
2
∫

A
RA(1)− RB(1) dx = 2Ck(A)

2dγ (A, B).

The last inequality is a consequence of the weak maximum principle. 
�
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